WO2012070453A1 - ビンシステム及びチャー回収装置 - Google Patents

ビンシステム及びチャー回収装置 Download PDF

Info

Publication number
WO2012070453A1
WO2012070453A1 PCT/JP2011/076429 JP2011076429W WO2012070453A1 WO 2012070453 A1 WO2012070453 A1 WO 2012070453A1 JP 2011076429 W JP2011076429 W JP 2011076429W WO 2012070453 A1 WO2012070453 A1 WO 2012070453A1
Authority
WO
WIPO (PCT)
Prior art keywords
char
powder
gas
line
assist
Prior art date
Application number
PCT/JP2011/076429
Other languages
English (en)
French (fr)
Inventor
小山 智規
治 品田
柴田 泰成
弘実 石井
山元 崇
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/814,618 priority Critical patent/US9199806B2/en
Priority to CN201180039853.0A priority patent/CN103068703B/zh
Publication of WO2012070453A1 publication Critical patent/WO2012070453A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/30Methods or devices for filling or emptying bunkers, hoppers, tanks, or like containers, of interest apart from their use in particular chemical or physical processes or their application in particular machines, e.g. not covered by a single other subclass
    • B65G65/32Filling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/04Conveying materials in bulk pneumatically through pipes or tubes; Air slides
    • B65G53/16Gas pressure systems operating with fluidisation of the materials
    • B65G53/18Gas pressure systems operating with fluidisation of the materials through a porous wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/0025Feeding of the particles in the reactor; Evacuation of the particles out of the reactor by an ascending fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/04Conveying materials in bulk pneumatically through pipes or tubes; Air slides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • F23K1/04Heating fuel prior to delivery to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/02Pneumatic feeding arrangements, i.e. by air blast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00265Part of all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2208/00292Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00761Discharging
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/094Char
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1653Conversion of synthesis gas to energy integrated in a gasification combined cycle [IGCC]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1678Integration of gasification processes with another plant or parts within the plant with air separation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1693Integration of gasification processes with another plant or parts within the plant with storage facilities for intermediate, feed and/or product
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2203/00Feeding arrangements
    • F23K2203/10Supply line fittings
    • F23K2203/103Storage devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2203/00Feeding arrangements
    • F23K2203/10Supply line fittings
    • F23K2203/104Metering devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2203/00Feeding arrangements
    • F23K2203/20Feeding/conveying devices
    • F23K2203/201Feeding/conveying devices using pneumatic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2900/00Special features of, or arrangements for fuel supplies
    • F23K2900/03001Airlock sections in solid fuel supply lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00002Gas turbine combustors adapted for fuels having low heating value [LHV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Definitions

