WO2012071806A1 - 用于质谱分析的真空紫外光电离和化学电离的复合电离源 - Google Patents

用于质谱分析的真空紫外光电离和化学电离的复合电离源 Download PDF

Info

Publication number
WO2012071806A1
WO2012071806A1 PCT/CN2011/071043 CN2011071043W WO2012071806A1 WO 2012071806 A1 WO2012071806 A1 WO 2012071806A1 CN 2011071043 W CN2011071043 W CN 2011071043W WO 2012071806 A1 WO2012071806 A1 WO 2012071806A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
electrode
ionization
ionization source
vacuum ultraviolet
Prior art date
Application number
PCT/CN2011/071043
Other languages
English (en)
French (fr)
Inventor
李海洋
花磊
吴庆浩
崔华鹏
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to US13/884,081 priority Critical patent/US9412577B2/en
Publication of WO2012071806A1 publication Critical patent/WO2012071806A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • H01J27/024Extraction optics, e.g. grids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/64Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/24Ion sources; Ion guns using photo-ionisation, e.g. using laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/107Arrangements for using several ion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/145Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using chemical ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/162Direct photo-ionisation, e.g. single photon or multi-photon ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2560/00Chemical aspects of mass spectrometric analysis of biological material

Definitions

  • the invention relates to a mass spectrometry instrument, in particular to a composite ionization source of vacuum ultraviolet photoionization and chemical ionization.
  • the ionization source realizes two kinds of ionization by vacuum ultraviolet photoionization and chemical ionization under a certain ionization source pressure state by using a single vacuum ultraviolet light source. Mode switching greatly expands the range of instruments that can be tested. Background technique
  • EI electron bombardment ionization source
  • This ionization source uses electrons with an energy of 70 eV to bombard organic molecules and ionize them.
  • Each organic matter can obtain its own characteristic spectrum, which can be accurate.
  • the EI source ionizes organic matter, a large amount of fragment ions are generated, and the peak overlap of the complex mixture is severe, and the spectrum is difficult to analyze, which is not conducive to rapid and on-line analysis of the sample.
  • Vacuum ultraviolet light can soften ionization of organic molecules whose ionization energy (IE) is lower than its photon energy, mainly produces molecular ions, and has almost no fragment ions, which is especially suitable for rapid qualitative and quantitative analysis.
  • IE ionization energy
  • the obtained organic matter mass spectrum contains only the molecular ion peak of organic matter, and the spectrum is simple. Rapid qualitative and quantitative analysis based on molecular weight.
  • the light window material used in the vacuum ultraviolet light source limits the energy of the photons that can be emitted.
  • the currently known light window material with the highest photon energy is LiF, and the photon energy that can be transmitted is up to 11.8 eV, so the ionization energy is low.
  • the organic molecules at 11.8 eV are able to obtain effective ionization.
  • Vacuum ultraviolet photoionization by an existing vacuum ultraviolet light source Therefore, the application of vacuum ultraviolet photoionization mass spectrometry has been limited. Summary of the invention
  • the object of the present invention is to provide a composite ionization source for vacuum ultraviolet photoionization and chemical ionization for mass spectrometry, introducing a chemical ionization mode in a vacuum ultraviolet photoionization source, and effectively ionizing a substance molecule having an ionization energy higher than that of photon energy. And testing.
  • Vacuum ultraviolet photoionization and chemical ionization composite ionization source for mass spectrometry including vacuum ultraviolet light source and
  • the ionization source cavity is provided with a gas outlet on the side wall of the ionization source cavity, a through hole is formed in the sidewall of the ionization source cavity, and a vacuum gauge is connected through the vacuum pipeline; the feature is:
  • the vacuum ultraviolet light emitted by the vacuum ultraviolet light source is located inside the ionization source cavity, and an ion acceleration electrode, an ion repulsion electrode, an ion extraction electrode and a differential interface plate are arranged in the ionization source cavity inside the vacuum ultraviolet light emission direction.
  • the ion accelerating electrode, the ion repulsion electrode, the ion extracting electrode and the differential interface plate are spaced apart from each other, coaxially and in parallel;
  • a reagent gas sample tube extends through the outer wall of the ionization source cavity into the ionization source cavity, and the reagent gas sample pipe gas outlet is disposed at an interval between the ion acceleration electrode and the ion repulsion electrode, and the gas outlet thereof
  • the gas inlet end of the reagent gas sampling tube is connected to the reagent gas source
  • a sample gas sampling tube extends through the outer wall of the ionization source chamber into the ionization source chamber, the sample gas
  • the sample tube gas outlet is disposed in a region spaced apart from the ion repulsion electrode and the ion extracting electrode, and the gas outlet end is disposed for the vacuum ultraviolet light beam, and the gas inlet end of the sample gas sampling tube is connected to the sample gas source.
  • the ion accelerating electrode, the ion repulsion electrode, the ion extracting electrode and the differential interface plate are all plate-shaped structures, and the center portion is provided with a through hole, wherein the ion extracting electrode is one or more blocks spaced apart from each other, coaxially and in parallel. Plate structure; the beam of vacuum ultraviolet light passes through the central area of each electrode through hole parallel to the direction of the electrode axis.
  • the central region of the ion accelerating electrode and the ion repulsion electrode partition constitutes a reagent ion region, and the reagent ions required for chemical ionization are generated in the reagent ion region;
  • the spacing between the ion accelerating electrode and the ion repulsion electrode, that is, the length of the reagent ion region is 0.1 ⁇ 2 cm;
  • the central region of the ion repulsion electrode and the differential interface plate form a sample ion region, and photoionization and chemical ionization of the sample molecules are generated in the sample ion region, and the spacing between the ion repulsion electrode and the differential interface plate, that is, the sample ion region
  • the length is 0.1 ⁇ 10 cm.
  • the ion-accelerated electric field forms an ion-extracting electric field having a size of l ⁇ 100 V/cm in the axial direction of the sample ion region.
  • a through hole is formed in the center of the ion repulsion electrode, which is a current limiting hole, and vacuum ultraviolet photons and ions in the reagent ion region enter the sample ion region through the restriction hole, and the diameter of the restriction hole is 0.5 to 5 mm.
  • the vacuum ultraviolet light source is a gas discharge lamp light source, a laser light source or a synchrotron radiation source.
  • a differential interface aperture is disposed on the differential interface plate, and the differential interface aperture is connected to the mass spectrometer of the mass spectrometer, that is, the ion obtained by ionizing the gas sample in the ionization source cavity is directly introduced through the differential interface aperture on the differential interface plate.
  • the mass analyzer is a time of flight mass analyzer, a quadrupole mass analyzer or an ion trap mass analyzer.
  • a gas outlet is arranged on the side wall of the ionization source cavity, the gas outlet is connected to the one side valve through the vacuum line, and the mechanical vacuum pump is connected to the other end of the side pumping valve through the vacuum line;
  • the side pumping valve is a flow-adjustable vacuum valve, which is a vacuum flapper valve, a vacuum butterfly valve or a vacuum needle valve.
  • the injection volume can be controlled according to the adjustment of the side pumping flow rate and the change of the inner diameter and length of the reagent gas sampling tube and the sample gas sampling tube, adjusting the vacuum degree in the ionization source chamber, the reagent gas sampling tube and the sample gas injection.
  • the inner diameter of the tube is ⁇ 50 ⁇ 530 ⁇ , the length is 5 ⁇ 500 cm, the gas injection volume is 0.1 ⁇ 200 mL/min, and the vacuum in the ionization source chamber is maintained at 10 - 3 ⁇ 10 mbar.
  • the composite ionization source provided by the invention can realize fast switching in two ionization modes of vacuum ultraviolet photoionization and vacuum ultraviolet light + chemical ionization by simply adjusting the working gas of the injection gas and the ionization zone.
