WO2012070435A1 - 発光装置、並びに植物栽培用led光源及び植物工場 - Google Patents

発光装置、並びに植物栽培用led光源及び植物工場 Download PDF

Info

Publication number
WO2012070435A1
WO2012070435A1 PCT/JP2011/076322 JP2011076322W WO2012070435A1 WO 2012070435 A1 WO2012070435 A1 WO 2012070435A1 JP 2011076322 W JP2011076322 W JP 2011076322W WO 2012070435 A1 WO2012070435 A1 WO 2012070435A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
wavelength
blue
chlorophyll
plant cultivation
Prior art date
Application number
PCT/JP2011/076322
Other languages
English (en)
French (fr)
Inventor
信二 尾崎
豊徳 植村
幡 俊雄
智一 名田
森岡 達也
松田 誠
真也 石崎
英賀谷 誠
仁士 松下
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to RU2013126797/07A priority Critical patent/RU2580325C2/ru
Priority to US13/988,405 priority patent/US9666769B2/en
Priority to EP11843751.6A priority patent/EP2644020B1/en
Priority to CN201180055432.7A priority patent/CN103220902B/zh
Publication of WO2012070435A1 publication Critical patent/WO2012070435A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/249Lighting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Definitions

  • the present invention relates to a light-emitting device that emits light absorbed by a plant or algae that needs light for growth in order to carry out photosynthesis, an LED light source for plant cultivation, and a plant factory.
  • the present invention relates to a light-emitting device for efficiently growing a living organism such as an LED light source for plant cultivation and a plant factory.
  • the plant stretching apparatus 100 disclosed in Patent Document 1 has a light emitting unit 110 that emits light for plant stretching and a spectrum of light emitted to the light emitting unit 110.
  • the power supply unit 120 that supplies power in a changeable manner, the determination unit 131 that determines the type of the plant 101 to be grown, and the power supply unit 120 that is controlled according to the type of the plant 101 determined by the determination unit 131 And an optical spectrum setting unit 132 for setting the light spectrum.
  • the light emitting unit 110 includes a plurality of types of LEDs 112 that emit different spectrum lights on one surface of the flat substrate 111 so that the light emitted from the LEDs 112 faces the plant 101. is set up.
  • the LED 112 is made of, for example, a cannonball type.
  • the plant cultivation LED light source 200 disclosed in Patent Document 2 can be attached to the lid of a plant culture container, and as shown in FIG. 12, a cathode terminal 201, an anode terminal 202, a light emitting chip 203, It consists of an epoxy resin lens 204. Depending on the type of the light-emitting chip 203, a predetermined color of emitted light 205 is emitted.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2004-344114 (published on Dec. 9, 2004)” Japanese Patent Publication “Japanese Patent Laid-Open No. 9-252651 (published on September 30, 1997)”
  • the red LED used for the light source as described in FIG. 12 disclosed in the above-mentioned conventional Patent Document 2, as the red LED used for the light source, as described in FIG. A film having a wavelength of 630 nm to 680 nm, preferably around an emission peak wavelength of 660 nm is used.
  • the blue LED a LED having a wavelength region of 380 nm to 480 nm, preferably around an emission peak wavelength of 450 nm is used.
  • the light quantity of blue LED is used so that it may become a ratio of 50% or less in the light quantity of red LED.
  • LED is generally used by mixing red and blue, but depending on the plant, red alone may be used.
  • the red LED emits light with high luminance (increases the drive current).
  • B Increase the number of LED chips mounted on each LED.
  • C Increase the number of red LEDs.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to emit light that can easily adjust the light quantity ratio between the blue region and the red region with a simple configuration without increasing the installation area.
  • the object is to provide an apparatus, an LED light source for plant cultivation, and a plant factory.
  • the light-emitting device of the present invention has a relatively short wavelength range among a plurality of peak wavelengths in light absorbed by plants or algae that require light for growth to perform photosynthesis.
  • the phosphor-containing sealing resin includes at least one first LED chip that emits first short-wavelength light corresponding to one peak wavelength, and a phosphor-containing sealing resin that covers the first LED chip.
  • the contained phosphor absorbs the first short wavelength region light emitted from the first LED chip, thereby corresponding to the peak wavelength in the longer wavelength region than the first peak wavelength among the plurality of peak wavelengths. It is characterized by emitting light in the long wavelength range.
  • the relatively short wavelength region means a wavelength region shorter than the wavelength of 500 nm.
  • the present invention includes at least one first LED chip that emits light in the first short wavelength region corresponding to the first peak wavelength, and a phosphor-containing sealing resin that covers the first LED chip. And the fluorescent substance contained in fluorescent substance containing sealing resin emits the long wavelength range light corresponding to the peak wavelength of a long wavelength range rather than the 1st peak wavelength.
  • an independent blue LED chip and an independent red LED chip such as chlorophyll necessary for the growth of organisms such as plants and algae with one type of blue LED chip.
  • Light corresponding to the blue region absorption peak and the red region absorption peak can be emitted. For this reason, an installation area is not increased.
  • the red phosphor since the red phosphor is dispersed in the resin layer, the red phosphor can be dispersed in the resin at a predetermined blending ratio. The amount of light in the red region can be changed.
  • a light-emitting device can be provided.
  • a second short wavelength corresponding to a second peak wavelength that is a peak wavelength in the relatively short wavelength region and is different from the first peak wavelength among the plurality of peak wavelengths. It may be provided with at least one second LED chip that emits light in the wavelength band.
  • An LED light source for plant cultivation according to the present invention is an LED light source for plant cultivation using the light-emitting device described above in order to solve the above problems, and has a wavelength of 400 to 480 nm to correspond to the blue region absorption peak of chlorophyll. And at least one blue LED chip having an emission peak in the range of red fluorescent light that emits light having an emission peak wavelength of 620 to 700 nm to correspond to the red region absorption peak of chlorophyll by excitation light from the blue LED chip. And a resin layer covering the blue LED chip by dispersing the red phosphor.
  • the plant cultivation LED light source comprises at least one blue LED chip and a resin layer in which a red phosphor covering the blue LED chip is dispersed.
  • the blue LED chip can output light in the wavelength range of 400 to 480 nm so as to correspond to the blue region absorption peak of chlorophyll.
  • the red phosphor emits light having an emission peak wavelength of 620 to 700 nm to correspond to the red region absorption peak of chlorophyll by excitation light from the blue LED chip.
  • the blue region absorption peak and red color of chlorophyll necessary for plant growth with one type of blue LED chip can be emitted. For this reason, an installation area is not increased.
  • the red phosphor since the red phosphor is dispersed in the resin layer, the red phosphor can be dispersed in the resin at a predetermined blending ratio. The amount of light in the red region can be changed.
  • An LED light source for plant cultivation can be provided.
  • the plant factory of the present invention is characterized by including the LED light source for plant cultivation described above in order to solve the above-mentioned problems.
  • the plant factory provided with the LED light source for plant cultivation which can adjust easily the light quantity ratio of a blue region and a red region with a simple structure, without increasing an installation area can be provided. .
  • the light emitting device of the present invention has a first peak wavelength in a relatively short wavelength region among a plurality of peak wavelengths in light absorbed by plants or algae that require light for growth in order to perform photosynthesis. And at least one first LED chip that emits light in the first short wavelength region, and a phosphor-containing sealing resin that covers the first LED chip, and is contained in the phosphor-containing sealing resin The phosphor absorbs the first short wavelength region light emitted from the first LED chip, and thus, among the plurality of peak wavelengths, a long wavelength region corresponding to a peak wavelength longer than the first peak wavelength. It emits light.
  • the LED light source for plant cultivation of the present invention includes at least one blue LED chip having a light emission peak in a wavelength range of 400 to 480 nm so as to correspond to the blue region absorption peak of chlorophyll, and the blue LED chip.
  • the red phosphor that emits light having a wavelength of 620 to 700 nm and the at least one blue LED chip are dispersed by dispersing the red phosphor.
  • a covering resin layer is provided.
  • the plant factory of the present invention includes the LED light source for plant cultivation described above as described above.
  • FIG. (A) shows one Embodiment of the LED light source for plant cultivation in this invention, Comprising: It is sectional drawing which shows the structure of the LED light source for plant cultivation of a board
  • (A) is a top view which shows the structure before resin layer formation in the LED light source for plant cultivation of the said board
  • (b) is a plane which shows the structure after resin layer formation in the LED light source for plant cultivation of the said board
  • (A) (b) is a top view which shows the structure of the LED light source for plant cultivation applied for illumination
  • (c) is a graph which shows the emission spectrum in the said LED light source for plant cultivation. It is explanatory drawing which shows the example applied to the plant factory in the said LED light source for plant cultivation.
  • (A) shows other one Embodiment of the LED light source for plant cultivation in this invention, Comprising: It is sectional drawing which shows the structure of the LED light source for plant cultivation of a substrate type, (b) is the said board
  • FIG.2 (a) is a top view which shows the LED light source for plant cultivation before inject
  • FIG.2 (b) is the LED light source for plant cultivation after inject
  • a substrate-type LED light source 10 as an LED light source for plant cultivation of the present embodiment has a plurality of blue LED chips 2 mounted on a ceramic substrate 1 as a substrate, and around it.
  • a standing wall 3 made of resin is provided.
  • the blue LED chips 2 are, for example, electrically connected in series and arranged in series of three, and the blue LED chips 2 are electrically connected in parallel between adjacent columns. Thus, it consists of 24 pieces arranged in 8 rows in parallel.
  • the number of blue LED chips 2 is not necessarily limited to a plurality, and may be one, and the number is not limited to 24. Further, there is no limitation on how to arrange the plurality.
  • the electrical connection method is not limited to this.
  • Each of the blue LED chips 2 is connected to the wiring pattern 4a and the wiring pattern 4b provided on both sides of the blue LED chip 2 in each row by a conductive wire 5 inside the standing wall 3.
  • the wiring pattern 4a and the wiring pattern 4b are connected to the cathode electrode land 6a and the anode electrode land 6b mounted on the outside of the standing wall 3 on the ceramic substrate 1, respectively.
  • the resin layer 7 is filled inside the standing wall 3 and covers the upper side of the plurality of blue LED chips 2.
  • red phosphors are mixed and dispersed.
  • the blue LED chip 2 of the present embodiment generates light having a wavelength of 400 nm to 480 nm as the first light corresponding to the blue region absorption peak of chlorophyll.
  • the red phosphor 7b absorbs light from the blue LED chip 2 and emits second light having an emission peak corresponding to the red region absorption peak of chlorophyll having a wavelength of 620 to 700 nm.
  • the blue LED chip 2 may output not only the wavelength 400 nm to 480 nm as the first light corresponding to the blue region absorption peak but also the blue ultraviolet region including the ultraviolet color.
  • FIGS. 1A and 1B are cross-sectional views showing the configurations of substrate-type LED light sources 10 (10A) and 10 (10D) having different blending ratios of red phosphor and silicone resin.
  • the resin layer 7 is made of a resin 7a made of a silicone resin as a resin and containing a red phosphor 7b. Therefore, by changing the ratio of the red phosphor 7b to the resin 7a, light having different wavelengths can be emitted.
  • CaAlSiN 3 : Eu is used as the red phosphor 7b, and light having an emission peak in the wavelength range of 400 to 480 nm is emitted from the blue LED chip 2 as described above. As a result, first light having a wavelength of 400 to 480 nm and second light having a wavelength of 620 to 700 nm are emitted.
  • CaAlSiN 3 : Eu is a nitride red phosphor using divalent europium (Eu) as an activator, and is one of phosphors having stable temperature characteristics and high luminous efficiency.
  • a spectrum having a peak wavelength with an emission intensity of 1.0 at a wavelength of 440 nm and a peak wavelength with an emission intensity of 0.3 at a wavelength of 640 nm is obtained.
  • a spectrum having a wavelength and a peak wavelength with an emission intensity of 0.8 at a wavelength of 640 nm is obtained.
  • the peak of emission intensity 0.56 at a wavelength of 440 nm A spectrum having a wavelength and a peak wavelength with an emission intensity of 1.0 at a wavelength of 640 nm is obtained.
  • FIG. 5 is a diagram showing the light absorption characteristics of chlorophyll and the spectrum of the substrate-type LED light source 10 of the present embodiment.
  • chlorophyll which plays a central role in plant photosynthesis, does not absorb light uniformly, but has clear absorption peaks around red 660 nm and blue 450 nm as shown in FIG.
  • the wavelength characteristic of photosynthesis has a first peak near 660 nm and a second peak near 450 nm.
  • blue light near 450 nm also affects a photoreaction system called a high energy reaction system of plants, and is indispensable for the healthy morphogenesis of plants. For this reason, at the stage of germination and seedling raising, the importance of the component of blue light increases.
  • the substrate type LED light source 10 of the present embodiment is suitable for the blue region absorption band of chlorophyll. It turns out that substrate type LED light source 10D of this Embodiment is suitable for the red region absorption band of chlorophyll.
  • the substrate-type LED light source 10 of the present embodiment can be easily adjusted to the light absorption characteristics of chlorophyll only by changing the blending ratio of the resin 7a and the red phosphor 7b.
  • photon flux density is used as a unit of light quantity.
  • the photon flux density refers to a value obtained by dividing the number of photons irradiated in one second by the light receiving area of the material when a certain material is irradiated with solar light.
  • the photon flux density since the number of photons is counted, one is one regardless of whether infrared light or ultraviolet light comes.
  • the photochemical reaction is triggered only when photons that can be absorbed by the dye come. For example, in the case of plants, no matter how much light is not absorbed by chlorophyll, it is the same as it does not exist.
  • the photosynthetic photon flux is a photosynthetic photon flux density (PPFD) multiplied by a light irradiation area.
  • PPFD photosynthetic photon flux density
  • This value is not simply a value expressed by the energy of the absorption peak wavelength in the red region and blue region of chlorophyll, but corresponds to each absorption spectrum in the red region and blue region in order to obtain the light intensity necessary for plant growth. It is a value that expresses energy (that is, energy required for photosynthesis) by the amount of photons.
  • the photosynthetic photon flux can be obtained from the spectral characteristics from the LED light source and the energy of one photon of each wavelength.
  • the photosynthesis photon flux is 1 ⁇ mol / s in the blue region having a wavelength of 400 nm to 480 nm, In the red region with a wavelength of 620 nm to 700 nm, it is 1.3 ⁇ mol / s. This value is obtained from the area of wavelengths 400 nm to 480 nm and wavelengths 620 nm to 700 nm.
  • the ratio of the photosynthetic photon flux in the blue region with a wavelength of 400 nm to 480 nm and the photosynthetic photon flux in the red region with a wavelength of 620 nm to 700 nm is 1: 1.3.
  • the photosynthetic photon flux is 0.2 ⁇ mol / s in the blue region having a wavelength of 400 nm to 480 nm, and 2.0 ⁇ mol / s in the red region having a wavelength of 620 nm to 700 nm. s.
  • the ratio of the photosynthetic photon flux in the blue region with a wavelength of 400 nm to 480 nm and the photosynthetic photon flux in the red region with a wavelength of 620 nm to 700 nm is 1:10.
  • the ratio of the photosynthetic photon flux in the blue region having a wavelength of 400 nm to 480 nm and the photosynthetic photon flux in the red region having a wavelength of 620 nm to 700 nm is 1: 3.5. It becomes.
  • the ratio of the photosynthetic photon flux in the blue region having a wavelength of 400 nm to 480 nm and the photosynthetic photon flux in the red region having a wavelength of 620 nm to 700 nm is 1: 7.5. It becomes.
  • the ratio of the photosynthetic photon flux in the blue region with a wavelength of 400 nm to 480 nm and the photosynthetic photon flux in the red region with a wavelength of 620 nm to 700 nm is 1: 1.3 to 1:10. .
  • the substrate-type LED light source 10 is suitable for plant germination, seedling and cultivation.
  • the substrate type LED light sources 10A and 10B having a ratio of 1: 1.3 to 1: 3.5 are preferable. Thereby, it can be set as the board
  • the substrate-type LED light sources 10C and 10D having a ratio of 1: 7.5 to 1:10 are preferable. Thereby, substrate type LED light sources 10C and 10D suitable for plant cultivation can be obtained.
  • FIG. 6 shows the temperature characteristics in relative total luminous flux between the substrate-type LED light source 10 of the present embodiment and the conventional single red LED for plant cultivation.
  • the horizontal axis indicates the junction temperature of the mounted chip, and the vertical axis indicates the relative total luminous flux value.
  • the substrate type LED light source 10 solid line in FIG. 6
  • the conventional single red LED for plant cultivation broken line in FIG. 6
  • the substrate type LED light source 10 of the present embodiment is configured by the red phosphor 7b instead of the red LED, the temperature characteristics are improved.
