JP2018131321A - 粉体払出機構、およびそれを備えた粉体貯留容器、ガス化複合発電装置、粉体払出機構における粉体の払出方法 - Google Patents

粉体払出機構、およびそれを備えた粉体貯留容器、ガス化複合発電装置、粉体払出機構における粉体の払出方法 Download PDF

Info

Publication number
JP2018131321A
JP2018131321A JP2017028087A JP2017028087A JP2018131321A JP 2018131321 A JP2018131321 A JP 2018131321A JP 2017028087 A JP2017028087 A JP 2017028087A JP 2017028087 A JP2017028087 A JP 2017028087A JP 2018131321 A JP2018131321 A JP 2018131321A
Authority
JP
Japan
Prior art keywords
powder
char
gas
fluidizing
pulverized coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017028087A
Other languages
English (en)
Inventor
悠一郎 浦方
Yuichiro Urakata
悠一郎 浦方
幸治 西村
Koji Nishimura
幸治 西村
潤 葛西
Jun Kasai
潤 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2017028087A priority Critical patent/JP2018131321A/ja
Publication of JP2018131321A publication Critical patent/JP2018131321A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

【課題】粉体貯留容器内の摩耗を抑えてメンテナンスコストを抑えるとともに、粉体の払出の効率を高め、複数の払出口を備えた場合においても、それぞれの払出口に、より平均化して粉体を供給することを目的とする。【解決手段】粉体払出機構30は、微粉炭やチャーを貯留し、その底部114b,514bに払出口119,519が形成された微粉炭ビン114,チャービン514に設けられ、鉛直上下方向に間隔をあけて複数段に設けられ、窒素ガスを噴出することで微粉炭ビン114,チャービン514内の微粉炭やチャーを流動化させる容器内の流動化ノズル31A、流動化ノズル31B、配管内の流動化ノズル32と、流動化ノズル31A、流動化ノズル31B、流動化ノズル32において、窒素ガスを順次間欠的に噴出させるコントローラと、を備える。【選択図】図4