  • the substance molecules whose ionization energy is lower than the photon energy of the vacuum ultraviolet light are photoionized by vacuum ultraviolet light to generate molecular ions of the substance to be tested; and the ionization energy is higher than the photon energy of the vacuum ultraviolet light. Ionization gives the quasi-molecular ions of the substance to be tested and a small amount of fragment ions.
  • the complete ionization source is compact and compact. When combined with different mass analyzers, it can greatly expand the range of instrument-detectable samples, and has broad application prospects in the field of process monitoring and environmental pollution.
  • FIG. 1 is a schematic view showing the structure of a composite ionization source of vacuum ultraviolet photoionization and chemical ionization according to the present invention.
  • Figure 2 is a mass spectrum of a n-heptane sample of a 10 ppm sample of benzene, toluene and xylene gas in Example 1 in vacuum ultraviolet photoionization mode.
  • Example 3 is a mass spectrum of 0 2 + reagent ions and 10 ppm of acrylonitrile (C 2 H 3 CN) and chloroform (CHC1 3 ) in a vacuum ultraviolet light + chemical ionization mode when 0 2 is used as a reagent gas in Example 2.
  • the composite ionization source of the present invention comprises a reagent gas sampling tube 1, a sample gas sampling tube 2, a vacuum ultraviolet light source 3, an ion acceleration electrode 4, an ion repulsion electrode 5, an ion extraction electrode 7, a differential interface plate 8, and ionization.
  • the source cavity 13 is constructed.
  • the vacuum ultraviolet light 19 emitted from the vacuum ultraviolet light source 3 is located inside the ionization source chamber 13.
  • an ion acceleration electrode 4, an ion repulsion electrode 5, and an ion extraction are sequentially disposed in the direction of the exit of the vacuum ultraviolet light 19.
  • the electrode 7 and the differential interface plate 8, the ion acceleration electrode 4, the ion repulsion electrode 5, the ion extraction electrode 7 and the differential interface plate 8 are spaced apart from each other, coaxially and in parallel;
  • a reagent gas sampling tube 1 extends through the outer wall of the ionization source chamber 13 into the ionization source chamber 13, and the reagent gas sampling tube 1 gas outlet is disposed between the ion acceleration electrode 4 and the ion repulsion electrode 5 The gas outlet end of the reagent gas sampling tube 1 is connected to the reagent gas source 17;
  • a sample gas sampling tube 2 extends through the outer wall of the ionization source chamber 13 into the ionization source chamber 13, and the sample gas sampling tube 2 gas outlet is disposed between the ion repulsion electrode 5 and the ion extraction electrode 6
  • the gas exit end of the sample gas injection tube 2 is connected to the sample gas source 18 at its gas outlet end.
  • the ion accelerating electrode 4, the ion repulsion electrode 5, the ion extracting electrode 7, and the differential interface plate 8 are all of a plate structure, and a central portion is provided with a through hole, wherein the ion extracting electrode 7 is one or more blocks spaced apart from each other.
  • the central region where the ion accelerating electrode 4 and the ion repulsion electrode 5 are spaced apart constitutes the reagent ion region 11, and the reagent ions required for chemical ionization are generated in the reagent ion region 11; the spacing between the ion accelerating electrode 4 and the ion repelling electrode 5, that is, the reagent ion
  • the length of the region 11 is 0.1 to 2 cm;
  • the central region of the ion repulsion electrode 5 and the differential interface plate 8 form a sample ion region 12, and photoionization and chemical ionization of the sample molecules are generated in the sample ion region 12, and the spacing between the ion repulsion electrode 5 and the differential interface plate 8 That is, the length of the sample ion region 12 is 0.1 to 10 cm.
  • the ion accelerating electrode 4, the ion repulsion electrode 5, the ion extracting electrode 7, and the differential interface plate 8 are sequentially loaded with different voltages in order of voltage from high to low, and the size is formed in the axial direction of the reagent ion region 11 to be l ⁇
  • An ion-accelerating electric field of 1000 V/cm forms an ion-extracting electric field having a size of 1 to 100 V/cm in the axial direction of the sample ion region 12.
  • a differential interface aperture 9 is disposed on the differential interface plate 8, and the differential interface aperture 9 is connected to the mass analyzer 10 of the mass spectrometer, that is, ions ionized by the gas sample in the ionization source cavity 13 pass through the differential interface plate 8.
  • the differential interface aperture 9 is introduced directly into the mass analyzer 10.
  • the composite ionization source of the present invention directly passes the sample gas and the reagent gas at atmospheric pressure through two sample tubes
  • the sample is turned into the ionization source chamber 13, and the sample to be tested is ionized by vacuum ultraviolet photoionization or chemical ionization, and the formed product ions directly enter the mass analyzer 10 via the differential interface aperture 9 on the differential interface plate 8.
  • the side suction valve 14 (the flow rate adjustable vacuum flapper valve) is connected to the mechanical vacuum pump 15 through the vacuum line at the rear end, and the excess gas in the ionization source chamber 13 is extracted by the mechanical vacuum pump 15 via the side suction valve 14.
  • the injection amount is controlled, and the gas pressure in the ionization source chamber 13 is adjusted to make ions and molecules in the ionization region. There are enough collisions between them to meet the requirements of molecular ion reactions in chemical ionization.
  • the reagent gas sampling tube 1 and the sample gas sampling tube 2 have an inner diameter of ⁇ 50 to 530 ⁇ , a length of 5 to 200 cm, and a gas injection amount of 0.1 to 100 mL/min, and the vacuum in the source chamber 13 is ionized. The degree is maintained at 10 - 3 to 10 mbar.
  • the composite ionization source of the present invention can achieve fast switching in both vacuum ultraviolet photoionization and vacuum ultraviolet + chemical ionization ionization modes.
  • the composite ionization source of the present invention operates in the vacuum ultraviolet photoionization mode, only the sample gas is introduced into the sample gas sampling tube 2 in the two sampling tubes, and the substance molecules whose ionization energy is lower than the photon energy in the sample gas are vacuumed.
  • the composite ionization source of the present invention operates in a vacuum ultraviolet + chemical ionization mode
  • a reagent gas and a sample gas are introduced into the reagent gas sampling tube 1 and the sample gas sampling tube 2, respectively.
  • the ionization energy of the selected reagent gas molecule is higher than the vacuum ultraviolet photon energy
  • the ion acceleration electric field in the reagent ion region 11 is increased, and the photoelectron generated by the vacuum ultraviolet light irradiating the metal electrode is accelerated to a higher energy, colliding with the reagent gas molecule.
  • a commercial Kr lamp with an emission photon energy of 10.6 eV is used as a vacuum ultraviolet light source, and the ionization source and the time of flight mass are divided.
  • the analyzer is used in combination.
  • Two quartz capillary tubes with an inner diameter of ⁇ 250 ⁇ and a length of 100 cm were used as the reagent gas sampling tube and the sample gas sampling tube respectively, and the pressure in the ionization source chamber was adjusted to 0.3 mbar in the vacuum ultraviolet photoionization mode.
  • Sample gas the resulting mass spectrum signal is shown in Figure 2. It can be seen from the figure that the molecular ion peak of each component obtained under the vacuum ultraviolet photoionization of the organic molecules with lower ionization energy than the vacuum ultraviolet photon energy, the spectrum is simple, and is convenient for rapid, on-line qualitative and quantitative analysis of complex mixture samples.
  • 0 2 ( 12.07 eV) with ionization energy higher than 10.6 eV and NO (9.26 eV) with ionization energy lower than 10.6 eV were selected as Reagent gas.
  • Two quartz capillaries with an inner diameter of ⁇ 250 ⁇ and a length of 100 cm were used as the reagent gas sample tube and the sample gas sample tube to adjust the gas pressure in the ionization source chamber to 0.3 mbar, and the gas injection volume was 30 mL/min. .
  • FIG. 3 (a) is the 0 2 + reagent ion signal obtained when the 0 2 reagent gas is separately introduced
  • FIG. 3 (b) and FIG. 3 (c) are the acetonitrile obtained after subtracting the 0 2 + reagent ion peak, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Toxicology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

