WO2012073594A1 - 超純水中の微粒子捕捉システム及び微粒子濃度測定方法 - Google Patents

超純水中の微粒子捕捉システム及び微粒子濃度測定方法 Download PDF

Info

Publication number
WO2012073594A1
WO2012073594A1 PCT/JP2011/073094 JP2011073094W WO2012073594A1 WO 2012073594 A1 WO2012073594 A1 WO 2012073594A1 JP 2011073094 W JP2011073094 W JP 2011073094W WO 2012073594 A1 WO2012073594 A1 WO 2012073594A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration device
centrifugal filtration
fine particles
ultrapure water
ultra
Prior art date
Application number
PCT/JP2011/073094
Other languages
English (en)
French (fr)
Inventor
水庭 哲夫
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020137011957A priority Critical patent/KR20130135857A/ko
Publication of WO2012073594A1 publication Critical patent/WO2012073594A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B3/00Centrifuges with rotary bowls in which solid particles or bodies become separated by centrifugal force and simultaneous sifting or filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2214Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2214Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption
    • G01N2001/2217Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption using a liquid

Definitions

  • the present invention relates to a system for capturing fine particles in ultrapure water and a method for measuring fine particles captured by this system and measuring the concentration of fine particles in ultrapure water.
  • Ultrapure water used for the purpose of cleaning the surface during semiconductor manufacturing is required to have a lower impurity concentration as semiconductor devices become finer.
  • the fine particles contained in the impurities it is necessary to make the concentration as extremely low as 100 or less in 1 liter for ultra-fine particles whose size is 20 nm or less in the near future as the minimum pattern size of the semiconductor device is reduced. There is.
  • FIG. 3 is an enlarged cross-sectional view of the main part of the centrifugal filtration device described in these documents.
  • the rotating disk 2 is rotated by the drive shaft 1, sample water made of ultrapure water is introduced from the introduction pipe 3, and filtered through the filter F.
  • the filter F is held by the perforated plate 4.
  • the water that has passed through the filter F and the perforated plate 4 flows out from the outlet 5. Excess sample water flows out through the conduit 6.
  • FIG. 2 When filtering ultrapure water with such a centrifugal filtration device, it is necessary to prevent the entry of fine particles from the atmosphere. Therefore, in the prior art, mixing of fine particles is prevented as shown in FIG. 2 or FIG.
  • a simple clean booth 11 surrounding the centrifugal filtration device 10 is provided, and air is circulated in a downward flow through the top fan filter unit 12 in the simple clean booth 11. The air flows out through a gap between the simple clean booth 11 and the floor surface.
  • centrifugal filtration device 10 It reaches the upper part of the centrifugal filtration device 10 by reducing the degree of cleanliness by spreading, spreading or back-diffusing even if there is an air flow, which contaminates the filter for centrifugal filtration, or causes centrifugal filtration during operation. It is considered that fine particles adhere to the filter surface by diffusing into the rotor chamber of the apparatus 10.
  • the centrifugal filtration device 10 is installed on a breathable plate 16 made of a net shelf, a punching plate, or the like in the base 15 in the clean room, and clean air is caused to flow downward in the clean room so that the air flows on the clean room floor. It flows into the return space 18 through the grating 17.
  • a part of the exhaust from the motor exhaust port 13 of the centrifugal filtration device 10 is raised, and there is a possibility that fine particles in the motor exhaust are mixed in the centrifugal filtration device 10.
  • the ultrapure water in the ultrapure water can reliably prevent contamination from the motor exhaust to the centrifugal filtration device. It is an object of the present invention to provide a fine particle capturing system and a method for measuring the fine particle concentration in ultrapure water using the fine particle capturing system.
  • a particulate trapping system in ultrapure water is a particulate trapping system in which ultrapure water is centrifugally filtered by a centrifugal filtration device, and particulates in the ultrapure water are captured by a filter of the centrifugal filtration device,