Description

本発明は、粉体払出機構、およびそれを備えた粉体貯留容器、ガス化複合発電装置、粉体払出機構における粉体の払出方法に関するものである。
例えば、ガス化炉設備として、石炭等の炭素含有固体燃料をガス化炉内に供給し、炭素含有固体燃料を部分燃焼させてガス化することで、可燃性ガスを生成する炭素含有燃料ガス化装置(石炭ガス化設備)が知られている。
石炭ガス化複合発電設備(以下「IGCC」という。)は、石炭等の炭素含有固体燃料を用いてガス化炉設備で生成した生成ガスを、ガス精製装置で精製して燃料ガスとした後、ガスタービン設備に供給して発電を行っている。
ガス化炉設備は、微粉炭などの微粉燃料(粉体)をガス化炉に供給する微粉燃料供給ホッパを備えている。微粉燃料供給ホッパを複数備える場合、その上流側に、複数の微粉燃料供給ホッパに供給する微粉燃料を一時的に貯留する微粉ビン(容器)が設けられる。
また、ガス化炉設備は、ガス化炉設備で生成された生成ガスに含まれるチャー(石炭の未反応分と灰分による粉体)を回収するチャー回収設備を備えている。チャー回収設備は、生成ガスから分離したチャーをチャー供給ホッパに貯留する。チャー供給ホッパに貯留されたチャーは、チャー戻しラインを通してガス化炉設備に戻されてリサイクルされる。
チャー供給ホッパを複数備える場合、その上流側に、複数のチャー供給ホッパに供給するチャーを一時的に貯留するチャービン(容器)が設けられる。
微粉ビンやチャービン等、粉体を貯留する容器においては、その底部に設けられた払出口から粉体を、微粉燃料供給ホッパやチャー供給ホッパ等の粉体供給対象に払い出す。このとき、容器内に貯留された粉体間に生じる摩擦力や、粉体と容器内周面との間に生じる摩擦力等によって、払出口の鉛直方向上方で粉体がブリッジ(架橋)してしまい、容器内において底部の払出口に向かう粉体の流れが阻害されてしまうことがある。
これに対し、例えば、特許文献1には、粉体を貯留するホッパの底部に設けられた排出口またはその近傍に旋回ガス流を発生させる構成が開示されている。このような構成によれば、旋回ガス流の中心に生じる負圧を利用して、容器内の粉体を、容器の底部の中央部に形成された排出口に向かって吸引することで、粉体を効率良く排出口に導くことができる。
特開2004−35235号公報
しかしながら、特許文献1に開示された構成においては、容器内で旋回ガス流を発生させることで、容器内で粉体が旋回するため、容器の内周面の摩耗が生じる場合があり、メンテナンスコストの上昇を招くおそれがある。
また、上記したように、複数の微粉燃料供給ホッパやチャー供給ホッパに供給する粉体を貯留する微粉ビンやチャービン等の容器の場合、容器の底部には、複数の微粉燃料供給ホッパやチャー供給ホッパのそれぞれに連通する複数の払出口が形成される。これら複数の払出口は、複数の微粉燃料供給ホッパやチャー供給ホッパに平均化して粉体を供給できるよう、容器の底部の中心部に対してその径方向外側にオフセットした同心円状の位置に等間隔で配置されるのが一般的である。
このように、底部に複数の払出口が形成された容器に対し、特許文献1に開示されたような、旋回ガス流の中心に生じる負圧によって粉体を吸引する構成を適用したとしても、複数の払出口が容器の底部の中心部よりも外周側にオフセットした位置に配置されているため、各払出口に粉体を均等に導くのは困難を伴うものである。
また、複数の払出口が容器の底部の中心部よりも径方向外側にオフセットした位置に配置されていると、払出口が容器の底部の中心に配置された場合に比較すると、粉体を各払出口に導く効率は低下する場合がある。
本発明は、このような事情に鑑みてなされたものであって、容器内の摩耗を抑えてメンテナンスコストを抑えるとともに、粉体の払出の効率を高め、複数の払出口を備えた場合においても、それぞれの払出口に、より平均化して粉体を供給することのできる粉体払出機構、およびそれを備えた粉体貯留容器、ガス化複合発電装置、粉体払出機構における粉体の払出方法を提供することを目的とする。
上記課題を解決するために、本発明の粉体払出機構、およびそれを備えた粉体貯留容器、ガス化複合発電装置、粉体払出機構における粉体の払出方法は以下の手段を採用する。
本発明に係る粉体払出機構は、粉体を貯留し、その底部に少なくとも1つの前記粉体の払出口が形成された粉体貯留容器に設けられた粉体払出機構であって、鉛直上下方向に間隔をあけて複数段に設けられ、ガスを噴出することで、前記粉体貯留容器及び前記払出口に接続された払出配管のうち少なくとも前記粉体貯留容器内の前記粉体を流動化させる複数の流動化ノズルと、複数段の前記流動化ノズルにおいて、前記ガスを鉛直上下方向に順次間欠的に噴出させるコントローラと、を備えることを特徴とする。
本発明に係る粉体払出機構によれば、鉛直上下方向に間隔をあけて設けた複数段の流動化ノズルにおいて、ガスを順次間欠的に噴出させることで、粉体を鉛直方向の下方から上方に順次流動させることができる。これによって、払出口からの粉体の払出を効率良く流動化させて行うことができる。
また、粉体貯留容器内で旋回流を発生させないので、粉体貯留容器内の粉体による摩耗を抑えることができる。さらに、粉体貯留容器の底部に複数の払出口を設けた場合において、それぞれの払出口に対し、より平均化して粉体を供給することができる。
さらに、各段の流動化ノズルにおいては、連続的ではなく間欠的にガスを噴出させることで、ガスの噴出によって流動化された粉体の自然な流れを阻害するのを抑えることができる。
上記粉体払出機構において、前記コントローラは、鉛直上下方向の下段側の前記流動化ノズルから上段側の前記流動化ノズルに向かって、前記ガスを順次間欠的に噴出させるとさらに好適である。
このような粉体払出機構によれば、粉体の払出方向に対して下流側から上流側に向かって粉体を順次流動化させることができるので、鉛直下方への粉体の払出を効率良く行うことができる。
上記粉体払出機構において、複数段の前記流動化ノズルのうちの一段が、前記粉体貯留容器の前記払出口に接続された払出配管に設けられ、他の段が前記粉体貯留容器に接続されているとさらに好適である。
このような粉体払出機構によれば、払出配管内の粉体の流れも促進することができる。
上記粉体払出機構において、各段の前記流動化ノズルは、水平または斜め下方に向かって前記ガスを噴出するよう設けられているとさらに好適である。
このような粉体払出機構によれば、払出口に向かって鉛直下方に流れる粉体の流れを阻害するのを抑え、粉体の自然な流れを利用して粉体を効率良く払い出すことができる。
上記粉体払出機構において、前記流動化ノズルは、前記流動化ノズルは、前記粉体貯留容器の中心軸に直交する断面において、前記中心軸に向かって前記ガスを噴出するよう設けられているとさらに好適である。
このような粉体払出機構によれば、粉体貯留容器内に供給したガスによって旋回流を発生させないので、粉体貯留容器内の内周部と粉体の摩擦による摩耗を抑えることができる。
上記粉体払出機構において、前記粉体貯留容器に設けた前記流動化ノズルは、前記中心軸に直交する断面において、前記粉体貯留容器の周方向に間隔をあけて複数設けられているとさらに好適である。
このような粉体払出機構によれば、粉体貯留容器に設けた流動化ノズルにおいて、粉体貯留容器内の粉体を相互に阻害することなく流動化させて、また周方向に平均化して流動させることができる。これにより、複数の払出口が設けられている場合であっても、それぞれの払出口に対し、より平均化して粉体を供給することができる。
本発明に係る粉体貯留容器は、上記したような粉体払出機構を備えることを特徴とする。
本発明に係る粉体貯留容器によれば、粉体を鉛直上下方向に順次流動させることができるので、払出口からの粉体の払出を効率良く流動化させて行うことができる。また、粉体貯留容器内の内周部の摩耗を抑えることができる。さらに、粉体貯留容器の底部に複数の払出口を設けた場合において、それぞれの払出口に平均化して粉体を供給することができる。
本発明に係るガス化複合発電装置は、上記したような粉体貯留容器を備えることを特徴とする。
本発明に係るガス化複合発電装置によれば、粉体貯留容器において、粉体貯留容器内の摩耗を抑えてメンテナンスコストを抑えるとともに、粉体を効率良く流動化させて払い出すことができる。
本発明に係る粉体払出機構における粉体の払出方法は、上記したような粉体払出機構における粉体の払出方法であって、鉛直上下方向に間隔をあけて複数段に設けられた前記流動化ノズルのうち鉛直上下方向の下段側の前記流動化ノズルにおいて、前記ガスを噴出させる工程と、前記下段側の前記流動化ノズルで前記ガスの噴出を終了した後、前記下段側の前記流動化ノズルの次に鉛直方向上側にある上段側の前記流動化ノズルにおいて、前記ガスを噴出させる工程と、を備えることを特徴とする。
