WO2012070659A1 - ニッケルフリーステンレス製ステント - Google Patents
ニッケルフリーステンレス製ステント Download PDFInfo
- Publication number
- WO2012070659A1 WO2012070659A1 PCT/JP2011/077241 JP2011077241W WO2012070659A1 WO 2012070659 A1 WO2012070659 A1 WO 2012070659A1 JP 2011077241 W JP2011077241 W JP 2011077241W WO 2012070659 A1 WO2012070659 A1 WO 2012070659A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stainless steel
- mass
- content
- stent
- nickel
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/02—Inorganic materials
- A61L31/022—Metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
Definitions
- the present invention relates to a nickel-free stainless steel stent, and more particularly to a nickel-free stainless steel stent using stainless steel that does not cause an allergic reaction to the human body and is excellent in precision workability, strength, and elongation characteristics. It is.
- a stent for vasodilation is known as a medical instrument used for a treatment method for expanding a blood vessel in a constricted portion such as a coronary artery for a patient with angina pectoris or myocardial infarction.
- This stent for vascular expansion is made of, for example, a metallic mesh that expands into a cylindrical shape, and is inserted into an affected area such as a vascular stenosis section by a catheter to expand the blood vessel.
- austenitic stainless steel SUS316, SUS316L, or the like which is a general stainless steel, has been used as a material for the stent for vasodilation.
- SUS316 which is a general austenitic stainless steel used as a material for the above-mentioned vasodilator stent, has 10 to 14% by mass of Ni, and SUS316L has 12 to 15% by mass of Ni. Therefore, there is a concern about the development of metal allergy due to elution of Ni ions after inserting a vascular dilatation stent into a blood vessel.
- the Ni content in stainless steel is reduced to a level that does not substantially contain, and at the same time, corrosion resistance, durability, strength and toughness are improved.
- the chemical composition is limited.
- the limitation of the basic chemical component composition of the stainless steel according to this proposal is as follows: 0 ⁇ C (carbon) ⁇ 0.08, 0 ⁇ Si (silicon) ⁇ 0.50, 0 ⁇ Mn (Manganese) ⁇ 1.50, 15 ⁇ Cr (chromium) ⁇ 30, 0 ⁇ Ni ⁇ 0.05, 1 ⁇ Mo (molybdenum) ⁇ 10, 1.00 ⁇ N (nitrogen) ⁇ 2.00, 0 ⁇ Ca It contains (calcium) ⁇ 0.005, and the balance is Fe (iron) and inevitable impurities.
- Ni plays an important role as an austenite-forming element.
- the structure is such that the role of Ni is complemented by other chemical composition components.
- N nitrogen plays an important role as a complementary component of Ni.
- N is an austenite generating element and is a constituent component that also contributes to an improvement in strength.
- the present invention was made from the background as described above, and does not substantially contain Ni in stainless steel, has an effect of preventing the development of metal allergy, and is excellent in precision workability, strength, and elongation characteristics. It is an object to provide a nickel-free stainless steel stent using stainless steel.
- the nickel-free stainless steel stent of the present invention is characterized by the following.
- (1) As a chemical composition, Cr: 15 to 30% by mass, Mo: 1 to 10% by mass, N: 0.5 to 1% by mass, the balance being Fe and containing inevitable impurities It is a nickel-free stainless steel stent using good stainless steel.
- (2) In addition to the chemical composition described in (1) above, Si: 0 to 0.50 mass%, Mn: 0 to 0.20 mass%, P: 0 to 0.01 mass%, Al: 0 to It is a nickel-free stainless steel stent using stainless steel containing 0.1% by mass.
- (3) In addition to the chemical composition described in (1) or (2) above, Ti: 0 to 0.5% by mass, Nb: 0 to 0.5% by mass, B: 0 to 0.005 It is a nickel-free stainless steel stent using stainless steel containing mass%.
- the chemical composition is made of nickel-free stainless steel using stainless steel that has a specific content of Cr, Mo, N and the balance being Fe and may contain inevitable impurities. Since it is a stent, it can be a nickel-free stainless steel stent that has an effect of preventing the onset of metal allergy and is excellent in precision workability, strength, and elongation characteristics.
