CN112020760A - Imr-ms设备 - Google Patents

Imr-ms设备 Download PDF

Info

Publication number
CN112020760A
CN112020760A CN201980024776.8A CN201980024776A CN112020760A CN 112020760 A CN112020760 A CN 112020760A CN 201980024776 A CN201980024776 A CN 201980024776A CN 112020760 A CN112020760 A CN 112020760A
Authority
CN
China
Prior art keywords
ion source
reaction chamber
ion
central axis
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980024776.8A
Other languages
English (en)
Inventor
阿尔方斯·约旦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ionicone Analysis Co ltd
Original Assignee
Ionicone Analysis Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ionicone Analysis Co ltd filed Critical Ionicone Analysis Co ltd
Publication of CN112020760A publication Critical patent/CN112020760A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/145Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using chemical ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0422Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for gaseous samples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/061Ion deflecting means, e.g. ion gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/107Arrangements for using several ion sources

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明涉及用于IMR‑MS和/或PTR‑MS的设备和方法,其包括样品气体入口(202,206)、第一离子源(209)、反应室(203)、质量分析器(204),其中所述反应室(203)和质量分析器(204)沿着中心轴线(A)布置,其特征在于第二离子源(209),其中所述样品气体入口(202,206)被布置成基本上沿着中心轴线(A)引入气体并且连接至反应室(203);其中所述第一离子源(209)和第二离子源(209)被布置为基本上垂直于中心轴线(A)发射试剂离子;所述设备还包括至少一个电极(302,303,304,305),使得从所述第一或第二离子源(209)发射的试剂离子可以基本上在中心轴线(A)的下游方向上偏转到反应室(203)中。