用于质谱分析的真空紫外光电离和化学电离的复合电离源 技术领域
本发明涉及质谱分析仪器, 具体的说是真空紫外光电离和化学电离的复合电离 源,本电离源利用单一的真空紫外光源在一定电离源气压条件下实现真空紫外光电离 和化学电离两种电离模式的切换, 大大扩宽了仪器可检测样品的范围。 背景技术
传统的有机物质谱中通常采用电子轰击电离源 (EI), 这种电离源利用能量为 70 eV 的电子去轰击有机物分子, 使其电离, 每种有机物都能得到各自的特征谱图, 能 够准确的进行定性分析。 但是, EI 源电离有机物时会产生大量的碎片离子, 在分析 复杂混合物时的谱峰重叠严重, 识谱困难, 不利于样品的快速、 在线分析。 真空紫外 光能够使电离能(IE)低于其光子能量的有机物分子发生软电离,主要产生分子离子, 几乎没有碎片离子, 特别适合于快速的定性定量分析。 侯可勇 [中国发明专利: 200610011793.2]和郑培超 [中国发明专禾 I」: 200810022557.X]将真空紫外光电离源与质 谱结合, 得到的有机物质谱图中只包含有机物的分子离子峰, 谱图简单, 可根据分子 量进行快速的定性和定量分析。
真空紫外光源中使用的光窗材料限制了能够发射的光子的能量, 目前已知的透过 光子能量最高的光窗材料是 LiF, 能够透过的光子能量最高为 11.8 eV, 所以, 电离能 低于 11.8 eV的有机物分子能够得到有效电离。 但是, 对于一些常见的有机和无机物 质分子, 如 CH4 ( IE=12.61eV )、 乙腈 ( IE=12.20eV ) S02 ( IE=12.35eV ) N20 (IE=12.89eV) 等, 则无法被现有的真空紫外光源所发出的真空紫外光电离。 因此, 真空紫外光电离质谱的应用受到了一定的限制。 发明内容
本发明的目的在于提供一种用于质谱分析的真空紫外光电离和化学电离的复合 电离源,在真空紫外光电离源中引入化学电离模式,使电离能高于光子能量的物质分 子得到有效电离和检测。
为实现上述目的, 本发明采用的技术方案为:
用于质谱分析的真空紫外光电离和化学电离的复合电离源,包括真空紫外光源和 电离源腔体, 于电离源腔体侧壁上设置有气体出口, 于电离源腔体侧壁上开有通孔, 通过真空管路连接有真空规; 其特征在于:
真空紫外光源发出的真空紫外光位于电离源腔体的内部, 在电离源腔体内部、沿 真空紫外光出射方向依次设置有离子加速电极、离子推斥电极、离子引出电极和差分 接口极板, 离子加速电极、 离子推斥电极、 离子引出电极和差分接口极板相互间隔、 同轴、 平行设置;
一试剂气体进样管穿过电离源腔体的外壁伸入在电离源腔体内部,试剂气体进样 管气体出口设置于离子加速电极和离子推斥电极之间相互间隔的区域,其气体出口端 正对于真空紫外光的光束设置, 试剂气体进样管的气体入口端与试剂气体气源相连; 一样品气体进样管穿过电离源腔体的外壁伸入在电离源腔体内部,样品气体进样 管气体出口设置于离子推斥电极和离子引出电极之间相互间隔的区域,其气体出口端 正对于真空紫外光的光束设置, 样品气体进样管的气体入口端与样品气体气源相连。
离子加速电极、 离子推斥电极、 离子引出电极和差分接口极板均为板式结构, 中 心部位设置有通孔, 其中, 离子引出电极为 1块或 1块以上相互间隔、 同轴、 平行设 置的板式结构; 真空紫外光的光束平行于电极轴线方向穿过各电极通孔的中心区域。
离子加速电极和离子推斥电极间隔的中心区域构成试剂离子区,化学电离所需试 剂离子在试剂离子区中产生; 离子加速电极和离子推斥电极的间距、即试剂离子区的 长度为 0.1〜2 cm;
离子推斥电极和差分接口极板间隔的中心区域构成样品离子区,样品分子的光电 离和化学电离在样品离子区中产生, 离子推斥电极和差分接口极板的间距、即样品离 子区的长度为 0.1〜10 cm。
于离子加速电极、离子推斥电极、离子引出电极和差分接口极板上按照电压从高 到低的顺序, 依次加载不同的电压, 在试剂离子区轴线方向形成大小为 l〜1000 V/cm 的离子加速电场, 在样品离子区轴线方向形成大小为 l〜100 V/cm的离子引出电场。
于离子推斥电极的中心部位设置有通孔, 其为限流孔, 试剂离子区中的真空紫外 光子和离子通过限流孔进入到样品离子区, 限流孔直径大小为 0.5〜5 mm。
所述的真空紫外光源为气体放电灯光源、 激光光源或同步辐射光源。
于差分接口极板上设置有差分接口小孔,差分接口小孔与质谱仪的质量分析器相 连,即电离源腔体内气体样品电离得到的离子通过差分接口极板上的差分接口小孔直 接引入到质量分析器中; 所述的质量分析器为飞行时间质量分析器、四级杆质量分析器或离子阱质量分析 器。
于电离源腔体侧壁上设置有气体出口, 气体出口通过真空管路与一侧抽阀门相 连, 于侧抽阀门的另一端通过真空管路连接有机械真空泵;