- the contents of Si, Mn, P and Al are limited to specific contents, and Since the nickel-free stainless steel stent is made of stainless steel having a specific content of Ti, Nb, and B, the effect of the invention of the above (1) is more surely remarkable. It can be a stainless steel stent.
- FIG. 1 Schematic showing the shape of the tubular stainless steel stent of the present invention.
- the graph which shows the change of the number of vascular endothelial cells at the time of 3 hours, 1 day, and 3 days. Fluorescence observation photograph confirming cell proliferation at 3 hours, 1 day, and 3 days.
- the stainless steel used for the nickel-free stainless steel stent (hereinafter simply referred to as a stent) of the present invention does not substantially contain Ni, and together with Fe, Cr, Mo, and N at specific ratios are essential components.
- Stainless steel. ⁇ Cr (chrome)> Cr an essential component of stainless steel used in the present invention, is an important constituent element for imparting corrosion resistance to stainless steel, and is particularly resistant to local corrosion in corrosive environments such as body fluids containing Cl ions such as salt. It is an important component for realizing the suppression.
- the content of Cr is 15 to 30% by mass, preferably 20 to 25% by mass.
- Mo molybdenum
- Mo which is an essential component of stainless steel used in the present invention, is an element that improves the corrosion resistance of stainless steel.
- the Mo content is 1 to 10% by mass, preferably 1 to 2% by mass.
- N which is an essential component of the stainless steel used in the present invention, is an effective component for improving the corrosion resistance in corrosive environments such as body fluids in which N in solid solution contains Cl ions such as salt. In particular, in the present invention, it plays an extremely important role as a means for securing austenite-generating elements.
- the N content is 0.5 to 1.0% by mass, preferably 0.8 to 1.0. By setting it within this range, it is possible to stabilize the austenite crystal structure, and it is possible to obtain stainless steel having excellent strength and excellent plastic workability.
- the N content exceeds 1.0% by mass, the formation of Cr nitride is likely to be facilitated, and the workability may be reduced.
- the contents of Cr, Mo and N are within the above ranges, and the corrosion resistance index (PRE) represented by the following formula (1) is the following formula (2) and formula (3): ) Is preferably satisfied.
- PRE (Cr content) + (Mo content) ⁇ 3 + (N content) ⁇ 10 (1)
- A is the area occupancy (%) of nonmetallic inclusions in steel
- D is the maximum diameter ( ⁇ m) of nonmetallic inclusions in steel.
- the relationship between the corrosion resistance index (PRE), the area occupancy (%) of nonmetallic inclusions in steel (A), and the maximum diameter ( ⁇ m) (D) of nonmetallic inclusions in steel is as detailed below. It is.
- Stainless steel produces a strong passive film on the steel surface, so it exhibits corrosion resistance even under environmental conditions used as biomaterials and suppresses metal elution.
- non-metallic inclusions such as oxides and sulfides are present in the steel, these non-metallic inclusions cause defects in the coating of the steel, leading to deterioration of corrosion resistance, and metal elution even in the use environment as biomaterials.
- the degree of this corrosion resistance deterioration, etc. is the corrosion resistance index (PRE) defined in (1) above, the area occupancy (%) of nonmetallic inclusions in steel, and the maximum diameter of nonmetallic inclusions in steel. ( ⁇ m) (D) (however, when a major axis and a minor axis exist, the maximum diameter of the major axis is D).
- the method for measuring the area occupancy (%) (A) of the non-metallic inclusions in the steel is, for example, by polishing a cross section parallel to the forging or rolling direction to a mirror surface and using an optical microscope, the magnification is 1000 times,
- the maximum diameter ( ⁇ m) (D) of the nonmetallic inclusions in the field of view can be measured, and can also be measured from image analysis of the image.
- Si silicon
- Mn manganese
- P aluminum
- Al aluminum
- ⁇ Si (silicon)> Si is an element that acts as a deoxidizer.
- the inclusion of Si generates SiO 2 that is a deoxidation product, which promotes the growth of non-metallic inclusions and may lead to a decrease in corrosion resistance.