Description

IMR-MS设备
技术领域
本发明涉及一种用于离子-分子-反应质谱和/或质子-转移-反应质谱的设备,其包括样品气体入口、第一离子源、反应室、质量分析器,其中反应室和质量分析器沿着中心轴线布置。本发明还涉及一种操作根据本发明的用于离子-分子-反应质谱和/或质子-转移-反应质谱的设备的方法。
发明背景
离子-分子-反应质谱(IMR-MS)或质子-转移-反应质谱(PTR-MS;两个术语在本申请通篇中同义地使用)是一种成熟的用于(痕量)化合物的化学电离、检测和定量的方法。关于该技术的细节可以例如在A.M.Ellis,C.A.Mayhew(Proton Transfer Reaction MassSpectrometry Principles and Applications(质子转移反应质谱原理与应用),JohnWiley&Sons Ltd.,UK,2014)中找到。此技术的优点是高灵敏度、高选择性、在线定量、直接样品注入和短的响应时间。尽管大多数常见的PTR-MS仪器采用从H3O+到分析物的质子转移,但是该技术绝不限于这种形式的电离。已经介绍了多种仪器,其能够使用NO+、O2 +、Kr+以及任何其他类型的带正电或带负电的试剂离子用于化学电离。除了一系列用于控制各种电压、电流、温度、真空等的常见装置之外,典型的PTR-MS仪器包括以下主要部件:
试剂离子源:
在试剂离子源中形成试剂离子。许多PTR-MS仪器采用空心阴极离子源,对其供给合适的源气体(例如H2O蒸气、O2、N2、惰性气体等),但是已经介绍了各种其他设计(例如尖端放电、平面电极放电、微波放电、放射性离子源等)。有利的离子源由于其复杂的设计或者由于使用了质量过滤器而产生高纯度的试剂离子。
反应室/漂移管:
在PTR反应室中,分析物的化学电离经由与试剂离子的相互作用发生。反应室通常也称为漂移管或反应区。在连续注入一定流量的含有分析物的气体时,电场沿着漂移管吸引离子。通常,通过PTR-MS分析含有痕量杂质(例如痕量的挥发性有机化合物)的空气,但是已经利用各种试剂离子成功地研究了许多含有所关注化合物(例如在净化气体、气体标准品等中的残留杂质)的其他基质。在一些实施方案中,在将含有分析物的基质(例如,具有痕量挥发性有机化合物的空气)在注入漂移管之前用缓冲气体稀释(例如,出于简单稀释的目的,用于使用特定的试剂离子等)。
在反应室中发生的试剂离子与分析物之间的一些常见反应是:
-非离解或离解的质子转移反应,其中A.H+为试剂离子(在大多数情况下为H2O.H+)并且BC为分析物:
A.H++BC→A+BC.H+
A.H++BC→A+B+C.H+
-非离解或离解的电荷转移反应,其中A+为试剂离子(例如O2 +、NO+、Kr+等)并且BC为分析物:
A++BC→A+BC+
A++BC→A+B+C+
-成簇反应,其中A+为试剂离子(例如H3O+、NO+等)并且BC为分析物:
A++BC→BC.A+
另外,可以发生其他类型的反应(例如配体交换、在带负电的试剂离子的情况下的H+提取等)。
最常见的漂移管由一系列环形电极组成,这些环形电极经由具有相等电阻的电阻器电连接,以使可以在长度为d的漂移管上施加DC电压U,从而导致电场强度E=U/d(V/cm)。
质量分析器和检测器:
由于质量分析器典型地在高真空或超高真空状态中操作,因此在反应室和质量分析器之间存在过渡区以解决这两个区域之间的压力差。在PTR-MS仪器中已采用各种类型的质量分析器。低分辨率质量分析器最突出的实例是四极质量过滤器,而对于高质量分辨率测量,飞行时间(TOF)分析器通常用于PTR-MS。然而,也已报道了使用其他类型的质量分析器,如例如离子阱分析器,并且甚至可以实现MSn(多级质谱)。质量分析器根据离子的m/z来分离从漂移管注入的离子,并使用合适的检测器(例如二次电子倍增器、微通道板等)来定量分离出的m/z的离子产率。
现有技术水平
已于1995年介绍(A.Hansel,A.Jordan,R.Holzinger,P.Prazeller,W.Vogel,W.Lindinger,Proton transfer reaction mass spectrometry:on-line trace gasanalysis at the ppb level(质子转移反应质谱:在ppb水平的在线痕量气体分析).International Journal of Mass Spectrometry and Ion Processes(国际质谱和离子工艺杂志)149/150(1995)609-619)的首批PTR-MS仪器之一采用了空心阴极试剂离子源与相邻的漂移管在一直线上(在同一中心轴线上)。垂直于此轴线,将样品入口安装在漂移管的开始处。由于此早期构思在当今使用的数百种PTR-MS仪器的绝大多数中仍然是最先进的,因此将在“发明详述”部分中更详细讨论。
由Breitenlechner(An Instrument for Studying the Lifecycle of ReactiveOrganic Carbon in the Atmosphere(用于研究大气中反应性有机碳生命周期的仪器).Analytical Chemistry(分析化学)89(2017)5824-5831)和Krechmer(Evaluation of anew vocus reagent-ion source and focusing ion-molecule reactor for use inproton-transfer-reaction mass spectrometry(用于质子-转移-反应质谱的新型vocus试剂离子源和的聚焦-离子分子反应器的评估).ChemRxiv(2018)预印本)已公开了常见设计的两个罕见例外。Breitenlechner等人开发了一种新型的PTR-MS仪器,其专门设计用于在极高样品气体流速的情况下的大气化学。他们的目的是使样品入口尽可能多地在反应室的中心轴线的方向上。然而,这不可避免地导致与其电晕放电试剂离子源的位置发生冲突,该电晕放电试剂离子源也应与反应室的中心轴线在一直线上。他们提出的解决方案是这样的实施方案,其中离子源和样品入口都以稍微偏离轴线的角度指向反应室的中心轴线的方向。Krechmer等人提出了一种不同的设计,其中入口管线正好指向反应室的中心轴线的方向,而离子源由围绕该入口管线的两个圆锥形表面(具有在其间燃烧的等离子体)组成,由此以稍微偏离轴线的角度指向反应室的中心轴线的方向。
在US 7 095 019 B1中给出了另一个解决离子源和基本指向反应室的中心轴线的方向的样品入口之间的冲突的实例。在那里,描述了一种不是PTR-MS仪器的不同类型的仪器,并且通过将离子源放置为与中心轴线成约45°的角度来解决所述冲突。这种选择导致样品入口区域中的空间非常有限。
