WO2012070359A1 - 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法 - Google Patents

電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法 Download PDF

Info

Publication number
WO2012070359A1
WO2012070359A1 PCT/JP2011/074818 JP2011074818W WO2012070359A1 WO 2012070359 A1 WO2012070359 A1 WO 2012070359A1 JP 2011074818 W JP2011074818 W JP 2011074818W WO 2012070359 A1 WO2012070359 A1 WO 2012070359A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel material
electron beam
less
steel
weld metal
Prior art date
Application number
PCT/JP2011/074818
Other languages
English (en)
French (fr)
Inventor
植森 龍治
竜一 本間
石川 忠
児島 明彦
学 星野
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010260582A external-priority patent/JP2011246808A/ja
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP2012512120A priority Critical patent/JP5015360B2/ja
Priority to CN201180040331.2A priority patent/CN103069039B/zh
Priority to EP11842484.5A priority patent/EP2594657B1/en
Priority to KR1020137004138A priority patent/KR101346961B1/ko
Publication of WO2012070359A1 publication Critical patent/WO2012070359A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0053Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a steel for electron beam welding in which an electron beam is irradiated and welded to a welded portion in which a plate-like or foil-like insert metal is sandwiched on a groove surface, a method for manufacturing the same, and the opening of the steel.
  • the present invention relates to an electron beam welded joint formed by irradiating an electron beam onto a welded portion having an insert metal sandwiched between front surfaces.
  • the structure of the foundation portion of the steel tower is a steel pipe structure having a large cross section with a plate thickness of more than 50 mm, for example, about 100 mm and a diameter of about 4 m.
  • the height of this tower reaches 80m or more.
  • high energy density beam welding such as electron beam welding and laser beam welding is efficient.
  • plate thickness that can be welded with a laser beam.
  • conventional electron beam welding has to be performed in a vacuum chamber while maintaining a high vacuum state. Therefore, conventionally, the thickness and size of the steel plate that can be welded by high energy density beam welding are limited by the capability of the welding apparatus and the size in the vacuum chamber.
  • RPEBW reduced pressure electron beam welding
  • a fracture toughness value ⁇ c based on fracture mechanics is known as an index for quantitatively evaluating the safety of a welded structure.
  • ⁇ c is obtained by a CTOD (Crack Tip Opening Displacement) test. Since the size of the test piece affects the fracture toughness, even if good results are obtained in a small test such as the conventional V-notch Charpy impact test, the CTOD test on a welded joint of a large steel structure is performed at 0 ° C. A good fracture toughness value ⁇ c of 0.5 mm or more is not always obtained.
  • the electron beam welding method is a method in which the base metal of the welded portion is once melted by the energy of the electron beam and solidified and welded.
  • the component composition of the welded portion by the electron beam welding method is the base material ( Steel).
  • the high heat input arc welding method such as electrogas welding
  • mechanical properties such as the hardness of the weld metal and the fracture toughness value ⁇ c are adjusted by a welding wire or the like.
  • a welding wire is not used.
  • Patent Document 6 proposes that the hardness of the weld metal is more than 110% and less than or equal to 220% of the hardness of the steel material (base material), and the width of the weld metal is 20% or less of the plate thickness of the steel material (base material). It has been proposed to do.
  • Patent Document 7 proposes that the amount of O in the weld metal is 20 ppm or more and the amount of oxide having a particle size of 2.0 ⁇ m or more is 10 pieces / mm 2 or less.
  • Japanese Unexamined Patent Publication No. 2008-111406 Japanese Unexamined Patent Publication No. 2007-092406 Japanese Unexamined Patent Publication No. 2007-322400 Japanese Unexamined Patent Publication No. 2006-037397 International Publication No. 99/16101 Pamphlet Japanese Unexamined Patent Publication No. 2007-21532 Japanese Unexamined Patent Publication No. 2008-88504
  • weld metal WM
  • HZ Heat-Affected Zone
  • the toughness of the weld metal and the heat-affected zone is controlled by adjusting the component composition of the base material.
  • an object of the present invention is a steel material having a plate thickness of 45 mm or more that forms the basic part of a tower for offshore wind power generation. Electron beam is irradiated to the welded part where the foil-shaped insert metal is sandwiched, and the fracture toughness of the weld metal (WM), heat-affected zone (HAZ), and base metal (BM: Base Metal) is high.
  • WM weld metal
  • HAZ heat-affected zone
  • BM Base Metal
  • Another object of the present invention is to provide an electron beam welded joint formed by irradiating an electron beam onto a welded portion in which a plate-like or foil-like insert metal is sandwiched between groove surfaces of this steel material. .
  • the present invention irradiates an electron beam to a welded portion in which a plate-like or foil-like insert metal is sandwiched on a groove surface, and adds 1.5% by mass or more of Mn in an electron beam welding steel material to be welded.
  • Mg and / or Ca which are powerful deoxidizing elements, are simultaneously added to this steel material to produce fine oxides containing Mg, and as a pinning particle that suppresses grain growth and as a nucleus for intragranular transformation Use.
  • the fracture toughness values of the steel material (BM), the heat affected zone (HAZ), and the weld metal (WM) are appropriately balanced.
  • WM width and HAZ width are narrow, and heat input is low, fine oxides containing Mg are dispersed in the weld metal (WM) and heat affected zone (HAZ).
  • WM weld metal
  • HAZ heat affected zone
  • the newly introduced electron beam weld hardenability index formula CeEBB, CeEBW is controlled, and the fracture toughness of the steel (BM), weld metal (WM), and heat affected zone (HAZ) is The required fracture toughness is secured as an entire electron beam welded joint formed by using an insert metal while being appropriately balanced. Furthermore, in the present invention, in order to increase the hardenability, the amount of Mn is increased, while the amount of Cr, Mo, Cu, Ni, and / or Nb is decreased, and the steel for electron beam welding is manufactured. Reduce costs.
  • the electron beam welding hardenability indexes CeEBB and CeEBW are indexes newly introduced by the present inventors in order to improve the fracture toughness of an electron beam welded joint formed using an insert metal.
  • the technical significance of the indicators CeEBB and CeEBW will be described later together with the technical significance of the indicator (ratio) “C / CeEBB” (C: C content) introduced together.
  • the gist of the present invention is as follows.