  • the substrate-type LED light source 10 and the bullet-type LED lamp 40 described later can be adjusted to the light absorption peak of the light absorption characteristics of chlorophyll.
  • CaAlSiN 3 : Eu is used as the red phosphor 7b.
  • the present invention is not limited to this, and, for example, (Sr, Ca) AlSiN 3 : Eu can also be used.
  • the (Sr, Ca) AlSiN 3 may, CaAlSiN 3: In Eu, are those obtained by shifting the emission peak wavelength to shorter wavelengths by replacing part of Ca to Sr, CaAlSiN 3: Eu as well as temperature characteristics stable In addition, it is a phosphor with high luminous efficiency.
  • CaAlSiN 3 : Eu (emission peak 650 to 660 nm) is preferable to use as the red phosphor 7b, particularly for plants containing more chlorophyll a than chlorophyll b.
  • (Sr, Ca) AlSiN 3 : Eu having an emission peak (620 to 630 nm) on the shorter wavelength side may be used as the red phosphor 7b. preferable.
  • red phosphor 7b 3.5MgO.0.5MgF 2 .GeO 2 : Mn
  • LiEuW 2 O 8 (Y, Gd, Eu)
  • 2 O 3 , (Y, Gd, Eu) BO 3 and / or YVO 4 Eu
  • CaS Eu, Ce, K.
  • red phosphors 7b may be used together, such as using CaAlSiN 3 : Eu and (Sr, Ca) AlSiN 3 : Eu. It is effective for cultivation of plants containing half each of chlorophyll a and chlorophyll b.
  • the peak wavelength of the blue LED chip 2 may be appropriately selected so as to match the absorption peaks of chlorophyll a and chlorophyll b with respect to the light absorption characteristics of the blue region of chlorophyll.
  • a blue LED chip 2 (type I) having a peak at 430 to 440 nm is used in a plant rich in chlorophyll a
  • a blue LED chip 2 (type II) having a peak in 450 to 460 nm is used in a plant rich in chlorophyll b. Is preferably used.
  • a combination of the blue LED chip 2 and the red phosphor 7b may be used as a substrate type LED light source 10 in a combination that matches each type of chlorophyll a and chlorophyll b.
  • a combination of a type I blue LED chip 2 and a red phosphor 7b made of CaAlSiN 3 : Eu, or a type II blue LED chip 2 and a red phosphor 7b made of (Sr, Ca) AlSiN 3 : Eu It is possible to set it as the board
  • the blending ratio of the resin 7a and the red phosphor 7b is adjusted as appropriate so that a desired light quantity ratio is obtained.
  • the board-type LED light source 10 described above is an LED light source for plant cultivation, but the board-type LED light source 10 can be used as an illumination LED light source 20 necessary for human work. Yes, it can be done easily.
  • the resin layer 7 that covers the upper side of the plurality of blue LED chips 2.
  • a green phosphor 7c is additionally mixed and dispersed in the resin 7a.
  • the LED light source 20 for illumination has a plurality of blue LED chips 2 mounted on a ceramic substrate 1 and a standing wall 3 is erected around it.
  • the blue LED chips 2 are composed of, for example, 156 chips arranged in twelve in series but arranged in 13 rows in parallel.
  • the number of blue LED chips 2 is not necessarily limited to a plurality, and may be one, and the number is not limited to 156. Further, there is no limitation on how to arrange the plurality.
  • Each of the blue LED chips 2 is electrically connected to the wiring pattern 4a and the wiring pattern 4b provided on both sides of the blue LED chip 2 in each row by a conductive wire 5 inside the standing wall 3. ing.
  • the wiring pattern 4a and the wiring pattern 4b are electrically connected to the cathode electrode land 6a and the anode electrode land 6b mounted on the outside of the standing wall 3 on the ceramic substrate 1, respectively.
  • covers the upper side of the said several blue LED chip 2 is shown.
  • a red phosphor 7b and a green phosphor 7c are mixed and dispersed in a resin 7a made of a silicone resin.
  • the mixing ratio of the resin 7a, the red phosphor 7b, and the green phosphor 7c is, for example, 1: 0.01: 0.10.
  • the emission spectrum shown in FIG. 7C is obtained.
  • the LED light source 20 for illumination is effective as an illumination light source for a person to work.
  • FIG. 8 is a diagram showing an example of a plant factory 30 that uses the substrate-type LED light source 10 and the illumination LED light source 20 of the present embodiment.
  • 1300 substrate-type LED light sources 10A are installed on the germination shelf as shown in FIG.
  • 4600 substrate type LED light sources 10A are installed in the seedling rack.
  • 17000 substrate-type LED light sources 10D are installed on the cultivation shelf.
  • 370 LED light sources 20 for illumination are installed.
  • the light-emitting device of the present embodiment uses the first peak wavelength in a relatively short wavelength region among a plurality of peak wavelengths in light absorbed by a plant that needs light for growth in order to perform photosynthesis.
  • a blue LED chip 2 as at least one first LED chip that emits light in the first short wavelength band having a wavelength corresponding to the blue region absorption peak of chlorophyll of 400 to 480 nm, and a phosphor-containing sealing covering the blue LED chip 2
  • a resin layer 7 as a resin The red phosphor 7b as the phosphor contained in the resin layer 7 absorbs the first short wavelength region light emitted from the blue LED chip 2, and thus, more than the first peak wavelength among the plurality of peak wavelengths.
  • Long-wavelength light having a wavelength of 620 to 700 nm corresponding to the red-band absorption peak of chlorophyll, which is the peak wavelength of the long-wavelength band, is output.
  • a light having a first peak wavelength in a relatively short wavelength region and a peak wavelength in a longer wavelength region than the first peak wavelength is often required. Therefore, in the present embodiment, at least one blue LED chip 2 that emits first short wavelength band light corresponding to the first peak wavelength and a resin layer 7 that covers the blue LED chip 2 are provided. And the red fluorescent substance 7b contained in the resin layer 7 emits the long wavelength region light corresponding to the peak wavelength in the longer wavelength region than the first peak wavelength.
  • a blue region such as chlorophyll necessary for the growth of organisms such as plants can be obtained with one blue LED chip without using two types of LED chips, an independent blue LED chip and an independent red LED chip.
  • Light corresponding to the absorption peak and the red region absorption peak can be emitted. For this reason, an installation area is not increased.
  • the red phosphor since the red phosphor is dispersed in the resin layer, the red phosphor can be dispersed in the resin at a predetermined blending ratio. The amount of light in the red region can be changed.
  • a light-emitting device can be provided.
  • the LED light source for plant cultivation includes at least one blue LED chip 2 having a light emission peak in the wavelength range of 400 to 480 nm and the blue LED chip 2 to correspond to the blue region absorption peak of chlorophyll.
  • the red phosphor 7b that emits light having a wavelength of 620 to 700 nm and the red phosphor 7b are dispersed to emit at least one blue LED chip. 2 is provided.
  • the LED light source for plant cultivation consists of the resin layer 7 which disperse
  • the blue LED chip 2 can output light in the wavelength range of 400 to 480 nm so as to correspond to the blue region absorption peak of chlorophyll.
  • the red phosphor 7b emits light having an emission peak wavelength of 620 to 700 nm to correspond to the red region absorption peak of chlorophyll by the excitation light from the blue LED chip 2.
  • the red phosphor 7b since the red phosphor 7b is dispersed in the resin layer, the red phosphor 7b can be dispersed in the resin at a predetermined blending ratio. The amount of light in the area and the red area can be changed.
  • An LED light source for plant cultivation can be provided.
  • the ratio of the photosynthetic photon flux in the blue region with a wavelength of 400 nm to 480 nm and the photosynthetic photon flux in the red region with a wavelength of 620 nm to 700 nm is 1: 1.3 to 1. : 10 is preferable. As a result, it is possible to obtain a substrate-type LED light source 10 suitable for plant germination, seedling and cultivation.
  • the compounding ratio of the resin 7a and the red phosphor 7b in the resin layer 7 is 1: 0.05 to 1: 0.20. As a result, it is possible to obtain a substrate-type LED light source 10 suitable for plant germination, seedling and cultivation.
  • the compounding ratio of resin 7a and red fluorescent substance 7b in the resin layer 7 is 1: It is preferably 0.05 to 1: 0.10.
  • chlorophyll which plays a central role in plant photosynthesis, does not absorb light uniformly, but shows clear absorption peaks near red 660 nm and blue 450 nm, and photosynthesis is related to this.
  • the wavelength characteristic has a first peak near 660 nm and a second peak near 450 nm.
  • blue light in the vicinity of 450 nm also affects a photoreaction system called a high energy reaction system of plants, and is essential for the healthy morphogenesis of plants. Therefore, the importance of the blue light component increases at the germination and seedling stage.
  • the blending ratio of the resin 7a and the red phosphor 7b in the resin layer 7 is 1: 0.05 to 1: 0.10. For this reason, by using this blending ratio, it is possible to provide the substrate-type LED light source 10 that easily emits the light of the blue light component that is indispensable for the healthy morphogenesis of plants at the stage of germination and seedling raising. .
  • the compounding ratio of resin 7a and red fluorescent substance 7b in the resin layer 7 is 1: 0.15. ⁇ 1: 0.20.
  • a photosynthetic photon flux in a blue region having a wavelength of 400 nm to 480 nm and a wavelength of 620 nm to 700 nm are used.
  • the ratio to the photosynthetic photon flux in the red region is preferably 1: 1.3 to 1: 3.5.
  • the substrate type LED light source 10 of the present embodiment when it is intended to be installed on a cultivation shelf, a photosynthetic photon flux in a blue region having a wavelength of 400 nm to 480 nm and a red region having a wavelength of 620 nm to 700 nm are used.
  • the ratio to the photosynthetic photon flux is preferably 1: 7.5 to 1:10.
  • the red phosphor 7b is a plant cultivation rich in chlorophyll a than chlorophyll b is CaAlSiN 3: it has become a Eu system components preferable.
  • chlorophyll a and chlorophyll b have different light absorption characteristics. Specifically, chlorophyll a has an absorption peak at 650 to 660 nm in the red region, and chlorophyll b has an absorption peak at 620 to 630 nm in the red region.
  • the red phosphor 7b has a CaAlSiN 3 : Eu component for plant cultivation containing more chlorophyll a than chlorophyll b. That is, a red phosphor having a CaAlSiN 3 : Eu-based component can emit a wavelength having an emission peak of 650 to 660 nm.
  • the red phosphor 7b is a plant cultivation rich in chlorophyll b than chlorophyll a is, (Sr, Ca) AlSiN 3 : a Eu system components It is preferable that
  • chlorophyll b has an absorption peak at 620 to 630 nm in the red region
  • the red phosphor having a (Sr, Ca) AlSiN 3 : Eu-based component emits a wavelength with an emission peak of 620 to 630 nm. be able to.
  • red phosphor 7b having a (Sr, Ca) AlSiN 3 : Eu-based component.
  • a plurality of blue LED chips 2 are mounted on the ceramic substrate 1, a standing wall 3 is provided around the blue LED chip 2, and inside the standing wall 3. Is filled with a resin 7a in which a red phosphor 7b is dispersed.
  • FIG. 10 thereby, it can be set as the structure of what is called a board
  • FIG. 10 since a plurality of blue LED chips 2 are used for one substrate-type LED light source 10, a large amount of light can be emitted from one substrate-type LED light source 10. Further, since the red phosphor 7b dispersed in the resin 7a is used instead of the red LED chip, the installation area corresponding to the plurality of red LED chips corresponding to the plurality of blue LED chips 2 can be greatly reduced. Can do.
  • a single substrate-type LED light source 10 can emit a large amount of light with a small installation area.
  • the first light having a wavelength of 400 to 480 nm and the second light having a wavelength of 620 to 700 nm are emitted.
  • both the blue and red peaks necessary for plant growth can be generated with one substrate type LED light source 10.
  • the installation area of the substrate-type LED light source 10 can be reduced, the reliability is increased, and the light source is suitable for use in a plant factory or the like. it can.
  • the first light is light from the blue LED chip 2 and the second light is light emitted from the red phosphor 7b. That is, in the substrate-type LED light source 10, a light absorption peak of light absorption characteristics of chlorophyll is generated in the vicinity of the light emitting portion. From this, the 1st light and 2nd light from the board
  • each of the red phosphors 7b is a point light source, blue light or red light is emitted uniformly.
  • both the blue and red peaks necessary for plant growth can be generated with one substrate-type LED light source 10.
  • the installation area of the substrate-type LED light source 10 can be reduced, the reliability is increased, and the light source is suitable for use in a plant factory or the like. it can.
  • the plant factory 30 of the present embodiment includes the substrate-type LED light source 10A and / or the substrate-type LED light source 10B, and the substrate-type LED light source 10C and / or the substrate-type LED light source 10D.
  • the plant factory 30 including the substrate-type LED light source 10 that can easily adjust the light quantity ratio between the blue region and the red region with a simple configuration without increasing the installation area.
  • a finned heat sink can be attached to the back side of the ceramic substrate 1 that also serves as a heat sink of the substrate-type LED light source 10, that is, the side opposite to the surface on which the blue LED chip 2 is mounted.
  • the opening of the finned heat sink is preferably in the same direction as the air flow direction.
  • a finned heat sink as a cooling means is provided on the back surface of the ceramic substrate 1.
  • the substrate-type LED light source 10 and the illumination LED light source 20 described in the first embodiment consisted of at least one blue LED chip 2 mounted on the ceramic substrate 1.
  • the LED light source for plant cultivation according to the present embodiment is different in that the shape has a general bullet-shaped form.
  • FIGS. 9A and 9B are schematic cross-sectional views showing the configuration of a bullet-type LED lamp.
  • a bullet-type LED lamp 40 as an LED light source for plant cultivation includes a blue LED chip 2 adhered in a mount lead cup 41 as a cup, Resin layer 7 made of silicone resin 7a and red phosphor 7b, conductive wire 5 as a lead, anode lead frame 42 as an anode lead, cathode lead frame 43 as a cathode lead, A sealing resin 44 made of an epoxy resin that is formed and sealed in a bullet shape except for the tips of the anode lead frame 42 and the cathode lead frame 43 is formed.
  • CaAlSiN 3 : Eu can be used as the red phosphor 7b.
  • the blue LED chip 2 is bonded in the mount lead cup 41.
  • the blue LED chip 2 and the mount lead (not shown), and the blue LED chip 2 and the inner lead (not shown) are electrically connected by the conductive wire 5.
  • the red phosphor 7 b is mixed and dispersed in the resin 7 a and poured into the mount lead cup 41 to form the resin layer 7.
  • the blue LED chip 2 is covered and fixed by the resin layer 7.
  • the whole is covered and protected with a mold member made of an epoxy resin sealing resin 44.
  • the blue LED chip 2 generates light having a wavelength of 400 nm to 480 nm as the first light.
  • This first light corresponds to the blue region absorption peak of chlorophyll.
  • the red phosphor 7b absorbs the light of the blue LED chip 2 and emits second light having an emission peak wavelength of 620 to 700 nm. This second light corresponds to the red region absorption peak of chlorophyll.
  • the bullet-type LED lamp 40 of this embodiment shown in FIG. 9A a bullet-type LED lamp in which the mixing ratio of the resin 7a and the red phosphor 7b is 1: 0.05.
  • the spectrum shown in FIG. 3A is the same as that of the substrate-type LED light source 10A of the first embodiment. Therefore, the bullet-type LED lamp 40A corresponds to the blue region absorption peak of chlorophyll, and is preferably used for germination and raising seedlings.
  • the present invention is not limited to this, and it is also possible to use a bullet-type LED lamp 40 in which the blending ratio of the resin 7a and the red phosphor 7b is 1: 0.10 to 1: 0.15.
  • the bullet-type LED lamp 40 shown in FIG. 9B is a bullet-type LED lamp 40D in which the blending ratio of the resin 7a and the red phosphor 7b is 1: 0.20. Therefore, this bullet-type LED lamp 40D outputs the spectrum shown in FIG. 4B which is the same as the substrate-type LED light source 10D of the first embodiment. Thereby, bullet-type LED lamp 40D respond
  • Such a bullet-type LED lamp 40 is attached to a place where it is difficult to attach the substrate-type LED light source 10 in which the blue LED chip 2 is mounted on the ceramic substrate 1 described in the first embodiment. From this, it is considered that there are few places where it is difficult to attach the substrate-type LED light source 10, so the substrate-type LED light source 10 of the first embodiment and the bullet-type LED lamp 40 of the second embodiment are used in combination. Also good.
  • Table 1 compares the substrate-type LED light source 10 of the first embodiment, the bullet-type LED lamp 40 of the second embodiment, and a combination of a conventional red-ball-type LED lamp and a blue-ball-type LED lamp. Show.
  • the board-type LED light source 10 according to the first embodiment and the bullet-type LED lamp 40 according to the second embodiment are a combination of a conventional red bullet-type LED lamp and a blue bullet-type LED lamp. It is understood that it is superior in all aspects of reliability, cost, characteristics, installation area, and service life.
  • the installation area when the installation area when combining the conventional artillery-type LED and the red-type bullet-type LED is 1, it is 1/3 for the bullet-type LED lamp 40, and the board-type LED In the light source 10 and the LED light source 20 for illumination, it becomes 1/6.
  • the board-type LED light source 10, the illumination LED light source 20, and the bullet-type LED lamp 40 according to the present embodiment have a feature that an installation area is small.
  • the board-type LED light source 10 the illumination LED light source 20, and the bullet-type LED lamp 40 of this embodiment have a cost merit compared to the conventional case.
  • the lifespan of the substrate-type LED light source 10 and the illumination LED light source 20 is 30,000 to 40,000 hours, not to mention electric heating lamps (light bulbs), which is ten times longer than that of fluorescent lamps. .
  • the cathode lead frame 43, the mount lead cup 41 connected to the cathode lead frame 43, and the mount lead cup 41 are mounted.
  • the entire mount lead cup 41 is shelled with the resin layer 7 dispersed so as to cover the LED chip 2 and the end portions of the cathode lead frame 43 and the anode lead frame 42 being exposed. And a sealing resin 44 sealed in a shape.