侧抽阀门为流量可调节的真空阀门, 为真空挡板阀、 真空蝶阀或真空针阀。 可根据侧抽阀门流量的调节以及试剂气体进样管和样品气体进样管内径和长度 的改变来控制进样量, 调节电离源腔体内的真空度,试剂气体进样管和样品气体进样 管内径为 Φ 50〜530 μηι, 长度为 5〜500 cm, 气体进样量为 0.1〜200 mL/min, 电离源 腔体内的真空度维持在 10-3〜10 mbar。
本发明提供的复合电离源, 通过简单的调节进样气体和电离区工作电压, 可在真 空紫外光电离和真空紫外光 +化学电离两种电离模式下实现快速切换。 待测样品中电 离能低于真空紫外光的光子能量的物质分子被真空紫外光电离,产生待测物质的分子 离子; 而电离能高于真空紫外光的光子能量的物质分子由化学电离的模式电离,得到 待测物质的准分子离子和少量的碎片离子。 整套电离源体积小巧、 结构紧凑, 与不同 的质量分析器联用后可大大扩宽仪器可检测样品的范围,在过程监控和环境污染的在 线监测领域具有广阔的应用前景。 附图说明
图 1为本发明的真空紫外光电离和化学电离的复合电离源结构示意图。
图 2为实施例 1中 10 ppm苯、 甲苯和二甲苯气体样品的正庚烷样品在在真空紫 外光电离模式下的质谱图。
图 3为实施例 2中 02作为试剂气体时真空紫外光 +化学电离模式下 02 +试剂离子 以及 lO ppm丙烯腈 (C2H3CN) 和氯仿 (CHC13 ) 的质谱图。
图 4为实施例 2中 NO作为试剂气体时真空紫外光 +化学电离模式下 NO+试剂离子以 及 lO ppm丙烯腈 (C2H3CN) 和乙酸 (CH3COOH) 的质谱图。 具体实施方式
请参阅图 1, 为本发明的结构示意图。 本发明的复合电离源, 由试剂气体进样管 1、 样品气体进样管 2、 真空紫外光源 3、 离子加速电极 4、 离子推斥电极 5、 离子引 出电极 7、 差分接口极板 8、 电离源腔体 13构成。 真空紫外光源 3发出的真空紫外光 19位于电离源腔体 13的内部,在电离源腔体 13内部、 沿真空紫外光 19出射方向依次设置有离子加速电极 4、 离子推斥电极 5、 离子引出电极 7和差分接口极板 8, 离子加速电极 4、 离子推斥电极 5、 离子引出电 极 7和差分接口极板 8相互间隔、 同轴、 平行设置;
一试剂气体进样管 1穿过电离源腔体 13的外壁伸入在电离源腔体 13内部,试剂 气体进样管 1气体出口设置于离子加速电极 4和离子推斥电极 5之间相互间隔的区 域, 其气体出口端正对于真空紫外光 19的光束设置, 试剂气体进样管 1的气体入口 端与试剂气体气源 17相连;
一样品气体进样管 2穿过电离源腔体 13的外壁伸入在电离源腔体 13内部,样品 气体进样管 2气体出口设置于离子推斥电极 5和离子引出电极 6之间相互间隔的区 域, 其气体出口端正对于真空紫外光 19的光束设置, 样品气体进样管 2的气体入口 端与样品气体气源 18相连。
离子加速电极 4、 离子推斥电极 5、 离子引出电极 7和差分接口极板 8均为板式 结构, 中心部位设置有通孔, 其中, 离子引出电极 7为 1块或 1块以上相互间隔、 同 轴、 平行设置的板式结构; 真空紫外光 19的光束平行于电极轴线方向穿过各电极通 孔的中心区域。
离子加速电极 4和离子推斥电极 5间隔的中心区域构成试剂离子区 11, 化学电 离所需试剂离子在试剂离子区 11中产生;离子加速电极 4和离子推斥电极 5的间距、 即试剂离子区 11的长度为 0.1〜2 cm;
离子推斥电极 5和差分接口极板 8间隔的中心区域构成样品离子区 12, 样品分 子的光电离和化学电离在样品离子区 12中产生, 离子推斥电极 5和差分接口极板 8 的间距、 即样品离子区 12的长度为 0.1〜10 cm。
于离子加速电极 4、 离子推斥电极 5、 离子引出电极 7和差分接口极板 8上按照 电压从高到低的顺序, 依次加载不同的电压, 在试剂离子区 11轴线方向形成大小为 l〜1000 V/cm的离子加速电场, 在样品离子区 12轴线方向形成大小为 1〜100 V/cm的 离子引出电场。
于差分接口极板 8上设置有差分接口小孔 9, 差分接口小孔 9与质谱仪的质量分 析器 10相连,即电离源腔体 13内气体样品电离得到的离子通过差分接口极板 8上的 差分接口小孔 9直接引入到质量分析器 10中。
本发明的复合电离源通过两根进样管分别将大气压下的样品气体和试剂气体直 接通入电离源腔体 13内部,待测样品通过真空紫外光电离或化学电离的方式被电离, 形成的产物离子经由差分接口极板 8上的差分接口小孔 9直接进入到质量分析器 10 中检测。 侧抽阀门 14 (流量可调节的真空挡板阀) 后端通过真空管路连接有机械真 空泵 15, 电离源腔体 13内多余的气体经由侧抽阀门 14被机械真空泵 15抽出。 根据 侧抽阀门 14流量的调节以及试剂气体进样管 1和样品气体进样管 2内径和长度的改 变来控制进样量, 调节电离源腔体 13内的气压, 使电离区内离子和分子之间发生足 够多的碰撞, 以满足化学电离中分子离子反应的要求。试剂气体进样管 1和样品气体 进样管 2内径为 Φ 50〜530 μηι, 长度为 5〜200 cm, 达到的气体进样量为 0.1〜100 mL/min, 电离源腔体 13内的真空度维持在 10—3〜10 mbar。