- N is contained in a specific range as described above, silicon nitride is used as an N addition source in the melting process of stainless steel by the pressurized ESR method (Pressurized Electro-Slag Reflow) described later.
- the additive source material containing Si and the like is not used, but a ferrochromium alloy, chromium nitride, or the like is used, the maximum pressure of nitrogen gas in the melting and refining atmosphere is controlled, and an Al simple system is used as the additive slag component.
- the Si content in the stainless steel of the present invention can be in the range of 0 to 0.5 mass%.
- Mn manganese
- Mn is an element that acts as a deoxidizing agent similarly to Si, and contributes to stabilization of the austenite phase. Furthermore, since Mn has the effect of increasing the solubility of N in the molten metal, it is an extremely effective element when an N-containing stainless steel is to be produced.
- the present invention in which inclusion of N is essential, it is very effective to contain Mn from this viewpoint.
- MnO the corrosion resistance of the steel is reduced because the deoxidation product, MnO, promotes the growth of oxide inclusions in accordance with the increase in the Si content.
- the toughness may decrease.
- the deoxidation action of Mn in order to ensure the deoxidation ability even if the addition amount is limited, by adding an appropriate amount of Al, the dissolved oxygen in the molten metal is extremely low. Can be reduced to a value. Desirably, the deoxidation effect can be further manifested and the oxide inclusions can be reduced by complex deoxidation by adding and adding Ce thereto.
- the Mn content in the present invention is in the range of 0 to 0.2% by mass, preferably 0 to 0.01% by mass. By setting this range, the amount of non-metallic inclusions containing Mn-based oxides can be reduced, which is extremely effective for improving the corrosion resistance of the stainless steel of the present invention.
- the P content in the present invention is in the range of 0 to 0.01% by mass.
- the stainless steel used in the present invention can contain Ti (titanium), Nb (niobium), and B (boron) in addition to the above components.
- the Ti content is in the range of 0 to 0.5 mass%, preferably 0 to 0.2 mass%
- the Nb content is in the range of 0 to 2 mass%, preferably 0 to 0.2 mass%
- B content is in the range of 0 to 0.05 mass%, preferably 0 to 0.005 mass%.
- the Al content in the ESR steel ingot is in the range of 0 to 0.10% by mass.
- C carbon
- S sulfur
- O oxygen
- ⁇ C (carbon)> C contributes to improving the strength of the steel and is effective as an austenite phase forming element.
- the content of C is excessive, it is an element that impairs the corrosion resistance and toughness of stainless steel. Therefore, the content is as much as possible from the viewpoint of ensuring corrosion resistance and toughness on the premise of securing strength and austenite phase by other components. It is desirable to reduce
- the C content in the present invention is preferably in the range of 0 to 0.02.
- S sulfur
- S is an element inevitably mixed in the melting process of stainless steel, and the content of S is set to the lowest possible Mn content in order to suppress the production amount of MnS. It is desirable to suppress as much as possible.
- the S content is preferably in the range of 0 to 0.002 mass%.
- ⁇ O (oxygen)> O is an element inevitably mixed in the steel melting process, and its content is desirably as low as possible. From this viewpoint, the content of O in the present invention is preferably in the range of 0 to 0.003 mass%.
- W tungsten
- V vanadium
- Ce cerium
- V is an element effective for improving local corrosion resistance in corrosive environments such as body fluids containing Cl ions such as salt, but if its content is excessive, it inhibits the hot workability of stainless steel. . Therefore, the V content is preferably in the range of 1 to 10% by mass.
- the corrosion resistance of the stainless steel can be improved.
- ⁇ Ce (cerium)> Ce is effective as a deoxidizing agent and a desulfurizing agent. Therefore, it contributes to the reduction of non-metallic inclusions and to the improvement of corrosion resistance and toughness.
- the Ce content is in the range of 0.01 to 0.10% by mass. By setting the content within this range, the corrosion resistance and toughness of the stainless steel can be further improved.
- the content is less than 0.01% by mass, the above effect cannot be sufficiently exhibited. If the content exceeds 0.10% by mass, the hot workability of stainless steel is hindered.
- elements not described above may be included as inevitable impurities.