  • bullet-type bullet-type LED lamp 40 can be obtained. And since such a bullet-type bullet-type LED lamp 40 has a small installation area, it is suitable for spot cultivation in plant cultivation.
  • Embodiment 3 The following will describe another embodiment of the present invention with reference to FIG.
  • the configurations other than those described in the present embodiment are the same as those in the first embodiment and the second embodiment.
  • members having the same functions as those shown in the drawings of Embodiment 1 and Embodiment 2 are given the same reference numerals, and explanation thereof is omitted.
  • the substrate-type LED light source 10 described in the first embodiment and the bullet-type LED lamp 40 described in the second embodiment emit light in the wavelength range of 400 to 480 nm to correspond to the blue region absorption peak of chlorophyll. It had at least one blue LED chip with a peak.
  • the blue LED chip has at least one blue color for chlorophyll a having a light emission peak in the wavelength range of 400 to 450 nm to correspond to the blue region absorption peak of chlorophyll a.
  • the LED chip is composed of at least one blue LED chip for chlorophyll b having an emission peak in the wavelength range of 400 to 480 nm so as to correspond to the blue region absorption peak of chlorophyll b.
  • a substrate-type LED light source 50 as an LED light source for plant cultivation has a plurality of blue LED chips 2 and blue LED chips 52 on a ceramic substrate 1 as a substrate, as shown in FIG. And a standing wall 3 made of resin is provided around the periphery.
  • each of the blue LED chips 2 and the blue LED chips 52 has a wiring pattern 4a provided on both sides of the blue LED chips 2 and 52 in each row inside the standing wall 3. Are connected to the wiring pattern 4b by conductive wires 5, respectively.
  • the wiring pattern 4a and the wiring pattern 4b are connected to the cathode electrode land 6a and the anode electrode land 6b mounted on the outside of the standing wall 3 on the ceramic substrate 1, respectively.
  • a resin layer 7 covering the upper side of the plurality of blue LED chips 2 and 52 is provided inside the standing wall 3.
  • the resin layer 7 is made of a resin 7a filled with a red phosphor 7b mixed and dispersed.
  • the blue LED chip 2 of the present embodiment generates light having a long wavelength in the blue region of wavelength 400 nm to 480 nm as the first light corresponding to the blue region absorption peak of chlorophyll b. Therefore, the blue LED chip 2 for long wavelength in the blue region functions as the blue LED chip for chlorophyll b of the present invention.
  • the blue LED chip 52 of the present embodiment generates light having a short wavelength in the blue region of wavelength 400 nm to 450 nm as the first light corresponding to the blue region absorption peak of chlorophyll a. Accordingly, the blue LED chip 52 for short wavelength in the blue region functions as the blue LED chip for chlorophyll a of the present invention.
  • the red phosphor 7b absorbs light of the blue LED chip 2 and the blue LED chip 52 and emits second light whose emission peak corresponding to the red region absorption peak of chlorophyll a and chlorophyll b is 620 to 700 nm. It has become a thing.
  • chlorophyll a and chlorophyll b have different light absorption characteristics in the blue region.
  • chlorophyll a has an absorption peak at 400 to 450 nm in the blue region
  • chlorophyll b has an absorption peak at 400 to 480 nm in the blue region. have.
  • the blue LED chip has at least a light emission peak in the wavelength range of 400 to 450 nm to correspond to the blue region absorption peak of chlorophyll a.
  • a blue LED chip 52 for a short wavelength in the blue region as one blue LED chip for chlorophyll a, and at least one having an emission peak in the wavelength range of 400 to 480 nm to correspond to the blue region absorption peak of chlorophyll b It consists of a blue LED chip 2 for blue wavelength long wavelength as a blue LED chip for chlorophyll b.
  • an LED light source for plant cultivation more suitable for a plant having chlorophyll a and chlorophyll b can be provided.
  • substrate type LED light source 50 as an LED light source for plant cultivation which changed the structure of the board
  • the LED light source for plant cultivation of the present invention is not necessarily limited to this, and can also be applied to a bullet-type LED lamp in which the configuration of the bullet-type LED lamp 40 described in the second embodiment is partially changed. .
  • Embodiments 1 to 3 the LED light source for plant cultivation for plants that require light for growth to perform photosynthesis has been described.
  • the light-emitting device of the present invention is not limited to plants, but can also target algae that require light for growth in order to perform photosynthesis. Therefore, in this embodiment, application to algae that perform photosynthesis will be described.
  • chlorophyll pigment-based chlorophyll c chlorophyll pigment-based chlorophyll c, bacteriochlorophyll a (835 nm), and carotenoid pigment-based ⁇ -carotene (446 nm), lutein, fucoxanthin (453 nm), and phycopyrine pigment as pigments in addition to chlorophyll a and b for photosynthesis Systemic and phycocyanin (612 nm), phycoerythrin (540 nm).
  • the numerical value in parentheses is the wavelength of the absorption peak.
  • bacteriochlorophyll has an absorption peak at 800 nm or more.
  • the various algae specifically have the following pigments.
  • diatoms have chlorophyll a and fucoxanthin (453 nm) as main pigments.
  • the chlorophyll a has an absorption peak at 400 to 450 nm in the blue region, and has an absorption peak at 650 to 660 nm in the red region.
  • the first peak wavelength of 453 nm of fucoxanthin which is a relatively short wavelength region, among the plurality of peak wavelengths in light absorbed by diatoms that require light for growth in order to carry out photosynthesis corresponds to
  • the phosphor-containing sealing resin includes a blue-based LED chip as at least one first LED chip that emits light in a first short wavelength region, and a phosphor-containing sealing resin that covers the blue-based LED chip.
  • the red phosphor as the phosphor contained in the light source absorbs the first short wavelength band light emitted from the blue LED chip, and has a wavelength longer than the first peak wavelength 453 nm among the plurality of peak wavelengths.
  • a light emitting device that emits light in a long wavelength region corresponding to a peak wavelength of 650 to 660 nm of chlorophyll a in the region is preferable. Thereby, the growth of diatom can be promoted.
  • the second peak wavelength of 400 to 450 nm of chlorophyll a which is a peak wavelength in a relatively short wavelength region and is different from the first peak wavelength of 453 nm of fucoxanthin among a plurality of peak wavelengths. It may be provided with at least one second LED chip that emits corresponding second short-wavelength light. Thereby, the growth of diatom can be further promoted.
  • green algae have chlorophyll a and b and ⁇ -carotene (446 nm) as main pigments.
  • chlorophyll a has an absorption peak at 400 to 450 nm in the blue region, and has an absorption peak at 650 to 660 nm in the red region.
  • Chlorophyll b has an absorption peak at 400 to 480 nm in the blue region, and an absorption peak at 620 to 630 nm in the red region.
  • the first peak wavelength corresponding to the first peak wavelength of 446 nm of ⁇ -carotene which is a relatively short wavelength region, among the plurality of peak wavelengths in light absorbed by the green algae that needs light for growth to perform photosynthesis.
  • a blue LED chip as at least one first LED chip that emits light in a short wavelength region, and a phosphor-containing sealing resin that covers the blue LED chip, and the phosphor-containing sealing resin The red phosphor as the contained phosphor absorbs the first short wavelength region light emitted from the blue LED chip, and thus has a longer wavelength region than the first peak wavelength 446 nm among the plurality of peak wavelengths.
  • the light emitting device emits light in a long wavelength region corresponding to the peak wavelength of chlorophyll a of 650 to 660 nm and the peak wavelength of chlorophyll b of 620 to 630 nm. It is preferred. Thereby, the growth of green algae can be promoted.
  • cyanobacteria have chlorophyll a and phycocyanin (612 nm) as main pigments. As described above, the chlorophyll a has an absorption peak at 400 to 450 nm in the blue region.
  • the first peak wavelength of chlorophyll a which is a relatively short wavelength region, of a plurality of peak wavelengths in light absorbed by cyanobacteria that require light for growth to perform photosynthesis is 400 to 450 nm.
  • a blue LED chip as at least one first LED chip that emits light corresponding to the first short wavelength region, and a phosphor-containing sealing resin that covers the blue LED chip;
  • the red phosphor as the phosphor contained in the stop resin absorbs the first short wavelength band light emitted from the blue LED chip, and thereby the first peak wavelength of 400 to 450 nm among the plurality of peak wavelengths.
  • a first blue LED chip as at least one first LED chip that emits light in a first short wavelength region corresponding to a first peak wavelength of 400 to 450 nm of chlorophyll a, which is a relatively short wavelength region
  • a phosphor-containing sealing resin that covers the first blue LED chip, and a first red phosphor as a phosphor contained in the phosphor-containing sealing resin includes the first blue LED
  • a second blue LED chip is provided as the second LED chip.
  • the second red phosphor as the phosphor contained in the phosphor-containing sealing resin absorbs the first short wavelength region light emitted from the second blue LED chip. Accordingly, among the plurality of peak wavelengths, light having a long wavelength region corresponding to the peak wavelength 612 nm of phycocyanin having a longer wavelength region than the first peak wavelength 400 to 450 nm is emitted.
  • the first red phosphor of the first blue LED chip that emits the first short wavelength band light cannot emit the long wavelength band light corresponding to the peak wavelength 612 nm of the relatively long wavelength phycocyanin.
  • the second blue LED chip that emits the second short-wavelength light the second red phosphor can emit the long-wavelength light corresponding to the peak wavelength of phycocyanin of 612 nm. .
  • such a method can be used not only for cyanobacterium but also for cultivation and culture of other organisms.
  • the growth of algae such as diatoms, green algae, and cyanobacterium can be promoted by irradiating algae such as diatoms, green algae, and cyanobacterium with the light-emitting device.
  • one blue LED chip absorbs a blue region such as chlorophyll necessary for the growth of algae and other organisms. Light corresponding to the peak and the red region absorption peak can be emitted. For this reason, an installation area is not increased.
  • the red phosphor since the red phosphor is dispersed in the resin layer, the red phosphor can be dispersed in the resin at a predetermined blending ratio. The amount of light in the red region can be changed.
  • a light-emitting device can be provided.
  • the blue LED chip has at least one chlorophyll a having a light emission peak in the wavelength range of 400 to 450 nm to correspond to the blue region absorption peak of chlorophyll a.
  • chlorophyll a and chlorophyll b have different light absorption characteristics in the blue region. Specifically, chlorophyll a has an absorption peak at 400 to 450 nm in the blue region, and chlorophyll b has an absorption peak at 400 to 480 nm in the blue region.
  • light is emitted in the wavelength range of 400 to 450 nm so as to correspond to the blue region absorption peak of chlorophyll a so as to correspond to the two types of light absorption characteristics in the blue region of chlorophyll a and chlorophyll b, respectively.
  • an LED light source for plant cultivation more suitable for a plant having chlorophyll a and chlorophyll b can be provided.
  • the ratio of the photosynthetic photon flux in the blue region with a wavelength of 400 nm to 480 nm and the photosynthetic photon flux in the red region with a wavelength of 620 nm to 700 nm is 1: 1.3 to 1:10. It is preferable.
  • a photosynthetic photon flux means a photosynthesis effective photon flux density (PPFD: photosynthetic photon flux density) multiplied by a light irradiation area.
  • PPFD photosynthesis effective photon flux density
  • the photon flux density refers to a value obtained by dividing the number of photons irradiated in one second by the light receiving area of the material when a certain material is irradiated with solar light.
  • the photon flux density since the number of photons is counted, one is one regardless of whether infrared light or ultraviolet light comes.
  • the photochemical reaction is triggered only when photons arrive that can be absorbed by the dye.
  • photosynthesis effective photon flux density or photosynthesis photon flux only in the wavelength region from 400 nm to 700 nm that can be absorbed by chlorophyll is defined.
  • the ratio of the photosynthetic photon flux in the blue region with a wavelength of 400 nm to 480 nm and the photosynthetic photon flux in the red region with a wavelength of 620 nm to 700 nm is 1: 1.3 to 1:10.
  • the blending ratio of the resin and the red phosphor in the resin layer is preferably 1: 0.05 to 1: 0.20. As a result, it is possible to provide a plant cultivation LED light source suitable for plant germination, seedling and cultivation.
  • the mixing ratio of the resin and the red phosphor in the resin layer is 1: 0.05 to 1: It is preferably 0.10.
  • chlorophyll which plays a central role in plant photosynthesis, does not absorb light uniformly, but shows clear absorption peaks near red 660 nm and blue 450 nm, and photosynthesis is related to this.
  • the wavelength characteristic has a first peak near 660 nm and a second peak near 450 nm.
  • blue light in the vicinity of 450 nm also affects a photoreaction system called a high energy reaction system of plants, and is essential for the healthy morphogenesis of plants. Therefore, the importance of the blue light component increases at the germination and seedling stage.
  • the blending ratio of the resin and the red phosphor in the resin layer is 1: 0.05 to 1: 0.10. For this reason, by using this blending ratio, it is possible to provide an LED light source for plant cultivation that easily emits the light of the blue light component that is indispensable for the healthy morphogenesis of plants at the stage of germination and raising seedlings. .
  • the compounding ratio of the resin and the red phosphor in the resin layer is 1: 0.15 to 1: 0.20. It is preferable that
  • a photosynthesis photon flux in a blue region having a wavelength of 400 nm to 480 nm and a photosynthesis in a red region having a wavelength of 620 nm to 700 nm when it is intended to be installed on a germination shelf or a seedling shelf, a photosynthesis photon flux in a blue region having a wavelength of 400 nm to 480 nm and a photosynthesis in a red region having a wavelength of 620 nm to 700 nm.
  • the ratio to the photon flux is preferably 1: 1.3 to 1: 3.5.
  • a photosynthetic photon flux in a blue region having a wavelength of 400 nm to 480 nm and a photosynthetic photon flux in a red region having a wavelength of 620 nm to 700 nm The ratio is preferably 1: 7.5 to 1:10.
  • the red phosphor preferably has a CaAlSiN 3 : Eu component for plant cultivation containing more chlorophyll a than chlorophyll b.
  • chlorophyll a and chlorophyll b have different light absorption characteristics. Specifically, chlorophyll a has an absorption peak at 650 to 660 nm in the red region, and chlorophyll b has an absorption peak at 620 to 630 nm in the red region.
  • the red phosphor has a CaAlSiN 3 : Eu-based component for plant cultivation containing more chlorophyll a than chlorophyll b. That is, a red phosphor having a CaAlSiN 3 : Eu-based component can emit a wavelength having an emission peak of 650 to 660 nm.
  • red phosphor having a CaAlSiN 3 : Eu-based component for plant cultivation containing more chlorophyll a than chlorophyll b.
  • the red phosphor has (Sr, Ca) AlSiN 3 : Eu components for plant cultivation containing more chlorophyll b than chlorophyll a. Is preferred.
  • chlorophyll b has an absorption peak at 620 to 630 nm in the red region
  • the red phosphor having a (Sr, Ca) AlSiN 3 : Eu-based component emits a wavelength with an emission peak of 620 to 630 nm. be able to.
  • red phosphor having a (Sr, Ca) AlSiN 3 : Eu-based component for plant cultivation containing more chlorophyll b than chlorophyll a.
  • a plurality of blue LED chips are mounted on a substrate, a standing wall is provided around the chip, and the red phosphor is dispersed inside the standing wall. It can be assumed that the resin is filled.
  • a cathode lead In the LED light source for plant cultivation of the present invention, a cathode lead, a cup connected to the cathode lead, at least one blue LED chip mounted in the cup, and a blue LED mounted in the cup
  • an anode lead connected from the chip via a conductive wire, a resin layer in which the red phosphor is dispersed in the cup so as to cover the blue LED chip, and the cathode lead and the anode lead It can be said that it is provided with a sealing resin that seals the entire cup in a bullet shape with the end portion exposed.
  • first light having a wavelength of 400 to 480 nm and second light having a wavelength of 620 to 700 nm are emitted.
  • both the blue and red peaks necessary for plant growth can be generated with a single LED light source for plant cultivation.
  • the first light emitted from the blue LED chip and the second light excited by the blue LED chip and emitted from the red phosphor are emitted.
  • the red phosphor is a point light source, blue light or red light is emitted uniformly.
  • both the blue and red peaks necessary for plant growth can be generated with a single LED light source for plant cultivation.
  • a cooling means is provided on the back surface of the substrate.
  • the present invention can be applied to light emitting devices that emit light absorbed by plants or algae that require light for growth in order to carry out photosynthesis, as well as LED light sources for plant cultivation and plant factories.
  • Substrate type LED light source (LED light source for plant cultivation) 10A Substrate type LED light source (LED light source for plant cultivation) 10B Substrate type LED light source (LED light source for plant cultivation) 10C Substrate type LED light source (LED light source for plant cultivation) 10D board type LED light source (LED light source for plant cultivation) 20 LED light source for illumination 30 Plant factory 40 Cannonball type LED lamp (LED light source for plant cultivation) 40A Cannonball type LED lamp (LED light source for plant cultivation) 40D Cannonball type LED lamp (LED light source for plant cultivation) 41 Mount Lead Cup (Cup) 42 Anode lead frame (anode lead) 43 Cathode lead frame (cathode lead) 44 Sealing resin 50 Substrate type LED light source (