  • An ultra-pure that has a surrounding member that surrounds a side periphery of the centrifugal filtration device, and a fan filter unit that sends air into the surrounding member from above, and a motor exhaust port of the centrifugal filtration device exists in the lower portion of the centrifugal filtration device
  • a partition member is provided between the surrounding member and the side of the centrifugal filtration device above the motor exhaust port to prevent the exhaust from rising from the motor exhaust port. It is characterized by.
  • a particulate trapping system in ultrapure water is a particulate trapping system in which ultrapure water is centrifugally filtered by a centrifugal filtration device, and particulates in the ultrapure water are trapped by a filter of the centrifugal filtration device,
  • a guide member for guiding exhaust from the motor exhaust port of the centrifugal filtration device to a return space of the clean room is provided.
  • the fine particles in ultrapure water are captured by the filter of the centrifugal filtration device by the fine particle capture system in the ultrapure water of the first or second aspect,
  • the number of fine particles captured in step (1) is measured to measure the concentration of fine particles in ultrapure water.
  • a partition member is provided in the surrounding member surrounding the centrifugal filtration device to prevent the motor exhaust from rising, so that the particulates in the motor exhaust are contained in the centrifugal filtration device. Mixing is prevented.
  • the motor exhaust of the centrifugal filter device is guided to the return space of the clean room by the guide member, so that the particulate in the motor exhaust is mixed in the centrifugal filter device. Is prevented.
  • the fine particle concentration in the ultrapure water can be measured with high accuracy according to the fine particle concentration measuring method of the third invention.
  • 1 is a longitudinal sectional view showing a particulate trapping system in ultrapure water according to an embodiment. It is a longitudinal cross-sectional view which shows the microparticle capture
  • FIG. 1 shows a particulate trapping system in ultrapure water that is an improvement of the conventional example of FIG. 2.
  • the upper part of the side surface of the centrifugal filtration device 10 (above the motor exhaust port 13), the simple clean booth 11, A partition member 20 is provided between them to prevent the exhaust from the exhaust port 13 from rising up to the upper side of the centrifugal filtration device 10.
  • a slight gap is provided between the edge of the partition member 20 and the side surface of the simple clean booth 11 or the centrifugal filtration device 10, and the downdraft from the fan filter unit 12 passes through the gap to the partition member 20. It is designed to flow downward. Instead of opening the gap in this way, or opening the gap, the partition member 20 may be provided with an opening for ventilation.
  • the simple clean booth 11 is a frame covered with a synthetic resin sheet.
  • a synthetic resin sheet is used as the partition member 20.
  • the inner peripheral edge of the partition member 20 is fastened to the upper part of the side surface of the centrifugal filtration device 10 by locking means such as a magnet, a flat fastener, and a hook.
  • the outer peripheral edge of the partition member 20 is also fastened to the simple clean booth 11 by the same locking means.
  • the other structure of this embodiment is the same as that of FIG. 2, and the same code
  • the exhaust from the motor exhaust port 13 does not diffuse upward from the partition member 20, so that the particulates in the exhaust are contained in the centrifugal filtration device 10, particularly the introduction pipe 3.
  • the fine particle concentration in the ultrapure water can be measured with high accuracy without entering the inside. That is, by installing the partition member 20, the cross-sectional area through which clean air descending from the top flows is, for example, about 1/3 at the position of the partition member 20. Diffusion from the exhaust part toward the upper side is suppressed, the cleanliness of the upper part of the centrifugal filtration device 10 is maintained high, and the filter is not contaminated with particles.
  • a cover sheet 30 as a guide member in FIG. 5 is placed on the mount 15 and the cover sheet 30 is fastened to the upper side surface of the centrifugal filtration device 10.