  • An electron beam welded joint is an electron beam welded joint in which a steel material is welded with an electron beam to form a weld metal, and the composition of the steel material is C%: 0.02% to 0.10%, Si: 0.03% to 0.30%, Mn: 1.5% to 2.5%, Ti: 0.005% to 0.015%, N: 0.00.
  • the index value CeEBB obtained by substituting the composition of the steel material into the following formula 1 is 0.42% to 0.65%, and the thickness of the cross section along the thickness direction of the steel material In the center portion, the number of oxides having an equivalent circle diameter of 1.0 ⁇ m or more is 20 / mm 2 or less, and in the central portion of the plate thickness, the equivalent circle diameter containing 7% or more of Mg is 0.05 ⁇ m or more and 0.5 ⁇ m
  • the number of oxides less than 1 ⁇ 10 3 to 1 ⁇ 10 5 pieces / mm 2 , and the composition of the weld metal is mass%, C: 0.02% to 0.10%, Si: 0.03% ⁇ 0.30%, Mn: 1.2% ⁇ 2.4%, Ni: 1.0 ⁇ 2.3% Ti: 0.005% to 0.015%, N: 0.0020% to 0.0060%, O: 0.0004% to 0.0020%, Mg: 0.0003% to 0.0027%, Ca: 0.0003% to 0.0027%, Nb:
  • CeEBW An index value CeEBW obtained by substituting into Equation 2 is 0.56% to 0.73%. Beam welded joint.
  • CeEBB C + 1 / 4Mn + 1 / 15Cu + 1 / 15Ni + 1 / 5Cr + 1 / 5Mo + 1 / 5V
  • C, Mn, Cu, Ni, Cr, Mo, and V are mass% of each element in the composition of the steel material
  • CeEBW C + 1 / 4Mn + 1 / 15Cu + 1 / 15Ni + 1 / 5Cr + 1 / 5Mo + 1 / 5V
  • C, Mn, Cu, Ni, Cr, Mo, and V are mass% of each element in the composition of the weld metal, respectively.
  • C / CeEBB which is a ratio of the amount of C of the steel material expressed in mass% with respect to the index value CeEBB, may be 0.02 to 0.15.
  • the steel material may have a thickness of 45 to 150 mm.
  • the component of the steel material is, by mass, C: 0.02% to 0.10%, Si: 0.03% to 0 .30%, Mn: 1.5% to 2.5%, Ti: 0.005% to 0.015%, N: 0.0020% to 0.0060%, O: 0.0010% to 0.0035 %, Mg: 0.0003% to 0.0027%, Ca: 0.0003% to 0.0027%, Nb: 0% to 0.020%, V: 0% to 0.030%, Cr: 0% -0.50%, Mo: 0%-0.50%, Cu: 0%-0.25%, Ni: 0%-0.50%, and B: 0%-0.0030% , Al: limited to 0.015% or less, P: limited to 0.015% or less, S: limited to 0.010% or less, the balance consisting of iron and inevitable impurities,
  • the content expressed by mass% of Mg and Ca in the composition of the steel material satisfies 0.0006% ⁇ Mg
  • the value CeEBB is 0.42% to 0.65%, and the number of oxides having a circle-equivalent diameter of 1.0 ⁇ m or more is 20 / mm 2 at the center of the thickness of the cross section along the thickness direction of the steel material.
  • the number of oxides having an equivalent circle diameter containing Mg of 7% or more and not less than 0.05 ⁇ m and less than 0.5 ⁇ m is 1 ⁇ 10 3 to 1 ⁇ 10 5 pieces / mm 2 in the center of the plate thickness.
  • CeEBB C + 1 / 4Mn + 1 / 15Cu + 1 / 15Ni + 1 / 5Cr + 1 / 5Mo + 1 / 5V (Formula 1)
  • C, Mn, Cu, Ni, Cr, Mo, and V are mass% of each element in the composition of the steel material, respectively.
  • C / CeEBB which is a ratio of C amount of the steel material expressed in mass% with respect to the index value CeEBB, is 0.02 to 0.15. Also good.
  • the thickness of the steel material may be 45 to 150 mm.
  • a manufacturing method is the method for manufacturing a steel material for electron beam welding according to the above (5) or (6), and when the steel material is cast, the steel material is 1300.
  • the fracture toughness of the steel material (base material), fracture toughness, and heat-affected zone is excellent, if the fracture toughness of the weld metal is inferior, the weld metal becomes the starting point of fracture. Even if the fracture toughness of the weld metal is excellent, if the fracture toughness of the heat-affected zone is inferior, the fracture proceeds from the heat-affected zone. As described above, when the fracture toughness varies in each part of the welded joint, the fracture toughness of the welded joint as a whole deteriorates.
  • Brittle fracture at welds (welded metal and heat-affected zone) of steel with a yield strength of 355 MPa using electron beam welding is caused by coarse grain boundary ferrite formed around the prior austenite grains and inside the former austenite grains.
  • the upper bainite, ferrite side plates, etc. that are formed in the lath form rust as starting points of destruction.
  • the fracture surface unit when brittle fracture starts from coarse ferrite formed from upper bainite or prior austenite grain boundaries depends on the grain size of prior austenite. Therefore, the fracture toughness of the welded portion can be improved by reducing the grain size of the prior austenite in the weld metal and the heat-affected zone using the pinning effect and intragranular transformation caused by the precipitates.
  • Mg and Ca which are extremely powerful deoxidizing elements, are simultaneously added to the steel, and welding is performed by electron beam welding not only with the steel material (base material) but also with an insert metal containing Ni.
  • An appropriate amount of a fine oxide containing Mg having an appropriate particle size is dispersed in the weld metal of the part and the prior austenite grains of the heat affected part.
  • fine oxides containing Mg remain in the heat-affected zone (HAZ) and function as pinning particles that suppress grain growth, so grain growth in the heat-affected zone is suppressed.
  • HZ heat-affected zone
  • the fine Mg-containing oxide serves as a nucleus for intragranular transformation and produces intragranular ferrite in the heat affected zone.
  • the structure of the heat-affected zone becomes particularly fine, and the fracture toughness of the steel (base material), the heat-affected zone and the weld metal is improved, and the balance of these three fracture toughness is improved.
  • an electron beam welded joint formed by electron beam welding with an insert metal containing Ni interposed in a weld portion of a steel material having a yield strength of 355 MPa class fracture toughness in a weld metal and a heat affected zone is improved. Deterioration can be suppressed. It is also possible to provide an electron beam welded joint in which the fracture toughness of the steel (base material), the heat-affected zone, and the weld metal is appropriately balanced, and to provide a steel that can form the welded joint at a low cost. it can.