此外,WO 2018/050962 A1公开了一种利用化学电离的通用多方法电离装置和一种利用这样的装置的系统,该装置设置有用于试剂物质的离子形成的反应室,该装置同样不是PTR-MS仪器。WO 2018/050962 A1中的电离仪器的目的是以极高灵敏度检测物质,这通过使多个电离源定位在反应区之中和周围来实现。WO 2018/050962 A1中的仪器可以回答样品中是否存在某种物质的问题,但无法对化合物进行定量,并且因此不是PTR-MS仪器。
到目前为止,PTR-MS试剂离子源设计存在两个主要问题:
a)尽管已报道了切换试剂离子(例如从H3O+到O2 +)相对较快速,但仍然花费大量的时间。基于文献报道和发明人的经验,在大约3至4秒之后,已经完成了主要的切换过程(质量流量控制器已切换了源气体,离子源中的气体已被部分替换并且已经改变了电压和压力)。然而,为了获得高纯度的试剂离子,需要长达数十秒的时间,例如用于去除离子源中的残留湿度。直接与如例如选择的离子流动管–质谱(SIFT-MS)(其中采用四极质量过滤器来选择试剂离子并且可以在瞬间内进行切换)的技术相比,这可以被认为是PTR-MS的主要缺点。安装类似于SIFT-MS的质量过滤器不是PTR-MS的选项,因为质量过滤器永远无法实现100%的传送效率,并且因此将会丧失PTR-MS的主要优势之一:极高的灵敏度。迄今为止,对于此问题尚未提出令人满意的解决方案。
b)根据现有技术,为了适当的性能,必需使离子源以及样品入口与反应室的中心轴线对齐。由于两个装置不能同时处于同一位置,所以这样的布置很困难。这种对齐的原因在于i)实现PTR-MS仪器出色的灵敏度需要极高的试剂离子电流(离子源应将试剂离子注入反应区的中心轴线上),并且
ii)由于可能的冷凝和转化作用,应避免样品气体与入口管线壁的接触(即,没有拐角、T型件、阀门、质量流量控制器等的直入口是有利的)。
发明简述
因此,本发明的目的是提供一种IMR/PTR-MS设计,其解决了在a)中提及的问题并且满足在i)和ii)中提及的要求,同时不引入缺点。
此目的通过一种用于离子-分子-反应质谱和/或质子-转移-反应质谱的设备得到解决,该设备包括
-样品气体入口,
-离子源部分,
-第一离子源,
-反应室,
-质量分析器,其中反应室和质量分析器沿着中心轴线布置,其特征在于第二离子源,
其中样品气体入口被布置成基本上沿着中心轴线将气体引入到离子源部分中并且连接至反应室;
其中第一离子源和第二离子源基本上布置在反应室前面的平面中,以基本上垂直于中心轴线发射试剂离子进入离子源部分中;
所述设备还包括至少一个电极,使得从第一或第二离子源发射进入离子源部分中的试剂离子可以基本上在中心轴线的下游方向上偏转到反应室中。
用语“中心轴线”和“反应室的轴线”基本上同义地使用。用语“在中心轴线的下游方向上”是指“在中心轴线的方向上并且在下游方向上”。
此目的通过一种操作根据所描述的用于离子-分子-反应质谱和/或质子-转移-反应质谱的设备的方法来进一步解决,所述方法的特征在于以下步骤:
-在反应室的中心轴线的方向上经由样品气体入口将样品气体引入到离子源部分中;
-在至少两个离子源中连续产生至少两种不同的试剂离子,其中在一个相应的离子源中产生一种特定类型的试剂离子;
-将电压施加至在每个离子源的出口处的至少一个电极,其中一个特定的电压值导致相应的试剂离子注入到离子源部分中,并且另一个特定的电压值导致被排斥回到相应的离子源中;
-将电压施加至位于上游且在样品气体入口附近的至少一个电极,其中该电极对试剂离子引起排斥力,并且将电压施加至位于下游且在反应室附近的至少一个电极,其中该电极对试剂离子引起吸引力,使得试剂离子基本上在反应室的中心轴线的下游方向上被注入到反应室中;
-将试剂离子和/或样品气体引入到反应室中,其中在反应室之后,利用质量分析器对分析物或样品气体进行分析。
关于该设备,存在多个优选的实施方案。
在一个优选的实施方案中,该设备的特征在于被布置为基本上垂直于中心轴线发射试剂离子的至少一个另外的离子源。
关于至少两个离子源的取向,至少两个(优选至少三个)离子源的轴线(例如中心轴线或纵向轴线)基本上垂直于反应室的中心轴线。在一个优选的实施方案中,离子源基本上布置在基本上垂直于反应室的中心轴线的平面上。
该设备的特征还可以在于,所述电极连接至切换装置,以使来自一个离子源的经发射的试剂离子被偏转到中心轴线上,而来自任何其他离子源的试剂离子被排斥回到相应的离子源中。
优选地,离子源位于离子源部分的区域中,其中反应室在下游并且优选地与离子源部分相邻。
在一个优选的实施方案中,该设备包括三个离子源,其中第一离子源能够从H2O蒸气中产生H3O+,第二离子源能够从O2中产生O2 +,并且第三离子源能够从N2和O2中产生NO+。相邻离子源之间的夹角基本上可以测量为120°角度。
优选地,离子源是空心阴极离子源。
在一个优选的实施方案中,提供了样品气体入口展现出样品气体入口的第一部分和样品气体入口的第二部分,其中样品气体入口的第二部分与样品气体入口的第一部分相邻。优选地,样品气体入口在反应室的中心轴线的方向上,其中样品气体入口基本上平行于中心轴线,优选地紧靠中心轴线的附近。
特别优选的是,样品气体入口的第二部分在样品气体入口的第一部分的下游,其中样品气体入口的第二部分的直径优选小于样品气体入口的第一部分的直径,其中样品气体入口的第一部分和第二部分流体连接。
优选地,样品气体入口的第二部分与离子源部分流体连接,并且离子源部分与反应室流体连接。
在一个实施方案中,该设备包括样品入口旁路管线,其中样品入口旁路管线基本上垂直于样品气体入口布置。在两部分的样品气体入口中,样品入口旁路管线优选与样品气体入口的第一部分流体连接。
优选地,气体管线基本上垂直于样品气体入口布置。在两部分的样品气体入口中,气体管线优选地与样品气体入口的第二部分流体连接。
一个特别优选的实施方案提供了,离子源部分由至少两个电极(优选至少三个电极)组成,其中至少一个电极位于每个离子源的对面和/或至少一个电极位于紧靠样品气体入口的第二部分的附近和/或至少一个电极位于紧靠反应室的附近。
电极构成被称为离子源部分的室状体(chamber-like entity),离子源部分包括在室状体外部的离子源,其中离子源与室状体的内部流体连接。优选地,离子源的轴线基本上指向离子源部分的中心。
至少两个离子源可以定位在位于紧靠样品气体入口的第二部分的附近的电极与位于紧靠反应室的附近的电极之间。
优选的是,至少两个离子源包括至少一个电极,利用该电极可以将试剂离子注入到离子源部分中和/或排斥回到相应的离子源中。