  • the cover sheet 30 has a cylindrical shape, and the upper portion has a tapered shape that becomes smaller as it extends upward.
  • the upper end of the cover sheet 30 is fastened to the side surface of the upper part of the centrifugal filter device 10 (above the motor exhaust port 13) by a locking means.
  • the same locking means as the above locking means can be used on this side.
  • the cover sheet 30 is preferably a synthetic resin sheet, but may be made of a plate made of various materials.
  • the other structure of the embodiment of FIG. 4 is the same as that of FIG. 5, and the same reference numerals indicate the same parts.
  • the entire amount of exhaust from the motor exhaust port 13 descends in the cover sheet 30 as a guide member and flows into the return space 18. Therefore, the fine particles in the exhaust are not mixed in the centrifugal filtration device 10. As a result, the fine particle concentration in the ultrapure water can be measured with high accuracy.
  • the motor exhaust is cut off from the surrounding air and discharged, thereby preventing the cleanliness of the space where the filter is handled, and preventing the cleanliness of the air introduced into the rotor chamber from being lowered, thereby enabling extremely low concentration particulate sampling. It becomes possible.
  • the filter in the centrifugal filtration device 10 when particulates in ultrapure water are captured by a filter in the centrifugal filtration device 10, sample water made of ultrapure water is pressed against the surface of the filter by centrifugal force. It is preferable to be filtered. Thereby, the fine particles in the ultrapure water are captured by the filter surface. As a result, after filtering a predetermined amount of ultrapure water, the filter is removed from the centrifugal filtration device 10, dried, and then the surface thereof is observed with an SEM or the like to count the number of fine particles. The concentration can be measured with high accuracy.
  • the centrifugal filtration device 10 having the configuration shown in FIG. 3 was used.
  • Sample water (ultra pure water) permeates through the filter F due to centrifugal force accompanying rotation, and at this time, fine particles contained in the sample water are captured on the filter surface.
  • the filters are installed at the 12 o'clock and 6 o'clock positions when viewed from the drive shaft 1.
  • the filter at the 12 o'clock position is referred to as a first filter
  • the filter at the 6 o'clock position is referred to as a second filter.
  • Examples 1 and 2 As shown in FIG. 1, a partition member 20 made of a polyethylene sheet was installed. In addition, the partition member 20 was fastened to the upper part of the centrifugal filtration device 10 and the simple clean booth 11 by a bar-shaped magnet. The operation time was as shown in Table 1. Other than that, the concentration of fine particles in ultrapure water was measured under the same conditions as in Comparative Example 1. The results are shown in Table 1.
  • Example 3 Filtering and measurement were performed under the same conditions as in Comparative Example 3 except that a polyethylene cover sheet 30 was installed as shown in FIG. 4 and the entire amount of motor exhaust was guided to the return space. The results are shown in Table 1. In addition, the upper end part of the cover sheet 30 was fastened to the upper outer peripheral surface of the centrifugal filtration device 10 by a magnet.
  • the number of fine particles for the four filters of Comparative Examples 1 and 2 was 2 to 4 at 500 visual field counts. This number of particles is the number of particles corresponding to 0.1 to 0.3 particles / ml if the filter is obtained by filtering 1000 L of ultrapure water using two filters. On the other hand, in Examples 1 and 2, the count data was 500 for each of the 500 visual field counts. This number of particles corresponds to a fine particle concentration of 0.1 / ml or less if 1000 L of ultrapure water is filtered.
  • the number of particles that becomes the background of the fine particle count measurement is lowered.
  • the number of fine particles captured by filtering ultrapure water can be measured with higher sensitivity, and the number of extremely low concentration fine particles of about 0.1 particles / ml (100 particles / L) can be measured with high reliability. It becomes possible to evaluate ultrapure water with higher cleanliness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Centrifugal Separators (AREA)