通过简单的调节进样气体和电离区工作电压,本发明的复合电离源可在真空紫外 光电离和真空紫外光 +化学电离两种电离模式下实现快速切换。 本发明的复合电离源 工作于真空紫外光电离模式时,只向两路进样管中的样品气体进样管 2中通入样品气 体,样品气体中电离能低于光子能量的物质分子被真空紫外光电离,在较低的离子加 速电场和离子引出电场作用下,试剂离子区 11和样品离子区 12中的待测样品分子离 子被引出, 通过差分接口小孔 9进入质量分析器 10中分析。
本发明的复合电离源工作于真空紫外 +化学电离模式时, 分别向试剂气体进样管 1和样品气体进样管 2通入试剂气体和样品气体。 当选择的试剂气体分子电离能高于 真空紫外光子能量时, 增大试剂离子区 11中的离子加速电场, 真空紫外光照射金属 电极产生的光电子被加速到较高的能量, 与试剂气体分子碰撞产生 EI电离, 形成试 剂离子; 当选择的试剂气体分子电离能低于真空紫外光子能量时,在较低的离子加速 电场下, 试剂离子区 11中的试剂气体由通过真空紫外光电离产生试剂离子。 试剂离 子区 11中产生的试剂离子通过离子推斥电极 5的中心部位设置的限流孔 6进入样品 离子区 12, 在一定的电离源气压条件下, 试剂离子与样品离子区 12中的样品分子之 间碰撞,发生分子离子反应,样品气体中电离能高于光子能量的物质分子通过化学电 离的模式被电离,而样品气体中电离能低于光子能量的物质分子一部分被真空紫外光 电离, 另一部分通过化学电离的模式被电离。最终得到的产物离子通过差分接口小孔 9进入质量分析器 10中分析。
实施例 1
针对本发明所述的复合电离源在真空紫外光电离模式下性能的考查,使用发射光 子能量为 10.6 eV的商品化 Kr灯作为真空紫外光源, 将该电离源与飞行时间质量分 析器联用。 选用两根内径为 Φ 250 μηι、 长度为 100 cm的石英毛细管分别作为试剂气 体进样管和样品气体进样管,在真空紫外光电离模式下, 调节电离源腔体内的气压至 0.3 mbar,气体进样量为 30 mL/miti, 离子加速电场和离子引出电场的强度均设置为 6 V/cm,测试 lO ppm苯(IE = 9.24 eV)、 甲苯(IE = 8.83 eV)、对二甲苯(IE = 8.44 eV) 样品气体, 得到的质谱信号如图 2所示。 由图可见, 电离能低于真空紫外光子能量的 有机物分子在真空紫外光电离下得到的是各成分的分子离子峰,谱图简单,有利于复 杂混合物样品的快速、 在线定性和定量分析。
实施例 2
对于本发明的复合电离源在真空紫外光 +化学电离模式下性能的考查, 分别选取 了电离能高于 10.6 eV的 02 ( 12.07 eV) 和电离能低于 10.6 eV的 NO (9.26 eV) 作 为试剂气体。 选用两根内径为 Φ 250 μηι、 长度为 100 cm的石英毛细管分别作为试剂 气体进样管和样品气体进样管, 调节电离源腔体内的气压至 0.3 mbar, 气体进样量为 30 mL/min。 02作为试剂气体时, 向试剂气体进样管中通入 99.999%的高纯 02, 同时 向样品气体进样管中分别通入配置好的 10 ppm乙腈(CH3CN,IE=12.20 eV)和 10 ppm 氯仿 (CHC13, IE=11.37 eV) 样品气体, 调节电离源腔体内的气压至 0.3 mbar, 离子 加速电场和离子引出电场的强度分别设置为 100 V/cm和 6 V/cm, 得到图 3所示的质 谱信号。 其中, 图 3 (a) 是单独通入 02试剂气体时得到的 02 +试剂离子信号, 图 3 (b)和图 3 (c)分别为扣除 02 +试剂离子峰后得到的乙腈和氯仿的化学电离质谱图。 可见, 本发明的复合电离源能够获得较纯的高强度 02 +试剂离子, 使用 02 +作为化学 电离的试剂离子时能够对电离能高于真空紫外光子能量的物质分子很好的电离,得到 的待测物质谱图中有少量的碎片峰信号。
NO作为试剂气体时, 向试剂气体进样管中通入 3%的 NO气体, 稀释气体为高 纯 He, 同时向样品气体进样管中分别通入配置好的 10 ppm乙腈(CH3CN, IE=12.20 eV) 禾口 10 ppm乙酸 (CH3COOH, IE=11.65 eV) 样品气体, 调节电离源腔体内的气 压至 0.3 mbar, 离子加速电场和离子引出电场的强度均设置为 6 V/cm,得到图 4所示 的质谱信号。 可见, 使用 NO作为试剂气体时, 通过本发明的复合电离源同样能够得 到较纯的高强度 NO+试剂离子, 使用 NO+作为化学电离的试剂离子时能够对电离能 高于真空紫外光子能量的物质分子很好的电离, 得到的待测物 M的质谱图中有主要 是 Μ·ΝΟ+的加合离子峰信号。