样品气体入口优选地沿着中心轴线布置并且通向反应室。
在一个实施方案中,至少一个电极位于每个离子源的对面和/或至少一个电极位于上游且在样品气体入口附近,并且一个电极位于下游且在反应室附近。
优选地,每个离子源包括在出口处的至少一个电极。
关于该方法,可以提供,将电压施加至在至少两个离子源对面的至少一个电极,其中所述电极对试剂离子引起排斥力。
特别优选的是,控制装置控制施加至电极的电压,其中该控制装置控制在相应离子源中产生的哪一种试剂离子将被注入到离子源部分中和/或在相应离子源中产生的哪一种试剂离子将被排斥回到相应的离子源中。
在一个特殊的变型中,控制装置调整(adapt)该设备的参数,使得该设备按需要充当大气压接口质谱仪(Atmospheric Pressure interface Mass Spectrometer),其中所述参数至少包括施加至电极的电压,其中控制装置控制在离子源中产生的离子被排斥回到相应的离子源中,或者通过控制装置将离子源关闭,使得不产生试剂离子。
参照附图解释另外的实施方案和优点。
附图简述
图1示出了IMR/PTR-MS仪器的现有技术的示意图。
图2示出了根据本发明的示例性IMR/PTR-MS仪器的示意图。
图3示出了具有三个离子源的示例性试剂离子源布置的示意图。
图4示出了根据本发明的离子源部分的示意图。
图5示出了其中一个试剂离子源被设置成将试剂离子注入到离子源部分中并且一个试剂离子源被设置成阻止离子进入离子源部分的一个实施方案的示意图。
图6示出了根据本发明构建的一种原型的示意图。
发明详述
图1是现有技术的示意性概图,其中试剂离子源包括第一部分101和第二部分102、漂移管103、质量分析器104和样品入口105。源自填充有净化水的储罐的水蒸气进入离子源的第一部分101。在第一部分101中,空心阴极放电将H2O分子转化为一系列的产物离子:H2O+、H+、H2 +、OH+和O+。由于最终在离子源的第二部分102(也称为“源漂移”区)中需要高度纯的H3O+试剂离子,因此来自第一部分101的产物离子和水蒸气(二者都经由气流和/或电场转移到第二部分102中)经历各种离子-分子反应,这导致H3O+纯度水平为99%以上。潜在的离子化学已在文献中进行了详细讨论。随后,将H3O+试剂离子注入到漂移管103中,在那里它们可以与经由样品入口105被引入到漂移管中的含有分析物的气体(例如具有痕量化合物的空气)相互作用。
已经表明,通过切换源气体并调节施加到离子源的电流和电压以及离子源中的压力,这种离子源设计还可以用于产生非常纯的除了H3O+以外的试剂离子,例如NO+、O2 +、Kr+、Xe+、NH4 +、OH-等。
本发明涉及IMR/PTR-MS仪器的前端,在图2中用201表示。样品气体经由样品气体入口202、206(也称为样品入口)被抽入到仪器中,该样品气体入口基本上在反应室203到质量分析器204的中心轴线A的方向上。样品入口旁路管线205允许在保持进入反应室203的流量恒定的同时调节样品入口流量。即,真空泵(膜式泵、涡旋泵、多级涡轮分子泵等)连接至样品入口旁通管线205。
在一个优选实施方案中,允许调节空气流量的质量流量控制器、阀门或类似装置安装在样品入口旁通管线205与真空泵之间。如果这种流量调节装置完全关闭,以使不会经由样品入口旁路205产生吸力,则仅对最小量的气体进行取样(进入反应室203的样品气流)。如果流量调节装置打开,则几乎可以设置高于最小值的任何样品入口流量。典型地,IMR/PTR-MS反应室在0.1至100hPa之间,优选在1至10hPa之间操作。这种真空通常通过连接至反应室203的一个或多个泵抽端口的一个或多个真空泵来维持,并且决定操作仪器所需的最小气体流量,即,203中的压力由进入和被泵出的气体产生。在中心轴线A的同一直线上还有样品气体入口206的第二部分。优选这个部分(与样品入口旁路205的连接点相邻)的内径小于样品气体入口202的第一部分,以使经过206的气体流量被限制。
气体管线207连接至样品气体入口206的第二部分并且连接至真空泵,该真空泵可以是与连接至205的相同真空泵或者相同或不同类型的另外的泵。优选地,在气体管线207与真空泵之间互连压力控制器、阀或任何气体流量调节装置。经由通过气体管线207的气体流量/吸力,可以调节反应室203(其本身通过真空泵排空)中的压力。
样品气体流入到离子源部分208中。这个部分可以是反应室203的一部分或单独的部分。至少两个试剂离子源209基本上垂直于轴线A安装在这个部分中,即在平面B中。离子源209可以是任何IMR/PTR-MS试剂离子源(例如尖端放电、平面电极放电、微波放电、放射性离子源等)。在一个优选实施方案中,离子源209是空心阴极离子源。
图3示出了在中心轴线A的方向上的一个示例性实施方案的示意图。这里,三个试剂离子源209以0°、120°和240°(角度)安装在基本上垂直于轴线A的平面B中。在这个示例性实施方案中,离子源部分208具有圆形横截面。任何其他横截面也是可能的,例如三角形、矩形、多边形、椭圆形、曲线和/或直线形式的任何组合。离子源209的任何位置都是可能的,例如彼此相对或彼此成任何角度。离子源209的数量必须为至少两个。
图4示出了离子源部分208的一个示例性实施方案的示意图。在该图中,样品气体经由孔口301(连接至样品气体入口206,这里未示出)从左侧引入。可以将DC电压施加至电极302。在位置303处是至少一个具有孔口的电极(离子透镜),在那里可以施加DC电压。通过将适当的电压施加至电极303,可以将在试剂离子源209中产生的试剂离子注入到离子源部分208中,或者将其排斥,使得它们不会进入离子源部分208中。电极304可以是IMR/PTR-MS漂移管的第一电极或用于将试剂离子注入反应室中的离子透镜。305是在试剂离子源对面的电极,其可以例如是金属板或离子源部分208的导电内壳。在一些实施方案中,不存在电极305。在一个优选的实施方案中,电极305的功能由除了当前正在注入试剂离子的离子源209之外的至少一个另外的离子源209的电极303代替或补充。通过将适当电势/电压施加至302、303、304和305,可以将试剂离子导入到IMR/PTR-MS反应室中,如由箭头306示意性指示的。
如果根据本发明至少两个试剂离子源209安装在离子源部分208中,则可以通过简单地改变施加至电极的电压来选择试剂离子。优选地,被改变的电压是离子源出口透镜303的电压。