  • the steel material is welded and then used as it is without heat treatment. For this reason, the weld metal and the heat affected zone are required to have excellent toughness.
  • electron beam welding is performed with an insert metal containing Ni interposed in the weld.
  • the plate thickness and strength of the steel material used for the electron beam welded joint according to the embodiment of the present invention are not particularly limited.
  • the plate thickness is 45 to 150 mm
  • YP yield point
  • TS tensile strength
  • the plate thickness upper limit may be set to 120 mm or 130 mm.
  • the YP lower limit may be set to 340 MPa or 355 MPa
  • the YP upper limit may be set to 500 MPa, 460 MPa, or 420 MPa.
  • the TS lower limit may be set to 470 MPa or 490 MPa
  • the TS upper limit may be set to 600 MPa, 570 MPa, or 550 MPa.
  • This type of steel is a structural steel having a YP of about 355 MPa, and has a lower strength than Cr-Mo high strength steel, and the structure of the heat affected zone has low toughness as qualitatively shown in FIG. Become upper bainite.
  • a steel material is electron beam welded, particularly in the heat-affected zone, coarse structures such as grain boundary ferrite and upper bainite develop, and high carbon martensite (also called island martensite or MA constituent) is generated. Cheap. Therefore, when the structural steel is electron beam welded, it is not easy to ensure the toughness of the heat affected zone.
  • the toughness of the weld metal and the heat-affected zone it is important to balance the hardness of the weld metal and the hardness of the steel (base material). That is, as shown in FIG. 3, when the hardness of the weld metal is increased relative to the hardness of the steel material (base material), the toughness of the weld metal is improved. However, the deformation concentrates on the heat affected zone due to the effect of hardening of the weld metal, so that the toughness of the heat affected zone decreases. Therefore, when the hardenability is increased in order to prevent the formation of upper bainite having poor toughness, the weld metal is hardened, and this influence causes a problem that the toughness of the heat affected zone is impaired.
  • the relationship between the hardenability of steel and the grain size of WM and the high carbon martensite of HAZ, the ratio of the hardness of WM to the hardness of the steel (base material) and the toughness of the welded joint are as follows: Qualitatively known. However, conventionally, there has been no concept of controlling the balance of fracture toughness of welded joints by the components of steel materials. Therefore, for example, when a steel material (base material) with improved hardenability is subjected to electron beam welding, the WM toughness is improved, but the HAZ toughness is significantly reduced.
  • the inventors of the present invention have examined an index for indicating hardenability suitable for electron beam welding in order to ensure excellent toughness in electron beam welding formed with an insert interposed, and newly developed “electron beam welding”.
  • Welded hardenability indexes CeEBB and CeEBW were devised and introduced. That is, the “electron beam hardenability index CeEBB of steel material” defined by the following (formula 1) and the “electron beam hardenability index CeEBW of weld metal” defined by the following (formula 2) are the fracture toughness of the electron beam welded joint.
  • CeEBB C + 1 / 4Mn + 1 / 15Cu + 1 / 15Ni + 1 / 5Cr + 1 / 5Mo + 1 / 5V (Formula 1)
  • C, Mn, Cu, Ni, Cr, Mo, and V are content (mass%) of each component in the base material of the electron beam welded joint, that is, the steel material used for the electron beam welded joint, respectively. is there.
  • the unit of CeEBB value is mass%.
  • CeEBW C + 1 / 4Mn + 1 / 15Cu + 1 / 15Ni + 1 / 5Cr + 1 / 5Mo + 1 / 5V (Formula 2)
  • C, Mn, Cu, Ni, Cr, Mo, and V are content (mass%) of each component in the weld metal of an electron beam welding joint, respectively.
  • the unit of CeEBW value is mass%.
  • CeEBB C + 1 / 4Mn (Formula 1 ′)
  • CeEBW C + 1 / 4Mn (Formula 2 ′)
  • the coefficient of Mn was set to 1/4 based on the empirically obtained degree of decrease in hardenability due to the decrease in Mn. The value of this coefficient is larger than the known Mn coefficient 1/6 in Ceq.
  • the index value CeEBB is (1) ensuring the hardenability of the weld metal after electron beam welding using the Ni-containing foil within the required range by adjusting the components of the steel material (base material). (2) This welding In the metal, it is an index for promoting the formation of fine ferrite and (3) suppressing the formation of upper bainite, high carbon martensite and the like that lower toughness in the heat affected zone.
  • FIG. 4 qualitatively shows the relationship between the fracture toughness value ( ⁇ c) of the weld metal (WM) and the heat-affected zone (HAZ) and CeEBB in the electron beam welded joint.
  • the solid curve is the fracture toughness value ( ⁇ cwm) of the weld metal
  • the dashed curve is the fracture toughness value ( ⁇ cha) of the heat affected zone.
  • the two-dot chain line curve is the fracture toughness value (predicted value of HAZ toughness) of the heat affected zone when the influence of the hardness of the WM is virtually ignored.
  • Such a predicted value of HAZ toughness is a fracture toughness value that can be measured when a fracture toughness test is performed using a test piece that has been subjected to heat treatment simulating the thermal history of HAZ.
  • the fracture toughness value ( ⁇ cwm) of WM is improved to the same level as steel (base material) by using insert metal (Ni foil or the like).
  • the index value CeEBB increases, the predicted value of HAZ toughness decreases in HAZ due to the increase in high carbon martensite and the hardening of HAZ. Further, when CeEBB increases, WM hardens, and due to the influence, ⁇ cha is lower than the predicted value of HAZ toughness.
  • Ni foil or the like there is no problem with toughness even if CeEBB is low, but since the strength decreases, it is necessary to set a lower limit value for CeEBB.
  • the index value CeEBB is set within an appropriate range, the fracture toughness value of the heat affected zone can be made equal to or higher than the target value indicated by the alternate long and short dash line.
  • the present inventors examined the relationship between the C amount and index value CeEBB of the steel material (base material), the steel material (base material), the weld metal, and the toughness of the heat affected zone. As a result, it has been found that it is preferable to limit the upper limit of the ratio “C / CeEBB” between the amount of C of the steel material (base material) and CeEBB. The technical significance of the ratio “C / CeEBB” will be described below.
  • the ratio “C / CeEBB” is an index for preventing the hardenability of the heat affected zone from being extremely biased.