- the ESR steel ingot is adjusted by an apparatus that can adjust the N 2 gas atmosphere pressure during the melting and refining period within a range of about 0.1 to 5 MPa. Can be melted.
- a nitrogen-added consumable electrode is used as the consumable electrode, and a premelt slag of calcium fluoride (CaF 2 ) or calcium oxide (CaO) is used as the slag.
- a premelt slag of calcium fluoride (CaF 2 ) or calcium oxide (CaO) is used as the slag.
- the basic method for melting high-clean steel is based on strong deoxidation based on metal Al in the molten metal, and more preferably, combined deoxidation with an appropriate amount of metal Ce added.
- Al addition is prepared by incorporating a metal Al wire into a consumable electrode, and regarding the composition of the molten slag, take into account the extremely low potential of slag oxygen and sulfur and the optimization of fluidity. As a result, it is possible to promote the floatation / separation removal of the deoxidation product and desulfurization product from the molten metal (molten steel) bulk to the molten slag phase and the prevention of reoxidation of the molten metal bulk.
- the ESR steel ingot melted by the pressure-type ESR method is hot rolled, hot forged, hot extruded, cold rolled, cold checked into a linear form suitable for the stent of the present invention. And one or more processing techniques selected from the group such as cold drawing.
- a method for manufacturing a stent according to the present invention from a linear material stainless steel processed as described above employs a conventional technique for manufacturing a stent using a conventional austenitic stainless steel such as SUS316L. be able to.
- stainless steel can be processed into a linear form, which can be knitted into a net shape to form a stent.
- a net-shaped stent is folded and thinned, inserted into an affected part of a blood vessel with a catheter, and then inflated with a balloon to expand the net to widen the blood vessel.
- the center of the cross section of the stainless steel formed into a rod shape is perforated in the longitudinal direction by machining to produce a pipe, which is subjected to cold drawing, and further, after producing the final shape of the thin tube shown in FIG.
- a stent can be formed by processing into a predetermined pattern by laser processing.
- FIG. 1 shows a schematic view of a stent formed into a tubular shape by cold drawing.
- the stent has a tubular shape with an outer diameter (D) of 1.4 mm, a tube wall thickness (T) of 0.1 to 0.15 mm, and a length (L) of 10 to 20 mm. Therefore, it can be suitably used as a stent for coronary arteries.
- a nickel-free stainless steel stent (23Cr-1Mo-1N: Example 1) and a stainless steel stent (SUS316L: Comparative Example 1) having a length of 10 mm were produced from a seamless pipe having an outer diameter of 1.4 mm and a wall thickness of 0.1 mm.
- After mounting the prepared stent on the catheter sterilizing with ethylene oxide gas, anesthetizing 3 months old pig (body weight about 60 kg), using the catheter to place the stent in the left anterior descending coronary artery (LAD), left coronary artery left rotation Placed in branch (LCX) or right coronary artery (RCA).
- LAD left anterior descending coronary artery
- LCX left coronary artery left rotation Placed in branch
- RCA right coronary artery
- the maximum number of stents placed in LAD, LCX, and RCA was two.
- the stenosis rate was evaluated according to the AHA (American Heart Association) classification of coronary arteries by evaluating the blood vessel diameter
- Fig. 2 shows a blood vessel pathological photograph 4 weeks after placement of the stainless steel stent of Example 1
- Fig. 3 shows a blood vessel pathological photograph 4 weeks after placement of the SUS316L stent of Comparative Example 1.
- the stenosis rate is 0% when there is no stenosis, 25% for 1-25%, 50% for 25-50%, 75% for 51-75%, 75-99% (in the stenosis part of the contrast agent flow) No delay) was 90%, 75-99% (with a delay in the stenosis of the contrast agent flow) was 99%, and complete stenosis was 100%.
- a restenosis rate of 25% or less was considered effective.
- the nickel-free stainless steel stent of the present invention has almost no elution of nickel as compared to the conventional stainless steel stent, has a low restenosis rate, and suppresses the development of metal allergy. .