本発明に係る粉体払出機構における粉体の払出方法によれば、粉体の払出方向下流側から上流側に向かって粉体を効率良く流動化させることができるので、粉体の払出を効率良く行うことができる。
本発明に係る粉体払出機構、およびそれを備えた粉体貯留容器、ガス化複合発電装置、粉体払出機構における粉体の払出方法によれば、粉体貯留容器内の摩耗を抑えてメンテナンスコストを抑えるとともに、粉体の払出の効率を高め、複数の払出口を備えた場合においても、それぞれの払出口に、より平均化して粉体を供給することができる。
本発明の実施形態に係る粉体払出機構を備える石炭ガス化複合発電設備の概略構成図である。 上記石炭ガス化複合発電設備における微粉炭やチャーが流れる粉体流通系統の概略構成図である。 本発明の粉体払出機構、およびそれを備えた粉体貯留容器の構成図である。 上記粉体貯留容器に設けられた、粉体払出機構を構成する流動化ノズルを示す断面図である。 上記粉体払出機構における粉体の払出方法での、各弁の動作を示すチャート図である。
以下に、本発明にかかる実施形態について、図面を参照して説明する。
先ず、本発明のガス化複合発電装置の一実施形態である石炭ガス化複合発電設備について説明する。
図1に示すように、石炭ガス化複合発電設備(IGCC:Integrated Coal Gasification Combined Cycle)10は、空気を酸化剤として用いており、ガス化炉設備14において、燃料から可燃性ガス(生成ガス)を生成する空気燃焼方式を採用している。そして、石炭ガス化複合発電設備(ガス化複合発電装置)10は、ガス化炉設備14で生成した生成ガスを、ガス精製設備16で精製して燃料ガスとした後、ガスタービン17に供給して発電を行っている。すなわち、本実施形態の石炭ガス化複合発電設備10は、空気燃焼方式(空気吹き)の発電設備となっている。ガス化炉設備14に供給する燃料としては、例えば、石炭等の炭素含有固体燃料が用いられる。
石炭ガス化複合発電設備10は、給炭設備11と、ガス化炉設備14と、チャー回収設備15と、ガス精製設備16と、ガスタービン17と、蒸気タービン18と、発電機19と、排熱回収ボイラ(HRSG:Heat Recovery Steam Generator)20とを備えている。
給炭設備11は、原炭として炭素含有固体燃料である石炭が供給され、石炭を石炭ミル113(図2参照)などで粉砕することで、細かい粒子状に粉砕した微粉炭を製造する。給炭設備11で製造された微粉炭は、給炭ライン11a出口で後述する空気分離設備42にから供給される搬送用イナートガスとしての窒素ガスによって加圧されて、ガス化炉設備14へ向けて供給される。イナートガスとは、酸素含有率が約5体積%以下の不活性ガスであり、窒素ガスや二酸化炭素ガスやアルゴンガスなどが代表例であるが、必ずしも約5%以下に制限されるものではない。
ガス化炉設備14は、給炭設備11で製造された微粉炭が供給されると共に、チャー回収設備15で回収されたチャー(石炭の未反応分と灰分)が戻されて再利用可能に供給されている。
また、ガス化炉設備14には、ガスタービン17(圧縮機61)からの圧縮空気供給ライン41が接続されており、ガスタービン17で圧縮された圧縮空気の一部が昇圧機68で所定圧力に昇圧されてガス化炉設備14に供給可能となっている。空気分離設備42は、大気中の空気から窒素と酸素を分離生成するものであり、第1窒素供給ライン43によって空気分離設備42とガス化炉設備14とが接続されている。そして、この第1窒素供給ライン43には、給炭設備11からの給炭ライン11aが接続されている。また、第1窒素供給ライン43から分岐する第2窒素供給ライン45もガス化炉設備14に接続されており、この第2窒素供給ライン45には、チャー回収設備15からのチャー戻しライン46が接続されている。更に、空気分離設備42は、酸素供給ライン47によって、圧縮空気供給ライン41と接続されている。そして、空気分離設備42によって分離された窒素は、第1窒素供給ライン43及び第2窒素供給ライン45を流通することで、石炭やチャーの搬送用ガスとして利用される。また、空気分離設備42によって分離された酸素は、酸素供給ライン47及び圧縮空気供給ライン41を流通することで、ガス化炉設備14において酸化剤として利用される。
ガス化炉設備14は、例えば、2段噴流床形式のガス化炉を備えている。ガス化炉設備14は、内部に供給された石炭(微粉炭)およびチャーを酸化剤(空気、酸素)により部分燃焼させることでガス化させ生成ガスとする。なお、ガス化炉設備14は、微粉炭に混入した異物(スラグ)を除去する異物除去設備48が設けられている。そして、このガス化炉設備14には、チャー回収設備15に向けて生成ガスを供給するガス生成ライン49が接続されており、チャーを含む生成ガスが排出可能となっている。この場合、ガス生成ライン49にシンガスクーラ(ガス冷却器)を設けることで、生成ガスを所定温度まで冷却してからチャー回収設備15に供給してもよい。
チャー回収設備15は、集塵設備51とチャー供給ホッパ52とを備えている。この場合、集塵設備51は、1つまたは複数のサイクロン511(図2参照)やポーラスフィルタ512(図2参照)により構成され、ガス化炉設備14で生成された生成ガスに含有するチャーを分離することができる。そして、チャーが分離された生成ガスは、ガス排出ライン53を通してガス精製設備16に送られる。チャー供給ホッパ52は、集塵設備51で生成ガスから分離されたチャーを貯留するものである。そして、チャー供給ホッパ52からのチャー戻しライン46が第2窒素供給ライン45に接続されている。
ガス精製設備16は、チャー回収設備15によりチャーが分離された生成ガスに対して、硫黄化合物や窒素化合物などの不純物を取り除くことで、ガス精製を行うものである。そして、ガス精製設備16は、生成ガスを精製して燃料ガスを製造し、これをガスタービン17に供給する。なお、チャーが分離された生成ガス中にはまだ硫黄分(HSなど)が含まれているため、このガス精製設備16では、アミン吸収液などによって硫黄分を除去回収して、有効利用する。
ガスタービン17は、圧縮機61、燃焼器62、タービン63を備えており、圧縮機61とタービン63とは、回転軸64により連結されている。燃焼器62には、圧縮機61からの圧縮空気供給ライン65が接続されると共に、ガス精製設備16からの燃料ガス供給ライン66が接続され、また、タービン63に向かって延びる燃焼ガス供給ライン67が接続されている。また、ガスタービン17は、圧縮機61からガス化炉設備14に延びる圧縮空気供給ライン41が設けられており、中途部に昇圧機68が設けられている。従って、燃焼器62では、圧縮機61から供給された圧縮空気の一部とガス精製設備16から供給された燃料ガスの少なくとも一部とを混合して燃焼させることで燃焼ガスを発生させ、発生させた燃焼ガスをタービン63へ向けて供給する。そして、タービン63は、供給された燃焼ガスにより回転軸64を回転駆動させることで発電機19を回転駆動させる。
蒸気タービン18は、ガスタービン17の回転軸64に連結されるタービン69を備えており、発電機19は、この回転軸64の基端部に連結されている。排熱回収ボイラ20は、ガスタービン17(タービン63)からの排ガスライン70が接続されており、給水とタービン63の排ガスとの間で熱交換を行うことで、蒸気を生成するものである。そして、排熱回収ボイラ20は、蒸気タービン18のタービン69との間に蒸気供給ライン71が設けられると共に蒸気回収ライン72が設けられ、蒸気回収ライン72に復水器73が設けられている。また、排熱回収ボイラ20で生成する蒸気には、ガス化炉設備14のシンガスクーラで生成ガスと熱交換して生成された蒸気を含んでもよい。従って、蒸気タービン18では、排熱回収ボイラ20から供給された蒸気によりタービン69が回転駆動し、回転軸64を回転させることで発電機19を回転駆動させる。
そして、排熱回収ボイラ20の出口から煙突75までには、ガス浄化設備74を備えている。
ここで、本実施形態の石炭ガス化複合発電設備10の作動について説明する。
