WO2012073712A1 - 亜鉛ガスの供給方法および供給装置 - Google Patents

亜鉛ガスの供給方法および供給装置 Download PDF

Info

Publication number
WO2012073712A1
WO2012073712A1 PCT/JP2011/076517 JP2011076517W WO2012073712A1 WO 2012073712 A1 WO2012073712 A1 WO 2012073712A1 JP 2011076517 W JP2011076517 W JP 2011076517W WO 2012073712 A1 WO2012073712 A1 WO 2012073712A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
gas
zinc gas
temperature
melt
Prior art date
Application number
PCT/JP2011/076517
Other languages
English (en)
French (fr)
Inventor
大久保 秀一
俊光 渕上
好喜 岩田
Original Assignee
Jnc株式会社
Jx日鉱日石金属株式会社
東邦チタニウム株式会社
日陽エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, Jx日鉱日石金属株式会社, 東邦チタニウム株式会社, 日陽エンジニアリング株式会社 filed Critical Jnc株式会社
Priority to JP2012546769A priority Critical patent/JPWO2012073712A1/ja
Priority to CN2011800571746A priority patent/CN103282308A/zh
Priority to KR20137016648A priority patent/KR20140031839A/ko
Priority to US13/990,425 priority patent/US20130247998A1/en
Publication of WO2012073712A1 publication Critical patent/WO2012073712A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/04Obtaining zinc by distilling
    • C22B19/16Distilling vessels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • F27B14/061Induction furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/20Arrangement of controlling, monitoring, alarm or like devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0391Affecting flow by the addition of material or energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/6416With heating or cooling of the system