  • a decrease in the hardenability of the weld metal due to a decrease in C / CeEBB can be compensated for by Ni.
  • FIG. 5 shows the relationship between CeEBB and the fracture toughness value of the heat affected zone.
  • CeEBB is an index of hardenability
  • CeEBB is an index of hardenability
  • the formation of high carbon martensite is promoted in the heat-affected zone and the fracture toughness value decreases.
  • the generation of high carbon martensite is promoted by an increase in the amount of C. Therefore, as shown in FIG. 5, in order to ensure the fracture toughness value of the heat affected zone, it is preferable to limit C / CeEBB.
  • the present inventors also examined the proper component composition of the weld metal of the welded joint that was electron beam welded with an insert metal containing Ni. Since Ni is added to the weld metal from the insert metal containing Ni, it is necessary to clarify the proper amount of Ni and CeEBW in order to ensure toughness in the weld metal.
  • the present inventors examined a technique for improving the balance between the fracture toughness value of the weld metal and the fracture toughness value of the heat-affected zone.
  • an appropriate amount of Mg and Ca are added at the same time to produce fine oxides containing Mg that function as nuclei for pinning particles and intragranular transformation, an electron beam welded joint is formed by sandwiching the insert metal. It was found that the heat-affected zone and the toughness of the weld metal were improved.
  • Oxide particles containing 7% or more of Mg exhibit a pinning action and an intragranular transformation promoting action with high efficiency when the equivalent circle diameter is 0.05 ⁇ m or more, and greatly contribute to the refinement of crystal grains.
  • particles of oxides having a relatively large particle size also serve as starting points for brittle fracture.
  • an oxide having an equivalent circle diameter of 1.0 ⁇ m or more has a particularly high tendency to become a starting point of fracture, and therefore, it is desirable to limit the number thereof as much as possible.
  • the crystal grains can be effectively formed without causing brittle fracture. It turned out that it can be made fine.
  • an oxide particle having an equivalent circle diameter of 0.05 ⁇ m or more and less than 0.5 ⁇ m and containing 7% or more of Mg (hereinafter simply referred to as “a fine Mg-containing oxide”). )
  • all oxides having an equivalent circle diameter of 1.0 ⁇ m or more (hereinafter, sometimes simply referred to as “coarse oxide”), the quantity was measured. Then, the relationship between the number of oxide particles of each class in the steel and the toughness value of the joint after electron beam welding using this steel was quantitatively verified.
  • samples that passed the CTOD test are shown as hollow plots, and samples that failed are shown as filled plots.
  • Samples with an oxygen content of 0.0035% or less in the steel are shown as rhombuses, and samples with more than 0.0035% are shown as triangles.
  • FIG. 7 shows the relationship between the result of the CTOD test and the number of the fine Mg-containing oxide and the coarse oxide.
  • all the plots (hollow diamonds) of the welded joints that passed the CTOD test are within the range of the dashed square indicated as “the scope of the present invention”. That is, the conditions for the CTOD value of HAZ and ⁇ HAZ to be 0.3 mm or more are as follows: (1) An oxide having a circle-equivalent diameter of 1.0 ⁇ m or more (the coarse oxide) is 20 at the center of the steel plate thickness.
  • the number of the fine Mg-containing oxides could be controlled in the range of 1 ⁇ 10 3 to 1 ⁇ 10 5 pieces / mm 2 in the range of the total oxygen amount and the cooling rate.
  • this cooling rate range is shown as a “range of the present invention” by a broken line and an arrow.
  • the CTOD value of HAZ and ⁇ HAZ were 0.3 mm or more (diamond-shaped hollow plot).
  • the total oxygen content in the steel was studied the correlation between the quantity of the fine Mg-containing oxide particles.
  • the total oxygen amount increased, the number of the fine Mg-containing oxide particles in the central portion of the plate thickness tended to increase.
  • the total amount of oxygen exceeds 0.0035%, even if the cooling rate of the slab is set to 9 ° C./min or more, the quantity of the minute Mg-containing oxide cannot be controlled to 1 ⁇ 10 5 pieces / mm 2 or less. There is. In this case, it is considered that excessive oxide particles are the starting point of brittle fracture, which deteriorates the CTOD test value.
  • FIG. 9 the total oxygen amount
  • the inventors obtained the following knowledge by combining the results of the preliminary experiments. (1) By reducing the number of coarse oxide particles present in the center of the plate thickness, and (2) appropriately controlling the amount of fine Mg-containing oxides as transformation nuclei for intragranular transformation, an electron beam welded joint The heat affected zone and the fracture toughness of the weld metal can be improved.
  • the required cooling rate of the cast slab obtained in the preliminary experiment is 9 ° C./min.
  • the shape of the weir at the time of casting is considered to change. For this reason, in order to improve the CTOD test result, it is only necessary to obtain a predetermined number of oxide particles in a predetermined component range, and it is not always necessary to limit the cooling rate during casting to 9 ° C./min or more.
  • the present invention controls the amount of steel (base material) C, CeEBB, C / CeEBB, and the size and number of oxide particles within an appropriate range, so that an appropriate amount of Mg and / or Alternatively, Ca is added.
  • the insert metal containing Ni is sandwiched between the welds and electron beam welding is performed, the ratio of the weld metal and the fracture toughness value of the heat-affected zone to the fracture toughness value of the steel (base material) is improved, and the fracture toughness is increased. Variations in the value ⁇ c can be suppressed as much as possible.
  • the composition of the steel material according to the embodiment of the present invention is at least C: 0.02% to 0.10%, Si: 0.03% to 0.30%, Mn: 1.5% to 2% by mass. 0.5%, Ti: 0.005% to 0.015%, N: 0.0020% to 0.0060%, O: 0.0010% to 0.0035%, Mg: 0.0003% to 0.0027 %, Ca: 0.0003% to 0.0027%.
  • the content of Mg and Ca in the composition of the steel material needs to satisfy 0.0006% ⁇ Mg + Ca ⁇ 0.0040%.
  • P 0.015% or less
  • S 0.010% or less
  • Al 0.015% or less.
  • the above steel materials may be Nb: 0% to 0.020%, V: 0% to 0.030%, Cr: 0% to 0.50%, Mo: 0% to 0.50% as necessary. Cu: 0% to 0.25%, Ni: 0% to 0.50%, and B: 0% to 0.0030%.