在图5中,示意性地示出了两个试剂离子源,其中一个离子源的试剂离子被排斥(不进入离子源部分中并且最终不进入IMR/PTR-MS反应室中),而由另一离子源产生的试剂离子注入到离子源部分中并且最终进入到IMR/PTR-MS反应室中。即,如果例如一个试剂离子源连续地产生一种类型的试剂离子并且另一个试剂离子源连续地产生另一种类型的试剂离子,则可以通过简单地改变电极电压而非常快速地切换用于IMR/PTR-MS反应室中的化学电离的试剂离子。与现有设计形成鲜明对比的是,不是必须执行费时的源气体切换或压力调节。已经表明,进入反应室的试剂离子产率具有与在反应室的中心轴线在一直线上的常见单个离子源的试剂离子产率相当的强度,即,由于垂直位置导致的强度损失是可忽略的。
在一个优选的实施方案中,安装至少三个试剂离子源,其分别连续地产生至少H3O+、NO+和O2 +
在另一个实施方案中,安装至少四个试剂离子源,其分别连续地产生至少H3O+、NH4 +、NO+和O2 +
显然,如果用于长时间的测量,则可预见的是将不要求切换试剂离子,即仅需要一种类型的试剂离子,可以关闭除了产生所需试剂离子的试剂离子源以外的所有试剂离子源,以节省源气体并防止磨损效应。然而,在这种情况下,无法进行快速切换。
在另一个实施方案中,关闭或设置所有试剂离子源,以使它们不将试剂离子注入到反应区中。在这种操作模式下,新型前端可以充当APi(大气压接口)装置,并且可以利用IMR/PTR-MS仪器来分析大气离子。在这种情况下,在反应区内不发生在试剂离子与样品气体之间的化学电离反应,而反应室仅将大气离子传输至质量分析器。同样,仅需改变电势和电压以实现这种操作模式,使得大气离子被导入反应区中,并且随后被导入质量分析器中。
示例性实施方案:
图6中展示了原型实施方案的示意图,该原型仅充当示例并且决不应将本发明局限于这个实施方案。
在入口区段401中,在中心轴线A的方向上钻出开口402。此开口402装配有螺纹以拧入具有1mm内径的1/16英寸样品入口管线(例如,由PEEK(聚醚醚酮)、钝化不锈钢、PTFE等制成)。开口403垂直于开口402钻出并经由质量流量控制器连接至膜式真空泵。通过调节质量流量控制器,可以将通过仪器取样的含有分析物的气体的量从操作IMR/PTR-MS仪器所需的最小值(在用于原型仪器的标准条件下为10至100cm3/min)调节至膜式真空泵的最大泵抽功率。与钻孔402相邻,有在中心轴线A的方向上的直径较小的钻孔404。垂直于钻孔404,存在钻孔405,其连接至与钻孔403相同的真空泵,但具有互连的压力控制器而不是质量流量控制器。通过调节此压力控制器,可以调节IMR/PTR-MS反应室中的(所得)压力。入口管线404的第二部分终止于在离子源部分407的开始处的电极/离子透镜406。
三个空心阴极试剂离子源408、409和410(后两个仅在示意图中示出)分别垂直于中心轴线A以120°偏移角安装在平面B中(比较图3)。所有三个试剂离子源具有相同的设计:第一电离室411和第二电离室412。两个电离室都基本上由导电材料制成。优选地,导电材料是不锈钢,如不锈钢类型EN 1.4301、1.4405或1.4407。经由质量流量控制器将一种或多种源气体引入到第一室411中,在那里空心阴极放电使源气体电离。典型的源气体是用于产生H3O+的H2O蒸气、用于产生O2 +的O2、用于产生NO+的N2和O2的混合物以及用于产生NH4 +的N2和H2O蒸气的混合物。离子和中性物质随后进入第二电离室412,在那里它们经由离子-分子反应进行反应,并形成一种特定类型的高纯度试剂离子。电离室412经由电子控制的(比例)阀连接至真空泵,以使可以调节压力。可以将电场施加至电离室411和412以控制空心阴极放电、传输离子和控制离子-分子反应。在进入离子源部分407中的室412的出口处的至少一个离子透镜能够阻止(排斥)或传送离子。
三个试剂离子源408、409和410中的每一个连续地产生一种特定类型的试剂离子。然而,仅设置施加至一个离子源的出口离子透镜的电压,以使这些试剂离子可以进入离子源部分407。通过施加至出口离子透镜的电压,其余两种试剂离子类型被阻止进入离子源部分407。在进入离子源部分407之后,通过电场将试剂离子吸引到中心轴线A的方向上。这些电场例如由电极406和反应室413的环形电极产生。
另外,在室412的出口处的电极可以产生电场,这些电场在一定程度上贯穿到离子源部分407中。即,在被设置成以使它们不将试剂离子注入离子源部分407中的那些试剂离子源的出口电极处,施加了排斥性电势。这种排斥性电势阻止试剂离子离开相应的离子源。
另一方面,它将源自另一试剂离子源的试剂离子推向中心轴线A。换句话说,从一个“活动(active)”试剂离子源408注入离子源部分407中的试剂离子被电极406和其他两个“非活动(inactive)”试剂离子源的出口电极排斥并被吸引到反应室413中。例如,如果处于0°(角度)的试剂离子源产生H3O+试剂离子并且经由由于在室412的出口处的至少一个电极的加速而将这些试剂离子注入离子源部分407中,则将处于120°和240°的其余两个试剂离子源的出口电极设置成以使它们不将试剂离子注入到离子源部分407中。由这两个电极产生的排斥性电场有助于将源自处于0°的试剂离子源的H3O+试剂离子保持靠近中心轴线A,即迫使它们在靠近由图4中的箭头306所示的飞行路径上。
在这个示例性实施方案中,反应室413包括一系列具有恒定孔口直径的环形电极414和相邻系列的具有减小的孔口直径的环形电极415。在电极414和415上施加DC电压,因此它们充当IMR/PTR-MS漂移管。另外施加的RF电压允许聚焦离子并且因此防止离子损失。通过连接至在413中的泵抽端口的真空泵将反应室排空至1至10hPa。最后,离子被转移到区域416中,其代表差分泵抽区域、TOF质量分析器和微通道板检测器。
利用本发明,样品气体可以与IMR/PTR-MS仪器的反应室的中心轴线在一直线上引入。尽管可以充分控制入口气体流量以及反应室中的压力,但是样品气体在其进入反应室的路径上不经过任何阀门、质量流量控制器或类似装置。此外,没有样品气体必需经过的弯曲或扭结,而是它可以直接进入反应室。由于抑制了壁效应如样品-壁相互作用,所以这极大地改善了仪器的响应和衰减时间。结合极快速的试剂离子切换的可能性,由于至少两个试剂离子源同时产生试剂离子,所以与现有设计相比,根据本发明的IMR/PTR-MS仪器显著更快、具有更大选择性和灵敏度。
通过关闭所有试剂离子源或将它们设置成以使它们都不将试剂离子注入反应区中,根据本发明的前端充当APi。这是唯一可能的,因为样品气体入口设计抑制样品气体与壁之间的接触,这将会不可避免地导致(大气)离子的损失。因此,配备有这种前端的仪器是极其成本有效的,因为将两种类型的仪器组合成一体:APi-MS和IMR/PTR-MS。