- ⁇ Relationship between nitrogen content and processability> Regarding the nickel-free stainless steel stent having a nitrogen content of less than 1% by mass and the stainless steel stent having a nitrogen content of 1% by mass or more, the relationship between the nitrogen content and workability was confirmed. A cross-sectional photograph of each stent is shown in FIG.
- the nickel-free stainless steel stent (a) having a nitrogen content of less than 1% by mass it was confirmed that the hardness decreased with the decrease in the nitrogen content, the workability was improved, and a thin tube with a uniform thickness could be processed. .
- the stainless steel stent (b) having a nitrogen content of 1% by mass or more it was confirmed that the workability was lowered and the thickness was uneven.
- FIG. 5 shows the results of changes in the number of vascular endothelial cells
- FIG. 6 shows a fluorescence observation photograph of cell proliferation.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Inorganic Chemistry (AREA)
- Surgery (AREA)
- Epidemiology (AREA)
- Cardiology (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
(1)化学組成として、Cr:15~30質量%、Mo:1~10質量%、N:0.5~1質量%を含有し、残部がFeであるとともに、不可避不純物を含有してもよいステンレス鋼を用いたニッケルフリーステンレス製ステントである。
(2)前記(1)に記載の化学組成に加えて、Si:0~0.50質量%、Mn:0~0.20質量%、P:0~0.01質量%、Al:0~0.1質量%を含有するステンレス鋼を用いたニッケルフリーステンレス製ステントである。
(3)前記(1)又は(2)に記載のいずれかの化学組成に加えて、Ti:0~0.5質量%、Nb:0~0.5質量%、B:0~0.005質量%を含有するステンレス鋼を用いたニッケルフリーステンレス製ステントである。
<Cr(クロム)>
本発明に用いられるステンレス鋼の必須成分であるCrは、ステンレス鋼に耐食性を付与するための重要な構成元素であり、特に塩分等のClイオンを含有する体液等の腐食環境における、耐局部腐食の抑制を実現するためには重要な成分である。
<Mo(モリブデン)>
本発明に用いられるステンレス鋼の必須成分であるMoは、ステンレス鋼の耐食性を向上させる元素である。
<N(窒素)>
本発明に用いられるステンレス鋼の必須成分であるNは、固溶状態のNが塩分等のClイオンを含有する体液等の腐食環境における耐食性の向上に有効な成分である。特に、本発明においてはオーステナイト生成元素の確保手段としても、極めて大きな役割を担っている。
PRE=(Cr含有量)+(Mo含有量)×3+(N含有量)×10 (1)
PRE>150×A (2)
PRE>3.5×D (3)
式(2)において、Aは鋼中非金属介在物の面積占有率(%)であり、式(3)においてDは鋼中非金属介在物の最大直径(μm)である。
<Si(ケイ素)>
Siは、脱酸剤として作用する元素である。本発明のステンレス鋼において、Siの含有は、脱酸生成物であるSiO2を生成させることとなり、非金属介在物の成長を助長し、耐食性の低下を招くおそれがあるため、また、磁性を示すδフェライト相の生成を促進させるため、これらの点からも低値に抑えるのが好ましい。
<Mn(マンガン)>
Mnは、Siと同様に脱酸剤として作用する元素であり、またオーステナイト相の安定化に寄与する。更に、Mnは溶湯中のNの溶解度を高める効果を有するため、N含有ステンレス鋼を製造しようとする場合には極めて有効な元素である。
<P(リン)>
Pは、ステンレス鋼の溶製工程において不可避的に混入する元素であって、結晶粒界に偏析し、耐食性の低下を招き易く、また靱性の低下を招くおそれがあるため、含有量はできる限り少ない方が望ましい。そのため、本発明におけるPの含有量は0~0.01質量%の範囲とする。
<Al(アルミニウム)>