  • the balance of the steel composition is composed of iron and inevitable impurities.
  • the weld metal is, by mass, at least C: 0.02% to 0.10%, Si: 0.03% to 0.30%, Mn: 1.2% to 2.4%, Ni : 1.0% to 2.3%, Ti: 0.005% to 0.015%, N: 0.0020% to 0.0060%, O: 0.0004% to 0.0020%, Mg: 0 .0003% ⁇ 0.0027%, Ca: containing 0.0003% 0.0027%.
  • the content of Mg and Ca in the composition of the weld metal needs to satisfy 0.0006% ⁇ Mg + Ca ⁇ 0.0040%. Moreover, among the inevitable impurities contained in the composition of the weld metal, it is necessary to limit to Al: 0.015% or less, P: 0.015% or less, and S: 0.010% or less. Further, the above weld metal may be Nb: 0% to 0.020%, V: 0% to 0.030%, Cr: 0% to 0.50%, Mo: 0% to 0.50 as required. %, Cu: 0% ⁇ 0.25%, and, B: it may contain 0% to 0.0030% or. The balance of the weld metal composition is composed of iron and inevitable impurities.
  • % means the mass%.
  • C is an element that contributes to improvement in strength. In order to ensure the strength as a welded structure, 0.02% or more is added. The minimum with the preferable amount of C is 0.03%, More preferably, it is 0.04%. On the other hand, if the amount of C exceeds 0.10%, the hardenability increases and the toughness decreases, so the upper limit is made 0.10% or less. A preferable upper limit is 0.08% or 0.07%, and more preferably 0.06%.
  • Si is a deoxidizing element and is also an effective element for securing the strength of the steel sheet. Therefore, 0.03% or more is added. However, when Si is added excessively, a large amount of island martensite is generated, and particularly the toughness of the weld metal and the heat-affected zone is lowered. Therefore, the upper limit of the Si amount is set to 0.30%.
  • the upper limit with the preferable amount of Si is 0.25% or 0.20%, More preferably, it is 0.15%.
  • Mn is an element that is effective in ensuring toughness and enhancing the hardenability to ensure the strength of the steel sheet. If the amount of Mn is less than 1.5%, the toughness, strength, and hardenability of the steel material cannot be sufficiently secured. Also, during electron beam welding, Mn evaporates from the weld metal and is partially lost. Accordingly, 1.5% or more of Mn is added to ensure the toughness, strength, and hardenability of the steel material, and further the hardenability of the weld metal.
  • the preferable lower limit of the amount of Mn is 1.6% or 1.7%, more preferably 1.8%. However, if the amount of Mn exceeds 2.5%, the hardenability increases excessively, and particularly the toughness of the heat affected zone decreases. Therefore, the upper limit of the amount of Mn is set to 2.5%. A preferable upper limit is 2.4%, and more preferably 2.3%.
  • P is an unavoidable impurity and adversely affects the toughness of steel (BM), weld metal (WM), and heat affected zone (HAZ).
  • BM steel
  • WM weld metal
  • HZ heat affected zone
  • P is small and limited to 0.015% or less.
  • a preferable amount of P is 0.010% or less or 0.006% or less.
  • the lower limit is 0%.
  • an extremely low P content of less than 0.001% is unnecessary, and the P content may be 0.001% or more.
  • S is an unavoidable impurity and forms MnS.
  • MnS precipitates with fine TiN or Mg-containing oxides as nuclei, forms a Mn-diluted region, and promotes the formation of intragranular ferrite (intragranular transformation).
  • the lower limit of the preferable amount of S is 0.001%. If necessary, the lower limit of the amount of S may be 0.002%. When the above effect is unnecessary, the lower limit of the amount of S is not limited, and the lower limit may be 0%.
  • the toughness of the heat-affected zone (HAZ) is particularly lowered, so the upper limit of the amount of S is limited to 0.010% or less.
  • the upper limit of the preferable amount of S is 0.007% or 0.005% or less.
  • Ti combines with N and O to form fine nitrides (TiN) and oxides that contribute to the refinement of crystal grains.
  • TiN fine nitrides
  • HZ heat-affected zone
  • the heat-affected zone HZ
  • 0.005% or more of Ti is added.
  • the lower limit of the preferable Ti amount is 0.007% or more.
  • the upper limit of the Ti amount is set to 0.015%.
  • the upper limit of the preferable Ti amount is 0.012%.
  • N is an element that combines with Ti to form fine nitrides.
  • N is particularly affected by heat affected zone (HAZ) by refining crystal grains of steel (base material), preventing coarsening of particle size in heat affected zone due to pinning effect, and by reducing particle size due to intragranular transformation. Increase toughness.
  • HZ heat affected zone
  • the lower limit of the N amount is 0.0020%.
  • the lower limit of the preferable N amount is 0.0030%.
  • the upper limit of the N amount is set to 0.0060%.
  • the upper limit with preferable N amount is 0.0050%.
  • the lower limit of the amount of O of the steel material (base material) is preferably 0.0015% or more. More preferably, it is 0.0020% or more.
  • the upper limit of the O amount of the steel material (base material) is set to 0.0035%.
  • the upper limit of the O amount may be 0.0032%, 0.0029%, or 0.0025%.
  • Mg is an extremely important element in the present invention. Mg forms a fine oxide and contributes to the promotion of intragranular transformation. In order to use Mg oxide as pinning particles, 0.0003% or more of Mg is added. In order to promote intragranular transformation, the Mg content is preferably 0.0005% or 0.0007% or more.
  • Mg is added in excess of 0.0027%, a coarse oxide is easily generated, and the toughness of the steel (base material) and the heat-affected zone is lowered, so the upper limit is made 0.0027%.
  • a more preferable upper limit of the amount of Mg is 0.0025%, 0.0023%, or 0.0021%.
  • Ca is a strong deoxidizing element, and 0.0003% or more is added in order to suppress the coarsening of Mg oxide and secure a fine Mg oxide. Ca is also useful for suppressing the production of MnS that produces CaS and extends in the rolling direction. In order to improve the characteristics of the steel material in the plate thickness direction, particularly lamellar resistance, 0.0005% or 0.0007% or more of Ca is preferable.
  • the upper limit of Ca is set to 0.0027%.
  • a more preferable upper limit of the Ca content is 0.0025% or 0.0023%.