Abstract

 超純水を遠心濾過装置で濾過して超純水中の微粒子を捕捉するに際し、遠心濾過装置へのモーター排気からの微粒子混入を確実に防止することができる超純水中の微粒子捕捉システムと、この超純水中の微粒子捕捉システムを用いて超純水中の微粒子濃度を測定する方法とが提供される。遠心濾過装置10を取り囲む簡易クリーンブース11内に、頂部のファンフィルタユニット12により空気を下降流にて流通させる。空気は、簡易クリーンブース11と床面との間の隙間を通って流出する。遠心濾過装置10の側面の上部と簡易クリーンブース11との間に仕切部材20を設け、該排気口13からの排気が遠心濾過装置10の上部側にまで上昇することを防止している。

Description

超純水中の微粒子捕捉システム及び微粒子濃度測定方法
 本発明は、超純水中の微粒子を捕捉するシステムと、このシステムで捕捉した微粒子を計測して超純水中の微粒子濃度を測定する方法とに関する。
 半導体製造時に、表面の清浄化を目的として使用される超純水には、半導体デバイスの微細化に伴い、不純物濃度をより低くすることが求められている。不純物に含まれる微粒子については、その大きさが半導体デバイスの最小パターン寸法の縮小に伴って近い将来には20nm以下という極微細なものについて、1Lの中に100個以下というきわめて低い濃度とする必要がある。
 このような微小の粒子濃度を測定する方法として、微粒子をフィルタ上に濾過捕捉した後、走査型電子顕微鏡(SEM)で観察計数する方法がある。実公平2-39546及び実公平8-1483には、超純水を遠心濾過して微粒子をフィルタに捕捉することが記載されている。第3図は、これらの文献に記載されている遠心濾過装置の要部拡大断面図である。駆動軸1によって回転盤2を回転させ、超純水よりなる試料水を導入管3から導入し、フィルタFで濾過する。フィルタFは多孔板4に保持されている。フィルタF及び多孔板4を通過した水は流出口5から流出する。余剰な試料水は、導管6を通って流出する。
 このような遠心濾過装置によって超純水を濾過する場合、大気からの微粒子の混入を防止する必要がある。そこで、従来は第2図又は第5図のようにして微粒子の混入を防止している。第2図では、遠心濾過装置10を取り囲む簡易クリーンブース11を設け、該簡易クリーンブース11内に、頂部のファンフィルタユニット12によって空気を下降流にて流通させる。空気は、簡易クリーンブース11と床面との間の隙間を通って流出する。
 この第2図の場合、遠心濾過装置10内のモーター14から発生する排気が遠心濾過装置下部のモーター排気口13から流出し、この排気の一部が簡易クリーンブース11内を上昇し、モーター排気中の微粒子が遠心濾過装置10内に流入するおそれがあった。即ち、モーター14からの冷却用の排気がクリーンブース内に排出されることによって、ファンフィルタからの空気による下降流があるとは言え、気流の流速が遅いために排気の気流の一部が上部にまでまきあがり、拡散して、あるいは気流があっても逆拡散することによって遠心濾過装置10上部に達して清浄度を低下させ、これが遠心濾過用フィルタのハンドリング時に汚染するまたは運転中に遠心濾過装置10のローター室にまで拡散してフィルタ表面に微粒子が付着すると考えられる。
 第5図では、クリーンルーム内の架台15の網棚、パンチングプレート等よりなる通気性プレート16上に遠心濾過装置10を設置し、クリーンルーム内にクリーンエアを下降流にて流し、エアをクリーンルーム床面のグレーチング17を通してリターンスペース18に流出させる。ところが、この場合でも、遠心濾過装置10のモーター排気口13からの排気の一部が上昇し、モーター排気中の微粒子が遠心濾過装置10内に混入するおそれがあった。即ち、クリーンルームや、大型クリーンブース内では、清浄な空気の下降気流が期待できるが、その流速は遅く(0.2~0.5m/sec)、このために強制排気されるモーターの排気に含まれる微粒子が遠心濾過装置周囲を汚染し、清浄なサンプリングを妨害する。
実公平2-39546 実公平8-1483
 本発明は、超純水を遠心濾過装置で濾過して超純水中の微粒子を捕捉するに際し、遠心濾過装置へのモーター排気からの微粒子混入を確実に防止することができる超純水中の微粒子捕捉システムと、この微粒子捕捉システムを用いて超純水中の微粒子濃度を測定する方法とを提供することを目的とする。