この発明においては、ESR鋼塊の溶製に際して、溶湯の脱酸を行ない、ESR鋼塊の酸化物系非金属介在物の清浄性をできるだけ高水準に確保するためには、Alによる複合脱酸は可能な限り避けた方が望ましく、消耗式ベース電極製造段階における溶製段階で必要なAl残留量の許容により混入する程度の含有量に留めておくことが好ましい。このような観点から、ESR鋼塊中のAl含有量は、0~0.10質量%の範囲内に有ることが望ましい。
<C(炭素)>
Cは、鋼の強度向上に寄与すると共に、オーステナイト相生成元素として有効である。しかしながらCの含有量が過剰になると、ステンレス鋼の耐食性及び靱性を損なう元素であることから、他の成分による強度確保及びオーステナイト相確保を前提とし、耐食性及び靱性確保の観点からはできるだけその含有量を低減することが望ましい。
<S(硫黄)>
Sは、ステンレス鋼の溶製工程において不可避的に混入する元素であって、Sの含有量は、MnSの生成量を抑制するためにも、Mnの含有量を可能な限り低含有量とした上で極力抑えることが望ましい。本発明においてはS含有量を0~0.002質量%の範囲とすることが好ましい。
<O(酸素)>
Oは、鋼の溶製工程において不可避的に混入する元素であり、その含有量は極力低いことが望ましい。かかる観点から、本発明においてOの含有量は0~0.003質量%の範囲とすることが好ましい。
<W(タングステン)、V(バナジウム)>
Wは、ステンレス鋼の耐食性を向上させる元素である。しかしながら、その含有量が過剰になると、WはCrと同様のフェライト生成元素であるため、金属間化合物の生成が著しくなり、鋼の脆化を招くことがある。従って、Wの含有量は1~10質量%の範囲が好ましい。
<Ce(セリウム)>
Ceは、脱酸剤及び脱硫剤として有効である。従って、非金属介在物の低減に寄与して、耐食性及び靱性の向上に寄与する。
表1に示す化学組成(数値は質量%を表す)の実施例1~6のニッケルフリーステンレス(23Cr-1Mo-1N)及び、比較例1のステンレス(SUS316L)を、直径10mm、厚さ1mmの形状とし、アセトン中で超音波洗浄を行なった後、オートクレーブ滅菌し、培養液(内皮細胞基本培地+内皮細胞添加因子(EGM-2 Bullet Kit, 三光純薬, Cat.# CC-3162))1mLに1サンプルずつ入れ、37℃、24時間の条件でインキュベートした。
外径1.4mm、肉厚0.1mmのシームレスパイプから長さ10mmのニッケルフリーステンレス製ステント(23Cr-1Mo-1N:実施例1)およびステンレス製ステント(SUS316L:比較例1)を作成した。作成したステントをカテーテルに搭載した後、エチレンオキサイドガスにて滅菌後、生後3ヶ月のブタ(体重約60kg)を麻酔下、カテーテルにてステントを左冠動脈前下行枝(LAD)、左冠動脈左回旋枝(LCX)または右冠動脈(RCA)に留置した。LAD、LCX、RCAへ留置するステントの数は、最大で2個とした。4週間後、造影による血管径の評価により狭窄率を冠動脈のAHA(米国心臓協会:American Heart Association)分類により評価した。
<窒素含有量と加工性の関係>
窒素含有量が1質量%未満のニッケルフリーステンレス製ステントと、窒素含有量が1質量%以上のステンレス製ステントについて、その窒素含有量と加工性の関係を確認した。その各ステントの断面写真を図4に示す。
<細胞接着性及び増殖性の評価>
下記表4に示すステンレスサンプル(直径10mm)を調整し、その表面にヒト臍帯静脈内被細胞(HUVEC)を播種した後、3時間、1日、3日の時点の細胞接着性、増殖性を評価した。
細胞播種密度:2500cells/500μl(48wellプレート使用)
N数:5
図5及び図6の結果から、ニッケルを含有するSUS316と比較して、本発明のニッケルフリー高窒素ステンレス(23Cr-1Mo-1N)は有意に高い細胞接着性及び増殖性を示すことが確認された。
Claims (3)
- 化学組成として、
Cr:15~30質量%
Mo:1~10質量%
N:0.5~1質量%
を含有し、残部がFeであるとともに、不可避不純物を含有してもよいステンレス鋼を用いることを特徴とするニッケルフリーステンレス製ステント。 - 請求項1に記載の化学組成に加えて、
Si:0~0.50質量%
Mn:0~0.20質量%
P:0~0.01質量%
Al:0~0.1質量%
を含有するステンレス鋼を用いることを特徴とするニッケルフリーステンレス製ステント。 - 請求項1又は2に記載のいずれかの化学組成に加えて、
Ti:0~0.5質量%
Nb:0~2質量%
B:0~0.05質量%
を含有するステンレス鋼を用いることを特徴とするニッケルフリーステンレス製ステント。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012545809A JPWO2012070659A1 (ja) | 2010-11-26 | 2011-11-25 | ニッケルフリーステンレス製ステント |
US13/988,870 US9320622B2 (en) | 2010-11-26 | 2011-11-25 | Nickel-free stainless steel stent |
EP11843581.7A EP2644734B1 (en) | 2010-11-26 | 2011-11-25 | Nickel-free stainless steel stent |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010264359 | 2010-11-26 | ||
JP2010-264359 | 2010-11-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012070659A1 true WO2012070659A1 (ja) | 2012-05-31 |