  • Mg and Ca are added simultaneously. This is because the addition of Ca strengthens deoxidation and suppresses the coarsening of Mg oxide. That is, since Ca forms an oxide preferentially over Mg, the coarsening of the Mg oxide is suppressed, and the production of the Mg-containing fine oxide is promoted.
  • Fine Mg oxide acts as pinning particles and intragranular transformation nuclei, and also serves as a TiN production nucleus.
  • Mg and Ca are added in total.
  • the lower limit of the total amount of Mg and Ca may be 0.0010% or 0.0015%.
  • the upper limit of the total amount of Mg and Ca is 0.0040%.
  • the upper limit of the total amount of Mg and Ca is preferably 0.0030%, and more preferably 0.0025%.
  • the steel material according to the embodiment of the present invention may further contain Al, Nb, and / or V within a certain limit for the following reason.
  • Al is a selective element added as necessary, and the addition amount may be 0%. When added, there is an effect of improving the toughness of the steel material (base material) by deoxidation and refinement of the microstructure. In order to obtain this effect of addition, 0.001% or more of Al is preferably added. A more preferable amount of Al is 0.003% or more, or 0.005% or more.
  • the upper limit of the Al amount is 0.015% or less regardless of whether Al is added or mixed as an inevitable impurity. Limit to. When the Al oxide becomes coarse, it becomes a starting point of destruction, so a preferable upper limit is 0.012%. More preferably, it is 0.010% or less.
  • Nb is effective in improving the hardenability and increasing the strength of the steel sheet. For this reason, you may add Nb 0.001% or more as needed. Preferably, Nb is added in an amount of 0.003% or more. However, if Nb is added excessively, the toughness of the heat-affected zone (HAZ) is particularly lowered, so the upper limit of the Nb amount is 0.020%. The upper limit of the preferable Nb amount is 0.012%, more preferably 0.010%. The addition of Nb is not essential, and the addition amount may be 0%.
  • V addition is not essential, and the amount of V may be 0%. However, when a small amount is added as necessary, it has the effect of increasing hardenability and temper softening resistance. In order to obtain this addition effect, 0.005% or more of V is added. Preferably, 0.010% or more of V is added. However, if V is added excessively, the toughness of the heat-affected zone (HAZ) is particularly lowered, so the upper limit of the V amount is 0.030%. The upper limit of the preferable V amount is 0.025%. When obtaining more stable hardenability, the V content may be limited to less than 0.020% or 0.018% or less.
  • the steel material according to the embodiment of the present invention may further contain one or more of Cr, Mo, Cu, and Ni as necessary. These elements are effective elements for improving toughness, and in order to obtain the effect of addition, 0.05% or more of Cr, Mo, Cu, and / or Ni is added. The addition of these elements is not essential, and the addition amount may be 0%.
  • the total amount of Cr, Mo, Cu, and / or Ni is 0.70% or less, and more preferably, this total amount is 0.50% or less.
  • the steel material according to the embodiment of the present invention may further contain B as necessary.
  • B is not essential, and the amount of B may be 0%.
  • 0.0002% or more of B is added.
  • the Mn amount and O amount of the weld metal are smaller than the Mn amount and O amount of the steel material (base material). This is because when electron beam welding is performed in a vacuum, in the weld metal, a part of Mn evaporates and the oxide floats from the weld metal and is discharged. Therefore, the Mn content and the O content of the weld metal are set to Mn: 1.2% to 2.4% and O: 0.0004% to 0.0020%, respectively, by mass.
  • the lower limit of the amount of Mn of the weld metal may be 1.4% or 1.6%, and the upper limit may be 2.0% or 1.8%.
  • the amount of O of the steel material is often lost in the weld metal during the process.
  • the amount of O of the steel material is 0.0035% or less, in the joint after welding, the amount of O in the weld metal is often about 0.0020% or less.
  • the O amount of the weld metal may be less than 20 ppm, 19 ppm or less, 18 ppm or less, or 17 ppm or less.
  • the lower limit of the amount of O of the weld metal is not necessarily provided, but it may be 4 ppm or more, 8 ppm or more, 10 ppm or more, 12 ppm or more, or 14 ppm or more.
  • the insert metal containing Ni is sandwiched between the groove surfaces of the welded portion (groove butt portion), Ni is added to the weld metal.
  • Ni is added to the weld metal.
  • the lower limit of the amount of Ni in the weld metal may be 1.3% or 1.6%.
  • the amount of Ni becomes excessive, the hardness of the weld metal increases, which adversely affects the fracture toughness of the heat affected zone.
  • the upper limit of the Ni amount in order to ensure the toughness of the heat-affected zone, and 2.3% or less the upper limit of the Ni amount.
  • Ni of the weld metal is excessive, high carbon martensite is easily generated, the hardness of the weld metal is increased, and the fracture toughness may be decreased.
  • the upper limit of the Ni content of the weld metal may be 2.2% or 2.0%.
  • Ni alloy or pure Ni can be used as the insert metal. It is convenient if pure Ni is used.
  • the composition of the steel material (base material) is substituted into the following (Equation 1) to obtain CeEBB which is an electron beam welding hardenability index value, and this index value CeEBB Between 0.42% and 0.65%.
  • % means the mass%.
  • CeEBB C + 1 / 4Mn + 1 / 15Cu + 1 / 15Ni + 1 / 5Cr + 1 / 5Mo + 1 / 5V (Formula 1)
  • C, Mn, Cu, Ni, Cr, Mo, and V are content (mass%) of a steel material component, respectively.
  • the unit of CeEBB value is mass%.
  • Equation 1 for obtaining the electron beam weld hardenability index CeEBB is as follows.
  • the weld metal of the electron beam welded joint formed by sandwiching an insert metal containing Ni on the groove surface of the welded part has a Ni content of 1 It is created in consideration of 0.0% to 2.3%.
  • the lower limit of the electron beam weld hardenability index value CeEBB of steel is 0.42% in order to ensure the strength of the steel (base material).
  • CeEBB is preferably 0.45% or more, more preferably 0.48% or more.
  • the upper limit is made 0.65%.
  • the upper limit is preferably 0.60%, more preferably 0.58%.
  • the number of all oxide particles (coarse oxide particles) having an equivalent circle diameter of 1.0 ⁇ m or more is 20 / mm 2 or less.
  • the number of oxide particles (fine Mg-containing particles) containing 7% or more of Mg and having an equivalent circle diameter of 0.05 ⁇ m or more and less than 0.5 ⁇ m in the center of the plate thickness is 1 ⁇ 10 3 to 1 ⁇ 10. 5 pieces / mm 2 .