 第1発明の超純水中の微粒子捕捉システムは、超純水を遠心濾過装置で遠心濾過して該遠心濾過装置のフィルタで超純水中の微粒子を捕捉する微粒子捕捉システムであって、該遠心濾過装置の側周を取り囲む囲繞部材と、該囲繞部材内に上方から空気を送り込むファンフィルタユニットとを有し、該遠心濾過装置の下部に該遠心濾過装置のモーター排気口が存在する超純水中の微粒子捕捉システムにおいて、該囲繞部材と、該モーター排気口よりも上位側の遠心濾過装置側面との間に、モーター排気口からの排気の上昇を防止するための仕切部材を設けたことを特徴とするものである。
 第2発明の超純水中の微粒子捕捉システムは、超純水を遠心濾過装置で遠心濾過して該遠心濾過装置のフィルタで超純水中の微粒子を捕捉する微粒子捕捉システムであって、該遠心濾過装置がクリーンルーム内に設置されている超純水中の微粒子捕捉システムにおいて、該遠心濾過装置のモーター排気口からの排気をクリーンルームのリターンスペースへ導くための案内部材を設けたことを特徴とするものである。
 第3発明の超純水中の微粒子濃度測定方法は、第1又は2発明の超純水中の微粒子捕捉システムによって超純水中の微粒子を前記遠心濾過装置のフィルタで捕捉し、このフィルタ上で捕捉された微粒子の数を計測して、超純水中の微粒子濃度を測定することを特徴とするものである。
 第1発明の超純水中の微粒子捕捉システムでは、遠心濾過装置を取り囲む囲繞部材内に仕切部材を設け、モーター排気が上昇することを防止するので、モーター排気中の微粒子が遠心濾過装置内に混入することが防止される。
 第2発明の超純水中の微粒子捕捉システムでは、遠心濾過装置のモーター排気を案内部材によってクリーンルームのリターンスペースへ導くようにしているので、モーター排気中の微粒子が遠心濾過装置内に混入することが防止される。
 このように遠心濾過装置へのモーター排気中の微粒子の混入が防止されるところから、第3発明の微粒子濃度測定方法によると、超純水中の微粒子を高精度にて測定することができる。
実施の形態に係る超純水中の微粒子捕捉システムを示す縦断面図である。 従来例に係る超純水中の微粒子捕捉システムを示す縦断面図である。 遠心濾過装置の要部断面図である。 実施の形態に係る超純水中の微粒子捕捉システムを示す縦断面図である。 従来例に係る超純水中の微粒子捕捉システムを示す縦断面図である。
 以下、第1図及び第4図を参照して実施の形態について説明する。
 第1図は、第2図の従来例を改良した超純水中の微粒子捕捉システムを示しており、遠心濾過装置10の側面の上部(モーター排気口13よりも上位)と簡易クリーンブース11との間に仕切部材20を設け、該排気口13からの排気が遠心濾過装置10の上部側にまで上昇することを防止している。この仕切部材20の端縁と簡易クリーンブース11又は遠心濾過装置10の側面との間には若干の隙間をあけておき、ファンフィルタユニット12からの下降気流が該隙間を通って仕切部材20の下側へ流れるようにしてある。なお、このように隙間をあける代りに、又は隙間をあけると共に、仕切部材20に通気用の開口を設けてもよい。
 この実施の形態では、簡易クリーンブース11としては、フレームに対し合成樹脂シートを被せたものが用いられている。仕切部材20としては合成樹脂シートが用いられている。仕切部材20の内周縁はマグネット、平面ファスナ、フックなどの係止手段によって遠心濾過装置10の側面上部に留め付けられる。仕切部材20の外周縁も同様の係止手段によって簡易クリーンブース11に留め付けられる。この実施の形態のその他の構成は第2図と同一であり、同一符号は同一部分を示している。
 この第1図の超純水中の微粒子捕捉システムによると、モーター排気口13からの排気が仕切部材20よりも上側に拡散しないので、排気中の微粒子が遠心濾過装置10内、特に導入管3内に入り込むことがなく、超純水中の微粒子濃度を高精度にて測定することが可能となる。即ち、仕切部材20を設置することによって、上部から下降してくる清浄空気の流れる断面積が、仕切部材20の位置で例えば約1/3となり、したがって気流の流速が約3倍となって、排気部からの拡散上方に向かう拡散が抑制されて、遠心濾過装置10の上部の清浄度が高く維持され、フィルタが粒子で汚染されない。
 第4図の実施の形態は、第5図において、案内部材としてのカバーシート30を架台15に被せ、該カバーシート30を遠心濾過装置10の上部側面に留め付けたものである。カバーシート30は筒状であり、上部は、上方ほど小さくなるテーパ状となっている。カバーシート30の上端を遠心濾過装置10の上部(モーター排気口13よりも上位)の側面に係止手段によって留め付けている。この側面に係止手段としては上記の係止手段と同様のものを用いることができる。