Claims (14)

1.一种用于离子-分子-反应质谱和/或质子-转移-反应质谱的设备,其包括
-样品气体入口(202,206),
-离子源部分(208),
-第一离子源(209),
-反应室(203),
-质量分析器(204),
其中所述反应室(203)和所述质量分析器(204)沿着中心轴线(A)布置,其特征在于第二离子源(209),
其中所述样品气体入口(202,206)被布置成基本上沿着所述中心轴线(A)将气体引入到所述离子源部分(208)中并且连接至所述反应室(203);
其中所述第一离子源(209)和所述第二离子源(209)被基本上布置在所述反应室(203)前面的平面(B)中,以基本上垂直于所述中心轴线(A)发射试剂离子进入所述离子源部分(208)中;
所述设备还包括至少一个电极(302,303,304,305),使得从所述第一或第二离子源(209)发射进入所述离子源部分(208)中的所述试剂离子能够基本上在所述中心轴线(A)的下游方向上偏转到所述反应室(203)中。
2.根据权利要求1所述的设备,其特征在于被布置为基本上垂直于所述中心轴线(A)发射试剂离子的至少一个另外的离子源(209)。
3.根据权利要求1或权利要求2所述的设备,其特征在于所述离子源(209)被基本上布置在平面(B)中,所述平面(B)基本上垂直于所述反应室(203)的所述中心轴线(A)。
4.根据权利要求1至3之一所述的设备,其特征在于所述电极(302,303,304,305)连接至切换装置,以使来自一个离子源(209)的经发射的试剂离子偏转到所述中心轴线(A)上,而来自任何其他离子源(209)的试剂离子被阻止进入所述反应室(23)。
5.根据权利要求2至4之一所述的设备,其特征在于三个离子源(209),其中所述三个离子源(209)中的每一个能够产生在H3O+、O2+和NO+的组中的一种类型的离子,其中所述三个离子源(209)中的每一个产生不同类型的离子。
6.根据权利要求1至5之一所述的设备,其特征在于所述样品气体入口(202,206)沿着所述中心轴线(A)布置并且通向所述反应室(203)。
7.根据权利要求1至6之一所述的设备,其特征在于样品入口旁路管线(205),其中所述样品入口旁路管线(205)基本上垂直于所述样品气体入口(202)布置。
8.根据权利要求7所述的设备,其特征在于气体管线(207),其中所述气体管线(207)基本上垂直于所述样品气体入口(206)布置。
9.根据权利要求1至8之一所述的设备,其特征在于至少三个电极(305,302,304),其中至少一个电极(305)位于每个离子源(209)的对面和/或至少一个电极(302)位于上游且在所述样品气体入口附近并且一个电极(304)位于下游且在所述反应室(203)附近。
10.根据权利要求1至9之一所述的设备,其特征在于每个离子源(209)包括在出口处的至少一个电极(303)。
11.一种操作根据权利要求1至10之一所述的用于离子-分子-反应质谱和/或质子-转移-反应质谱的设备的方法,其特征在于以下步骤:
-在所述反应室(203)的所述中心轴线(A)的方向上经由所述样品气体入口(202,206)将样品气体引入到所述离子源部分(208)中;
-在至少两个离子源(209)中连续地产生至少两种不同的试剂离子,其中在一个相应的离子源(209)中产生一种特定类型的试剂离子;
-将电压施加至在每个离子源(209)的出口处的所述至少一个电极(303),其中一个特定的电压值导致相应的试剂离子注入到所述离子源部分(208)中,而另一个特定的电压值导致排斥回到所述相应的离子源(209)中;
-将电压施加至位于上游且在所述样品气体入口(206)附近的所述至少一个电极(302),其中该电极(302)对所述试剂离子引起排斥力,并且将电压施加至位于下游且在所述反应室(203)附近的所述至少一个电极(304),其中该电极(304)对所述试剂离子引起吸引力,使得所述试剂离子基本上在所述反应室(203)的所述中心轴线(A)的下游方向上被注入到所述反应室(203)中;
-将所述试剂离子和所述样品气体引入到所述反应室(203)中,其中在所述反应室(203)之后,利用所述质量分析器(204)分析所述离子。
12.根据权利要求11所述的方法,其特征在于将电压施加至在所述至少两个离子源(209)的对面的所述至少一个电极(305),其中所述电极(305)对所述试剂离子引起排斥力。
13.根据权利要求11或12所述的方法,其特征在于控制装置控制施加至所述电极(303)的电压,其中所述控制装置控制在所述相应的离子源(209)中产生的哪一种反应离子将被注入到所述离子源部分(208)中和/或在所述相应的离子源中产生的哪一种试剂离子将被排斥回到所述相应的离子源(209)中。
14.根据权利要求13所述的方法,其特征在于所述控制装置调整所述设备的参数,使得所述设备根据需要充当大气压接口质谱仪,其中所述参数至少包括施加至所述电极(303)的电压,其中所述控制装置控制在所述离子源(209)中产生的离子被排斥回到所述相应的离子源(209)中,或者通过所述控制装置关闭所述离子源(209),使得不产生试剂离子。
CN201980024776.8A 2018-09-28 2019-09-27 Imr-ms设备 Pending CN112020760A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18197502.0 2018-09-28
EP18197502.0A EP3629364A1 (en) 2018-09-28 2018-09-28 Imr-ms device
PCT/EP2019/076192 WO2020065013A1 (en) 2018-09-28 2019-09-27 Imr-ms device