本実施形態の石炭ガス化複合発電設備10において、給炭設備11に原炭(石炭)が供給されると、石炭は、給炭設備11の石炭ミル112(図2参照)において細かい粒子状に粉砕されることで微粉炭となる。給炭設備11で製造された微粉炭は、空気分離設備42から供給される窒素により第1窒素供給ライン43を流通してガス化炉設備14に供給される。また、後述するチャー回収設備15で回収されたチャーが、空気分離設備42から供給される窒素により第2窒素供給ライン45を流通してガス化炉設備14に供給される。更に、後述するガスタービン17から抽気された圧縮空気が昇圧機68で昇圧された後、空気分離設備42から供給される酸素と共に圧縮空気供給ライン41を通してガス化炉設備14に供給される。
ガス化炉設備14では、供給された微粉炭及びチャーが圧縮空気(酸素)により燃焼し、微粉炭及びチャーがガス化することで、生成ガスを生成する。そして、この生成ガスは、ガス化炉設備14からガス生成ライン49を通って排出され、チャー回収設備15に送られる。
このチャー回収設備15にて、生成ガスは、まず、集塵設備51に供給されることで、生成ガスに含有する微粒のチャーが分離される。そして、チャーが分離された生成ガスは、ガス排出ライン53を通してガス精製設備16に送られる。一方、生成ガスから分離した微粒のチャーは、チャー供給ホッパ52に堆積され、チャー戻しライン46を通ってガス化炉設備14に戻されてリサイクルされる。
チャー回収設備15によりチャーが分離された生成ガスは、ガス精製設備16にて、硫黄化合物や窒素化合物などの不純物が取り除かれてガス精製され、燃料ガスが製造される。圧縮機61が圧縮空気を生成して燃焼器62に供給する。この燃焼器62は、圧縮機61から供給される圧縮空気と、ガス精製設備16から供給される燃料ガスとを混合し、燃焼することで燃焼ガスを生成する。この燃焼ガスによりタービン63を回転駆動することで、回転軸64を介して圧縮機61及び発電機19を回転駆動する。このようにして、ガスタービン17は発電を行うことができる。
そして、排熱回収ボイラ20は、ガスタービン17におけるタービン63から排出された排ガスと給水とで熱交換を行うことにより蒸気を生成し、この生成した蒸気を蒸気タービン18に供給する。蒸気タービン18では、排熱回収ボイラ20から供給された蒸気によりタービン69を回転駆動することで、回転軸64を介して発電機19を回転駆動し、発電を行うことができる。
なお、ガスタービン17と蒸気タービン18は同一軸として1つの発電機19を回転駆動しなくてもよく、別の軸として複数の発電機を回転駆動しても良い。
その後、ガス浄化設備74では排熱回収ボイラ20から排出された排気ガスの有害物質が除去され、浄化された排気ガスが煙突75から大気へ放出される。
次に、上記したような石炭ガス化複合発電設備10における、微粉炭やチャーが流れる粉体流通系統について、詳細に説明する。
微粉炭の粉体流通系統は、図2に本実施形態での一例を示すように、給炭設備11は、原炭バンカ111と、石炭ミル112と、集塵器113と、微粉炭ビン(粉体貯留容器)114と、微粉炭供給ホッパ115と、を備える。
原炭バンカ111は、原炭として供給された石炭を貯留する。石炭ミル112は、原炭バンカ111に貯留された石炭を混合して粉砕し、微粉炭(粉体)を生成する。
集塵器113は、石炭ミル112で生成された微粉炭を捕集する。
微粉炭ビン114は、集塵器113で捕集された微粉炭を貯留する。
微粉炭供給ホッパ115は、微粉炭ビン114から供給される微粉炭を貯留し、ガス化炉設備14に供給する。この微粉炭供給ホッパ115は、微粉炭ビン114の例えば鉛直下方に複数が接続されている。
図3に示すように、微粉炭ビン114と、複数の微粉炭供給ホッパ115のそれぞれとは、払出配管116によって接続されている。図4に示すように、本実施形態の一例では、微粉炭ビン114は断面が円状の筒型形状をしており、中心軸Cに対して対称な形状としている。微粉炭ビン114の底部は中心軸Cに向かって外周が狭くなるように傾斜して、微粉炭の払い出しを容易にしている。微粉炭ビン114内に堆積される微粉炭の安息角は、例えば45〜50°であり、微粉炭ビン114の底部は安息角以上になるように形成されている。これら複数の払出配管116は、微粉炭ビン114の底部114bに形成された複数の払出口119に接続されている。複数の払出口119は、微粉炭ビン114の底部114bの中心部114cに対し、径方向外側にオフセットした同心円状の位置に、周方向に等間隔に形成されている。
図3に示すように、各払出配管116には、例えばエアシリンダ117cによって開閉駆動される仕切弁117と、電動モータ118mによってその開度が制御される気密弁118とが設けられている。仕切弁117の開閉と、気密弁118の開閉および開度とは、コントローラ35で制御され、微粉炭ビン114からの各微粉炭供給ホッパ115への微粉炭の供給量を調整する。
また、チャーが流れる粉体流通系統は、図2に示すように、チャー回収設備15は、集塵設備51を構成するサイクロン511およびポーラスフィルタ512と、チャービン(粉体貯留容器)514と、チャー供給ホッパ52と、を備える。
サイクロン511およびポーラスフィルタ512は、上記したように、ガス化炉設備14で生成された生成ガスに含有するチャー(粉体)を分離する。
チャービン514は、サイクロン511およびポーラスフィルタ512で分離されたチャーを貯留する。
チャー供給ホッパ52は、チャービン514から供給されるチャーを一時的に貯留し、チャー戻しライン46を通してガス化炉14に供給する。
図3に示すように、チャービン514と、複数のチャー供給ホッパ52のそれぞれとは、払出配管516によって接続されている。図4に示すように、本実施形態の一例では、チャービン514は断面が円状の筒型形状をしており、中心軸Cに対して対称な形状としている。チャービン514の底部は中心軸Cに向かって外周が狭くなるように傾斜して、チャーの払い出しを容易にしている。チャービン514内に堆積されるチャーの安息角は、例えば45〜50°であり、チャービン514の底部514bは安息角以上になるように形成されている。これら複数の払出配管516は、チャービン514の底部514bに形成された複数の払出口519に接続されている。複数の払出口519は、チャービン514の底部514bの中心部514cに対して径方向外側にオフセットした同心円状の位置に、周方向に等間隔に形成されている。
図3に示すように、各払出配管516には、例えば、エアシリンダ517cによって開閉駆動される仕切弁517と、電動モータ518mによってその開度が制御される気密弁518とが設けられている。仕切弁517の開閉と、気密弁518の開閉および開度とは、コントローラ(図3参照)で制御され、チャービン514からの各チャー供給ホッパ52へのチャーの供給量を調整する。
図3、図4に示すように、上記微粉炭ビン114、チャービン514には、それぞれ、微粉炭ビン114、チャービン514における微粉炭、チャーの流動化を図り、払出配管116、516への払出を促進する粉体払出機構30が設けられている。
粉体払出機構30は、複数の容器内流動化ノズル(流動化ノズル)31と、配管内流動化ノズル(流動化ノズル)32と、コントローラ35と、を備えている。
容器内流動化ノズル31は、微粉炭ビン114,チャービン514内に、窒素ガス(ガス)等の不活性ガスを噴出させ、微粉炭ビン114,チャービン514内に貯留された微粉炭、チャーを流動化させる。
この実施形態において、図4に示すように、微粉炭ビン114,チャービン514内の容器の鉛直方向下側の領域には、複数の容器内流動化ノズル31が設置されている。容器内流動化ノズル31は、鉛直上下方向に所定の間隔Shをあけて複数段(本実施形態において、図3、図4の例では2段)が設けられている。
ここで、本実施形態では、下段側の容器内の流動化ノズル31Aと上段側の容器内の流動化ノズル31Bについて説明を行う。容器内で下段側と上段側に設置された流動化ノズル31Aと流動化ノズル31Bとの間隔Shは、所定の間隔範囲よりも広いと、流動化ノズル31Aから噴出した窒素ガスによって微粉炭やチャーが流動化される領域と、流動化ノズル31Bから噴出した窒素ガスによって微粉炭やチャーが流動化される領域との中間で、微粉炭やチャーが流動化されずにブリッジしてしまい、下段側から順に流動化されたとしても一部の流動化されないブリッジ領域のために微粉炭やチャーの搬出がスムーズに行われなくなる場合がある。また、流動化ノズル31Aと流動化ノズル31Bとの間隔Shは、所定の間隔範囲より狭いと、流動化させる微粉炭やチャーの領域が重なり、単位体積当たりの微粉炭やチャーの流動化に対する窒素ガス流量が多く投入されることになり、流動化の効率が低下する。