  • the present invention relates to a bin system used for a char recovery device of a coal gasification combined power generation facility and the char recovery device.
  • Coal gasification combined power generation facility is a power generation facility aiming at higher efficiency and higher environment than conventional coal-fired power generation by gasifying coal and combining it with combined cycle power generation.
  • This coal gasification combined cycle power generation facility has a great merit that it can use coal with abundant resources, and it is known that the merit can be further increased by expanding the applicable coal types.
  • coal gasification combined power generation facilities generally have a coal supply device, a coal gasification furnace, a char recovery device, a gas purification facility, a gas turbine facility, a steam turbine facility, and an exhaust heat recovery boiler. Therefore, coal (pulverized coal) is supplied to the coal gasifier by the coal feeder and gasifiers (air, oxygen-enriched air, oxygen, water vapor, etc.) are taken in, and this coal gasifier As a result, coal is combusted and gasified to produce product gas (combustible gas). And this product gas is gas refined after the unreacted part (char) of coal is removed by the char recovery device, and it is burned by being supplied to the gas turbine equipment to produce high temperature and high pressure combustion gas. And drive the turbine.
  • the exhaust gas after driving the turbine recovers thermal energy by the exhaust heat recovery boiler, generates steam and supplies it to the steam turbine equipment, and drives the turbine. As a result, power generation is performed.
  • the exhaust gas from which the thermal energy has been recovered is released to the atmosphere through the chimney.
  • the char recovery device in the above-described coal gasification combined power generation facility removes the contained char from the generated gas generated in the coal gasification furnace using a plurality of stages of dust collectors.
  • the recovered char is returned to the coal gasifier by a predetermined amount by the char supply device. That is, the bin system is applied here.
  • a general bin system has one (or a plurality) bins, a plurality of char discharge lines for discharging char collected by each dust collector to the bin, and a plurality (or one) of chars collected in the bin. ) And a plurality of char supply lines for supplying to the hopper.
  • the char discharge line and the char supply line are arranged with a predetermined inclination angle with respect to the vertical direction from the dust collector and the hopper toward the bottle.
  • the char is transferred by dry conveyance, and the char transferred from the dust collector to the hopper through the bottle is a gravity drop. In this case, if the inclination angle of the char discharge line or the char supply line is set to be large, there is a possibility that the char in the pipe is accumulated.
  • the inclination angle of the char discharge line and the char supply line cannot be reduced, and considering the interference between a plurality of dust collectors and a plurality of hoppers, the char discharge line and the char supply line become long. There is a problem that the bin system and the char recovery device are lengthened, that is, the size and cost of the device are increased.
  • This invention solves the subject mentioned above, and aims at providing the bin system and char collection
  • the bottle system of the present invention comprises a sealed container capable of collecting or storing powder, and a plurality of powders disposed at a predetermined inclination angle capable of discharging powder to the sealed container by gravity drop.
  • a powder discharge line, a plurality of powder supply lines arranged at a predetermined inclination angle capable of supplying the powder stored in the sealed container by gravity drop, and a powder that gravity drops through the plurality of powder discharge lines And an assist device for assisting body flow.
  • the assist device when the powder flows through each powder discharge line by gravity drop and is discharged into the closed container, and when each powder flows through this powder supply line by gravity drop from the closed container, the assist device has a plurality of powder discharge lines. Since it assists the flow of the powder that falls by gravity, the powder will flow properly through this powder discharge line, and deposition can be suppressed. As a result, the inclination angle of the plurality of powder discharge lines can be set large, the height of the apparatus can be suppressed, and the apparatus can be miniaturized.
  • the bottle system of the present invention includes a sealed container capable of collecting or storing powder, a plurality of powder discharge lines arranged at a predetermined inclination angle capable of discharging powder to the sealed container by gravity drop, and the sealed A plurality of powder supply lines arranged at a predetermined inclination angle capable of supplying the powder stored in the container by gravity drop, and an assist device for assisting the flow of the powder that gravity falls through the plurality of powder supply lines These are provided.
  • the assist device uses a plurality of powder supply lines. Since it assists the flow of the powder that falls by gravity, the powder will flow properly in this powder supply line, and deposition can be suppressed. As a result, the inclination angle of the plurality of powder supply lines can be set large, the height of the apparatus can be suppressed, and the apparatus can be miniaturized.
  • the assist device has an assist gas supply device that supplies an inert gas (N 2 , CO 2, etc.) along the flow direction of the powder.
  • an inert gas N 2 , CO 2, etc.
  • an assist gas supply device that supplies an inert gas as an assist device, it is possible to simplify the device and to prevent the powder flowing through each line from being adversely affected and to be appropriate.
  • a powder transport system can be constructed.
  • the assist gas supply device supplies an inert gas along an inner peripheral lower surface of a pipe constituting the powder discharge line or the powder supply line.
  • the powder moves along the inner peripheral lower surface in the pipe constituting the powder discharge line or the powder supply line.
  • the powder By supplying an inert gas along the inner peripheral lower surface in this pipe, the powder The flow of the fluid becomes smooth, and the accumulation of powder in the pipe can be prevented.
  • the assist gas supply device includes an assist gas chamber provided in a lower part of a pipe constituting the powder discharge line or the powder supply line, and the assist gas chamber is provided on an inner peripheral lower surface of the pipe. It is characterized by supplying an inert gas.
  • the inert gas is supplied from the assist gas chamber provided in the lower part of the pipe constituting the powder discharge line or the powder supply line to the inner peripheral lower surface of the pipe, so that the powder flowing along the inner peripheral lower surface of the pipe The body can flow smoothly by this inert gas, and the accumulation of powder inside the pipe can be prevented.
  • the assist gas supply device changes the supply amount of the inert gas according to the flow rate of the powder.
  • the powder discharge line or the powder supply line has an inclination angle set to 60 degrees or less with respect to the horizontal direction, and the assist device is provided on the line set to the inclination angle. It is characterized by being able to.
  • the inclination angle of the powder discharge line and the powder supply line can be set to 60 degrees or less, the height of the apparatus can be suppressed, and the apparatus can be miniaturized.
  • the powder discharge line or the powder supply line has an inclination angle set to 60 degrees or less with respect to the horizontal direction, and the assist device is provided on the line set to the inclination angle. And an assist gas discharge part is provided.
  • the inclination angle of the powder discharge line and the powder supply line can be set to 60 degrees or less, the height of the apparatus can be suppressed, and the assist device and the assist gas discharge unit are included in this line. By being provided, a further apparatus can be reduced in size.
  • the char recovery device of the present invention is a char recovery device that recovers unburned coal from a product gas generated by gasifying coal, and is a first dust collector connected to a product gas generation line.
  • a second dust collector connected to a first gas discharge line in the first dust collector, a first unburned component discharge line in the first dust collector and a second uncollected line in the second dust collector.
  • a bin connected to the fuel discharge line, a plurality of unburned component supply lines that supply unburned component from the bin to the unburned component return line, and each unburned component discharge line or the unburned component supply line.
  • an assist device that assists the flow of unburned matter that falls by gravity.
  • the coarse unburned matter is separated from the product gas by the first dust collector, and the fine unburned matter is separated from the produced gas by the second dust collector.
  • the unburned matter stored in the bin is supplied to the unburned component return line through each unburned component supply line.
  • the assist device discharges each unburned component. Assists the flow of unburned components that fall by gravity through the line or each unburned component supply line, so unburned components will flow properly through the unburned component discharge line and unburned component supply line, thereby suppressing deposition. can do.
  • the device can be miniaturized.
  • FIG. 1 is a schematic configuration diagram of a coal gasification combined power generation facility to which a bin system according to Embodiment 1 of the present invention is applied.
  • FIG. 2 is a schematic diagram illustrating a main part of the bin system according to the first embodiment.
  • FIG. 3 is a schematic configuration diagram illustrating a main part of the bin system according to the second embodiment of the present invention.
  • FIG. 4 is a schematic configuration diagram illustrating a main part of the bin system according to the third embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram illustrating a main part of the bin system according to the fourth embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of a combined coal gasification combined power generation facility to which a bin system according to a first embodiment of the present invention is applied
  • FIG. 2 is a schematic diagram illustrating a main part of the bin system according to the first embodiment.
  • the coal gasification combined power generation facility (IGCC: Integrated Coal Gasification Combined Cycle) of Example 1 adopts an air blowing method in which coal gas is generated in a gasification furnace using air as a gasifying agent, and is purified by a gas purification facility The coal gas is supplied as fuel gas to the gas turbine equipment for power generation. That is, the coal gasification combined power generation facility of the present embodiment is an air blowing type power generation facility.
  • the coal gasification combined power generation facility of Example 1 includes a coal supply device 11, a coal gasification furnace 12, a char recovery device 13, a gas purification facility 14, a gas turbine facility 15, a steam turbine facility 16, It has a generator 17 and a waste heat recovery boiler (HRSG) 18.
  • HRSG waste heat recovery boiler
  • the coal feeder 11 includes a coal pulverizer (mill) 21 and a pulverized coal supply facility (bin system) 22 that pressurizes and supplies pulverized coal dried and pulverized by the coal pulverizer 21.
  • the coal pulverizer 21 produces pulverized coal by pulverizing coal into fine particles while drying with dry gas. In this case, a part of the exhaust gas from the gas turbine equipment 15 and the exhaust heat recovery boiler 18 is used as the drying gas.
  • a pulverized coal separation device for example, a dust collector
  • a pulverized coal bottle 24 and a plurality of pulverized coal supply hoppers 25a, 25b, 25c are provided on the downstream side of the coal pulverizer 21.
  • the coal gasification furnace 12 is connected to a coal supply line 31 from a pulverized coal supply facility and can supply pulverized coal.
  • the coal gasification furnace 12 is connected to a char return line 32 from the char recovery device 13 so that char (unreacted coal, powder) recovered by the char recovery device 13 can be recycled. Yes.
  • the coal gasification furnace 12 is connected to a compressed air supply line 33 from a gas turbine facility 15 (compressor 61), and a part of the air compressed by the gas turbine facility 15 is boosted by a bleed air booster. Can be supplied.
  • the air separation device 34 separates and generates nitrogen and oxygen from air in the atmosphere.
  • the first nitrogen supply line 35 is connected to the coal supply line 31 and the second nitrogen supply line 36 is a char return line 32.
  • the oxygen supply line 37 is connected to the compressed air supply line 33. In this case, nitrogen is used as a transport gas for coal and char, and oxygen is used as a gasifying agent.
  • the coal gasification furnace 12 is, for example, a spouted bed type gasification furnace, in which coal (pulverized coal) supplied therein is partially oxidized by a gasifying agent (air, oxygen-enriched air, oxygen, water vapor, etc.). -Generates combustible gas (product gas, coal gas) mainly composed of carbon dioxide and hydrogen by gasification.
  • the coal gasification furnace 12 is not limited to a spouted bed gasification furnace, and may be a fluidized bed gasification furnace or a fixed bed gasification furnace.
  • a product gas line 38 is provided downstream of the coal gasifier 12 and is connected to the char recovery device 13.
  • the char recovery device 13 can separate the char contained in the product gas and the product gas.
  • a combustible gas may be cooled to a predetermined temperature by providing a gas cooling device in the downstream of the gasification furnace, and then supplied to the char recovery device 13 through the product gas line 38.
  • the char collection device 13 applies the bin system of the present invention, and includes a cyclone 41 as a first dust collector, a first filter 42a and a second filter 42b as a second dust collector, and each rotary valve 43a, 43b, a bin 44, and hoppers 45a, 45b, 45c, and 45d.
  • the cyclone 41 performs primary separation (separation of coarse particles) of the char contained in the combustible gas generated in the coal gasification furnace 12, and discharges the combustible gas from which the coarse char is separated at the top.
  • a gas discharge line 46 is connected, and a first char discharge line (first unreacted component discharge line) 47 for discharging coarse char separated from the combustible gas is connected to the lower part.
  • the first and second filters 42a and 42b have a first gas discharge line 46 branched and connected to the sides, and a second gas discharge line 48 for discharging a combustible gas from which fine char has been separated is connected to the upper part.
  • second char discharge lines 49a and 49b for discharging the fine char separated from the combustible gas are connected to the lower part.