Publications (1)

Publication Number Publication Date
CN112020760A true CN112020760A (zh) 2020-12-01

Family

ID=63708235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980024776.8A Pending CN112020760A (zh) 2018-09-28 2019-09-27 Imr-ms设备

Country Status (4)

Country Link
US (1) US11282692B2 (zh)
EP (2) EP3629364A1 (zh)
CN (1) CN112020760A (zh)
WO (1) WO2020065013A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20206161A1 (en) * 2020-11-17 2022-05-18 Karsa Oy Unbiased ion identification using multiple ions
WO2022251432A1 (en) * 2021-05-28 2022-12-01 Purdue Research Foundation Ion focusing and manipulation

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060022132A1 (en) * 2004-08-02 2006-02-02 The Texas A&M University Systems Ion drift-chemical ionization mass spectrometry
US7095019B1 (en) * 2003-05-30 2006-08-22 Chem-Space Associates, Inc. Remote reagent chemical ionization source
US20070114439A1 (en) * 2003-07-16 2007-05-24 Micromass Uk Limited Mass spectrometer
US20080245963A1 (en) * 2007-04-04 2008-10-09 Adrian Land Method and Apparatus for Generation of Reagent Ions in a Mass Spectrometer
WO2012071806A1 (zh) * 2010-11-30 2012-06-07 中国科学院大连化学物理研究所 用于质谱分析的真空紫外光电离和化学电离的复合电离源
CN103972018A (zh) * 2013-02-01 2014-08-06 中国科学院大连化学物理研究所 一种射频电场增强的单光子-化学电离源
CN106158574A (zh) * 2015-04-09 2016-11-23 中国科学院生态环境研究中心 光诱导离子源质子转移反应质谱仪
CN106959276A (zh) * 2016-01-12 2017-07-18 塞莫费雪科学(不来梅)有限公司 Irms样品引入系统和方法
CN107301944A (zh) * 2016-04-14 2017-10-27 布鲁克·道尔顿公司 用于质谱分析的磁辅助电子轰击离子源
CN107768230A (zh) * 2017-10-31 2018-03-06 天津大学 一种二阶质子转移反应离子源装置及其使用方法
WO2018050962A1 (en) * 2016-09-19 2018-03-22 Karsa Oy An ionization device
EP3309817A1 (en) * 2016-10-14 2018-04-18 Ionicon Analytik Gesellschaft m.b.h. Imr-ms device
CN108091544A (zh) * 2016-11-21 2018-05-29 中国科学院大连化学物理研究所 一种基于微分迁移谱离子筛选的质谱化学电离源