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental Sciences (AREA)
  • Forests & Forestry (AREA)
  • Ecology (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Cultivation Of Plants (AREA)
  • Led Device Packages (AREA)

Abstract

 本発明の基板型LED光源(10)には、クロロフィルの青色域吸収ピークに対応すべく波長が400~480nmの範囲で発光ピークを有する少なくとも1個の青色LEDチップ(2)と、青色LEDチップ2からの励起光により、クロロフィルの赤色域吸収ピークに対応すべく発光ピークが波長620~700nmの光を発光する赤蛍光体(7b)と、赤蛍光体7bを分散して少なくとも1個の青色LEDチップ(2)を覆う樹脂層(7)とが設けられている。

Description

発光装置、並びに植物栽培用LED光源及び植物工場
 本発明は、光合成を行うべく生育に光を必要とする植物又は藻類によって吸収される光を発光する発光装置、並びに植物栽培用LED光源及び植物工場に関するものであり、詳細には、植物、藻類等の生物を効率的に育成する発光装置、並びに植物栽培用LED光源及び植物工場に関する。
 植物工場等に使用することができる植物栽培用LED光源としては、従来、例えば、特許文献1に開示された植物伸長装置に記載されたものがある。
 特許文献1に開示された植物伸長装置100は、図11に示すように、植物伸長のための光を射出する光射出部110と、その光射出部110に対して射出される光のスペクトルを変更可能に電力を供給する電力供給部120と、育成対象となる植物101の種類を判別する判別部131と、その判別部131で判別した植物101の種類に応じて上記電力供給部120を制御して光のスペクトルを設定する光スペクトル設定部132とを備えたものからなっている。
 上記光射出部110は、平板状の基板111における一方の面に異なるスペクトル光を発する複数種類のLED112を多数敷設してなっており、LED112から射出される光が植物101の方向を向くように設置されている。LED112は、例えば砲弾型のものからなっている。
 また、従来の他の植物栽培用LED光源として、例えば、特許文献2に開示された植物栽培用LED光源が知られている。
 特許文献2に開示された植物栽培用LED光源200は、植物培養容器の蓋に取り付け可能となっており、図12に示すように、カソード端子201と、アノード端子202と、発光チップ203と、エポキシ樹脂レンズ204とからなっている。そして、発光チップ203の種類により、所定の色の放射光205が放出されるようになっている。
日本国公開特許公報「特開2004-344114号公報(2004年12月9日公開)」 日本国公開特許公報「特開平9-252651号公報(1997年9月30日公開)」
 しかしながら、上記従来の特許文献2に開示された図12に示す植物栽培用LED光源200では、光源に使用される赤色LEDとしては、特許文献2の図2に記載されているように、波長領域630nm~680nm、好ましくは発光ピーク波長660nm付近のものが用いられている。また、青色LEDとしては、波長領域380nm~480nm、好ましくは発光ピーク波長450nm付近のものが用いられている。
 そして、特許文献2においては、青色LEDの光量は、赤色LEDの光量における50%以下の割合となるように用いられている。ここで、一般的に、LEDは赤色及び青色を混合して使用されるが、植物によっては赤色単独を用いることも可能である。
 しかしながら、赤色及び青色を混合して使用される場合、又は赤色単独を用いる場合のいずれにおいても以下の課題を有している。
(1)赤色LEDと青色LEDとを混合使用するための配置が困難である。具体的には、設置面積がかなり大きなものとなる。また、隅部に規則正しい配置をするのが困難である。
(2)青色域と赤色域との光量割合を調整する必要があるが、青色LED又は赤色LEDの個数の調整によって光量割合を合わせる場合には、長期的な駆動を考慮すると劣化特性の違いにより光量割合のずれが生じる。
 また、青色LED光の光量を赤色LED光の光量における50%以下の割合とするには、
(A)赤色LEDを高輝度発光させる(駆動電流を増加する)。
(B)各LEDに搭載するLEDチップ数を増やす。
(C)赤色LEDの個数を増やす。
 等の措置が必要となる。
 しかしながら、(A)の場合は、青/赤LEDチップ間の劣化特性差が助長され、長期的な駆動時における光量割合のずれがより大きくなる。また、電気的な方法で光量調整する場合には、電気駆動回路等を設置する必要があるため、複雑な構成となる。(B)の場合には、赤色LEDの大きさが大きくなり、広角の指向特性の制御が難しい等問題が生じる。(C)の場合には、青色LEDの個数が少なく、均等配置をしても、或いは青色LEDを広角の指向特性のものとしても赤色光及び青色光の混色が不十分であり、色むらが生じ易い懸念が生じる。
(3)青色LEDと赤色LEDとの混色は困難であり、植物栽培に必要な混合色を得ることは困難である。具体的には、青色LEDと赤色LEDとの個別の素子を複数使用する場合に、所定の光量割合を満足しかつ同時に空間的に色むらなく一様な混色光を実現するのは非常に難しい。
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、設置面積を増大させることなく、簡単な構成で青色域と赤色域との光量割合を容易に調整し得る発光装置、並びに植物栽培用LED光源及び植物工場を提供することにある。
 本発明の発光装置は、上記課題を解決するために、光合成を行うべく生育に光を必要とする植物又は藻類によって吸収される光における複数のピーク波長のうち、相対的に短波長域の第1ピーク波長に対応した第1短波長域光を発する少なくとも1個の第1LEDチップと、上記第1LEDチップを覆う蛍光体含有封止樹脂とを備えていると共に、上記蛍光体含有封止樹脂に含有された蛍光体は、上記第1LEDチップが出射する第1短波長域光を吸収することにより、上記複数のピーク波長のうち、上記第1ピーク波長よりも長波長域のピーク波長に対応した長波長域光を発することを特徴としている。尚、相対的に短波長域とは、波長500nmよりも短波長域をいう。
 すなわち、光合成を行う植物及び藻類等の生物の生育には、相対的に短波長域の第1ピーク波長と、第1ピーク波長よりも長波長域のピーク波長の光が必要となる場合が多い。そこで、本発明では、第1ピーク波長に対応した第1短波長域光を発する少なくとも1個の第1LEDチップと、第1LEDチップを覆う蛍光体含有封止樹脂とを備えている。そして、蛍光体含有封止樹脂に含有された蛍光体は、第1ピーク波長よりも長波長域のピーク波長に対応した長波長域光を発する。
 この結果、独立した青色LEDチップと独立した赤色LEDチップとの2種類のLEDチップを使用しなくても、1種類の青色LEDチップにて植物及び藻類等の生物の成長に必要なクロロフィル等の青色域吸収ピークと赤色域吸収ピークとに対応する光を出射することができる。このため、設置面積を増大することがない。そして、この構成においては、赤蛍光体は樹脂層に分散されていることから、赤蛍光体を樹脂に所定の配合比にて分散させることが可能であり、その配合比に応じて青色域と赤色域における光量を変化させることができる。
 したがって、設置面積を増大させることなく、簡単な構成で青色域と赤色域との光量割合を容易に調整し得ると同時に空間的に色むらの少ない青色光及び赤色光の混色光を放出し得る発光装置を提供することができる。
 また、本発明の発光装置では、前記複数のピーク波長のうち、前記相対的に短波長域のピーク波長であって、かつ前記第1ピーク波長とは異なる第2ピーク波長に対応した第2短波長域光を発する、少なくとも1個の第2LEDチップを備えているとすることができる。
 この結果、相対的に短波長域のピーク波長が第1ピーク波長と第2ピーク波長との2種類存在する場合においても、適切に植物及び藻類等の生物の成長を促す発光装置を提供することができる。
 本発明の植物栽培用LED光源は、上記課題を解決するために、前記記載の発光装置を用いた植物栽培用LED光源であって、クロロフィルの青色域吸収ピークに対応すべく波長が400~480nmの範囲で発光ピークを有する少なくとも1個の青色LEDチップと、上記青色LEDチップからの励起光により、クロロフィルの赤色域吸収ピークに対応すべく発光ピークが波長620~700nmの光を発光する赤蛍光体と、上記赤蛍光体を分散して上記青色LEDチップを覆う樹脂層とが設けられていることを特徴としている。
 上記の発明によれば、植物栽培用LED光源は、少なくとも1個の青色LEDチップとこの青色LEDチップを覆う赤蛍光体を分散した樹脂層とからなっている。そして、この構成において、青色LEDチップにてクロロフィルの青色域吸収ピークに対応すべく波長が400~480nmの範囲で光を出力することができる。そして、赤蛍光体は、青色LEDチップからの励起光により、クロロフィルの赤色域吸収ピークに対応すべく発光ピークが波長620~700nmの光を発光する。
 この結果、独立した青色LEDチップと独立した赤色LEDチップとの2種類のLEDチップを使用しなくても、1種類の青色LEDチップにて植物の成長に必要なクロロフィルの青色域吸収ピークと赤色域吸収ピークとに対応する光を出射することができる。このため、設置面積を増大することがない。そして、この構成においては、赤蛍光体は樹脂層に分散されていることから、赤蛍光体を樹脂に所定の配合比にて分散させることが可能であり、その配合比に応じて青色域と赤色域における光量を変化させることができる。
 したがって、設置面積を増大させることなく、簡単な構成で青色域と赤色域との光量割合を容易に調整し得ると同時に空間的に色むらの少ない青色光及び赤色光の混色光を放出し得る植物栽培用LED光源を提供することができる。
 本発明の植物工場は、上記課題を解決するために、上記記載の植物栽培用LED光源を備えていることを特徴としている。
 上記の発明によれば、設置面積を増大させることなく、簡単な構成で青色域と赤色域との光量割合を容易に調整し得る植物栽培用LED光源を備えた植物工場を提供することができる。
 本発明の発光装置は、以上のように、光合成を行うべく生育に光を必要とする植物又は藻類によって吸収される光における複数のピーク波長のうち、相対的に短波長域の第1ピーク波長に対応した第1短波長域光を発する少なくとも1個の第1LEDチップと、上記第1LEDチップを覆う蛍光体含有封止樹脂とを備えていると共に、上記蛍光体含有封止樹脂に含有された蛍光体は、上記第1LEDチップが出射する第1短波長域光を吸収することにより、上記複数のピーク波長のうち、上記第1ピーク波長よりも長波長域のピーク波長に対応した長波長域光を発するものである。
 本発明の植物栽培用LED光源は、以上のように、クロロフィルの青色域吸収ピークに対応すべく波長が400~480nmの範囲で発光ピークを有する少なくとも1個の青色LEDチップと、上記青色LEDチップからの励起光により、クロロフィルの赤色域吸収ピークに対応すべく発光ピークが波長620~700nmの光を発光する赤蛍光体と、上記赤蛍光体を分散して上記少なくとも1個の青色LEDチップを覆う樹脂層とが設けられているものである。
 本発明の植物工場は、以上のように、上記記載の植物栽培用LED光源を備えているものである。
 それゆえ、設置面積を増大させることなく、簡単な構成で青色域と赤色域との光量割合を容易に調整し得る発光装置、並びに植物栽培用LED光源及び植物工場を提供するという効果を奏する。
(a)(b)は本発明における植物栽培用LED光源の実施の一形態を示すものであって、基板型の植物栽培用LED光源の構成を示す断面図である。 (a)は上記基板型の植物栽培用LED光源における樹脂層形成前の構成を示す平面図であり、(b)は上記基板型の植物栽培用LED光源における樹脂層形成後の構成を示す平面図である。 (a)は上記植物栽培用LED光源において配合比を樹脂:赤蛍光体=1:0.05としたときの発光スペクトルを示すグラフであり、(b)は上記植物栽培用LED光源において配合比を樹脂:赤蛍光体=1:0.10としたときの発光スペクトルを示すグラフである。 (a)は上記植物栽培用LED光源において配合比を樹脂:赤蛍光体=1:0.15としたときの発光スペクトルを示すグラフであり、(b)は上記植物栽培用LED光源において配合比を樹脂:赤蛍光体=1:0.20としたときの発光スペクトルを示すグラフである。 クロロフィルの吸収スペクトルと、本実施の形態のLED光源の適用例を示す図である。 上記LED光源の温度特性を従来との比較において示すグラフである。 (a)(b)は照明用に適用する植物栽培用LED光源の構成を示す平面図であり、(c)は上記植物栽培用LED光源における発光スペクトルを示すグラフである。 上記植物栽培用LED光源における植物工場への適用例を示す説明図である。 (a)は砲弾型の植物栽培用LED光源において配合比を樹脂:赤蛍光体=1:0.05としたときの構成を示す断面図であり、(b)は砲弾型の植物栽培用LED光源において配合比を樹脂:赤蛍光体=1:0.20としたときの構成を示す断面図である。 (a)は本発明における植物栽培用LED光源の他の実施の一形態を示すものであって、基板型の植物栽培用LED光源の構成を示す断面図であり、(b)は上記基板型の植物栽培用LED光源における樹脂層形成前の構成を示す平面図である。 従来の植物栽培用LED光源の構成を示す図である。 従来の他の植物栽培用LED光源の構成を示す図である。
  〔実施の形態1〕
 本発明の一実施形態について図1~図8に基づいて説明すれば、以下のとおりである。
 (植物栽培用LED光源の構成)
 本実施の形態の植物栽培用LED光源の構成について、図2(a)(b)に基づいて説明する。図2(a)は赤蛍光体含有樹脂を注入する前の植物栽培用LED光源を示す平面図であり、図2(b)は赤蛍光体含有樹脂を注入した後の植物栽培用LED光源を示す平面図である。
 本実施の形態の植物栽培用LED光源としての基板型LED光源10は、図2(a)に示すように、基板としてのセラミック基板1上に複数の青色LEDチップ2が搭載され、その周囲に樹脂からなる立設壁3が設けられてなっている。
 本実施の形態では、青色LEDチップ2は、例えば、電気的に直列接続されて直列に3個ずつ並んだものが、隣接する各列間で青色LEDチップ2同士が電気的に並列接続されるように並列に8列並んだ24個からなっている。尚、本発明においては、青色LEDチップ2の個数は必ずしも複数に限らず、1個でもよく、また、複数においても24個に限らない。さらに、複数個における並べ方についても問わない。電気的な接続方法もこれに限るものではない。
 上記各青色LEDチップ2は、立設壁3の内側において、各列の青色LEDチップ2の両側に設けられた配線パターン4aと配線パターン4bとにそれぞれ導電性ワイヤ5にて接続されている。そして、配線パターン4aと配線パターン4bとは、セラミック基板1上において立設壁3の外側に搭載されたカソード電極ランド6aとアノード電極ランド6bとにそれぞれ接続されている。
 そして、本実施の形態の基板型LED光源10には、図2(b)に示すように、立設壁3の内側に充填されて上記複数の青色LEDチップ2の上側を被覆する樹脂層7が設けられており、この樹脂層7には、赤蛍光体が混合分散されている。
 そして、本実施の形態の青色LEDチップ2は、クロロフィルの青色域吸収ピークに対応する第1光としての波長400nm~480nmの光を発生する。また、赤蛍光体7bは、青色LEDチップ2の光を吸収してクロロフィルの赤色域吸収ピークに対応する発光ピークが波長620~700nmの第2光を発光するものとなっている。
 尚、青色LEDチップ2は、青色域吸収ピークに対応する第1光としての波長400nm~480nmのみでなく、紫外色を含む青紫外色領域まで出力するものであってもよい。
 (青色域と赤色域との光量割合の調整)
 本実施の形態の基板型LED光源10における青色域と赤色域との光量割合の調整方法について、図1(a)(b)及び図3に基づいて説明する。図1(a)(b)は、赤蛍光体とシリコーン樹脂との配合比が互いに異なる基板型LED光源10(10A)・10(10D)の構成を示す断面図である。
 図1(a)に示すように、本実施の形態の基板型LED光源10では、樹脂層7は樹脂としてのシリコーン樹脂からなる樹脂7aに赤蛍光体7bが含有されたものからなっている。したがって、この樹脂7aに対する赤蛍光体7bの割合を変更することによって、互いに異なる波長の光が出射できるものとなる。
 例えば、赤蛍光体7bとして、CaAlSiN3 :Euを使用し、前述したように、青色LEDチップ2から波長が400~480nmの範囲で発光ピークを有する光を出射する。これによって、波長400~480nmの第1光と波長620~700nmの第2光とを出射する。尚、CaAlSiN3 :Euは、2価のユーロピウム(Eu)を付活材とする窒化物赤色蛍光体であり、温度特性が安定かつ高発光効率の蛍光体の1つである。
 具体的には、図1(a)に示すように、配合比を樹脂7a:赤蛍光体7b=1:0.05とした基板型LED光源10Aの場合には、図3(a)に示すように、波長440nmに発光強度1.0のピーク波長と波長640nmに発光強度0.3のピーク波長とを有するスペクトルが得られる。また、配合比を樹脂7a:赤蛍光体7b=1:0.10とした基板型LED光源10Bの場合には、図3(b)に示すように、波長440nmに発光強度1.0のピーク波長と波長640nmに発光強度0.8のピーク波長とを有するスペクトルが得られる。
 さらに、配合比を樹脂7a:赤蛍光体7b=1:0.15とした基板型LED光源10Cの場合には、図4(a)に示すように、波長440nmに発光強度0.56のピーク波長と波長640nmに発光強度1.0のピーク波長とを有するスペクトルが得られる。
 そして、図1(b)に示すように、配合比を樹脂7a:赤蛍光体7b=1:0.20とした基板型LED光源10Dとした場合には、図4(b)に示すように、波長440nmに発光強度0.4のピーク波長と波長640nmに発光強度1.0のピーク波長とを有するスペクトルが得られる。
 このように樹脂7aと赤蛍光体7bとの配合比を変更することによって、容易に青色域と赤色域との光量割合を調整することが可能となる。
 (植物の成長において必要な光の波長)
 次に、植物の成長においてどのような波長の光を照射すればよいのかについて、図5に基づいて説明する。図5は、クロロフィルの光吸収特性と本実施の形態の基板型LED光源10のスペクトルを示す図である。
 まず、植物の光合成において中心的な役割を担う葉緑素(クロロフィル)は、光を一様に吸収するのではなく、図5に示すように、赤色660nm付近と青色450nm付近とに明確な吸収ピークを示し、これに関係して、光合成の波長特性は660nm付近に第一ピークを有すると共に、450nm付近に第二のピークを有している。
 したがって、植物が葉を備え光合成が活発となる栽培段階では、赤色及び青色の両方の光成分を有することが生育に対して有効になる。
 一方、450nm付近の青色光は、植物の高エネルギー反応系と呼ばれる光反応系にも影響を及ぼし、植物の健全な形態形成に必要不可欠である。このため、発芽・育苗の段階では、青色光の成分の重要性が増す。
 これに対して、本実施の形態の基板型LED光源10においては、図5に示すように、クロロフィルの青色域吸収帯には本実施の形態の基板型LED光源10Aが適していると共に。クロロフィルの赤色域吸収帯には本実施の形態の基板型LED光源10Dが適していることが分かる。
 このように、本実施の形態の基板型LED光源10においては、樹脂7aと赤蛍光体7bとの配合比を変更するのみでクロロフィルの光吸収特性に容易に合わせることができることがわかる。
 ところで、光の分野では、光量の単位として例えば光量子束密度が用いられる。ここで、光量子束密度は、ある物質に太陽の光が照射している場合に、1秒間に照射される光子の数をその物質の受光面積で割った値をいう。しかし、光量子束密度という場合には、光子の数を数えるので、赤外光又は紫外光のいずれが来ても1個は1個である。一方、光化学反応は、色素が吸収できる光子が来たときだけに引き起こされる。例えば、植物の場合、クロロフィルに吸収されない光がいくら来ても、それは存在しないのと同じである。そこで、光合成の分野では、クロロフィルが吸収できる400nm~700nmまでの波長領域だけの光合成有効光量子束密度又は光合成光量子束が定義されている。尚、光合成光量子束とは、光合成光量子束とは、光合成有効光量子束密度(PPFD:photosynthetic photon flux density)に光照射面積をかけたものをいう。この値は、単にクロロフィルの赤域及び青域の吸収ピーク波長のエネルギーで表現した値ではなく、植物の成長に必要な光強度を求めるために、赤域及び青域の各吸収スペクトルに対応するエネルギー(すなわち光合成に必要なエネルギー)を光量子の量で表現した値である。また、光合成光量子束は、LED光源からのスペクトル特性と、各波長の光量子1個のエネルギーとから求めることができる。
 したがって、光合成光量子束を用いて基板型LED光源10を表すと、図3(a)に示す基板型LED光源10Aでは、光合成光量子束が波長400nm~480nmの青色域では、1μmol/sであり、波長620nm~700nmの赤色域では、1.3μmol/sとなっている。尚、この値は、波長400nm~480nm及び波長620nm~700nmの面積から求まる値である。そして、これを比率であらわすと、波長400nm~480nmの青色域における光合成光量子束と、波長620nm~700nmの赤色域における光合成光量子束との比が、1:1.3となる。
 また、図4(a)に示す基板型LED光源10Dでは、光合成光量子束が波長400nm~480nmの青色域では、0.2μmol/sであり、波長620nm~700nmの赤色域では、2.0μmol/sとなっている。そして、これを比率であらわすと、波長400nm~480nmの青色域における光合成光量子束と、波長620nm~700nmの赤色域における光合成光量子束との比が、1:10となる。
 尚、図3(b)に示す基板型LED光源10Bでは、波長400nm~480nmの青色域における光合成光量子束と、波長620nm~700nmの赤色域における光合成光量子束との比が、1:3.5となる。また、図4(a)に示す基板型LED光源10Cでは、波長400nm~480nmの青色域における光合成光量子束と、波長620nm~700nmの赤色域における光合成光量子束との比が、1:7.5となる。
 したがって、本実施の形態では、波長400nm~480nmの青色域における光合成光量子束と、波長620nm~700nmの赤色域における光合成光量子束との比が、1:1.3~1:10となっている。この結果、植物の発芽・育苗及び栽培に適した基板型LED光源10とすることが好ましい。
 具体的には、発芽棚又は育苗棚に設置されることを目的とする場合には、波長400nm~480nmの青色域における光合成光量子束と、波長620nm~700nmの赤色域における光合成光量子束との比が、1:1.3~1:3.5となる基板型LED光源10A・10Bが好ましい。これにより、植物の発芽・育苗に適した基板型LED光源10A・10Bとすることができる。
 また、本実施の形態では、栽培棚に設置されることを目的とする場合には、波長400nm~480nmの青色域における光合成光量子束と、波長620nm~700nmの赤色域における光合成光量子束との比が、1:7.5~1:10となる基板型LED光源10C・10Dが好ましい。これにより、植物の栽培に適した基板型LED光源10C・10Dすることができる。
 また、本実施の形態の基板型LED光源10と従来の単独の植物栽培用の赤色LEDとの相対全光束における温度特性を図6に示す。図6において、横軸は搭載チップのジャンクション温度を示し、縦軸は相対全光束値を示している。図6に示すように、基板型LED光源10(図6において実線)と従来の単独の植物栽培用の赤色LED(図6において破線)とでは、高温領域において約10%の温度特性の差があることが判る。この理由は、赤色LEDの温度特性が悪いことに起因している。これに対して、本実施の形態の基板型LED光源10では赤色LEDの代わりに赤蛍光体7bにて構成しているため温度特性が向上している。延いては、基板型LED光源10及び後述する砲弾型LEDランプ40は、クロロフィルの光吸収特性の光吸収ピークによくあわせることができる。