  • Rotary valves 43a and 43b are respectively provided at discharge portions to the second char discharge lines 49a and 49b in the filters 42a and 42b.
  • the filters 42a and 42b are porous filters, and have, for example, a ceramic filter medium. When the combustible gas passes through the filter medium, the char in the combustible gas can be removed. .
  • the char collected by the filters 42a and 42b is dropped by a back washing process or the like, discharged from the filter container by the rotary valves 43a and 43b, and discharged to the bin 44 through the second char discharge lines 49a and 49b.
  • the 1st pressure equalization line 50 which equalizes both pressure is provided.
  • the bin 44 is connected to the downstream ends of the first char discharge line 47 and the second char discharge lines 49a and 49b, and is separated from the combustible gas by the cyclone 41 and the first and second filters 42a and 42b. Grain char and fine grain char are gathered and distributed to each hopper.
  • Each hopper 45a, 45b, 45c, 45d is connected to the bin 44 via a switching line 51a, 51b, 51c, 51d.
  • the switching line 51a, 51b, 51c, 51d is connected to the hopper 45a, 45b, 45c, 45d.
  • the first switching valves 52a, 52b, 52c, and 52d are mounted on the upstream side, and the second switching valves 53a, 53b, 53c, and 53d are mounted on the downstream side.
  • the hoppers 45a, 45b, 45c, and 45d are alternately used by switching the switching lines 51a, 51b, 51c, and 51d used by the switching valves 52a, 52b, 52c, 52d, 53a, 53b, 53c, and 53d. Continuous operation is possible.
  • the switching lines 51 a, 51 b, 51 c, 51 d merge at the downstream side of the hoppers 45 a, 45 b, 45 c, 45 d and are connected to the char return line 32.
  • the bin 44 is arranged on the upstream side for the four switching lines 51a, 51b, 51c, 51d (four hoppers 45a, 45b, 45c, 45d), and the char is assembled.
  • a bin 44 is provided for distribution and temporary storage to each hopper.
  • a state where char is supplied to the gasifier between the first gas discharge line 46 of the cyclone and the hoppers 45a, 45b, 45c, 45d (for example, in the case of the hopper 45a, the switching valve 52a is closed).
  • the switching valve 53a is in an open state and the pressure of the hopper 45a is higher than that of the bin 44), and the pressure in the hopper 45a is reduced and discharged to equalize the pressure in order to receive the char of the bin 44.
  • Lines 81a (81b, 81c, 81d) are provided.
  • the pressure equalization line 81a (81b, 81c, 81d) is connected to the first gas discharge line 46, and third switching valves 82a, 82b, 82c, 82 are mounted.
  • the char collection device 13 of this embodiment includes the cyclone 41, the first filter 42a and the second filter 42b, the rotary valves 43a and 43b, the bin 44, the hoppers 45a, 45b, 45c, and 45d.
  • the bin system according to the present invention includes a bin 44 as a container capable of collecting and distributing char to each hopper, and a plurality of powders arranged at a predetermined inclination angle capable of discharging the char into the bin 44 by gravity drop.
  • Char discharge lines 47, 49a, 49b as body discharge lines and chars collected in the bin 44 or stored char are arranged with a predetermined inclination angle that can be supplied to the hoppers 45a, 45b, 45c, 45d by gravity drop.
  • each char discharge line 47, 49a, 49b and each switching line 51a, 51b, 51c, 51d are not aligned along the char flow direction as an assist device that assists the flow of the char that drops by gravity.
  • An assist gas supply device that supplies active gas is provided.
  • the assist gas supply devices attached to the char discharge lines 47, 49a, 49b have assist gas supply units 54, 55a, 55b and assist gas discharge units 56, 57a, 57b, respectively.
  • the assist gas supply devices attached to the switching lines 51a, 51b, 51c, 51d have assist gas supply units 58a, 58b, 58c, 58d and assist gas discharge units 59a, 59b, 59c, 59d, respectively. ing.
  • the assist gas supply units 58a, 58b, 58c, and 58d and the assist gas discharge units 59a, 59b, 59c, and 59d as the assist gas supply device have substantially the same configuration. Therefore, hereinafter, only the assist gas supply unit 54 and the assist gas discharge unit 56 as the assist gas supply device of the first char discharge line 47 will be described.
  • the first char discharge line 47 includes a first straight portion 101 arranged vertically from the cyclone 41 (see FIG. 1) and a bin 44 (FIG. 1).
  • the second straight line portion 102 is arranged to hang down in the vertical direction, and an inclined portion 103 that connects the lower end portion of the first straight portion 101 and the upper end portion of the second straight portion 102.
  • the inclined portion 103 is arranged to be inclined by a predetermined angle ⁇ (for example, 60 degrees or less) with respect to the horizontal direction.
  • the inclined portion 103 of the char discharge line 47 has an assist gas supply portion 54 attached to the base end portion (upper end portion) and an assist gas discharge portion 56 attached to the distal end portion (lower end portion).
  • the assist gas supply unit 54 includes a gas supply pipe 111 for supplying an inert gas and a gas injection nozzle 112, and the gas injection nozzle 112 supplies an inert gas to the inside from the base end portion of the inclined portion 103. can do.
  • the assist gas discharge unit 56 includes a gas discharge pipe 113 that discharges a replacement gas and an inert gas corresponding to the volume due to the movement of the char, and a gas recovery unit 114. Internal gas can be discharged from the end.
  • the gas recovery unit 114 has a function of separating char and gas. Specifically, the gas recovery unit 114 opens in a direction opposite to the char discharge direction (above the second straight portion 102), and separates char and gas by gravity or inertia. It is a structure.
  • the inert gas is preferably nitrogen gas or carbon dioxide gas, but an inert gas (inert gas) with an oxygen concentration of 3% or less or a flammable gas (char recovery unit outlet or gas purification equipment outlet gas is recycled under pressure. And the combustion of the gas flowing through the first char discharge line 47 can be prevented.
  • the inert gas is desirably a gas having a temperature equal to or higher than the dew point of the gas flowing through the first char discharge line 47.
  • the assist gas supply unit 54 supplies the inert gas continuously or intermittently.
  • the coarse char separated from the combustible gas by the cyclone 41 flows down to the first char discharge line 47 due to gravity drop, passes through the first straight portion 101, the inclined portion 103, and the second straight portion 102 to the bin 44. Collected and distributed or stored to each hopper.
  • the assist gas supply unit 54 supplies the inert gas from the gas injection nozzle 112 into the inclined portion 103 in the direction of the flow of the coarse char, so that the inside of the pipe constituting the first char discharge line 47 The flow of the coarse char moving along the lower surface is promoted, and deposition can be suppressed.
  • the assist gas discharge part 56 can collect
  • the gas purification facility 14 performs gas purification by removing impurities such as sulfur compounds, nitrogen compounds, and halides from the combustible gas from which the char has been separated by the char recovery device 13.
  • the gas purification equipment 14 then removes impurities from the combustible gas to produce fuel gas, and supplies this to the gas turbine equipment 15.
  • the gas turbine equipment 15 includes a compressor 61, a combustor 62, and a turbine 63, and the compressor 61 and the turbine 63 are connected by a rotating shaft 64.
  • the combustor 62 is supplied with compressed air 65 from the compressor 61, is supplied with fuel gas 66 from the gas purification facility 14, and supplies combustion gas 67 to the turbine 63.
  • the gas turbine equipment 15 is provided with a compressed air supply line 33 extending from the compressor 61 to the coal gasification furnace 12, and a booster 68 is provided in the middle. Therefore, in the combustor 62, the compressed air supplied from the compressor 61 and the fuel gas supplied from the gas purification facility 14 are mixed and burned, and the rotating shaft 64 is rotated by the generated combustion gas in the turbine 63. By doing so, the generator 17 can be driven.
  • the steam turbine facility 16 has a turbine 69 connected to the rotating shaft 64 in the gas turbine facility 15, and the generator 17 is connected to the base end portion of the rotating shaft 64.
  • the exhaust heat recovery boiler 18 is provided in the exhaust gas line 70 from the gas turbine equipment 15 (the turbine 63), and generates steam by exchanging heat with the high temperature exhaust gas. The exhaust gas whose heat has been recovered by the exhaust heat recovery boiler 18 is released from the chimney 74 to the atmosphere.
  • coal is dried and pulverized by a coal pulverizer 22 to produce pulverized coal in a coal feeder 11.
  • the pulverized coal is pressurized by a pulverized coal separator and a pulverized coal supply facility (bin system) composed of a pulverized coal bottle and a pulverized coal bottle, and is gasified into coal through a coal supply line 31 by nitrogen supplied from an air separator 34. It is supplied to the furnace 12. Further, the char recovered by the char recovery device 13 to be described later is supplied to the coal gasification furnace 12 through the char return line 32 by nitrogen supplied from the air separation device 34. Further, the compressed air extracted from the gas turbine equipment 15 to be described later is boosted by the booster 68 and then supplied to the coal gasification furnace 12 through the compressed air supply line 33 together with the oxygen supplied from the air separation device 34.
  • the supplied pulverized coal is partially oxidized and gasified by a gasifying agent (compressed air, oxygen, etc.), so that a combustible gas (generated gas, coal) containing carbon dioxide or hydrogen as a main component is used. Gas).
  • a gasifying agent compressed air, oxygen, etc.
  • the combustible gas is discharged from the coal gasifier 12 through the product gas line 38 and sent to the char recovery device 13.
  • the combustible gas is first supplied to the cyclone 41, whereby the char contained in the gas is primarily separated from the combustible gas (coarse particles are separated).
  • the combustible gas from which the char is primarily separated is discharged to the first gas discharge line 46, while the coarse char separated from the combustible gas is discharged to the bin 44 through the first char discharge line 47.
  • the combustible gas that is primarily separated by the cyclone 41 and discharged to the first gas discharge line 46 is then supplied to the filters 42a and 42b, and the char remaining in the combustible gas is secondarily separated.
  • the combustible gas from which the residual char is separated is discharged to the second gas discharge line 48, while the char separated from the combustible gas is discharged from the filter container by the rotary valves 43a and 43b, and the second char discharge It is paid out to the bin 44 through the lines 49a and 49b.
  • the bin 44 collects the primary separation char paid out to the bin 44 through the first char discharge line 47 and the secondary separation char paid out to the bin 44 through the second char discharge lines 49a and 49b to each hopper. Can be supplied separately or stored.
  • the pressure P 4 of the pressure P 2 and the bins 44 of the first gas discharge line 46 is substantially the same
  • the pressure relationship is P 1 > P4 ⁇ P 2 > P 3 . Therefore, the primary separation char separated by the cyclone 41 is discharged from the first char discharge line 47 to the bin 44, and the backflow of the gas including the coarse char in the first char discharge line 47 is prevented, and the cyclone 41 High dust collection efficiency is maintained.
  • the gas substituted for the volume of the primary separation char flows back through the first char discharge line 47, and when the discharge amount of the primary separation char increases, the discharge part ( The phenomenon that the primary separation char blows up in the throat portion), and the dust collection efficiency in the cyclone 41 is lowered.
  • the pressure P 4 of the pressure P 2 and the bins 44 of the first gas discharge line 46 is adjusted to approximately the same pressure by the first pressure equalization line 50, cyclone 41 and the filter 42a, the char from 42b each char Since the gas is discharged to the bin 44 through the discharge lines 47, 49a, and 49b, the gas containing the char in the bin 44 may be discharged to the first gas discharge line 46 through the first pressure equalizing line 50.
  • the gas discharged from the pressure equalizing line 50 is supplied to the filters 42a and 42b, whereby char is separated from the combustible gas.
  • the primary separation char separated from the combustible gas by the cyclone 41 is discharged to the bin 44 through the first char discharge line 47, and the secondary separation char separated from the combustible gas by the respective filters 42a and 42b is: It is paid out to the bin 44 through the second char discharge lines 49a, 49b.
  • the assist gas supply units 54, 55a, and 55b of the assist gas supply device supply the inert gas to the inclined portions 103 of the char discharge lines 47, 49a, and 49b.
  • the char collected or stored in the bin 44 sequentially includes the first switching valves 52a, 52b, 52c, 52d, the second switching valves 53a, 53b, 53c, 53d, and the third switching valves 90a, 90b, 90c, 90d.
  • the switching line 51a and the hopper 45a, the switching line 51b and the hopper 45b, the switching line 51c and the hopper 45c, the switching line 51d and the hopper 45d are sequentially used.
  • the third switching valve 90a of the second pressure equalizing line 60a and the switching valve 52a of the switching line 51a are opened, and the switching valve 53a is closed to close the bin 44 and the hopper 45a.
  • the third switching valve 90c of the second pressure equalizing line 60c and the switching valve 52c of the switching line 51c are closed, the switching valve 53c is opened, and the gasification furnace is opened. You can return the char.
  • the other switching valves 90b and 90d are opened, and 52b, 52d, 53b and 53d are closed, whereby the char of the bin 44 can be supplied to the hopper 45a through the switching line 51a.
  • the third switching valve 90b of the second pressure equalizing line 60b and the switching valve 52b of the switching line 51b are opened and the switching valve 53b is closed, so that the bin 44 and the hopper 45b are pressure equalized.
  • Can supply char As a result, the recovered char can be continuously discharged and supplied from the bin to the hopper, and the char recovery device 13 can be continuously operated.
  • the char supplied to the hoppers 45a, 45b, 45c, and 45d is returned to the coal gasification furnace 12 through the char return line 32 and gasified.
  • the assist gas supply units 58a, 58b, 58c, and 58d of the assist gas supply device supply the inert gas to the inclined portions during the char supply of the switching lines 51a, 51b, 51c, and 51d, and the switching lines 51a.
  • 51b, 51c, 51d assists the flow of the char that moves along the lower surface in the pipe, and the flow is promoted, and the accumulation of char in the pipe can be suppressed.
  • the assist gas discharge portions 59a, 59b, 59c, 59d discharge the replacement gas and the inert gas corresponding to the volume due to the movement of the char.