 カバーシート30は、合成樹脂のシートが好適であるが、各種材料よりなる板材で構成されてもよい。この第4図の実施の形態のその他の構成は第5図と同一であり、同一符号は同一部分を示している。
 この第4図の超純水中の微粒子捕捉システムによると、モーター排気口13からの排気の全量が、案内部材としてのカバーシート30内を下降し、リターンスペース18に流入する。そのため、該排気中の微粒子が遠心濾過装置10内に混入しない。この結果、超純水中の微粒子濃度を高精度にて測定することが可能となる。即ち、モーター排気を周辺空気から遮断して排出させることによってフィルタをハンドリングする空間の清浄度低下を防ぎ、ローター室に導入される空気の清浄度低下を防ぎ、これによって極低濃度の微粒子サンプリングが可能となる。
 本発明の超純水中の微粒子捕捉システムにおいては、遠心濾過装置10内でフィルタによって超純水中の微粒子を捕捉する場合、超純水よりなる試料水がフィルタの表面に遠心力で押し付けられて濾過されるようにするのが好ましい。これにより、超純水中の微粒子はフィルタ表面に捕捉されるようになる。この結果、規定量の超純水を濾過した後、このフィルタを遠心濾過装置10から取り外し、乾燥後、その表面をSEM等で観察して微粒子数をカウントすることにより、超純水中の微粒子濃度を高精度にて測定することができる。
 以下、実施例及び比較例について説明する。以下の実施例及び比較例では、第3図に示す構成を有する遠心濾過装置10を用いた。試料水(超純水)が回転に伴う遠心力によってフィルタFを透過し、このときに試料水に含まれる微粒子がフィルタ表面に捕捉される。この遠心濾過装置10では、フィルタは、駆動軸1から見て12時と6時の位置に設置されている。以下の説明では、12時の位置のフィルタを第1フィルタと呼称し、6時の位置のフィルタを第2フィルタと呼称する。
[比較例1,2]
 第2図のようにして遠心濾過装置10を表1に示す時間運転し、超純水を濾過した。その後、遠心濾過装置10から第1及び第2フィルタを取り出し、乾燥後、各フィルタの表面を走査電子顕微鏡(SEM)を用いて倍率30000で観察し、粒径が0.03μm以上の粒子を計数した。その結果を表1に示す。
[実施例1,2]
 第1図のように、ポリエチレンシートよりなる仕切部材20を設置した。なお、仕切部材20は、棒状のマグネットによって遠心濾過装置10の上部と簡易クリーンブース11とに留め付けた。運転時間は表1の通りとした。その他は比較例1と同一条件で超純水中の微粒子濃度を測定した。その結果を表1に示す。
[比較例3]
 第5図のようにして遠心濾過装置10をクリーンルーム内に設置し、超純水を2時間にわたって濾過し、その後比較例1と同様にして微粒子数を計数した。その結果を表1に示す。
[実施例3]
 第4図のようにしてポリエチレン製のカバーシート30を設置し、モーター排気の全量をリターンスペースへ導くようにしたこと以外は比較例3と同一条件にて濾過及び計測を行った。その結果を表1に示す。なお、カバーシート30の上端部はマグネットにより遠心濾過装置10の上部外周面に留め付けた。
Figure JPOXMLDOC01-appb-T000001
 以上の結果より、実施例1~3によると、モーター排気中の微粒子の影響を受けることなく、超純水中の微粒子濃度を高精度に測定できることが認められた。
 表1に示すように、比較例1,2のフィルタ4枚についての微粒子数は、500視野計数で2~4個であった。この粒子数は仮にフィルタ2枚を使用して超純水1000Lを濾過したフィルタならば0.1~0.3個/mlに相当する粒子数である。これに対し、実施例1,2では、計数データは500視野計数でいずれも1個であった。この粒子数は、超純水1000Lを濾過したものであるならば0.1個/ml以下の微粒子濃度に相当する。
 このように、本発明に従って遠心濾過操作時の汚染を低減することによって、微粒子数測定のバックグラウンドとなる粒子数が低くなる。これによって超純水を濾過することによって捕捉される微粒子数をより高感度で測定できることになり、0.1個/ml(100個/L)程度の極低濃度微粒子数を高い信頼性をもって測定できるようになり、より清浄度の高い超純水を評価できるようになる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 なお、本出願は、2010年12月3日付で出願された日本特許出願(特願2010-270481に基づいており、その全体が引用により援用される。