 (赤蛍光体の材質)
 ここで、上記の説明において、本実施の形態の基板型LED光源10では、赤蛍光体7bとして、CaAlSiN3 :Euを使用したが、必ずしもこれに限らず、例えば、(Sr,Ca)AlSiN3 :Euを使用することも可能である。この(Sr,Ca)AlSiNは、CaAlSiN3 :Euにおいて、Caの一部をSrに置換えて発光ピーク波長を短波長にシフトさせたものであり、CaAlSiN3 :Euと同様に温度特性が安定かつ高発光効率の蛍光体である。
 具体的には、特に、クロロフィルbよりもクロロフィルaを多く含む植物等に対しては、赤蛍光体7bとしてCaAlSiN3 :Eu(発光ピーク650~660nm)を使用することが好ましい。また、クロロフィルaよりもクロロフィルbを多く含む植物などに対しては赤蛍光体7bとしてより短波長側に発光ピーク(620~630nm)をもつ(Sr,Ca)AlSiN3 :Euを使用することが好ましい。
 また、赤蛍光体7bとして、3.5MgO・0.5MgF2 ・GeO2 :Mn、La2 2 S:Eu、Y2 2 S:Eu、LiEuW2 8 、(Y,Gd,Eu)2 3 、(Y,Gd,Eu)BO3 、及び/又はYVO4 :Eu、CaS:Eu,Ce,Kを使用することも可能である。
 勿論、CaAlSiN3 :Euと(Sr,Ca)AlSiN3 :Euとを使用する等、赤蛍光体7bを2種類併用してもよいことはいうまでもない。クロロフィルaとクロロフィルbとが半分ずつ含まれる植物の栽培にとって有効である。
 また、クロロフィルの青色領域の光吸収特性に対しても青色LEDチップ2のピーク波長を、クロロフィルa及びクロロフィルbの吸収ピークに合致するように適宜選定してもよい。例えば、クロロフィルaを多く含む植物では430~440nmにピークを有する青色LEDチップ2(タイプI)を使用し、クロロフィルbを多く含む植物では450~460nmにピークを有する青色LEDチップ2(タイプII)を使用することが好ましい。
 さらに、青色LEDチップ2と赤蛍光体7bの組み合わせを、クロロフィルa及びクロロフィルbの各タイプに合致した組み合わせの基板型LED光源10としてもよい。例えば、タイプIの青色LEDチップ2と、CaAlSiN3 :Euからなる赤蛍光体7bとの組み合わせや、タイプIIの青色LEDチップ2と(Sr,Ca)AlSiN3 :Euからなる赤蛍光体7bとの組み合わせ等、それぞれの組み合わせ構成の基板型LED光源10とすることが可能である。
 この場合、それぞれ樹脂7aと赤蛍光体7bとの配合比を所望の光量割合になるように適宜調整する。
 (人間が作業するために必要な基板型LED光源(照明用LED光源)の構成)
 上述した基板型LED光源10は、植物栽培用LED光源のものであったが、この基板型LED光源10を利用して人間が作業するために必要な照明用LED光源20とすることが可能であり、容易に行うことができる。
 すなわち、前述した基板型LED光源10の構成に加えて、図7(a)(b)(c)に示すように、複数の青色LEDチップ2…の上側を被覆する樹脂層7には、赤蛍光体7bに加えて緑蛍光体7cが追加して樹脂7aに混合分散されている。
 具体的には、照明用LED光源20は、セラミック基板1上に複数の青色LEDチップ2が搭載され、その周囲に立設壁3が立設されてなっている。
 本実施の形態では、青色LEDチップ2は、例えば、直列に12個ずつ並んだものが、並列に13列並んだ156個からなっている。尚、本発明においては、青色LEDチップ2の個数は必ずしも複数に限らず、1個でもよく、また、複数においても156個に限らない。さらに、複数個における並べ方についても問わない。
 上記各青色LEDチップ2は、立設壁3の内側において、各列の青色LEDチップ2の両側に設けられた配線パターン4aと配線パターン4bとにそれぞれ導電性ワイヤ5にて電気的に接続されている。そして、配線パターン4aと配線パターン4bとは、セラミック基板1上において立設壁3の外側に搭載されたカソード電極ランド6aとアノード電極ランド6bとにそれぞれ電気的に接続されている。
 そして、本実施の形態の照明用LED光源20には、図7(b)に示すように、立設壁3の内側に充填されて上記複数の青色LEDチップ2の上側を被覆する樹脂層7が設けられており、この樹脂層7には、赤蛍光体7bと緑蛍光体7cとがシリコーン樹脂からなる樹脂7aに混合分散されている。
 ここで、照明用LED光源20では、樹脂7aと赤蛍光体7bと緑蛍光体7cとの配合比は、例えば1:0.01:0.10となっている。この配合比により、図7(c)に示す発光スペクトルが得られる。図7(c)に示す発光スペクトルにおいては、人間が最も明るく感じる波長550nm付近の光量が増加しているのが把握できる。したがって、照明用LED光源20は人間が作業するための照明光源として有効であることが判る。
 (植物工場への適用)
 次に、本実施の形態の基板型LED光源10の植物工場への適用例について、図8に基づいて説明する。図8は本実施の形態の基板型LED光源10及び照明用LED光源20を使用する植物工場30の一例を示す図である。
 本実施の形態の植物工場30においては、図8に示すように、発芽棚には基板型LED光源10Aを例えば1300個設置する。また、育苗棚には基板型LED光源10Aを4600個設置する。さらに、栽培棚には基板型LED光源10Dを17000個設置する。また、出荷棚では、人間が作業を行うので、照明用LED光源20を370個設置する。
 このように、本実施の形態の発光装置は、光合成を行うべく生育に光を必要とする植物によって吸収される光における複数のピーク波長のうち、相対的に短波長域の第1ピーク波長としてのクロロフィルの青色域吸収ピークに対応した波長が400~480nmの第1短波長域光を発する少なくとも1個の第1LEDチップとしての青色LEDチップ2と、青色LEDチップ2を覆う蛍光体含有封止樹脂としての樹脂層7とを備えている。樹脂層7に含有された蛍光体としての赤蛍光体7bは、青色LEDチップ2が出射する第1短波長域光を吸収することにより、複数のピーク波長のうち、上記第1ピーク波長よりも長波長域のピーク波長であるクロロフィルの赤色域吸収ピークに対応した波長620~700nmの長波長域光を出力する。
 すなわち、光合成を行う植物の生育には、相対的に短波長域の第1ピーク波長と、第1ピーク波長よりも長波長域のピーク波長の光が必要となる場合が多い。そこで、本実施の形態では、第1ピーク波長に対応した第1短波長域光を発する少なくとも1個の青色LEDチップ2と、青色LEDチップ2を覆う樹脂層7とを備えている。そして、樹脂層7に含有された赤蛍光体7bは、第1ピーク波長よりも長波長域のピーク波長に対応した長波長域光を発する。
 この結果、独立した青色LEDチップと独立した赤色LEDチップとの2種類のLEDチップを使用しなくても、1種類の青色LEDチップにて植物等の生物の成長に必要なクロロフィル等の青色域吸収ピークと赤色域吸収ピークとに対応する光を出射することができる。このため、設置面積を増大することがない。そして、この構成においては、赤蛍光体は樹脂層に分散されていることから、赤蛍光体を樹脂に所定の配合比にて分散させることが可能であり、その配合比に応じて青色域と赤色域における光量を変化させることができる。
 したがって、設置面積を増大させることなく、簡単な構成で青色域と赤色域との光量割合を容易に調整し得ると同時に空間的に色むらの少ない青色光及び赤色光の混色光を放出し得る発光装置を提供することができる。
 また、本実施の形態の植物栽培用LED光源は、クロロフィルの青色域吸収ピークに対応すべく波長が400~480nmの範囲で発光ピークを有する少なくとも1個の青色LEDチップ2と、青色LEDチップ2からの励起光により、クロロフィルの赤色域吸収ピークに対応すべく発光ピークが波長620~700nmの光を発光する赤蛍光体7bと、赤蛍光体7bを分散して上記少なくとも1個の青色LEDチップ2を覆う樹脂層7とが設けられている。
 上記の構成によれば、植物栽培用LED光源は、少なくとも1個の青色LEDチップ2とこの青色LEDチップ2を覆う赤蛍光体7bを分散した樹脂層7とからなっている。そして、この構成において、青色LEDチップ2にてクロロフィルの青色域吸収ピークに対応すべく波長が400~480nmの範囲で光を出力することができる。そして、赤蛍光体7bは、青色LEDチップ2からの励起光により、クロロフィルの赤色域吸収ピークに対応すべく発光ピークが波長620~700nmの光を発光する。
 この結果、独立した青色LEDチップ2と独立した赤色LEDチップとの2種類のLEDチップを使用しなくても、1種類の青色LEDチップ2にて植物の成長に必要なクロロフィルの青色域吸収ピークと赤色域吸収ピークとに対応する光を出射することができる。このため、設置面積を増大することがない。そして、この構成においては、赤蛍光体7bは樹脂層に分散されていることから、赤蛍光体7bを樹脂に所定の配合比にて分散させることが可能であり、その配合比に応じて青色域と赤色域における光量を変化させることができる。
 したがって、設置面積を増大させることなく、簡単な構成で青色域と赤色域との光量割合を容易に調整し得ると同時に空間的に色むらの少ない青色光及び赤色光の混色光を放出し得る植物栽培用LED光源を提供することができる。
 また、本実施の形態の基板型LED光源10では、波長400nm~480nmの青色域における光合成光量子束と、波長620nm~700nmの赤色域における光合成光量子束との比が、1:1.3~1:10となっていることが好ましい。この結果、植物の発芽・育苗及び栽培に適した基板型LED光源10とすることが可能となる。
 また、本実施の形態の基板型LED光源10では、樹脂層7における樹脂7aと赤蛍光体7bとの配合比は1:0.05~1:0.20となっている。この結果、植物の発芽・育苗及び栽培に適した基板型LED光源10とすることが可能となる。
 また、本実施の形態の基板型LED光源10では、発芽棚又は育苗棚に設置されることを目的とする場合には、樹脂層7における樹脂7aと赤蛍光体7bとの配合比は1:0.05~1:0.10となっていることが好ましい。
 すなわち、植物の光合成において中心的な役割を担うクロロフィル(葉緑素)は、光を一様に吸収するのではなく、赤色660nm付近と青色450nm付近に明確な吸収ピークを示し、これに関係して光合成の波長特性は660nm付近に第一ピークを有する一方、450nm付近に第二のピークを有している。つまり、葉を備え光合成が活発となる栽培段階では、青色及び赤色の両方の光成分を有することが生育に対して有効になる。一方、450nm付近の青色光は植物の高エネルギー反応系と呼ばれる光反応系にも影響を及ぼし、植物の健全な形態形成に必要不可欠である。したがって、発芽・育苗の段階では、青色光の成分の重要性が増す。
 この点、本実施の形態では、樹脂層7における樹脂7aと赤蛍光体7bとの配合比は1:0.05~1:0.10となっている。このため、この配合比とすることによって、発芽・育苗の段階において植物の健全な形態形成に必要不可欠である青色光の成分の光を容易に出射する基板型LED光源10を提供することができる。
 また、本実施の形態の基板型LED光源10では、栽培棚に設置されることを目的とする場合には、樹脂層7における樹脂7aと赤蛍光体7bとの配合比は1:0.15~1:0.20となっている。これにより、葉を備え光合成が活発となる栽培段階において、青色及び赤色の両方の光成分を有する光を容易に出射する基板型LED光源10を提供することができる。
 また、本実施の形態の基板型LED光源10では、発芽棚又は育苗棚に設置されることを目的とする場合には、波長400nm~480nmの青色域における光合成光量子束と、波長620nm~700nmの赤色域における光合成光量子束との比が、1:1.3~1:3.5となっていることが好ましい。これにより、植物の発芽・育苗に適した基板型LED光源10とすることが可能となる。
 また、本実施の形態の基板型LED光源10では、栽培棚に設置されることを目的とする場合には、波長400nm~480nmの青色域における光合成光量子束と、波長620nm~700nmの赤色域における光合成光量子束との比が、1:7.5~1:10となっていることが好ましい。これにより、植物の栽培に適した基板型LED光源10することが可能となる。
 また、本実施の形態の基板型LED光源10では、赤蛍光体7bは、クロロフィルbよりもクロロフィルaを多く含む植物栽培には、CaAlSiN3 :Eu系の成分を有してなっていることが好ましい。
 すなわち、植物は、クロロフィルaとクロロフィルbとを有している。ここで、クロロフィルaとクロロフィルbとはそれぞれ光吸収特性が異なっている。具体的には、クロロフィルaは赤色領域では650~660nmに吸収ピークを有し、クロロフィルbは赤色領域では620~630nmに吸収ピークを有している。
 そこで、本実施の形態では、赤蛍光体7bは、クロロフィルbよりもクロロフィルaを多く含む植物栽培には、CaAlSiN3 :Eu系の成分を有してなっている。すなわち、CaAlSiN3 :Eu系の成分を有する赤蛍光体は、発光ピーク650~660nmの波長を出射することができる。
 したがって、クロロフィルbよりもクロロフィルaを多く含む植物栽培には、CaAlSiN3 :Eu系の成分を有する赤蛍光体7bを使用するのが好ましい。
 また、本実施の形態の基板型LED光源10では、赤蛍光体7bは、クロロフィルaよりもクロロフィルbを多く含む植物栽培には、(Sr,Ca)AlSiN3 :Eu系の成分を有してなっていることが好ましい。
 すなわち、クロロフィルbは赤色領域では620~630nmに吸収ピークを有していると共に、(Sr,Ca)AlSiN3 :Eu系の成分を有する赤蛍光体は、発光ピーク620~630nmの波長を出射することができる。
 したがって、クロロフィルaよりもクロロフィルbを多く含む植物栽培には、(Sr,Ca)AlSiN3 :Eu系の成分を有する赤蛍光体7bを使用するのが好ましい。
 また、本実施の形態の基板型LED光源10では、セラミック基板1上に複数の青色LEDチップ2が搭載され、その周囲に立設壁3が設けられていると共に、立設壁3の内側には赤蛍光体7bを分散した樹脂7aが充填されている。
 これにより、いわゆる基板型の基板型LED光源10の構成とすることができる。そして、この構成においては、1個の基板型LED光源10について、複数の青色LEDチップ2が用いられているので、1個の基板型LED光源10で大光量の光を出射することができる。また、赤色LEDチップの代わりとして樹脂7aに分散された赤蛍光体7bを使用しているので、複数の青色LEDチップ2に対応する複数の赤色LEDチップに相当する設置面積を大幅に縮小することができる。
 したがって、1個の基板型LED光源10によって、少ない設置面積にて大光量の光を出射することが可能となる。
 また、本実施の形態の基板型LED光源10では、波長400~480nmの第1光と波長620~700nmの第2光とが出射される。
 これにより、植物育成に必要な青色及び赤色の両ピークを1個の基板型LED光源10にて生成することができることになる。このように、1個の基板型LED光源10とすることによって、基板型LED光源10の設置面積の縮小が可能となり、信頼性が高まり、植物工場等での使用に適した光源とすることができる。
 また、本実施の形態の基板型LED光源10では、第1光は青色LEDチップ2からの光であり、第2光は赤蛍光体7bから放出される光である。すなわち、基板型LED光源10では、発光部の近傍でクロロフィルの光吸収特性の光吸収ピークが生成されている。このことから基板型LED光源10からの第1光と第2光が均一に照射される。すなわち、基板型LED光源10では、発光部の近傍でクロロフィルの光吸収特性の光吸収ピークが生成されている。このことから基板型LED光源10からの第1光と第2光が均一に照射される。
 具体的には、青色LEDチップ2から出射される第1光は、一部は赤蛍光体7bに吸収されて該赤蛍光体7bから第2光が出射され、残りは赤蛍光体7bにより散乱される。そして、赤蛍光体7bは蛍光体1個1個が点光源であるので、青色光又は赤色光が均一に発光する。
 この結果、植物育成に必要な青色及び赤色の両ピークを1個の基板型LED光源10にて生成することができることになる。このように、1個の基板型LED光源10とすることによって、基板型LED光源10の設置面積の縮小が可能となり、信頼性が高まり、植物工場等での使用に適した光源とすることができる。
 また、本実施の形態の植物工場30は、上記基板型LED光源10A及び/又は基板型LED光源10B、並びに基板型LED光源10C及び/又は基板型LED光源10Dを備えている。
 それゆえ、設置面積を増大させることなく、簡単な構成で青色域と赤色域との光量割合を容易に調整し得る基板型LED光源10を備えた植物工場30を提供することができる。
 尚、本発明は、上記の実施の形態に限定されるものではなく、本発明の範囲内で種々の変更が可能である。
 例えば、図1(a)(b)においては、セラミック基板1の裏面には何も設けられていないが、特にこれに限定するものではない。例えば、基板型LED光源10の放熱板を兼ねるセラミック基板1の裏面側、つまり青色LEDチップ2を搭載した面とは反対側に、フィン付きヒートシンクを取り付けることが可能である。これにより、植物工場の室内において、エアーフローを利用することにより、フィン付きヒートシンクにてセラミック基板1を冷却することが可能となる。尚、この場合、フィン付きヒートシンクの開口部はエアーフローの方向と同じ方向であることが好ましい。
 また、セラミック基板1の裏面に、液体培養液を循環させる管を設けた構成とすることも可能である。これにより、基板型LED光源10を好適に冷却することが可能となり、安定したクロロフィルの光吸収特性の光吸収ピークに合う第1光と第2光とを照射することができる。
 このように、本実施の形態の基板型LED光源10では、セラミック基板1の裏面には、冷却手段としてのフィン付きヒートシンクが設けられていることが好ましい。
 これにより、高温になった青色LEDチップ2を冷却することが可能となる。
  〔実施の形態2〕
 本発明の他の実施の形態について図9に基づいて説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態1と同じである。また、説明の便宜上、前記の実施の形態1の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
 前記実施の形態1にて説明した基板型LED光源10及び照明用LED光源20は、セラミック基板1上に少なくとも1個以上の青色LEDチップ2が搭載されたものからなっていた。しかし、図9(a)(b)に示すように、本実施の形態の植物栽培用LED光源は、形状が一般的な砲弾型の形態を有している点が異なっている。
 本実施の形態の植物栽培用LED光源の構成について、図9(a)(b)に基づいて説明する。図9(a)(b)は、砲弾型LEDランプの構成を示す模式的断面図である。
 本実施の形態の植物栽培用LED光源としての砲弾型LEDランプ40は、図9(a)(b)に示すように、カップとしてのマウントリードカップ41内に接着された青色LEDチップ2と、シリコーン樹脂からなる樹脂7a及び赤蛍光体7bからなる樹脂層7と、導線としての導電性ワイヤ5と、アノードリードとしてのアノードリードフレーム42と、カソードリードとしてのカソードリードフレーム43と、砲弾型に形成し、上記アノードリードフレーム42及びカソードリードフレーム43の先端を除いて全体を砲弾型に封止するエポキシ樹脂からなる封止樹脂44とからなっている。赤蛍光体7bは、例えば、CaAlSiN3 :Euを使用することができる。
 上記砲弾型LEDランプ40を製造するときには、マウントリードカップ41内に、青色LEDチップ2を接着する。次いで、青色LEDチップ2と図示しないマウントリード、及び青色LEDチップ2と図示しないインナーリードとは、それぞれ導電性ワイヤ5にて導通する。その後、赤蛍光体7bを樹脂7aに混合、分散させ、マウントリードカップ41内に流し込むことにより樹脂層7を形成する。この結果、樹脂層7にて青色LEDチップ2を被覆し、固定している。最後に、全体をエポキシ樹脂からなる封止樹脂44によるモールド部材で被覆及び保護する。
 上記砲弾型LEDランプ40では、青色LEDチップ2は、第1光としての波長400nm~480nmの光を発生する。この第1光は、クロロフィルの青色域吸収ピークに対応する。一方、赤蛍光体7bは、青色LEDチップ2の光を吸収して発光ピークが波長620~700nmの第2光を発光する。この第2光がクロロフィルの赤色域吸収ピークに対応する。
 そして、本実施の形態では、図9(a)に示す本実施の形態の砲弾型LEDランプ40では、樹脂7aと赤蛍光体7bとの配合比が1:0.05とした砲弾型LEDランプ40Aとなっており、実施の形態1の基板型LED光源10Aと同じ図3(a)に示すスペクトルを出力するようになっている。したがって、砲弾型LEDランプ40Aはクロロフィルの青色域吸収ピークに対応しており、発芽・育苗用に使用するのが好ましい。ただし、必ずしもこれに限らず、樹脂7aと赤蛍光体7bとの配合比が1:0.10~1:0.15とした砲弾型LEDランプ40をすることも可能である。
 一方、図9(b)に示す砲弾型LEDランプ40は、樹脂7aと赤蛍光体7bとの配合比が1:0.20とした砲弾型LEDランプ40Dとなっている。したがって、この砲弾型LEDランプ40Dは、実施の形態1の基板型LED光源10Dと同じ図4(b)に示すスペクトルを出力するようになっている。これにより、砲弾型LEDランプ40Dは、クロロフィルの赤色域吸収ピークに対応しており、栽培用に使用するのが好ましいものとなっている。
 このような砲弾型LEDランプ40は、実施の形態1にて説明したセラミック基板1に青色LEDチップ2を搭載した基板型LED光源10が取り付けることが難しい箇所に取り付ける。このことからすると、基板型LED光源10が取り付けることが難しい箇所は少ないと考えられるので、実施の形態1の基板型LED光源10と実施の形態2の砲弾型LEDランプ40とを併用を行ってもよい。
 最後に、実施の形態1の基板型LED光源10と実施の形態2の砲弾型LEDランプ40と従来の赤色砲弾型LEDランプと青色砲弾型LEDランプとを組み合わせたものとの比較を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本実施の形態1の基板型LED光源10、及び本実施の形態2の砲弾型LEDランプ40は、従来の赤色砲弾型LEDランプと青色砲弾型LEDランプとを組み合わせたものと比べて、信頼性、コスト、特性、設置面積、寿命の全ての点で優れていることが把握される。
 具体的には、設置面積については、従来技術である青色砲弾型LEDと赤色砲弾型LEDとを組み合わせたときの設置面積を1とすると、砲弾型LEDランプ40では1/3となり、基板型LED光源10及び照明用LED光源20では1/6となる。このため、本実施の形態の基板型LED光源10及び照明用LED光源20並びに砲弾型LEDランプ40では、設置面積が少なくてすむという特徴がある。
 また、コストについても、本実施の形態の基板型LED光源10及び照明用LED光源20並びに砲弾型LEDランプ40では、従来に比べてコストメリットがあることが明らかである。
 さらに、基板型LED光源10及び照明用LED光源20の寿命は3~4万時間と、電熱型ランプ(電球)はいうまでもなく、蛍光灯ランプに比べても十倍以上も長寿命である。
 このように、本実施の形態の植物栽培用LED光源としての砲弾型LEDランプ40では、カソードリードフレーム43と、カソードリードフレーム43に接続されたマウントリードカップ41と、マウントリードカップ41内に搭載された少なくとも1個の青色LEDチップ2と、マウントリードカップ41内に搭載された青色LEDチップ2から導電性ワイヤ5を介して接続されたアノードリードフレーム42と、マウントリードカップ41内で、青色LEDチップ2を覆うように充填された、赤蛍光体7bを分散した樹脂層7と、カソードリードフレーム43とアノードリードフレーム42との各端部を露出した状態で、マウントリードカップ41全体を砲弾状に封止した封止樹脂44とを備えている。
 これにより、いわゆる砲弾型の砲弾型LEDランプ40とすることができる。そして、このような砲弾型の砲弾型LEDランプ40は設置面積が狭いので、植物栽培のスポット照射に適している。