Definitions

  • the present invention relates to a method and apparatus for supplying zinc gas. Specifically, the present invention relates to a method and apparatus for supplying overheated zinc gas at a controlled supply rate.
  • Siemens method is a method in which the power cost occupying the manufacturing cost is large and the production efficiency is low because batch manufacturing is performed.
  • Non-Patent Document 1 Technical studies for producing large amounts of high-purity silicon at low cost have been continuously carried out and reported (Non-Patent Document 1). The conclusion of this report is that the method that combines the following manufacturing processes has the potential to produce high-purity silicon at the lowest manufacturing cost compared to the Siemens method and other methods. Yes.
  • the method is (1) A process for producing high-purity silicon in which silicon tetrachloride is reduced with zinc gas in a fluidized bed, and the generated silicon is grown and extracted on the seed silicon introduced, (2) By-product zinc chloride gas, unreacted zinc gas and unreacted silicon tetrachloride gas are continuously withdrawn from the top of the fluidized bed reactor, and zinc chloride and zinc are collected as a mixed liquid by the condenser.
  • Non-Patent Document 1 As a method of supplying zinc gas, molten zinc is introduced into a zinc gas generator using a plunger, heated by contacting a graphite tray that is arranged inside and heated by induction from the outside, and the amount introduced by the plunger A method for generating zinc gas corresponding to the above has been disclosed (Non-Patent Document 1).
  • the generation rate of zinc gas is limited by the amount of heat transfer from the graphite tray, and it is difficult to obtain a large generation amount per unit time.
  • carbon-based device materials such as graphite trays are not preferred because carbon is mixed in the zinc gas, and heavy metal components such as phosphorus (P) and iron (Fe) contained in graphite are also mixed. Therefore, it is not preferable.
  • the zinc gas since all of the introduced melt zinc is gasified, and many of the impurities present in the melt zinc are also gasified and entrained in the zinc gas, the zinc gas is used to produce a high Affects the electrical properties of pure silicon.
  • the high-frequency induction heating method causes an induction current to flow through the zinc itself to generate heat, and when the temperature of the molten zinc reaches the boiling point of the zinc, the temperature of the molten zinc remains at the boiling point of the zinc even if excess power is input. Zinc gas corresponding to the input excess power is generated without exceeding the temperature. Since the temperature of the zinc gas generated in this way is also the boiling point temperature of zinc, when it comes into contact with the surrounding low temperature part (the part lower than the boiling point temperature of zinc), the zinc gas is cooled and partly condensed (condensed) It becomes a state.
  • the zinc gas generated in the zinc gas supply device must be transported in a gas phase state.
  • the generated zinc gas is heated to a temperature higher than the boiling point, that is, excessively charged. It needs to be heated.
  • high frequency induction current does not flow in the zinc gas and self-heating does not occur, overheated zinc gas cannot be obtained by the high frequency induction heating method.
  • the melting and holding furnace and the lower part of the evaporation furnace are connected by a graphite tube communication pipe, and the induction heating coil is connected to the outer periphery of the graphite sleeve.
  • a continuous zinc evaporation furnace is disclosed in which the whole is integrally embedded in a castable cement layer (Patent Document 3).
  • Patent Document 3 a continuous zinc evaporation furnace is disclosed in which the whole is integrally embedded in a castable cement layer
  • the apparatus having this configuration can continuously evaporate zinc, as described above, it cannot generate overheated zinc gas.
  • this document does not disclose or suggest any method for supplying overheated zinc gas while controlling the supply rate.
  • this apparatus uses a graphite crucible or a graphite sleeve, carbon is mixed in the zinc gas, which is not preferable.
  • the present invention includes the following items [1] to [9].
  • step (2) is performed when the liquid level of the molten zinc in the zinc gas evaporator is in the range of 40% to 100% of the liquid level height.
  • Zinc gas supply method
  • the temperature of the molten zinc introduced into the zinc gas evaporator is in the range of 430 to 700 ° C.
  • the temperature of zinc gas generated by high frequency induction heating is the boiling point temperature of zinc.
  • Item 4 From the zinc melt obtained by electrolyzing zinc chloride, and the zinc melt obtained by melting electrolytic zinc, dry smelted zinc or recycled zinc.
  • Item 4 The method for supplying zinc gas according to any one of Items [1] to [3], wherein the zinc gas is at least one molten zinc selected from the group consisting of:
  • the step (1) is a step of introducing the melt zinc into the zinc gas evaporator while measuring the weight and temperature of the melt zinc in the zinc gas evaporator.
  • electric power corresponding to the supply rate of zinc gas calculated from the heat radiation amount of the zinc gas evaporator and the efficiency of the high frequency induction heating is input, and the zinc is self-heated by the high frequency induction heating to melt Item 6.
  • the method for supplying zinc gas according to any one of items [1] to [5], wherein the method is a step of generating zinc gas from zinc.
  • the inside of the zinc gas evaporation device inputs high-frequency induction power corresponding to the heat dissipation amount of the device at the boiling point of zinc, Increasing the temperature of the body zinc to the boiling temperature of zinc;
  • step (2) is a step of inputting electric power corresponding to the supply rate of zinc gas and generating zinc gas at a target rate from melted zinc by high frequency induction heating.
  • step 5 The method for supplying zinc gas according to any one of [5].
  • step (1) measures the weight and temperature of the molten zinc in the zinc gas evaporator and the temperature of the molten zinc introduced into the zinc gas evaporator
  • the molten zinc is added to the zinc gas evaporator. Is introduced at the same rate as the supply rate of zinc gas
  • step (2) electric power corresponding to the zinc gas supply rate calculated from the amount of heat released from the zinc gas evaporator, the efficiency of the high frequency induction heating, and the temperature of the molten zinc introduced into the zinc gas evaporator is input.
  • Item 6 Is a step of generating zinc gas from the melt zinc by self-heating zinc by high frequency induction heating
  • Zinc gas characterized in that it is used in the zinc gas supply method according to any one of items [1] to [8] and includes a zinc gas evaporation device, a gas heating device, and a control device. Feeding device.
  • the method of item [1] it is possible to control the electric power input to the high-frequency induction heating means to generate overheated zinc gas at a target supply rate.
  • the zinc gas generation step and the overheating step can be controlled separately, and the control becomes simple. By changing or stopping the amount of input power, it is possible to easily change or stop the generation rate of zinc gas.
  • the melt zinc is directly heated by high frequency induction heating
  • a large energy can be given and zinc gas can be supplied at a high supply rate.
  • the power input to the high frequency induction heating means can vary widely from small power to large power, and the overheated zinc gas can be changed from a small supply rate to a large supply rate.
  • the high frequency induction heating efficiency can be kept high, the impurity in the melt zinc is prevented from being accompanied by the zinc gas, and the impurity in the melt zinc is further reduced.
  • the removed zinc gas can be supplied.
  • the molten zinc to be introduced has viscosity and flowability suitable for introduction, and rapidly overheats the zinc gas at the boiling point generated by high-frequency induction heating by resistance heating. be able to.
  • overheated zinc gas can be generated using zinc obtained by various production methods.
  • the power input to the high-frequency induction heating means can be controlled to shorten the rise time until the overheated zinc gas is generated at the target supply rate.
  • the power input to the high-frequency induction heating means can be controlled to continuously generate the overheated zinc gas at the target supply rate.
  • the electric power input into high frequency induction heating can be controlled, and the overheated zinc gas can be generated with the target supply rate.
  • FIG. 4 is a relationship diagram between input power and evaporation rate obtained in Example 1.
  • FIG. 6 is a relationship diagram between a liquid level height position obtained in Example 2 and efficiency. It is a conceptual diagram which shows an example at the time of using the supply method of the zinc gas of this invention for manufacture of a high purity silicon.
  • the zinc gas supply method of the present invention includes a step of introducing molten zinc into a zinc gas evaporator, and an electric power corresponding to the supply speed of the zinc gas is input, and the zinc is self-heated by high frequency induction heating to melt zinc.
  • zinc has the physical property values and thermophysical property values shown in Tables 1 to 3 below.
  • the heat of vaporization of zinc is 1764 kJ / kg.
  • the amount of heat required to heat the molten zinc at 420 ° C. to 907 ° C. is 233 kJ / kg (specific heat is the average of the constant pressure specific heat of 420 ° C. and 907 ° C. in Table 2) It is about one digit larger than (calculated using the value). Therefore, in order to heat zinc melt at about 420 ° C. to generate zinc gas, it is important to efficiently add energy to the melt zinc at the vaporization stage. In order to overheat the zinc gas to obtain a zinc gas at 1100 ° C., a heat amount of 61.4 kJ / kg may be added.
  • the reaction temperature at which silicon tetrachloride is reduced with zinc gas to produce high purity silicon for example, 950
  • a heat amount may be added. It can be seen that the proper selection of the heating method in the vaporization stage is an important technique for supplying the overheated zinc gas.
  • FIG. 1 is a conceptual diagram showing an example of an apparatus for supplying zinc gas overheated by the method of the present invention.
  • the zinc gas supply apparatus 1 includes a zinc gas evaporation apparatus 10, a gas heating apparatus 20, and a control apparatus 30. Is provided.
  • the control device 30 detects and displays state quantities such as the temperature of the molten zinc to be introduced, the weight of the zinc gas evaporator 10, the temperature of the molten zinc in the zinc gas evaporator 10, and the temperature of the gas heating device 20.
  • the electric power input to the zinc gas evaporation device 10 and the gas heating device 20 is controlled based on the state quantity to control the generation rate of the zinc gas.
  • the molten zinc supplied from the generation source A is measured by the measuring means B, and introduced into the zinc gas evaporator 10 through the dross processing means C.
  • the piping between the measuring means B and the dross processing means C, and the devices such as the zinc gas evaporation device 10 and the gas heating device 20 is kept warm by a heat insulating material, and further heated as necessary.
  • FIG. 2 is a conceptual diagram showing an example of the zinc gas evaporation apparatus 10, a crucible 101 for holding molten zinc, a heat insulating material 102 installed so as to hold and surround the crucible 101, and an induction wound around the crucible 101.
  • a coil 103 is included.
  • An evaporator lid 107 having a receiving port 105, a zinc gas outlet 106, a temperature measuring port 110, and an inert gas inlet 111 is disposed on the crucible 101.
  • the heat insulating material 102 that holds the crucible 101 is disposed on the bottom plate 108 and further disposed on the weighing device 109. The whole is surrounded by the casing 112.
  • Induction coil 103 is connected to a power supply facility (not shown) including an inverter, a capacitor bank, and the like, and an induction coil cooling facility (not shown). The power supply facility is controlled by the control device 30.
  • the shape of the crucible 101 is preferably cylindrical.
  • the crucible 101 having a round bottom shape is more preferable because it is less likely to cause internal distortion and has high strength.
  • the material of the crucible 101 is not particularly limited as long as it is a material that can hold the melt zinc, has resistance in the operating temperature range, and does not affect the quality of the melt zinc.
  • quartz or a ceramic material is a preferable material, and quartz which is a nonconductor is particularly preferable. Since the non-conductor quartz crucible 101 is not induction-heated and the molten zinc is directly heated, evaporation stops as soon as power supply is stopped.
  • the height, diameter and bottom radius of curvature of the crucible 101 and the height and diameter of the induction coil 103 are not particularly limited and are determined by the penetration depth of the induction current, the efficiency of induction heating, the evaporation area and the required evaporation amount. That's fine. As the length becomes longer, the induction heating efficiency increases, and as the thickness increases, the evaporation area increases.
  • a quartz crucible 101 having an outer diameter of 460 mm, an inner diameter of 400 mm, a curvature radius of 230 mm, and a height of 750 mm and an induction coil 103 having a height of 500 mm and an inner diameter of 550 mm are used, and the upper end of the induction coil 103 is 220 mm below the upper end of the crucible 101.
  • the weight of the molten zinc is about 330 kg.
  • the weight of the molten zinc at the liquid level height position of 40% is about 90 kg.
  • the difference of 240 kg is the amount of zinc gas that can be supplied to the zinc gas evaporator 10 without additional introduction of molten zinc.
  • the liquid level height position (%) is defined as the relative height from the lower end of the induction coil 103 expressed as a percentage (%), where the height of the upper end of the induction coil 103 is 100 (%).
  • An opaque quartz tube having a diameter of about 900 mm is available from the market, and can be processed into a large-diameter crucible.
  • the upper end of the induction coil 103 may be arranged from the upper part of the crucible 101 so as to have a margin larger than the height of rise of the melt that occurs when the melt zinc is induction-heated.
  • a margin larger than the height of rise of the melt that occurs when the melt zinc is induction-heated For example, when 330 kg of melt zinc is put into the crucible 101 of the above size and high frequency induction heating at 500 Hz is performed at an evaporation rate of 400 kg / hr, the melt zinc rises by about 200 mm, so the upper end of the induction coil 103 is What is necessary is just to arrange
  • the crucible 101 is surrounded and held by a heat insulating material 102.
  • the heat insulating material 102 is not particularly limited as long as it has a strength capable of holding the crucible 101 holding the molten zinc and is a material that is not induction-heated and has a small thermal conductivity.
  • silica sand, silica powder, and a castable material containing silica sand or silica powder are preferable, and silica sand is more preferable in consideration of maintenance.