Claims

权 利 要 求 书
1. 用于质谱分析的真空紫外光电离和化学电离的复合电离源, 包括真空紫外光 源 (3)和电离源腔体(13), 于电离源腔体(13)侧壁上设置有气体出口, 于电离源 腔体 (13) 侧壁上开有通孔, 通过真空管路连接有真空规 (16); 其特征在于:
真空紫外光源 (3) 发出的真空紫外光 (19) 位于电离源腔体 (13) 的内部, 在 电离源腔体(13) 内部、沿真空紫外光(19)出射方向依次设置有离子加速电极(4)、 离子推斥电极 (5)、 离子引出电极 (7) 和差分接口极板 (8), 离子加速电极 (4)、 离子推斥电极 (5)、 离子引出电极 (7)和差分接口极板 (8)相互间隔、 同轴、 平行 设置;
一试剂气体进样管 (1) 穿过电离源腔体 (13) 的外壁伸入在电离源腔体 (13) 内部, 试剂气体进样管 (1)气体出口设置于离子加速电极(4)和离子推斥电极(5) 之间相互间隔的区域, 其气体出口端正对于真空紫外光(19) 的光束设置, 试剂气体 进样管 (1) 的气体入口端与试剂气体气源 (17) 相连;
一样品气体进样管 (2) 穿过电离源腔体 (13) 的外壁伸入在电离源腔体 (13) 内部, 样品气体进样管 (2)气体出口设置于离子推斥电极(5)和离子引出电极(6) 之间相互间隔的区域, 其气体出口端正对于真空紫外光(19) 的光束设置, 样品气体 进样管 (2) 的气体入口端与样品气体气源 (18) 相连。
2. 根据权利要求 1所述的复合电离源, 其特征在于: 离子加速电极 (4)、 离子 推斥电极(5)、 离子引出电极(7)和差分接口极板(8)均为板式结构, 中心部位设 置有通孔, 其中, 离子引出电极 (7) 为 1块或 1块以上相互间隔、 同轴、 平行设置 的板式结构; 真空紫外光(19)的光束平行于电极轴线方向穿过各电极通孔的中心区 域。
3. 根据权利要求 1或 2所述的复合电离源, 其特征在于: 离子加速电极(4)和 离子推斥电极(5) 间隔的中心区域构成试剂离子区 (11), 化学电离所需试剂离子在 试剂离子区 (11) 中产生; 离子加速电极 (4)和离子推斥电极 (5) 的间距、 即试剂 离子区 (11) 的长度为 0.1〜2cm;
离子推斥电极(5)和差分接口极板(8) 间隔的中心区域构成样品离子区 (12), 样品分子的光电离和化学电离在样品离子区 (12) 中产生, 离子推斥电极 (5) 和差 分接口极板 (8) 的间距、 即样品离子区 (12) 的长度为 0.1〜10cm。
4. 根据权利要求 3所述的复合电离源, 其特征在于: 于离子加速电极 (4)、 离 子推斥电极(5 )、 离子引出电极(7)和差分接口极板(8 )上按照电压从高到低的顺 序, 依次加载不同的电压, 在试剂离子区 (11 )轴线方向形成大小为 l〜1000 V/cm的 离子加速电场, 在样品离子区 (12) 轴线方向形成大小为 1〜100 V/cm的离子引出电 场。
5. 根据权利要求 1或 2所述的复合电离源, 其特征在于: 于离子推斥电极 (5 ) 的中心部位设置有通孔, 其为限流孔(6), 试剂离子区 (11 ) 中的真空紫外光子和离 子通过限流孔 (6) 进入到样品离子区 (12), 限流孔 (6) 直径大小为 0.5〜5 mm。
6. 根据权利要求 1所述的复合电离源, 其特征在于: 所述的真空紫外光源 (3 ) 为气体放电灯光源、 激光光源或同步辐射光源。
7. 根据权利要求 1所述的复合电离源, 其特征在于: 于差分接口极板(8 )上设 置有差分接口小孔 (9), 差分接口小孔 (9) 与质谱仪的质量分析器 (10) 相连, 即 电离源腔体 (13 ) 内气体样品电离得到的离子通过差分接口极板 (8 ) 上的差分接口 小孔 (9) 直接引入到质量分析器 (10) 中;
所述的质量分析器(10)为飞行时间质量分析器、 四级杆质量分析器或离子阱质 量分析器。
8. 根据权利要求 1所述的复合电离源, 其特征在于: 于电离源腔体 (13 ) 侧壁 上设置有气体出口,气体出口通过真空管路与一侧抽阀门( 14)相连,于侧抽阀门( 14) 的另一端通过真空管路连接有机械真空泵 (15 );
侧抽阀门(14)为流量可调节的真空阀门, 为真空挡板阀、真空蝶阀或真空针阀。
9. 根据权利要求 1所述的复合电离源, 其特征在于: 可根据侧抽阀门 (14) 流 量的调节以及试剂气体进样管(1 )和样品气体进样管(2) 内径和长度的改变来控制 进样量, 调节电离源腔体 (13 ) 内的真空度, 试剂气体进样管 (1 ) 和样品气体进样 管 (2) 内径为 Φ 50〜530 μηι, 长度为 5〜500 cm, 气体进样量为 0.1〜200 mL/min, 电离源腔体 (13 ) 内的真空度维持在 10—3〜10 mbar。
PCT/CN2011/071043 2010-11-30 2011-02-17 用于质谱分析的真空紫外光电离和化学电离的复合电离源 WO2012071806A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/884,081 US9412577B2 (en) 2010-11-30 2011-02-17 Vacuum ultraviolet photoionization and chemical ionization combined ion source for mass spectrometry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010567193.0 2010-11-30
CN201010567193.0A CN102479661B (zh) 2010-11-30 2010-11-30 用于质谱分析的真空紫外光电离和化学电离的复合电离源