Family
ID=46145996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/077241 WO2012070659A1 (ja) | 2010-11-26 | 2011-11-25 | ニッケルフリーステンレス製ステント |
Country Status (4)
Country | Link |
---|---|
US (1) | US9320622B2 (ja) |
EP (1) | EP2644734B1 (ja) |
JP (1) | JPWO2012070659A1 (ja) |
WO (1) | WO2012070659A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015147183A1 (ja) * | 2014-03-28 | 2015-10-01 | 古河電気工業株式会社 | 亜鉛合金管材とその製造方法、及びそれを用いてなるステントとその製造方法 |
JP2016039863A (ja) * | 2014-08-12 | 2016-03-24 | セイコーエプソン株式会社 | 装飾部材および装飾品 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160142302A (ko) * | 2014-04-04 | 2016-12-12 | 히타치 긴조쿠 가부시키가이샤 | 치과용 자성 어태치먼트 자석 구조체 |
CN106367714A (zh) * | 2015-07-24 | 2017-02-01 | 先健科技(深圳)有限公司 | 铁基可吸收植入医疗器械与预制管及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004167045A (ja) * | 2002-11-21 | 2004-06-17 | National Institute For Materials Science | 生体軟組織用医療用具とその製造方法 |
JP2006316338A (ja) * | 2005-05-16 | 2006-11-24 | National Institute For Materials Science | ステンレス鋼製製品の製造方法とそのステンレス鋼製製品 |
JP2007051368A (ja) | 2005-07-19 | 2007-03-01 | National Institute For Materials Science | ニッケルフリー高窒素ステンレス鋼、並びにこれを用いた生体用又は医療用のインプラント等、装身具等及び厨房用器具等 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3598364B2 (ja) * | 1999-02-25 | 2004-12-08 | 独立行政法人物質・材料研究機構 | ステンレス鋼 |
WO2001000897A1 (de) * | 1999-06-24 | 2001-01-04 | Basf Aktiengesellschaft | Nickelarmer austenitischer stahl |
JP2004137600A (ja) * | 2002-09-27 | 2004-05-13 | Nano Gijutsu Kenkyusho:Kk | 超硬質・強靱で優れた耐食性を有するナノ結晶オーステナイト鋼バルク材及びその製造方法 |
US7294214B2 (en) * | 2003-01-08 | 2007-11-13 | Scimed Life Systems, Inc. | Medical devices |
JP2005248263A (ja) * | 2004-03-04 | 2005-09-15 | Daido Steel Co Ltd | マルテンサイト系ステンレス鋼 |
JP4379804B2 (ja) * | 2004-08-13 | 2009-12-09 | 大同特殊鋼株式会社 | 高窒素オーステナイト系ステンレス鋼 |
JP4915202B2 (ja) * | 2005-11-03 | 2012-04-11 | 大同特殊鋼株式会社 | 高窒素オーステナイト系ステンレス鋼 |
-
2011
- 2011-11-25 JP JP2012545809A patent/JPWO2012070659A1/ja active Pending
- 2011-11-25 WO PCT/JP2011/077241 patent/WO2012070659A1/ja active Application Filing
- 2011-11-25 EP EP11843581.7A patent/EP2644734B1/en not_active Not-in-force
- 2011-11-25 US US13/988,870 patent/US9320622B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004167045A (ja) * | 2002-11-21 | 2004-06-17 | National Institute For Materials Science | 生体軟組織用医療用具とその製造方法 |
JP2006316338A (ja) * | 2005-05-16 | 2006-11-24 | National Institute For Materials Science | ステンレス鋼製製品の製造方法とそのステンレス鋼製製品 |