したがって、流動化ノズル31Aと流動化ノズル31Bとの上下方向の間隔Shは、例えば所定間隔として200〜1000mmとするのが好ましい。間隔Shのさらに好ましい範囲は、例えば400〜800mmである。
また、容器内で下段側と上段側に設置された流動化ノズル31A、流動化ノズル31Bは、それぞれ、微粉炭ビン114,チャービン514の底部114b,514bの中心部114c,514cを中心とした周方向に等間隔をあけて複数個が設けられている。
ここで、流動化ノズル31A、流動化ノズル31Bのそれぞれにおいて、周方向で互いに隣接する流動化ノズル31A、流動化ノズル31Bの間隔Srは、所定間隔より広いと、微粉炭やチャーを一部の流動化されないブリッジ領域のために微粉炭やチャーの搬出がスムーズに行われなくなる。また、間隔Srが所定間隔より狭いと、窒素ガスの流れが既に流動化された微粉炭やチャーの流れを阻害してしまい、流動化した微粉炭やチャーの払い出しの搬出効率が低下する場合がある。
したがって、周方向で互いに隣接する流動化ノズル31A、流動化ノズル31Bの間隔Srは、微粉炭ビン114,チャービン514の底部114b,514bを平面視して、中心部114c,514c周りの角度を、例えば5°〜60°となるように設定するのが好ましい。間隔Srの角度のさらに好ましい範囲は、例えば、20°〜50°である。
また、間隔Srの所定範囲の角度の代わりに、周方向で互いに隣接する流動化ノズル31A、または流動化ノズル31Bの間隔Sr′で所定間隔を設定してもよい。間隔Sr′は、過度に離れると流動化の効率が低下し、均一に流動化しない。さらに、微粉炭ビン114,チャービン514の径寸法によっても変動し得る。したがって、周方向で互いに隣接する流動化ノズル31A、流動化ノズル31Bの所定間隔Sr′の上限と下限は間隔Sr(角度範囲)と同様で理由で設定される。所定間隔Sr′は、微粉炭ビン114,チャービン514の底部114b,514bを平面視した容器の中心軸Cに直交する水平方向断面で、周方向の長さ寸法を、例えば200〜2000mmとなるように設定するのが好ましい。間隔Sr′の周方向の長さ寸法のさらに好ましい範囲は、例えば、400〜1500mmである。
各容器内の流動化ノズル31(流動化ノズル31A、流動化ノズル31B)は、それぞれ、微粉炭ビン114,チャービン514の内壁面114w、514wに開口して設けられている。各容器内の流動化ノズル31は、微粉炭ビン114,チャービン514の底部114b,514bを平面視した状態である、容器の中心軸Cに直交する水平方向断面で、微粉炭ビン114,チャービン514の中心に向かって窒素ガスを噴出するよう配置されている。
すなわち、流動化ノズル31A、流動化ノズル31Bは、それぞれ、微粉炭ビン114,チャービン514内の微粉炭やチャーに対して、旋回流を生じさせないように設置されている。
さらに、各容器内流動化ノズル31は、鉛直上下方向において、微粉炭ビン114,チャービン514の内部に対し、水平、または斜め下方に向かって窒素ガスを噴出するよう配置されている。容器内流動化ノズル31の鉛直上下方向における傾斜角度θ1は、0°よりも小さいと、容器内流動化ノズル31は斜め上方に向かって窒素ガスを噴出するため、微粉炭やチャーの容器内の高さレベルが低下すると噴出した窒素ガスが有効に利用されず、搬出がスムーズに行われなくなり、流動化させた微粉炭やチャーを鉛直下方の払出口119,519に向かわせる効率が低下する。また、傾斜角度θ1が所定範囲より大きいと、微粉炭ビン114,チャービン514の底部114b,514bへの容器内の流動化ノズル31の取付構造が複雑となり、溶接作業などの施工性が低下する。
したがって、水平または斜め鉛直下方に向かって窒素ガスを噴出する容器内流動化ノズル31の傾斜角度θ1は、例えば20°〜70°とするのが好ましい。傾斜角度θ1のさらに好ましい範囲は、例えば、25°〜60°である。
配管内の流動化ノズル32は、払出配管116,516のそれぞれの内部についても窒素ガスを噴出させ、払出配管116,516内における微粉炭、チャーの流れを促進させる。
各配管内の流動化ノズル32は、払出配管116,516の内壁面116w、516wに開口して設けられている。
各配管内の流動化ノズル32は、鉛直上下方向において、払出配管116,516に対し、水平、または斜め下方に向かって窒素ガスを噴出するよう配置されている。配管内の流動化ノズル32の上下方向における傾斜角度θ2は、0°よりも小さいと、配管内流動化ノズル32は斜め上方に向かって窒素ガスを噴出するため、流動化された微粉炭やチャーの相互の流れがスムーズに行われなくなり、払出配管116,516における微粉炭やチャーの流れを阻害する。また、傾斜角度θ2が所定範囲より大きいと、払出配管116,516への配管内流動化ノズル32の取付構造が複雑となり、溶接作業などの施工性が低下する。
したがって、水平または斜め下方に向かって窒素ガスを噴出する配管内流動化ノズル32の傾斜角度θ2は、例えば0°〜65°とするのが好ましい。傾斜角度θ2のさらに好ましい範囲は、例えば、5°〜30°である。
図3に示すように、各容器内の流動化ノズル31(流動化ノズル31A、流動化ノズル31B)、配管内の流動化ノズル32には、窒素ガス供給配管33が接続され、窒素ガス供給源(図示無し)から窒素ガスが供給される。窒素ガス供給配管33には、例えばエアシリンダによって開閉駆動される遮断弁34が設けられ、容器内の流動化ノズル31A,31Bへの窒素ガスの供給が断続される。
コントローラ35は、上記払出配管116,516に設けられた仕切弁117,517、気密弁118,518、窒素ガス供給配管33に設けられた遮断弁34の開閉動作を制御する。
以下に、コントローラ35の制御によって実現される、微粉炭ビン114,チャービン514からの微粉炭やチャーの払出方法について説明する。
図5に示すように、コントローラ35は、微粉炭ビン114,チャービン514から微粉炭供給ホッパ115,チャー供給ホッパ52に微粉炭やチャーを払い出すとき、まず、気密弁118,518を開く(図5中の動作m1)。
気密弁118,518が開いてから、予め定めた所定時間が経過した後、コントローラ35は、次いで、仕切弁117,517を開く(図5中の動作m2)。これにより、微粉炭ビン114,チャービン514の払出口119,519が開く。
また、仕切弁117,517を開くと同時に、コントローラ35は、払出配管116,516に設けられた配管内の流動化ノズル32に窒素ガスを供給する窒素ガス供給配管33の遮断弁34Cを開く(図5中の動作m3)。
これにより、配管内の流動化ノズル32から払出配管116,516内に窒素ガスが送り込まれ、直近に微粉炭やチャーを払い出したときに気密弁118,518および仕切弁117,517を閉じた後に払出配管116,516に残っている微粉炭やチャーを流動化させ、微粉炭供給ホッパ115,チャー供給ホッパ52に向けて払い出す。
コントローラ35は、配管内の流動化ノズル32の遮断弁34Cを開いてから、予め定めた時間T1が経過した後、この遮断弁34Cを閉じる(図5中の動作m4)。
遮断弁34Cを開いてから、予め定めた時間T2(但し、T2>T1)が経過した後に、遮断弁34Cは閉じた状態にあり、コントローラ35は、下段側の容器内の流動化ノズル31Aに窒素ガスを供給する窒素ガス供給配管33の遮断弁34Aを開く(図5中の動作m5)。
これにより、流動化ノズル31Aから微粉炭ビン114,チャービン514内に窒素ガスが送り込まれ、微粉炭ビン114,チャービン514内の底部の微粉炭やチャーを流動化させる。すると、流動化された微粉炭やチャーが、微粉炭ビン114,チャービン514の払出口119,519から払出配管116,516に効率良く流動化して払い出される。
コントローラ35は、流動化ノズル31Aの遮断弁34Aを開いてから、予め定めた時間T1が経過した後、この遮断弁34Aを閉じる(図5中の動作m6)。
遮断弁34Aを開いてから、予め定めた時間T1が経過した後に、遮断弁34Aは閉じた状態にあり、コントローラ35は、上段側の容器内の流動化ノズル31Bに窒素ガスを供給する窒素ガス供給配管33の遮断弁34Bを開く(図5中の動作m7)。
これにより、流動化ノズル31Bから微粉炭ビン114,チャービン514内に窒素ガスが送り込まれ、微粉炭ビン114,チャービン514内の微粉炭やチャーを流動化させる。すると、流動化された微粉炭やチャーが、微粉炭ビン114,チャービン514で、下方の払出口119,519側に効率良く流動化して流れ落ちる。