  • the oxide particles serve as a starting point for fracture, and the fracture toughness of the heat-affected zone and the weld metal becomes insufficient.
  • the number of the fine Mg-containing particles is less than 1 ⁇ 10 3 , the pinning action by the Mg-containing particles becomes insufficient, which adversely affects the heat affected zone and the toughness of the weld metal.
  • the number of the fine Mg-containing particles exceeds 1 ⁇ 10 5 , the tendency of excessive Mg-containing particles to become a starting point of fracture increases, and the fracture toughness of the heat affected zone and the weld metal becomes insufficient.
  • FE-SEM Field-Emission-Scanning-Electron-Microscope
  • a method for measuring the number of the fine Mg-containing oxides for example, measurement is performed by FE-TEM (Field-Emission-Transmission-Electron-Microscope) using a cross-sectional sample in the center in the thickness direction of the steel material. Furthermore, an oxide containing 7% or more of Mg with respect to particles having a Mg weight ratio of 7% or more measured by EDX method (Energy Dispersive X-ray Spectrometry) after making an extraction replica film and observing with TEM Judged to be particles.
  • EDX method Energy Dispersive X-ray Spectrometry
  • the ratio of the amount of C to the electron beam weld hardenability index CeEBB is an index that represents the balance between the hardenability of the weld metal and the hardenability of the heat-affected zone and the steel material (base material).
  • C / CeEBB preferably takes a value of 0.15 or less. If the amount of C becomes excessive with respect to the amount of Mn, Cu, Ni, Cr, Mo, and / or V and C / CeEBB exceeds 0.15, the fracture toughness of the heat-affected zone may decrease. is there.
  • the upper limit of more preferable C / CeEBB is 0.13, and more preferably 0.11.
  • the lower limit of C / CeEBB is not specified, but the amount of C takes the lower limit value, and the amount of Mn, Cu, Ni, Cr, Mo, and V takes the upper limit value.
  • the lower limit of CeEBB is 0.02 in the present invention.
  • the lower limit of C / CeEBB is more preferably 0.04. As described above, more preferably 0.06 or more.
  • the composition of the weld metal is substituted into the following (formula 2). Then, CeEBW which is an electron beam welding hardenability index value of the weld metal is obtained, and this index value CeEBW is set to 0.56% to 0.73%. In addition,% means the mass%.
  • CeEBW C + 1 / 4Mn + 1 / 15Cu + 1 / 15Ni + 1 / 5Cr + 1 / 5Mo + 1 / 5V (Formula 2)
  • C, Mn, Cu, Ni, Cr, Mo, and V are content (mass%) of the component in a weld metal, respectively.
  • the unit of CeEBW value is mass%.
  • ⁇ Weld metal CeEBW is 0.56% or more in order to ensure the hardenability of the weld metal.
  • the lower limit of CeEBW of the weld metal is more preferably 0.60%.
  • the CeEBW of the weld metal exceeds 0.73%, the weld metal is cured and the fracture toughness of the welded joint becomes insufficient.
  • the upper limit of CeEBW of the weld metal is more preferably 0.70%.
  • CTOD value of the weld metal [delta] WM
  • HAZ CTOD value [delta] HAZ
  • steel (base material) CTOD value [delta] BM may satisfy the following (expression 3) (formula 4).
  • (delta) WM , (delta) HAZ , and (delta) BM are the minimum values of a CTOD value when a three-point bending CTOD test is performed 6 times at 0 degreeC.
  • CTOD value is 1.0 mm or more, it is considered that ductile fracture occurred, and the above calculation is performed with the CTOD value being 1.0 mm.
  • ⁇ BM / ⁇ WM When ⁇ BM / ⁇ WM is less than 0.8 and / or ⁇ HAZ / ⁇ WM is less than 0.3, the balance of ⁇ BM , ⁇ WM , and ⁇ HAZ becomes extremely poor, and Fracture toughness is greatly reduced. Therefore, the lower limit of ⁇ BM / ⁇ WM is set to 0.8, the lower limit of ⁇ HAZ / ⁇ WM is set to 0.3.
  • the upper limit of ⁇ BM / ⁇ WM is set to 1.25 or less because ⁇ WM is preferably 0.8 times or more of ⁇ BM .
  • [delta] WM is more preferably approximately equal to [delta] BM, preferred upper limit of ⁇ BM / ⁇ WM is 1.1.
  • [delta] HAZ is to be approximately equal to [delta] WM preferably, 1.1 or less the upper limit of ⁇ HAZ / ⁇ WM.
  • the preferable upper limit of ⁇ HAZ / ⁇ WM is 0.6, and more preferably 0.5.
  • the fracture toughness of the weld metal and the heat-affected zone in the welded joint after electron beam welding is less deteriorated compared to the fracture toughness of the steel material (base material), A welded joint in which the fracture toughness of each part is appropriately balanced can be obtained.
  • Electron beam welding can be performed under a low vacuum that can be achieved with simple equipment, for example, under a reduced pressure of 10 Pa or less.
  • the lower limit of the degree of vacuum is preferably 10 ⁇ 2 Pa although it depends on the capacity of the equipment.
  • the welding conditions are determined in accordance with the performance of the apparatus and the thickness of the steel material within the range of the acceleration voltage of 130 to 180 V, the beam current of 100 to 130 mA, and the welding speed of 100 to 250 mm / min. For example, when the thickness is 80 mm, an acceleration voltage of 175 V, a beam current of 120 mA, and a welding speed of about 125 mm / min are recommended.
  • insert metal containing Ni is inserted between the groove surfaces of the welded part.
  • the insert metal containing Ni a Ni-based alloy foil, a Ni—Fe alloy foil, or a pure Ni foil can be used.
  • the thickness of the insert metal necessary to obtain the target Ni amount is determined from the Ni amount of the steel material and the target Ni amount in the weld metal, and the steel material dimensions and the width of the weld metal. It can be easily calculated.
  • a foil having a required thickness may be prepared, but a plurality of thin foils may be stacked so as to have a required thickness.
  • the manufacturing method of the steel material concerning embodiment of this invention is demonstrated.
  • the number of coarse oxides is 20 / It can be limited to 2 mm or less.
  • 1 ⁇ 10 3 or more of the fine Mg-containing oxide can be secured.