  • the heat insulating material 102 may be filled and installed so as to fill a gap between the induction coil 103 and the crucible 101.
  • the material of the evaporator lid 107 is a material that is resistant to zinc gas, has a low thermal conductivity, is not induction-heated, and can be processed so that the receiving port 105 and the zinc gas outlet 106 can be attached.
  • quartz or a ceramic material is preferably used.
  • the evaporator lid 107 made of quartz may be covered with a ceramic fiber board or a blanket. Silica-alumina based low cement castable can also be used as the ceramic material.
  • the material of the bottom plate 108 is not particularly limited as long as it has a small thermal conductivity, is not induction-heated, and can be processed.
  • a ceramic material is preferably used, and a silica-alumina-based low cement castable can also be used as the ceramic material.
  • the structure of the receiving port 105 is not particularly limited as long as it has a liquid sealing mechanism so that the molten zinc gas can be supplied without flowing back the evaporated zinc gas.
  • a liquid sealing mechanism may be provided outside, and a pipe for introducing the melt zinc is extended to the inside of the melt zinc held in the crucible 101 so as to be a liquid sealing mechanism. May be.
  • the material used for the receiving port 105 is not particularly limited as long as it is resistant to molten zinc and zinc gas and can be processed.
  • quartz or a ceramic material is preferably used. In particular, quartz is preferable because it is a material that can be easily processed.
  • FIG. 3 is a conceptual diagram showing an example of a gas heating device 20 that receives evaporated zinc gas and overheats, and includes a heating zone 201, a heat insulating protective cover 202, a resistance heater 203, a thermometer 204, and a zinc gas thermometer 205.
  • the heating zone 201 has a hollow tube structure and is an example of a system in which heating is performed by a resistance heater 203 from the outside.
  • a structure having a heating mechanism may be further provided inside the heating zone 201, or a structure and a filler or a structure resistant to zinc gas may be arranged inside the heating zone 201.
  • the material of the heating zone 201 is not particularly limited as long as it is resistant to zinc gas at the use temperature and can be processed. For example, quartz and ceramic materials are preferably used, and quartz is particularly preferably used because it has good workability.
  • the length and inner diameter of the heating zone 201 may be designed so as to secure a necessary heat transfer area from the supply rate and supply temperature of the zinc gas and the heating temperature of the resistance heater 203.
  • the resistance heater 203 may be selected from the resistance heaters using Kanthal wire, silicon carbide, and molybdenum disilicide according to the overheating temperature. As shown in 20a and 20b of FIG. 3, a straight tubular resistance heater 203 may be incorporated in a heat insulating protective cover to be divided, and the bendable resistance heater is arranged so as to surround the heating zone 201. Also good.
  • FIG. 4 is a conceptual diagram showing an example of the dross processing means C using the bored weir method, in which the dross processing means C is connected in front of the receiving port 105 and used.
  • the melted zinc may contain dross generated by contact with air or the action of the material used during storage, transportation, and weighing.
  • the material of the apparatus used for the dross processing means C is not particularly limited as long as it is resistant to molten zinc and can be processed.
  • the dross treatment means C preferably has a mechanism for adjusting the temperature of the molten zinc introduced by heating, and a mechanism for preventing contact with air by introducing an inert gas.
  • Zinc gas is supplied by the following method. After the melt zinc supplied from the generator A is weighed by the weighing means B, it is put into the dross processing means C to process the dross. The melted zinc flowing out from the dross processing means C is connected to the zinc gas evaporating apparatus 10 through the receiving port 105, for example, as a sealing structure using an inert gas so as to prevent intrusion of air (oxygen content).
  • the temperature T 1 of the melts zinc introduced to the zinc gas evaporator for example, measured by the temperature measuring means provided in the dross processing means.
  • the amount of molten zinc introduced into the gas evaporator 10 is obtained by measuring the weight change of the zinc gas evaporator 10 using the weighing device 109.
  • Zinc gas evaporation apparatus melts zinc in 10 temperature T 2 is measured by the temperature detecting means such as a protected thermocouple detector with a protective tube inserted from the temperature measurement port 110 (e.g., quartz).
  • the temperature T 1 of the molten zinc introduced into the zinc gas evaporator 10 is preferably in the range of 430 to 700 ° C, more preferably in the range of 450 to 600 ° C, and still more preferably in the range of 450 to 550 ° C.
  • Zinc becomes melt zinc at a melting point of 420 ° C. or higher, and has low viscosity and high fluidity. Therefore, it is sufficient that the zinc melt is maintained at 420 ° C. or higher. This is preferable because there is little risk of this. Since the vapor pressure of zinc is as low as 8 kPa at 700 ° C., 700 ° C. or less is preferable from the viewpoint of vapor pressure.
  • the molten zinc to be introduced includes molten zinc produced from molten salt electrolysis of zinc chloride, molten zinc obtained by melting electrolytic zinc, dry smelted zinc or recycled zinc by a usual method. Can be used.
  • As the melt zinc to be introduced one kind may be used, or two or more kinds may be used in combination.
  • the molten salt electrolysis of zinc chloride is performed at about 450 to 500 ° C. in either case of electrolysis with a single salt or electrolysis with a double salt.
  • melt zinc is produced at 450 to 500 ° C., which is a temperature not lower than the melting point of zinc and not higher than the electrolysis temperature.
  • introducing 450 to 500 ° C. molten zinc produced from molten salt electrolysis is particularly preferable because the amount of energy required for high-frequency induction heating in the zinc gas evaporator 10 is reduced.
  • the height of the melt zinc liquid level in the zinc gas evaporation device 10 is obtained by introducing the melt zinc into the zinc gas evaporation device 10 in advance, and obtaining the relationship between the display amount of the weighing device 109 and the liquid level height, The value of the weighing device 109 is measured by this relational expression to determine the liquid level height of the melt zinc. Since the density change due to the temperature of the melt zinc is small, the liquid level of the melt zinc can be determined with high accuracy from the weight of the weighing device 109.
  • the apparatus efficiency K at which electric power input to the zinc gas evaporation apparatus 10 is converted into heating energy is obtained as follows.
  • the molten zinc is introduced into the zinc evaporator 10, the weight reduction rate of the zinc gas evaporator 10 is measured while changing the amount of input power, and a relational expression between the input power amount and the weight reduction rate is obtained.
  • the apparatus efficiency K is obtained from the ratio between the slope of the weight reduction rate with respect to the input power and the slope of the weight reduction rate calculated from the heat of vaporization of zinc with respect to the input power.
  • the amount of heat released from the zinc gas evaporator 10 (Q V : unit kW) is the input power (W V : unit kW) when the weight reduction rate is zero, that is, the amount of input power required for heating to be balanced with the amount of heat released. Is calculated by the following equation 1.
  • Zinc is introduced into the gas evaporator 10 melts zinc which has been heated to the boiling point temperature T b, feed rate:
  • electric power calculated by the following equation 2 (W I : Unit kW) may be input to the induction heating means.
  • W I Unit kW
  • a preferred embodiment of the operation for generating zinc gas using the zinc gas evaporator 10 is as follows.
  • Zinc gas evaporator 10 the melt zinc temperature T 1, based on the display of the weighing device 109, and introduced to a level close to the upper end of the induction coil 103 inputs the power W I calculated by Equation 2 .
  • Temperature T 2 becomes equal constant temperature T b, from the point of view of the weighing device 109 began change, zinc gas by an input power W I calculated by Equation 2 is generated at a rate of V V.
  • the liquid surface of the melt zinc zinc gas evaporator 10 is, until the liquid level 40% height position, and more preferably up to a liquid level height position of 50%, the supply of the constant corresponding to the input power W I Zinc gas can be supplied at a rate.
  • Input power up to a temperature T 2 of the melt zinc is the boiling temperature T b is changed to the power W I corresponding to the zinc gas supply velocity V V, albeit at a range of allowable output of the device as a higher power Good.
  • Temperature T 2 of the melt zinc reduces the input power from the time point when the boiling point T b to W I, or the temperature T 2 of the melt zinc as close input power gets closer to the boiling point T b to W I You may change to This makes it possible to shorten the time for the temperature rise melt zinc to the boiling temperature T b.
  • the state introduced the temperature T 1 of the melt the zinc is higher than the initial setting, or melt a state where the introduction rate V iN of zinc is reduced to correct the introduction temperatures T 1 or introduction rate V iN so as to suppress change in the weighing device.
  • the temperature T 2 is equal to the temperature T b but the displayed amount of the weighing device 109 is increased, the molten zinc introduction temperature T 1 is lower than the initial setting, or the melt In this state, the introduction rate VIN of zinc is increasing, and the introduction temperature T 1 or the introduction rate VIN is corrected so as to suppress the change of the weighing device 109.
  • a resistance heater 203 to 1100 ⁇ 1200 ° C.
  • the heating zone 201 may have a length and an inner diameter that ensure a necessary heat transfer area so as to satisfy the supply speed and supply temperature range of the zinc gas.
  • the temperature range in which the resistance heater 203 can be heated varies depending on the type of heater, but in the case of a resistance heater using a readily available Kanthal wire, the upper limit of the usable temperature is about 1200 ° C., which is above the boiling point to 1100 ° C. It is preferable to use when supplying zinc gas overheated to a temperature range.
  • FIG. 7 is a conceptual diagram showing an example of the relationship between each process regarding the production of high purity silicon by the zinc reduction method.
  • the zinc chloride produced as a by-product discharged from the zinc reduction method silicon production process is separated and recovered, and the separated and recovered zinc chloride is sent to the molten salt electrolysis process, from the molten zinc supplied in the molten state. It is shown that dross is removed and introduced into a zinc gas generator, and zinc gas can be supplied at a controlled supply rate by the method of the present invention and used again for silicon production by the zinc gas reduction method.
  • the used zinc gas evaporation apparatus 10 includes an opaque quartz crucible 101 having an outer diameter of 460 mm, an inner diameter of 400 mm, a curvature radius of 230 mm, and a height of 750 mm, and an induction coil 103 having a height of 500 mm and an inner diameter of 550 mm.
  • the crucible 101 is placed on a bottom plate 108 made of a silica-alumina based low cement castable, the periphery of the crucible 101 is insulated with quartz sand, a quartz evaporator lid 107 is attached, and the upper part is a ceramic fiber board. And is placed on a weighing device (floor scale) 109.
  • a power source having a frequency of 500 Hz and an output of 600 kW was used for high frequency induction heating.
  • the slope of the evaporation rate of zinc with respect to the input power obtained from the heat of vaporization is 2.04 (kg / hr ⁇ kW)
  • the device efficiency K of the zinc gas evaporation device 10 used in the example is 50%
  • the heat dissipation amount Q V was 17.5 kW.
  • Example 2 Using the same apparatus as in Example 1, the change in the apparatus efficiency K when the melt zinc liquid level was changed was determined. The results are shown in FIG. The apparatus efficiency K is not substantially changed when the melt zinc liquid level is higher than the liquid level height position 50%, and when the melt zinc liquid level is lower than the liquid level height position 40%, the apparatus efficiency K A clear decrease in efficiency K was observed. If the molten zinc level is kept in the range above 40% of the liquid level, there is no significant change in the device efficiency K, and zinc gas can be generated by controlling with the input power. It can be seen that induction heating can be performed with high accuracy if the range is kept above 50%.
  • Example 3 A gas heating apparatus 20 having a heating zone 201 made of opaque quartz having a length of 3000 mm and an inner diameter of 100 mm, connected to the same zinc gas evaporation apparatus 10 as in Example 1 and heated to 1100 ° C. using a Kanthal wire heater, The outlet of the gas heating device 20 was connected to a zinc gas cooling recovery unit. Using a molten zinc obtained by molten salt electrolysis, a supply test of an overheated zinc gas was performed.
  • the cooling recovery unit is made of steel lined with a ceramic caster material with high thermal conductivity. The cooling recovery unit can be surrounded by a water cooling jacket and placed on a weighing device (floor scale) to measure the amount of zinc recovered by cooling. I did it.
  • Electric power is input until the display amount of the weighing device (floor scale) 109 reaches a weight corresponding to the liquid surface height position of 40%, and the generation of zinc gas is continued.
  • the test was terminated.
  • the zinc gas evaporator 10 generated 238 kg of zinc gas in 59 minutes from the start of input of power to the stop of input.
  • the generation rate of zinc gas was calculated to be 242 kg / hr.
  • Example 4 Steel melt is dissolved in molten zinc obtained by molten salt electrolysis to prepare molten zinc in which impurities are mixed in a simulated manner, and zinc is produced in the same manner as in Example 3 using this molten zinc. Gas generation and recovery tests were performed. Samples for analysis were collected from the zinc recovered in the cooling recovery device, pretreated by a conventional method, and then analyzed for impurities in zinc by ICP-AES (inductively coupled plasma emission spectroscopy). The results are shown in Table 4.
  • the method and apparatus of the present invention can be effectively used for supplying zinc gas in a method for producing high purity silicon by a zinc reduction method in which silicon tetrachloride is reduced using zinc gas. Furthermore, the zinc chloride produced as a by-product from the zinc reduction method can be electrolyzed, and the obtained molten zinc can be received and supplied as zinc gas, thereby realizing the recycling of zinc used in the zinc reduction method.
  • Resistance heater 204 Thermometer 205 ⁇ ⁇ Zinc gas thermometer 30 ⁇ ⁇ Control device A ⁇ ⁇ Origin of molten zinc B ⁇ ⁇ Measuring means C ⁇ ⁇ Dross treatment means D ⁇ ⁇ Zinc reduction silicon production equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Silicon Compounds (AREA)