コントローラ35は、流動化ノズル31Bの遮断弁34Bを開いてから、予め定めた時間T1が経過した後、この遮断弁34Bを閉じる(図5中の動作m8)。
上記のようにして、図5中の動作m3〜m8により、配管内の流動化ノズル32、下段側の容器内の流動化ノズル31A、上段側の容器内の流動化ノズル31Bの順で、鉛直下方から上方に向かって順次間欠的に窒素ガスを噴出する。これによって、払出配管116,516および微粉炭ビン114,チャービン514内の微粉炭やチャーが、鉛直上方から下方に向かって順次流動化される。その結果、払出配管116,516および微粉炭ビン114,チャービン514内の微粉炭やチャーを、効率良く流動化して微粉炭供給ホッパ115、チャー供給ホッパ52に払い出すことができる。
この後は、コントローラ35は、仕切弁117,517および気密弁118,518を閉じるまでの間、上記した配管内の流動化ノズル32、容器内の流動化ノズル31A、流動化ノズル31Bの間欠的な開閉動作を順次繰り返す。
上述したような粉体払出機構30、およびそれを備えた微粉炭ビン114,チャービン514、石炭ガス化複合発電設備10によれば、容器内の鉛直上下方向に間隔をあけて設けた配管内の流動化ノズル32、複数段の流動化ノズル31A、流動化ノズル31Bにおいて、窒素ガスを順次間欠的に噴出させることで、微粉炭やチャーを鉛直方向の下方から上方向に順次流動させることができる。これによって、払出口119,519からの微粉炭やチャーの払出を効率良く流動化させて行うことができる。
また、微粉炭ビン114,チャービン514内で旋回流を発生させないので、微粉炭ビン114,チャービン514内の内周部における微粉炭やチャーによる摩耗を抑えることができる。さらに、微粉炭ビン114,チャービン514の底部114b,514bに設けた複数の払出口119,519に対し、微粉炭やチャーを平均化して供給することができる。
さらに、各段の流動化ノズル31A、流動化ノズル31B、配管内の流動化ノズル32においては、連続的ではなく間欠的に窒素ガスを噴出させることで、窒素ガスの噴出によって流動化された微粉炭やチャーの自然な流れを阻害するのを抑えることができる。また、窒素ガスの合計した使用量も抑えることができる。
したがって、微粉炭ビン114,チャービン514内の摩耗を抑えてメンテナンスコストを抑えるとともに、微粉炭やチャーの払出の効率を高め、複数の払出口119,519に対し、より平均化して微粉炭やチャーを供給することができる。
また、コントローラ35は、下段側から上段側に向かって、配管内の流動化ノズル32、流動化ノズル31A、流動化ノズル31Bの順で窒素ガスを順次間欠的に噴出させるようにした。これにより、微粉炭やチャーの払出方向に対して下流側から上流側に向かって微粉炭やチャーを順次流動化させることができるので、微粉炭やチャーの払出を効率良く行うことができる。
また、配管内流動化ノズル32が、微粉炭ビン114,チャービン514の払出口119,519に接続された払出配管116,516に設けられている。これにより、払出配管116,516内の微粉炭やチャーの流れも促進することができる。
また、流動化ノズル31A、流動化ノズル31B、配管内流動化ノズル32は、水平または斜め下方に向かって窒素ガスを噴出するよう設けられている。これにより、払出口119,519に向かって鉛直下方に流れる微粉炭やチャーの流れを阻害するのを抑え、微粉炭やチャーの自然な流れを利用して微粉炭やチャーを効率良く払い出すことができる。
また、流動化ノズル31A、流動化ノズル31Bは、平面視した状態で容器の中心軸Cに直交する水平方向断面において微粉炭ビン114,チャービン514の中心部114c,514cに向かって窒素ガスを噴出するよう設けられている。これにより、微粉炭ビン114,チャービン514内に供給した窒素ガスによって旋回流を発生させないので、微粉炭ビン114,チャービン514内の内周部の微粉炭やチャーによる摩耗を抑えることができる。
また、流動化ノズル31A、流動化ノズル31Bは、平面視した状態で容器の中心軸Cに直交する水平方向断面において微粉炭ビン114,チャービン514の周方向に間隔をあけて複数設けられている。これにより、微粉炭ビン114,チャービン514内の微粉炭やチャーを、相互に阻害することなく流動化させて周方向に平均化して流動させることができる。これにより、複数の払出口119,519に対し、微粉炭やチャーを、より平均化して供給することができる。
また、上述したような粉体払出機構30における微粉炭やチャーの払出方法によれば、微粉炭やチャーを、その払出方向下流側から上流側に向かって順次流動化させることができるので、微粉炭やチャーの払出を効率良く行うことができる。
さらに、微粉炭やチャーの払出を開始するときに、流動化ノズル31A、流動化ノズル31Bに先だって、払出配管116,516に設けられた配管内の流動化ノズル32から窒素ガスを噴射するようにした。これにより、直近に微粉炭やチャーを払い出した後に払出配管116,516に残っていた微粉炭やチャーを、微粉炭供給ホッパ115,チャー供給ホッパ52に向けて払い出すことができる。したがって、この後に流動化ノズル31A、流動化ノズル31Bで微粉炭やチャーを流動化させたときに、流動化した微粉炭やチャーが払出配管116,516に流れ込みやすくなる。
なお、上記実施形態において、複数段の流動化ノズルとして、流動化ノズル31A、流動化ノズル31Bと、配管内の流動化ノズル32とを備え、合計3段の流動化ノズルを備えるようにしたが、これらのうちの少なくとも2段を備えていても良い。また、3段以上の流動化ノズルを備えるようにしても良い。
また、上記実施形態においては、微粉炭ビン114,チャービン514の底部114b,514bに複数の払出口119,519を備えるようにしたが、払出口を一つのみ備える場合であっても、本発明を適用することによって、上記実施形態と同様の作用効果を得ることができる。
さらに、上記実施形態においては、微粉炭ビン114,チャービン514に本発明を適用する例を示したが、粉体を貯留する容器であれば、例えば、微粉炭供給ホッパ115、チャー供給ホッパ52等にも上記と同様の構成を適用することが可能である。
また、上記実施形態では、微粉炭から可燃性ガスを生成する石炭ガス化炉を備えたIGCCを一例として説明したが、本発明のガス化炉設備は、例えば間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ等のバイオマス燃料など、他の炭素含有固体燃料をガス化するものにも適用可能である。また、本発明のガス化炉設備は、発電用に限らず、所望の化学物質を得る化学プラント用ガス化炉にも適用可能である。
また、上述した実施形態では、燃料として石炭を使用したが、高品位炭や低品位炭であっても適用可能であり、また、石炭に限らず、再生可能な生物由来の有機性資源として使用されるバイオマスであってもよく、例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などを使用することも可能である。
10 石炭ガス化複合発電設備(ガス化複合発電装置)
11 給炭設備
11a 給炭ライン
14 ガス化炉設備
15 チャー回収設備
16 ガス精製設備
17 ガスタービン
18 蒸気タービン
19 発電機
20 排熱回収ボイラ
30 粉体払出機構
31 容器内の流動化ノズル(流動化ノズル)
31A 下段側の容器内の流動化ノズル(流動化ノズル)
31B 上段側の容器内の流動化ノズル(流動化ノズル)
32 配管内の流動化ノズル(流動化ノズル)
35 コントローラ
41 圧縮空気供給ライン
42 空気分離設備
43 第1窒素供給ライン
45 第2窒素供給ライン
46 チャー戻しライン
47 酸素供給ライン
48 異物除去設備
49 ガス生成ライン
51 集塵設備
52 チャー供給ホッパ
53 ガス排出ライン
61 圧縮機
62 燃焼器
63 タービン
64 回転軸
65 圧縮空気供給ライン
66 燃料ガス供給ライン
67 燃焼ガス供給ライン
68 昇圧機
69 タービン
70 排ガスライン
71 蒸気供給ライン
72 蒸気回収ライン
73 復水器
74 ガス浄化設備
75 煙突
111 原炭バンカ
112 石炭ミル
113 集塵器
114 微粉炭ビン(粉体貯留容器)
114b 底部
114c 中心部
115 微粉炭供給ホッパ
116 払出配管
511 サイクロン
512 ポーラスフィルタ
514 チャービン(粉体貯留容器)
514b 底部
514c 中心部
516 払出配管
519 払出口
C 中心軸