  〔実施の形態3〕
 本発明の他の実施の形態について図10に基づいて説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態1及び実施の形態2と同じである。また、説明の便宜上、前記の実施の形態1及び実施の形態2の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
 前記実施の形態1にて説明した基板型LED光源10、及び実施の形態2にて説明した砲弾型LEDランプ40は、クロロフィルの青色域吸収ピークに対応すべく波長が400~480nmの範囲で発光ピークを有する少なくとも1個の青色LEDチップを有していた。
 しかしながら、本実施の形態の植物栽培用LED光源では、青色LEDチップは、クロロフィルaの青色域吸収ピークに対応すべく波長が400~450nmの範囲で発光ピークを有する少なくとも1個のクロロフィルa用青色LEDチップと、クロロフィルbの青色域吸収ピークに対応すべく波長が400~480nmの範囲で発光ピークを有する少なくとも1個のクロロフィルb用青色LEDチップとからなっている点が異なっている。
 すなわち、本実施の形態の植物栽培用LED光源としての基板型LED光源50は、図10(a)に示すように、基板としてのセラミック基板1上に複数の青色LEDチップ2と青色LEDチップ52とが搭載され、その周囲に樹脂からなる立設壁3が設けられてなっている。
 上記各青色LEDチップ2及び各青色LEDチップ52は、図10(b)に示すように、立設壁3の内側において、各列の青色LEDチップ2・52の両側に設けられた配線パターン4aと配線パターン4bとにそれぞれ導電性ワイヤ5にて接続されている。そして、配線パターン4aと配線パターン4bとは、セラミック基板1上において立設壁3の外側に搭載されたカソード電極ランド6aとアノード電極ランド6bとにそれぞれ接続されている。
 上記立設壁3の内側には、図10(a)に示すように、複数の青色LEDチップ2・52の上側を被覆する樹脂層7が設けられている。この樹脂層7は、充填された樹脂7aに赤蛍光体7bが混合分散されたものからなっている。
 そして、本実施の形態の青色LEDチップ2は、クロロフィルbの青色域吸収ピークに対応する第1光としての波長400nm~480nmの青色領域長波長の光を発生する。したがって、青色領域長波長用の青色LEDチップ2は、本発明のクロロフィルb用青色LEDチップとして機能している。
 一方、本実施の形態の青色LEDチップ52は、クロロフィルaの青色域吸収ピークに対応する第1光としての波長400nm~450nmの青色領域短波長の光を発生する。したがって、青色領域短波長用の青色LEDチップ52は、本発明のクロロフィルa用青色LEDチップとして機能している。
 また、赤蛍光体7bは、青色LEDチップ2及び青色LEDチップ52の光を吸収してクロロフィルa及びクロロフィルbの赤色域吸収ピークに対応する発光ピークが波長620~700nmの第2光を発光するものとなっている。
 すなわち、植物は、クロロフィルaとクロロフィルbとを有している。ここで、クロロフィルaとクロロフィルbとは青色領域における光吸収特性がそれぞれ異なっている。具体的には、前記実施の形態1で説明した図5に示すように、クロロフィルaは青色領域においては400~450nmに吸収ピークを有し、クロロフィルbは青色領域においては400~480nmに吸収ピークを有している。
 そこで、本実施の形態の植物栽培用LED光源としての基板型LED光源50では、青色LEDチップは、クロロフィルaの青色域吸収ピークに対応すべく波長が400~450nmの範囲で発光ピークを有する少なくとも1個のクロロフィルa用青色LEDチップとしての青色領域短波長用の青色LEDチップ52と、クロロフィルbの青色域吸収ピークに対応すべく波長が400~480nmの範囲で発光ピークを有する少なくとも1個のクロロフィルb用青色LEDチップとしての青色領域長波長用の青色LEDチップ2とからなっている。
 この結果、クロロフィルa及びクロロフィルbを有する植物に、より適した植物栽培用LED光源を提供することができる。
 尚、上記の説明では、基板型LED光源10の構成を一部変更した植物栽培用LED光源としての基板型LED光源50について説明した。しかし、本発明の植物栽培用LED光源については、必ずしもこれに限らず、実施の形態2にて説明した砲弾型LEDランプ40の構成を一部変更した砲弾型LEDランプについても適用が可能である。
  〔実施の形態4〕
 本発明のさらに他の実施の形態について説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態1~実施の形態3と同じである。また、説明の便宜上、前記の実施の形態1~実施の形態3の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
 前記実施の形態1~実施の形態3では、光合成を行うべく生育に光を必要とする植物を対象とした植物栽培用LED光源について説明した。しかしながら、本発明の発光装置は、植物に限らず光合成を行うべく生育に光を必要とする藻類を対象にすることも可能である。したがって、本実施の形態では、光合成を行う藻類への適用について説明する。
 すなわち、光合成を行うクロロフィルa,b以外に色素として、クロロフィル色素系のクロロフィルc、バクテリオクロロフィルa(835nm)、及びカロテノイド色素系のβカロテン(446nm)、ルテイン、フコキサンチン(453nm)、並びにフィコピリン色素系の及びフィコシアニン(612nm)、フィコエリトリン(540nm)が挙げられる。尚、カッコ内の数値は吸収ピークの波長である。上述したように、バクテリオクロロフィルは800nm以上に吸収ピークがある。
 ここで、各種の藻類においては、具体的には以下の色素を有している。
 まず、ケイ藻類は、主な色素としてクロロフィルaとフコキサンチン(453nm)とを有している。上記クロロフィルaは、前述したように、青色領域においては400~450nmに吸収ピークを有しており、赤色領域では650~660nmに吸収ピークを有している。
 したがって、この場合、光合成を行うべく生育に光を必要とするケイ藻類によって吸収される光における複数のピーク波長のうち、相対的に短波長域であるフコキサンチンの第1ピーク波長453nmに対応した第1短波長域光を発する少なくとも1個の第1LEDチップとしての青色系LEDチップと、該青色系LEDチップを覆う蛍光体含有封止樹脂とを備えていると共に、上記蛍光体含有封止樹脂に含有された蛍光体としての赤蛍光体は、上記青色系LEDチップが出射する第1短波長域光を吸収することにより、上記複数のピーク波長のうち、第1ピーク波長453nmよりも長波長域のクロロフィルaのピーク波長650~660nmに対応した長波長域光を発する発光装置とするのが好ましい。これにより、ケイ藻類の成長を促進することができる。
 また、ケイ藻類の場合、複数のピーク波長のうち、相対的に短波長域のピーク波長であって、かつフコキサンチンの第1ピーク波長453nmとは異なるクロロフィルaの第2ピーク波長400~450nmに対応した第2短波長域光を発する、少なくとも1個の第2LEDチップを備えているとすることが可能である。これにより、ケイ藻類の成長をさらに促進することができる。
 次に、緑藻類は、主な色素としてクロロフィルa,bとβカロテン(446nm)とを有している。前述したように、クロロフィルaは青色領域においては400~450nmに吸収ピークを有し、赤色領域では650~660nmに吸収ピークを有している。また、クロロフィルbは青色領域においては400~480nmに吸収ピークを有し、赤色領域では620~630nmに吸収ピークを有している。
 したがって、この場合、光合成を行うべく生育に光を必要とする緑藻類によって吸収される光における複数のピーク波長のうち、相対的に短波長域であるβカロテンの第1ピーク波長446nmに対応した第1短波長域光を発する少なくとも1個の第1LEDチップとしての青色系LEDチップと、該青色系LEDチップを覆う蛍光体含有封止樹脂とを備えていると共に、上記蛍光体含有封止樹脂に含有された蛍光体としての赤蛍光体は、上記青色系LEDチップが出射する第1短波長域光を吸収することにより、上記複数のピーク波長のうち、第1ピーク波長446nmよりも長波長域のクロロフィルaのピーク波長650~660nm及びクロロフィルbのピーク波長620~630nmに対応した長波長域光を発する発光装置とするのが好ましい。これにより、緑藻類の成長を促進することができる。
 次に、ラン藻類は、主な色素としてクロロフィルaとフィコシアニン(612nm)とを有している。前述したように、上記クロロフィルaは、青色領域においては400~450nmに吸収ピークを有している。
 したがって、この場合、光合成を行うべく生育に光を必要とするラン藻類によって吸収される光における複数のピーク波長のうち、相対的に短波長域であるクロロフィルaの第1ピーク波長400~450nmに対応した第1短波長域光を発する少なくとも1個の第1LEDチップとしての青色系LEDチップと、該青色系LEDチップを覆う蛍光体含有封止樹脂とを備えていると共に、上記蛍光体含有封止樹脂に含有された蛍光体としての赤蛍光体は、上記青色系LEDチップが出射する第1短波長域光を吸収することにより、上記複数のピーク波長のうち、第1ピーク波長400~450nmよりも長波長域のフィコシアニンのピーク波長612nmに対応した長波長域光を発する発光装置とするのが好ましい。これにより、ラン藻類の成長を促進することができる。
 この場合、赤蛍光体の吸収ピーク波長に一致する青色LEDチップを用いることも可能である。
 すなわち、まず、相対的に短波長域であるクロロフィルaの第1ピーク波長400~450nmに対応した第1短波長域光を発する少なくとも1個の第1LEDチップとしての第1青色系LEDチップと、該第1青色系LEDチップを覆う蛍光体含有封止樹脂とを備えていると共に、上記蛍光体含有封止樹脂に含有された蛍光体としての第1赤蛍光体は、上記第1青色系LEDチップが出射する第1短波長域光を吸収することにより、上記複数のピーク波長のうち、第1ピーク波長400~450nmよりも長波長域のクロロフィルaのピーク波長650~660nmに対応した長波長域光を発光する。
 次に、相対的に短波長域のピーク波長であって、かつクロロフィルaの第1ピーク波長400~450nmとは異なる第2ピーク波長に対応した第2短波長域光を発する、少なくとも1個の第2LEDチップとしての第2青色系LEDチップを設ける。
 この第2青色系LEDチップにおいては、蛍光体含有封止樹脂に含有された蛍光体としての第2赤蛍光体は、第2青色系LEDチップが出射する第1短波長域光を吸収することにより、上記複数のピーク波長のうち、第1ピーク波長400~450nmよりも長波長域のフィコシアニンのピーク波長612nmに対応した長波長域光を発光するようにする。
 これにより、第1短波長域光を発光する第1青色系LEDチップの第1赤蛍光体では、相対的に長波長域のフィコシアニンのピーク波長612nmに対応した長波長域光を発することができない場合に、第2短波長域光を発光する第2青色系LEDチップを用いることにより、第2赤蛍光体にてフィコシアニンのピーク波長612nmに対応した長波長域光を発光することが可能である。
 この結果、フィコシアニンに対して、より発光強度の強い赤色波長領域の光りが発光装置から出射され、ひいてはラン藻類の発育が良好となる。
 尚、このような方法は、ラン藻類だけではなく他の生物の栽培、培養にも用いることができる。
 このような発光装置を用いることにより、ケイ藻類、緑藻類、ラン藻類等の藻類を発光装置にて照射することによって、ケイ藻類、緑藻類、ラン藻類等の藻類の成長を促進することができる。
 また、独立した青色LEDチップと独立した赤色LEDチップとの2種類のLEDチップを使用しなくても、1種類の青色LEDチップにて藻類等の生物の成長に必要なクロロフィル等の青色域吸収ピークと赤色域吸収ピークとに対応する光を出射することができる。このため、設置面積を増大することがない。そして、この構成においては、赤蛍光体は樹脂層に分散されていることから、赤蛍光体を樹脂に所定の配合比にて分散させることが可能であり、その配合比に応じて青色域と赤色域における光量を変化させることができる。
 したがって、設置面積を増大させることなく、簡単な構成で青色域と赤色域との光量割合を容易に調整し得ると同時に空間的に色むらの少ない青色光及び赤色光の混色光を放出し得る発光装置を提供することができる。
 また、本実施の形態の発光装置では、複数のピーク波長のうち、相対的に短波長域のピーク波長であって、かつ第1ピーク波長とは異なる第2ピーク波長に対応した第2短波長域光を発する、少なくとも1個の第2LEDチップを備えているとすることができる。
 この結果、相対的に短波長域のピーク波長が第1ピーク波長と第2ピーク波長との2種類存在する場合においても、適切に藻類等の生物の成長を促す発光装置を提供することができる。
 尚、本発明は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 以上のように、本発明の植物栽培用LED光源では、前記青色LEDチップは、クロロフィルaの青色域吸収ピークに対応すべく波長が400~450nmの範囲で発光ピークを有する少なくとも1個のクロロフィルa用青色LEDチップと、クロロフィルbの青色域吸収ピークに対応すべく波長が400~480nmの範囲で発光ピークを有する少なくとも1個のクロロフィルb用青色LEDチップとからなっているとすることができる。
 すなわち、植物は、クロロフィルaとクロロフィルbとを有している。ここで、クロロフィルaとクロロフィルbとは青色領域における光吸収特性がそれぞれ異なっている。具体的には、クロロフィルaは青色領域においては400~450nmに吸収ピークを有し、クロロフィルbは青色領域においては400~480nmに吸収ピークを有している。
 そこで、本発明では、これらクロロフィルaとクロロフィルbとの青色領域における2種の光吸収特性にそれぞれ対応するように、クロロフィルaの青色域吸収ピークに対応すべく波長が400~450nmの範囲で発光ピークを有する少なくとも1個のクロロフィルa用青色LEDチップと、クロロフィルbの青色域吸収ピークに対応すべく波長が400~480nmの範囲で発光ピークを有する少なくとも1個のクロロフィルb用青色LEDチップとを備えている。
 この結果、クロロフィルa及びクロロフィルbを有する植物に、より適した植物栽培用LED光源を提供することができる。
 本発明の植物栽培用LED光源では、波長400nm~480nmの青色域における光合成光量子束と、波長620nm~700nmの赤色域における光合成光量子束との比が、1:1.3~1:10となっていることが好ましい。尚、光合成光量子束とは、光合成有効光量子束密度(PPFD:photosynthetic photon flux density)に光照射面積をかけたものをいう。ここで、光量子束密度は、ある物質に太陽の光が照射している場合に、1秒間に照射される光子の数をその物質の受光面積で割った値をいう。
 一般に、光量子束密度という場合には、光子の数を数えるので、赤外光又は紫外光のいずれが来ても1個は1個である。しかし、光化学反応は、色素が吸収できる光子が来たときだけに引き起こされる。例えば、植物の場合、クロロフィルに吸収されない光がいくら来ても、それは存在しないのと同じである。そこで、光合成の分野では、クロロフィルが吸収できる400nm~700nmまでの波長領域だけの光合成有効光量子束密度又は光合成光量子束が定義されている。
 ここで、本発明では、波長400nm~480nmの青色域における光合成光量子束と、波長620nm~700nmの赤色域における光合成光量子束との比が、1:1.3~1:10となっている。この結果、植物の発芽・育苗及び栽培に適した植物栽培用LED光源とすることが可能となる。
 本発明の植物栽培用LED光源では、前記樹脂層における樹脂と赤蛍光体との配合比は1:0.05~1:0.20となっていることが好ましい。この結果、植物の発芽・育苗及び栽培に適した植物栽培用LED光源とすることが可能となる。
 本発明の植物栽培用LED光源では、発芽棚又は育苗棚に設置されることを目的とする場合には、前記樹脂層における樹脂と赤蛍光体との配合比は1:0.05~1:0.10となっていることが好ましい。
 すなわち、植物の光合成において中心的な役割を担うクロロフィル(葉緑素)は、光を一様に吸収するのではなく、赤色660nm付近と青色450nm付近に明確な吸収ピークを示し、これに関係して光合成の波長特性は660nm付近に第一ピークを有する一方、450nm付近に第二のピークを有している。つまり、葉を備え光合成が活発となる栽培段階では、青色及び赤色の両方の光成分を有することが生育に対して有効になる。一方、450nm付近の青色光は植物の高エネルギー反応系と呼ばれる光反応系にも影響を及ぼし、植物の健全な形態形成に必要不可欠である。したがって、発芽・育苗の段階では、青色光の成分の重要性が増す。
 この点、本発明では、前記樹脂層における樹脂と赤蛍光体との配合比は1:0.05~1:0.10となっている。このため、この配合比とすることによって、発芽・育苗の段階において植物の健全な形態形成に必要不可欠である青色光の成分の光を容易に出射する植物栽培用LED光源を提供することができる。
 本発明の植物栽培用LED光源では、栽培棚に設置されることを目的とする場合には、前記樹脂層における樹脂と赤蛍光体との配合比は1:0.15~1:0.20となっていることが好ましい。
 これにより、葉を備え光合成が活発となる栽培段階において、青色及び赤色の両方の光成分を有する光を容易に出射する植物栽培用LED光源を提供することができる。
 本発明の植物栽培用LED光源では、発芽棚又は育苗棚に設置されることを目的とする場合には、波長400nm~480nmの青色域における光合成光量子束と、波長620nm~700nmの赤色域における光合成光量子束との比が、1:1.3~1:3.5となっていることが好ましい。
 これにより、植物の発芽・育苗に適した植物栽培用LED光源とすることが可能となる。
 本発明の植物栽培用LED光源では、栽培棚に設置されることを目的とする場合には、波長400nm~480nmの青色域における光合成光量子束と、波長620nm~700nmの赤色域における光合成光量子束との比が、1:7.5~1:10となっていることが好ましい。
 これにより、植物の栽培に適した植物栽培用LED光源とすることが可能となる。
 本発明の植物栽培用LED光源では、前記赤蛍光体は、クロロフィルbよりもクロロフィルaを多く含む植物栽培には、CaAlSiN3 :Eu系の成分を有してなっていることが好ましい。
 すなわち、植物は、クロロフィルaとクロロフィルbとを有している。ここで、クロロフィルaとクロロフィルbとはそれぞれ光吸収特性が異なっている。具体的には、クロロフィルaは赤色領域では650~660nmに吸収ピークを有し、クロロフィルbは赤色領域では620~630nmに吸収ピークを有している。
 そこで、本発明では、赤蛍光体は、クロロフィルbよりもクロロフィルaを多く含む植物栽培には、CaAlSiN3 :Eu系の成分を有してなっている。すなわち、CaAlSiN:Eu系の成分を有する赤蛍光体は、発光ピーク650~660nmの波長を出射することができる。
 したがって、クロロフィルbよりもクロロフィルaを多く含む植物栽培には、CaAlSiN:Eu系の成分を有する赤蛍光体を使用するのが好ましい。
 本発明の植物栽培用LED光源では、前記赤蛍光体は、クロロフィルaよりもクロロフィルbを多く含む植物栽培には、(Sr,Ca)AlSiN3 :Eu系の成分を有してなっていることが好ましい。
 すなわち、クロロフィルbは赤色領域では620~630nmに吸収ピークを有していると共に、(Sr,Ca)AlSiN3 :Eu系の成分を有する赤蛍光体は、発光ピーク620~630nmの波長を出射することができる。
 したがって、クロロフィルaよりもクロロフィルbを多く含む植物栽培には、(Sr,Ca)AlSiN3 :Eu系の成分を有する赤蛍光体を使用するのが好ましい。
 本発明の植物栽培用LED光源では、基板上に複数の青色LEDチップが搭載され、その周囲に立設壁が設けられていると共に、上記立設壁の内側には前記赤蛍光体を分散した樹脂が充填されているとすることができる。
 これにより、いわゆる基板型の植物栽培用LED光源の構成とすることができる。そして、この構成においては、1個の植物栽培用LED光源について、複数の青色LEDチップが用いられているので、1個の植物栽培用LED光源で大光量の光を出射することができる。また、赤色LEDチップの代わりとして樹脂に分散された赤蛍光体を使用しているので、複数の青色LEDチップに対応する複数の赤色LEDチップに相当する設置面積を大幅に縮小することができる。
 したがって、1個の植物栽培用LED光源によって、少ない設置面積にて大光量の光を出射することが可能となる。
 本発明の植物栽培用LED光源では、カソードリードと、上記カソードリードに接続されたカップと、上記カップ内に搭載された少なくとも1個の前記青色LEDチップと、上記カップ内に搭載された青色LEDチップから導線を介して接続されたアノードリードと、上記カップ内で、上記青色LEDチップを覆うように充填された、前記赤蛍光体を分散した樹脂層と、上記カソードリードとアノードリードとの各端部を露出した状態で、カップ全体を砲弾状に封止した封止樹脂とを備えているとすることができる。
 これにより、いわゆる砲弾型の植物栽培用LED光源とすることができる。そして、このような砲弾型の植物栽培用LED光源は設置面積が狭いので、植物栽培のスポット照射に適している。
 本発明の植物栽培用LED光源では、波長400~480nmの第1光と波長620~700nmの第2光とが出射される。
 これにより、植物育成に必要な青色及び赤色の両ピークを1個の植物栽培用LED光源にて生成することができることになる。このように、1個の植物栽培用LED光源とすることによって、植物栽培用LED光源の設置面積の縮小が可能となり、信頼性が高まり、植物工場等での使用に適した光源とすることができる。
 本発明の植物栽培用LED光源では、前記青色LEDチップから放出される第1光と、前記青色LEDチップによって励起され赤蛍光体から放出される第2光とを出射する。
 すなわち、青色LEDチップを覆う樹脂中に赤色蛍光体を分散することによって、青色LEDチップから出射される第1光は、一部は赤蛍光体に吸収されて該赤蛍光体から第2光が出射され、残りは赤蛍光体により散乱される。そして、赤蛍光体は蛍光体1個1個が点光源であるので、青色光又は赤色光が均一に発光する。
 この結果、植物育成に必要な青色及び赤色の両ピークを1個の植物栽培用LED光源にて生成することができることになる。このように、1個の植物栽培用LED光源とすることによって、植物栽培用LED光源の設置面積の縮小が可能となり、信頼性が高まり、植物工場等での使用に適した光源とすることができる。
 本発明の植物栽培用LED光源では、前記基板の裏面には、冷却手段が設けられていることが好ましい。
 これにより、高温になった青色LEDチップを冷却することが可能となる。
 本発明は、光合成を行うべく生育に光を必要とする植物又は藻類によって吸収される光を発光する発光装置、並びに植物栽培用LED光源及び植物工場に適用することができる。
 1   セラミック基板(基板)
 2   青色LEDチップ(クロロフィルb用青色LEDチップ、第1LEDチップ)
 3   立設壁
 7   樹脂層(蛍光体含有封止樹脂)
 7a  樹脂
 7b  赤蛍光体(蛍光体)
 7c  緑蛍光体
10   基板型LED光源(植物栽培用LED光源)
10A  基板型LED光源(植物栽培用LED光源)
10B  基板型LED光源(植物栽培用LED光源)
10C  基板型LED光源(植物栽培用LED光源)
10D  基板型LED光源(植物栽培用LED光源)
20   照明用LED光源
30   植物工場
40   砲弾型LEDランプ(植物栽培用LED光源)
40A  砲弾型LEDランプ(植物栽培用LED光源)
40D  砲弾型LEDランプ(植物栽培用LED光源)
41   マウントリードカップ(カップ)
42   アノードリードフレーム(アノードリード)
43   カソードリードフレーム(カソードリード)
44   封止樹脂
50   基板型LED光源(植物栽培用LED光源)
52   青色LEDチップ(クロロフィルa用青色LEDチップ)