Claims (3)

  1.  超純水を遠心濾過装置で遠心濾過して該遠心濾過装置のフィルタで超純水中の微粒子を捕捉する微粒子捕捉システムであって、
     該遠心濾過装置の側周を取り囲む囲繞部材と、該囲繞部材内に上方から空気を送り込むファンフィルタユニットとを有し、
     該遠心濾過装置の下部に該遠心濾過装置のモーター排気口が存在する超純水中の微粒子捕捉システムにおいて、
     該囲繞部材と、該モーター排気口よりも上位側の遠心濾過装置側面との間に、モーター排気口からの排気の上昇を防止するための仕切部材を設けたことを特徴とする超純水中の微粒子捕捉システム。
  2.  超純水を遠心濾過装置で遠心濾過して該遠心濾過装置のフィルタで超純水中の微粒子を捕捉する微粒子捕捉システムであって、
     該遠心濾過装置がクリーンルーム内に設置されている超純水中の微粒子捕捉システムにおいて、
     該遠心濾過装置のモーター排気口からの排気をクリーンルームのリターンスペースへ導くための案内部材を設けたことを特徴とする超純水中の微粒子捕捉システム。
  3.  請求項1又は2の超純水中の微粒子捕捉システムによって超純水中の微粒子を前記遠心濾過装置のフィルタで捕捉し、このフィルタ上で捕捉された微粒子の数を計測して、超純水中の微粒子濃度を測定することを特徴とする超純水中の微粒子濃度測定方法。
PCT/JP2011/073094 2010-12-03 2011-10-06 超純水中の微粒子捕捉システム及び微粒子濃度測定方法 WO2012073594A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137011957A KR20130135857A (ko) 2010-12-03 2011-10-06 초순수 중의 미립자 포착 시스템 및 미립자 농도 측정 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-270481 2010-12-03
JP2010270481A JP2012115810A (ja) 2010-12-03 2010-12-03 超純水中の微粒子捕捉システム及び微粒子濃度測定方法

Publications (1)

Publication Number Publication Date
WO2012073594A1 true WO2012073594A1 (ja) 2012-06-07

Family

ID=46171548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073094 WO2012073594A1 (ja) 2010-12-03 2011-10-06 超純水中の微粒子捕捉システム及び微粒子濃度測定方法

Country Status (3)

Country Link
JP (1) JP2012115810A (ja)
KR (1) KR20130135857A (ja)
WO (1) WO2012073594A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6871763B2 (ja) * 2017-03-09 2021-05-12 オルガノ株式会社 中空糸膜装置の清浄度の評価方法、洗浄方法及び中空糸膜装置の洗浄装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279853A (ja) * 1986-05-27 1987-12-04 Kyowa Hakko Kogyo Co Ltd 無菌式連続遠心分離機
JPH04136550U (ja) * 1991-06-12 1992-12-18 栗田工業株式会社 水中微粒子測定用の遠心濾過装置
JPH05149591A (ja) * 1991-04-30 1993-06-15 Nippon Steel Corp 半導体デバイスを製造するための製造設備及びクリーンルーム
JPH09225240A (ja) * 1996-02-23 1997-09-02 Takasago Thermal Eng Co Ltd モータと軸受装置と送風機と圧力制御システム
JPH11266560A (ja) * 1998-03-18 1999-09-28 Matsushita Seiko Co Ltd クリーンルーム機器用モーター
JP2000131309A (ja) * 1998-10-27 2000-05-12 Japan Organo Co Ltd 超純水のサンプリング装置
JP2001135688A (ja) * 1999-11-02 2001-05-18 Sony Corp 送風装置及びこの送風装置を備えた検査装置
JP2002170807A (ja) * 2000-11-30 2002-06-14 Shibaura Mechatronics Corp スピン処理装置
JP2002203781A (ja) * 2000-10-26 2002-07-19 Tokyo Electron Ltd 基板の処理装置
JP2004179421A (ja) * 2002-11-27 2004-06-24 Yaskawa Electric Corp ウェハ搬送装置
JP2005223087A (ja) * 2004-02-04 2005-08-18 Hitachi Plant Eng & Constr Co Ltd ドラフトチャンバ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3863673B2 (ja) * 1998-08-27 2006-12-27 Smc株式会社 クリーンルーム用排気清浄装置
JP4601778B2 (ja) * 2000-07-24 2010-12-22 パナソニックエコシステムズ株式会社 クリーンルーム機器用モーター
US7805983B2 (en) * 2005-01-31 2010-10-05 Nomura Micro Science Co., Ltd. Method for measuring the number of fine particles in ultrapure water and method for manufacturing a filtration device for measuring the number of fine particles in ultrapure water
JP2008307219A (ja) * 2007-06-14 2008-12-25 Hitachi Koki Co Ltd 遠心分離機