  • the combustible gas from which the char has been separated by the char recovery device 13 is freed of impurities such as sulfur compounds, nitrogen compounds, and halides in the gas purification facility 14 to produce fuel gas.
  • the compressor 61 compresses the air, supplies the air to the combustor 62, the compressed air supplied from the compressor 61 in the combustor 62, and the fuel gas supplied from the gas purification equipment 14.
  • Combustion generates combustion gas, and the turbine 63 is driven by this combustion gas, so that the generator 17 can be driven via the rotating shaft 64 to generate power.
  • the exhaust gas discharged from the turbine 63 in the gas turbine equipment 15 generates steam by performing heat exchange in the exhaust heat recovery boiler 18, and supplies the generated steam to the steam turbine equipment 16.
  • the turbine 69 is driven by the steam supplied from the exhaust heat recovery boiler 18, so that the generator 17 can be driven via the rotating shaft 64 to generate power.
  • the bin 44 that can collect and distribute char and the three char discharge units disposed at a predetermined inclination angle ⁇ that can discharge the char to the bin 44 by gravity drop.
  • Lines 47, 49 a, 49 b, four switching lines 51 a, 51 b, 51 c, 51 d arranged with a predetermined inclination angle ⁇ that can supply the char collected or stored in the bin 44 by gravity drop, and the char discharge line 47 , 49a and 49b are provided with assist gas supply units 54, 55a, 55b, 58a, 58b, 58c, and 58d as assist devices for assisting the flow of the char that drops by gravity.
  • the assist gas supply units 54, 55a, 55b drop through the char discharge lines 47, 49a, 49b. Since the char flow assists the char, the char appropriately flows through the char discharge lines 47, 49a, and 49b, and suppresses the accumulation on the pipes constituting the char discharge lines 47, 49a, and 49b. be able to. As a result, the inclination angle of each char discharge line 47, 49a, 49b can be set large, the height of the apparatus can be suppressed, and the apparatus can be miniaturized.
  • assist gas supply units 58a, 58b, 58c, and 58d are provided as assist devices that assist the flow of the char that drops by gravity through the switching lines 51a, 51b, 51c, and 51d. ing. Accordingly, since the assist gas supply units 58a, 58b, 58c, and 58d assist the flow of the char that drops by gravity through the char supply lines 51a, 51b, 51c, and 51d, the char is supplied to the char supply lines 51a, 51b, 51c and 51d will flow appropriately, and deposition on the pipes constituting the char supply lines 51a, 51b, 51c and 51d can be suppressed. As a result, the inclination angle of each char supply line 51a, 51b, 51c, 51d can be set large, the height of the apparatus can be suppressed, and the apparatus can be miniaturized.
  • the assist gas supply device is an assist gas supply unit 54, 55a, 55b, 58a, 58b, 58c, 58d that supplies an inert gas along the flow direction of the char. Therefore, by applying the assist gas supply units 54, 55a, 55b, 58a, 58b, 58c, and 58d for supplying an inert gas as the assist device, the device can be simplified and each line 47 can be simplified. , 49a, 49b, 51a, 51b, 51c, 51d without adversely affecting the char flowing therethrough, it is possible to construct an appropriate char transport system.
  • the char discharge lines 47, 49a, 49b and the switching lines 51a, 51b, 51c, 51d are set to an inclination angle ⁇ of 60 degrees or less with respect to the horizontal direction.
  • Assist gas supply units 54, 55a, 55b, 58a, 58b, 58c, and 58d are provided in the char discharge lines 47, 49a, and 49b and the switching lines 51a, 51b, 51c, and 51d set to the angle ⁇ . Therefore, the inclination angle of each char discharge line 47, 49a, 49b and each switching line 51a, 51b, 51c, 51d can be set to 60 degrees or less, the height of the apparatus can be suppressed, and the apparatus can be reduced in size.
  • the cyclone 41 is connected to the gas generation line 38 for discharging the combustible gas from the coal gasification furnace 12, and the filter 42 a is connected to the first gas discharge line 46 in the cyclone 41.
  • a bin 44 is connected to the first char discharge line 47 in the cyclone 41 and the second char discharge lines 49a, 49b in the filters 42a, 42b, and four switching lines 51a, 51b, 51c are connected to the bin 44.
  • 51d are connected to the hoppers 45a, 45b, 45c, 45d, and the hoppers 45a, 45b, 45c, 45d are connected to the char return line 32 to supply assist gas to the char discharge lines 47, 49a, 49b.
  • Portions 54, 55a, and 55b are provided, and switching lines 51a, 51b, and 51c are provided.
  • Assist gas supply unit 58a to 51d, 58b, 58c, are provided 58d.
  • the coarse char is separated from the produced gas by the cyclone 41, and the fine char is separated from the produced gas by the filters 42a and 42b.
  • the char is stored in the bin 44 through the char discharge lines 47, 49a and 49b.
  • the char stored in the bin 44 is supplied to the char return line 32 through the switching lines 51a, 51b, 51c, 51d.
  • the inclination angles of the char discharge lines 47, 49a, 49b and the switching lines 51a, 51b, 51c, 51d can be set large, the height of the apparatus can be suppressed, and the apparatus can be downsized. be able to.
  • FIG. 3 is a schematic configuration diagram showing the main part of the bin system according to the second embodiment of the present invention.
  • symbol is attached
  • the first char discharge line 47 includes a first straight portion 101 and a second straight portion 102, and an inclined portion 103 that connects the straight portions 101 and 102.
  • the inclined portion 103 is arranged to be inclined by a predetermined angle ⁇ with respect to the horizontal direction.
  • the assist gas supply apparatus according to the present embodiment supplies an inert gas along the lower surface of the inner periphery of the pipe constituting the first char discharge line 47.
  • the inclined part 103 of the first char discharge line 47 has an assist gas supply part 121 attached to the lower part and an assist gas discharge part 56 attached to the tip part (lower end part).
  • the assist gas supply unit 121 includes a gas supply pipe 122 that supplies an inert gas, and a plurality (three in the present embodiment) of gas injection formed at predetermined intervals in the longitudinal direction of the gas supply pipe 122.
  • Each of the gas injection nozzles 123 enters the inclined portion 103 and supplies an inert gas toward the tip end side along the inner peripheral lower surface of the pipe constituting the inclined portion 103. Can do.
  • the char flows down to the first char discharge line 47 due to gravity drop, and is stored in the bin 44 through the first straight portion 101, the inclined portion 103, and the second straight portion 102.
  • the assist gas supply unit 121 forms the first char discharge line 47 because the inert gas is supplied from each gas injection nozzle 123 along the lower surface in the inclined portion 103 toward the flow direction of the char.
  • the flow of char that moves along the inner lower surface of the pipe is promoted, and deposition can be suppressed.
  • the assist gas supply unit 121 serving as the assist gas supply device supplies the inert gas along the inner peripheral lower surface of the pipe constituting the first char discharge line 47. ing.
  • the char moves along the inner peripheral lower surface of the pipe constituting the first char discharge line 47.
  • the char is rubbed between the char and the pipe. The resistance is reduced, the char flow is made smooth, and the accumulation of char inside the pipe can be prevented.
  • FIG. 4 is a schematic configuration diagram showing the main part of the bin system according to the third embodiment of the present invention.
  • symbol is attached
  • the first char discharge line 47 includes a first straight portion 101 and a second straight portion 102, and an inclined portion 103 that connects the straight portions 101 and 102.
  • the inclined portion 103 is arranged to be inclined by a predetermined angle ⁇ with respect to the horizontal direction.
  • the assist gas supply device of the present embodiment is provided with an assist gas chamber in the lower part of the pipe constituting the first char discharge line 47, and the inert gas is supplied from the assist gas chamber to the inner peripheral lower surface of the pipe. ing.
  • the inclined gas 103 of the first char discharge line 47 is provided with an assist gas supply unit 131 at the bottom.
  • the assist gas supply unit 131 includes a gas supply pipe 132 that supplies an inert gas, and an assist gas chamber 133 that is fixed to the lower portion of the inclined portion 103 and is connected to the tip of the gas supply pipe 132.
  • the assist gas chamber 133 is in communication with the pipe constituting the inclined portion 103 of the first char discharge line 47.
  • a porous plate 134 is laid along the longitudinal direction at the lower portion inside. Therefore, an inert gas can be supplied from the assist gas chamber 133 between the lower surface in the pipe of the inclined portion 103 and the porous plate 134.
  • the porous plate 134 is preferably a porous medium (canvas, sintered metal, sintered wire mesh, etc.) that prevents the char flowing through the first char discharge line 47 from flowing into the assist gas chamber.
  • the char flows down to the first char discharge line 47 due to gravity drop, and is stored in the bin 44 through the first straight portion 101, the inclined portion 103, and the second straight portion 102.
  • the assist gas supply unit 131 is supplied with an inert gas from the assist gas chamber 133 between the lower surface in the inclined portion 103 and the porous plate 134. Then, this inert gas is supplied to the space between the lower surface in the inclined portion 103 and the porous plate 134 and flows out to the surface of the porous plate 134, and the piping of the first char discharge line 47 is formed.
  • the assist gas chamber 133 is provided in the lower part of the pipe constituting the first char discharge line 47, and the inert gas is supplied from the assist gas chamber 133 to the inner peripheral lower surface of the pipe. Supply.
  • the inert gas is supplied from the assist gas chamber 133 provided in the lower part of the pipe constituting the first char discharge line 47 to the inner peripheral lower surface of the pipe, so that the char flowing along the inner peripheral lower surface of the pipe is generated.
  • This inert gas reduces the wall friction resistance and the friction in the char powder, and can flow smoothly and prevent accumulation of powder in the pipe.
  • FIG. 5 is a schematic configuration diagram showing the main part of the bin system according to the fourth embodiment of the present invention.
  • symbol is attached
  • the first char discharge line 47 includes a first straight portion 101 and a second straight portion 102, and an inclined portion 103 that connects the straight portions 101 and 102.
  • the inclined portion 103 is arranged to be inclined by a predetermined angle ⁇ with respect to the horizontal direction.
  • the assist gas supply apparatus of a present Example is changing the supply amount of an inert gas according to the flow volume of char.
  • the inclined gas 103 of the char discharge line 47 is provided with an assist gas supply unit 141 at the bottom.
  • an assist gas chamber 142 is fixed below the inclined portion 103, and a plurality (three in this example) of gases in the char flow direction of the first char discharge line 47 are separated by the partition plate 143.
  • Chambers 144a, 144b, and 144c are partitioned.
  • the assist gas chamber 142 (gas chambers 144 a, 144 b, 144 c) communicates with the pipe constituting the inclined portion 103 of the first char discharge line 47.
  • the pipe constituting the inclined portion 103 of the first char discharge line 47 is provided with a porous plate 134 along the longitudinal direction in the lower part of the inside, and is partitioned by the partition plate 143 of each assist gas chamber 144a, 144b, 144c. It has been. Therefore, the inert gas can be supplied to the lower surface of the inclined portion 103 in the pipe for each of the assist gas chambers 144a, 144b, and 144c through the porous plate 134.
  • a gas supply pipe 145 that supplies an inert gas has a tip portion branched into three branch pipes 145a, 145b, and 145c, and is connected to gas chambers 144a, 144b, and 144c, respectively.
  • flow control valves 146a, 146b, 146c are attached to the branch pipes 145a, 145b, 145c.
  • the gas supply pipe 145 is equipped with a shut-off valve 147 and a check valve 148.
  • the flow rate adjustment valves 146a, 146b, 146c and the shutoff valve 147 can be controlled to open and close by a control device (not shown).
  • the char flows down to the first char discharge line 47 due to gravity drop, and is collected or stored in the bin 44 through the first straight portion 101, the inclined portion 103, and the second straight portion 102.
  • the assist gas supply unit 141 supplies an inert gas from the gas chambers 144a, 144b, and 144c of the assist gas chamber 142 between the lower surface in the inclined portion 103 and the partition plate 143. Then, this inert gas flows out from the surface of the porous plate 134 on the upper surface of each assist gas chamber 144a, 144b, 144c into the inclined portion 103 and moves along the inner lower surface of the pipe constituting the first char discharge line 47.
  • a sensor detects the flow rate of the char flowing through the first char discharge line 47 and outputs it to the control device, which controls the flow rate adjusting valves 146a, 146b, 146c according to the char flow rate. May be adjusted to adjust the amount of inert gas supplied to each gas chamber 144a, 144b, 144c. That is, it is assumed that the opening of the flow rate adjusting valves 146a, 146b, and 146c is changed according to the flow rate of the char flowing through the first char discharge line 47 so that the char can be discharged stably. The amount of inert gas supplied by changing the opening degree of the flow rate adjusting valves 146a, 146b, 146c depending on the discharge state of the char is set to the necessary minimum flow rate.
  • the amount of inert gas supplied to each gas chamber 144a, 144b, 144c is made uniform.
  • the gas chamber 144a The amount of the inert gas supplied to the gas chamber 144 may be increased, and the amount of the inert gas supplied to the gas chamber 144c may be reduced.
  • the supply amount of the inert gas can be changed according to the flow rate of the char.
  • the char transport speed can be maintained at an appropriate speed, and the amount of inert gas used can be reduced to reduce operating costs. be able to.
  • the configuration and order of the assist gas supply device valve are shown, but the configuration and order are not limited thereto.
  • the assist device is an assist gas supply device
  • the present invention is not limited to this configuration, and may be a vibration device that vibrates a pipe, a porous plate, or the like.
  • the bin system and the char recovery device according to the present invention can be downsized by tilting the powder conveyance line by providing an assist device that assists the flow of the powder that falls by gravity in the powder conveyance line.
  • the bin system can be applied not only to a coal gasification combined power generation facility but also to facilities that handle powders such as pulverized coal, unburned coal (fly ash), cement, and food.