Publications (1)

Publication Number Publication Date
WO2012071806A1 true WO2012071806A1 (zh) 2012-06-07

Family

ID=46092250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071043 WO2012071806A1 (zh) 2010-11-30 2011-02-17 用于质谱分析的真空紫外光电离和化学电离的复合电离源

Country Status (3)

Country Link
US (1) US9412577B2 (zh)
CN (1) CN102479661B (zh)
WO (1) WO2012071806A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112020760A (zh) * 2018-09-28 2020-12-01 爱奥尼肯分析股份有限公司 Imr-ms设备

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021960A1 (en) * 2012-07-31 2014-02-06 Leco Corporation Ion mobility spectrometer with high throughput
CN103681207A (zh) * 2012-09-13 2014-03-26 中国科学院大连化学物理研究所 用于离子迁移谱分析的复合电离装置
CN103854952A (zh) * 2012-11-30 2014-06-11 中国科学院大连化学物理研究所 基于无光窗式气体放电灯的质谱真空紫外光电离源
CN103854953A (zh) * 2012-11-30 2014-06-11 中国科学院大连化学物理研究所 无光窗式真空紫外灯质谱电离源
CN103972018B (zh) * 2013-02-01 2017-02-08 中国科学院大连化学物理研究所 一种射频电场增强的单光子‑化学电离源
CN103346060A (zh) * 2013-05-24 2013-10-09 中国科学院上海有机化学研究所 一种真空紫外光电离源及其应用
CN104658849B (zh) * 2013-11-21 2017-02-08 中国科学院大连化学物理研究所 基于真空紫外光的纳米阵列修饰增强光电子发射的电离源
CN104716010A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种基于四极杆射频电场增强的真空紫外光电离和化学电离复合电离源
CN104716007A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种基于真空紫外灯与放电电离的复合电离源
CN104716012B (zh) * 2013-12-15 2017-02-15 中国科学院大连化学物理研究所 一种用于减缓灯窗表面污染的装置
CN105632877A (zh) * 2014-10-28 2016-06-01 中国科学院大连化学物理研究所 一种基于单光子电离和电子轰击电离的双离子源四极杆质谱仪
CN105655226B (zh) * 2014-11-14 2018-06-29 中国科学院大连化学物理研究所 一种真空紫外光电离和化学电离复合电离源
CN106158574A (zh) * 2015-04-09 2016-11-23 中国科学院生态环境研究中心 光诱导离子源质子转移反应质谱仪
CN104931825A (zh) * 2015-06-13 2015-09-23 复旦大学 一种用于器件光学和电学测量以及真空监测的集成设备
CN105047518B (zh) * 2015-09-21 2017-04-05 北京凯尔科技发展有限公司 一种应用于质谱仪的质谱接口装置
CN106876243A (zh) * 2015-12-11 2017-06-20 中国科学院大连化学物理研究所 一种用于质谱的试剂分子辅助低气压真空紫外光电离源
FI20175460L (fi) * 2016-09-19 2018-03-20 Karsa Oy Ionisaatiolaite
CN106206239B (zh) * 2016-09-27 2020-06-30 北京印刷学院 一种高效组合式大气压电离源
CN108091543A (zh) * 2016-11-21 2018-05-29 中国科学院大连化学物理研究所 一种用于质谱分析的真空紫外光电离源装置
CN107014892B (zh) * 2017-05-15 2019-06-18 清华大学 一种基于真空紫外激光的微米级空间分辨质谱成像系统
CN107195529B (zh) * 2017-07-07 2024-01-26 中国科学院生态环境研究中心 一种基于激发态质子电子协同转移反应的离子化方法及其装置
CN107424902B (zh) * 2017-09-04 2023-07-21 广西电网有限责任公司电力科学研究院 一种真空紫外灯质谱电离源
CN109841493A (zh) * 2017-11-29 2019-06-04 中国科学院大连化学物理研究所 一种用于质谱连续在线监测的vuv灯电离源装置
CN109884002A (zh) * 2017-12-06 2019-06-14 中国科学院大连化学物理研究所 一种用于化学电离质谱测量大气oh及ho2自由基的装置及方法
CN109884261A (zh) * 2017-12-06 2019-06-14 中国科学院大连化学物理研究所 一种基于挥发物成分判别绿茶香型判别的装置和方法
CN109887830B (zh) * 2017-12-06 2020-05-05 中国科学院大连化学物理研究所 一种用于质谱的双区化学电离源
CN108321072B (zh) * 2018-01-31 2023-07-04 中国科学院合肥物质科学研究院 一种化学电离和光电离复合源质谱的挥发性有机物检测装置及检测方法
IL259320A (en) * 2018-05-13 2018-06-28 Amirav Aviv Mass spectrometer with photoionization ion source method and system
CN109545649A (zh) * 2018-12-31 2019-03-29 聚光科技(杭州)股份有限公司 基于新型试剂离子和自校准的化学电离源
CN112837989B (zh) * 2019-11-22 2022-05-17 中国科学院大连化学物理研究所 一种试剂离子可切换的电离源及应用
CN110887713A (zh) * 2019-12-04 2020-03-17 湖南农业大学 一种黑茶茶褐素对照品及其应用
CN114093748A (zh) * 2021-11-12 2022-02-25 成都艾立本科技有限公司 一种结构紧凑的光电离离子源及光电离飞行时间质谱仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001465A1 (ja) * 2003-06-27 2005-01-06 Mitsubishi Heavy Industries, Ltd. 化学物質の検出装置および化学物質の検出方法
CN101063673A (zh) * 2006-04-26 2007-10-31 中国科学院大连化学物理研究所 飞行时间质谱仪中真空紫外灯电离装置
US20080048107A1 (en) * 2006-08-22 2008-02-28 Mcewen Charles Nehemiah Ion source for a mass spectrometer
CN101329299A (zh) * 2008-06-27 2008-12-24 中国科学技术大学 新型电喷雾进样真空紫外单光子电离质谱分析装置
CN101339161A (zh) * 2008-08-15 2009-01-07 中国科学院安徽光学精密机械研究所 质谱和离子迁移谱装置的多波长真空紫外光电离源