Claims (18)

  1.  光合成を行うべく生育に光を必要とする植物又は藻類によって吸収される光における複数のピーク波長のうち、相対的に短波長域の第1ピーク波長に対応した第1短波長域光を発する少なくとも1個の第1LEDチップと、
     上記第1LEDチップを覆う蛍光体含有封止樹脂とを備えていると共に、
     上記蛍光体含有封止樹脂に含有された蛍光体は、上記第1LEDチップが出射する第1短波長域光を吸収することにより、上記複数のピーク波長のうち、上記第1ピーク波長よりも長波長域のピーク波長に対応した長波長域光を発することを特徴とする発光装置。
  2.  前記複数のピーク波長のうち、前記相対的に短波長域のピーク波長であって、かつ前記第1ピーク波長とは異なる第2ピーク波長に対応した第2短波長域光を発する、少なくとも1個の第2LEDチップを備えていることを特徴とする請求項1記載の発光装置。
  3.  請求項1記載の発光装置を用いた植物栽培用LED光源であって、
     クロロフィルの青色域吸収ピークに対応すべく波長が400~480nmの範囲で発光ピークを有する少なくとも1個の青色LEDチップと、
     上記青色LEDチップからの励起光により、クロロフィルの赤色域吸収ピークに対応すべく発光ピークが波長620~700nmの光を発光する赤蛍光体と、
     上記赤蛍光体を分散して上記青色LEDチップを覆う樹脂層とが設けられていることを特徴とする植物栽培用LED光源。
  4.  前記青色LEDチップは、
     クロロフィルaの青色域吸収ピークに対応すべく波長が400~450nmの範囲で発光ピークを有する少なくとも1個のクロロフィルa用青色LEDチップと、
     クロロフィルbの青色域吸収ピークに対応すべく波長が400~480nmの範囲で発光ピークを有する少なくとも1個のクロロフィルb用青色LEDチップとからなっていることを特徴とする請求項3記載の植物栽培用LED光源。
  5.  波長400nm~480nmの青色域における光合成光量子束と、波長620nm~700nmの赤色域における光合成光量子束との比が、1:1.3~1:10となっていることを特徴とする請求項3記載の植物栽培用LED光源。
  6.  前記樹脂層における樹脂と赤蛍光体との配合比は1:0.05~1:0.20となっていることを特徴とする請求項3記載の植物栽培用LED光源。
  7.  発芽棚又は育苗棚に設置されることを目的とする場合には、前記樹脂層における樹脂と赤蛍光体との配合比は1:0.05~1:0.10となっていることを特徴とする請求項3記載の植物栽培用LED光源。
  8.  栽培棚に設置されることを目的とする場合には、前記樹脂層における樹脂と赤蛍光体との配合比は1:0.15~1:0.20となっていることを特徴とする請求項3記載の植物栽培用LED光源。
  9.  発芽棚又は育苗棚に設置されることを目的とする場合には、波長400nm~480nmの青色域における光合成光量子束と、波長620nm~700nmの赤色域における光合成光量子束との比が、1:1.3~1:3.5となっていることを特徴とする請求項3記載の植物栽培用LED光源。
  10.  栽培棚に設置されることを目的とする場合には、波長400nm~480nmの青色域における光合成光量子束と、波長620nm~700nmの赤色域における光合成光量子束との比が、1:7.5~1:10となっていることを特徴とする請求項3記載の植物栽培用LED光源。
  11.  前記赤蛍光体は、クロロフィルbよりもクロロフィルaを多く含む植物栽培には、CaAlSiN3 :Eu系の成分を有してなっていることを特徴とする請求項3記載の植物栽培用LED光源。
  12.  前記赤蛍光体は、クロロフィルaよりもクロロフィルbを多く含む植物栽培には、(Sr,Ca)AlSiN3 :Eu系の成分を有してなっていることを特徴とする請求項3記載の植物栽培用LED光源。
  13.  基板上に複数の青色LEDチップが搭載され、その周囲に立設壁が設けられていると共に、
     上記立設壁の内側には前記赤蛍光体を分散した樹脂が充填されていることを特徴とする請求項3記載の植物栽培用LED光源。
  14.  カソードリードと、
     上記カソードリードに接続されたカップと、
     上記カップ内に搭載された少なくとも1個の前記青色LEDチップと、
     上記カップ内に搭載された青色LEDチップから導線を介して接続されたアノードリードと、
     上記カップ内で、上記青色LEDチップを覆うように充填された、前記赤蛍光体を分散した樹脂層と、
     上記カソードリードとアノードリードとの各端部を露出した状態で、カップ全体を砲弾状に封止した封止樹脂とを備えていることを特徴とする請求項3記載の植物栽培用LED光源。
  15.  波長400~480nmの第1光と波長620~700nmの第2光とが出射されることを特徴とする請求項3記載の植物栽培用LED光源。
  16.  前記青色LEDチップから放出される第1光と、前記青色LEDチップによって励起され赤蛍光体から放出される第2光とを出射することを特徴とする請求項3記載の植物栽培用LED光源。
  17.  前記基板の裏面には、冷却手段が設けられていることを特徴とする請求項13記載の植物栽培用LED光源。
  18.  請求項9記載の植物栽培用LED光源及び請求項10記載の植物栽培用LED光源を備えていることを特徴とする植物工場。
PCT/JP2011/076322 2010-11-25 2011-11-15 発光装置、並びに植物栽培用led光源及び植物工場 WO2012070435A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2013126797/07A RU2580325C2 (ru) 2010-11-25 2011-11-15 Светоизлучающее устройство, источник света на основе сида (светоизлучающего диода) для растениеводства и промышленное предприятие по выращиванию растений
US13/988,405 US9666769B2 (en) 2010-11-25 2011-11-15 Light emitting device, LED light source for plant cultivation, and plant factory
EP11843751.6A EP2644020B1 (en) 2010-11-25 2011-11-15 Light emitting device, led light source for plant cultivation, and plant factory
CN201180055432.7A CN103220902B (zh) 2010-11-25 2011-11-15 发光装置、植物栽培用led光源以及植物工厂

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010263000 2010-11-25
JP2010-263000 2010-11-25
JP2011160255 2011-07-21
JP2011-160255 2011-07-21
JP2011-227260 2011-10-14
JP2011227260 2011-10-14
JP2011-229239 2011-10-18
JP2011229239A JP5450559B2 (ja) 2010-11-25 2011-10-18 植物栽培用led光源、植物工場及び発光装置

Publications (1)

Publication Number Publication Date
WO2012070435A1 true WO2012070435A1 (ja) 2012-05-31

Family

ID=46145781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076322 WO2012070435A1 (ja) 2010-11-25 2011-11-15 発光装置、並びに植物栽培用led光源及び植物工場

Country Status (6)

Country Link
US (1) US9666769B2 (ja)
EP (1) EP2644020B1 (ja)
JP (1) JP5450559B2 (ja)
CN (3) CN104465963B (ja)
RU (1) RU2580325C2 (ja)
WO (1) WO2012070435A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113884A (zh) * 2013-02-05 2013-05-22 江门市远大发光材料有限公司 一种基于氮化物红色荧光粉的led植物生长灯
JP2014060147A (ja) * 2012-08-23 2014-04-03 Yamaguchi Univ 光害防止用の照明方法及び照明装置
US20140215918A1 (en) * 2013-02-04 2014-08-07 Showa Denko K.K. Method for cultivating plant
WO2014125714A1 (ja) * 2013-02-15 2014-08-21 シャープ株式会社 植物栽培用led光源
JP2016202108A (ja) * 2015-04-24 2016-12-08 スタンレー電気株式会社 ファレノプシスの栽培方法およびそれに用いる光源装置
JP2017503516A (ja) * 2014-01-27 2017-02-02 ユニヴァーシティ オヴ ニューカッスル アポン タインUniversity Of Newcastle Upon Tyne フィコシアニン合成の改善
EP3012520A4 (en) * 2013-06-20 2017-03-01 Futuregreen Agricultural Co. Ltd. Led lighting module for plant factory and led lighting device for plant factory having same mounted thereon
EP3492554A1 (en) 2017-11-30 2019-06-05 Nichia Corporation Light emitting device, illumination device and plant cultivation method
WO2022172909A1 (ja) * 2021-02-10 2022-08-18 大日本印刷株式会社 植物育成施設、植物の栽培方法、植物育成用のled照明装置、植物の育成棚用の棚板及び植物の育成棚
WO2024018569A1 (ja) * 2022-07-20 2024-01-25 Tsubu株式会社 植物の栽培方法