Abstract

[課題]亜鉛の沸点以上に過加熱した亜鉛ガスを制御された供給速度で供給する方法および装置を提供する。 [解決手段]本発明の亜鉛ガスの供給方法は、亜鉛ガス蒸発装置に融体亜鉛を導入する工程と、亜鉛ガスの供給速度に対応した電力を入力し、高周波誘導加熱により亜鉛を自己発熱させて融体亜鉛から亜鉛ガスを発生させる工程と、発生した亜鉛ガスをガス加熱装置に導入する工程と、亜鉛ガスを抵抗加熱により加熱して過加熱された亜鉛ガスとする工程を含む。本発明の亜鉛ガスの供給装置は、前記方法に用いられ、亜鉛ガス蒸発装置、ガス加熱装置およびコントロール装置を含む。

Description

亜鉛ガスの供給方法および供給装置
 本発明は、亜鉛ガスを供給する方法及び装置に関する。詳しくは、過加熱した亜鉛ガスを制御された供給速度で供給する方法及び装置に関する。
 近年、地球温暖化を防止し、新たな電力需要に応える技術として、太陽光発電への関心が高まっている。太陽光発電は単結晶や多結晶のシリコンを用いた太陽電池による方法が主流であり、太陽光発電装置の急速な需要増加予測に対応して、主要材料である高純度シリコンを安価に大量に供給することが求められている。
 現在、商業的に供給されている高純度シリコンはシーメンス法によって製造されている。この方法は製造コストに占める電力コストが大きく、また回分式製造となるため生産効率が悪い方法である。さらに、原料として用いるトリクロロシランの製造設備、シーメンス法による高純度シリコンの製造工程から排出される分解ガスから未反応のトリクロロシラン、水素および副生する四塩化ケイ素などを分離・回収・処理する付帯設備も必要である。これらを考慮するとシーメンス法は、安価に大量に高純度シリコンを製造する方法としては適していない。
 高純度シリコンを製造する方法の一つとして、亜鉛ガスにより四塩化ケイ素を還元して高純度シリコンを製造する亜鉛還元法がある。亜鉛還元法による高純度シリコンの製造は、1960年代まで小規模ではあるが商業的に実施されていた。しかしながら、シーメンス法が開発・実用化されてからは、亜鉛還元法による高純度シリコンの商業的な製造は行われなかった。シーメンス法によって製造された高純度シリコンの電気特性が、当時亜鉛還元法によって製造された高純度シリコンよりも良く、また、高純度シリコンの需要は半導体用が主であり、量も限定的であったことから、高コストではあるがシーメンス法による製造が多く行われ、現在に至っている。
 高純度シリコンを安価に大量に製造する技術検討は継続的に実施され報告がなされている(非特許文献1)。この報告の結論としては、以下の製造工程を組み合わせた方法が、シーメンス法と比較しても、また他の方法と比較しても最も製造コストを安く高純度シリコンを製造する可能性を持つとしている。その方法は、
(1)流動層中で四塩化ケイ素を亜鉛ガスで還元し、生成したシリコンを投入された種シリコン上に成長させて抜き出す高純度シリコンの製造工程、
(2)副生する塩化亜鉛ガス、未反応の亜鉛ガスおよび未反応の四塩化ケイ素ガスを流動層反応装置の上部から連続的に抜き出し、凝縮装置により塩化亜鉛および亜鉛を混合液体として捕集し、未反応の四塩化ケイ素と分離する分離回収工程、
(3)凝縮された塩化亜鉛および亜鉛の混合液体を溶融塩電解装置に送り、電解して塩素と亜鉛を回収する工程、
(4)回収した塩素と、ケイ酸(SiO)および炭素と、または金属シリコンとを反応させ、四塩化ケイ素を製造する工程を含み、溶融塩電解された亜鉛が循環使用される方法である。さらに、この高純度シリコン製造方法により、50トン/年の高純度シリコンを生産するパイロット製造装置を設計して製造コストを試算し、他の方法に比較して最も低いコストで製造が可能になるとしている。
 この報告書に記載された方法を参考に、各工程の問題点を洗い出して、亜鉛還元法による高純度シリコンの製造を具体化する検討が行われている。例えば、四塩化ケイ素ガスを亜鉛ガスで還元して高純度シリコンを製造する工程では、縦型反応器を用い、反応器内に四塩化ケイ素ガスと亜鉛ガスとを供給し、四塩化ケイ素供給ノズルの先端部に高純度シリコンを生成させ、さらに高純度シリコンを下方に向かって成長させる方法が開示されている(特許文献1)。しかしながら、大量の高純度シリコンを製造するためには、大量に亜鉛ガスを制御しながら供給する方法およびその装置が必要となるが、その具体的な方法は開示されていない。
 亜鉛ガスを供給する方法としては、プランジャを用いて融体亜鉛を亜鉛ガス発生器に導入し、その内部に配置され、外部から誘導加熱されるグラファイトトレイに接触させて加熱し、プランジャによる導入量に対応した亜鉛ガスを発生させる方法が開示されている(非特許文献1)。しかしこの方法では、亜鉛ガスの発生速度はグラファイトトレイからの伝熱量によって限定され、単位時間当たりの発生量を大きく取りにくい。また、グラファイトトレイなどの炭素を主成分とする装置材料は、亜鉛ガス中に炭素分を混在させるので好ましくなく、さらにグラファイトに含まれるリン(P)や鉄(Fe)などの重金属成分を混在させるので好ましくない。また、導入された融体亜鉛の全てがガス化され、融体亜鉛中に存在する不純物の多くもガス化され亜鉛ガス中に同伴するため、この亜鉛ガスを用いて亜鉛還元法により製造した高純度シリコンの電気特性に影響を与える。
 石英で作られた装置内に、あらかじめ精製された金属粒体を連続的に投入し、さらに投入された金属粒体を外部から誘導加熱して溶融金属とし、投入された量に相当する溶融金属を蒸発容器内に流下させ、流下した溶融金属を外部から加熱し全蒸発させて金属ガスを発生させる装置が開示されている(特許文献2)。しかしこの構成では、あらかじめ投入する金属を必要な純度まで精製処理することが必要なこと、また蒸発容器外部からの加熱量が大きく取れないことから蒸発量が限定され、単位時間当たりの発生量を大きして金属ガスを発生することができない。
 ここで、高周波誘導加熱方式により融体亜鉛から亜鉛ガスを発生させる際の問題点について説明する。高周波誘導加熱方式は、亜鉛そのものに誘導電流を流して自己発熱させるものであり、融体亜鉛の温度が亜鉛の沸点に達すると、過剰電力を入力しても融体亜鉛の温度は亜鉛の沸点温度以上にはならず、入力した過剰電力に相当する亜鉛ガスが発生する。このようにして発生した亜鉛ガスの温度も亜鉛の沸点温度であることから、周囲の低温部(亜鉛の沸点温度よりも低い部分)と接触すると、亜鉛ガスが冷やされ一部が結露(凝縮)状態となる。亜鉛還元反応への供給を考えると、亜鉛ガス供給装置で発生した亜鉛ガスは気相状態で移送されなければならず、そのためには発生した亜鉛ガスを沸点以上の温度に昇温する、すなわち過加熱する必要がある。しかしながら、亜鉛ガスには高周波誘導電流が流れず、自己発熱することはないので、高周波誘導加熱方式では過加熱された亜鉛ガスを得ることができない。
 亜鉛溶湯を保持する溶解保持炉と誘導加熱コイルと黒鉛坩堝とを有する蒸発炉を備え、溶解保持炉と蒸発炉の下部を黒鉛スリーブ製の連通管で結合し、黒鉛スリーブの外周に誘導加熱コイルを巻回し、全体をキャスタブルセメント層に一体に埋め込んだ、連続亜鉛蒸発炉が開示されている(特許文献3)。しかしながら、この構成の装置では、連続的に亜鉛を蒸発することはできるが、上述したように、過加熱された亜鉛ガスを発生することはできない。また、この文献は、供給速度を制御しながら過加熱された亜鉛ガスを供給する方法に関して、何ら開示も示唆もしていない。さらに、この装置では、黒鉛坩堝や黒鉛スリーブを用いているため、亜鉛ガス中に炭素分が混在し好ましくない。
特開2007-145663号公報 特開2008-184641号公報 実開昭61-199567号公報
Seifelt D.A. and Browning M.F., "Pilot-Scale Development of the Zinc Reduction for Production of High-Purity Silicon" AIChE Symposium Series (American Institute of Chemical Engineers) No.216, Vol.78, p104-115 (1982)
 本発明の課題は、亜鉛の沸点以上に過加熱した亜鉛ガスを制御された供給速度で供給する方法を提供することである。また、過加熱した亜鉛ガスを大きな供給速度で制御して効率的に供給する方法を提供することである。さらには、亜鉛ガスへ同伴する不純物の量を抑えて過加熱された亜鉛ガスを供給する方法、およびこの方法に用いる装置を提供することである。
 本発明者らは前記課題を解決するため鋭意検討を重ねた結果、高周波誘導加熱手段に入力する電力の量により亜鉛ガスの発生速度を制御できることを見出し、本発明を完成させるに至った。本発明は以下に示す[1]~[9]の事項を含む。
 [1] 亜鉛ガス蒸発装置に融体亜鉛を導入する工程(1)と、
亜鉛ガスの供給速度に対応した電力を入力し、高周波誘導加熱により亜鉛を自己発熱させて融体亜鉛から亜鉛ガスを発生させる工程(2)と、
発生した亜鉛ガスをガス加熱装置に導入する工程(3)と、
亜鉛ガスを抵抗加熱により加熱して過加熱された亜鉛ガスとする工程(4)と
を含むことを特徴とする亜鉛ガスの供給方法。
 [2] 前記工程(2)が、亜鉛ガス蒸発装置内の融体亜鉛の液面が液面高さ40%から100%の範囲に有る時に行われることを特徴とする項[1]に記載の亜鉛ガスの供給方法。
 [3] 亜鉛ガス蒸発装置に導入する融体亜鉛の温度が430~700℃の範囲であり、
高周波誘導加熱により発生させた亜鉛ガスの温度が、亜鉛の沸点温度であり、
過加熱させた亜鉛ガスの温度が、亜鉛の沸点温度~1100℃の範囲であることを特徴とする項[1]または[2]に記載の亜鉛ガスの供給方法。
 [4] 亜鉛ガス蒸発装置に導入する融体亜鉛が、塩化亜鉛を電解して得られた融体亜鉛、および、電解亜鉛、乾式精錬亜鉛またはリサイクル亜鉛を融解して得られた融体亜鉛からなる群から選ばれる1種以上の融体亜鉛であることを特徴とする項[1]~[3]のいずれか1項に記載の亜鉛ガスの供給方法。
 [5] 亜鉛ガス蒸発装置に導入する融体亜鉛が、塩化亜鉛を電解して得られた融体亜鉛であることを特徴とする項[4]に記載の亜鉛ガスの供給方法。
 [6] 前記工程(1)が、亜鉛ガス蒸発装置内の融体亜鉛の重量および温度を計測しながら、亜鉛ガス蒸発装置に融体亜鉛を導入する工程であり、
前記工程(2)が、亜鉛ガス蒸発装置の放熱量および高周波誘導加熱の装置効率から算出された亜鉛ガスの供給速度に対応した電力を入力し、高周波誘導加熱により亜鉛を自己発熱させて融体亜鉛から亜鉛ガスを発生させる工程である
ことを特徴とする項[1]~[5]のいずれか1項に記載の亜鉛ガスの供給方法。
 [7] 亜鉛ガス蒸発装置内の融体温度が亜鉛の沸点温度となるまでは、亜鉛ガス蒸発装置の内部が亜鉛の沸点温度時の装置の放熱量に相当する高周波誘導電力を入力し、融体亜鉛の温度を亜鉛の沸点温度まで上昇させる工程と、
亜鉛ガス蒸発装置内の融体温度が亜鉛の沸点温度となった時から、亜鉛ガス蒸発装置内の融体亜鉛の重量および温度を計測しながら、亜鉛ガス蒸発装置に融体亜鉛を導入する工程とをさらに含み、
前記工程(2)が、亜鉛ガスの供給速度に対応した電力を入力し、高周波誘導加熱により融体亜鉛から目的速度の亜鉛ガスを発生させる工程であることを特徴とする項[1]~[5]のいずれか1項に記載の亜鉛ガスの供給方法。
 [8] 前記工程(1)が、亜鉛ガス蒸発装置内の融体亜鉛の重量および温度、並びに亜鉛ガス蒸発装置に導入する融体亜鉛の温度を計測しながら、亜鉛ガス蒸発装置に融体亜鉛を亜鉛ガスの供給速度と同じ速度で導入する工程であり、
前記工程(2)が、亜鉛ガス蒸発装置の放熱量、高周波誘導加熱の装置効率および亜鉛ガス蒸発装置に導入する融体亜鉛の温度から算出された亜鉛ガスの供給速度に対応した電力を入力し、高周波誘導加熱により亜鉛を自己発熱させて融体亜鉛から亜鉛ガスを発生させる工程であり、
融体亜鉛の導入と亜鉛ガスの発生とが連続的に行なわれることを特徴とする項[1]~[5]のいずれか1項に記載の亜鉛ガスの供給方法。
 [9] 項[1]~項[8]のいずれか1項に記載の亜鉛ガスの供給方法に用いられ、亜鉛ガス蒸発装置、ガス加熱装置およびコントロール装置を含むことを特徴とする亜鉛ガスの供給装置。
 項[1]の方法によれば、高周波誘導加熱手段に入力する電力を制御して、目的の供給速度で過加熱された亜鉛ガスを発生させることができる。また、亜鉛ガス発生工程と過加熱工程とを分けて制御可能となり制御が簡単になる。入力電力の量を変化または停止することにより亜鉛ガスの発生速度の変化または停止を簡便に行うことができる。
 高周波誘導加熱により融体亜鉛を直接加熱する方法を採ることにより、大きなエネルギーを与えることができ、大きな供給速度で亜鉛ガスを供給することが可能となる。さらに、高周波誘導加熱手段に入力する電力は小さな電力から大きな電力まで幅広く変化可能であり、過加熱した亜鉛ガスを小さな供給速度から大きな供給速度まで変えることができる。