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808299A (en) 1996-04-01 1998-09-15 Syagen Technology Real-time multispecies monitoring by photoionization mass spectrometry
US7119342B2 (en) 1999-02-09 2006-10-10 Syagen Technology Interfaces for a photoionization mass spectrometer
US6509562B1 (en) * 1999-09-16 2003-01-21 Rae Systems, Inc. Selective photo-ionization detector using ion mobility spectrometry
DE10014847A1 (de) 2000-03-24 2001-10-04 Gsf Forschungszentrum Umwelt Verfahren und Vorrichtung zum Nachweis von Verbindungen in einem Gasstrom
US7091481B2 (en) * 2001-08-08 2006-08-15 Sionex Corporation Method and apparatus for plasma generation
US7078681B2 (en) 2002-09-18 2006-07-18 Agilent Technologies, Inc. Multimode ionization source
US7161145B2 (en) 2004-04-21 2007-01-09 Sri International Method and apparatus for the detection and identification of trace organic substances from a continuous flow sample system using laser photoionization-mass spectrometry
DE102005039269B4 (de) 2005-08-19 2011-04-14 Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt (Gmbh) Verfahren und Vorrichtung zum massenspektrometrischen Nachweis von Verbindungen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001465A1 (ja) * 2003-06-27 2005-01-06 Mitsubishi Heavy Industries, Ltd. 化学物質の検出装置および化学物質の検出方法
CN101063673A (zh) * 2006-04-26 2007-10-31 中国科学院大连化学物理研究所 飞行时间质谱仪中真空紫外灯电离装置
US20080048107A1 (en) * 2006-08-22 2008-02-28 Mcewen Charles Nehemiah Ion source for a mass spectrometer
CN101329299A (zh) * 2008-06-27 2008-12-24 中国科学技术大学 新型电喷雾进样真空紫外单光子电离质谱分析装置
CN101339161A (zh) * 2008-08-15 2009-01-07 中国科学院安徽光学精密机械研究所 质谱和离子迁移谱装置的多波长真空紫外光电离源

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, CHUANG ET AL.: "Bipolar Ionization Source for Ion Mobility Spectrometry Based on Vacuum Ultraviolet Radiation Induced Photoemission and Photoionization", ANALYTICAL CHEMISTRY, vol. 82, no. 10, 16 April 2010 (2010-04-16), pages 4151 - 5157 *
CUI, HUA-PENG: "Development and Application of A Membrane Inlet-Single Photon Ionization- Mass Spectrometer for Online Analysis Volatile Organic Compounds in Water", CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, vol. 8, no. 5, 31 May 2010 (2010-05-31), pages 760 - 764 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112020760A (zh) * 2018-09-28 2020-12-01 爱奥尼肯分析股份有限公司 Imr-ms设备

Also Published As

Publication number Publication date
CN102479661B (zh) 2014-01-29
US9412577B2 (en) 2016-08-09
CN102479661A (zh) 2012-05-30
US20130236362A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
WO2012071806A1 (zh) 用于质谱分析的真空紫外光电离和化学电离的复合电离源
US6649909B2 (en) Internal introduction of lock masses in mass spectrometer systems
US7723678B2 (en) Method and apparatus for surface desorption ionization by charged particles
JP5641715B2 (ja) エネルギー可変型の光イオン化装置および質量分析方法
CN103972018B (zh) 一种射频电场增强的单光子‑化学电离源
JP2015519706A (ja) イオン分子、イオンラジカルまたはイオン・イオン相互作用実験を実施するためのrf限定イオンガイドまたはイオントラップ内での試薬分子の励起
US8217343B2 (en) Device and method using microplasma array for ionizing samples for mass spectrometry
Corr et al. Design considerations for high speed quantitative mass spectrometry with MALDI ionization
US7365315B2 (en) Method and apparatus for ionization via interaction with metastable species
CN106373853B (zh) 一种用于质谱仪离子化以及离子引入装置
CN108538700B (zh) 一种质子转移反应离子源、质谱仪及其检测方法
US6969848B2 (en) Method of chemical ionization at reduced pressures
JP2007139778A (ja) キャピラリを介した基準質量の導入装置
CN107870194B (zh) 基质辅助激光解吸-气相极化诱导质子转移质谱
JPH1012188A (ja) 大気圧イオン化イオントラップ質量分析方法及び装置
CN106206239B (zh) 一种高效组合式大气压电离源
CN112424902B (zh) 电离源以及使用电离源的系统和方法
CN111199862B (zh) 一种毛细管微区电离源
CN116031138A (zh) 一种气相污染物全物种高灵敏在线质谱仪及检测方法
CN213042872U (zh) 飞行时间质谱仪反应室
CN112201561A (zh) 飞行时间质谱仪反应室
Schilke et al. A laser vaporization, laser ionization time‐of‐flight mass spectrometer for the probing of fragile biomolecules
CN210722952U (zh) 一种用于质谱分析的复合电离源装置
JP2005135897A (ja) 質量分析計
CN108091546B (zh) 一种放电气体辅助的无窗射频灯质谱电离源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845149

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13884081

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845149

Country of ref document: EP

Kind code of ref document: A1