WO2012073626A1 - 研削方法及び研削装置 - Google Patents

研削方法及び研削装置 Download PDF

Info

Publication number
WO2012073626A1
WO2012073626A1 PCT/JP2011/074879 JP2011074879W WO2012073626A1 WO 2012073626 A1 WO2012073626 A1 WO 2012073626A1 JP 2011074879 W JP2011074879 W JP 2011074879W WO 2012073626 A1 WO2012073626 A1 WO 2012073626A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
grindstone
glass substrate
coolant
workpiece
Prior art date
Application number
PCT/JP2011/074879
Other languages
English (en)
French (fr)
Inventor
潤 大川
宮本 幹大
秀晴 鳥井
祐介 今里
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020137014058A priority Critical patent/KR20130140047A/ko
Priority to CN2011900009171U priority patent/CN203317224U/zh
Priority to JP2012546745A priority patent/JPWO2012073626A1/ja
Publication of WO2012073626A1 publication Critical patent/WO2012073626A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/10Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/02Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant

Definitions

  • the present invention relates to a method for grinding an end face of a glass substrate and a grinding apparatus.
  • a glass substrate such as a plate glass or a liquid crystal panel is ground and chamfered by a grinding apparatus (hereinafter, the grinding and chamfering are collectively referred to as grinding).
  • the grindstone rotated is applied to the end surface of the glass substrate to be ground, and the grindstone or the glass substrate is moved to grind the end surface around the glass substrate.
  • a coolant is supplied from the nozzle to the processing unit for cooling (see, for example, Patent Document 1).
  • the end surface of the glass substrate is likely to fluctuate and is not stable, so that defects in the end surface of the glass substrate (for example, chipping (microcracks), chipping, grinding burns and cracks) are likely to occur. It is a situation. This tendency is particularly remarkable in a glass substrate having a thickness of 1.2 mm or less.
  • the grinding conditions for example, the position where the coolant is supplied and the incident angle
  • the glass during the grinding process described above is not specified. It was difficult to prevent the occurrence of defects on the end face of the substrate.
  • the present invention has been made in response to the above circumstances, and even when the glass substrate that is the object to be ground is thin, the occurrence of defects on the end surface of the glass substrate can be suppressed, and the end surface of the glass substrate can be stably ground.
  • An object is to provide a grinding method and a grinding apparatus.
  • the grinding method of the present invention is a grinding method using a grinding apparatus comprising a grindstone for grinding an end face of a glass substrate and a nozzle for supplying a coolant for cooling a grinding part of the glass substrate, a step of rotating the grindstone d to grind the end surface of the glass substrate having a thickness of 1.2 mm or less, and sandwiching the glass substrate during the grinding, with respect to each main surface of the glass substrate supplying a coolant from a grinding position by the grindstone to a position at a distance x toward the traveling direction of the glass substrate with respect to the grindstone at an incident angle of ⁇ 1 , ⁇ 2 , and the ⁇ 1 , ⁇ 2 , and x / d are in the ranges of 15 to 60 °, 15 to 60 °, and 0.04 to 0.05, respectively.
  • the inner diameter ⁇ of the supply port of the nozzle, the flow rate R of the coolant supplied from the supply port of the nozzle, the grinding speed V of the glass substrate and the peripheral speed v of the grindstone is preferably in the range of 2.5 to 3.2 mm, 10 to 20 L / min, and 0.0012 to 0.01, respectively.
  • the grinding method of the present invention it is preferable to further include a step of adjusting the V / v to be in the range of 0.0012 to 0.01 according to the wear amount of the grindstone.
  • the grinding device of the present invention is a grinding device for grinding an end surface of a glass substrate, wherein the end surface of a glass substrate having a thickness of 1.2 mm or less is rotationally driven to grind the diameter d and the glass substrate.
  • First and second nozzles for supplying coolant to the liquid crystal and the values of ⁇ 1 , ⁇ 2 , and x / d are 15 to 60 °, 15 to 60 °, and 0.04 to 0.05, respectively. Is within the range.
  • the glass substrate is sandwiched between the main surfaces of the glass substrate at an incident angle of 15 to 60 ° and toward the traveling direction of the glass substrate with respect to the grindstone. Since the coolant is supplied from the grinding position to a position within the range of 0.04 (4%) to 0.05 (5%) of the diameter of the grindstone, even if the glass substrate that is the object to be ground is thin, It is possible to provide a grinding method and a grinding apparatus capable of suppressing the occurrence of defects on the end surface of the glass substrate and stably grinding the end surface of the glass substrate.
  • FIG.1 (a) and FIG.1 (b) are the block diagrams of the grinding device which concerns on embodiment.
  • FIG. 2A and FIG. 2B are detailed configuration diagrams of the grinding mechanism.
  • FIG. 3 is an enlarged side view of the grindstone.
  • FIG. 4 is a perspective view of the housing.
  • FIG. 5 is a side view of the housing.
  • FIG. 6 is a side view of the end face cleaning mechanism.
  • FIG. 1 is a lineblock diagram of grinding device 1 concerning an embodiment
  • Drawing 1 (a) is a side view
  • Drawing 1 (b) is a top view
  • FIG. 2 is a detailed configuration diagram of the grinding mechanism 100 and the coolant supply mechanism 200.
  • FIG. 2 (a) is a top view
  • FIG. 2 (b) is a side view.
  • FIG. 3 is an enlarged side view of the grindstone 101.
  • FIG. 4 is a perspective view of the housing 104 included in the grinding mechanism 100.
  • FIG. 5 is a side view of the housing 104.
  • FIG. 6 is a side view of the end surface cleaning mechanism 500.
  • the casing 104 is indicated by a chain line so that the configuration inside the casing 104 can be easily seen.
  • the grindstone 101 is indicated by a chain line.
  • each configuration of the grinding apparatus 1 will be described with reference to FIGS.
  • illustration of the grinding mechanism 100 and the columns of the controller 600 is omitted.
  • the grinding apparatus 1 grinds and chamfers the end face of a glass substrate (hereinafter referred to as a workpiece W) for electronic equipment such as FPD (Flat Panel Display).
  • a workpiece W for electronic equipment such as FPD (Flat Panel Display).
  • Grinding mechanism 100 coolant supply mechanism 200 that supplies coolant (coolant) to the vicinity of the grinding portion of the grindstone 101 provided in the grinding mechanism 100, and a transport mechanism that holds the workpiece W and moves the end surface of the workpiece W along the grinding mechanism 100.
  • a suction mechanism 400 that is connected to the grinding mechanism 100 via the duct L and draws the coolant used in the grinding mechanism 100, an end face cleaning mechanism 500 that cleans the end face of the workpiece W that has been ground and chamfered by the grinding mechanism 100, and grinding A controller 600 that controls the entire apparatus 1 is provided.
  • the grinding mechanism 100 includes a grindstone 101 that grinds the end surface of the workpiece W, a motor 102 that rotationally drives the grindstone 101, and a coolant supply mechanism 200 to the grindstone 101.
  • a rectifying plate 103 that rectifies the used coolant after being supplied and sucks and induces the used coolant to the duct L, a grindstone 101, a rectifying plate 103, and the like are provided.
  • Grindstone 101 is attached to a motor 102 for rotating is rotated driven around the center P 1 of the grinding wheel 101 in the direction (counterclockwise) of the arrow ⁇ in Fig. 2 (a). Further, as shown in FIG. 3, a groove 101a is formed in the center of the side surface of the grindstone 101, and the end surface of the workpiece W is along the groove 101a in the direction of arrow ⁇ in FIG. 2A (from right to left). As a result, the end surface of the workpiece W is ground.
  • the motor 102 drives the grindstone 101 to rotate counterclockwise in FIG. 2A based on the control from the controller 600.
  • the rotational speed of the grindstone 101 is controlled based on the feed speed of the workpiece W (hereinafter referred to as the processing speed V).
  • the grindstone 101 so that the ratio V / v of the processing speed V and the peripheral speed v of the grindstone 101 is in the range of 0.0012 to 0.01 (0.0012 ⁇ V / v ⁇ 0.01). Control the number of revolutions.
  • the peripheral speed v is the peripheral speed of the grindstone 101 at a position P 2 (hereinafter referred to as a grinding position P 2 ) where the grindstone 101 and the surface having the thickness of the workpiece W of 1/2 are in contact with each other.
  • the processing speed V, the peripheral speed v, and the ratio V / v are less than 0.0012, the coolant cannot pass through the air layer generated by the rotation of the grindstone 101 and reach the workpiece W, thereby cooling the ground portion. Can not. As a result, defects such as burning may occur and grinding may not be possible. Further, if the processing speed V, the peripheral speed v, and the ratio V / v exceed 0.01, it is difficult to grind the end surface of the work W because it is close to the limit speed of the work W.
  • the current plate 103 is arranged along the grinding wheel 101 on the right side of the grinding stone 101 (see FIG. 2A), and rectifies the used coolant and sucks it into the duct L.
  • the used coolant can be rectified and efficiently sucked and guided to the inlet of the duct L. For this reason, it is possible to effectively prevent the coolant from scattering in the housing 104.
  • the duct L is attached to the upper side of the housing 104, but the duct L may be attached to the right side of the housing 104.
  • the amount of air drawn into the duct L is in the range of 40 to 60 m / min. If the drawing air volume is less than 40 m / min, the coolant may not be sufficiently drawn. Further, if the amount of air drawn in exceeds 60 m / min, the negative pressure in the housing 104 (a state where the pressure is lower than the atmospheric pressure) increases, which may affect the strength of the housing 104. Moreover, since it is necessary to raise the suction