Abstract

 ビンシステム及びチャー回収装置において、チャーを貯留可能なビン(44)と、チャーを重力落下によりビン(44)に排出可能な所定の傾斜角度(θ)をもって配置される3つのチャー排出ライン(47,49a,49b)と、ビン(44)に貯留されたチャーを重力落下により供給可能な所定の傾斜角度(θ)をもって配置される4つの切替ライン(51a,51b,51c,51d)と、チャー排出ライン(47,49a,49b)を重力落下するチャーの流動をアシストするアシスト装置としてアシストガス供給部(54,55a,55b)を設けることで、装置の小型化を可能とする。

Description

ビンシステム及びチャー回収装置
 本発明は、石炭ガス化複合発電設備のチャー回収装置に用いられるビンシステム及びこのチャー回収装置に関するものである。
 石炭ガス化複合発電設備は、石炭をガス化し、コンバインドサイクル発電と組み合わせることにより、従来型の石炭火力に比べてさらなる高効率化・高環境性を目指した発電設備である。この石炭ガス化複合発電設備は、資源量が豊富な石炭を利用可能であることも大きなメリットであり、適用炭種を拡大することにより、さらにメリットが大きくなることが知られている。
 従来の石炭ガス化複合発電設備は、一般的に、給炭装置、石炭ガス化炉、チャー回収装置、ガス精製設備、ガスタービン設備、蒸気タービン設備、排熱回収ボイラを有している。従って、石炭ガス化炉に対して、給炭装置により石炭(微粉炭)が供給されると共に、ガス化剤(空気、酸素富化空気、酸素、水蒸気など)が取り込まれ、この石炭ガス化炉で石炭が燃焼ガス化されて生成ガス(可燃性ガス)が生成される。そして、この生成ガスは、チャー回収装置にて、石炭の未反応分(チャー)が除去されてからガス精製され、ガスタービン設備に供給されることで燃焼して高温・高圧の燃焼ガスを生成し、タービンを駆動する。タービンを駆動した後の排気ガスは、排熱回収ボイラで熱エネルギが回収され、蒸気を生成して蒸気タービン設備に供給され、タービンを駆動する。これにより発電が行なわれる。一方、熱エネルギが回収された排気ガスは煙突を介して大気へ放出される。
 上述した石炭ガス化複合発電設備におけるチャー回収装置は、石炭ガス化炉で生成された生成ガスから、複数段の集塵装置を用いて含有するチャーを除去している。そして、回収したチャーは、チャー供給装置により、所定量ずつ石炭ガス化炉に戻している。即ち、ここにビンシステムが適用されている。一般的なビンシステムは、1つ(もしくは複数個)のビンと、各集塵装置で回収したチャーをこのビンに排出する複数のチャー排出ラインと、ビンに回収したチャーを複数(または1つ)のホッパに供給する複数のチャー供給ラインとを有している。
 なお、従来のチャー回収装置としては、下記特許文献1~3に記載されたものがある。
特許第3054788号公報 特許第3652848号公報 特開2006-063098号公報
 1つのビンに対してその上部に複数のチャー排出ラインを連結したり、下部に複数のチャー供給ラインを連結したりするとき、複数の集塵装置や複数のホッパを水平方向に並んで配置することから、チャー排出ラインやチャー供給ラインは、この集塵装置やホッパからビンに向って鉛直方向に対して所定の傾斜角度を持って配置されることとなる。上述したチャー回収装置にて、チャーの移送は乾式搬送であり、集塵装置からビンを介してホッパに至るチャーの移送は重力落下となっている。この場合、チャー排出ラインやチャー供給ラインの傾斜角度を大きく設定すると、配管内でのチャーが堆積してしまうおそれがある。そのため、チャー排出ラインやチャー供給ラインの傾斜角度を小さくすることができず、複数の集塵装置同士や複数のホッパ同士の干渉を考慮すると、チャー排出ラインやチャー供給ラインが長くなることとなり、ビンシステムやチャー回収装置の縦長化、つまり、装置の大型化や高コスト化を招いてしまうという問題がある。
 本発明は、上述した課題を解決するものであり、装置の小型化を可能とするビンシステム及びチャー回収装置を提供することを目的とする。
 上記の目的を達成するための本発明のビンシステムは、粉体を集合または貯留可能な密閉容器と、粉体を重力落下により前記密閉容器に排出可能な所定の傾斜角度をもって配置される複数の粉体排出ラインと、前記密閉容器に貯留された粉体を重力落下により供給可能な所定の傾斜角度をもって配置される複数の粉体供給ラインと、前記複数の粉体排出ラインを重力落下する粉体の流動をアシストするアシスト装置と、を備えることを特徴とするものである。
 従って、粉体が重力落下により各粉体排出ラインを流動して密閉容器に排出され、この密閉容器から重力落下により各粉体供給ラインを流動するとき、アシスト装置が複数の粉体排出ラインを重力落下する粉体の流動をアシストすることから、粉体はこの粉体排出ラインを適正に流動することとなり、堆積を抑制することができる。その結果、複数の粉体排出ラインの傾斜角度を大きく設定することが可能となり、装置の高さを抑制することが可能となり、装置を小型化することができる。
 本発明のビンシステムは、粉体を集合または貯留可能な密閉容器と、粉体を重力落下により前記密閉容器に排出可能な所定の傾斜角度をもって配置される複数の粉体排出ラインと、前記密閉容器に貯留された粉体を重力落下により供給可能な所定の傾斜角度をもって配置される複数の粉体供給ラインと、前記複数の粉体供給ラインを重力落下する粉体の流動をアシストするアシスト装置と、を備えることを特徴とするものである。
 従って、粉体が重力落下により各粉体排出ラインを流動して密閉容器に排出され、この密閉容器から重力落下により各粉体供給ラインを流動するとき、アシスト装置が複数の粉体供給ラインを重力落下する粉体の流動をアシストすることから、粉体はこの粉体供給ラインを適正に流動することとなり、堆積を抑制することができる。その結果、複数の粉体供給ラインの傾斜角度を大きく設定することが可能となり、装置の高さを抑制することが可能となり、装置を小型化することができる。
 本発明のビンシステムでは、前記アシスト装置は、粉体の流動方向に沿って不活性ガス(N、COなど)を供給するアシストガス供給装置を有することを特徴としている。
 従って、アシスト装置として不活性ガスを供給するアシストガス供給装置を適用することで、装置の簡素化を可能とすることができると共に、各ラインを流れる粉体に悪影響を与えることがなく、適正な粉体の搬送システムを構築することができる。
 本発明のビンシステムでは、前記アシストガス供給装置は、前記粉体排出ラインまたは前記粉体供給ラインを構成する配管における内周下面に沿って不活性ガスを供給することを特徴としている。
 従って、粉体は、粉体排出ラインまたは粉体供給ラインを構成する配管における内周下面に沿って移動するが、この配管における内周下面に沿って不活性ガスを供給することで、粉体の流動がスムーズとなり、配管内部での粉体の堆積を防止することができる。
 本発明のビンシステムでは、前記アシストガス供給装置は、前記粉体排出ラインまたは前記粉体供給ラインを構成する配管の下部にアシストガス室を設け、該アシストガス室から前記配管における内周下面に不活性ガスを供給することを特徴としている。
 従って、粉体排出ラインまたは粉体供給ラインを構成する配管の下部に設けられたアシストガス室から配管内周下面に不活性ガスが供給されることで、配管における内周下面に沿って流れる粉体がこの不活性ガスによりスムーズに流れ、配管内部での粉体の堆積を防止することができる。
 本発明のビンシステムでは、前記アシストガス供給装置は、粉体の流量に応じて不活性ガスの供給量を変更することを特徴としている。
 従って、粉体の流量に応じて適正量の不活性ガスを供給することで、粉体の搬送速度を適正速度に維持することができると共に、不活性ガスの使用量を低減して運転コストを低減することができる。
 本発明のビンシステムでは、前記粉体排出ラインまたは前記粉体供給ラインは、傾斜角度が水平方向に対して60度以下に設定され、この傾斜角度に設定された前記ラインに前記アシスト装置が設けられることを特徴としている。
 従って、粉体排出ラインや粉体供給ラインの傾斜角度を60度以下とすることができ、装置の高さを抑制することが可能となり、装置を小型化することができる。
 本発明のビンシステムでは、前記粉体排出ラインまたは前記粉体供給ラインは、傾斜角度が水平方向に対して60度以下に設定され、この傾斜角度に設定された前記ラインに前記アシスト装置が設けられると共にアシストガス排出部が設けられることを特徴としている。
 従って、粉体排出ラインや粉体供給ラインの傾斜角度を60度以下とすることができ、装置の高さを抑制することが可能となり、且つ、このラインに前記アシスト装置とアシストガス排出部が設けられることで、更なる装置を小型化することができる。
 また、本発明のチャー回収装置は、石炭をガス化して生成された生成ガスから石炭の未燃分を回収するチャー回収装置であって、生成ガスの生成ラインに連結される第1集塵装置と、該第1集塵装置における第1ガス排出ラインに連結される第2集塵装置と、前記第1集塵装置における第1未燃分排出ライン及び前記第2集塵装置における第2未燃分排出ラインに連結されるビンと、該ビンから未燃分を未燃分戻しラインに供給する複数の未燃分供給ラインと、前記各未燃分排出ラインまたは前記未燃分供給ラインを重力落下する未燃分の流動をアシストするアシスト装置と、を備えることを特徴とするものである。
 従って、第1集塵装置で生成ガスから粗粒の未燃分が分離され、第2集塵装置で生成ガスから微粒の未燃分が分離され、この未燃分が各未燃分排出ラインを通ってビンに貯留され、このビンに貯留された未燃分が各未燃分供給ラインを通って未燃分戻しラインに供給されることとなり、このとき、アシスト装置が各未燃分排出ラインまたは各未燃分供給ラインを重力落下する未燃分の流動をアシストすることから、未燃分はこの未燃分排出ラインや未燃分供給ラインを適正に流動することとなり、堆積を抑制することができる。その結果、複数の未燃分排出ラインや未燃分供給ラインの傾斜角度を大きく設定することが可能となり、装置の高さを抑制することが可能となり、装置を小型化することができる。
 本発明のビンシステム及びチャー回収装置によれば、粉体搬送ラインを重力落下する粉体の流動をアシストするアシスト装置を設けるので、装置の小型化を可能とすることができる。
図1は、本発明の実施例1に係るビンシステムが適用された石炭ガス化複合発電設備の概略構成図である。 図2は、実施例1のビンシステムの要部を表す概略図である。 図3は、本発明の実施例2に係るビンシステムの要部を表す概略構成図である。 図4は、本発明の実施例3に係るビンシステムの要部を表す概略構成図である。 図5は、本発明の実施例4に係るビンシステムの要部を表す概略構成図である。
 以下に添付図面を参照して、本発明に係るビンシステム及びチャー回収装置の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 図1は、本発明の実施例1に係るビンシステムが適用された石炭ガス化複合発電設備の概略構成図、図2は、実施例1のビンシステムの要部を表す概略図である。
 実施例1の石炭ガス化複合発電設備(IGCC:Integrated Coal Gasification Combined Cycle)は、空気をガス化剤としてガス化炉で石炭ガスを生成する空気吹き方式を採用し、ガス精製設備で精製した後の石炭ガスを燃料ガスとしてガスタービン設備に供給して発電を行っている。即ち、本実施例の石炭ガス化複合発電設備は、空気吹き方式の発電設備である。
 実施例1の石炭ガス化複合発電設備は、図1に示すように、給炭装置11、石炭ガス化炉12、チャー回収装置13、ガス精製設備14、ガスタービン設備15、蒸気タービン設備16、発電機17、排熱回収ボイラ(HRSG:Heat Recovery Steam Generator)18を有している。
 給炭装置11は、石炭粉砕機(ミル)21とこの石炭粉砕機21で乾燥微粉砕された微粉炭を加圧供給する微粉炭供給設備(ビンシステム)22を有している。石炭粉砕機21は、石炭を乾燥ガスにより乾燥しながら細かい粒子状に粉砕して微粉炭を製造するものである。この場合、乾燥用ガスとして、ガスタービン設備15や排熱回収ボイラ18からの排ガスの一部を利用する。そして、石炭粉砕機21の下流側には、微粉炭供給設備22として、微粉炭分離装置(例えば、集塵機)23、微粉炭ビン24、複数の微粉炭供給ホッパ25a,25b,25cが設けられている。
 石炭ガス化炉12は、微粉炭供給設備から給炭ライン31が接続されており、微粉炭を供給可能となっている。また、石炭ガス化炉12は、チャー回収装置13からチャー戻しライン32が接続されており、このチャー回収装置13で回収されたチャー(石炭の未反応分、粉体)をリサイクル可能となっている。
 更に、石炭ガス化炉12は、ガスタービン設備15(圧縮機61)から圧縮空気供給ライン33が接続されており、このガスタービン設備15で圧縮された空気の一部を抽気空気昇圧機で昇圧して供給可能となっている。空気分離装置34は、大気中の空気から窒素と酸素を分離生成するものであり、第1窒素供給ライン35が給炭ライン31に接続されると共に、第2窒素供給ライン36がチャー戻しライン32に接続され、酸素供給ライン37が圧縮空気供給ライン33に接続されている。この場合、窒素は、石炭やチャーの搬送用ガスとして利用され、酸素は、ガス化剤として利用される。
 石炭ガス化炉12は、例えば、噴流床形式のガス化炉であって、内部に供給された石炭(微粉炭)をガス化剤(空気、酸素富化空気、酸素、水蒸気など)により部分酸化・ガス化することにより、二酸化炭素や水素を主成分とする可燃性ガス(生成ガス、石炭ガス)を発生させる。なお、石炭ガス化炉12は噴流床ガス化炉に限らず、流動床ガス化炉や固定床ガス化炉としてもよい。そして、この石炭ガス化炉12の後流には生成ガスライン38が設けられておりチャー回収装置13に接続される。同チャー回収装置13にて生成ガス中に含まれるチャーと生成ガスを分離可能となっている。この場合、ガス化炉後流にガス冷却装置を設けることで可燃性ガスを所定温度まで冷却した後に生成ガスライン38を経てチャー回収装置13に供給するとよい。
 チャー回収装置13は、本発明のビンシステムを適用しており、第1集塵装置としてのサイクロン41と、第2集塵装置として第1フィルタ42a及び第2フィルタ42bと、各ロータリバルブ43a,43bと、ビン44と、ホッパ45a,45b、45c、45dとを有している。サイクロン41は、石炭ガス化炉12で生成された可燃性ガスに含まれるチャーの一次分離(粗粒を分離)するもので、上部に粗粒チャーが分離された可燃性ガスを排出する第1ガス排出ライン46が接続されると共に、下部に可燃性ガスから分離した粗粒チャーを排出する第1チャー排出ライン(第1未反応分排出ライン)47が接続されている。
 第1、第2フィルタ42a,42bは、側部に第1ガス排出ライン46が分岐してそれぞれ接続され、上部に微粒チャーが分離された可燃性ガスを排出する第2ガス排出ライン48が接続されると共に、下部に可燃性ガスから分離した微粒チャーを排出する第2チャー排出ライン49a,49bが接続されている。各フィルタ42a,42bにおける第2チャー排出ライン49a,49bへの排出部にロータリバルブ43a,43bがそれぞれ設けられている。このフィルタ42a,42bは、ポーラスフィルタであって、例えば、セラミック製のろ材を有しており、可燃性ガスがろ材を通過するときに、この可燃性ガス中のチャーを除去可能となっている。そして、このフィルタ42a,42bにより捕集されたチャーは、逆洗処理などにより落下し、ロータリバルブ43a,43bによりフィルタ容器から排出され、第2チャー排出ライン49a,49bを通してビン44に払い出される。
 そして、第1ガス排出ライン46とビン44との間には、両者の圧力を均一化させる第1均圧ライン50が設けられている。