Claims (9)

  1. 粉体を貯留し、その底部に少なくとも1つの前記粉体の払出口が形成された粉体貯留容器に設けられた粉体払出機構であって、
    鉛直上下方向に間隔をあけて複数段に設けられ、ガスを噴出することで、前記粉体貯留容器及び前記払出口に接続された払出配管のうち少なくとも前記粉体貯留容器内の前記粉体を流動化させる複数の流動化ノズルと、
    複数段の前記流動化ノズルにおいて、前記ガスを鉛直上下方向に順次間欠的に噴出させるコントローラと、
    を備えることを特徴とする粉体払出機構。
  2. 前記コントローラは、鉛直上下方向の下段側の前記流動化ノズルから上段側の前記流動化ノズルに向かって、前記ガスを順次間欠的に噴出させることを特徴とする請求項1に記載の粉体払出機構。
  3. 複数段の前記流動化ノズルのうちの一段が、前記粉体貯留容器の前記払出口に接続された払出配管に設けられ、他の段が前記粉体貯留容器に接続されていることを特徴とする請求項1または2に記載の粉体払出機構。
  4. 各段の前記流動化ノズルは、水平または斜め下方に向かって前記ガスを噴出するよう設けられていることを特徴とする請求項1から3のいずれか一項に記載の粉体払出機構。
  5. 前記流動化ノズルは、前記粉体貯留容器の中心軸に直交する断面において、前記中心軸に向かって前記ガスを噴出するよう設けられていることを特徴とする請求項1から4のいずれか一項に記載の粉体払出機構。
  6. 前記粉体貯留容器に設けた前記流動化ノズルは、前記中心軸に直交する断面において、前記粉体貯留容器の周方向に間隔をあけて複数設けられていることを特徴とする請求項1から5のいずれか一項に記載の粉体払出機構。
  7. 請求項1から6のいずれか一項に記載の粉体払出機構を備えることを特徴とする粉体貯留容器。
  8. 請求項7に記載の粉体貯留容器を備えることを特徴とするガス化複合発電装置。
  9. 請求項1から6のいずれか一項に記載の粉体払出機構における粉体の払出方法であって、
    鉛直上下方向に間隔をあけて複数段に設けられた前記流動化ノズルのうち鉛直上下方向の下段側の前記流動化ノズルにおいて、前記ガスを噴出させる工程と、
    前記下段側の前記流動化ノズルで前記ガスの噴出を終了した後、前記下段側の前記流動化ノズルの次に鉛直方向上側にある上段側の前記流動化ノズルにおいて、前記ガスを噴出させる工程と、
    を備えることを特徴とする粉体払出機構における粉体の払出方法。
JP2017028087A 2017-02-17 2017-02-17 粉体払出機構、およびそれを備えた粉体貯留容器、ガス化複合発電装置、粉体払出機構における粉体の払出方法 Pending JP2018131321A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017028087A JP2018131321A (ja) 2017-02-17 2017-02-17 粉体払出機構、およびそれを備えた粉体貯留容器、ガス化複合発電装置、粉体払出機構における粉体の払出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017028087A JP2018131321A (ja) 2017-02-17 2017-02-17 粉体払出機構、およびそれを備えた粉体貯留容器、ガス化複合発電装置、粉体払出機構における粉体の払出方法