  • the housing 104 is provided with an opening 104a for introducing the workpiece W. Further, for the purpose of preventing the coolant from scattering out of the casing 104, two flanges 104b and 104c extending from the casing 104 toward the outside are provided above and below the opening 104a.
  • the air in the casing 104 is also drawn, so that the inside of the casing 104 becomes negative pressure. Therefore, as shown in FIG. 5, air can flow from the outside of the housing 104 into the housing 104 in the direction of the arrow. The coolant that is about to splash outside the casing 104 is pushed back by this flow, so that the coolant can be effectively prevented from scattering outside the casing 104 by providing the flanges 104b and 104c.
  • the coolant supply mechanism 200 includes a manifold 201 that equally branches coolant supplied by a pump (not shown), an advancing / retreating means 202 that drives the manifold 201 back and forth in the direction of the arrow ⁇ (vertical direction) in FIG. There are provided nozzles 203a and 203b that are arranged at an incident angle of ⁇ 1 and ⁇ 2 with respect to the main surfaces S 1 and S 2 of the workpiece W with W interposed therebetween and supply coolant branched by the manifold 201 to the vicinity of the grinding part. .
  • the nozzles 203a and 203b supply coolant sent out by a pump through the manifold 201.
  • the nozzle 203a As shown in FIG. 2 (a) and 2 (b), the nozzle 203a, from 203b, with respect to the grinding position P 2 of the workpiece W by the grinding wheel 101, left side of the drawing sheet of FIG. 2 (a), i.e., position P 3 of the distance x toward the grinding position P 2 in the traveling direction of the workpiece W (hereinafter, referred to as supply position P 3) coolant is supplied to the.
  • the supply position P 3 the ratio x / d of the distance x between the diameter d and the grinding position P 2 and the supply position P 3 of the grindstone 101 is 0.04 (4%) - in the range of 0.05 (5%) (0.04 (4%) ⁇ x / d ⁇ 0.05 (5%)).
  • the processing speed V and the circumferential speed v and the ratio V / v is, it is 0.0012 or more, and the coolant, the coolant to the grinding unit by supplying the supply position P 3 instead grinding position P 2 Can be supplied.
  • the range in this embodiment, the ratio x / d of the distance x between the diameter d and the grinding position P 2 and the supply position P 3 of the grindstone 101 is 0.04 (4%) to 0.05 (5%)
  • the coolant is supplied to the supply position P 3 that is within (0.04 (4%) ⁇ x / d ⁇ 0.05 (5%)). If the value of x / d is less than 0.04 (4%), it is impossible to actually coolant strikes position to cool the grinding section deviates from the grinding position P 2 in a direction opposite to the workpiece advancing direction . If the value of x / d is more than 0.05 mm (5%), the coolant strikes the position can not cool the grinding section deviates the workpiece traveling direction from the grinding position P 2.
  • the coolant supply positions of the nozzles 203a and 203b are the same, but the coolant supply positions of the nozzles 203a and 203b may be shifted from each other.
  • the coolant supplied from the nozzle 203a and the coolant supplied from the nozzle 203b are prevented from interfering with each other to prevent the coolant from being supplied to the grinding part. be able to.
  • the coolant supply position by the nozzles 203a and 203b is adjusted so as to satisfy 0.04 (4%) ⁇ x / d ⁇ 0.05 (5%).
  • the incident angles ⁇ 1 and ⁇ 2 of the nozzles 203a and 203b that supply the coolant there may not be able to supply coolant to the grinding position P 2 of the workpiece W by the grinding wheel 101.
  • the incident angle of the coolant includes the incident angles ⁇ 1 and ⁇ 2 in the horizontal direction (see FIG. 2B) and the direction perpendicular to the end surface (grinding surface) of the workpiece W (see FIG. 2A). Although there is an incident angle ⁇ 3 , incident angles ⁇ 1 and ⁇ 2 in the horizontal direction with respect to the side surface of the grindstone 101 are particularly important.
  • the incident angles ⁇ 1 and ⁇ 2 (see FIG. 2B) of the nozzles 203a and 203b are within a range of 15 ° to 60 ° (15 ° ⁇ ⁇ 1 , ⁇ 2 ⁇ 60 °). It is preferable.
  • the incident angle theta 1 is an angle of an auxiliary line L 1 with respect to the auxiliary line L 3 shown in FIG. 2 (b), the incident angle theta 2, the extension line L 2 with respect to the auxiliary line L 3 shown in FIG. 2 (b) Is an angle.
  • the upper auxiliary line L 3 as a reference, and both the lower positive and (plus).
  • the auxiliary line L 3 is a tangent of the grindstone 101 in the grinding position P 2
  • the auxiliary line L 2 is a line passing through the center of the supply port of the nozzle 203b
  • the center of the auxiliary line L 1 is the supply port of the nozzle 203a It is a line that passes through.
  • Nozzles 203a, 203b incident angle theta 1 of the case theta 2 is less than 15 ° the coolant is not supplied coolant to the grinding position P 2 is well of contact between grinding wheel 101 and the workpiece W will flow over the workpiece W, burn There is a risk of problems such as these.
  • the incident angles ⁇ 1 and ⁇ 2 of the nozzles 203a and 203b exceed 60 ° the coolant hits the workpiece W, and the end surface of the workpiece W vibrates and is not stable (runs out). There is a risk that defects such as cracks, chips and cracks may occur.
  • the incident angle ⁇ 3 common to the nozzles 203a and 203b is preferably in the range of 15 ° to 30 ° (15 ° ⁇ ⁇ 3 ⁇ 30 °).
  • the incident angle ⁇ 3 is an angle between the auxiliary line L 4 and the auxiliary line L 5 shown in FIG.
  • the auxiliary line L 5 represents a line passing through the center of the supply port of the nozzle 203a
  • the auxiliary line L 4 represents a tangent line at the grinding position P 2 of the grinding wheel 101.
  • the flow rate R of the coolant supplied from the nozzles 203a and 203b is preferably 10 to 20 L (liter) / min (10 L / min ⁇ R ⁇ 20 L / min). Since the grindstone 101 is rotating, an air layer that rotates with the grindstone 101 is formed around the grindstone 101. Therefore, when the coolant flow rate R is less than 10L / min, it is not possible to break the air layer coolant, the coolant does not hit well at the supply position P 3. As a result, the grinding part cannot be cooled, and problems such as burning occur. Also, when the coolant flow rate R exceeds 20L / min, although it is possible to break the air layer, the flow rate of the coolant is too high, the possibility that the coolant supplied to the supply position P 3 does not reach the grinding position P 2 is there.
  • the inner diameters ⁇ of the supply ports of the nozzles 203a and 203b are preferably in the range of 2.5 mm to 3.2 mm (2.5 mm ⁇ ⁇ ⁇ 3.2 mm), respectively.
  • the inner diameter of the supply port of the 203b is less than 2.5 mm, coolant diameter supplied it becomes thinner, to keep the coolant supply to the supply position P 3 becomes difficult.
  • the nozzle 203a, the inner diameter of the supply port of 203b exceeds 3.2 mm, since the coolant diameter supplied becomes thick, but not difficult to keep the state of applying a coolant to the supply position P 3, the flow rate is low Therefore, it becomes difficult to break the air layer generated around the grindstone 101.
  • the insides of the nozzles 203a and 203b are processed in a spiral shape so that the supplied coolant does not diffuse.
  • the inner diameter ⁇ of the supply ports of the nozzles 203a and 203b is, for example, an inner diameter ⁇ of 3.0 mm when the thickness of the workpiece W is 0.7 mm, and an inner diameter ⁇ of 2.8 mm when the thickness of the workpiece W is 0.4 mm. It is more preferable to change according to the thickness of the workpiece W.
  • the advancing / retreating means 202 includes two parallel guide rails 204a and 204b laid, four sliders (not shown) provided on the lower surface of the manifold 201 and slidably engaged with the guide rails 204a and 204b, and the guide rail 204a. 204b, and a male screw 205 that is supported so as to freely rotate at a fixed position, a motor 206 that reversibly drives the male screw 205, and a lower surface of the manifold 201.
  • a mating female screw (not shown).
  • the male screw 205 is driven to rotate forward and backward, and the manifold 201 and the nozzles 203a and 203b provided on the manifold 201 advance and retreat along the guide rails 204a and 204b.
  • the motor 206 of the advancing / retreating means 202 is controlled by the controller 600, and moves the manifold 201 provided with the nozzles 203a, 203b in the vertical direction of FIG. 2A based on the wear state of the grindstone 101. That is, in order to supply coolant to the grinding position P 2, it is necessary to supply coolant to the supply position P 3, the grinding wheel 101, when worn by use, for changing the diameter d of the grindstone 101, The position of the manifold 201 also needs to be moved upward in FIG. 2A by the amount that the diameter d of the grindstone 101 has changed (decreased) due to wear of the grindstone 101.
  • the position of the manifold 201 that is, the positions of the nozzles 203a and 203b is changed by the advancing / retreating traveling means 202 based on the wear state of the grindstone 101.
  • the controller 600 drives the motor 206 to move the position of the manifold 201 upward in FIG. Move so that the value of x / d falls within the range of 0.04 to 0.05.
  • the wear state of the grindstone 101 may be obtained by measuring the depth of the groove 101a of the grindstone 101 with calipers or the like, for example, and may be obtained from the difference between the width of the workpiece W before and after grinding. May be.
  • the transport mechanism 300 includes an advancing / retreating traveling unit 301 and a traveling body S that is provided in the advancing / retreating traveling unit 301 and moves in the left-right direction in FIG.
  • the advancing / retreating means 301 includes two parallel guide rails 302a and 302b laid, four sliders 303a to 303d provided on the lower surface of the traveling body S and slidably engaged with the guide rails 302a and 302b, and guide rails 302a, 302a,