 ビン44は、第1チャー排出ライン47及び第2チャー排出ライン49a,49bの下流端部が接続されており、サイクロン41及び第1、第2フィルタ42a,42bにより可燃性ガスから分離された粗粒チャーや微粒チャーを集合して各ホッパへ分配するものである。各ホッパ45a,45b,45c,45dは、ビン44と切替ライン51a,51b,51c,51dを介して接続され、この切替ライン51a,51b,51c,51dは、ホッパ45a,45b,45c,45dの上流側に第1切替弁52a,52b,52c,52dが装着され、下流側に第2切替弁53a,53b,53c,53dが装着されている。
 即ち、各切替弁52a,52b,52c,52d,53a,53b,53c,53dにより使用する切替ライン51a,51b,51c,51dを切り替えることで、ホッパ45a,45b,45c,45dを交互に使用して連続運転を可能としている。そして、各切替ライン51a,51b,51c,51dは、ホッパ45a,45b,45c,45dの下流側で合流し、チャー戻しライン32に接続されている。この場合、本実施例では、4つの切替ライン51a,51b,51c,51d(4つのホッパ45a,45b,45c,45d)のために、その上流側にビン44を配置しており、チャーを集合し各ホッパへ分配及び一時的に貯留するビン44を設けている。
 そして、サイクロンの第1ガス排出ライン46とホッパ45a,45b,45c,45dとの間には、ガス化炉へチャーを供給している状態(例えば、ホッパ45aの場合、切替弁52aが閉状態、切替弁53aが開状態で、ホッパ45aの圧力がビン44よりも高い状態)を終了し、ビン44のチャーを受け入れるためにホッパ45a内ガスを減圧排気して圧力を均圧化させる均圧ライン81a(81b,81c,81d)が設けられている。この均圧ライン81a(81b,81c,81d)は、第1ガス排出ライン46に接続され、第3切替弁82a、82b、82c、82が装着されている。
 このように本実施例のチャー回収装置13は、サイクロン41、第1フィルタ42a及び第2フィルタ42b、ロータリバルブ43a,43bと、ビン44、ホッパ45a,45b、45c、45dなどから構成されており、本発明のビンシステムは、チャーを集合し各ホッパへの分配ならびに貯留可能な容器としてのビン44と、チャーを重力落下によりビン44に排出可能な所定の傾斜角度をもって配置される複数の粉体排出ラインとしてのチャー排出ライン47,49a,49bと、ビン44に集合してきたチャーもしくは貯留されたチャーをホッパ45a,45b,45c,45dへ重力落下により供給可能な所定の傾斜角度をもって配置される複数の粉体供給ラインとしての切替ライン51a,51b,51c,51dなどから構成されている。そして、本実施例では、各チャー排出ライン47,49a,49b、各切替ライン51a,51b,51c,51dに、重力落下するチャーの流動をアシストするアシスト装置として、チャーの流動方向に沿って不活性ガスを供給するアシストガス供給装置が設けられている。
 本実施例にて、各チャー排出ライン47,49a,49bに装着されたアシストガス供給装置は、それぞれアシストガス供給部54,55a,55bとアシストガス排出部56,57a,57bとを有している。また、各切替ライン51a,51b,51c,51dに装着されたアシストガス供給装置は、それぞれアシストガス供給部58a,58b,58c,58dとアシストガス排出部59a,59b,59c,59dとを有している。
 ここで、各チャー排出ライン47,49a,49bのアシストガス供給装置としてのアシストガス供給部54,55a,55b及びアシストガス排出部56,57a,57bと、各切替ライン51a,51b,51c,51dのアシストガス供給装置としてのアシストガス供給部58a,58b,58c,58d及びアシストガス排出部59a,59b,59c,59dは、ほぼ同様の構成をなしている。そのため、以下では、第1チャー排出ライン47のアシストガス供給装置としてのアシストガス供給部54及びアシストガス排出部56についてのみ説明する。
 アシストガス供給装置において、図2に示すように、第1チャー排出ライン47は、サイクロン41(図1参照)から鉛直方向に垂下して配置される第1直線部101と、ビン44(図1参照)へ鉛直方向に垂下して配置される第2直線部102と、第1直線部101の下端部と第2直線部102の上端部を連結する傾斜部103から構成されている。この場合、傾斜部103は、水平方向に対して所定角度θ(例えば、60度以下)だけ傾斜するように配置されている。
 そして、チャー排出ライン47の傾斜部103は、基端部(上端部)にアシストガス供給部54が装着され、先端部(下端部)にアシストガス排出部56が装着されている。このアシストガス供給部54は、不活性ガスを供給するガス供給管111と、ガス噴射ノズル112を有しており、ガス噴射ノズル112が傾斜部103の基端部から内部に不活性ガスを供給することができる。アシストガス排出部56は、チャーの移動による容積相当の置換ガス及び不活性ガスを排出するガス排出管113と、ガス回収部114を有しており、ガス回収部114が傾斜部103の先端基端部から内部のガスを排出することができる。このガス回収部114は、チャーとガスを分離する機能を持ち、具体的には、チャー排出方向と逆方向(第2直線部102の上方)に開口しチャーとガスを重力分離または慣性分離する構造である。
 この場合、不活性ガスは、窒素ガスや二酸化炭素ガスが望ましいが、酸素濃度が3%以下の不活性ガス(イナートガス)または、可燃性ガス(チャー回収装置出口またはガス精製設備出口ガスを昇圧リサイクルしたもの)とすればよく、第1チャー排出ライン47を流れるガスの燃焼を防止することができる。また、不活性ガスは、第1チャー排出ライン47を流れるガスの露点以上の温度のガスとすることが望ましい。そして、アシストガス供給部54は、連続的または間欠的に不活性ガスを供給する。
 従って、サイクロン41により可燃性ガスから分離された粗粒チャーは、重力落下により第1チャー排出ライン47に流れ落ち、第1直線部101、傾斜部103、第2直線部102を通ってビン44に集合して各ホッパへの分配または貯留される。このとき、アシストガス供給部54は、ガス噴射ノズル112から傾斜部103内に粗粒チャーの流動方向に向けて不活性ガスが供給されるため、第1チャー排出ライン47を構成する配管の内部下面に沿って移動する粗粒チャーの流れが促進され、堆積を抑制することができる。そして、アシストガス排出部56は、ガス回収部114がチャーの移動による容積相当の置換ガス及び供給された不活性ガスを回収することができる。
 ガス精製設備14は、チャー回収装置13によりチャーが分離された可燃性ガスに対して、硫黄化合物や窒素化合物、ハロゲン化物などの不純物を取り除くことで、ガス精製を行うものである。そして、ガス精製設備14は、可燃性ガスから不純物を除去して燃料ガスを製造し、これをガスタービン設備15に供給する。
 ガスタービン設備15は、圧縮機61、燃焼器62、タービン63を有しており、圧縮機61とタービン63は、回転軸64により連結されている。燃焼器62は、圧縮機61から圧縮空気65が供給されると共に、ガス精製設備14から燃料ガス66が供給され、タービン63に燃焼ガス67を供給する。また、ガスタービン設備15は、圧縮機61から石炭ガス化炉12に延びる圧縮空気供給ライン33が設けられており、中途部に昇圧機68が設けられている。従って、燃焼器62では、圧縮機61から供給された圧縮空気とガス精製設備14から供給された燃料ガスとを混合して燃焼し、タービン63にて、発生した燃焼ガスにより回転軸64を回転することで発電機17を駆動することができる。
 蒸気タービン設備16は、ガスタービン設備15における回転軸64に連結されるタービン69を有しており、発電機17は、この回転軸64の基端部に連結されている。排熱回収ボイラ18は、ガスタービン設備15(タービン63)からの排ガスライン70に設けられており、高温の排ガスと熱交換を行うことで、蒸気を生成するものである。排熱回収ボイラ18で熱が回収された排ガスは、煙突74から大気へ放出される。
 ここで、実施例1の石炭ガス化複合発電設備の作動について説明する。
 実施例1の石炭ガス化複合発電設備において、図1に示すように、給炭装置11にて、石炭は、石炭粉砕機22により乾燥・粉砕され微粉炭が製造される。この微粉炭は、微粉炭分離装置および微粉炭ビンと微粉炭ビンからなる微粉炭供給設備(ビンシステム)により加圧され、空気分離装置34から供給される窒素により給炭ライン31を通して石炭ガス化炉12に供給される。また、後述するチャー回収装置13で回収されたチャーが、空気分離装置34から供給される窒素によりチャー戻しライン32を通して石炭ガス化炉12に供給される。更に、後述するガスタービン設備15から抽気された圧縮空気が昇圧機68で昇圧された後、空気分離装置34から供給される酸素と共に圧縮空気供給ライン33を通して石炭ガス化炉12に供給される。
 石炭ガス化炉12では、供給された微粉炭がガス化剤(圧縮空気、酸素など)により部分酸化・ガス化することで、二酸化炭素や水素を主成分とする可燃性ガス(生成ガス、石炭ガス)を生成する。そして、この可燃性ガスは、石炭ガス化炉12から生成ガスライン38を通して排出され、チャー回収装置13に送られる。
 このチャー回収装置13にて、可燃性ガスは、まず、サイクロン41に供給されることで、ここで可燃性ガスからこのガスに含有するチャーが一次分離(粗粒を分離)される。そして、チャーが一次分離された可燃性ガスは、第1ガス排出ライン46に排出される一方、可燃性ガスから分離した粗粒チャーは、第1チャー排出ライン47を通してビン44に払い出される。
 サイクロン41でチャーが一次分離され第1ガス排出ライン46に排出された可燃性ガスは、次に、各フィルタ42a,42bに供給され、可燃性ガスに残留するチャーが二次分離される。そして、残留チャーが分離された可燃性ガスは、第2ガス排出ライン48に排出される一方、可燃性ガスから分離したチャーは、ロータリバルブ43a,43bによりフィルタ容器から排出され、第2チャー排出ライン49a,49bを通してビン44に払い出される。ここで、ビン44は、第1チャー排出ライン47を通してビン44に払い出される一次分離チャーと、第2チャー排出ライン49a,49bを通してビン44に払い出される二次分離チャーとを集合し、各ホッパへ分離供給または貯留することができる。
 この場合、ガス生成ライン38の圧力P、第1ガス排出ライン46の圧力P、第2ガス排出ライン48の圧力Pとすると、その圧力関係は、P>P>Pとなっている。また、第1ガス排出ライン46とビン44との間に、第1均圧ライン50が設けられていることで、第1ガス排出ライン46の圧力Pとビン44の圧力Pがほぼ同圧となり、その圧力関係は、P>P4≒P>Pとなっている。そのため、サイクロン41により分離された一次分離チャーは、第1チャー排出ライン47からビン44に払い出されることとなり、第1チャー排出ライン47における粗粒チャーを含むガスの逆流が防止され、サイクロン41の集塵効率が高く維持される。この第1均圧ライン50がないと、一次分離チャーの体積と置換されるガスが第1チャー排出ライン47を逆流することとなり、一次分離チャーの排出量が増加すると、サイクロン41の排出部(スロート部)で一次分離チャーが吹き上がる現象が発生し、サイクロン41における集塵効率が低下してしまう。
 なお、第1ガス排出ライン46の圧力Pとビン44の圧力Pとは、第1均圧ライン50によりほぼ同圧に調整されるものの、サイクロン41及びフィルタ42a,42bからチャーが各チャー排出ライン47,49a,49bを通してビン44に払い出されることから、ビン44にあるチャーを含むガスが第1均圧ライン50を通して第1ガス排出ライン46に放出される可能性があるが、第1均圧ライン50からの放出ガスは、各フィルタ42a,42bに供給されることで、可燃性ガスからチャーが分離される。
 また、サイクロン41で可燃性ガスから分離した一次分離チャーは、第1チャー排出ライン47を通してビン44に払い出され、また、各フィルタ42a,42bで可燃性ガスから分離した二次分離チャーは、第2チャー排出ライン49a,49bを通してビン44に払い出される。このとき、図1及び図2に示すように、アシストガス供給装置のアシストガス供給部54,55a,55bが各チャー排出ライン47,49a,49bの傾斜部103に不活性ガスを供給しており、各チャー排出ライン47,49a,49bを構成する配管内の下面に沿って移動する粗粒チャーの流れをアシストすることでその流れが促進され、配管内へのチャーの堆積を抑制することができる。その後、各チャー排出ライン47,49a,49bの傾斜部103の下流側で、アシストガス排出部56によりチャーの移動による容積相当の置換ガスおよび不活性ガスを排出することで、各チャー排出ライン47,49a,49b内の背圧上昇を抑え、安定したチャーの排出を維持することができる。
 そして、ビン44に集合または貯留されたチャーは、第1切替弁52a,52b,52c,52dと第2切替弁53a,53b,53c,53d、第3切替弁90a、90b、90c、90dを順次開閉することで、切替ライン51a及びホッパ45aと、切替ライン51b及びホッパ45b、切替ライン51c及びホッパ45c、切替ライン51d及びホッパ45dを順に使用するようにしている。例えば、ホッパ45aにビン44よりチャーを供給する場合、第2均圧ライン60aの第3切替弁90aおよび切り替えライン51aの切替弁52aを開放、切替弁53aを閉止することによりビン44とホッパ45aが均圧されチャーを供給できる。このとき、ガス化炉へのチャーを供給するホッパを45cとすると、第2均圧ライン60cの第3切替弁90cおよび切り替えライン51cの切替弁52cを閉止、切替弁53cを開放しガス化炉へチャーを戻すことができる。その他の切替弁90b、90dは開放、52b,52d,53b,53dを閉止することで、ビン44のチャーを切替ライン51aによりホッパ45aに供給することができる。そして、このホッパ45aが一杯になったら、第2均圧ライン60bの第3切替弁90bおよび切り替えライン51bの切替弁52bを開放、切替弁53bを閉止することによりビン44とホッパ45bが均圧されチャーを供給できる。これにより回収したチャーをビンからホッパへの排出・供給作業を連続して行うことができ、チャー回収装置13の連続運転が可能となる。ホッパ45a,45b,45c,45dに供給されたチャーは、チャー戻しライン32を通して石炭ガス化炉12に戻されてガス化される。
 このとき、アシストガス供給装置のアシストガス供給部58a,58b,58c,58dは各切替ライン51a,51b,51c,51dのチャー供給時に傾斜部に不活性ガスを供給しており、各切替ライン51a,51b,51c,51dを構成する配管内の下面に沿って移動するチャーの流れをアシストすることでその流れが促進され、配管内へのチャーの堆積を抑制することができる。その後、各切替ライン51a,51b,51c,51dの傾斜部の下流側で、アシストガス排出部59a,59b,59c,59dによりチャーの移動による容積相当の置換ガスおよび不活性ガスをを排出することで、各切替ライン51a,51b,51c,51d内の背圧上昇を抑え、安定したチャーの排出を維持することができる。
 チャー回収装置13によりチャーが分離された可燃性ガスは、ガス精製設備14にて、硫黄化合物や窒素化合物、ハロゲン化物などの不純物が取り除かれ燃料ガスが製造される。そして、ガスタービン設備15では、圧縮機61が空気を圧縮し、燃焼器62に供給、燃焼器62にて圧縮機61から供給される圧縮空気と、ガス精製設備14から供給される燃料ガスを燃焼することで燃焼ガスを生成し、この燃焼ガスによりタービン63を駆動することで、回転軸64を介して発電機17を駆動し発電を行うことができる。
 そして、ガスタービン設備15におけるタービン63から排出された排気ガスは、排熱回収ボイラ18にて、熱交換を行うことで蒸気を生成し、この生成した蒸気を蒸気タービン設備16に供給する。蒸気タービン設備16では、排熱回収ボイラ18から供給された蒸気によりタービン69を駆動することで、回転軸64を介して発電機17を駆動し、発電を行うことができる。
 排熱回収ボイラ18から排出された排気ガスは煙突74から大気へ放出される。