Publications (1)

Publication Number Publication Date
JP2018131321A true JP2018131321A (ja) 2018-08-23

Family

ID=63247375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017028087A Pending JP2018131321A (ja) 2017-02-17 2017-02-17 粉体払出機構、およびそれを備えた粉体貯留容器、ガス化複合発電装置、粉体払出機構における粉体の払出方法

Country Status (1)

Country Link
JP (1) JP2018131321A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111702169A (zh) * 2020-08-10 2020-09-25 湖南飞阳齿轮制造有限责任公司 一种齿轮生产用铁基粉末压制装置及其压制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465963A (en) * 1977-11-01 1979-05-28 Matsuyama Sekyu Kagaku Kk Method of discharging granular solid from storage tank
JPS5651722U (ja) * 1979-09-28 1981-05-08
JP2012126571A (ja) * 2010-11-25 2012-07-05 Mitsubishi Heavy Ind Ltd ビンシステム及びチャー回収装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465963A (en) * 1977-11-01 1979-05-28 Matsuyama Sekyu Kagaku Kk Method of discharging granular solid from storage tank
JPS5651722U (ja) * 1979-09-28 1981-05-08
JP2012126571A (ja) * 2010-11-25 2012-07-05 Mitsubishi Heavy Ind Ltd ビンシステム及びチャー回収装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111702169A (zh) * 2020-08-10 2020-09-25 湖南飞阳齿轮制造有限责任公司 一种齿轮生产用铁基粉末压制装置及其压制方法

Similar Documents

Publication Publication Date Title
US10836567B2 (en) Pulverized-fuel supply unit and method, and integrated gasification combined cycle
KR101872526B1 (ko) 가스화 냉각실 및 스크러버 장치
KR101598768B1 (ko) 가스화 장치
JP7325948B2 (ja) 微粉炭機の微粉炭乾燥システム及びその微粉炭乾燥方法並びに微粉炭乾燥プログラム、微粉炭機、ガス化複合発電設備
WO2018135610A1 (ja) サイクロン一体型貯留装置、ガス化複合発電装置、粒子の分離方法
JP6742746B2 (ja) 粉体供給ホッパの加圧システム、ガス化設備およびガス化複合発電設備ならびに粉体供給ホッパの加圧方法
CN101712891A (zh) 带飞灰多次煤气化装置的流化床或喷动床的固体燃料燃烧及气化装置
JP6607817B2 (ja) ガス化炉装置及びガス化複合発電設備
JP2018131321A (ja) 粉体払出機構、およびそれを備えた粉体貯留容器、ガス化複合発電装置、粉体払出機構における粉体の払出方法
JP5738147B2 (ja) スラリー搬送装置
JP6660790B2 (ja) 微粉炭供給システム及びその運転方法並びに石炭ガス化発電設備
JP7039793B2 (ja) スラグ排出システムの停止方法、スラグ排出システムおよびガス化複合発電装置
JP5721647B2 (ja) 流動層乾燥装置
JP5916430B2 (ja) 流動層乾燥装置、ガス化複合発電設備および粉体燃料の供給方法
JP2017095635A (ja) ガス化装置、ガス化複合発電設備、ガス化設備及び除煤方法
JP4490300B2 (ja) 固体燃料ガス化装置およびガス化方法
JP3625817B2 (ja) 複合流動層炉および複合流動層炉の運転方法
CN216480991U (zh) 危险废弃物处理系统
CN2905791Y (zh) 一种固态排灰的气流床气化炉
CN115287098B (zh) 一种等离子体气化固体废物处理装置
CN101747941B (zh) 气化设备的干式与湿式两用的进料系统
JP4208817B2 (ja) 燃料のガス化による発電方法
JP6833553B2 (ja) 集塵装置
WO2019163634A1 (ja) スラグ排出装置、ガス化炉及びガス化複合発電設備並びにスラグ排出方法
WO2017104620A1 (ja) チャー排出装置、これを有するチャー回収装置及びチャー排出方法、ガス化複合発電設備

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210420