 項[2]の方法によれば、高周波誘導加熱の効率を高く保って運転することができるとともに、融体亜鉛中の不純物が亜鉛ガスに同伴することを抑え、さらに融体亜鉛中の不純物を除去した亜鉛ガスの供給ができる。
 項[3]の方法によれば、導入する融体亜鉛は導入に適した粘度・流れ性を有し、高周波誘導加熱を受けて発生した沸点温度の亜鉛ガスを抵抗加熱により速やかに過加熱することができる。
 項[4]の方法によれば、種々の製法により得られた亜鉛を用いて、過加熱された亜鉛ガスを発生させることができる。
 項[5]の方法によれば、塩化亜鉛の電解により得られた溶融状態の融体亜鉛を用いることから、亜鉛を加熱して融体とする必要が無く、エネルギー消費量を抑えることができる。
 項[6]の方法によれば、高周波誘導加熱手段に入力する電力により制御して、目的の供給速度で過加熱された亜鉛ガスを発生させることができる。
 項[7]の方法によれば、高周波誘導加熱手段に入力する電力を制御して、目的の供給速度で過加熱された亜鉛ガスを発生するまでの立上がり時間を短くすることができる。
 項[8]の方法によれば、高周波誘導加熱手段に入力する電力を制御して、目的の供給速度で過加熱された亜鉛ガスを連続的に発生させることができる。
 項[9]の装置を用いれば、高周波誘導加熱に入力する電力を制御して、目的の供給速度で過加熱された亜鉛ガスを発生させることができる。
亜鉛ガス供給装置を構成する装置の概念図である。 亜鉛ガス蒸発装置の断面図の一例である。 ガス加熱装置の断面図の一例である。 ドロス処理手段の一例および受け入れ口に接続した例を示す概念図である。 実施例1で得られた入力電力と蒸発速度との関係図である。 実施例2で得られた液面高さ位置と効率との関係図である。 本発明の亜鉛ガスの供給方法を高純度シリコンの製造に用いた場合の一例を示す概念図である。
 以下、本発明の過加熱された亜鉛ガスを供給する方法、およびこの方法に用いた装置に関して詳細に説明する。
 本発明の亜鉛ガスの供給方法は、亜鉛ガス蒸発装置に融体亜鉛を導入する工程と、亜鉛ガスの供給速度に対応した電力を入力し、高周波誘導加熱により亜鉛を自己発熱させて融体亜鉛から亜鉛ガスを発生させる工程と、発生した亜鉛ガスをガス加熱装置に導入する工程と、亜鉛ガスを抵抗加熱により加熱して過加熱された亜鉛ガスとする工程とを含む。
 ここで、亜鉛は以下の表1~表3に示す物性値および熱物性値を有する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 亜鉛の気化熱は1764kJ/kgであり、例えば420℃の融体亜鉛を907℃まで加熱するのに必要な熱量233kJ/kg(比熱は表2の定圧比熱の420℃と907℃の値の平均値を用いて計算)と比べると1桁程大きい。したがって、420℃程度の融体亜鉛を加熱して亜鉛ガスを発生させるには、気化させる段階でエネルギーを効率よく融体亜鉛に加えることが重要となる。亜鉛ガスを過加熱して、1100℃の亜鉛ガスにするには61.4kJ/kgの熱量を加えればよく、四塩化ケイ素を亜鉛ガスにより還元して高純度シリコンを製造する反応温度、例えば950℃の亜鉛ガスとするには13.7kJ/kgの熱量を加えればよい。気化段階の加熱方法を適切に選択することが、過加熱した亜鉛ガスの供給に関して重要な技術であることが解る。
 図1は、本発明の方法により過加熱された亜鉛ガスの供給を行う装置の一例を示す概念図であり、亜鉛ガス供給装置1は、亜鉛ガス蒸発装置10、ガス加熱装置20およびコントロール装置30を備える。コントロール装置30は、導入する融体亜鉛の温度、亜鉛ガス蒸発装置10の重量、亜鉛ガス蒸発装置10内の融体亜鉛の温度およびガス加熱装置20の温度などの状態量を検出して表示し、その状態量に基づいて亜鉛ガス蒸発装置10およびガス加熱装置20に入力する電力を制御して、亜鉛ガスの発生速度を制御する。発生元Aから供給される融体亜鉛は、計量手段Bにより計量され、ドロス処理手段Cを経て亜鉛ガス蒸発装置10に導入される。計量手段Bとドロス処理手段C、および亜鉛ガス蒸発装置10とガス加熱装置20などの装置間の配管は、断熱材によって保温し、必要に応じてさらに加熱する。
 図2は、亜鉛ガス蒸発装置10の一例を示す概念図であり、溶融亜鉛を保持する坩堝101、坩堝101を保持し取り囲むように設置される断熱材102、さらにその周囲に巻回される誘導コイル103を有する。坩堝101の上部には、受け入れ口105、亜鉛ガス出口106、温度計測口110および不活性ガス導入口111を有する蒸発器蓋107が配置される。坩堝101を保持する断熱材102は底板108上に配置され、さらに秤量装置109上に設置される。全体はケーシング112により囲まれる。誘導コイル103は、インバーターやコンデンサーバンクなどからなる電力供給設備(図示せず)および、誘導コイル冷却設備(図示せず)に接続される。電力供給設備はコントロール装置30によって制御される。
 坩堝101は、内部に保持した溶融亜鉛が周囲に配置された誘導コイル103により均等に加熱される必要から、坩堝101の形状は円筒形であることが好ましい。丸底の形状を持った坩堝101は、内部歪を生じにくく強度が高いので、さらに好ましい。坩堝101の材質は、融体亜鉛を保持でき、使用温度範囲において耐性を有し、融体亜鉛の品質に影響を与えない材料であれば特に限定されない。例えば、石英やセラミック材が好ましい材質であり、特に不導体である石英が好ましい。不導体である石英の坩堝101は誘導加熱されず、融体亜鉛が直接加熱されるため、電力の供給を停止すると直ちに蒸発が停止する。
 坩堝101の高さ、直径および底の曲率半径、ならびに誘導コイル103の高さおよび直径は特に限定されず、誘導電流の浸透深さ、誘導加熱の効率、蒸発面積および必要な蒸発量によって決定すればよい。細長いほど誘導加熱効率が上がり、太いほど蒸発面積は大きくなる。例えば、外径460mm、内径400mm、曲率半径230mm、高さ750mmの石英製坩堝101と、高さ500mm、内径550mmの誘導コイル103とを用い、誘導コイル103の上端を坩堝101の上端から220mm下方に配置した場合、誘導コイルの上端まで融体亜鉛を入れた時の融体亜鉛の重量は約330kgとなる。液面高さ位置40%の融体亜鉛の重量は約90kgとなる。その差240kgは、亜鉛ガス蒸発装置10へ融体亜鉛の追加導入を行わずに供給できる亜鉛ガスの量となる。ここで、液面高さ位置(%)とは、誘導コイル103の上端の高さを100(%)として誘導コイル103の下端からの相対高さを百分率(%)表記したものとして定義する。直径900mm程度の不透明石英製管は市場から入手可能であり、これを加工して大口径の坩堝とすることも可能である。
 誘導コイル103の上端は、坩堝101の上部から、融体亜鉛を誘導加熱した時に起こる融体の盛り上がり高さより大きな余裕を持つように配置すればよい。例えば、前記の大きさの坩堝101に330kgの融体亜鉛を入れて400kg/hrの蒸発速度で500Hzの高周波誘導加熱を行う場合、融体亜鉛が200mm程度盛り上がるので、誘導コイル103の上端は、坩堝101の上部から200mm以上の余裕を持って配置すればよい。
 坩堝101は断熱材102によって取り囲まれ保持される。断熱材102は融体亜鉛を保持した坩堝101を保持出来る強度を有し、誘導加熱されない材質であり、小さな熱伝導率を持つものであれば特に限定されない。例えば、断熱材102としては珪砂、シリカ粉、および珪砂やシリカ粉を含むキャスタブル材が好ましく、メンテナンスのことを考慮すると珪砂がより好ましい。誘導コイル103と坩堝101との間の隙間を埋めるように断熱材102を充填して設置してもよい。
 蒸発器蓋107の材質は、亜鉛ガスに対して耐性が有り、小さな熱伝導率を有し、誘導加熱されず、受け入れ口105や亜鉛ガス出口106などを取り付け可能に加工可能な材料であれば特に限定されない。例えば、石英やセラミックス材が好ましく用いられる。石英で作られた蒸発器蓋107をセラミックファイバーボードやブランケットで覆うようにしてもよい。セラミックス材として、シリカ-アルミナ系の低セメントキャスタブルを用いることもできる。
 底板108の材質は、小さな熱伝導率を有し、誘導加熱されず、加工可能な材料であれば特に限定されない。例えば、セラミックス材が好ましく用いられ、セラミックス材として、シリカ-アルミナ系の低セメントキャスタブルを用いることもできる。
 受け入れ口105の構造は、蒸発した亜鉛ガスが逆流せずに融体亜鉛を供給できるように液封機構を有していれば特に限定されない。図2の様に外部に液封機構を設けた構成としてもよく、坩堝101に保持される融体亜鉛の内部まで融体亜鉛を導入する管を延長して液封機構となるように構成してもよい。受け入れ口105に用いる材質は、融体亜鉛および亜鉛ガスに対して耐性が有り、加工可能な材料であれば特に限定されない。例えば、石英やセラミックス材が好ましく用いられる。特に石英は加工が容易な材料であることから好ましい。
 図3は蒸発した亜鉛ガスを受け入れて過加熱するガス加熱装置20の一例を示す概念図であり、加熱ゾーン201、断熱保護カバー202、抵抗加熱ヒータ203、温度計204および亜鉛ガス温度計205を備える。加熱ゾーン201は中空の管構造を持ち、外部から抵抗加熱ヒータ203で加熱する方式の例示である。加熱ゾーン201の内部にさらに加熱機構を有した構造としてもよく、また亜鉛ガスに耐性のある充填物や構築物を加熱ゾーン201の内部に配置した構造としてもよい。加熱ゾーン201の材質は使用温度において亜鉛ガスに耐性があり、加工可能な材料ならば特に限定されない。例えば、石英やセラミック材は好ましく用いられ、石英は加工性も良いので、特に好ましく用いられる。
 加熱ゾーン201の長さおよび内径は、亜鉛ガスの供給速度および供給温度、ならびに抵抗加熱ヒータ203の加熱温度から、必要な伝熱面積を確保する様に設計すればよい。抵抗加熱ヒータ203は、カンタル線、炭化珪素および二珪化モリブデンを用いた抵抗加熱ヒータの中から、過加熱温度により選択して用いればよい。図3の20a、20bの様に直管状の抵抗加熱ヒータ203を分割される断熱保護カバーに組み込んだ形状としてもよく、また、屈曲可能な抵抗加熱ヒータは加熱ゾーン201を取り囲むように配置してもよい。
 図4はくぐり堰方式によるドロス処理手段Cの一例を示す概念図であり、ドロス処理手段Cを受け入れ口105の前に接続して用いた例である。融体亜鉛は、亜鉛ガス発生装置1に導入されるまで、貯留、輸送および計量などの際に、空気との接触や用いた材質との作用により生じたドロスを含むことがある。ドロスが亜鉛ガス蒸発装置に流入するのを防ぐため、内部に複数の堰を備えたドロス処理手段Cを受け入れ口105の前に設置することが好ましい。ドロス処理手段Cに用いる装置の材質は融体亜鉛に対して耐性があり、加工可能な材料であれば特に限定されない。例えば、石英やセラミック材が好ましく用いられ、またこれらを組み合わせて用いることもできる。また、ドロス処理手段Cには加熱により導入する融体亜鉛の温度を調節する機構を有すること、ならびに、不活性ガスを導入して空気との接触を防ぐ機構を有することが好ましい。
 計量手段Bとしては、例えば、レードルを用いて移送する方法やポンプを用いて移送する方法などと、移送された融体亜鉛の重量変化を検出して導入量を算出する方法とを組み合わせた手段、ポンプを用いて移送する方法とポンプの吐出速度から導入量を算出する方法とを組み合わせた手段などが利用可能である。さらにバルブや弁を用いて流量の制御を行うこと、流れの途中に堰を設置する方法などを組み合わせることも可能である。
 亜鉛ガスの供給は以下の方法により行う。発生元Aから供給された融体亜鉛を計量手段Bにより計量した後、ドロス処理手段Cに入れドロスを処理する。ドロス処理手段Cから流出する融体亜鉛を、例えば不活性ガスを用いたシール構造として空気(酸素分)の侵入を防ぐように接続して、受け入れ口105から亜鉛ガス蒸発装置10に導入する。
 亜鉛ガス蒸発装置に導入する融体亜鉛の温度Tを、例えばドロス処理手段に備えた温度計測手段によって測定する。ガス蒸発装置10に導入した融体亜鉛の量は、秤量装置109を用いて亜鉛ガス蒸発装置10の重量変化を測定して求める。亜鉛ガス蒸発装置10内の融体亜鉛の温度Tは、温度計測口110から挿入した保護管(例えば石英製)で保護した熱電対検出器などの温度検出手段により測定する。
 亜鉛ガス蒸発装置10に導入する融体亜鉛の温度Tは430~700℃の範囲が好ましく、450~600℃の範囲がより好ましく、450~550℃の範囲がさらに好ましい。亜鉛は融点の420℃以上で融体亜鉛となり、粘性は低く高い流動性を示すことから、420℃以上に保たれた融体亜鉛であればよく、430℃以上の融体亜鉛であれば凝縮するおそれも少ないので好ましい。亜鉛の蒸気圧は700℃では8kPaと低いので、蒸気圧の面からは、700℃以下が好ましい。
 導入する融体亜鉛としては、塩化亜鉛の溶融塩電解から産出される融体亜鉛、および、電解亜鉛、乾式精錬亜鉛またはリサイクル亜鉛を通常行われる方法により融解して得られた融体亜鉛などを用いることができる。導入する融体亜鉛は、1種を用いてもよく、また、2種以上を組み合わせて用いてもよい。
 塩化亜鉛の溶融塩電解は、単塩で電解する場合または複塩を用いて電解する場合のいずれの場合でも、450~500℃程度で電解が行わる。単塩での電解または複塩を用いての電解のいずれの場合でも、亜鉛の融点以上の温度でかつ電解温度以下である、450~500℃で融体亜鉛が産出されることとなる。溶融塩電解から産出された450~500℃の融体亜鉛を導入する場合は、亜鉛ガス蒸発装置10で高周波誘導加熱に要するエネルギーの量が少なくなるので特に好ましい。
 亜鉛ガス蒸発装置10内の融体亜鉛の液面の高さは、あらかじめ亜鉛ガス蒸発装置10に融体亜鉛を導入して、秤量装置109の表示量と液面の高さの関係を求め、この関係式により秤量装置109の値を測定して融体亜鉛の液面高さを求める。融体亜鉛の温度による密度変化は少ないので、秤量装置109の重量から融体亜鉛の液面を高い精度で求めることができる。
 亜鉛ガス蒸発装置10へ入力した電力が加熱エネルギーへ変換される装置効率Kは以下のようにして求める。亜鉛蒸発装置10に融体亜鉛を導入し、入力電力の量を変えながら亜鉛ガス蒸発装置10の重量減少速度を測定して、入力電力量と重量減少速度の関係式を求める。入力電力に対する重量減少速度の傾きと、入力電力に対する亜鉛の気化熱から計算される重量減少速度の傾きとの比から装置効率Kを求める。
 亜鉛ガス蒸発装置10の放熱量(Q:単位kW)は、重量減少速度が零の時の入力電力(W:単位kW)、すなわち放熱量と平衡となる加熱に必要な入力電力の量から下記式1によって計算される。
   Q=W×K   (式1)
 装置効率Kは亜鉛蒸発装置10内の融体亜鉛の高さと誘導コイル103との位置関係で変化することから、亜鉛ガスの発生は装置効率Kの変化が著しくならない融体亜鉛の高さと誘導コイル103との位置関係の範囲で行う必要がある。融体亜鉛の存在範囲が誘導コイルの高さ、すなわち誘導コイルの加熱可能範囲に対して著しく狭い場合には、誘導加熱手段に入力したエネルギーを加熱エネルギーに利用する効率が低下し、入力電力に対応した亜鉛ガスの蒸発量が得られなくなる。誘導コイルの装置効率Kの変化が著しくならない、誘導コイル103と融体亜鉛の液面の範囲をあらかじめ求め、この範囲内で誘導加熱を行い入力電力に対応した亜鉛ガスを発生させる。
 亜鉛ガス蒸発装置10に導入され沸点温度Tまで加熱された融体亜鉛から、供給速度(V:単位kg/hr)で亜鉛ガスを発生させるには、下記式2により算出した電力(W:単位kW)を誘導加熱手段に入力すればよい。これによって、Vの速度で沸点温度Tの亜鉛ガスが発生する。誘導加熱手段に入力する電力Wを変更すれば、その量に対応した供給速度で亜鉛ガスを発生させることができる。
   W=(V/3600×1764)/K+W   (式2)
 亜鉛ガス蒸発装置10を用いて亜鉛ガスを発生させる操作の好ましい態様は以下のとおりである。亜鉛ガス蒸発装置10に温度Tの融体亜鉛を、秤量装置109の表示量をもとに、誘導コイル103の上端に近いレベルまで導入し、式2により算出された電力Wを入力する。亜鉛ガス蒸発装置10の状態は、温度Tと秤量装置109の表示量の変化を測定して検出する。温度Tが温度T未満の状態では、融体亜鉛は温度上昇状態にあり亜鉛ガスの発生は無い。温度Tが温度Tに等しく一定となり、秤量装置109の表示量が変化を始めた時点から、式2により算出された電力Wの入力により亜鉛ガスがVの速度で発生する。亜鉛ガス蒸発装置10内の融体亜鉛の液面が、液面高さ位置40%となるまで、より好ましくは液面高さ位置50%となるまで、入力電力Wに対応した一定の供給速度で亜鉛ガスを供給することができる。
 融体亜鉛の温度Tが沸点温度Tとなるまでの入力電力は、亜鉛ガス供給速度Vに対応する電力Wに変えて、装置の許容出力の範囲ではあるがより高い電力としてもよい。融体亜鉛の温度Tが沸点温度Tとなった時点から入力電力をWに減少させる、あるいは融体亜鉛の温度Tが沸点温度Tに近づくに従い入力電力をWに近づけるように変更してもよい。これにより融体亜鉛を沸点温度Tまでに温度上昇させる時間を短縮することができる。
 亜鉛ガス蒸発装置10に温度Tの融体亜鉛を導入速度(VIN:単位kg/hr)で連続的に導入しながら、それと同じ供給速度V、すなわちVIN=Vの状態で亜鉛ガスを発生させるには、下記式3により算出した電力Wを誘導加熱手段に入力すればよい。これによりVの供給速度で沸点温度Tの亜鉛ガスを連続的に発生させることができる。但し、式3においてCは、温度Tにおける融体亜鉛の定圧比熱と温度Tにおける融体亜鉛の定圧比熱の平均値である。
   W=(V/3600×(1764+C(T-T))/K+W   (式3)
 亜鉛ガス蒸発装置10の状態は、温度Tと秤量装置109の表示量の変化を観察することにより検出する。温度Tが温度Tに等しく、かつ秤量装置109の変化が無い場合は、Vの平均速度で亜鉛ガスが発生している。
 温度Tは温度Tに等しい状態であるが秤量装置109の表示量が減少している時は、融体亜鉛の導入温度Tが当初の設定より高くなっている状態、または、融体亜鉛の導入速度VINが減少している状態であり、秤量装置の変化を抑えるように導入温度Tまたは導入速度VINを修正する。温度Tは温度Tに等しい状態であるが秤量装置109の表示量が増加している時は、融体亜鉛の導入温度Tが当初の設定より低くなっている状態、または、融体亜鉛の導入速度VINが増加している状態であり、秤量装置109の変化を抑えるように導入温度Tまたは導入速度VINを修正する。すなわち、誘導加熱手段に電力Wを入力することにより、亜鉛ガスをVの平均速度で発生させることができ、さらに秤量装置109の変化を抑えるように融体亜鉛の導入温度Tまたは導入速度VINを制御することにより、亜鉛ガスをVの平均速度となるように維持して発生させることができる。
 亜鉛ガス蒸発装置10から発生した沸点温度Tの亜鉛ガスを、沸点温度以上に保たれた配管を通してガス加熱装置20に導入し、例えば抵抗加熱ヒータ203を用いて1100~1200℃に加熱された加熱ゾーン201に通して、沸点以上~1100℃程度、好ましくは940~1100℃程度、より好ましくは950~1050℃程度に過加熱する。加熱ゾーン201の長さおよび内径は、亜鉛ガスの供給速度と供給温度範囲を満足するように必要な伝熱面積を確保すればよい。抵抗加熱ヒータ203の加熱可能な温度範囲はヒータの種類によって異なるが、入手容易なカンタル線を用いた抵抗加熱ヒータの場合、使用可能温度の上限は1200℃程度であり、沸点以上~1100℃の温度範囲に過加熱した亜鉛ガスとして供給する時に用いることが好ましい。
 図7は、亜鉛還元法による高純度シリコンの製造に関し、各工程の関連の一例を示した概念図である。図7には、亜鉛還元法シリコン製造工程から排出される副生した塩化亜鉛を分離回収し、分離回収された塩化亜鉛を溶融塩電解工程に送り、融体状態で供給される融体亜鉛からドロスを除去して亜鉛ガス発生装置に導入し、本発明の方法により亜鉛ガスを制御した供給速度で供給して、亜鉛ガス還元法によるシリコンの製造に再び用いることができることが示される。
 以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
 [実施例1]
 用いた亜鉛ガス蒸発装置10は、外径460mm、内径400mm、曲率半径230mm、高さ750mmの不透明石英製坩堝101と、高さ500mm、内径550mmの誘導コイル103とを備える。坩堝101は、シリカ-アルミナ系の低セメントキャスタブルで作られた底板108の上に載せられ、坩堝101の周囲は珪砂で断熱され、石英製の蒸発器蓋107が取り付けられ、上部はセラミックファイバーボードで覆われ、秤量装置(フロアスケール)109上に置かれる。高周波誘導加熱には500Hzの周波数と600kWの出力を持つ電源を用いた。
 このような亜鉛ガス蒸発装置10に450℃の融体亜鉛330kgを導入し、高周波誘導加熱して沸点温度まで加熱した。高周波誘導加熱する入力電力を変え、入力電力と重量減少速度(亜鉛の蒸発速度)の関係の近似式を求めた。図5に結果を示す。試験に用いた装置では、傾きが1.0(kg/hr・kW)、重量減少速度が零の時の入力電力Wは35kWとなり、入力電力に対して重量減少速度は直線関係を示した。入力電力を変化させることにより、対応した速度で亜鉛を蒸発できることが確認された。気化熱から求めた入力電力に対する亜鉛の蒸発速度の傾きは2.04(kg/hr・kW)であり、実施例で用いた亜鉛ガス蒸発装置10の装置効率Kは50%となり、放熱量Qは17.5kWであった。
 [実施例2]
 実施例1と同様の装置を用い、融体亜鉛の液面が変化した場合の装置効率Kの変化を求めた。図6に結果を示す。装置効率Kは、融体亜鉛の液面が液面高さ位置50%よりも上にある場合には略変化なく、融体亜鉛の液面が液面高さ位置40%より低くなると、装置効率Kの明確な低下が見られた。融体亜鉛の液面高さ位置40%より上の範囲に保てば、装置効率Kの変化は著しくなく、入力電力で制御して亜鉛ガスの発生が可能であり、さらに液面高さ位置50%より上の範囲に保てば、高い精度で誘導加熱が可能となることが解る。
 [実施例3]
 実施例1と同様の亜鉛ガス蒸発装置10に、カンタル線ヒータを用いて1100℃に加熱した、長さ3000mm、内径100mmの不透明石英製の加熱ゾーン201を有するガス加熱装置20を接続し、さらにガス加熱装置20の出口を亜鉛ガスの冷却回収器に接続した。溶融塩電解して得られた融体亜鉛を用いて、過加熱した亜鉛ガスの供給試験を行った。冷却回収器は、表面を熱伝導の大きなセラミックキャスタ材でライニングされたスチール製であり、周囲を水冷ジャケットで囲み、秤量装置(フロアスケール)上に配置して、冷却回収した亜鉛量を測定できるようにした。
 亜鉛ガスをV=250kg/hrの供給速度で発生させる試験を実施した。対応する入力電力は、W=280kWと算出された。溶融塩電解して得られた450℃の融体亜鉛330kgを亜鉛ガス蒸発装置10に導入し、280kWの電力を入力した。融体亜鉛の温度Tは上昇を始め、約10分で沸点温度となり、秤量装置(フロアスケール)109の表示量が減少を始め亜鉛ガスが発生し始めた。ガス加熱装置20に設置した亜鉛ガス温度計205の温度は、950~970℃で略一定の値を示した。秤量装置(フロアスケール)109の表示量が、融体亜鉛の液面の高さが液面高さ位置40%に相当する重量となるまで電力を入力し亜鉛ガスの発生を続けた後、電力の入力を止め試験を終了した。亜鉛ガス蒸発装置10は、電力の入力開始から入力停止までの59分間に238kgの亜鉛ガスを発生した。亜鉛ガスの発生速度は242kg/hrと計算された。
 [実施例4]
 溶融塩電解して得られた融体亜鉛にスチールウールを溶解させ、模擬的に不純物を混在させた融体亜鉛を作成し、この融体亜鉛を用いて実施例3と同様の方法にて亜鉛ガスの発生および回収試験を行った。冷却回収器に回収された亜鉛から分析用の資料を採取し、通常行われる方法で前処理を行った後、ICP-AES(誘導結合プラズマ発光分光法)により亜鉛中の不純物分析を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4の分析結果から、模擬融体亜鉛中に混在した不純物は回収された亜鉛には含まれず、この方法によって、不純物が除去精製された亜鉛ガスを供給することができるという効果が得られることが解る。
 本発明の方法および装置は、亜鉛ガスを用いて四塩化ケイ素を還元する亜鉛還元法により高純度シリコンを製造する方法における、亜鉛ガスの供給に有効に用いることができる。さらに、亜鉛還元法から副生した塩化亜鉛を電解し、得られた融体亜鉛を受け入れ亜鉛ガスとして供給することを可能とし、亜鉛還元法に用いる亜鉛の循環利用を実現する。
 1・・亜鉛ガス供給装置
  10・・亜鉛ガス蒸発装置
   101・・坩堝
   102・・断熱材
   103・・誘導コイル
   104・・冷却水
   105・・融体亜鉛受け入れ口
   106・・亜鉛ガス出口
   107・・蒸発器蓋
   108・・底板
   109・・秤量装置
   110・・温度計測口
   111・・不活性ガス導入口
   112・・ケーシング
  20・・ガス加熱装置
   201・・加熱ゾーン
   202・・断熱保護カバー
   203・・抵抗加熱ヒータ
   204・・温度計
   205・・亜鉛ガス温度計
  30・・コントロール装置
  A ・・融体亜鉛の発生元
  B ・・計量手段
  C ・・ドロス処理手段
  D ・・亜鉛還元法シリコン製造装置

Claims (9)

  1.  亜鉛ガス蒸発装置に融体亜鉛を導入する工程(1)と、
    亜鉛ガスの供給速度に対応した電力を入力し、高周波誘導加熱により亜鉛を自己発熱させて融体亜鉛から亜鉛ガスを発生させる工程(2)と、
    発生した亜鉛ガスをガス加熱装置に導入する工程(3)と、
    亜鉛ガスを抵抗加熱により加熱して過加熱された亜鉛ガスとする工程(4)と
    を含むことを特徴とする亜鉛ガスの供給方法。
  2.  前記工程(2)が、亜鉛ガス蒸発装置内の融体亜鉛の液面が液面高さ40%から100%の範囲に有る時に行われることを特徴とする請求項1に記載の亜鉛ガスの供給方法。
  3.  亜鉛ガス蒸発装置に導入する融体亜鉛の温度が430~700℃の範囲であり、
    高周波誘導加熱により発生させた亜鉛ガスの温度が、亜鉛の沸点温度であり、
    過加熱させた亜鉛ガスの温度が、亜鉛の沸点温度~1100℃の範囲であることを特徴とする請求項1または2に記載の亜鉛ガスの供給方法。
  4.  亜鉛ガス蒸発装置に導入する融体亜鉛が、塩化亜鉛を電解して得られた融体亜鉛、および、電解亜鉛、乾式精錬亜鉛またはリサイクル亜鉛を融解して得られた融体亜鉛からなる群から選ばれる1種以上の融体亜鉛であることを特徴とする請求項1~3のいずれか1項に記載の亜鉛ガスの供給方法。
  5.  亜鉛ガス蒸発装置に導入する融体亜鉛が、塩化亜鉛を電解して得られた融体亜鉛であることを特徴とする請求項4に記載の亜鉛ガスの供給方法。
  6.  前記工程(1)が、亜鉛ガス蒸発装置内の融体亜鉛の重量および温度を計測しながら、亜鉛ガス蒸発装置に融体亜鉛を導入する工程であり、
    前記工程(2)が、亜鉛ガス蒸発装置の放熱量および高周波誘導加熱の装置効率から算出された亜鉛ガスの供給速度に対応した電力を入力し、高周波誘導加熱により亜鉛を自己発熱させて融体亜鉛から亜鉛ガスを発生させる工程である
    ことを特徴とする請求項1~5のいずれか1項に記載の亜鉛ガスの供給方法。
  7.  亜鉛ガス蒸発装置内の融体温度が亜鉛の沸点温度となるまでは、亜鉛ガス蒸発装置の内部が亜鉛の沸点温度時の装置の放熱量に相当する高周波誘導電力を入力し、融体亜鉛の温度を亜鉛の沸点温度まで上昇させる工程と、
    亜鉛ガス蒸発装置内の融体温度が亜鉛の沸点温度となった時から、亜鉛ガス蒸発装置内の融体亜鉛の重量および温度を計測しながら、亜鉛ガス蒸発装置に融体亜鉛を導入する工程とをさらに含み、
    前記工程(2)が、亜鉛ガスの供給速度に対応した電力を入力し、高周波誘導加熱により融体亜鉛から目的速度の亜鉛ガスを発生させる工程であることを特徴とする請求項1~5のいずれか1項に記載の亜鉛ガスの供給方法。
  8.  前記工程(1)が、亜鉛ガス蒸発装置内の融体亜鉛の重量および温度、並びに亜鉛ガス蒸発装置に導入する融体亜鉛の温度を計測しながら、亜鉛ガス蒸発装置に融体亜鉛を亜鉛ガスの供給速度と同じ速度で導入する工程であり、
    前記工程(2)が、亜鉛ガス蒸発装置の放熱量、高周波誘導加熱の装置効率および亜鉛ガス蒸発装置に導入する融体亜鉛の温度から算出された亜鉛ガスの供給速度に対応した電力を入力し、高周波誘導加熱により亜鉛を自己発熱させて融体亜鉛から亜鉛ガスを発生させる工程であり、
    融体亜鉛の導入と亜鉛ガスの発生とが連続的に行なわれることを特徴とする請求項1~5のいずれか1項に記載の亜鉛ガスの供給方法。
  9.  請求項1~8のいずれか1項に記載の亜鉛ガスの供給方法に用いられ、亜鉛ガス蒸発装置、ガス加熱装置およびコントロール装置を含むことを特徴とする亜鉛ガスの供給装置。
PCT/JP2011/076517 2010-11-30 2011-11-17 亜鉛ガスの供給方法および供給装置 WO2012073712A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012546769A JPWO2012073712A1 (ja) 2010-11-30 2011-11-17 亜鉛ガスの供給方法および供給装置
CN2011800571746A CN103282308A (zh) 2010-11-30 2011-11-17 锌气体的供给方法以及供给装置
KR20137016648A KR20140031839A (ko) 2010-11-30 2011-11-17 아연 가스의 공급 방법 및 공급 장치
US13/990,425 US20130247998A1 (en) 2010-11-30 2011-11-17 Method for feeding zinc gas and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-266378 2010-11-30
JP2010266378 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012073712A1 true WO2012073712A1 (ja) 2012-06-07

Family

ID=46171657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076517 WO2012073712A1 (ja) 2010-11-30 2011-11-17 亜鉛ガスの供給方法および供給装置

Country Status (6)

Country Link
US (1) US20130247998A1 (ja)
JP (1) JPWO2012073712A1 (ja)
KR (1) KR20140031839A (ja)
CN (1) CN103282308A (ja)
TW (1) TW201228730A (ja)
WO (1) WO2012073712A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410818B1 (ko) 2013-03-12 2014-06-27 한국전기연구원 세라믹 재료와 칸탈선을 사용한 튜브형 고온 전기로
JP2014125681A (ja) * 2012-12-26 2014-07-07 Au Optronics Corp 蒸着装置
CN105018730A (zh) * 2015-07-28 2015-11-04 山西大学 电磁感应内热式金属镁真空还原炉

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9044701B2 (en) * 2010-05-28 2015-06-02 Asahi Glass Company, Limited Gas purification apparatus and related method
CN103557704B (zh) * 2013-10-12 2015-12-09 深圳市华星光电技术有限公司 坩埚加热设备及方法
CN104115583A (zh) * 2014-08-13 2014-10-29 单思诚 残膜回收机
CN107470606A (zh) * 2017-09-30 2017-12-15 湖北启宏热工设备有限公司 一种铝合金定量浇注炉
CN107843582B (zh) * 2017-11-30 2020-04-28 清华大学 一种熔盐中金属离子的在线检测方法及装置
CN110257634B (zh) * 2019-07-04 2021-04-02 湖南新威凌金属新材料科技股份有限公司 一种可回收氯化锌废液的锌粉生产装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199567U (ja) * 1985-06-03 1986-12-13
JP2007217262A (ja) * 2006-02-14 2007-08-30 Kinotech Corp シリコン製造装置
JP2008115066A (ja) * 2006-11-07 2008-05-22 Cs Gijutsu Kenkyusho:Kk シリコン製造装置
JP2008214156A (ja) * 2007-03-06 2008-09-18 Sumitomo Electric Ind Ltd 多結晶シリコンの製造方法および製造装置
JP2008260675A (ja) * 2007-03-19 2008-10-30 Chisso Corp 高純度多結晶シリコンの製造装置および製造方法
JP2010030869A (ja) * 2008-07-25 2010-02-12 Cs Gijutsu Kenkyusho:Kk 高純度シリコンの製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199567U (ja) * 1985-06-03 1986-12-13
JP2007217262A (ja) * 2006-02-14 2007-08-30 Kinotech Corp シリコン製造装置
JP2008115066A (ja) * 2006-11-07 2008-05-22 Cs Gijutsu Kenkyusho:Kk シリコン製造装置
JP2008214156A (ja) * 2007-03-06 2008-09-18 Sumitomo Electric Ind Ltd 多結晶シリコンの製造方法および製造装置
JP2008260675A (ja) * 2007-03-19 2008-10-30 Chisso Corp 高純度多結晶シリコンの製造装置および製造方法
JP2010030869A (ja) * 2008-07-25 2010-02-12 Cs Gijutsu Kenkyusho:Kk 高純度シリコンの製造装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125681A (ja) * 2012-12-26 2014-07-07 Au Optronics Corp 蒸着装置
KR101410818B1 (ko) 2013-03-12 2014-06-27 한국전기연구원 세라믹 재료와 칸탈선을 사용한 튜브형 고온 전기로
CN105018730A (zh) * 2015-07-28 2015-11-04 山西大学 电磁感应内热式金属镁真空还原炉
CN105018730B (zh) * 2015-07-28 2017-03-08 山西大学 电磁感应内热式金属镁真空还原炉

Also Published As

Publication number Publication date
KR20140031839A (ko) 2014-03-13
JPWO2012073712A1 (ja) 2014-05-19
US20130247998A1 (en) 2013-09-26
TW201228730A (en) 2012-07-16
CN103282308A (zh) 2013-09-04

Similar Documents

Publication Publication Date Title
WO2012073712A1 (ja) 亜鉛ガスの供給方法および供給装置
KR101851543B1 (ko) 유동층 반응기 및 이를 이용한 고순도 입상 다결정 실리콘의 제조 방법
US6221155B1 (en) Chemical vapor deposition system for polycrystalline silicon rod production
US6749824B2 (en) Chemical vapor deposition system for polycrystalline silicon rod production
US20170158516A1 (en) Fluidized-bed reactor and process for preparing granular polycrystalline silicon
JP4038110B2 (ja) シリコンの製造方法
JP2014527577A (ja) 方向性凝固により高純度アルミニウムを準備する方法及びそのための溶鉱炉
EP2479141B1 (en) System for producing polycrystalline silicon, and process for producing polycrystalline silicon
TWI417241B (zh) 高純度多晶矽的製造裝置及製造方法
JP6370232B2 (ja) 多結晶シリコンロッドの製造方法
CN103282559A (zh) SiC单晶体的制造装置和SiC单晶体的制造方法
TWI516650B (zh) 熔融設備
KR20090069313A (ko) 단결정 제조장치 및 단결정 제조방법
TWI593627B (zh) Polycrystalline silicon crystal stick and its manufacturing method
TWI531533B (zh) 利用電感應電力將在固態為非電導性且在熔融狀態為電導性之材料純化
JP5335075B2 (ja) 多結晶シリコンの製造方法
TWI579419B (zh) 製備顆粒狀多晶矽的反應器和方法
WO2012163531A1 (en) Device for refining of silicon by directional solidification in an oxygen-containing atmosphere as well as a refining method of silicon
US3243174A (en) Dissociation-deposition apparatus for the production of metals
CN106458607B (zh) 使用卧式反应器制造多晶硅的装置以及该多晶硅的制造方法
JP2554888B2 (ja) 金属チタンの製造法
JP5730423B2 (ja) 熱プラズマ処理装置
JP5502650B2 (ja) ポリシリコンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546769

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13990425

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137016648

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11844531

Country of ref document: EP

Kind code of ref document: A1