 このように実施例1のビンシステムにあっては、チャーを集合分配または貯留可能なビン44と、チャーを重力落下によりビン44に排出可能な所定の傾斜角度θをもって配置される3つのチャー排出ライン47,49a,49bと、ビン44に集合または貯留されたチャーを重力落下により供給可能な所定の傾斜角度θをもって配置される4つの切替ライン51a,51b,51c,51dと、チャー排出ライン47,49a,49bを重力落下するチャーの流動をアシストするアシスト装置としてアシストガス供給部54,55a,55b、58a,58b,58c,58dを設けている。
 従って、チャーが重力落下により各チャー排出ライン47,49a,49bを流動してビン44に排出されるとき、アシストガス供給部54,55a,55bが各チャー排出ライン47,49a,49bを重力落下するチャーの流動をアシストすることから、チャーは、この各チャー排出ライン47,49a,49bを適正に流動することとなり、各チャー排出ライン47,49a,49bを構成する配管への堆積を抑制することができる。その結果、各チャー排出ライン47,49a,49bの傾斜角度を大きく設定することが可能となり、装置の高さを抑制することが可能となり、装置を小型化することができる。
 また、実施例1のビンシステムにあっては、各切替ライン51a,51b,51c,51dを重力落下するチャーの流動をアシストするアシスト装置として、アシストガス供給部58a,58b,58c,58dを設けている。従って、アシストガス供給部58a,58b,58c,58dが各チャー供給ライン51a,51b,51c,51dを重力落下するチャーの流動をアシストすることから、チャーは、この各チャー供給ライン51a,51b,51c,51dを適正に流動することとなり、各チャー供給ライン51a,51b,51c,51dを構成する配管への堆積を抑制することができる。その結果、各チャー供給ライン51a,51b,51c,51dの傾斜角度を大きく設定することが可能となり、装置の高さを抑制することが可能となり、装置を小型化することができる。
 また、実施例1のビンシステムでは、アシストガス供給装置をチャーの流動方向に沿って不活性ガスを供給するアシストガス供給部54,55a,55b,58a,58b,58c,58dとしている。従って、アシスト装置として不活性ガスを供給するアシストガス供給部54,55a,55b,58a,58b,58c,58dを適用することで、装置の簡素化を可能とすることができると共に、各ライン47,49a,49b,51a,51b,51c,51dを流れるチャーに悪影響を与えることがなく、適正なチャーの搬送システムを構築することができる。
 また、実施例1のビンシステムでは、各チャー排出ライン47,49a,49b及び各切替ライン51a,51b,51c,51dは、傾斜角度θを水平方向に対して60度以下に設定し、この傾斜角度θに設定された各チャー排出ライン47,49a,49b及び各切替ライン51a,51b,51c,51dにアシストガス供給部54,55a,55b,58a,58b,58c,58dを設けている。従って、各チャー排出ライン47,49a,49bや各切替ライン51a,51b,51c,51dの傾斜角度を60度以下にすることができ、装置の高さを抑制することが可能となり、装置を小型化することができる。
 また、実施例1のチャー回収装置にあっては、石炭ガス化炉12から可燃性ガスを排出するガス生成ライン38にサイクロン41を連結し、このサイクロン41における第1ガス排出ライン46にフィルタ42a,42bを連結する一方、サイクロン41における第1チャー排出ライン47及びフィルタ42a,42bにおける第2チャー排出ライン49a,49bにビン44を連結し、このビン44に4つの切替ライン51a,51b,51c,51dを介してホッパ45a,45b,45c,45dを連結し、各ホッパ45a,45b,45c,45dをチャー戻しライン32に連結して構成し、チャー排出ライン47,49a,49bにアシストガス供給部54,55a,55bを設けると共に、切替ライン51a,51b,51c,51dにアシストガス供給部58a,58b,58c,58dを設けている。
 従って、サイクロン41で生成ガスから粗粒のチャーが分離され、フィルタ42a,42bで生成ガスから微粒のチャーが分離され、このチャーがチャー排出ライン47,49a,49bを通ってビン44に貯留され、このビン44に貯留されたチャーが切替ライン51a,51b,51c,51dを通ってチャー戻しライン32に供給されることとなり、このとき、アシストガス供給部54,55a,55b,58a,58b,58c,58dが各チャー排出ライン47,49a,49bや各切替ライン51a,51b,51c,51dを重力落下するチャーの流動をアシストすることから、このチャーは各ライン47,49a,49b,51a,51b,51c,51dを適正に流動することとなり、堆積を抑制することができる。その結果、チャー排出ライン47,49a,49bや切替ライン51a,51b,51c,51dの傾斜角度を大きく設定することが可能となり、装置の高さを抑制することが可能となり、装置を小型化することができる。
 図3は、本発明の実施例2に係るビンシステムの要部を表す概略構成図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 実施例2のビンシステムにおいて、図3に示すように、第1チャー排出ライン47は、第1直線部101及び第2直線部102と、各直線部101,102を連結する傾斜部103から構成されおり、傾斜部103は、水平方向に対して所定角度θだけ傾斜して配置されている。そして、本実施例のアシストガス供給装置は、第1チャー排出ライン47を構成する配管における内周下面に沿って不活性ガスを供給するものとなっている。
 即ち、第1チャー排出ライン47の傾斜部103は、下部にアシストガス供給部121が装着され、先端部(下端部)にアシストガス排出部56が装着されている。このアシストガス供給部121は、不活性ガスを供給するガス供給管122と、このガス供給管122の長手方向に所定間隔を持って形成される複数(本実施例では、3個)のガス噴射ノズル123を有しており、各ガス噴射ノズル123が傾斜部103内に進入し、傾斜部103を構成する配管における内周下面に沿って、先端部側に向けて不活性ガスを供給することができる。
 従って、チャーは、重力落下により第1チャー排出ライン47に流れ落ち、第1直線部101、傾斜部103、第2直線部102を通ってビン44に貯留される。このとき、アシストガス供給部121は、各ガス噴射ノズル123から傾斜部103内の下面に沿ってチャーの流動方向に向けて不活性ガスが供給されるため、第1チャー排出ライン47を構成する配管の内部下面に沿って移動するチャーの流れが促進され、堆積を抑制することができる。
 このように実施例2のビンシステムにあっては、アシストガス供給装置としてのアシストガス供給部121は、第1チャー排出ライン47を構成する配管における内周下面に沿って不活性ガスを供給している。
 従って、チャーは、第1チャー排出ライン47を構成する配管における内周下面に沿って移動するが、この配管における内周下面に沿って不活性ガスを供給することで、チャーと配管との摩擦抵抗が低減され、チャーの流動をスムーズとし、配管内部でのチャーの堆積を防止することができる。
 図4は、本発明の実施例3に係るビンシステムの要部を表す概略構成図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 実施例3のビンシステムにおいて、図4に示すように、第1チャー排出ライン47は、第1直線部101及び第2直線部102と、各直線部101,102を連結する傾斜部103から構成されており、傾斜部103は、水平方向に対して所定角度θだけ傾斜して配置されている。そして、本実施例のアシストガス供給装置は、第1チャー排出ライン47を構成する配管の下部にアシストガス室を設け、このアシストガス室から配管における内周下面に不活性ガスを供給するようにしている。
 即ち、第1チャー排出ライン47の傾斜部103は、下部にアシストガス供給部131が装着されている。このアシストガス供給部131は、不活性ガスを供給するガス供給管132と、傾斜部103の下部に固定されてこのガス供給管132の先端部が連結されるアシストガス室133を有しており、アシストガス室133は、第1チャー排出ライン47の傾斜部103を構成する配管内と連通している。一方、この第1チャー排出ライン47の傾斜部103を構成する配管は、内部の下部に長手方向に沿って多孔板134が敷設されている。そのため、アシストガス室133から傾斜部103の配管内の下面と多孔板134との間に不活性ガスを供給することができる。
 なお、多孔板134は、第1チャー排出ライン47を流れるチャーがアシストガス室に流通しないようなポーラスメディア(キャンバス、焼結金属、焼結金網など)が好ましい。
 従って、チャーは、重力落下により第1チャー排出ライン47に流れ落ち、第1直線部101、傾斜部103、第2直線部102を通ってビン44に貯留される。このとき、アシストガス供給部131は、アシストガス室133から傾斜部103内の下面と多孔板134との間に不活性ガスが供給される。すると、この不活性ガスは、傾斜部103内の下面と多孔板134との間の空間に供給され、同多孔板134の表面に流出することとなり、第1チャー排出ライン47を構成する配管の内部下面に沿って移動するチャーと多孔板の間の摩擦抵抗を低減するとともにチャー粉体内の内部摩擦を低減することで流れを促進し、堆積を抑制することができる。
 このように実施例3のビンシステムにあっては、第1チャー排出ライン47を構成する配管の下部にアシストガス室133を設け、このアシストガス室133から配管における内周下面に不活性ガスを供給している。
 従って、第1チャー排出ライン47を構成する配管の下部に設けられたアシストガス室133から配管における内周下面に不活性ガスが供給されることで、配管における内周下面に沿って流れるチャーがこの不活性ガスにより壁面摩擦抵抗およびチャー粉体内摩擦を低減しスムーズに流れ、配管内部での粉体の堆積を防止することができる。
 図5は、本発明の実施例4に係るビンシステムの要部を表す概略構成図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 実施例4のビンシステムにおいて、図5に示すように、第1チャー排出ライン47は、第1直線部101及び第2直線部102と、各直線部101,102を連結する傾斜部103から構成されおり、傾斜部103は、水平方向に対して所定角度θだけ傾斜して配置されている。そして、本実施例のアシストガス供給装置は、チャーの流量に応じて不活性ガスの供給量を変更するようにしている。
 即ち、チャー排出ライン47の傾斜部103は、下部にアシストガス供給部141が装着されている。このアシストガス供給部141において、傾斜部103の下部にはアシストガス室142が固定されており、仕切板143により第1チャー排出ライン47のチャー流れ方向に複数(本例では3つ)のガス室144a,144b,144cが区画されている。このアシストガス室142(ガス室144a,144b,144c)は、第1チャー排出ライン47の傾斜部103を構成する配管内と連通している。一方、この第1チャー排出ライン47の傾斜部103を構成する配管は、内部の下部に長手方向に沿って多孔板134が敷設され、各アシストガス室144a,144b,144cの仕切板143で区切られている。そのため、傾斜部103の配管内の下面にアシストガス室144a,144b、144c毎に多孔板134を介して不活性ガスを供給することができる。不活性ガスを供給するガス供給管145は、先端部が3つの分岐管145a,145b,145cに分岐され、ガス室144a,144b,144cにそれぞれ連結されている。そして、各分岐管145a,145b,145cに流量調整弁146a,146b,146cが装着されている。また、ガス供給管145は、遮断弁147、逆止弁148が装着されている。なお、流量調整弁146a,146b,146c及び遮断弁147は、図示しない制御装置により開閉制御可能となっている。
 従って、チャーは、重力落下により第1チャー排出ライン47に流れ落ち、第1直線部101、傾斜部103、第2直線部102を通ってビン44に集合または貯留される。このとき、アシストガス供給部141は、アシストガス室142の各ガス室144a,144b,144cから傾斜部103内の下面と仕切板143との間に不活性ガスを供給する。すると、この不活性ガスは、傾斜部103内に各アシストガス室144a,144b,144c上面の多孔板134表面から流出し、第1チャー排出ライン47を構成する配管の内部下面に沿って移動するチャーと多孔板の間の摩擦抵抗を低減するとともにチャー粉体内の内部摩擦を低減することで流れを促進し、堆積を抑制することができる。
 このとき、図示しないセンサは、第1チャー排出ライン47を流れるチャーの流量を検出して制御装置に出力しており、この制御装置は、チャーの流量に応じて流量調整弁146a,146b,146cの開度を調整し、各ガス室144a,144b,144cに供給される不活性ガスのガス量を調整してもよい。即ち、第1チャー排出ライン47を流れるチャーの流量により、流量調整弁146a,146b,146cの開度を変化させ、チャーの安定した排出ができるものとする。同チャーの排出状況による流量調整弁146a,146b,146cの開度を変化させることで供給される不活性ガスのガス量を必要最小流量とする。
 この場合、各ガス室144a,144b,144cに供給する不活性ガスのガス量を均一とするが、例えば、傾斜部103の上流側の不活性ガスのガス量を多くするために、ガス室144aに供給する不活性ガスのガス量を多くし、ガス室144cに供給する不活性ガスのガス量を少なくしてもよい。
 このように実施例4のビンシステムにあっては、チャーの流量に応じて不活性ガスの供給量を変更可能としている。
 従って、チャーの流量に応じて適正量の不活性ガスを供給することで、チャーの搬送速度を適正速度に維持することができると共に、不活性ガスの使用量を低減して運転コストを低減することができる。
 なお、上述した各実施例にて、アシストガス供給装置弁の構成、順序を示したが、この構成、順序に限定されるものではない。また、アシスト装置をアシストガス供給装置としたが、この構成に限定されるものではなく、例えば、配管や多孔板などを振動させる振動装置などとしてもよい。
 また、上述した各実施例では、本発明に係るビンシステムを石炭ガス化複合発電設備におけるチャー回収装置に適用して説明したが、この装置に限定されるものではなく、微粉炭供給設備やIGCCに関わらない設備での粉体を搬送する装置ならばいずれの装置にも適用することができる。
 本発明に係るビンシステム及びチャー回収装置は、粉体搬送ラインを重力落下する粉体の流動をアシストするアシスト装置を設けることで、粉体搬送ラインを傾斜させて装置の小型化を可能とするものであり、ビンシステムは、石炭ガス化複合発電設備だけでなく、微粉炭や石炭の未燃分(フライアッシュ)、セメント、食品などの粉体を取り扱う設備に適用することができる。
 11 給炭装置
 12 石炭ガス化炉
 13 チャー回収装置
 14 ガス精製設備
 15 ガスタービン設備
 16 蒸気タービン設備
 17 発電機
 18 排熱回収ボイラ
 19 ガス浄化装置
 41 サイクロン(第1集塵装置)
 42a 第1フィルタ(第2集塵装置)
 42b 第2フィルタ(第2集塵装置)
 43a,43b ロータリバルブ
 44 ビン(密閉容器)
 45a,45b,45c,45d ホッパ
 46 第1ガス排出ライン
 47 第1チャー排出ライン(粉体排出ライン、第1未燃分排出ライン)
 48 第2ガス排出ライン
 49a,49b 第2チャー排出ライン(粉体排出ライン)
 50 第1均圧ライン
 51a,51b,51c,51d 切替ライン(粉体供給ライン)
 54,55a,55b,58a,58b,58c,58d,121,131,141 アシストガス供給部(アシスト装置、アシストガス供給装置)
 56,57a,57b,59a,59b,59c,59d アシストガス排出部
 101,102 直線部
 103 傾斜部