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279853A (ja) * 1986-05-27 1987-12-04 Kyowa Hakko Kogyo Co Ltd 無菌式連続遠心分離機
JPH05149591A (ja) * 1991-04-30 1993-06-15 Nippon Steel Corp 半導体デバイスを製造するための製造設備及びクリーンルーム
JPH04136550U (ja) * 1991-06-12 1992-12-18 栗田工業株式会社 水中微粒子測定用の遠心濾過装置
JPH09225240A (ja) * 1996-02-23 1997-09-02 Takasago Thermal Eng Co Ltd モータと軸受装置と送風機と圧力制御システム
JPH11266560A (ja) * 1998-03-18 1999-09-28 Matsushita Seiko Co Ltd クリーンルーム機器用モーター
JP2000131309A (ja) * 1998-10-27 2000-05-12 Japan Organo Co Ltd 超純水のサンプリング装置
JP2001135688A (ja) * 1999-11-02 2001-05-18 Sony Corp 送風装置及びこの送風装置を備えた検査装置
JP2002203781A (ja) * 2000-10-26 2002-07-19 Tokyo Electron Ltd 基板の処理装置
JP2002170807A (ja) * 2000-11-30 2002-06-14 Shibaura Mechatronics Corp スピン処理装置
JP2004179421A (ja) * 2002-11-27 2004-06-24 Yaskawa Electric Corp ウェハ搬送装置
JP2005223087A (ja) * 2004-02-04 2005-08-18 Hitachi Plant Eng & Constr Co Ltd ドラフトチャンバ

Also Published As

Publication number Publication date
KR20130135857A (ko) 2013-12-11
JP2012115810A (ja) 2012-06-21

Similar Documents

Publication Publication Date Title
TW503443B (en) Air management system and method for chemical containment and contamination reduction in a semiconductor manufacturing facility
EP1670593B1 (en) Centrifugal separator for cleaning gases
US7597015B2 (en) Particle size sampler
FI123461B (fi) Ilmasuodin
EP1503149A2 (en) Clean bench for cleaning atmosphere of partitioned space
NL2007089C2 (en) Air sampling apparatus.
JP2019122901A (ja) ミストコレクタ
CN107430078B (zh) 含有微尘的人工大气环境营造装置与对其进行应用的化妆料微尘隔离能力分析系统
EP0129983A2 (en) Filter cassette
WO2012073594A1 (ja) 超純水中の微粒子捕捉システム及び微粒子濃度測定方法
JP2017042733A (ja) 微粒子分離装置
KR100727487B1 (ko) 파티클 흡착챔버, 파티클 샘플링 장치 및 파티클 샘플링방법
JP6908703B2 (ja) 筺体保護用の吸着通気体
KR101483183B1 (ko) 오염물 여과장치
KR102193124B1 (ko) 환기장치
JP2009079980A (ja) 大気中汚染物質捕集装置及び方法
KR101569792B1 (ko) 투과전자현미경 분석을 위한 시료 포집용 필터 조립체 및 필터 제조 장치
US8758487B2 (en) Machine tool mounted mist collector
US20070256565A1 (en) Air filter restriction indicator
KR20160138747A (ko) 비유동식 수벽을 이용한 원심분리식 집진장치 및 그 제어방법
JP2003275523A (ja) 自動巻取り型フィルタ装置
JP5950144B2 (ja) 空気浄化装置およびその試験システム
JP6528118B2 (ja) 汚染物質捕集分析部材を備えた空気清浄装置
CN101383437A (zh) 充电装置
JP2006289169A (ja) 空気清浄機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844768

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137011957

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844768

Country of ref document: EP

Kind code of ref document: A1