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10028448B2 (en) * 2012-07-10 2018-07-24 Once Innovations, Inc. Light sources adapted to spectral sensitivity of plants
US10212892B2 (en) 2012-07-10 2019-02-26 Once Innovatians, Inc. Light sources adapted to spectral sensitivity of plant
WO2014009865A1 (en) * 2012-07-11 2014-01-16 Koninklijke Philips N.V. Lighting device capable of providing horticulture light and method of illuminating horticulture
JP5723900B2 (ja) * 2013-02-04 2015-05-27 昭和電工株式会社 植物栽培方法
JP5723901B2 (ja) * 2013-02-04 2015-05-27 昭和電工株式会社 植物栽培方法
JP5779677B2 (ja) * 2013-02-04 2015-09-16 昭和電工株式会社 植物栽培方法及び植物栽培装置
KR101483523B1 (ko) * 2013-09-16 2015-01-19 (주)티앤아이 Led 광원을 이용한 접목묘 활착용 육묘 장치
GB2523645B (en) * 2014-01-23 2018-10-17 Nanoco Tech Limited Quantum dot chip on board LEDs
JP6595192B2 (ja) * 2014-02-25 2019-10-23 日本メナード化粧品株式会社 特定の波長域を有する光を照射して栽培したフェヌグリークの抽出物を含有する皮膚外用剤や内用剤。
NO2923561T3 (ja) * 2014-03-28 2018-04-14
JP6586691B2 (ja) * 2014-03-31 2019-10-09 日本メナード化粧品株式会社 特定の波長域を有する光を照射して栽培したチャービルの抽出物を含有する皮膚外用剤や内用剤
JP6803110B2 (ja) * 2014-03-31 2020-12-23 日本メナード化粧品株式会社 特定の波長域を有する光を照射して栽培したナスタチウムの抽出物を含有する皮膚外用剤や内用剤
JP6595195B2 (ja) * 2014-03-31 2019-10-23 日本メナード化粧品株式会社 特定の波長域を有する光を照射して栽培したチコリの抽出物を含有する皮膚外用剤や内用剤
CN106413382B (zh) * 2014-04-17 2020-04-17 万斯创新公司 适应于植物的光谱灵敏度的光源
US10244595B2 (en) 2014-07-21 2019-03-26 Once Innovations, Inc. Photonic engine system for actuating the photosynthetic electron transport chain
CN104390158A (zh) * 2014-10-22 2015-03-04 中国科学院宁波材料技术与工程研究所湖州新能源产业创新中心 一种基于叶绿素吸收光谱特性设计的led植物灯
CN105529389A (zh) * 2015-08-25 2016-04-27 王子欣 一种全光谱的发光二极管及其应用
CN105284446A (zh) * 2015-09-29 2016-02-03 湖南绿米科技有限公司 一种利用led植物生长光源促进茄果类蔬菜育苗的方法
CN105333313B (zh) * 2015-10-16 2019-12-13 福建泉州台商投资区莉沓科技有限公司 用于种植藻类的灯具
CN105392230A (zh) * 2015-12-01 2016-03-09 浙江华坚照明科技股份有限公司 一种发光光谱可调的led灯
WO2017191819A1 (ja) 2016-05-02 2017-11-09 株式会社エルム 完全自動多段苗育成システム
JP6722938B6 (ja) * 2016-06-01 2020-08-19 株式会社アクアデザインアマノ 水草観賞用照明装置
CN106051544A (zh) * 2016-06-08 2016-10-26 山东盈光新材料有限公司 基于荧光粉光谱可调控的led植物补光灯及制作工艺
CN107543038A (zh) * 2016-06-24 2018-01-05 台达电子工业股份有限公司 植物生长照明装置
JP6481663B2 (ja) * 2016-06-29 2019-03-13 日亜化学工業株式会社 発光装置及び植物栽培方法
CN106171398A (zh) * 2016-07-08 2016-12-07 湖南农业大学 一种藏红花室内培育开花的人工栽培方法
CN106105811A (zh) * 2016-07-08 2016-11-16 周智 一种胡萝卜在半封闭式人工光型植物工厂中的培育方法
CN106051551A (zh) * 2016-07-15 2016-10-26 江苏华旦科技有限公司 一种辅助植物生长的照明方法和设备
CN106613549A (zh) * 2016-11-10 2017-05-10 福建省中科生物股份有限公司 一种减小植物工厂中环境照明对植物生长影响的方法
JP6500940B2 (ja) * 2017-06-22 2019-04-17 サンケン電気株式会社 電照菊用照明装置
CN107086264A (zh) * 2017-06-23 2017-08-22 深圳市德辰光电科技有限公司 一种红光led灯珠及其制造方法
CN108269794A (zh) * 2018-01-05 2018-07-10 福建天电光电有限公司 一种集成式植物生长光源封装结构及其制作工艺
JP7185126B2 (ja) 2018-03-14 2022-12-07 日亜化学工業株式会社 照明装置及び植物栽培方法
CN108550685A (zh) * 2018-03-19 2018-09-18 山东省科学院海洋仪器仪表研究所 一种叶绿素荧光激发专用led
CN108321288A (zh) * 2018-04-04 2018-07-24 聚灿光电科技(宿迁)有限公司 Led光源及其制造方法
WO2020013011A1 (ja) * 2018-07-13 2020-01-16 三菱ケミカルアグリドリーム株式会社 ナス科植物の苗の栽培装置及び栽培方法
US10600662B2 (en) 2018-07-20 2020-03-24 Varian Semiconductor Equipment Associates, Inc. Silicon carbide substrate heating
WO2020022465A1 (ja) * 2018-07-27 2020-01-30 日亜化学工業株式会社 照光装置
US10820532B2 (en) * 2018-08-24 2020-11-03 Seoul Viosys Co., Ltd. Light source for plant cultivation
US11419278B2 (en) 2018-11-22 2022-08-23 HANGZHOU HANHUl OPTOELECTRONIC TECHNOLOGY CO., LTD. LED light source for supplemental lighting for plants and lamp with light source
CN109863902A (zh) * 2018-12-12 2019-06-11 福建省中科生物股份有限公司 促进植物生长的光照方法和植物灯及其应用
US20220061227A1 (en) * 2019-01-21 2022-03-03 Growor, Inc. Devices for an optimized, high-intensity, horticultural, led luminaire having a regulated photosynthetic flux density
CN109644721A (zh) * 2019-02-15 2019-04-19 福建省中科生物股份有限公司 一种室内栽培植物的光源
CN111684946A (zh) * 2019-02-27 2020-09-22 远博科技股份有限公司 植物培养系统、植物培养方法以及照明装置
CN111668200B (zh) * 2019-03-07 2022-05-06 杭州汉徽光电科技有限公司 植物补光用倒装式高压led光源及光照设备
CN111668199B (zh) * 2019-03-07 2021-09-07 杭州汉徽光电科技有限公司 植物补光用正装高压led光源及光照设备
US11716938B2 (en) * 2019-03-26 2023-08-08 Seoul Viosys Co., Ltd. Plant cultivation light source and plant cultivation device
CN111164344B (zh) * 2019-03-28 2022-06-17 厦门三安光电有限公司 一种用于微藻培育的照明器材和该照明器材的制作方法
US11402089B2 (en) 2019-06-06 2022-08-02 Abundant Lighting Technology, Llc LED growth light
DE102019209014A1 (de) 2019-06-20 2020-12-24 GND Solutions GmbH System und Verfahren zur Kultivierung eines Pflanzenbestandes
CN112335441A (zh) * 2019-08-07 2021-02-09 杭州汉徽光电科技有限公司 基于生物识别的防控病虫害的植物生长光照装置及其控制方法
CN112397488A (zh) * 2019-08-12 2021-02-23 杭州汉徽光电科技有限公司 高压交流led晶片组、高压交流led光源及光照设备
CN112399667A (zh) * 2019-08-12 2021-02-23 杭州汉徽光电科技有限公司 植物补光用高压交流led光源及光照设备
CN110523330B (zh) * 2019-08-12 2021-06-22 河南省烟草公司平顶山市公司 一种苗盘基质混料装置
US11109452B2 (en) 2019-11-14 2021-08-31 Applied Materials, Inc. Modular LED heater
CN111256236A (zh) * 2020-01-22 2020-06-09 杭州汉徽光电科技有限公司 一种用于病原微生物治理的植物净化空气系统
CN111987076B (zh) * 2020-08-31 2023-06-16 中国电子科技集团公司第四十四研究所 一种近红外光与可见光的宽光谱光电探测器及其制作方法
CN113557864B (zh) * 2021-07-02 2023-10-13 华中农业大学 一种促进油菜开花成熟的led光配方及其应用
CN115777376B (zh) * 2023-01-10 2023-04-18 赣江新区活草生物科技有限公司 一种通过降低叶绿素a二级激发态提高光合效率的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09252651A (ja) 1996-03-26 1997-09-30 Kensei Okamoto 植物栽培用led光源および個別led光源装着型植物培養容器
JP2002299694A (ja) * 2001-03-29 2002-10-11 Mitsubishi Electric Lighting Corp 照明用led光源デバイス及び照明器具
JP2004344114A (ja) 2003-05-23 2004-12-09 Ccs Inc 植物伸長方法及び植物伸長装置
JP2006050988A (ja) * 2004-08-13 2006-02-23 Koha Co Ltd 植物栽培用光源
JP2008527708A (ja) * 2005-01-10 2008-07-24 クリー インコーポレイテッド 発光デバイス
JP2008181771A (ja) * 2007-01-25 2008-08-07 National Institute For Materials Science 色変換器、これを用いた植物育成装置及び植物育成方法
JP2008282932A (ja) * 2007-05-09 2008-11-20 Omron Corp 発光素子及びその製造方法
JP2009261267A (ja) * 2008-04-22 2009-11-12 Toyoda Gosei Co Ltd 草花の害虫防除及び開花制御装置並びに方法
JP2010004869A (ja) * 2008-05-28 2010-01-14 Mitsubishi Chemicals Corp 生物の育成装置及び育成方法
JP2010140644A (ja) * 2008-12-09 2010-06-24 Ccs Inc 植物育成用パッケージled、植物育成用光源ユニット及び植物育成装置

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL185889C (nl) 1987-09-16 1990-08-16 Nijssen Light Div Werkwijze voor het belichten van zaad of plant.
JP3982897B2 (ja) 1998-03-24 2007-09-26 小糸工業株式会社 植物育成装置
JP2002027831A (ja) 2000-05-11 2002-01-29 Kansai Tlo Kk 植物育成用led光源
JP4101468B2 (ja) * 2001-04-09 2008-06-18 豊田合成株式会社 発光装置の製造方法
JP2002315569A (ja) 2001-04-24 2002-10-29 Tokai Sangyo Kk 藻類の培養方法
WO2005075598A1 (ja) * 2004-02-06 2005-08-18 Mitsubishi Chemical Corporation 発光装置およびそれを用いた照明装置、画像表示装置
KR100655894B1 (ko) * 2004-05-06 2006-12-08 서울옵토디바이스주식회사 색온도 및 연색성이 우수한 파장변환 발광장치
US8125137B2 (en) 2005-01-10 2012-02-28 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
US7821023B2 (en) 2005-01-10 2010-10-26 Cree, Inc. Solid state lighting component
US9793247B2 (en) 2005-01-10 2017-10-17 Cree, Inc. Solid state lighting component
US20070114562A1 (en) * 2005-11-22 2007-05-24 Gelcore, Llc Red and yellow phosphor-converted LEDs for signal applications
TWI382077B (zh) * 2005-02-23 2013-01-11 Mitsubishi Chem Corp 半導體發光裝置用構件及其製造方法,暨使用其之半導體發光裝置
CN101128563B (zh) * 2005-02-28 2012-05-23 三菱化学株式会社 荧光体、其制造方法及其应用
US9502624B2 (en) * 2006-05-18 2016-11-22 Nichia Corporation Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same
DE102007021042A1 (de) * 2006-07-24 2008-01-31 Samsung Electro-Mechanics Co., Ltd., Suwon Leuchtdiodenmodul für Lichtquellenreihe
JP2008131909A (ja) 2006-11-29 2008-06-12 Espec Mic Kk 完全制御型植物工場
JP4804335B2 (ja) * 2006-12-25 2011-11-02 豊田合成株式会社 害虫防除方法及び装置並びに同装置用ledランプ
KR100946015B1 (ko) * 2007-01-02 2010-03-09 삼성전기주식회사 백색 발광장치 및 이를 이용한 lcd 백라이트용 광원모듈
JP4858239B2 (ja) 2007-03-06 2012-01-18 Mkvドリーム株式会社 多段式植物栽培装置における空調方法
JP4753904B2 (ja) * 2007-03-15 2011-08-24 シャープ株式会社 発光装置
EP2025220A1 (en) 2007-08-15 2009-02-18 Lemnis Lighting Patent Holding B.V. LED lighting device for growing plants
WO2009028869A2 (en) * 2007-08-27 2009-03-05 Lg Electronics Inc. Light emitting device package and lighting apparatus using the same
JP5578597B2 (ja) * 2007-09-03 2014-08-27 独立行政法人物質・材料研究機構 蛍光体及びその製造方法、並びにそれを用いた発光装置
US8866169B2 (en) 2007-10-31 2014-10-21 Cree, Inc. LED package with increased feature sizes
US10256385B2 (en) 2007-10-31 2019-04-09 Cree, Inc. Light emitting die (LED) packages and related methods
LT5688B (lt) * 2008-11-07 2010-09-27 Uab "Hortiled" Konversijos fosfore šviesos diodas, skirtas augalų fotomorfogeneziniams poreikiams tenkinti
JP5102190B2 (ja) 2008-12-08 2012-12-19 Mkvドリーム株式会社 植物栽培方法
US20120099305A1 (en) * 2008-12-10 2012-04-26 Jeffery Bucove Rgb led package for optimized emissions of photosynthetically active radiation
JP5651302B2 (ja) * 2009-02-26 2015-01-07 株式会社朝日Fr研究所 植物栽培用光源
CN101832518A (zh) * 2009-03-11 2010-09-15 旭明光电股份有限公司 具有复合萤光体层的发光二极管的发光装置
US8084777B2 (en) * 2009-03-24 2011-12-27 Bridgelux, Inc. Light emitting diode source with protective barrier
JP2011009298A (ja) * 2009-06-23 2011-01-13 Citizen Electronics Co Ltd 発光ダイオード光源装置
JP5393790B2 (ja) * 2009-08-07 2014-01-22 昭和電工株式会社 植物育成用の多色発光ダイオードランプ、照明装置および植物育成方法
FI20095967A (fi) * 2009-09-18 2011-03-19 Valoya Oy Valaisinsovitelma
CN101717632A (zh) 2009-12-02 2010-06-02 天津理工大学 模拟光合作用光谱的发光材料及其发光二极管固态光源
JP2011155948A (ja) 2010-02-03 2011-08-18 Seiwa Electric Mfg Co Ltd 植物育成用発光装置
GB201009773D0 (en) * 2010-06-11 2010-07-21 Karpinski Stanislaw Method and apparatus for plant protection
US20120054061A1 (en) * 2010-08-26 2012-03-01 Fok Philip E Produce production system and process
US20120140436A1 (en) * 2010-12-02 2012-06-07 Intematix Corporation Solid-state lamps with light guide and photoluminescence material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09252651A (ja) 1996-03-26 1997-09-30 Kensei Okamoto 植物栽培用led光源および個別led光源装着型植物培養容器
JP2002299694A (ja) * 2001-03-29 2002-10-11 Mitsubishi Electric Lighting Corp 照明用led光源デバイス及び照明器具
JP2004344114A (ja) 2003-05-23 2004-12-09 Ccs Inc 植物伸長方法及び植物伸長装置
JP2006050988A (ja) * 2004-08-13 2006-02-23 Koha Co Ltd 植物栽培用光源
JP2008527708A (ja) * 2005-01-10 2008-07-24 クリー インコーポレイテッド 発光デバイス
JP2008181771A (ja) * 2007-01-25 2008-08-07 National Institute For Materials Science 色変換器、これを用いた植物育成装置及び植物育成方法
JP2008282932A (ja) * 2007-05-09 2008-11-20 Omron Corp 発光素子及びその製造方法
JP2009261267A (ja) * 2008-04-22 2009-11-12 Toyoda Gosei Co Ltd 草花の害虫防除及び開花制御装置並びに方法
JP2010004869A (ja) * 2008-05-28 2010-01-14 Mitsubishi Chemicals Corp 生物の育成装置及び育成方法
JP2010140644A (ja) * 2008-12-09 2010-06-24 Ccs Inc 植物育成用パッケージled、植物育成用光源ユニット及び植物育成装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060147A (ja) * 2012-08-23 2014-04-03 Yamaguchi Univ 光害防止用の照明方法及び照明装置
US20140215918A1 (en) * 2013-02-04 2014-08-07 Showa Denko K.K. Method for cultivating plant
US9549507B2 (en) * 2013-02-04 2017-01-24 Showa Denko K.K. Method for cultivating plant
CN103113884A (zh) * 2013-02-05 2013-05-22 江门市远大发光材料有限公司 一种基于氮化物红色荧光粉的led植物生长灯
WO2014125714A1 (ja) * 2013-02-15 2014-08-21 シャープ株式会社 植物栽培用led光源
CN104853587A (zh) * 2013-02-15 2015-08-19 夏普株式会社 植物栽培用led光源
EP2957166A4 (en) * 2013-02-15 2016-03-02 Sharp Kk LED LIGHT SOURCE FOR PLANT CULTURE
JP2016187054A (ja) * 2013-02-15 2016-10-27 シャープ株式会社 植物栽培用led光源
JP6017665B2 (ja) * 2013-02-15 2016-11-02 シャープ株式会社 植物栽培用led光源
EP3012520A4 (en) * 2013-06-20 2017-03-01 Futuregreen Agricultural Co. Ltd. Led lighting module for plant factory and led lighting device for plant factory having same mounted thereon
US9927075B2 (en) 2013-06-20 2018-03-27 Futuregreen Agricultural Co., Ltd. LED lighting module for plant factory and LED lighting device for plant factory having same mounted thereon
JP2017503516A (ja) * 2014-01-27 2017-02-02 ユニヴァーシティ オヴ ニューカッスル アポン タインUniversity Of Newcastle Upon Tyne フィコシアニン合成の改善
JP2016202108A (ja) * 2015-04-24 2016-12-08 スタンレー電気株式会社 ファレノプシスの栽培方法およびそれに用いる光源装置
EP3492554A1 (en) 2017-11-30 2019-06-05 Nichia Corporation Light emitting device, illumination device and plant cultivation method
US10978620B2 (en) 2017-11-30 2021-04-13 Nichia Corporation Light emitting device, illumination device and plant cultivation method
WO2022172909A1 (ja) * 2021-02-10 2022-08-18 大日本印刷株式会社 植物育成施設、植物の栽培方法、植物育成用のled照明装置、植物の育成棚用の棚板及び植物の育成棚
JP2022122672A (ja) * 2021-02-10 2022-08-23 大日本印刷株式会社 植物育成施設、植物の栽培方法、植物育成用のled照明装置、植物の育成棚用の棚板及び植物の育成棚
JP2022188266A (ja) * 2021-02-10 2022-12-20 大日本印刷株式会社 植物育成施設、植物の栽培方法、植物育成用のled照明装置、植物の育成棚用の棚板及び植物の育成棚
JP7362681B2 (ja) 2021-02-10 2023-10-17 大日本印刷株式会社 植物育成施設、植物の栽培方法、植物育成用のled照明装置、植物の育成棚用の棚板及び植物の育成棚
WO2024018569A1 (ja) * 2022-07-20 2024-01-25 Tsubu株式会社 植物の栽培方法

Also Published As

Publication number Publication date
CN104465963B (zh) 2017-10-24
EP2644020A4 (en) 2017-05-17
EP2644020A1 (en) 2013-10-02
EP2644020B1 (en) 2019-10-30
JP2013099254A (ja) 2013-05-23
US9666769B2 (en) 2017-05-30
CN103220902A (zh) 2013-07-24
CN103220902B (zh) 2014-12-10
US20130264934A1 (en) 2013-10-10
RU2580325C2 (ru) 2016-04-10
JP5450559B2 (ja) 2014-03-26
RU2013126797A (ru) 2014-12-27
CN104465963A (zh) 2015-03-25
CN104465962A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5450559B2 (ja) 植物栽培用led光源、植物工場及び発光装置
JP5173004B1 (ja) 植物栽培用の発光装置およびその製造方法
JP6017665B2 (ja) 植物栽培用led光源
JP5917482B2 (ja) 植物栽培用led光源
JP5813621B2 (ja) 植物栽培用の発光装置
US9162077B2 (en) Wide spectrum LED components
US11953195B2 (en) Solid-state grow-lights for plant cultivation
JP5192068B2 (ja) 発光装置、および発光装置を備えた光照射装置
JP2013059350A (ja) 植物栽培用の発光装置
CN109854979A (zh) 倒装型植物补光用led装置及灯具
JP5394583B2 (ja) 発光装置、および発光装置を備えた光照射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843751

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13988405

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011843751

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013126797

Country of ref document: RU

Kind code of ref document: A