Claims (9)

  1.  粉体を集合または貯留可能な容器と、
     粉体を重力落下により前記容器に排出可能な所定の傾斜角度をもって配置される複数の粉体排出ラインと、
     前記容器に集合または貯留された粉体を重力落下により供給可能な所定の傾斜角度をもって配置される複数の粉体供給ラインと、
     前記複数の粉体排出ラインを重力落下する粉体の流動をアシストするアシスト装置と、
     を備えることを特徴とするビンシステム。
  2.  粉体を集合または貯留可能な容器と、
     粉体を重力落下により前記容器に排出可能な所定の傾斜角度をもって配置される複数の粉体排出ラインと、
     前記容器に集合または貯留された粉体を重力落下により供給可能な所定の傾斜角度をもって配置される複数の粉体供給ラインと、
     前記複数の粉体供給ラインを重力落下する粉体の流動をアシストするアシスト装置と、
     を備えることを特徴とするビンシステム。
  3.  前記アシスト装置は、粉体の流動方向に沿って不活性ガスを供給するアシストガス供給装置を有することを特徴とする請求項1または2に記載のビンシステム。
  4.  前記アシストガス供給装置は、前記粉体排出ラインまたは前記粉体供給ラインを構成する配管における内周下面に沿って不活性ガスを供給することを特徴とする請求項3に記載のビンシステム。
  5.  前記アシストガス供給装置は、前記粉体排出ラインまたは前記粉体供給ラインを構成する配管の下部にアシストガス室を設け、該アシストガス室から前記配管における内周下面に不活性ガスを供給することを特徴とする請求項3に記載のビンシステム。
  6.  前記アシストガス供給装置は、粉体の流量に応じて不活性ガスの供給量を変更することを特徴とする請求項3から5のいずれか一つに記載のビンシステム。
  7.  前記粉体排出ラインまたは前記粉体供給ラインは、傾斜角度が水平方向に対して60度以下に設定され、この傾斜角度に設定された前記ラインに前記アシスト装置が設けられることを特徴とする請求項1から6のいずれか一つに記載のビンシステム。
  8.  前記粉体排出ラインまたは前記粉体供給ラインは、傾斜角度が水平方向に対して60度以下に設定され、この傾斜角度に設定された前記ラインに前記アシスト装置が設けられると共にアシストガス排出部が設けられることを特徴とする請求項1から7のいずれか一つに記載のビンシステム。
  9.  石炭をガス化して生成された生成ガスから石炭の未燃分を回収するチャー回収装置であって、
     生成ガスの生成ラインに連結される第1集塵装置と、
     該第1集塵装置における第1ガス排出ラインに連結される第2集塵装置と、
     前記第1集塵装置における第1未燃分排出ライン及び前記第2集塵装置における第2未反応分排出ラインに連結されるビンと、
     該ビンから未反応分を未反応分戻しラインに供給する複数の未反応分供給ラインと、
     前記各未反応分排出ラインまたは前記未反応分供給ラインを重力落下する未反応分の流動をアシストするアシスト装置と、
     を備えることを特徴とするチャー回収装置。
PCT/JP2011/076429 2010-11-25 2011-11-16 ビンシステム及びチャー回収装置 WO2012070453A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/814,618 US9199806B2 (en) 2010-11-25 2011-11-16 Bin system and char recovery unit
CN201180039853.0A CN103068703B (zh) 2010-11-25 2011-11-16 箱系统及煤渣回收装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-262910 2010-11-25
JP2010262910 2010-11-25

Publications (1)

Publication Number Publication Date
WO2012070453A1 true WO2012070453A1 (ja) 2012-05-31

Family

ID=46145799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076429 WO2012070453A1 (ja) 2010-11-25 2011-11-16 ビンシステム及びチャー回収装置

Country Status (4)

Country Link
US (1) US9199806B2 (ja)
JP (1) JP5781423B2 (ja)
CN (1) CN103068703B (ja)
WO (1) WO2012070453A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160298042A1 (en) * 2013-12-20 2016-10-13 Mitsubishi Hitachi Power Systems, Ltd. Char recycling system and char conveyance method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077435A1 (ja) * 2011-11-25 2013-05-30 三菱重工業株式会社 ビンシステム及びチャー回収装置
JP5896777B2 (ja) * 2012-02-17 2016-03-30 三菱日立パワーシステムズ株式会社 チャー回収装置
ES2893823T3 (es) * 2012-09-10 2022-02-10 Petroval Proceso para descargar material en forma de partículas de un recipiente
JP5638582B2 (ja) 2012-09-28 2014-12-10 三菱重工業株式会社 粉体搬送装置及びチャー回収装置
JP5868839B2 (ja) 2012-12-27 2016-02-24 三菱重工業株式会社 チャー払出管
JP6109796B2 (ja) * 2014-09-16 2017-04-05 三菱日立パワーシステムズ株式会社 粉体搬送装置及びチャー回収装置
BR112017006763A2 (pt) * 2014-10-01 2017-12-12 Shell Int Research sistemas e métodos para proporcionar material de alimentação para unidades pressurizadas
CA2975325C (en) * 2015-01-30 2020-11-17 Lummus Technology Inc. Standpipe-fluid bed hybrid system for char collection, transport, and flow control
JP6700773B2 (ja) * 2015-12-18 2020-05-27 三菱日立パワーシステムズ株式会社 チャー排出装置、これを有するチャー回収装置及びチャー排出方法、ガス化複合発電設備
JP6640547B2 (ja) * 2015-12-18 2020-02-05 三菱日立パワーシステムズ株式会社 フィルタ逆洗装置、チャー回収装置及びフィルタ逆洗方法、ガス化複合発電設備
JP6700774B2 (ja) * 2015-12-18 2020-05-27 三菱日立パワーシステムズ株式会社 粉体搬送装置、チャー回収装置、粉体搬送方法、及びガス化複合発電設備
PL429573A1 (pl) * 2016-06-08 2019-10-07 Gas Technology Institute Sposoby i urządzenia do równomiernego rozprowadzania stałych materiałów paliwowych
JP6783675B2 (ja) * 2017-01-23 2020-11-11 三菱パワー株式会社 流動化シュート、プラント及び流動化シュートの監視方法
JP2018131321A (ja) * 2017-02-17 2018-08-23 三菱日立パワーシステムズ株式会社 粉体払出機構、およびそれを備えた粉体貯留容器、ガス化複合発電装置、粉体払出機構における粉体の払出方法
WO2019045720A1 (en) 2017-08-31 2019-03-07 Kimberly-Clark Worldwide, Inc. AIR ASSISTED PARTICLE DISTRIBUTION SYSTEM
CN107954218A (zh) * 2017-12-13 2018-04-24 航天长征化学工程股份有限公司 一种磨煤及粉煤输送系统
JP7362244B2 (ja) * 2018-11-14 2023-10-17 三菱重工業株式会社 粉体燃料供給装置、ガス化炉設備およびガス化複合発電設備ならびに粉体燃料供給装置の制御方法
CN112173718A (zh) * 2020-09-30 2021-01-05 安徽维嵩生产力促进有限公司 整管系自动脉冲蠕动式浓相气力输送系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118633A (ja) * 1984-07-02 1986-01-27 Kawasaki Steel Corp 粉体の移送定量供給装置
JPS6198732U (ja) * 1984-12-03 1986-06-24
JPS6211823U (ja) * 1985-07-04 1987-01-24
JPH07109018A (ja) * 1993-10-13 1995-04-25 Printing Bureau Ministry Of Finance Japan 多孔性内管を備えた粉体搬送用シュート装置
JPH0812075A (ja) * 1994-06-24 1996-01-16 Nisshin Flour Milling Co Ltd 空気輸送系に用いられる定風量調節装置
JPH11108742A (ja) * 1997-09-30 1999-04-23 Yamato Scale Co Ltd エアースライド式コンベアスケール
JPH11118124A (ja) * 1997-10-20 1999-04-30 Babcock Hitachi Kk 流動床式ガス化溶融装置と方法
JP2002265046A (ja) * 2001-03-09 2002-09-18 Tsukasa Kogyo Kk 粉粒体気力輸送用二重構造ホッパー
JP2004527426A (ja) * 2001-03-21 2004-09-09 ノルスク・ヒドロ・アーエスアー 流動可能物質の分配を行う方法及びシステム
JP2007153585A (ja) * 2005-12-07 2007-06-21 Mitsubishi Heavy Ind Ltd ロータリフィーダ及び石炭ガス化装置
JP2008230825A (ja) * 2007-03-23 2008-10-02 Ube Ind Ltd 粉体輸送方法および粉体輸送装置
JP2010091193A (ja) * 2008-10-08 2010-04-22 Mitsubishi Heavy Ind Ltd スラグ溶融バーナ装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2866272A (en) * 1954-09-28 1958-12-30 Smidth & Co As F L Cyclone heat exchange apparatus
US2882097A (en) * 1956-12-19 1959-04-14 Arvid J Hamren Air-conveyor
JPS6112790A (ja) * 1984-06-28 1986-01-21 Babcock Hitachi Kk 噴流層石炭ガス化炉
JPS6198732A (ja) 1984-07-02 1986-05-17 Mitsui Toatsu Chem Inc ポリエステルの製造法
JPS6211823A (ja) 1985-07-10 1987-01-20 Mitsubishi Electric Corp 偏光変換器
JPH02206687A (ja) * 1989-02-06 1990-08-16 Hitachi Ltd 冷却型噴出バーナ
JPH0354788A (ja) 1989-07-24 1991-03-08 Nec Corp 発話データ処理装置
JP3054788B2 (ja) 1991-12-10 2000-06-19 バブコック日立株式会社 気流層ガス化装置
JP3652848B2 (ja) 1997-09-30 2005-05-25 三菱重工業株式会社 ガス化設備
JP4523813B2 (ja) 2004-08-24 2010-08-11 三菱重工業株式会社 石炭ガス化複合発電プラント
US7553111B2 (en) * 2007-06-28 2009-06-30 Flsmidth A/S Fluidizing gravity conveyor with high temperature multi-layered fluid distributor member

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118633A (ja) * 1984-07-02 1986-01-27 Kawasaki Steel Corp 粉体の移送定量供給装置
JPS6198732U (ja) * 1984-12-03 1986-06-24
JPS6211823U (ja) * 1985-07-04 1987-01-24
JPH07109018A (ja) * 1993-10-13 1995-04-25 Printing Bureau Ministry Of Finance Japan 多孔性内管を備えた粉体搬送用シュート装置
JPH0812075A (ja) * 1994-06-24 1996-01-16 Nisshin Flour Milling Co Ltd 空気輸送系に用いられる定風量調節装置
JPH11108742A (ja) * 1997-09-30 1999-04-23 Yamato Scale Co Ltd エアースライド式コンベアスケール
JPH11118124A (ja) * 1997-10-20 1999-04-30 Babcock Hitachi Kk 流動床式ガス化溶融装置と方法
JP2002265046A (ja) * 2001-03-09 2002-09-18 Tsukasa Kogyo Kk 粉粒体気力輸送用二重構造ホッパー
JP2004527426A (ja) * 2001-03-21 2004-09-09 ノルスク・ヒドロ・アーエスアー 流動可能物質の分配を行う方法及びシステム
JP2007153585A (ja) * 2005-12-07 2007-06-21 Mitsubishi Heavy Ind Ltd ロータリフィーダ及び石炭ガス化装置
JP2008230825A (ja) * 2007-03-23 2008-10-02 Ube Ind Ltd 粉体輸送方法および粉体輸送装置
JP2010091193A (ja) * 2008-10-08 2010-04-22 Mitsubishi Heavy Ind Ltd スラグ溶融バーナ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160298042A1 (en) * 2013-12-20 2016-10-13 Mitsubishi Hitachi Power Systems, Ltd. Char recycling system and char conveyance method
US10465134B2 (en) * 2013-12-20 2019-11-05 Mitsubishi Hitachi Power Systems, Ltd. Char recycling system and char conveyance method

Also Published As

Publication number Publication date
JP2012126571A (ja) 2012-07-05
JP5781423B2 (ja) 2015-09-24
US9199806B2 (en) 2015-12-01
CN103068703B (zh) 2016-01-20
US20130140168A1 (en) 2013-06-06
CN103068703A (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
WO2012070453A1 (ja) ビンシステム及びチャー回収装置
WO2013077435A1 (ja) ビンシステム及びチャー回収装置
JP5638582B2 (ja) 粉体搬送装置及びチャー回収装置
JP2012126571A5 (ja)
US20090178338A1 (en) Fuel feed system for a gasifier and method of gasification system start-up
JP5595581B2 (ja) 石炭ガス化炉用微粉炭供給システム
JP5896777B2 (ja) チャー回収装置
US7503945B2 (en) Method and apparatus for gasifying carbonaceous material
US10717594B2 (en) Pressurizing system for powder supply hopper, gasification facility, integrated gasification combined cycle facility, and method for pressurizing powder supply hopper
JP6660790B2 (ja) 微粉炭供給システム及びその運転方法並びに石炭ガス化発電設備
JP5529678B2 (ja) チャー回収装置
JP6602174B2 (ja) ガス化装置、ガス化複合発電設備、ガス化設備及び除煤方法
JP5578988B2 (ja) チャー回収装置
JP2013174419A (ja) 流動層乾燥装置
JP6700774B2 (ja) 粉体搬送装置、チャー回収装置、粉体搬送方法、及びガス化複合発電設備
CN108368439B (zh) 煤焦排出装置、具备该煤焦排出装置的煤焦回收装置及煤焦排出方法、气化复合发电设备
JP6407618B2 (ja) 炭化質燃料ガス化炉用微粉供給システム、炭化質燃料ガス化複合発電設備および炭化質燃料ガス化炉用微粉供給システムの運転方法
JP2012046571A (ja) チャー回収装置
JP2017132840A (ja) 異物除去装置、ガス化設備およびガス化複合発電設備ならびに異物除去方法
JPH07174327A (ja) 加圧流動床ボイラの灰処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039853.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843912

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13814618

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11843912

Country of ref document: EP

Kind code of ref document: A1