JP2007051368A (ja) | 2005-07-19 | 2007-03-01 | National Institute For Materials Science | ニッケルフリー高窒素ステンレス鋼、並びにこれを用いた生体用又は医療用のインプラント等、装身具等及び厨房用器具等 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2644734A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015147183A1 (ja) * | 2014-03-28 | 2015-10-01 | 古河電気工業株式会社 | 亜鉛合金管材とその製造方法、及びそれを用いてなるステントとその製造方法 |
JPWO2015147183A1 (ja) * | 2014-03-28 | 2017-04-13 | 古河電気工業株式会社 | 亜鉛合金管材とその製造方法、及びそれを用いてなるステントとその製造方法 |
JP2016039863A (ja) * | 2014-08-12 | 2016-03-24 | セイコーエプソン株式会社 | 装飾部材および装飾品 |
Also Published As
Publication number | Publication date |
---|---|
EP2644734A1 (en) | 2013-10-02 |
EP2644734B1 (en) | 2018-03-28 |
US20130304184A1 (en) | 2013-11-14 |
JPWO2012070659A1 (ja) | 2014-05-19 |
EP2644734A4 (en) | 2016-10-19 |
US9320622B2 (en) | 2016-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4845109B2 (ja) | ニッケルフリー高窒素ステンレス鋼、並びにこれを用いた生体用又は医療用のインプラント等、装身具等及び厨房用器具等 | |
JP6214692B2 (ja) | オーステナイト系薄ステンレス鋼 | |
JP4379804B2 (ja) | 高窒素オーステナイト系ステンレス鋼 | |
KR101535695B1 (ko) | 안정화 원소를 함유하고 저 함량 니켈의 오스테나이트계 스테인리스 강 | |
JP6705508B2 (ja) | NiCrFe合金 | |
US20080281401A1 (en) | Stainless steel alloy having lowered nickel-chrominum toxicity and improved biocompatibility | |
EP1581277A1 (en) | Medical devices | |
JP2017061741A (ja) | ニッケル非含有オーステナイトステンレス鋼 | |
WO2012070659A1 (ja) | ニッケルフリーステンレス製ステント | |
JP2009503257A (ja) | 耐食性・冷間成形性・切削性高強度マルテンサイト系ステンレス鋼 | |
JP2002235153A (ja) | 高強度高耐食非磁性ステンレス鋼 | |
US20130338756A1 (en) | Stent composed of an iron alloy | |
JP2002502464A (ja) | 生物医学的用途向けニッケル非含有ステンレス鋼 | |
JP6602462B2 (ja) | クロム基二相合金および該二相合金を用いた製造物 | |
EP2770078A1 (en) | High-performance high-nitrogen duplex stainless steels excellent in pitting corrosion resistance | |
JP2006501368A (ja) | フェライト鋼合金 | |
CN111793775B (zh) | 一种高氮无镍高比重医用奥氏体不锈钢 | |
JP2000239799A (ja) | Niを含まない生体用二相ステンレス鋼 | |
JPH1192874A (ja) | 高強度・高耐食非磁性ステンレス鋼線 | |
JP7498420B1 (ja) | 二相ステンレス鋼材 | |
JP2004143576A (ja) | 低ニッケルオーステナイト系ステンレス鋼 | |
JP2023145110A (ja) | オーステナイト系ステンレス鋼 | |
JP5375406B2 (ja) | 起歪体用析出硬化型ステンレス鋼 | |
JP5218201B2 (ja) | 溶接金属および溶接材料 | |
JPH10121203A (ja) | 生体用非磁性ステンレス鋼 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11843581 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012545809 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011843581 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13988870 Country of ref document: US |