  • a male screw 304 that is provided along 302b and is rotatably supported at a fixed position, a motor 305 that reversibly drives the male screw 304, and a lower surface of the traveling body S.
  • the traveling body S moves forward and backward by driving the male screw 304 forward and backward by reversible operation of the motor 305.
  • the traveling body S only needs to be able to travel forward and backward.
  • the traveling body S is provided with a motor and a pinion that is reversibly driven by the motor, and the pinion is mounted on a rack disposed along the guide rails 302a and 302b.
  • the traveling body S may be moved forward and backward by meshing.
  • a holding means 307 for holding the work W is provided, and the work W is detachably held by the holding means 307.
  • the holding means 307 is a hollow suction box, for example, and sucks and holds the workpiece W through a plurality of small holes 307a provided on the top wall of the workpiece W placed on the top wall of the suction box. Note that a plurality of suction cups may be provided in place of the small holes 307a for suction holding.
  • the suction mechanism 400 includes a pump that sucks used coolant through the duct L, and a gas-liquid separator disposed in front of the pump.
  • the coolant drawn from the duct L is separated from the air by the gas-liquid separator and reused or discarded.
  • the end surface cleaning mechanism 500 supplies cleaning water to the end surface of the workpiece W that has been ground by the grinding mechanism 100, thereby removing coolant including cullet that has been generated by grinding and adhered to the end surface of the workpiece W and the vicinity of the end surface. Then, the end face of the workpiece W is cleaned.
  • the end surface cleaning mechanism 500 includes nozzles 501a and 501b for supplying cleaning water and a casing 502 for preventing scattering of cleaning water.
  • the nozzles 501a and 501b are respectively arranged above and below the workpiece W, and supply cleaning water toward the end surface of the workpiece W.
  • the cleaning water is supplied from the inside to the outside of the workpiece W.
  • the casing 502 is provided with an opening 502a for introducing the workpiece W in the same manner as the casing 104 of the grinding mechanism 100.
  • the controller 600 controls the entire grinding apparatus 1. Specifically, the motor 305 that reversibly drives the male screw 304 of the advance / retreat traveling means 301, the motor 102 that rotationally drives the grindstone 101, the motor 206 that reversibly drives the male screw 205 of the advance / retreat traveling means 202, and the holding means 307 are controlled. To do.
  • the workpiece W is placed on the holding means 307 by a transfer machine (not shown).
  • a transfer machine not shown.
  • the workpiece W is aligned.
  • the workpiece W is placed, the workpiece W is sucked and held by the small hole 307a.
  • the traveling body S When the workpiece W is sucked and held, the traveling body S is driven from the right to the left in FIGS. 1A and 1B by the motor 305 of the forward / backward traveling means 301 at a predetermined speed. Instead of keeping the speed of the traveling body S constant, the traveling body S may be initially driven at a higher speed and the speed may be reduced before the grinding mechanism 100.
  • the rotational speed of the grindstone 101 is controlled so that the ratio V / v of the processing speed V and the peripheral speed v is in the range of 0.0012 to 0.01.
  • the incident angles ⁇ 1 to ⁇ 3 shown in FIGS. 2 (a) and 2 (b) are in the range of 15 ° to 60 °, in the range of 15 ° to 60 °, and in the range of 15 ° to 30 °, respectively.
  • nozzle 203a which is adjusted within, from 203b, the coolant is supplied to the supply position P 3 at a flow rate in the range of 10L / min ⁇ 20L / min.
  • the workpiece W after grinding is removed from the holding means 307 by the above-described transfer machine, and the new workpiece W before grinding is placed on the holding means 307. Is done. Thereafter, grinding of the end face of the new workpiece W is performed.
  • the grinding apparatus 1 rather than grinding position P 2 the position for supplying the coolant, supply position P at a distance x toward the grinding position P 2 in the traveling direction of the workpiece W 3 and then, the supply position P 3, the ratio x / d of the distance x between the diameter d and the grinding position P 2 and the supply position P 3 of the grindstone 101 is 0.04 (4%) to 0.05 (5%) (0.04 (4%) ⁇ x / d ⁇ 0.05 (5%)).
  • the nozzle 203a, the incident angle theta 1 of 203b, coolant since the theta 2 to the range of 15 ° ⁇ 60 ° (15 ° ⁇ ⁇ 1 ⁇ 60 °) is supplied efficiently to the grinding position P 2.
  • the occurrence of defects on the end surface of the workpiece W for example, chipping (microcracks), chipping, grinding burns and cracks
  • the workpiece W can be stably ground, the speed of grinding can be increased and the number of processes per unit time can be improved.
  • the rotation of the grindstone 101 so that the ratio V / v between the processing speed V and the peripheral speed v during grinding is within a range of 0.0012 to 0.01 (0.0012 ⁇ V / v ⁇ 0.01).
  • the flow rate R of the coolant supplied from the nozzles 203a and 203b is set to 10 to 20 L (liter) / min (10 L / min ⁇ R ⁇ 20 L / min), respectively.
  • the inner diameters ⁇ of the supply ports of the nozzles 203a and 203b are each in the range of 2.5 mm to 3.2 mm (2.5 mm ⁇ ⁇ ⁇ 3.2 mm), the occurrence of defects on the end face of the workpiece W is further increased. Can be suppressed.
  • the used coolant is rectified by the current plate 103 and sucked and guided to the position of the duct L, and the housing 104 is provided with the housing 104b and the housing 104c, so that it is effective that the coolant is scattered outside the housing 104. Can be prevented.
  • the workpiece W is moved by the advancing / retreating traveling means 301 to grind the end surface of the workpiece W.
  • the advancing / retreating means 301 may be provided, and the grinding mechanism 100 may be moved along the end surface of the workpiece W to grind the end surface of the workpiece W.
  • each parameter is as follows.
  • x / d a ratio between the distance x between the diameter d and the grinding position P 2 and the supply position P 3 of the grinding wheel 101.
  • ⁇ 1 is the incident angle of the nozzle 203a.
  • ⁇ 2 the incident angle of the nozzle 203b.
  • V / v Ratio of machining speed V and peripheral speed v.
  • R Flow rate of coolant supplied from each nozzle 203a, 203b.
  • inner diameter of the supply port of each nozzle 203a, 203b.
  • Example 1 In Example 1, x / d is 0.05 (5%), ⁇ 1 is 22.5 °, ⁇ 2 is 22.5 °, V / v is 0.005, R is 15 L / min, ⁇ is 2
  • x / d is 0.05 (5%)
  • ⁇ 1 is 22.5 °
  • ⁇ 2 is 22.5 °
  • V / v is 0.005
  • R is 15 L / min
  • is 2
  • the end face of the workpiece W was ground using the metal bond diamond grindstone. Thereafter, a final polishing process was performed with a resin bond grindstone under the same conditions.
  • Example 2 In Example 2, x / d is 0.04 (4%), ⁇ 1 is 45 °, ⁇ 2 is 22.5 °, V / v is 0.005, R is 25 L / min, and ⁇ is 2.0 mm. As described above, the end face of the workpiece W was ground using the metal bond diamond grindstone. Thereafter, a final polishing process was performed with a resin bond grindstone under the same conditions.
  • Comparative Example 1 In Comparative Example 1, x / d is 0.04 (4%), ⁇ 1 is 70 °, ⁇ 2 is 45 °, V / v is 0.005, R is 15 L / min, ⁇ is 3.2 mm, The end surface of the workpiece W was ground using the metal bond diamond grindstone. Thereafter, a final polishing process was performed with a resin bond grindstone under the same conditions as the grinding process.
  • Comparative Example 2 In Comparative Example 2, x / d is 0.02 (2%), ⁇ 1 is 22.5 °, ⁇ 2 is 22.5 °, V / v is 0.011, R is 9.5 L / min, ⁇ Was set to 3.3 mm, and the end surface of the workpiece W was ground using the metal bond diamond grindstone. Thereafter, a final polishing process was performed with a resin bond grindstone under the same conditions.
  • Table 1 lists the grinding conditions (x / d, ⁇ 1 , ⁇ 2 , V / v, R, ⁇ ) and the grinding results of Examples 1 and 2 and Comparative Examples 1 and 2.
  • the end surface of the workpiece W was visually confirmed by enlarging the image captured by the CCD camera about 20 times.
  • the inspection results are “1 (Very Good)” when no defects (chipping (microcracks), chips, grinding burns, cracks) can be confirmed on the end surface of the entire circumference of the workpiece W, and chipping (microcracks) of less than 0.2 mm. ) Can be confirmed as “2 (Good)”, and when 0.2 mm or more of chipping (microcracks) or other defects (chips, grinding burns or cracks) can be confirmed as “3 (Bad)” did.
  • Example 2 which is not within the range of 0.0012 to 0.01, as a result of confirming the image after enlargement, chipping (microcracks) of less than 0.2 mm was confirmed, but chipping of 0.2 mm or more ( Microcracks) and other defects could not be confirmed (result “2”).
  • the values of the grinding conditions x / d, ⁇ 1 , ⁇ 2 , V / v, R, and ⁇ are 0.04 (4%) to 0.05 (5), respectively. %), 15 ° to 60 °, 15 ° to 60 °, 2.5 to 3.2 mm, 10 to 20 L / min, and within a range of 0.0012 to 0.01, the workpiece W after grinding Even when the thickness of the workpiece W is as thin as 0.7 mm, it is possible to effectively suppress the occurrence of defects on the end surface of the workpiece W (chipping (micro crack), chipping, grinding burn, crack). I understood it.
  • the grinding method and the grinding apparatus of the present invention can be used for grinding the end face of a glass substrate, and are particularly suitable for grinding the end face of a glass for FPD (Flat Panel Display).
  • the thickness of the glass substrate suitable for the grinding method and grinding apparatus of the present invention is preferably about 3 mm, and the size of the glass substrate is preferably 650 mm (length) ⁇ 750 mm (width) or more, preferably 1500 mm (length) ⁇ 1800 mm ( (Horizontal) or more is more preferable, and 2200 mm (vertical) ⁇ 3500 mm (horizontal) or more is particularly preferable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

 本発明は、ガラス基板の端面を研削加工する砥石と、前記ガラス基板の研削加工部を冷却する冷却剤を供給するノズルとを備えた研削装置を使用する研削方法であって、直径dの砥石を回転駆動させて、厚みが1.2mm以下の前記ガラス基板の端面を研削加工し、前記研削加工中に、前記ガラス基板を挟んで、前記ガラス基板の各主面に対しθ,θの入射角度で、かつ、前記砥石に対する前記ガラス基板の進行方向に向かって、前記砥石による研削位置から距離xの位置へ冷却剤を供給し、前記θ、θ、x/dの値が、各々15~60°、15~60°、0.04~0.05の範囲内である研削方法に関する。

Description

研削方法及び研削装置
 本発明は、ガラス基板の端面の研削方法及び研削装置に関する。
 板ガラスや液晶パネル等のガラス基板は、研削装置により四辺の端面が研削及び面取される(以下、研削及び面取を合わせて研削加工と称する)。この研削加工では、回転させた砥石を研削対象であるガラス基板の端面に当て、砥石もしくはガラス基板を動かしてガラス基板周辺の端面を研削加工している。また、研削加工中は、冷却のためにノズルからクーラント(冷却剤)が加工部へ供給される(例えば、特許文献1参照)。
日本国特開2007-30051号公報
 近年では、ガラス基板の厚みが薄くなっていることから、ガラス基板の端面がぶれやすく安定しないためガラス基板の端面の不具合(例えばチッピング(微小クラック)、欠け、研削焼けや割れ)が発生しやすい状況となっている。この傾向は、1.2mm以下の厚みのガラス基板で特に顕著である。しかしながら、従来の研削方法では、このような厚みの薄いガラス基板の研削加工に適した研削条件(例えば、クーラントを供給する位置や入射角度)が規定されておらず、上述した研削加工時におけるガラス基板の端面の不具合の発生を防止することが困難であった。
 本発明は、上記の事情に対処してなされたものであり、研削対象物であるガラス基板が薄い場合でも、ガラス基板の端面の不具合発生を抑制し、ガラス基板の端面を安定して研削できる研削方法及び研削装置を提供することを目的とする。
 本発明の研削方法は、ガラス基板の端面を研削加工する砥石と、前記ガラス基板の研削加工部を冷却する冷却剤を供給するノズルとを備えた研削装置を使用する研削方法であって、直径dの砥石を回転駆動させて、厚みが1.2mm以下の前記ガラス基板の端面を研削加工する工程と、前記研削加工中に、前記ガラス基板を挟んで、前記ガラス基板の各主面に対しθ,θの入射角度で、かつ、前記砥石に対する前記ガラス基板の進行方向に向かって、前記砥石による研削位置から距離xの位置へ冷却剤を供給する工程と、を備え、前記θ、θ、x/dの値が、各々15~60°、15~60°、0.04~0.05の範囲内である。
 本発明の研削方法において、前記ノズルの供給口の内径φ、前記ノズルの供給口から各々供給される前記冷却剤の流量R、及び、前記ガラス基板の研削加工速度Vと前記砥石の周速度vとの比V/vが、それぞれ、2.5~3.2mm、10~20L/分、0.0012~0.01の範囲内であることが好ましい。
 本発明の研削方法において、前記砥石の摩耗量に応じて、前記x/dの値が、0.04~0.05の範囲内となるよう前記冷却剤を供給する位置を調整する工程をさらに備えることが好ましい。
 本発明の研削方法において、前記砥石の摩耗量に応じて、前記V/vが、0.0012~0.01の範囲内となるように調整する工程をさらに備えることが好ましい。
 本発明の研削装置は、ガラス基板の端面を研削加工する研削装置であって、厚みが1.2mm以下のガラス基板の端面を、回転駆動して研削加工する直径dの砥石と、前記ガラス基板を挟んで配置され、前記ガラス基板の各主面に対しθ,θの入射角度で、かつ、前記砥石に対する前記ガラス基板の進行方向に向かって、前記砥石による研削位置から距離xの位置へ冷却剤を供給する第1,第2のノズルと、を備え、前記θ、θ、x/dの値が、各々15~60°、15~60°、0.04~0.05の範囲内である。
 本発明によれば、研削加工中に、ガラス基板を挟んで、ガラス基板の各主面に対し各々15~60°の入射角度で、かつ、砥石に対するガラス基板の進行方向に向かって、砥石による研削位置から砥石の直径の0.04(4%)~0.05(5%)の範囲内となる位置へ冷却剤を供給しているので、研削対象物であるガラス基板が薄い場合でも、ガラス基板の端面の不具合発生を抑制し、ガラス基板の端面を安定して研削できる研削方法及び研削装置を提供することができる。
図1(a)、図1(b)は、実施形態に係る研削装置の構成図である。 図2(a)、図2(b)は、研削機構の詳細構成図である。 図3は、砥石の拡大側面図である。 図4は、筺体の斜視図である。 図5は、筺体の側面図である。 図6は、端面洗浄機構の側面図である。
(実施形態)
 以下、本実施形態について図面を参照しながら詳細に説明する。
(研削装置1)
 図1は、実施形態に係る研削装置1の構成図であり、図1(a)は側面図、図1(b)は上面図である。図2は、研削機構100及びクーラント供給機構200の詳細構成図であり、図2(a)は上面図、図2(b)は側面図である。図3は、砥石101の拡大側面図である。図4は、研削機構100が備える筺体104の斜視図である。図5は、筺体104の側面図である。図6は、端面洗浄機構500の側面図である。
 図2では、筺体104内部の構成を容易に視認できるように、筺体104を鎖線で示した。また、図5では、砥石101を鎖線で示した。以下、図1~図6を参照して、研削装置1の各構成について説明する。なお、図1~図5では、研削機構100及びコントローラ600の支柱の図示を省略した。
 図1(a)及び図1(b)に示すように、研削装置1は、FPD(Flat Panel Display)など電子機器向けのガラス基板(以下、ワークWと称する)の端面を研削及び面取する研削機構100、研削機構100が備える砥石101の研削部付近へクーラント(冷却剤)を供給するクーラント供給機構200、ワークWを保持し、ワークWの端面を研削機構100に沿って移動させる搬送機構300、ダクトLを介して研削機構100と接続され、研削機構100で使用したクーラントを引き込む吸引機構400、研削機構100で研削及び面取されたワークWの端面を洗浄する端面洗浄機構500及び研削装置1全体を制御するコントローラ600を備える。
 ワークWの厚みが薄いと(特に1.2mm以下)、ワークWの端面の不具合(例えばチッピング(微小クラック)、欠け、研削焼けや割れ)が発生しやすくなることから、この実施形態では、厚みが1.2mm以下のワークWを取り扱うものとする。また、以下の説明では、研削及び面取を合わせて研削加工と称する。
(研削機構100)
 図2(a)及び図2(b)に示すように、研削機構100は、ワークWの端面を研削加工する砥石101、この砥石101を回転駆動するモータ102、クーラント供給機構200から砥石101へ供給された後の使用済みクーラントを整流し、ダクトLへ使用済みクーラントを吸引誘導する整流板103、砥石101及び整流板103等を収容する筺体104を備える。
 砥石101は、回転駆動するモータ102に取り付けられており、砥石101の中心Pを中心として図2(a)の矢印αの向き(反時計回り)に回転駆動される。また、図3に示すように、砥石101の側面中央には溝101aが形成されており、図2(a)の矢印βの向き(右から左)にワークWの端面をこの溝101aに沿って移動させることにより、ワークWの端面の研削加工がおこなわれる。
 モータ102は、コントローラ600からの制御に基づいて、砥石101を図2(a)の反時計回りの向きに回転駆動する。この際、砥石101の回転数は、ワークWの送り速度(以下、加工速度Vと称する)に基づいて制御される。具体的には、加工速度V及び砥石101の周速度vの比V/vが0.0012~0.01の範囲内(0.0012≦V/v≦0.01)となるように砥石101の回転数を制御する。なお、周速度vは、砥石101とワークWの板厚を1/2とする面とが接触する位置P(以下、研削位置Pと称する)における砥石101の周速度である。
 加工速度Vと周速度vと比V/vが、0.0012未満であると、クーラントが砥石101の回転により生じた空気層を通過してワークWに達することができず、研削部分を冷却できない。その結果、焼け等の不具合が発生し、研削加工できなくなる虞がある。また、加工速度Vと周速度vと比V/vが、0.01を超えるとワークWの研削加工の限界速度に近いためワークWの端面の研削加工を行うこと自体が難しい。
 整流板103は、砥石101の右側に砥石101に沿って配置され(図2(a)参照)、使用済みのクーラントを整流してダクトLへ吸引誘導する。この整流板103を備えることにより、使用済みのクーラントを整流して効率良くダクトLの引き込み口まで吸引誘導することができる。このため、筺体104内にクーラントが飛散するのを効果的に防止することができる。図2(a)では、ダクトLを筺体104の上側に取り付けているが、ダクトLを筺体104の右側に取り付けてもよい。
 ダクトLの引き込み風量は、40~60m/分の範囲内とすることが好ましい。引き込み風量が40m/分未満であるとクーラントを十分に引き込むことができない虞がある。また、引き込み風量が60m/分を超えると筺体104内の負圧(大気圧よりも圧力が低い状態)が増大し筺体104の強度に影響する虞がある。また、後述する吸引機構400が備えるポンプの吸引能力を上げる必要があるため設備コストが増大する。なお、ダクトLに引き込み風量調節用の調整板を設けてもよい。
 図4に示すように、筺体104には、ワークWを導入する開口104aが設けられている。さらに、クーラントが筺体104外へ飛散するのを防止する目的で、この開口104aの上下には、筺体104から外側に向かって延伸する2つの鍔(つば)104b,104cが設けられている。クーラントをダクトLから引き込む際に、筺体104内の空気も引き込まれるため筺体104内が負圧となる。このため、図5に示すように、筺体104外から筺体104内へ矢印の向きに空気の流れができる。筺体104外へ飛散しようとするクーラントは、この流れに押し返されるため、この鍔104b,104cを設けることでクーラントが筺体104外へ飛散するのを効果的に防止することができる。
(クーラント供給機構200)
 クーラント供給機構200は、図示しないポンプにより送出されるクーラントを均等に分岐するマニホルド201、このマニホルド201を図2(a)の矢印γの方向(上下方向)に進退駆動する進退走行手段202、ワークWを挟んで、ワークWの各主面S,Sに対しθ,θの入射角度で配置され、マニホルド201で分岐されたクーラントを研削部付近へ供給するノズル203a,203bを備える。
 ノズル203a,203bは、マニホルド201を介してポンプにより送出されるクーラントを供給する。図2(a)及び図2(b)に示すように、ノズル203a,203bからは、砥石101によるワークWの研削位置Pに対し、図2(a)の紙面に向かって左側、即ち、研削位置PからワークWの進行方向に向かって距離xの位置P(以下、供給位置Pと称する)にクーラントが供給される。
 この供給位置Pは、砥石101の直径d及び研削位置Pと供給位置Pとの距離xの比x/dが0.04(4%)~0.05(5%)の範囲内(0.04(4%)≦x/d≦0.05(5%))となるように調整される。
 砥石101は、回転しているため砥石101の周りに砥石101と共に回転する空気層ができる。この空気層とワークに阻まれて、クーラントを研削位置Pへ供給してもクーラントを研削位置Pに当てることができない。このため、加工速度Vと周速度vと比V/vが、0.0012以上であり、かつ、クーラントを、研削位置Pではなく供給位置Pに供給することで研削加工部へクーラントを供給することができる。
 このため、この実施形態では、砥石101の直径d及び研削位置Pと供給位置Pとの距離xの比x/dが0.04(4%)~0.05(5%)の範囲内(0.04(4%)≦x/d≦0.05(5%))となる供給位置Pへクーラントを供給している。もし、x/dの値が0.04(4%)未満であると、実際にクーラントが当たる位置が研削位置Pからワーク進行方向と反対方向にずれてしまい研削部を冷却することができない。また、x/dの値が0.05mm(5%)を超えると、クーラントが当たる位置が研削位置Pからワーク進行方向にずれてしまい研削部を冷却することができない。
 なお、図2(b)では、ノズル203a,203bによるクーラントの供給位置を同じ位置にしているが、ノズル203a,203bのクーラントの供給位置を互いにずらすようにしてもよい。このようにノズル203a,203bのクーラントの供給位置をずらすことで、ノズル203aから供給されるクーラントとノズル203bから供給されるクーラントとが互いに干渉してクーラントが研削加工部へ供給されないのを抑制することができる。ただし、この場合も、ノズル203a,203bによるクーラントの供給位置が0.04(4%)≦x/d≦0.05(5%)を満たすように調整する点に留意する。
 さらに、クーラントを供給するノズル203a,203bの入射角度θ,θにも注意が必要である。クーラントの入射角度によっては、砥石101によるワークWの研削位置Pにクーラントを供給することができない虞がある。このクーラントの入射角度には、水平方向(図2(b)参照)の入射角度θ,θと、ワークWの端面(研削面)に対して垂直方向(図2(a)参照)の入射角度θとがあるが、砥石101の側面に対して水平方向の入射角度θ,θが特に重要である。
 具体的には、ノズル203a,203bの入射角度θ,θ(図2(b)参照)は、15°~60°の範囲内(15°≦θ,θ≦60°)とすることが好ましい。入射角度θは、図2(b)に示す補助線Lに対する補助線Lの角度であり、入射角度θは、図2(b)に示す補助線Lに対する補助線Lの角度である。なお、補助線Lを基準として上側、下側のどちらも正(プラス)とした。ここで、補助線Lは研削位置Pにおける砥石101の接線であり、補助線Lはノズル203bの供給口の中心を通る線であり、補助線L1はノズル203aの供給口の中心を通る線である。
 ノズル203a,203bの入射角度θ,θが15°未満の場合、クーラントがワークW上を流れてしまい砥石101とワークWとが接触する研削位置Pへクーラントがうまく供給されず、焼け等の不具合が発生する虞がある。また、ノズル203a,203bの入射角度θ,θが60°を超えている場合、クーラントがワークWを叩く状態となり、ワークWの端面が振動して安定しない(暴れる)ため、チッピング(微小クラック)や欠け、割れ等の不具合が発生する虞がある。
 また、ノズル203a,203bに共通の入射角度θは、15°~30°の範囲内(15°≦θ≦30°)とすることが好ましい。入射角度θは、図2(a)に示す補助線Lと補助線Lとの角度である。ここで、補助線Lはノズル203aの供給口の中心を通る線であり、補助線Lは砥石101の研削位置Pにおける接線である。
 さらに、ノズル203a,203bから供給するクーラントの流量Rは、それぞれ10~20L(リッター)/分(10L/分≦R≦20L/分)とすることが好ましい。砥石101は、回転しているため砥石101の周りに砥石101と共に回転する空気層ができる。このため、クーラント流量Rが10L/分未満であると、この空気層をクーラントが破ることができず、クーラントが供給位置Pにうまく当たらない。その結果、研削部を冷却することができず、焼け等の不具合が発生する。また、クーラント流量Rが20L/分を超えると、上記空気層を破ることはできるが、クーラントの流速が速くなりすぎ、供給位置Pに供給されたクーラントが研削位置Pへ到達しない虞がある。
 また、ノズル203a,203bの供給口の内径φは、それぞれ2.5mm~3.2mmの範囲内(2.5mm≦φ≦3.2mm)とすることが好ましい。ノズル203a,203bの供給口の内径が2.5mm未満であると、供給されるクーラント径が細くなり、供給位置Pへのクーラント供給を保つことが難しくなる。また、ノズル203a,203bの供給口の内径が3.2mmを超えると、供給されるクーラント径が太くなるため、供給位置Pにクーラントを当てた状態を保つことは難しくないが、流速が低くなるため、砥石101の周りに発生している空気層を破ることが難しくなる。
 なお、ノズル203a,203bの内部は、供給したクーラントが拡散しないように螺旋状に加工されている。また、ノズル203a,203bの供給口の内径φは、例えば、ワークWの厚みが0.7mmでは内径φを3.0mm、ワークWの厚みが0.4mmでは内径φを2.8mm、というようにワークWの厚みに合わせて変更することがより好ましい。
 進退走行手段202は、敷設した二条の並列ガイドレール204a,204bと、マニホルド201の下面に設けてガイドレール204a,204bにスライド自在に係合した4つのスライダ(図示せず)と、ガイドレール204a,204bに沿って設けられると共に、定位置でフリーに回転するように軸承した雄ネジ205と、この雄ネジ205を可逆駆動するモータ206と、マニホルド201の下面に取付けられ、雄ネジ205と螺合する雌ネジ(図示せず)とを備える。モータ206を可逆運転することにより、雄ネジ205が正転、逆転駆動され、マニホルド201及びマニホルド201に設けられたノズル203a,203bがガイドレール204a,204bに沿って進退走行する。
 進退走行手段202のモータ206は、コントローラ600により制御され、砥石101の摩耗状態に基づいてノズル203a,203bが設けられたマニホルド201を図2(a)の上下方向に移動させる。すなわち、クーラントを研削位置Pへ供給するためには、クーラントを供給位置Pへ供給する必要があるが、砥石101が使用により摩耗してくると、砥石101の直径dが変化するため、砥石101の摩耗により砥石101の直径dが変化(減少)した分だけマニホルド201の位置も図2(a)の上方向に移動させる必要がある。
 そこで、この実施形態では、上述したように、進退走行手段202により、砥石101の摩耗状態に基づいてマニホルド201の位置、つまりノズル203a,203bの位置を変化させるようにしている。この実施形態によれば、例えば、砥石101の直径dが摩耗により0.1mm短くなった場合、コントローラ600は、モータ206を駆動してマニホルド201の位置を図2(a)の上方向に、x/dの値が0.04~0.05の範囲内となるように移動する。
 なお、砥石101の摩耗状態は、例えば、ノギス等により砥石101の溝101aの深さを測定して摩耗量を求めてもよく、研削前と研削後のワークWの幅の差から求めるようにしてもよい。
(搬送機構300)
 搬送機構300は、進退走行手段301及びこの進退走行手段301に設けられ図1(a)の左右方向へ移動する走行体Sから構成される。進退走行手段301は、敷設した二条の並列ガイドレール302a,302bと、走行体Sの下面に設けてガイドレール302a,302bにスライド自在に係合した4つのスライダ303a~303dと、ガイドレール302a,302bに沿って設けられると共に、定位置でフリーに回転するように軸承した雄ネジ304と、この雄ネジ304を可逆駆動するモータ305と、走行体Sの下面に取付けられ、雄ねじ304と螺合する雌ネジ306とから構成され、モータ305の可逆運転により雄ネジ304を正転、逆転駆動することにより走行体Sが進退走行する。
 なお、走行体Sは、進退走行することができればよく、例えば、走行体Sにモータ及びこのモータにより可逆駆動するピニオンを設け、このピニオンをガイドレール302a,302bに沿って配設されたラックに噛み合わせて走行体Sを進退走行させてもよい。
 走行体S上には、ワークWを保持するための保持手段307が設けられ、この保持手段307によりワークWが着脱自在に保持される。保持手段307は、例えば中空の吸引ボックスであり、この吸引ボックスの頂壁に載置したワークWを頂壁に設けてある複数の小孔307aによりワークWを吸引保持する。なお、小孔307aの代わりに複数の吸盤を設けて、吸引保持させることも可能である。
(吸引機構400)
 吸引機構400は、ダクトLを介して使用済みクーラントを吸引するポンプ、このポンプの手前に配置された気液分離器を備える。ダクトLから引き込まれたクーラントは、気液分離器で空気と分離され再利用もしくは破棄される。
(端面洗浄機構500)
 端面洗浄機構500は、研削機構100で研削加工されたワークWの端面に洗浄水を供給することにより、研削加工により発生してワークWの端面及び端面近傍に付着したカレットを含むクーラントを除去し、ワークWの端面を洗浄する。図6に示すように、端面洗浄機構500は、洗浄水を供給するノズル501a,501b、洗浄水の飛散を防止する筺体502を備える。ノズル501a,501bは、ワークWの上下に各々配置され、ワークWの端面に向けて洗浄水を供給する。この際、除去したカレットがワークWの各主面S,S上に残るのを防止するため、洗浄水はワークWの内側から外側へ向けて供給される。なお、筺体502には、研削機構100の筺体104を同様に、ワークWを導入する開口502aが設けられている。
(コントローラ600)
 コントローラ600は、研削装置1全体を制御する。具体的には、進退走行手段301の雄ネジ304を可逆駆動するモータ305、砥石101を回転駆動するモータ102、進退走行手段202の雄ネジ205を可逆駆動するモータ206、保持手段307等を制御する。
(研削方法)
 次に、この実施形態に係る研削装置1を用いた研削方法について、図1~図6を参照して説明する。なお、以下に説明する動作は、コントローラ600により制御される。
 まず、図示しない移載機によりワークWを保持手段307上に載置する。載置の際には、ワークWのアライメントが行われる。ワークWが載置されると、小孔307aによりワークWが吸引保持される。
 ワークWが吸引保持されると、進退走行手段301のモータ305により、走行体Sが所定の速度で図1(a)及び図1(b)の右から左に向かって駆動される。なお、この走行体Sの速度を一定とせずに、初めは、速度を上げて駆動し、研削機構100の手前で速度を落とすようにしてもよい。
 走行体Sの前進とともに、ワークWの端面が研削加工される。この研削加工中は、加工速度V及び周速度vの比V/vが0.0012~0.01の範囲内となるように砥石101の回転数が制御される。また、図2(a)及び図2(b)に示す入射角度θ~θが、それぞれ15°~60°の範囲内、15°~60°の範囲内、15°~30°の範囲内に調整されたノズル203a,203bからは、クーラントが10L/分~20L/分の範囲内の流量で供給位置Pへ供給される。
 供給位置Pへ供給されたクーラントは、砥石101とワークWとが接触する研削位置Pを冷却した後、整流板103に整流され、ダクトLから引き込まれる。この時のダクトLによる引き込み風量は、40~60m/分の範囲内である。
 ワークWの端面が研削加工されると、端面洗浄機構500によりワークWの端面に洗浄水が供給され、ワークWの端面を洗浄する。この洗浄により、研削加工時に発生してワークWの端面及び端面近傍に付着したカレットを含むクーラントが除去される。
 ワークWの全端面の研削加工及び洗浄が終了すると、上述した移載機により研削加工後のワークWが保持手段307から取り除かれ、新たな研削加工前のワークWが保持手段307上に載置される。その後は、この新たなワークWの端面の研削加工が実施される。
 以上のように、この実施形態に係る研削装置1によれば、クーラントを供給する位置を研削位置Pではなく、研削位置PからワークWの進行方向に向かって距離xにある供給位置Pとし、この供給位置Pを、砥石101の直径d及び研削位置Pと供給位置Pとの距離xの比x/dが0.04(4%)~0.05(5%)の範囲内(0.04(4%)≦x/d≦0.05(5%))となるように調整している。
 さらに、ノズル203a,203bの入射角度θ,θを15°~60°の範囲内(15°≦θ≦60°)としているのでクーラントが研削位置Pに効率よく供給される。このため、ワークWの厚みが1.2mm以下でも、ワークWの端面の不具合(例えばチッピング(微小クラック)、欠け、研削焼けや割れ)の発生を効果的に抑制することができる。また、安定してワークWを研削加工することができるので、研削加工の速度を上げることができ単位時間当たりの処理数を向上することができる。
 また、研削加工中の加工速度V及び周速度vの比V/vが0.0012~0.01の範囲内(0.0012≦V/v≦0.01)となるように砥石101の回転数を制御すると共に、ノズル203a,203bから供給するクーラントの流量Rを、それぞれ10~20L(リッター)/分(10L/分≦R≦20L/分)としている。さらに、ノズル203a,203bの供給口の内径φを、それぞれ2.5mm~3.2mmの範囲内(2.5mm≦φ≦3.2mm)としているので、ワークWの端面の不具合の発生をさらに抑制することができる。
 また、整流板103により使用済みのクーラントを整流してダクトLの位置まで吸引誘導すると共に、筺体104に鍔104b及び鍔104cを設けているので、クーラントが筺体104外へ飛散するのを効果的に防止することができる。
(その他の実施形態)
 なお、上記実施形態(図1(a)及び図1(b)参照)では、進退走行手段301によりワークWを移動してワークWの端面を研削加工するように構成したが、研削機構100に進退走行手段301を備え、研削機構100をワークWの端面に沿って移動させてワークWの端面を研削加工するように構成してもよい。
 次に、実施形態に係る研削装置の具体的な実施例と比較例、及びその検査結果について記載する。以下の実施例及び比較例では、ワークWとして厚みが0.7mmの無アルカリガラス(旭硝子社製、AN100)を使用し、砥石101として、ダイヤモンド粉末とボンド構成メタル粉末との混合粉末を加圧焼結したメタルボンドダイヤ砥石(#450~#600)を使用した。また、メタルボンドダイヤ砥石で研削後、レジンボンド砥石(#200~#1000)で研磨処理を行った。
 また、今回の実施例及び比較例では以下の6つのパラメータを変更して上記ワークWの研削加工を行った。なお、各パラメータの意味は、以下の通りである。
x/d:砥石101の直径d及び研削位置Pと供給位置Pとの距離xとの比。
θ:ノズル203aの入射角度。
θ:ノズル203bの入射角度。
V/v:加工速度V及び周速度vの比。
R:各ノズル203a,203bから供給するクーラントの流量。
φ:各ノズル203a,203bの供給口の内径。
(実施例1)
 実施例1では、x/dを0.05(5%)、θを22.5°、θを22.5°、V/vを0.005、Rを15L/分、φを2.8mmとして、上記メタルボンドダイヤ砥石を使用してワークWの端面を研削加工した。その後、同一の条件でレジンボンド砥石により仕上げの研磨加工を行った。
(実施例2)
 実施例2では、x/dを0.04(4%)、θを45°、θを22.5°、V/vを0.005、Rを25L/分、φを2.0mmとして、上記メタルボンドダイヤ砥石を使用してワークWの端面を研削加工した。その後、同一の条件でレジンボンド砥石により仕上げの研磨加工を行った。
(比較例1)
 比較例1では、x/dを0.04(4%)、θを70°、θを45°、V/vを0.005、Rを15L/分、φを3.2mmとして、上記メタルボンドダイヤ砥石を使用してワークWの端面を研削加工した。その後、研削加工と同一の条件でレジンボンド砥石により仕上げの研磨加工を行った。
(比較例2)
 比較例2では、x/dを0.02(2%)、θを22.5°、θを22.5°、V/vを0.011、Rを9.5L/分、φを3.3mmとして、上記メタルボンドダイヤ砥石を使用してワークWの端面を研削加工した。その後、同一の条件でレジンボンド砥石により仕上げの研磨加工を行った。
(検査結果)
 表1は、実施例1,2及び比較例1,2の研削加工条件(x/d、θ、θ、V/v、R、φ)及び研削加工結果を表にしたものである。ワークWの端面はCCDカメラで撮像した画像を約20倍に拡大したものを目視確認した。検査結果は、ワークWの全周の端面において、不具合(チッピング(微小クラック)、欠け、研削焼け、割れ)が確認できない場合を「1(Very Good)」、0.2mm未満のチッピング(微小クラック)が確認できた場合を「2(Good)」、0.2mm以上のチッピング(微小クラック)又はその他の不具合(欠け、研削焼けや割れ)が確認できた場合を「3(Bad)」として評価した。
Figure JPOXMLDOC01-appb-T000001
(実施例1の結果)
 研削加工条件x/d、θ、θ、V/v、R、φの値が、それぞれ0.04(4%)~0.05(5%)、15°~60°、15°~60°、2.5~3.2mm、10~20L/分、0.0012~0.01の範囲内となっている実施例1については、拡大後の画像を確認した結果、不具合(チッピング(微小クラック)、欠け、研削焼け、割れ)が確認できなかった(結果「1」)。
(実施例2の結果)
 研削加工条件x/d、θ、θ、V/v、R、φのうち、x/d、θ、θの値が、それぞれ0.04(4%)~0.05(5%)、15°~60°、15°~60°の範囲内であり、V/v、R、φの値のうちの少なくとも一つが、2.5~3.2mm、10~20L/分、0.0012~0.01の範囲内にない実施例2については、拡大後の画像を確認した結果、0.2mm未満のチッピング(微小クラック)が確認できたが、0.2mm以上のチッピング(微小クラック)及びその他の不具合は確認できなかった(結果「2」)。
(比較例1の結果)
 研削加工条件x/d、θ、θ、V/v、R、φのうち、x/d、θ、θの値のうち少なくとも一つが、それぞれ0.04(4%)~0.05(5%)、15°~60°、15°~60°の範囲内になく、V/v、R、φの値が、2.5~3.2mm、10~20L/分、0.0012~0.01の範囲内である比較例1については、拡大後の画像を確認した結果、0.2mm以上のチッピング(微小クラック)又はその他の不具合(欠け、研削焼けや割れ)が確認できた(結果「3」)。
(比較例2の結果)
 研削加工条件x/d、θ、θ、V/v、R、φのうち、x/d、θ、θの値のうち少なくとも一つが、それぞれ0.04(4%)~0.05(5%)、15°~60°、15°~60°の範囲内になく、かつ、V/v、R、φの値が、2.5~3.2mm、10~20L/分、0.0012~0.01の範囲内にない比較例2については、拡大後の画像を確認した結果、0.2mm以上のチッピング(微小クラック)又はその他の不具合(欠け、研削焼けや割れ)が確認できた(結果「3」)。
 以上のように、表1に示す結果から、研削加工条件x/d、θ、θ、V/v、R、φの値が、それぞれ0.04(4%)~0.05(5%)、15°~60°、15°~60°、2.5~3.2mm、10~20L/分、0.0012~0.01の範囲内となっている場合、研削後のワークWに不具合(チッピング(微小クラック)、欠け、研削焼け、割れ)が確認できず、ワークWの厚みが0.7mmと薄い場合でも、ワークWの端面に不具合の発生を効果的に抑制できていることがわかった。
 また、研削加工条件V/v、R、φの値のうちの少なくとも一つが、2.5~3.2mm、10~20L/分、0.0012~0.01の範囲内にない場合でも、研削加工条件x/d、θ、θの値が、それぞれ0.04(4%)~0.05(5%)、15°~60°、15°~60°の範囲内であれば、研削後のワークWに0.2mm未満のチッピング(微小クラック)が確認されるものの製品上は問題が無いことが確認できた。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の範囲と精神を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2010年12月1日出願の日本特許出願2010-268055に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の研削方法及び研削装置は、ガラス基板の端面の研削加工に用いることができ、特に、FPD(Flat Panel Display)用ガラスの端面の研削加工に好適である。本発明の研削方法及び研削装置に適したガラス基板の厚みは、3mm程度が好ましく、さらにガラス基板の大きさは、650mm(縦)×750mm(横)以上が好ましく、1500mm(縦)×1800mm(横)以上がより好ましく、2200mm(縦)×3500mm(横)以上が特に好ましい。
 1…研削装置、100…研削機構、101…砥石、101a…溝、102…モータ、103…整流板、104…筺体、104a…開口、104b,104c…鍔、200…クーラント供給機構、201…マニホルド、202…進退走行手段、203a,203b…ノズル(供給口)、204a,204b…ガイドレール、205…雄ネジ、206…モータ、300…搬送機構、301…進退走行手段、302a,302b…ガイドレール、303a~303d…スライダ、304…雄ネジ、305…モータ、306…雌ネジ、307…保持手段、307a…小孔、400…吸引機構、500…端面洗浄機構、501a,501b…ノズル、502…筺体、502a…開口、600…コントローラ

Claims (5)

  1.  ガラス基板の端面を研削加工する砥石と、前記ガラス基板の研削加工部を冷却する冷却剤を供給するノズルとを備えた研削装置を使用する研削方法であって、
     直径dの砥石を回転駆動させて、厚みが1.2mm以下の前記ガラス基板の端面を研削加工する工程と、
     前記研削加工中に、前記ガラス基板を挟んで、前記ガラス基板の各主面に対しθ,θの入射角度で、かつ、前記砥石に対する前記ガラス基板の進行方向に向かって、前記砥石による研削位置から距離xの位置へ冷却剤を供給する工程と、
     を備え、
     前記θ、θ、x/dの値が、各々15~60°、15~60°、0.04~0.05の範囲内である研削方法。
  2.  前記ノズルの供給口の内径φ、前記ノズルの供給口から各々供給される前記冷却剤の流量R、及び、前記ガラス基板の研削加工速度Vと前記砥石の周速度vとの比V/vが、それぞれ、2.5~3.2mm、10~20L/分、0.0012~0.01の範囲内である請求項1記載の研削方法。
  3.  前記砥石の摩耗量に応じて、前記x/dの値が、0.04~0.05の範囲内となるよう前記冷却剤を供給する位置を調整する工程をさらに備える請求項1又は2記載の研削方法。
  4.  前記砥石の摩耗量に応じて、前記V/vが、0.0012~0.01の範囲内となるように調整する工程をさらに備える請求項2記載の研削方法。
  5.  ガラス基板の端面を研削加工する研削装置であって、
     厚みが1.2mm以下の前記ガラス基板の端面を、回転駆動して研削加工する直径dの砥石と、
     前記ガラス基板を挟んで配置され、前記ガラス基板の各主面に対しθ,θの入射角度で、かつ、前記砥石に対する前記ガラス基板の進行方向に向かって、前記砥石による研削位置から距離xの位置へ冷却剤を供給する第1,第2のノズルと、
     を備え、
     前記θ、θ、x/dの値が、各々15~60°、15~60°、0.04~0.05の範囲内である研削装置。
PCT/JP2011/074879 2010-12-01 2011-10-27 研削方法及び研削装置 WO2012073626A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137014058A KR20130140047A (ko) 2010-12-01 2011-10-27 연삭 방법 및 연삭 장치
CN2011900009171U CN203317224U (zh) 2010-12-01 2011-10-27 磨削装置
JP2012546745A JPWO2012073626A1 (ja) 2010-12-01 2011-10-27 研削方法及び研削装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010268055 2010-12-01
JP2010-268055 2010-12-01

Publications (1)

Publication Number Publication Date
WO2012073626A1 true WO2012073626A1 (ja) 2012-06-07

Family

ID=46171576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074879 WO2012073626A1 (ja) 2010-12-01 2011-10-27 研削方法及び研削装置

Country Status (5)

Country Link
JP (1) JPWO2012073626A1 (ja)
KR (1) KR20130140047A (ja)
CN (1) CN203317224U (ja)
TW (1) TW201233501A (ja)
WO (1) WO2012073626A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140002013U (ko) * 2012-09-27 2014-04-04 나카무라 토메 세이미쓰고교 가부시키가이샤 판재의 연삭 가공 장치
WO2016059389A1 (en) * 2014-10-14 2016-04-21 Pilkington Group Limited An apparatus and a process for grinding an edge and a glazing having a ground edge
JP2016083738A (ja) * 2014-10-28 2016-05-19 日本電気硝子株式会社 板ガラスの研削方法
US9573239B2 (en) * 2011-08-29 2017-02-21 First Solar, Inc. Apparatus and method employing a grinder wheel coolant guard
WO2019187873A1 (ja) * 2018-03-29 2019-10-03 日本電気硝子株式会社 板ガラスの製造方法
EP3744477A1 (en) * 2019-05-29 2020-12-02 Tur & Development SL Device and method for removing a low emission layer from a glass panel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102381041B1 (ko) * 2015-01-29 2022-03-31 삼성디스플레이 주식회사 기판 처리 장치 및 이의 작동 방법
TWI808065B (zh) * 2016-11-29 2023-07-11 美商康寧公司 用於基板片材之邊緣處理的設備及方法
CN107696259A (zh) * 2017-09-28 2018-02-16 刘秀芬 一种砖料生产用加工装置
CN112059741A (zh) * 2020-09-29 2020-12-11 中国航发动力股份有限公司 一种发动机转子叶片榫头端面圆角加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811056A (ja) * 1994-06-30 1996-01-16 Asahi Glass Co Ltd 板状体の周縁研削方法及びその装置
JPH0994759A (ja) * 1995-09-29 1997-04-08 Hitachi Seiko Ltd 平面研削盤のクーラントノズル
JP2000190233A (ja) * 1998-12-28 2000-07-11 Uchiyama Konpo Shizai Shiki:Kk 研削用回転砥石
JP2004082226A (ja) * 2002-08-22 2004-03-18 Nippon Sheet Glass Co Ltd ガラス板端面の研削条件決定方法及びガラス板端面の加工方法
JP2008093744A (ja) * 2006-10-06 2008-04-24 Nippon Electric Glass Co Ltd 回転砥石
JP2010260132A (ja) * 2009-05-07 2010-11-18 O M Ltd 板材の端面加工装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811056A (ja) * 1994-06-30 1996-01-16 Asahi Glass Co Ltd 板状体の周縁研削方法及びその装置
JPH0994759A (ja) * 1995-09-29 1997-04-08 Hitachi Seiko Ltd 平面研削盤のクーラントノズル
JP2000190233A (ja) * 1998-12-28 2000-07-11 Uchiyama Konpo Shizai Shiki:Kk 研削用回転砥石
JP2004082226A (ja) * 2002-08-22 2004-03-18 Nippon Sheet Glass Co Ltd ガラス板端面の研削条件決定方法及びガラス板端面の加工方法
JP2008093744A (ja) * 2006-10-06 2008-04-24 Nippon Electric Glass Co Ltd 回転砥石
JP2010260132A (ja) * 2009-05-07 2010-11-18 O M Ltd 板材の端面加工装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9573239B2 (en) * 2011-08-29 2017-02-21 First Solar, Inc. Apparatus and method employing a grinder wheel coolant guard
KR20140002013U (ko) * 2012-09-27 2014-04-04 나카무라 토메 세이미쓰고교 가부시키가이샤 판재의 연삭 가공 장치
JP2014069238A (ja) * 2012-09-27 2014-04-21 Nakamura Tome Precision Ind Co Ltd 板材辺縁の研削加工装置
KR200486165Y1 (ko) * 2012-09-27 2018-04-09 나카무라 토메 세이미쓰고교 가부시키가이샤 판재의 연삭 가공 장치
WO2016059389A1 (en) * 2014-10-14 2016-04-21 Pilkington Group Limited An apparatus and a process for grinding an edge and a glazing having a ground edge
US10265832B2 (en) 2014-10-14 2019-04-23 Pilkington Group Limited Apparatus and a process for grinding an edge and a glazing having a ground edge
JP2016083738A (ja) * 2014-10-28 2016-05-19 日本電気硝子株式会社 板ガラスの研削方法
WO2019187873A1 (ja) * 2018-03-29 2019-10-03 日本電気硝子株式会社 板ガラスの製造方法
EP3744477A1 (en) * 2019-05-29 2020-12-02 Tur & Development SL Device and method for removing a low emission layer from a glass panel

Also Published As

Publication number Publication date
KR20130140047A (ko) 2013-12-23
CN203317224U (zh) 2013-12-04
TW201233501A (en) 2012-08-16
JPWO2012073626A1 (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
WO2012073626A1 (ja) 研削方法及び研削装置
TWI443768B (zh) A plate glass conveyance device and an exfoliating device
TWI515085B (zh) Glass substrate and glass substrate manufacturing method
TWI541103B (zh) 邊緣修整設備
TWI473684B (zh) 玻璃基板的端面研磨裝置及其端面研磨方法
US9302368B2 (en) Plate-end processing method and blasting device
JPH1052816A (ja) ワイヤ式切断方法
JP5226287B2 (ja) ウェーハの研削方法
JP2011083888A (ja) ガラス板局所研磨装置、ガラス板局所研磨方法、ガラス製品の製造装置、及びガラス製品の製造方法
JP2005535463A (ja) マグネチックベルトコンベアを備えた鋼板平面加工用ミリングマシン
JP2009252877A (ja) ウエーハの搬送方法および搬送装置
JP6014443B2 (ja) 板材辺縁の研削加工装置
JP2016068181A (ja) ガラス基板の製造方法、および、ガラス基板の製造装置
KR20090006369A (ko) 초정밀 다이아몬드팁 연마장치
KR101389924B1 (ko) 평판 글라스의 에지면 연마장치
KR20150130914A (ko) 연삭 장치
JP2005052944A (ja) 研磨装置
JP6000025B2 (ja) スクライブ加工方法及びスクライブ加工用のブラスト加工装置
JP2015030055A (ja) 研削装置
JP2014046392A5 (ja)
TWI637811B (zh) 玻璃基板之製造方法及玻璃基板硏磨用磁性流動體
JP2008183659A (ja) 研削装置
JP2007048780A (ja) ウェーハ面取り装置
CN108698903B (zh) 板状玻璃的制造方法
JP6510866B2 (ja) ガラス基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190000917.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546745

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137014058

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844723

Country of ref document: EP

Kind code of ref document: A1