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2349270B (en) * 1999-04-15 2002-02-13 Hitachi Ltd Mass analysis apparatus and method for mass analysis
US6794645B2 (en) * 2001-11-30 2004-09-21 California Institute Of Technology Proton-transfer-reaction/ion-mobility-spectrometer and method of using the same
CA2726521A1 (en) * 2008-05-30 2009-12-23 Thermo Finnigan Llc Method and apparatus for generation of reagent ions in a mass spectrometer
EP2498273A1 (en) * 2011-03-07 2012-09-12 Tofwerk AG Mass spectrometer
US20140284204A1 (en) * 2013-03-22 2014-09-25 Airmodus Oy Method and device for ionizing particles of a sample gas glow
DE102013006971B4 (de) * 2013-04-23 2015-06-03 Bruker Daltonik Gmbh Chemische lonisierung mit Reaktant-lonenbildung bei Atmosphärendruck in einem Massenspektrometer
JP2016526168A (ja) * 2013-06-07 2016-09-01 マイクロマス ユーケー リミテッド イオン信号を較正する方法
WO2016011355A1 (en) * 2014-07-18 2016-01-21 Thermo Finnigan Llc Methods for mass spectrometry of mixtures of proteins of polypeptides using proton transfer reaction

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095019B1 (en) * 2003-05-30 2006-08-22 Chem-Space Associates, Inc. Remote reagent chemical ionization source
US20070114439A1 (en) * 2003-07-16 2007-05-24 Micromass Uk Limited Mass spectrometer
US20060022132A1 (en) * 2004-08-02 2006-02-02 The Texas A&M University Systems Ion drift-chemical ionization mass spectrometry
US20080245963A1 (en) * 2007-04-04 2008-10-09 Adrian Land Method and Apparatus for Generation of Reagent Ions in a Mass Spectrometer
WO2012071806A1 (zh) * 2010-11-30 2012-06-07 中国科学院大连化学物理研究所 用于质谱分析的真空紫外光电离和化学电离的复合电离源
CN103972018A (zh) * 2013-02-01 2014-08-06 中国科学院大连化学物理研究所 一种射频电场增强的单光子-化学电离源
CN106158574A (zh) * 2015-04-09 2016-11-23 中国科学院生态环境研究中心 光诱导离子源质子转移反应质谱仪
CN106959276A (zh) * 2016-01-12 2017-07-18 塞莫费雪科学(不来梅)有限公司 Irms样品引入系统和方法
CN107301944A (zh) * 2016-04-14 2017-10-27 布鲁克·道尔顿公司 用于质谱分析的磁辅助电子轰击离子源
WO2018050962A1 (en) * 2016-09-19 2018-03-22 Karsa Oy An ionization device
EP3309817A1 (en) * 2016-10-14 2018-04-18 Ionicon Analytik Gesellschaft m.b.h. Imr-ms device
CN108091544A (zh) * 2016-11-21 2018-05-29 中国科学院大连化学物理研究所 一种基于微分迁移谱离子筛选的质谱化学电离源
CN107768230A (zh) * 2017-10-31 2018-03-06 天津大学 一种二阶质子转移反应离子源装置及其使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
詹雪芳;段忆翔;: "质子转移反应质谱用于痕量挥发性有机化合物的在线分析", 分析化学, no. 10, 15 October 2011 (2011-10-15) *

Also Published As

Publication number Publication date
US11282692B2 (en) 2022-03-22
US20210134578A1 (en) 2021-05-06
WO2020065013A1 (en) 2020-04-02
EP3776628A1 (en) 2021-02-17
EP3629364A1 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
US11631577B2 (en) Ion focusing
US7569812B1 (en) Remote reagent ion generator
US7659505B2 (en) Ion source vessel and methods
US7332715B2 (en) Atmospheric pressure ion source high pass ion filter
US8173960B2 (en) Low pressure electrospray ionization system and process for effective transmission of ions
US7671344B2 (en) Low pressure electrospray ionization system and process for effective transmission of ions
US7564029B2 (en) Sample ionization at above-vacuum pressures
US7365315B2 (en) Method and apparatus for ionization via interaction with metastable species
US11282692B2 (en) IMR-MS device
KR20200018570A (ko) 견고한 이온공급원
US11328919B2 (en) Two-stage ion source comprising closed and open ion volumes
WO2018100621A1 (ja) イオン化装置及び質量分析装置
CN115346854A (zh) 质谱分析装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination