JP5393790B2 - 植物育成用の多色発光ダイオードランプ、照明装置および植物育成方法 - Google Patents

植物育成用の多色発光ダイオードランプ、照明装置および植物育成方法 Download PDF

Info

Publication number
JP5393790B2
JP5393790B2 JP2011525931A JP2011525931A JP5393790B2 JP 5393790 B2 JP5393790 B2 JP 5393790B2 JP 2011525931 A JP2011525931 A JP 2011525931A JP 2011525931 A JP2011525931 A JP 2011525931A JP 5393790 B2 JP5393790 B2 JP 5393790B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting diode
light
plant
diode lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011525931A
Other languages
English (en)
Other versions
JPWO2011016521A1 (ja
Inventor
良一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2011525931A priority Critical patent/JP5393790B2/ja
Publication of JPWO2011016521A1 publication Critical patent/JPWO2011016521A1/ja
Application granted granted Critical
Publication of JP5393790B2 publication Critical patent/JP5393790B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Description

本発明は、植物育成用の多色発光ダイオードランプ、照明装置および植物育成方法に関するものである。
本願は、2009年8月7日に、日本に出願された特願2009−184569号に基づき優先権を主張し、その内容をここに援用する。
近年、人工光源による植物育成が研究なされている。特に、単色性に優れており、省エネルギー、長寿命、小型化が可能な発光ダイオード(英略称:LED)による照明を用いた栽培方法が注目されている。
これまでの研究結果から、植物育成(光合成)用の光源に適した発光波長として、波長450nm付近の青色光および波長600〜700nm領域の赤色光の効果が確認されている。特に、光合成に対して波長660〜670nm付近の赤色光は、反応効率が高く望ましい光源である。
植物栽培では、光強度として光合成有効量子束密度が使われる。これは、光合成に有効な可視光領域の光の単位時間・単位面積当たりの光量子数を表す。赤色及び青色は光合成に有効な可視光領域の光である。
植物育成用途の光源の光強度は、光量子の数、すなわち光量子束(μmol/s)で評価される。また、照明装置の性能にあたる照射される面の光強度は、照射面の単位面積当たりに入射する光量子束である光量子束密度(μmol/s・m)で評価される。
また、赤色と青色との光の強度バランスは、植物の成長に重要な要素であることが解明されている。具体的には、植物により異なるが、多くの植物は、青色の光量子に対して赤色の光量子が数倍(例えば2〜10倍)程度強いバランスであることが望ましい。
従来の発光ダイオードランプに於いては、青色と赤色との光を均等な強度比で植物に照射する為に、複数の赤色のランプと青色のランプとを混合配置する方法、配光特性を工夫する方法、赤と青との発光層を有する発光ダイオードの作成等が検討されている(例えば特許文献1〜3)。
ところで、従来の赤色LEDの発光層にはAlGa1−xAsが利用されていたが、青色LEDに対して発光効率が低いために発光効率の向上が望まれていた。また、発光効率の低い赤色LEDを用いる場合には、植物成長に適した望ましい混色を得るために青色LED1個に対して多数の赤色LEDが必要になる。このため、赤色と青色とのランプ数が異なるため、青色LEDの周りに多数の赤色LEDが点在する配置となり、混色の均一照射が困難であった。また、混色を均一に照射する為には、青色を律速としたブロック単位において、全部のLEDを点灯する必要があった。
これに対して、発光効率の高いLEDとしては、燐化アルミニウム・ガリウム・インジウム(組成式(AlGa1−XIn1−YP;0≦X≦1,0<Y≦1)からなる発光層を備えたLEDが知られている。しかしながら、上記発光層を備えたLEDは、Ga0.5In0.5Pの組成を有する発光層の波長が最も長く、ピーク波長が650nm付近であり、655nmよりも長波長の領域では実用化、高出力化が困難であった。このため、上記発光層を備えたLEDは、植物育成用の光源として適用していないという問題があった。
特開平8−1013167号公報 特開2001−86860号公報 特開2002−27831号公報
植物育成用の照明の光源として、植物の育成に合わせて青色と赤色の光を最適なバランスで均一に照射することが重要である。また、省エネルギーの観点からは、効率の悪い光の照射をしないことが望ましい。また、赤色の光量子束は、青色の光量子束より多いことが望ましい。そして、その結果、照射される面の赤色の光量子束密度が、青色の光量子束密度より大きいことが望ましい。この赤と青の光量子束密度の比は、照射面において均一であることが望ましい。従来のAlGaAsを発光層とする発光ダイオードは、青色の発光ダイオードに対して、光量子束が少なかった。これにより、最適な植物育成の光源にする為には、多数の赤色発光ダイオードに青色発光ダイオードを少数点在させる状態となるため、青色と赤色とを均一に照射することが困難であった。例えば、特許文献2に記載されたように、ランプの指向特性と配置とを最適化した技術が考案されている。光やスペースを効率的に利用する為に、光源と植物との距離を近づけることが望ましいが、特許文献2に記載された技術では、青色と赤色とを均一に照射することが困難であるという問題があった。また、赤色LEDと青色LEDとを個別にパッケージする必要があった。
一方、省エネ、コスト面から、発光効率の高い赤色LEDを用いて使用電力及びLEDの使用数量を削減する必要がある。特に、植物育成用LED照明の実用化の為には、使用電力の低減、コンパクト化、コストダウンが強く望まれており、従来の660nmの波長帯の発光ダイオードであるAlGaAs系のLEDに対して、高出力化・高効率化の発光特性向上が望まれていた。
また、近年の研究により、植物育成用の照明は、光を照射後、光合成の反応時間中に消灯することによって省エネルギー化が可能であることが確認された。点灯方法については、高速パルス方式、交流を利用して使用電力を削減することも検討されており、応答速度の速い発光ダイオードの利点を生かせる。しかし、青色と赤色の光を植物に均一照射するには、青色LEDが点在するような照明装置では、ランプは赤、青、個別パッケージであり、ランプの数、配置も不規則である為、点灯時間、電流を最適に制御するため、複雑な点灯回路が必要になり高度な技術と高価な点灯装置による高コストという課題がある。また、省スペース化ができない課題もあった。
本発明は、上記事情を鑑みてなされたものであり、高出力・高効率であって複雑な点灯回路が不要であり、光源と植物との距離を近づけた場合でも青色と赤色の光を最適なバランスで均一に照射することが可能な植物育成用の多色発光ダイオードランプ、照明装置および植物育成方法を提供することを目的とする。
本願発明者は、前記課題を解決する為に鋭意検討した結果、植物育成用では、従来、実用化されていない同一パッケージ内に青色及び赤色の発光素子を同時に搭載することで、均一な混色が得られることに着目した。そして、青色の発光ダイオードと同等以上の光量子束を有する赤色発光ダイオードを採用することで、青色と赤色発光ダイオードを同一パッケージに搭載可能であることを見出した。また、発光効率の高い赤色LEDとして、(AlGa1−XIn1−YP(0≦X≦1,0<Y≦1)から成る植物育成用途に適する660nmの発光層を検討した結果、青色と同等以上の光量が得られることを見出し、この赤色LEDと青色LEDとを小サイズの同一パッケージに同時に搭載することを考案した。
なお、AlGaInP系の発光層を有する発光ダイオードは、660nmの波長域において、AlGaAs発光層のLEDに対して3倍以上の発光出力が確認された。したがって、この発光ダイオードを用い、植物育成に適した多色発光ダイオードランプ(パッケージ)を発明した。更に、小型パッケージ内で、均一な青と赤の混色が発光することから、パッケージを独立に制御することが可能な省エネルギーに適した照明装置および植物育成方法を発見した。
すなわち、本発明は以下に関する。
[1] ピーク発光波長が655nm以上675nm以下の組成式(AlGa1−XIn1−YP(0≦X≦0.1,0<Y≦1)から成る発光層を含むpn接合型の発光部を有する第1の発光ダイオードと、ピーク発光波長が420nm以上470nm以下の組成式GaIn1−XN(0≦X≦1)の発光層を有する第2の発光ダイオードと、を備え、1以上の前記第1の発光ダイオードと、1以上の前記第2の発光ダイオードと、が同一のパッケージ内に搭載される植物育成用の多色発光ダイオードランプであって、
同一電流で、前記植物育成用の多色発光ダイオードランプに搭載された前記1以上の第1の発光ダイオードの光量子束R[μmol・s−1]と前記1以上の第2発光ダイオードの光量子束B[μmol・s−1]とが、R>Bの関係を満たすことを特徴とする植物育成用の多色発光ダイオードランプ。
[2] 前記第1の発光ダイオードの搭載個数が、前記第2の発光ダイオードの搭載個数より多いことを特徴とする前項1に記載の植物育成用の多色発光ダイオードランプ。
[3] 隣接する前記第1の発光ダイオードと前記第2の発光ダイオードとの距離が、10mm以内であることを特徴とする前項1又は2に記載の植物育成用の多色発光ダイオードランプ。
[4] 前項1乃至3のいずれか一項に記載の植物育成用の多色発光ダイオードランプを2以上備え、前記植物育成用の多色発光ダイオードランプが略等間隔に配置されるとともに、独立に制御可能とされていることを特徴とする植物育成用照明装置。
[5] 植物の生育面積に応じて前記植物育成用の多色発光ダイオードランプの点灯個数が制御可能とされていることを特徴とする前項4に記載の植物育成用照明装置。
[6] 前記植物育成用の多色発光ダイオードランプと植物との距離に応じて、前記植物育成用の多色発光ダイオードランプの光量子束を調整可能とされていることを特徴とする前項4又は5に記載の植物育成用照明装置。
[7] 前記植物育成用の多色発光ダイオードランプに印加する電流がパルス駆動であり、植物の生育状態に応じて前記植物育成用の多色発光ダイオードランプの点灯時間を調整可能とされていることを特徴とする前項4乃至6のいずれか一項に記載の植物育成用照明装置。
[8] 光取り出し面を有する導光板を備え、前記導光板の側面から取り入れた前記植物育成用の多色発光ダイオードランプの光を、前記光取り出し面から取り出し可能とされていることを特徴とする前項4乃至7のいずれか一項に記載の植物育成用照明装置。
[9] 植物の生育状態に応じて、前項4乃至8のいずれか一項に記載の植物育成用照明装置の点灯個数、光量子束、印加電流、パルス駆動時間の1以上を組み合わせて制御することを特徴とする植物育成方法。
本発明の植物育成用の多色発光ダイオードランプによれば、ピーク発光波長が655nm以上675nm以下の第1の発光ダイオード(赤色)と、ピーク発光波長が420nm以上470nm以下の第2の発光ダイオード(青色)とが同一のパッケージ内にそれぞれ1以上搭載される構成となっている。これにより、点灯回路の簡素化が可能となるため、高出力・高効率であって低コストの植物育成用光源を提供することができる。
また、同一電流で、本発明の植物育成用の多色発光ダイオードランプに搭載された第1の発光ダイオードの光量子束Rと第2発光ダイオードの光量子束Bとが、R>Bの関係を満たすように構成されているため、植物の育成に好適な赤色と青色との強度比を維持したまま均一に照射することができる。
また、本発明の植物育成用照明装置によれば、植物育成用の多色発光ダイオードランプが用いられているため、個々の多色発光ダイオードから直物の育成に最適な混色の光を供給することができる。これにより、照明装置の照射面の中心部と周辺部とにおいて、赤色と青色とのバランスを維持することができる。したがって、植物の育成に好適な赤色と青色との強度比を維持したまま均一に照射することができる。また、上記を多色発光ダイオードが略等間隔に配置されるとともに、独立に制御することができるため、多方向から光を供給できる照明装置の設計が容易となる。
また、植物の生育面積に応じて上記多色発光ダイオードランプの点灯個数を調整することができるとともに、上記多色発光ダイオードランプと植物との距離に応じて上記多色発光ダイオードランプの光量子束を調整することができるため、低消費電力化を図ることができる。
さらに、多色発光ダイオードランプに印加する電流をパルス駆動とした構成では、植物の生育状態に応じて多色発光ダイオードランプの点灯時間を制御することができるため、低消費電力化を図ることができる。
更にまた、本発明の植物育成用照明装置によれば、パッケージ内で混色される上記多色発光ダイオードランプを用いているため、導光板を利用して均一発光の光源とすることができる。また、上記多色発光ダイオードランプは、多色発光が可能であるため、導光板の側面から取り入れた多色発光ダイオードランプの光を、光取り出し面から取り出すエッジ型バックライト構造の照明装置とすることができる。
本発明の植物育成方法によれば、上記植物育成用照明装置の点灯個数、光量子束、印加電流、パルス駆動時間を組み合わせて制御することができる。これにより、植物の生育状態に応じて、青色と赤色の光を最適なバランスで均一に照射することができる。
本発明の一実施形態である植物育成用の多色発光ダイオードランプを説明するための図であり、(a)は平面図、(b)は(a)中に示すA−A’線に沿った断面図である。 本発明の一実施形態である植物育成用の多色発光ダイオードランプに用いる赤色発光ダイオードを説明するための図であり、(a)は平面図、(b)は(a)中に示すB−B’線に沿った断面図である。 本発明の一実施形態である植物育成用の多色発光ダイオードランプに用いる青色発光ダイオードを説明するための図であり、(a)は平面図、(b)は(a)中に示すC−C’線に沿った断面図である。 本発明の一実施形態である植物育成用照明装置を示す断面模式図である。 本発明の第2実施形態である発光ダイオードランプを説明するための図であり、(a)は平面図、(b)は(a)中に示すD−D’線に沿った断面図、(c)は回路図である。 本発明の第3実施形態である発光ダイオードランプを説明するための図であり、(a)は平面図、(b)は(a)中に示すE−E’線に沿った断面図、(c)は回路図である。 本発明の第4実施形態である発光ダイオードランプを説明するための図であり、(a)は平面図、(b)は(a)中に示すF−F’線に沿った断面図である。 本発明の第5実施形態である発光ダイオードランプを説明するための平面図である。 本発明の第6実施形態である発光ダイオードランプを説明するための平面図である。 従来の混色光源を説明するための図であり、(a)は平面図、(b)は(a)中に示すG−G’線に沿った断面図である。 従来の植物育成用照明装置を示す断面模式図である。
以下、本発明を適用した一実施形態である植物育成用の多色発光ダイオード及びこれを用いた植物育成用照明装置について、植物育成方法とともに図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
<第1の実施形態>
本発明を適用した一実施形態である植物育成用の多色発光ダイオードランプ(以下、単に「発光ダイオードランプ」と記す)の構成について説明する。
図1(a)及び図1(b)に示すように、本実施形態の発光ダイオードランプ10は、マウント基板11の表面に3つの発光ダイオード20A,20B,30Aがそれぞれ独立して搭載されて概略構成されている。より具体的には、発光ダイオード20A,20B(第1の発光ダイオード)は、ピーク発光波長が655nm以上675nm以下の赤色発光ダイオードであり、発光ダイオード30A(第2の発光ダイオード)は、ピーク発光波長が420nm以上470nm以下の青色発光ダイオードである。
(赤色発光ダイオード)
ここで、本実施形態に用いる第1の発光ダイオードである赤色発光ダイオード20A,20Bの構成について説明する。図2(a)及び図2(b)は、本実施形態に用いる赤色発光ダイオード20(20A,20B)を説明するための図であり、図2(a)は平面図、図2(b)は図2(a)中に示すB−B’線に沿った断面図である。
図2(a)及び図2(b)に示すように、赤色発光ダイオード20は、化合物半導体層21と機能性基板22とが接合された発光ダイオードである。そして、赤色発光ダイオード20は、主たる光取り出し面に設けられたn型オーミック電極23及びp型オーミック電極24を備えて概略構成されている。なお、本実施形態における主たる光取り出し面とは、化合物半導体層21において、機能性基板22を貼り付けた面の反対側の面である。
化合物半導体層22は、ピーク発光波長が655nm以上675nm以下であるpn接合型の発光部25と、素子駆動電流を発光部の全般に平面的に拡散させるための電流拡散層26とが順次積層された構造を有している。
発光部25は、図2(b)に示すように、電流拡散層26上に、少なくともp型の下部クラッド層25A、発光層25B、n型の上部クラッド層25Cが順次積層されて構成されている。すなわち、発光部25は、放射再結合をもたらすキャリア(担体;carrier)及び発光を発光層25Bに「閉じ込める」ために、発光層25Bの下側及び上側に対峙して配置した下部クラッド(clad)層25A及び上部クラッド層25Cを含む、所謂、ダブルヘテロ(英略称:DH)構造とすることが高強度の発光を得る上で好ましい。
発光層25Bは、組成式(AlGa1−XIn1−YP(0≦X≦0.1,0<Y≦1)からなる半導体層から構成されている。この発光層25Bは、ダブルヘテロ構造、単一(single)量子井戸(英略称:SQW)構造、あるいは多重(multi)量子井戸(英略称:MQW)構造のどちらであっても良いが、単色性に優れる発光を得るためにはMQW構造とすることが好ましい。
発光層25Bの層厚は、0.02〜2μmの範囲であることが好ましい。また、発光層25Bの伝導型は特に限定されるものではなく、アンドープ、p型及びn型のいずれも選択することができる。発光効率を高めるには、結晶性が良好なアンドープ又は3×1017cm−3未満のキャリア濃度とすることが望ましい。
組成式(AlGa1−XIn1−YP(0≦X≦0.1,0<Y≦1)からなる発光層25Bを有する発光ダイオード1は、従来のAlGaAs系の発光ダイオードと比較して高出力であり、655nm以上675nm以下の波長域は植物育成の光合成の促進に使用する照明(発光ダイオードランプや照明装置)として好適に用いることができる。
下部クラッド層25A及び上部クラッド層25Cは、図2(b)に示すように、発光層25Bの下面及び上面にそれぞれ設けられている。下部クラッド層25Aと上部クラッド層25Cとは、極性が異なるように構成されている。また、下部クラッド層25A及び上部クラッド層25Cのキャリア濃度及び厚さは、公知の好適な範囲を用いることができ、発光層25Bの発光効率が高まるように条件を最適化することが好ましい。
具体的に、下部クラッド層25Aとしては、例えば、Mgをドープしたp型の(AlGa1−XIn1−YP(0.3≦X≦1,0<Y≦1)からなる半導体材料を用いることが望ましい。また、キャリア濃度は2×1017〜2×1018cm−3の範囲が好ましく、層厚は0.5〜5μmの範囲が好ましい。
一方、上部クラッド層25Cとしては、例えば、Siをドープしたn型の(AlGa1−XIn1−YP(0.3≦X≦1,0<Y≦1)からなる半導体材料を用いることが望ましい。また、キャリア濃度は1×1017〜1×1018cm−3の範囲が好ましく、層厚は0.5〜2μmの範囲が好ましい。なお、下部クラッド層25A及び上部クラッド層25Cの極性は、化合物半導体層21の素子構造を考慮して適宜選択することができる。
また、下部クラッド層25Aと発光層25Bとの間、発光層25Bと上部クラッド層25Cとの間及び下部クラッド層25Aと電流拡散層26との間に、両層間におけるバンド(band)不連続性を緩やかに変化させるための中間層を設けても良い。この場合、各中間層は、上記両層の中間の禁止帯幅を有する半導体材料からそれぞれ構成することが好ましい。
また、発光部25の構成層の上方には、オーミック(Ohmic)電極の接触抵抗を下げるためのコンタクト層、素子駆動電流の通流する領域を制限するための電流阻止層や電流狭窄層など公知の層構造を設けることができる。
電流拡散層26は、図2(b)に示すように、素子駆動電流を発光部25の全般に平面的に拡散させるために、発光部25の下方に設けられている。これにより、赤色発光ダイオード20は、発光部25から均一に発光することができる。
電流拡散層26としては、(AlGa1−XIn1−YP(0≦X≦0.7、0≦Y≦1)の組成を有する材料を適用することができる。電流拡散層26としては、Alを含まないGaPを用いることが最も好ましい。
機能性基板22は、図2(b)に示すように、化合物半導体層21を構成する電流拡散層26側に接合されている。この機能性基板22は、発光部25を機械的に支持するのに充分な強度を有し、且つ、発光部25から出射される発光を透過できる禁止帯幅が広く、発光層25Bからの発光波長に対して光学的に透明な材料から構成する。例えば、燐化ガリウム(GaP)、砒化アルミニウム・ガリウム(AlGaAs)、窒化ガリウム(GaN)等のIII−V族化合物半導体結晶体、硫化亜鉛(ZnS)やセレン化亜鉛(ZnSe)等のII−VI族化合物半導体結晶体、或いは六方晶或いは立方晶の炭化珪素(SiC)等のIV族半導体結晶体、ガラス、サファイアなど絶縁基板から構成することができる。
一方、接合面に反射率の高い表面を有する機能性基板も選択できる。例えば、表面に銀、金、銅、アルミニウムなどである金属基板または合金基板や、半導体に金属ミラー構造を形成した複合基板なども選択できる。接合による歪の影響がない歪調整層と同じ材質から選択することが、最も望ましい。
機能性基板22は、発光部25を機械的に充分な強度で支持するために、例えば約50μm以上の厚みとすることが好ましい。また、化合物半導体層21へ接合した後に機能性基板22への機械的な加工を施し易くするため、約300μmの厚さを超えないものとすることが好ましい。
また、図2(b)に示すように、機能性基板22の側面は、化合物半導体層21に近い側において主たる光取り出し面に対して略垂直である垂直面22aとされており、化合物半導体層21に遠い側において主たる光取り出し面に対して内側に傾斜した傾斜面22bとされている。これにより、発光層25Bから機能性基板22側に放出された光を効率よく外部に取り出すことができる。また、発光層25Bから機能性基板22側に放出された光のうち、一部は垂直面22aで反射され傾斜面22bで取り出すことができる。一方、傾斜面22bで反射された光は垂直面22aで取り出すことができる。このように、垂直面22aと傾斜面22bとの相乗効果により、光の取り出し効率を高めることができる。
また、本実施形態では、図2(b)に示すように、傾斜面22bと発光面に平行な面とのなす角度αを、55度〜80度の範囲内とすることが好ましい。このような範囲とすることで、機能性基板22の底部で反射された光を効率よく外部に取り出すことができる。
また、垂直面22aの幅(厚さ方向)を、30μm〜100μmの範囲内とすることが好ましい。垂直面22aの幅を上記範囲内にすることで、機能性基板22の底部で反射された光を垂直面22aにおいて効率よく発光面に戻すことができ、さらには、主たる光取り出し面から放出させることが可能となる。このため、赤色発光ダイオード20の発光効率を高めることができる。
また、機能性基板22の傾斜面22bは、粗面化されることが好ましい。傾斜面22bが粗面化されることにより、この傾斜面22bでの光取り出し効率を上げる効果が得られる。すなわち、傾斜面22bを粗面化することにより、傾斜面22bでの全反射を抑制して、光取り出し効率を上げることができる。
化合物半導体層21と機能性基板22との接合界面は、高抵抗層となる場合がある。すなわち、化合物半導体層21と機能性基板22との間には、図示略の高抵抗層が設けられている場合がある。この高抵抗層は、機能性基板22よりも高い抵抗値を示し、高抵抗層が設けられている場合には化合物半導体層21の電流拡散層26側から機能性基板22側への逆方向の電流を低減する機能を有している。また、機能性基板22側から電流拡散層26側へと不用意に印加される逆方向の電圧に対して耐電圧性を発揮する接合構造を構成しているが、その降伏電圧は、pn接合型の発光部25の逆方向電圧より低値となる様に構成することが好ましい。
n型オーミック電極23およびp型オーミック電極24は、赤色発光ダイオード20の主たる光取り出し面に設けられた低抵抗のオーミック接触電極である。ここで、n型オーミック電極23は、上部クラッド層25Cの上方に設けられており、例えば、AuGe、Ni合金/Auからなる合金を用いることができる。一方、p型オーミック電極24は、図2(b)に示すように、露出させた電流拡散層26の表面にAuBe/Auからなる合金を用いることができる。
ここで、本実施形態の赤色発光ダイオード20では、作動電圧を下げて高効率化を図るために、p型オーミック電極24を、電流拡散層26上に形成することが好ましい。このような構成とすることにより、効果が得られる。
また、赤色発光ダイオード20では、図2(a)に示すように、n型オーミック電極23とp型オーミック電極24とが対角の位置となるように配置することが好ましい。また、p型オーミック電極24の周囲を、化合物半導体層21で囲んだ構成とすることが最も好ましい。このような構成とすることにより、作動電圧を下げる効果が得られる。また、p型オーミック電極24の四方をn型オーミック電極23で囲むことにより、電流が四方に流れやすくなり、その結果作動電圧が低下する。
また、赤色発光ダイオード20では、図2(a)に示すように、n型オーミック電極23を、ハニカム、格子形状など網目とすることが好ましい。このような構成とすることにより、信頼性を向上させる効果が得られる。また、格子状とすることにより、発光層25Bに均一に電流を注入することができ、その結果、信頼性を向上させる効果が得られる。なお、本実施形態の赤色発光ダイオード20では、n型オーミック電極23を、パッド形状の電極(パッド電極)と幅10μm以下の線状の電極(線状電極)とで構成することが好ましい。このような構成とすることにより、高輝度化をはかることができる。さらに、線状電極の幅を狭くすることにより、光取り出し面の開口面積を上げることができ、高輝度化を達成することができる。
なお、機能性基板22の底面には、図2(b)に示すように、接続層27が設けられていることが好ましい。この接続層27としては、例えば反射層、バリア層、接続層からなる積層構造体を用いることができる。上記反射層としては、反射率の高い金属、例えば、銀、金、アルミニウム、白金およびこれらの金属の合金を用いることができる。また、機能性基板3と反射層との間に、例えば、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)等の透明導電膜からなる酸化膜を設けることができる。また、バリア層としては、例えば、タングステン、モリブデン、チタン、白金、クロム、タンタル等の高融点金属を用いることができる。また、接続層としては、例えば、AuSn、AuGe,AuSi等の低融点の共晶金属を用いることができる。
(青色発光ダイオード)
次に、本実施形態に用いる第2の発光ダイオードである青色発光ダイオード30Aの構成について説明する。図3(a)及び図3(b)は、本実施形態に用いる青色発光ダイオード30(30A)を説明するための図であり、図3(a)は平面図、図3(b)は図3(a)中に示すB−B’線に沿った断面図である。
図3(a)及び図3(b)に示すように、青色発光ダイオード30は、基板31上に、n型半導体層32、発光層33及びp型半導体層34が順次積層されてなる半導体層35が形成され、p型半導体層34上に、図示略の透明導電膜が形成され、概略構成されている。また、基板31上には、図示略のバッファ層及び下地層が順次形成されており、下地層上に半導体層35を構成するn型半導体層32が積層されている。また、透明導電膜上には正極36が設けられるとともに、半導体層35の一部が除去されて露出したn型半導体層32の露出領域に負極37が設けられている。
本実施形態の青色発光ダイオード30において基板31に用いることができる材料としては、III族窒化物半導体結晶等が表面にエピタキシャル成長される基板材料であれば特に限定されず、各種材料を選択して用いることができる。例えば、サファイア、SiC、シリコン等が基板31の材料として挙げられる。また、上記各基板材料の中でも、特に、サファイアを用いることが好ましく、また、サファイアからなる基板31のc面からなる主面上に、詳細を後述するバッファ層が形成されていることがより好ましい。
バッファ層は、基板31とIII族窒化物半導体からなる層との間の格子定数の違いを整合する層として設けられ、例えば、単結晶のAlGaNやAlN等のIII族窒化物からなる。このようなバッファ層を備えることにより、その上に成膜されるIII族窒化物半導体は、良好な配向性及び結晶性を持つ結晶膜となる。
バッファ層上に設けられる下地層、n型半導体層32、発光層33、及びp型半導体層34の各層は、例えば、III族窒化物系半導体からなり、組成式GaIn1−XN(0≦X≦1)で表わされる窒化ガリウム系化合物半導体を何ら制限なく用いることができる。
下地層としては、例えば、Gaを含むIII族窒化物化合物、即ちGaN系化合物半導体が用いられ、特に、単結晶のGaNを好適に用いることができる。
n型半導体層32は、図示略のn型コンタクト層及びn型クラッド層が順次積層されてなる。n型コンタクト層としては、例えば、下地層と同様にGaIn1−XN(0≦X≦1)を用いることができ、また、Si、Ge又はSn等のn型不純物がドープされていることが好ましい。また、n型クラッド層としては、例えば、GaN、GaInN等により成膜することが可能であり、また、これらの構造のヘテロ接合や複数回積層した超格子構造とすることもできる。
発光層33は、n型半導体層32上に積層されるとともにp型半導体層34がその上に積層される活性層であり、例えば、図示略の障壁層と井戸層とが交互に積層され、n型半導体層32側及びp型半導体層34側に障壁層が配される順で積層されてなる。障壁層としては、例えば、インジウムを含有した窒化ガリウム系化合物半導体からなる井戸層よりもバンドギャップエネルギーが大きいAlGa1−cN(0≦c<0.3)等の窒化ガリウム系化合物半導体を、好適に用いることができる。また、井戸層には、インジウムを含有する窒化ガリウム系化合物半導体として、例えば、Ga1−sInN(0<s<0.4)等の窒化ガリウムインジウムを用いることができる。
p型半導体層34は、発光層33上に形成され、通常、p型クラッド層及びp型コンタクト層が順次積層された構成とされる(図示略)。p型クラッド層としては、詳細を後述する発光層33のバンドギャップエネルギーより大きくなる組成で、発光層33へのキャリアの閉じ込めができる材料を用いることが好ましく、例えば、AlGa1−dN(0<d≦0.4、好ましくは0.1≦d≦0.3)なる組成のものが好ましい。また、p型クラッド層としては、少なくともAlGa1−eN(0≦e<0.5、好ましくは0≦e≦0.2、より好ましくは0≦e≦0.1)を含んでなる材料から構成することが好ましい。このように、p型クラッド層のAl組成が上記範囲だと、良好な結晶性の維持及びその上の透明導電膜との良好なオーミック接触の点で好ましい。また、上記組成からなるp型半導体層34は、Mg等のp型不純物がドープされた構成とすることが好ましい。
透明導電膜は、p型コンタクト層上に設けられる透光性のp型電極である。
透明導電膜としては、例えば、ITO(In−SnO)、AZO(ZnO−Al)、IZO(In−ZnO)、GZO(ZnO−Ga)から選ばれる少なくとも一種類を含んだ材料を、この技術分野でよく知られた慣用の手段で設けることができる。また、透明導電膜の構造も、従来公知の構造を含めて如何なる構造のものも何ら制限なく用いることができる。また、透明導電膜は、p型コンタクト層上のほぼ全面を覆うように形成しても構わないし、隙間を開けて格子状や樹形状に形成しても良い。また、透明導電膜を成膜した後に、合金化や透明化を目的とした熱処理を施しても良いし、施さなくても構わない。
正極36は、透明導電膜上に形成される電極である。正極36としては、Au、Al、Ni及びCu等を用いた各種構造が周知であり、これら周知の材料、構造のものを何ら制限無く用いることができる。
負極37は、n型半導体層32のn型コンタクト層4bに接するように形成される電極である。負極37を設ける際は、p型半導体層34、発光層33及びn型半導体層32の一部を除去してn型コンタクト層4bの露出領域を形成し、この上に負極37を形成する。負極37の材料としては、各種組成および構造の負極が周知であり、これら周知の負極を何ら制限無く用いることができる。
なお、基板31の底面には、図3(b)に示すように、接続層38が設けられていることが好ましい。この接続層38としては、例えば反射層、バリア層、接続層からなる積層構造体を用いることができる。上記反射層としては、反射率の高い金属、例えば、銀、金、アルミニウム、白金およびこれらの金属の合金を用いることができる。また、基板31と反射層との間に、例えば、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)等の透明導電膜からなる酸化膜を設けることができる。また、バリア層としては、例えば、タングステン、モリブデン、チタン、白金、クロム、タンタル等の高融点金属を用いることができる。また、接続層としては、例えば、AuSn、AuGe,AuSi等の低融点の共晶金属を用いることができる。
(多色発光ダイオードランプ)
次に、本実施形態の発光ダイオードランプ10の構成について説明する。
図1(a)及び図1(b)に示すように、本実施形態の発光ダイオードランプ10は、マウント基板11の表面に3つの発光ダイオード20A,20B,30Aがそれぞれ独立して搭載されて概略構成されている。また、マウント基板11の表面には、複数のn電極端子12及びp電極端子13が設けられており、赤色発光ダイオード20A,20Bは、マウント基板11のp電極端子13上に接続層27あるいは銀(Ag)ペーストで固定、支持(マウント)されている。そして、赤色発光ダイオード20A,20Bのn型オーミック電極23とマウント基板11のn電極端子12とが金線15を用いてそれぞれ接続されており(ワイヤボンディング)、p型オーミック電極24とマウント基板11のp電極端子13とが金線15を用いてそれぞれ接続されている。
同様に、青色発光ダイオード30Aは、p電極端子13上に接続層38あるいは銀(Ag)ペーストで固定、支持(マウント)されている。そして、青色発光ダイオード30Aの負極37とマウント基板11のn電極端子12とが金線15を用いて接続されており、正極36とマウント基板11のp電極端子13とが金線15を用いて接続されている。
なお、3つの発光ダイオード20A,20B,30Aがそれぞれ独立して搭載されるとは、すなわち、3つの発光ダイオード20A,20B,30Aが電気的に並列となるように搭載されることをいう。
マウント基板11の表面には、これらの発光ダイオード20A,20B,30Aの周囲を覆うように、反射壁14が立設されている。この反射壁14の内側であってマウント基板11の上方の空間には、シリコン樹脂やエポキシ樹脂等の一般的な封止材16が充填される。これにより、発光ダイオード20A,20B,30Aがパッケージ内に封止される。このようにして、本実施形態の発光ダイオードランプ10は、赤・青色の発光ダイオードが同一のパッケージ内に搭載される構成となっている。
次に、上記発光ダイオード20A,20B,30Aを用いた発光ダイオードランプ10の製造方法、すなわち、発光ダイオード20A,20B,30Aの実装方法について説明する。
先ず、図1(a)及び図1(b)に示すように、マウント基板11の表面に所定の数量の赤色発光ダイオード20(20A,20B)を実装する。赤色発光ダイオード20の実装は、先ず、マウント基板11と赤色発光ダイオード20との位置合せを行い、マウント基板11の表面の所定の位置に赤色発光ダイオード20を配置する。次に、赤色発光ダイオード20の底面に設けた接続層27により、マウント基板11の表面にダイボンドする。次に、赤色発光ダイオード20のn型オーミック電極23とマウント基板11のn電極端子12とを金線15を用いて接続する(ワイヤボンディング)。次に、赤色発光ダイオード20のp型オーミック電極24とマウント基板11のp電極端子13とを金線15を用いて接続する。
次に、マウント基板11の表面に所定の数量の青色発光ダイオード30(30A)を実装する。青色発光ダイオード30の実装は、先ず、マウント基板11と青色発光ダイオード30との位置合せを行い、マウント基板11の表面の所定の位置に青色発光ダイオード30を配置する。次に、青色発光ダイオード30の底面に設けた接続層38により、マウント基板11の表面にダイボンドする。次に、青色発光ダイオード30の負極37とマウント基板11のn電極端子12とを金線15を用いて接続する。次に、青色発光ダイオード30の正極36とマウント基板11のp電極端子13とを金線15を用いて接続する。
最後に、マウント基板11の発光ダイオード20A,20B,30Aが実装された表面を、封止材16によって封止する。このようにして、本実施形態の発光ダイオードランプ10を製造する。
以上のような構成を有する発光ダイオードランプ10を発光させた場合について説明する。図1(b)に示すように、各発光ダイオード20A,20B,30Aの発光部からの上側への発光は、主たる光取り出し面からの発光である。したがって、発光ダイオードランプ10の外側へ直接取り出すことができる。また、各発光ダイオード20A,20B,30Aの発光部からの下側への発光は、発光ダイオードランプ10の外側へは直接取り出すことができない。ここで、発光ダイオード20A,20B,30Aに反射層27,38が設けられている場合は、各発光ダイオード20A,20B,30Aの内部光を反射層27,38が反射するため、発光ダイオードランプ10の外側へ効率よく取り出すことができる。また、各発光ダイオード20A,20B,30Aの発光部からの周方向への発光は、発光ダイオードランプ10の外側に直接取り出すことができないが、マウント基板11の表面に反射壁14によって上側へ反射することができる。このように、発光ダイオードランプ10は、光取り出し効率が向上されて、高輝度な発光ダイオードランプである。
一般的に、LED光源を植物育成に用いた場合には、特定の波長を照射できる、発熱が少ない、コンパクトである等の多くの利点がある。また、近年の植物育成に関する研究では、ピーク波長660nm付近の赤色と、ピーク波長460nm付近の青色との混色を照射することが植物育成には望ましいことが報告されている。
ここで、赤色及び青色の混色を照射する場合、LED光源の1個当たりの、同一電流での赤色の光量子束(R)と青色の光量子束(B)との比率は、植物育成に及ぼす影響が大きく、重要なパラメータである。そして、植物の種類にもよるが、Rが多い方が、望ましい結果が見出されていている。
すなわち、本実施形態の発光ダイオードランプ10は、赤色発光ダイオード20(20Aと20Bの総量)の電流20mA当たりの光量子束R=0.2[μmol・s−1]と、青色発光ダイオード30(30A)の電流20mA当たりの光量子束B=0.06[μmol・s−1]とが、R>Bの関係を満たす光源であることが望ましい。特に、青色の光量子束Bに対する赤色の光量子束Rの比(R/B比)の値が2〜10倍であることが好ましい。
ここで、光量子束R及び光量子束B[μmol・s−1]は、発光ダイオードランプから放射される光を集め計測することにより算出できる。
また、光量子束密度[μmol・m−2・s−1]は、例えば、光源との距離を0.2m、光源からの方向を正面として、光量子計を用いて測定する。
なお、上記光量子束密度は、植物育成一般の光強度の指標として用いられるものである。蛍光灯などの白色光源において、150μmol/s・m以上が望ましい。本発明のLED光源の場合は、植物の光合成の効率が悪い緑色を中心とした色成分を含まないため、少ない光量子で植物育成可能であり、100μmol/s・m以上あれば、望ましい範囲と推定される。
したがって、本実施形態の発光ダイオードランプ10では、パッケージ内の赤色発光ダイオード20の搭載個数は、青色発光ダイオード30の搭載個数よりも多くする必要が生じる。しかしながら、本実施形態の発光ダイオードランプ10は、赤色発光ダイオード20及び青色発光ダイオード30の搭載個数を簡単に変更できるため、所望の上記R/B比となるような発光ダイオードランプを容易に提供することができる。
ところで、従来のLED光源では、AlGaAs系の発光層を用いた赤色発光ダイオードが使用されていたため、GaInN系の青色発光ダイオードに対して光量子束が不足していた。このため、上記R/B>1の関係を満足する為には、青色発光ダイオード1個に対して、赤色発光ダイオードが6個以上必要となるため、1つの発光ダイオードランプのパッケージ内に多数のLEDを搭載することが困難であるという問題があった。
そこで、図10(a)及び図10(b)に示すように、従来の混色光源110では、60mm角のプリント基板111の表面上に、砲弾型(φ5mm)の赤色発光ダイオードランプ120及び青色発光ダイオードランプ130がそれぞれ個別に20mm間隔で配置されて構成されていた。
そして、上記R/B>1の関係を満足させるためには、例えば、図10(a)に示すように8個の赤色発光ダイオードランプ120及び1個の青色発光ダイオードランプ130の合計9個が搭載されたユニット光源となる。このため、ランプの作製コストの上昇や光源のサイズの大型化を引き起こすという問題があった。特に、赤色光源と青色光源との距離が少なくとも10mm以上も離れてしまうため、被照射体である植物に近接した状況で使用すると、均一性の良好な混色(R/B)を維持することが困難であるという問題があった。したがって、従来の混色光源110は、混色の均一性を維持するために植物と十分な距離を確保する必要が生じ、LED光源としての利点を十分生かせないという課題があった。
これに対して、本実施形態の発光ダイオードランプ10では、AlGaInP系の発光層を用いた赤色ダイオード20を用いるため、GaInN系の青色発光ダイオード30とほぼ同程度の光量子束を達成することができる。このため、上記R/B>1の関係を満足するには、青色発光ダイオード1個に対して、赤色発光ダイオードが1個以上とすればよいため、1つの発光ダイオードランプのパッケージ内に赤色及び青色LEDを同時に搭載することができる。すなわち、本実施形態の発光ダイオードランプ10は、混色の発光ダイオードとなる。
また、本実施形態の発光ダイオードランプ10によれば、同一パッケージ内で隣接する赤色発光ダイオード20と青色発光ダイオード30との距離を容易に5mm以内とすることができる。したがって、発光ダイオードランプ10を植物に近接させて使用した場合であっても、R/B比の均一性を維持することができる。
(植物育成用照明装置)
次に、上記発光ダイオードランプ10を用いた照明装置の構成について説明する。
一般的に、照明装置とは、図示しないが、配線やスルーホール等が形成された基板と、基板表面に取り付けられた複数の発光ダイオードランプと、凹字状の断面形状を有し、凹部内側の底部に発光ダイオードランプが取り付けられるように構成されたリフレクター又はシェードとを少なくとも備えた照明装置をいう。
また、植物育成用の照明装置としては、図4に示すような態様の照明装置40を例示することができる。
照明装置40は、2以上の上述した発光ダイオードランプ10と、光取り出し面41aを有する導光板41とを備えて、概略構成されている。ここで、導光板41を用いることにより、照射面積を拡大させることが可能となる。より具体的には、各発光ダイオードランプ10は、導光板41の側面41bに、略等間隔となるように配置されている。また、導光板41は、側面41bから取り入れた発光ダイオードランプ10の光を、光取り出し面41aから取り出し可能とされている。なお、各発光ダイオードランプ10は、独立に制御可能とされている。
各発光ダイオードランプ10を点灯させると、導光板41の側面41bに入射された光が光取り出し面41aから照射される。ここで、本実施形態の照明装置40では、発光ダイオードランプ10を略等間隔となるように配置しているため、光取り出し面41aの面内の照度はほぼ均一とすることができる。また、各発光ダイオードランプ10は、上述したようにパッケージ内に赤色及び青色LEDを同時に搭載しているため、R/B比の均一性が良好である。したがって、本実施形態の照明装置40によれば、導光板41の光取り出し面41aの全体で、R/B比の均一性を維持することができる。
ここで、照明装置におけるR/B比の均一性の具体的な評価方法としては、例えば、照明装置の照射面の中心位置でのR/B比と、この中心位置から任意の距離だけ離れた1以上の位置でのR/B比と、を測定することにより比較評価することが可能である。
ところで、図11に示すように、導光板41を用いた従来の照明装置140では、4個の赤色発光ダイオードランプ120と、1個の青色発光ダイオードランプ130とが導光板41の側面41bに略等間隔となるように配置されている。しかしながら、本実施形態と異なり、各発光ダイオードランプが混色ではないため、導光板41の光取り出し面41aの全体で、R/B比の均一性を維持することができないという問題が生じる。具体的には、図11に示すように、導光板41の側面41bの略中央部分には青色発光ダイオードランプ130が配置されており、側面41bの上側及び下側には赤色発光ダイオードランプ12が配置されているため、各発光ダイオードランプを点灯させた場合に、光取り出し面41aの上下方向の中央部分では青色の光量子束Bに対する赤色の光量子束Rが不足する。一方、光取り出し面41aの上側部分及び下側部分では青色の光量子束Bに対する赤色の光量子束Rが過剰となってしまう。
これに対して、本実施形態の照明装置40では、上述したように導光板41の光取り出し面41aの全体で、R/B比の均一性を維持することができる。
また、本実施形態の照明装置40では、各発光ダイオードランプ10は、独立に制御可能とされているため、植物の生育面積に応じて発光ダイオードランプ10の点灯個数を制御することができる。さらに、照明装置40と植物との距離に応じて、発光ダイオードランプ10の光量子束を調整することもできる。さらにまた、本実施形態の照明装置40は、発光ダイオードランプ10に印加する電流をパルス駆動とすることにより、植物の生育状態に応じて発光ダイオードランプ10の点灯時間を調整することもできる。
上述したように、本実施形態の照明装置40を用いることにより、植物の生育状態に応じて、照明装置40の点灯個数、光量子束、印加電流、パルス駆動時間の1以上を組み合わせて制御しながら植物を育成することができる。
以上説明したように、本実施形態の発光ダイオードランプ10によれば、ピーク発光波長が655nm以上675nm以下の赤色発光ダイオード20A,20Bと、ピーク発光波長が420nm以上470nm以下の青色発光ダイオード30Aと、が同一のパッケージ内にそれぞれ1以上搭載されている。これにより、点灯回路の簡素化が可能となるため、高出力・高効率であって低コストの植物育成用の光源を提供することができる。
また、同一電流での赤色発光ダイオード20(20A,20B)の光量子束Rと青色発光ダイオード30の光量子束Bとが、R>Bの関係を満たすように構成されているため、植物の育成に好適な赤色と青色との強度比を維持したまま均一に照射することができる。
また、本実施形態の植物育成用照明装置40によれば、植物育成用の多色発光ダイオードランプ10が用いられているため、個々の発光ダイオード10から直物の育成に最適な混色の光を供給することができる。また、上記発光ダイオード10が略等間隔に配置されるとともに、独立に制御することができるため、多方向から光を供給できる照明装置の設計が容易となる。
また、照明装置40によれば、植物の生育面積に応じて発光ダイオードランプ10の点灯個数を調整することができるとともに、照明装置と植物との距離に応じて発光ダイオードランプ10の光量子束を調整することができるため、低消費電力化を図ることができる。
さらに、発光ダイオードランプ10に印加する電流をパルス駆動とした照明装置40では、植物の生育状態に応じて発光ダイオードランプ10の点灯時間を制御することができるため、低消費電力化を図ることができる。
更にまた、照明装置40によれば、パッケージ内で混色される発光ダイオードランプ10を用いているため、導光板41を利用して均一発光の光源とすることができる。また、発光ダイオードランプ10は、多色発光が可能であるため、導光板41の側面41bから取り入れた発光ダイオードランプ10の光を、光取り出し面41aから取り出すエッジ型バックライト構造の照明装置40とすることができる。
本実施形態の植物育成方法によれば、上記照明装置40の点灯個数、光量子束、印加電流、パルス駆動時間を組み合わせて制御することができる。これにより、植物の生育状態に応じて、青色と赤色の光を最適なバランスで均一に照射することができる。
<第2の実施形態>
次に、本発明を適用した第2の実施形態について説明する。本実施形態では、第1の実施形態の発光ダイオードランプ10と異なる構成となっている。このため、本実施形態の発光ダイオードランプの構成については、第1の実施形態である発光ダイオードランプ10と同一の構成部分については同じ符号を付すると共に説明を省略する。
図5(a)及び図5(b)に示すように、本実施形態の発光ダイオードランプ210は、マウント基板211の表面に5つの発光ダイオード220A,220B,220C,220D,230Aが搭載されて概略構成されている。
ここで、第1実施形態の発光ダイオードランプ10では搭載された3つの発光ダイオード20A,20B,30Aが電気的に独立であるのに対して、本実施形態の発光ダイオードランプ210は、図5(a)及び図5(c)に示すように、4つの赤色発光ダイオード220A、220B,220C,220D及び1つの青色発光ダイオード230Aが電気的に直列となるように搭載されている。
具体的には、図5(a)に示すように、マウント基板211の表面には、複数の電極端子212a〜212gが設けられている。そして、電極端子212b上には赤色発光ダイオード220Aが、電極端子212c上には青色発光ダイオード230Aが、電極端子212d上には赤色発光ダイオード220Bが、電極端子212e上には赤色発光ダイオード220Cが、電極端子212f上には赤色発光ダイオード220Dが、それぞれマウントされている。また、電極端子212aは、マウント基板211の一端側に設けられた正極電極213と電気的に接続されている。さらに、電極端子212gは、マウント基板211の他端側に設けられた負極電極214と電気的に接続されている。
電極端子212aと赤色発光ダイオード220Aのp型オーミック電極(図示略)とが金線215aによって接続されている。赤色発光ダイオード220Aのn型オーミック電極と電極端子212bとが金線215bによって接続されている。
電極端子212bと青色発光ダイオード230Aの正極電極(図示略)とが金線215cによって接続されている。青色発光ダイオード230Aの負極電極と電極端子212cとが金線215dによって接続されている。
電極端子212cと赤色発光ダイオード220Bのp型オーミック電極(図示略)とが金線215eによって接続されている。赤色発光ダイオード220Bのn型オーミック電極と電極端子212dとが金線215fによって接続されている。
電極端子212dと赤色発光ダイオード220Cのp型オーミック電極(図示略)とが金線215gによって接続されている。赤色発光ダイオード220Cのn型オーミック電極と電極端子212eとが金線215hによって接続されている。
電極端子212eと電極端子212fとが金線215iによって接続されている。
電極端子212fと赤色発光ダイオード220Dのp型オーミック電極(図示略)とが金線jによって接続されている。赤色発光ダイオード220Dのn型オーミック電極と電極端子212gとが金線215kによって接続されている。
本実施形態の発光ダイオードランプ210によれば、正極電極213と負極電極214との間に順方向の電圧を印加することにより、電気的に直列となるように搭載された4つの赤色発光ダイオード220A、220B,220C,220D及び1つの青色発光ダイオード230Aが全て点灯させることができる。一方、正極電極213と負極電極214との間に逆方向の電圧を印加した場合には、発光ダイオードランプ210は点灯することがない。
<第3の実施形態>
次に、本発明を適用した第3の実施形態について説明する。本実施形態では、第1及び第2の実施形態の発光ダイオードランプ10,210とは異なる構成となっている。このため、本実施形態の発光ダイオードランプの構成については、第1及び第2の実施形態である発光ダイオードランプ10,210と同一の構成部分については同じ符号を付すると共に説明を省略する。
図6(a)及び図6(b)に示すように、本実施形態の発光ダイオードランプ310は、マウント基板311の表面に5つの発光ダイオード320A,320B,320C,330A,330Bが搭載されて概略構成されている。
ここで、第1及び第2実施形態の発光ダイオードランプ10,210が直流電源によって駆動するのに対して、本実施形態の発光ダイオードランプ310は、図6(a)及び図6(c)に示すように、交流電源によって駆動可能とされている。
具体的には、図6(a)に示すように、マウント基板311の表面には、複数の電極端子312a〜312gが設けられている。そして、電極端子312b上には青色発光ダイオード330Aが、電極端子312c上には赤色発光ダイオード320Bが、電極端子312d上には赤色発光ダイオード320Aが、電極端312e上には赤色発光ダイオード320Cが、電極端子212f上には青色発光ダイオード330Bが、それぞれマウントされている。また、電極端子312aは、マウント基板311の一端側に設けられた電極313と電気的に接続されている。さらに、電極端子312gは、マウント基板311の他端側に設けられた電極314と電気的に接続されている。
本実施形態の発光ダイオードランプ310では、電極端子312aと赤色発光ダイオード320Aのp型オーミック電極(図示略)とが金線315aによって接続されている。赤色発光ダイオード320Aのn型オーミック電極と電極端子312dとが金線315bによって接続されている。
電極端子312dと赤色発光ダイオード320Bのp型オーミック電極とが金線315cによって接続されている。赤色発光ダイオード320Bのn型オーミック電極と電極端子312cとが金線315dによって接続されている。
電極端子312cと赤色発光ダイオード320Cのp型オーミック電極とが金線315eによって接続されている。赤色発光ダイオード320Cのn型オーミック電極と電極端子312gとが金線315fによって接続されている。
また、本実施形態の発光ダイオードランプ310では、電極端子312gと青色発光ダイオード330Bの正極電極(図示略)とが金線315gによって接続されている。青色発光ダイオード330Bの負極電極と電極端子312fとが金線315hによって接続されている。
電極端子312fと青色発光ダイオード330Aの正極電極とが金線315iによって接続されている。青色発光ダイオード330Aの負極電極と電極端子312aとが金線jによって接続されている。
このように、本実施形態の発光ダイオードランプ310は、3つの赤色発光ダイオード320A,320B,320Cが電気的に直列に接続されており、電極313に正電圧、電極314に負電圧をかけた場合に点灯する。
同時に、本実施形態の発光ダイオードランプ310は、2つの青色発光ダイオード330A,330Bが電気的に直列に接続されており、電極314に正電圧、電極313に負電圧をかけた場合、すなわち赤色発光ダイオードが点灯する際と逆向きの電流が流れる場合に点灯する。
ところで、発光ダイオードは、通常直流電源で駆動しても、他の光源に比べて消費電力が小さいが、交流電源で駆動した方が、交流から直流への変換ロスを削減することができる。また、植物育成用の照明では、光による化学反応に時間がかかるため、光を照射する際は連続照射よりもパルス照射のほうが反応効率は良いとの報告もある。このため、光の強度が短時間で変化する交流電源による駆動は、省エネルギー化の効果が大きい。
しかしながら、従来の混色光源(例えば、図10に示す混色光源110)では、回路や配線が複雑になってしまうという問題があった。
これに対して本実施形態の発光ダイオードランプ310によれば、赤色発光ダイオード320と青色発光ダイオード330とを同一パッケージとし、それぞれ逆向きに配線することによって容易に交流駆動に対応させることができる。
<第4の実施形態>
次に、本発明を適用した第4の実施形態について説明する。本実施形態では、第3の実施形態の発光ダイオードランプ310とは異なる構成となっている。このため、本実施形態の発光ダイオードランプの構成については、第3の実施形態である発光ダイオードランプ310と同一の構成部分については同じ符号を付すると共に説明を省略する。
図7(a)及び図7(b)に示すように、本実施形態の発光ダイオードランプ410は、マウント基板411の表面に4つの発光ダイオード420A,420B,420C,430Aが搭載されて概略構成されている。
ここで、第3実施形態の発光ダイオードランプ310は、赤色及び青色発光ダイオードがそれぞれ直列に接続されて交流電源によって駆動するのに対して、本実施形態の発光ダイオードランプ410は、図7(a)に示すように、全ての赤色発光ダイオードが並列に接続されて交流電源によって駆動可能とされている。4端子を別回路に接続すれば、青色、赤色を独立に制御可能である。
具体的には、図7(a)に示すように、マウント基板411の表面は、4つの電極端子412a〜412dが設けられている。そして、各電極端子上にはそれぞれ発光ダイオードがマウントされている。すなわち、電極端子412a上には赤色発光ダイオード420Aが、電極端子412b上には青色発光ダイオード420Aが、電極端子412c上には赤色発光ダイオード420Bが、電極端412d上には赤色発光ダイオード420Cが、それぞれマウントされている。また、マウント基板411の一端側には電極413A及び電極413Bが設けられており、電極413Aには電極端子412aが、電極413Bには電極端子412bが、それぞれ電気的に接続されている。さらに、マウント基板411の他端側には電極414A及び414Bが設けられており、電極414Aには電極端子414cが、電極414Bには電極端子414dが、それぞれ電気的に接続されている。
本実施形態の発光ダイオードランプ410では、電極端子412cと赤色発光ダイオード420Aのp型オーミック電極(図示略)とが金線415aによって接続されている。赤色発光ダイオード420Aのn型オーミック電極と電極端子412aとが金線415bによって接続されている。
電極端子412cと赤色発光ダイオード420Bのp型オーミック電極とが金線415cによって接続されている。赤色発光ダイオード420Bのn型オーミック電極と電極端子412aとが金線415dによって接続されている。
電極端子412cと赤色発光ダイオード420Cのp型オーミック電極とが金線415eによって接続されている。赤色発光ダイオード420Cのn型オーミック電極と電極端子412aとが金線415fによって接続されている。
また、本実施形態の発光ダイオードランプ410では、電極端子412bと青色発光ダイオード430Aの正極電極(図示略)とが金線315gによって接続されている。青色発光ダイオード430Aの負極電極と電極端子412dとが金線415hによって接続されている。
このように、本実施形態の発光ダイオードランプ410は、4つの発光ダイオード420A,420B,420C,430Aが電気的に並列に接続されている。したがって、発光ダイオードランプ410は、電極413A及び電極413Bに正電圧をかけた場合に、青色発光ダイオード430Aのみが点灯する。これに対して、電極414A及び電極414Bに正電圧をかけた場合には、赤色発光ダイオード420A,420B,420Cのみが点灯する。
本実施形態の発光ダイオードランプ410によれば、第3実施形態の発光ダイオードランプ310と同様に交流駆動およびパルス駆動による省エネルギー化が可能であるとともに、各発光ダイオードが独立に接続されていることにより高輝度化を図ることができる。
<第5の実施形態>
次に、本発明を適用した第5の実施形態について説明する。本実施形態では、第1乃至第4の実施形態の発光ダイオードランプとは異なる構成となっている。このため、本実施形態の発光ダイオードランプの構成については、第1乃至第4の実施形態である発光ダイオードランプと同一の構成部分については同じ符号を付すると共に説明を省略する。
図8に示すように、本実施形態の発光ダイオードランプ510は、マウント基板511の表面に3つの発光ダイオード520A,520B,530Aが搭載されて概略構成されている。
ここで、第2乃至第4の実施形態の発光ダイオードランプでは、一対の電極がマウント基板を介して対向配置となるように設けられているのに対して、本実施形態の発光ダイオードランプ510は、図8に示すように、一対の電極513,514がマウント基板511のいずれかの一端側に並べて設けられている。
具体的には、図8に示すように、マウント基板511の表面は、4つの電極端子512a〜512dが設けられている。そして、電極端子512b上には赤色発光ダイオード520Aが、電極端子512c上には青色発光ダイオード530Aが、電極端子512d上には赤色発光ダイオード520Bが、それぞれマウントされている。また、マウント基板511の一端側に正極電極513及び負極電極514が設けられている。正極電極513には電極端子512aが、負極電極514には電極端子512dが、それぞれ電気的に接続されている。
本実施形態の発光ダイオードランプ510では、電極端子512aと赤色発光ダイオード520Aのp型オーミック電極(図示略)とが金線515aによって接続されている。赤色発光ダイオード520Aのn型オーミック電極と電極端子512bとが金線515bによって接続されている。
電極端子512bと青色発光ダイオード530Aの正極電極とが金線515cによって接続されている。青色発光ダイオード530Aの負極電極と電極端子512cとが金線515dによって接続されている。
電極端子512cと赤色発光ダイオード520Bのp型オーミック電極とが金線515eによって接続されている。赤色発光ダイオード520Bのn型オーミック電極と電極端子512dとが金線515fによって接続されている。
このように、本実施形態の発光ダイオードランプ510は、3つの発光ダイオード520A,520B,530Aが電気的に直列に接続されている。したがって、発光ダイオードランプ510は、正極電極513に正電圧をかけた場合に、全ての発光ダイオード520A,520B,530Aが点灯する。
本実施形態の発光ダイオードランプ510によれば、一対の電極513,514がマウント基板511のいずれかの一端側に並べて設けられているため、例えば、図4に示すような態様の照明装置40のようなサイドビュー型(エッジ型)のバックライトに好適に用いることができる。
<第6の実施形態>
次に、本発明を適用した第6の実施形態について説明する。本実施形態では、第5の実施形態の発光ダイオードランプとは異なる構成となっている。このため、本実施形態の発光ダイオードランプの構成については、第5の実施形態である発光ダイオードランプと同一の構成部分については同じ符号を付すると共に説明を省略する。
図9に示すように、本実施形態の発光ダイオードランプ610は、マウント基板611の表面に3つの発光ダイオード620A,620B,630Aが搭載されて概略構成されている。
ここで、第5実施形態の発光ダイオードランプ510では、3つの発光ダイオード520A,520B,530Aが電気的に直列に接続されているのに対して、本実施形態の発光ダイオードランプ610は、図9に示すように、3つの発光ダイオード620A,620B,630Aが電気的に独立(並列)に接続されている
具体的には、図9に示すように、マウント基板611の表面は、4つの電極端子612a〜612dが設けられている。そして、電極端子612a上には赤色発光ダイオード620Aが、電極端子612b上には青色発光ダイオード620Aが、電極端子612c上には赤色発光ダイオード620Bが、それぞれマウントされている。また、マウント基板611の一端側には、3つの正極電極613A〜613C及び負極電極614が設けられている。正極電極613Aには電極端子612aが、正極電極613Bには電極端子612bが、正極電極613Cには電極端子612cが、負極電極614には電極端子612dが、それぞれ電気的に接続されている。
本実施形態の発光ダイオードランプ610では、電極端子612aと赤色発光ダイオード620Aのp型オーミック電極(図示略)とが金線615aによって接続されている。赤色発光ダイオード620Aのn型オーミック電極と電極端子612dとが金線615bによって接続されている。
電極端子612bと青色発光ダイオード630Aの正極電極とが金線615cによって接続されている。青色発光ダイオード630Aの負極電極と電極端子612dとが金線615dによって接続されている。
電極端子612cと赤色発光ダイオード620Bのp型オーミック電極とが金線615eによって接続されている。赤色発光ダイオード620Bのn型オーミック電極と電極端子612dとが金線615fによって接続されている。
このように、本実施形態の発光ダイオードランプ610は、3つの発光ダイオード620A,620B,630Aが電気的に独立(並列)に接続されている。したがって、発光ダイオードランプ610は、正極電極613A〜613Cに正電圧をかけた場合に、全ての発光ダイオード620A,620B,630Aが点灯する。
本実施形態の発光ダイオードランプ610によれば、電極613A〜613C及び電極614がマウント基板611のいずれかの一端に並べて設けられているため、第5実施形態の発光ダイオードランプ510と同様にサイドビュー型(エッジ型)のバックライトに好適に用いることができる。また、各発光ダイオード620A,620B,630Aが独立(並列)に接続されているため、各発光ダイオード620A,620B,630Aの輝度を高めることができる。
以下、本発明の効果を、実施例を用いて具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
本実施例では、本発明に係る多色発光ダイオードランプ及び植物育成用照明装置を作製した例を具体的に説明する。また、本実施例で作製した発光ダイオードは、AlGaInP発光部を有する赤色発光ダイオード及びGaN発光部を有する青色発光ダイオードである。
(実施例1)
実施形態の発光ダイオードチップを用いて、図1に示した発光ダイオードランプを作製し、光量子束[μmol・s−1]等の光学特性を評価した。
図1は、発光素子パッケージの構成の一例を示した図である。図2に記載の赤色発光ダイオードチップを2個(20A、20B)、図3に記載の青色(30A)発光ダイオードを1個搭載している。パッケージ10のサイズは、約3.5mm×2.8mm、厚さ1.8mmである。赤色発光ダイオードチップは、GaP基板を貼り付けたAlGaInP発光層を有し、ピーク波長660nmである。青色発光ダイオードチップは、サファイア基板に成長したInGaN発光層で、波長450nmで発光する。
このパッケージ10は、平面状に形成された開口部に凹部が形成された樹脂容器の中に搭載部(金属)に搭載された3個のチップ20A、20B、30Aを備えている。
樹脂容器の側面に6個のリード端子を有する(図なし)。これにより、各発光ダイオードを独立に点灯できる。リード端子は、搭載部と接続されている。容器部は、反射率の高い白色顔料が含有された熱可塑性樹脂(以下の説明では白色樹脂と呼ぶ)を射出成型することによって形成されている。
また、ハンダリフローなどの温度がかかる工程に対応できるよう、白色樹脂は、耐熱性が十分考慮された材質が選定されている。基材となる樹脂としてはPPA(polyphthalamide)を用いた。
樹脂容器に設けられる凹部から立ち上がる壁面により、発光ダイオードチップから発光する光を半値角30度に集光する。
半導体発光素子チップ20A,B、30Aは、搭載部に、シリコーン樹脂からなるダイボンド剤で接着され、固定されている。このとき、チップ間隔は、約0.5mmである。
そして、発光素子パッケージ10は、図1(a)に示すように、発光ダイオードチップの各電極と各端子部をボンディングワイヤ15により接続されている。
ここで、搭載部は、0.4mm程度の厚みをもつ金属板であり、銅合金等の金属をベースとし、その表面には銀メッキが施されることによって反射率を高めている。すなわち、搭載部は熱伝導性、反射に優れた金属で構成されている。
パッケージは、凹部を埋めるように、透明なシリコーン樹脂により封止され、植物育成用ランプを作製した。
光量子束は、3個のチップに各20mA流したとき、本ランプから取り出される光を集め実測した。赤色(ピーク波長=660nm)の光量子束0.177[μmol・s−1]、青色(ピーク波長=450nm)の光量子束0.065[μmol・s−1]であった。R(赤)とB(青)の比は、約2.7であった。
(実施例2)
実施例1と相違点は、上下通電タイプの発光ダイオードチップを用いて、図8に示したサイドビュー型の発光ダイオードランプを作製し、光量子束[μmol・s−1]を評価した。
赤色発光ダイオードチップは、公知の基板貼り付け型の反射構造である。660nmのAlGaInP発光層を含むエピ層に、銀合金の金属反射層を有するシリコン基板を貼り付けた構造のチップを使用した。このチップは、上面と裏面(シリコン基板)に電極を有する。(図略)
一方、青色発光ダイオードチップは、公知のn型のSiC基板にエピタキシャル成長した450nmのInGaN発光層を有する構造の素子を使用した。このチップは、上面と裏面(SiC基板)に電極を有する上下に通電する構造である。パッケージの材質、搭載部の金属材料は、実施例1と同じであるが、形状は、図8のような形状で、チップを直列に3個搭載する。パッケージのサイズは、3mm×1.4mmで、厚さは、0.8mmである。
発光素子チップは、搭載部に、導電性の接着剤である銀ペーストからなるダイボンド剤で固定され、裏面電極と、搭載部が電気的に接続された。このとき、チップ間隔は、約0.4mmである。
そして、発光素子パッケージ510は、図8に示すように、赤と青のチップを配置した。発光ダイオードチップの表面電極と各端子部をボンディングワイヤ515により接続されている。赤色の表面電極は、n型、青色の表面電極はp型であるので、極性を考慮し、3個のチップを直列に配線した。
ここで、搭載部は、0.4mm程度の厚みをもつ金属板であり、銅合金等の金属をベースとし、その表面には銀メッキが施されることによって反射率を高めている。すなわち、搭載部は熱伝導性、反射に優れた金属で構成されている。
パッケージは、凹部を埋めるように、透明なシリコーン樹脂により封止され、植物育成用ランプを作製した。
光量子束は、3個のチップに各20mA流したとき、本ランプから取り出される光を集め実測した。赤色(ピーク波長=660nm)の光量子束0.13[μmol・s−1]、青色(ピーク波長=450nm)の光量子束0.062[μmol・s−1]であった。R(赤)とB(青)の比は、約2.1であった。
(実施例3)
図1に示した発光ダイオードランプ(半値角30度)を用いて、植物育成用の小型照明パネルを作製し、光量子束[μmol・s−1]及び混色の均一性の光学特性を評価した。
照明パネルは、図10に示したランプの位置と同じ位置に、赤色LED2個と青色LED1個を同一パッケージに搭載したランプをはんだ付けにより固定した。
パネルのサイズは12cmの正方形、ランプの間隔は4cmとし、パネルの端から2cmの位置にコーナーのランプを9個配置した。
そして、前記ランプの3個のLEDに20mAを流し、植物育成されるパネルの下方向20cmの位置における光学特性、すなわち、光量子束密度及び混色の均一性を評価した。
なお、光量子束は、各LEDに20mA流したとき、1個のランプから取り出される光を集め実測した。赤色の光量子束0.177[μmol・s−1]、青色の光量子束0.065[μmol・s−1]であった。RとBの比は、約2.7であった。LEDを各1個とした時で、RとBの比は、約1.35であった。
また、照明パネルの混色の均一性は、パネルから20cm離れた面におけるパネル中心C(0,0)と、中心からX方向3cm、Y方向3cmの位置A(3,3)と、の2点光量子束密度を比較した。結果を表1に示す。
この時、投入電力は、1.26Wであった。
(実施例4)
図8に示した発光ダイオードランプ(半値角30度)を用いて、植物育成用のエッヂ型の小型照明パネルを作製し、光量子束[μmol・s−1]及び混色の均一性の光学特性を評価した。
照明パネルは、図4に示したランプの位置と同じ位置に、赤色LED2個と青色LED1個を同一パッケージに搭載したランプをはんだ付けにより固定した。
光量子束は、各LEDに20mA流したとき、1個のランプから取り出される光を集め実測した。赤色の光量子束0.195[μmol・s−1]、青色の光量子束0.072[μmol・s−1]であった。RとBの比は、約2.7であった。LEDを各1個とした時で、RとBの比は、約1.35であった。
パネルのサイズは12cmの正方形で、ランプの間隔は2cmとし、パネルの端から2cmの位置に、5個配置した。
ランプの搭載個数を考慮して、各LEDに36mAを流し、植物育成されるパネルの下方20cmの位置における光学特性を評価した。結果を表1に示す。
この時、投入電力は、1.37Wであった。
(比較例1)
パネル中心に青色の5φの砲弾型ランプ(半値角:30度)を配置し、青色ランプの周辺に半値角15度の赤色ランプを8個配置した。ここで、赤色LEDは、従来のAlGaAs発光層のLEDである。
パネルのサイズは6cmの正方形、ランプの間隔は2cmとし、パネルの端から1cmの位置にコーナーのランプを配置した。この6cm角のパネルを4枚つなぎ合わせて、12cmの小型照明パネルを作製した。
そして、青色LED4個、赤色LED32個の各LEDに40mAを流し、植物育成されるパネルの下方20cmの位置における光学特性を評価した。結果を表1に示す。
この時、投入電力は、3.35Wであった。
Figure 0005393790
表1に示すように、比較例1の照明パネルに対して実施例3及び実施例4の照明パネルは、照明パネルの照射エリアの中心位置C点及びこの中心位置から離れたA点を比較した結果、光量子束密度の赤色・青色の比(R/B比)が均一であることを確認した。
具体的には、比較例1の照明パネルは、照射エリアの中心位置におけるR/B比が3.6であるのに対して、この中心位置から離れたA点におけるR/B比が2.6であり、照明パネルの照射面内における混色の均一性が低いことを確認した。
これに対して、実施例3及び実施例4の照明パネルでは、照射エリアの中心位置におけるR/B比と、中心位置から離れたA点におけるR/B比と、が同じ値であり、混色の均一性が高いことを確認した。
また、本発明は、比較例に対し、投入電力が小さく、省エネルギー照明であることが、実証された。
本発明の発光ダイオードランプ及び照明装置は、特に、植物育成用途の光源として利用できる。
10・・・発光ダイオードランプ(植物育成用の多色発光ダイオードランプ)11・・・マウント基板12・・・n電極端子13・・・p電極端子14・・・反射壁15・・・金線16・・・封止材20・・・赤色発光ダイオード(第1の発光ダイオード)21・・・化合物半導体層22・・・機能性基板23・・・n型オーミック電極24・・・p型オーミック電極25・・・発光部25A・・・下部クラッド層25B・・・発光層25C・・・上部クラッド層26・・・電流拡散層27・・・接続層30・・・青色発光ダイオード(第2の発光ダイオード)31・・・基板32・・・n型半導体層33・・・発光層34・・・p型半導体層35・・・半導体層36・・・正極37・・・負極38・・・接続層40・・・照明装置(植物育成用照明装置)41・・・導光板41a・・・光取り出し面41b・・・側面

Claims (9)

  1. ピーク発光波長が655nm以上675nm以下の組成式(AlGa1−XIn1−YP(0≦X≦0.1,0<Y≦1)から成る発光層を含むpn接合型の発光部を有する第1の発光ダイオードと、
    ピーク発光波長が420nm以上470nm以下の組成式GaIn1−XN(0≦X≦1)の発光層を有する第2の発光ダイオードと、を備え、
    1以上の前記第1の発光ダイオードと、1以上の前記第2の発光ダイオードと、が同一のパッケージ内に搭載されることを特徴とする植物育成用の多色発光ダイオードランプであって、
    同一電流で、前記多色発光ダイオードランプに搭載された前記1以上の第1の発光ダイオードの光量子束R[μmol・s−1]と前記1以上の第2発光ダイオードの光量子束B[μmol・s−1]とが、R>Bの関係を満たすことを特徴とする植物育成用の多色発光ダイオードランプ。
  2. 前記第1の発光ダイオードの搭載個数が、前記第2の発光ダイオードの搭載個数より多いことを特徴とする請求項1に記載の植物育成用の多色発光ダイオードランプ。
  3. 隣接する前記第1の発光ダイオードと前記第2の発光ダイオードとの距離が、10mm以内であることを特徴とする請求項1又は2に記載の植物育成用の多色発光ダイオードランプ。
  4. 請求項1乃至3のいずれか一項に記載の植物育成用の多色発光ダイオードランプを2以上備え、
    前記植物育成用の多色発光ダイオードランプが略等間隔に配置されるとともに、独立に制御可能とされていることを特徴とする植物育成用照明装置。
  5. 植物の生育面積に応じて前記植物育成用の多色発光ダイオードランプの点灯個数が制御可能とされていることを特徴とする請求項4に記載の植物育成用照明装置。
  6. 前記発光ダイオードランプと植物との距離に応じて、前記植物育成用の多色発光ダイオードランプの光量子束を調整可能とされていることを特徴とする請求項4又は5に記載の植物育成用照明装置。
  7. 前記植物育成用の多色発光ダイオードランプに印加する電流がパルス駆動であり、
    植物の生育状態に応じて前記植物育成用の多色発光ダイオードランプの点灯時間を調整可能とされていることを特徴とする請求項4乃至6のいずれか一項に記載の植物育成用照明装置。
  8. 光取り出し面を有する導光板を備え、
    前記導光板の側面から取り入れた前記植物育成用の多色発光ダイオードランプの光を、前記光取り出し面から取り出し可能とされていることを特徴とする請求項4乃至7のいずれか一項に記載の植物育成用照明装置。
  9. 植物の生育状態に応じて、請求項4乃至8のいずれか一項に記載の植物育成用照明装置の点灯個数、光量子束、印加電流、パルス駆動時間の1以上を組み合わせて制御することを特徴とする植物育成方法。
JP2011525931A 2009-08-07 2010-08-05 植物育成用の多色発光ダイオードランプ、照明装置および植物育成方法 Active JP5393790B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011525931A JP5393790B2 (ja) 2009-08-07 2010-08-05 植物育成用の多色発光ダイオードランプ、照明装置および植物育成方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009184569 2009-08-07
JP2009184569 2009-08-07
PCT/JP2010/063297 WO2011016521A1 (ja) 2009-08-07 2010-08-05 植物育成用の多色発光ダイオードランプ、照明装置および植物育成方法
JP2011525931A JP5393790B2 (ja) 2009-08-07 2010-08-05 植物育成用の多色発光ダイオードランプ、照明装置および植物育成方法

Publications (2)

Publication Number Publication Date
JPWO2011016521A1 JPWO2011016521A1 (ja) 2013-01-17
JP5393790B2 true JP5393790B2 (ja) 2014-01-22

Family

ID=43544416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011525931A Active JP5393790B2 (ja) 2009-08-07 2010-08-05 植物育成用の多色発光ダイオードランプ、照明装置および植物育成方法

Country Status (7)

Country Link
US (1) US9485919B2 (ja)
EP (1) EP2462797B1 (ja)
JP (1) JP5393790B2 (ja)
KR (1) KR101422364B1 (ja)
CN (1) CN102686101B (ja)
TW (1) TWI487139B (ja)
WO (1) WO2011016521A1 (ja)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5106228B2 (ja) * 2008-04-24 2012-12-26 パナソニック株式会社 植物病害防除用照明装置
JP5641472B2 (ja) * 2009-08-26 2014-12-17 パナソニック株式会社 害虫誘引照明方法及び害虫誘引照明システム
FI20095967A (fi) * 2009-09-18 2011-03-19 Valoya Oy Valaisinsovitelma
JP5450559B2 (ja) * 2010-11-25 2014-03-26 シャープ株式会社 植物栽培用led光源、植物工場及び発光装置
DE11158693T8 (de) 2011-03-17 2013-04-25 Valoya Oy Pflanzenbeleuchtungsvorrichtung und Verfahren
EP2499900A1 (en) * 2011-03-17 2012-09-19 Valoya Oy Method and means for enhancing greenhouse lights
KR101752447B1 (ko) * 2011-06-01 2017-07-05 서울반도체 주식회사 발광 다이오드 어셈블리
EP2532224A1 (en) * 2011-06-10 2012-12-12 Valoya Oy Method and means for improving plant productivity through enhancing insect pollination success in plant cultivation
JP5885435B2 (ja) * 2011-09-01 2016-03-15 ローム株式会社 発光素子、発光素子の製造方法および発光素子パッケージ
US8686433B2 (en) 2011-09-01 2014-04-01 Rohm Co., Ltd. Light emitting device and light emitting device package
WO2013141824A1 (en) 2012-03-20 2013-09-26 Vendeka Bilgi Teknolojileri Limited Şirketi A plant illumination armature
US20130326941A1 (en) * 2012-04-05 2013-12-12 Nanoco Technologies Ltd. Quantum Dot LED's to Enhance Growth in Photosynthetic Organisms
EP2821690A4 (en) * 2012-04-27 2015-12-02 Shenzhen Xingrisheng Ind Co LIGHTING DEVICE AND METHOD FOR LIGHTING AND AESTHETIC VIEW
RU2632961C2 (ru) * 2012-07-11 2017-10-11 Филипс Лайтинг Холдинг Б.В., Nl Осветительное устройство, способное обеспечивать садовое освещение, и способ освещения в садоводстве
KR101397193B1 (ko) * 2012-07-20 2014-05-19 (주)티앤아이 엘이디 광원을 이용한 접목묘 활착용 육묘 장치
CN102800664B (zh) * 2012-08-07 2015-01-28 浙江古越龙山电子科技发展有限公司 一种用于促进植物生长的led单灯及其生产工艺
JP6308517B2 (ja) * 2012-08-23 2018-04-11 国立大学法人山口大学 光害防止用の照明方法及び照明装置
JP5779677B2 (ja) * 2013-02-04 2015-09-16 昭和電工株式会社 植物栽培方法及び植物栽培装置
JP5723901B2 (ja) * 2013-02-04 2015-05-27 昭和電工株式会社 植物栽培方法
JP5779604B2 (ja) 2013-02-04 2015-09-16 昭和電工株式会社 植物栽培方法
JP5779678B2 (ja) * 2013-02-04 2015-09-16 昭和電工株式会社 植物栽培用ランプおよびこれを用いた植物栽培方法
JP5723903B2 (ja) * 2013-02-04 2015-05-27 昭和電工株式会社 植物栽培方法
JP2015000036A (ja) * 2013-06-17 2015-01-05 交和電気産業株式会社 照明装置
JP6709168B2 (ja) 2014-03-31 2020-06-10 シグニファイ ホールディング ビー ヴィSignify Holding B.V. 果実及び/又は野菜の鮮度
TW201544764A (zh) * 2014-05-16 2015-12-01 Univ Nat Central 用於農業照明之螢光粉擴散片燈具
MX2017003482A (es) * 2014-09-17 2017-12-07 Sulejmani Holdings Llc Metodo para aumentar el rendimiento de una plata floreciente.
KR101589530B1 (ko) * 2015-08-17 2016-01-29 (주)티앤아이 육묘 생산 시스템
USD795737S1 (en) 2015-11-09 2017-08-29 LED Habitats LLC Grow light apparatus
CN105405937B (zh) * 2015-12-15 2017-11-07 苏州东善微光光电技术有限公司 用于植物生长的光源及植物培养方法
AU2018210361A1 (en) 2017-01-20 2019-08-08 Charles Hugo OSTMAN Light emitting structures
US10892297B2 (en) * 2017-11-27 2021-01-12 Seoul Viosys Co., Ltd. Light emitting diode (LED) stack for a display
US10892296B2 (en) 2017-11-27 2021-01-12 Seoul Viosys Co., Ltd. Light emitting device having commonly connected LED sub-units
US11527519B2 (en) 2017-11-27 2022-12-13 Seoul Viosys Co., Ltd. LED unit for display and display apparatus having the same
EP3492554B1 (en) * 2017-11-30 2020-08-19 Nichia Corporation Light emitting device, illumination device and plant cultivation method
CN108105647B (zh) * 2017-12-20 2022-11-04 西安智盛锐芯半导体科技有限公司 智能led射灯
US11522006B2 (en) 2017-12-21 2022-12-06 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same
US11552061B2 (en) 2017-12-22 2023-01-10 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
JP7185126B2 (ja) * 2018-03-14 2022-12-07 日亜化学工業株式会社 照明装置及び植物栽培方法
US11291164B2 (en) 2018-08-24 2022-04-05 Seoul Viosys Co., Ltd. Light source for plant cultivation
KR102194453B1 (ko) * 2018-12-06 2020-12-23 경북대학교 산학협력단 전색체 led 파장 변환에 따른 식물생장을 증진하는 방법
DE102019103805A1 (de) * 2019-02-14 2020-08-20 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Pflanzenbeleuchtungsvorrichtung und verfahren zum betreiben einer lichtquelle
CN115718094A (zh) * 2021-08-24 2023-02-28 深圳迈瑞生物医疗电子股份有限公司 试样分析设备及试样分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08103167A (ja) * 1994-10-05 1996-04-23 Kensei Okamoto 植物栽培用光源
JP2001086860A (ja) * 1999-09-22 2001-04-03 Matsushita Electronics Industry Corp 植物栽培用の半導体発光照明設備
JP2002027831A (ja) * 2000-05-11 2002-01-29 Kansai Tlo Kk 植物育成用led光源
WO2008099699A1 (ja) * 2007-02-05 2008-08-21 Showa Denko K.K. 発光ダイオード
JP2009125007A (ja) * 2007-11-25 2009-06-11 Seiichi Okazaki 育成方法、生産方法及び照明装置
JP2010239098A (ja) * 2009-03-10 2010-10-21 Showa Denko Kk 発光ダイオード、発光ダイオードランプ及び照明装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750799B2 (ja) * 1986-04-17 1995-05-31 株式会社東芝 発光装置
US5012609A (en) * 1988-12-12 1991-05-07 Automated Agriculture Associates, Inc. Method and apparatus for irradiation of plants using optoelectronic devices
JP3937644B2 (ja) * 1999-03-25 2007-06-27 セイコーエプソン株式会社 光源及び照明装置並びにその照明装置を用いた液晶装置
DE10025810B4 (de) * 2000-05-24 2014-01-23 SMR Patents S.à.r.l. Leuchteneinheit, insbesondere für Außenrückblickspiegel von Fahrzeugen, vorzugsweise von Kraftfahrzeugen
TW421994U (en) * 2000-05-30 2001-02-11 Wei Fang Plant cultivation device using LED as light source
CN2438321Y (zh) 2000-09-26 2001-07-11 方炜 以发光二极管为光源的植物栽培装置
JP2004136719A (ja) * 2002-10-15 2004-05-13 Koito Mfg Co Ltd 点灯回路
DE202004011869U1 (de) * 2004-06-30 2005-11-10 Osram Opto Semiconductors Gmbh Leuchtdiodenanordnung
JP2008504698A (ja) * 2004-06-30 2008-02-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 発光ダイオード装置、光学式記録装置および少なくとも1つの発光ダイオードをパルス状に作動させる方法
KR100524098B1 (ko) 2004-09-10 2005-10-26 럭스피아 주식회사 반도체 발광장치 및 그 제조방법
JP4823568B2 (ja) * 2005-05-23 2011-11-24 三菱電機株式会社 面状光源装置及びこれを用いた表示装置
US20070058368A1 (en) * 2005-09-09 2007-03-15 Partee Adam M Efficient high brightness led system that generates radiometric light energy capable of controlling growth of plants from seed to full maturity
JP5019755B2 (ja) 2006-02-08 2012-09-05 昭和電工株式会社 発光ダイオード及びその製造方法
KR100809210B1 (ko) * 2006-07-10 2008-02-29 삼성전기주식회사 고출력 led 패키지 및 그 제조방법
US7842960B2 (en) 2006-09-06 2010-11-30 Lumination Llc Light emitting packages and methods of making same
JP2010512780A (ja) * 2006-12-20 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 照明装置
EP2025220A1 (en) * 2007-08-15 2009-02-18 Lemnis Lighting Patent Holding B.V. LED lighting device for growing plants
US7802901B2 (en) * 2007-09-25 2010-09-28 Cree, Inc. LED multi-chip lighting units and related methods
JP2009184569A (ja) 2008-02-07 2009-08-20 Alpine Electronics Inc 車載用機器のパネル装置
US20090288340A1 (en) * 2008-05-23 2009-11-26 Ryan Hess LED Grow Light Method and Apparatus
US8297782B2 (en) * 2008-07-24 2012-10-30 Bafetti Vincent H Lighting system for growing plants

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08103167A (ja) * 1994-10-05 1996-04-23 Kensei Okamoto 植物栽培用光源
JP2001086860A (ja) * 1999-09-22 2001-04-03 Matsushita Electronics Industry Corp 植物栽培用の半導体発光照明設備
JP2002027831A (ja) * 2000-05-11 2002-01-29 Kansai Tlo Kk 植物育成用led光源
WO2008099699A1 (ja) * 2007-02-05 2008-08-21 Showa Denko K.K. 発光ダイオード
JP2009125007A (ja) * 2007-11-25 2009-06-11 Seiichi Okazaki 育成方法、生産方法及び照明装置
JP2010239098A (ja) * 2009-03-10 2010-10-21 Showa Denko Kk 発光ダイオード、発光ダイオードランプ及び照明装置

Also Published As

Publication number Publication date
TW201112442A (en) 2011-04-01
JPWO2011016521A1 (ja) 2013-01-17
TWI487139B (zh) 2015-06-01
EP2462797A4 (en) 2015-05-27
US20120124903A1 (en) 2012-05-24
EP2462797B1 (en) 2019-02-27
KR101422364B1 (ko) 2014-07-22
EP2462797A1 (en) 2012-06-13
US9485919B2 (en) 2016-11-08
KR20120069676A (ko) 2012-06-28
WO2011016521A1 (ja) 2011-02-10
CN102686101A (zh) 2012-09-19
CN102686101B (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5393790B2 (ja) 植物育成用の多色発光ダイオードランプ、照明装置および植物育成方法
US9412903B2 (en) Semiconductor light emitting device
US9269871B2 (en) Light emitting diode
JP5799124B2 (ja) 交流駆動型の発光ダイオード
KR100993085B1 (ko) 발광 소자, 발광 소자 패키지 및 라이트 유닛
JP4974867B2 (ja) 発光ダイオード及びその製造方法
US20150091041A1 (en) Semiconductor light emitting device and semiconductor light emitting apparatus including the same
KR20220012215A (ko) 발광 다이오드 칩들을 위한 상호접속부들
KR20120041173A (ko) 발광 다이오드, 발광 다이오드 램프 및 조명 장치
JP5557649B2 (ja) 発光ダイオード、発光ダイオードランプ及び照明装置
US10862015B2 (en) Semiconductor light emitting device package
JP5586371B2 (ja) 発光ダイオード、発光ダイオードランプ及び照明装置
CN103081135B (zh) 发光二极管、发光二极管灯和照明装置
KR102070092B1 (ko) 반도체 발광소자
JP5557648B2 (ja) 発光ダイオード、発光ダイオードランプ及び照明装置
KR20140096652A (ko) 발광 소자
TWI433356B (zh) 發光二極體及發光二極體燈
JP5876897B2 (ja) 発光ダイオード、発光ダイオードランプ及び照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350