  • the continuous casting method is preferable as the method for producing the steel material (steel piece). According to the continuous casting method, the cooling rate after casting can be increased, and the generated oxide and Ti nitride can be refined. For this reason, the continuous casting method is preferable from the viewpoint of improving toughness.
  • concrete means for increasing the cooling rate of the slab to 9 ° C / min or higher include high pressure and high water volume in the continuous casting machine, reduced mold thickness, unsolidified slab layer For example, slab thickness can be reduced by reducing the thickness.
  • the upper limit of the cooling rate of the slab is generally about 30 ° C./min.
  • the cast steel material (steel piece) having the above-described component composition is heated to 950 to 1150 ° C.
  • the heating temperature is less than 950 ° C.
  • deformation resistance during hot rolling is increased, productivity is lowered.
  • heating exceeds 1150 degreeC Ti nitride of steel materials (steel piece) may coarsen and the toughness of steel materials (base material) and a heat affected zone may fall.
  • thermo-mechanical control After the steel material (steel piece) is heated to 950 to 1150 ° C., it is subjected to thermo-mechanical control (TMCP) in order to obtain the necessary strength and toughness of the steel material.
  • Thermomechanical treatment is effective to increase the strength and toughness of steel materials.
  • (2) controlled rolling-accelerated cooling method and (3) direct quenching-tempering after rolling are preferable.
  • the controlled rolling performed in the non-recrystallization temperature range (about 900 ° C. or less) is effective in refining the structure of the steel material and improving the strength and toughness.
  • the controlled rolling in order to prevent the formation of processed ferrite, is preferably finished at a temperature equal to or higher than the Ar 3 transformation point.
  • the accelerated cooling stop temperature is preferably 400 to 600 ° C.
  • the direct quenching after rolling is a method in which hot rolling is performed in a temperature range higher than the temperature range of controlled rolling, followed by quenching by water cooling or the like. According to this method, since the strength usually increases, tempering is performed to ensure toughness.
  • the tempering temperature is preferably 400 to 650 ° C.
  • the conditions in the examples are one condition example adopted to confirm the feasibility and effects of the present invention, and the present invention is based on this one condition example. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Example Steel materials were produced under the conditions shown in Tables 3 and 4 using the steel materials having the component compositions shown in Tables 1 and 2.
  • a test piece was collected from the steel material, subjected to a tensile test and a CTOD test, and the tensile strength and fracture toughness value of the steel material (base material) were measured.
  • the strength of the steel material (base material) was measured on the basis of JIS Z 2241 by collecting test pieces from the 1/2 part thickness with the rolling direction as the longitudinal direction.
  • a material having a yield stress of 355 to 420 MPa was evaluated as good.
  • Electron beam welding was performed using the RPEBW method, using pure Ni foil as an insert metal, under a vacuum of about 1 mbar, under conditions of a voltage of 175 V, a current of 120 mA, and a welding speed of about 125 mm / min.
  • the weld bead width is 3.0 to 5.5 mm. Samples were taken from the weld metal and analyzed for component composition. The results are shown in Tables 5 and 6.
  • a CTOD test was conducted at a test temperature of 0 ° C. to determine a fracture toughness value ⁇ c.
  • the six minimum values were set as fracture toughness values ⁇ WM , ⁇ HAZ , and ⁇ BM , respectively.
  • the CTOD value ⁇ HAZ of the heat affected zone was measured using a test piece in which a notch was introduced into the fusion zone .
  • the CTOD value was 1.0 mm or more, it was considered that ductile fracture occurred, and the above calculation was performed with the CTOD value being 1.0 mm.
  • the number of oxide particles in the steel material was measured by the following method. A cross-section sample in the center in the plate thickness direction is made from each steel material. For oxide particles (coarse total oxide particles) with an equivalent circle diameter of 1.0 ⁇ m or more, FE-SEM (Field-Emission-Scanning-Electron-Microscope) is used. The particle size and number were measured.
  • Mg-containing oxide particles micro Mg-containing oxide particles
  • SPEED method Selective Potentiostatic Etching by Electrolyic Extraction replica films were prepared from samples electropolished by Dissolution) and observed with a FE-TEM (Field-Emission-Transmission-Electron Microscope) of 10,000 to 1000000 times.
  • Inclusion particles having an Mg weight ratio of 7% or more determined from characteristic X-rays were determined as Ti-containing inclusion particles by EDX method (Energy Dispersive X-ray Spectrometry). From these results, the size and number of Ti-containing inclusion particles were measured. At least 20 visual fields were observed at the center of the plate thickness of each sample, and the average value of the number of inclusion particles (the fine Mg-containing oxide particles and the coarse inclusion particles) per unit area was calculated.
  • a blank means that an alloying element is not intentionally added.
  • Underline means outside the scope of the present invention or outside the preferred range.
  • a blank means that an alloying element is not intentionally added.
  • thermomechanical processing column The following Table 3, in Table 4, 7 and 8, the legend of thermomechanical processing column, as follows.
  • CR Controlled rolling (rolling at the optimum temperature for strength and toughness)
  • ACC Accelerated cooling (water cooling to 400-600 ° C after controlled rolling)
  • DQT Quenching-tempering treatment immediately after rolling
  • the underline means that the steel material according to the comparative example or the numerical value is out of the preferred range.
  • An underline means that it is outside the range of the steel materials concerning this comparative example, this invention, or a preferable range.
  • a blank means that the corresponding alloy element is not added intentionally.
  • An underline means that it is out of the steel material concerning a comparative example, or a preferable range.
  • the joint No. 1 to 31 are those in which the steel (base material) and weld metal component composition, CeEBB, and C / CeEBB are all within the scope of the present invention, the steel (BM), the heat affected zone (HAZ). ),
  • the ratio of fracture toughness value ⁇ c of weld metal (WM), ⁇ BM / ⁇ WM , and ⁇ HAZ / ⁇ WM are sufficient values.
  • joint No. No. 32 has a small amount of C and a large amount of Mn, so CeEBB is high, the CTOD value ⁇ HAZ of the heat affected zone (HAZ) is lowered, and ⁇ HAZ / ⁇ WM is insufficient.
  • Fitting No. No. 35 (Comparative Example) has a low Mn content in steel and a low CeEBB, so the strength of the steel (base material) is low, the CTOD value ( ⁇ WM ) of the weld metal (WM) decreases, and ⁇ BM / ⁇ WM And ⁇ HAZ / ⁇ WM are increased.
  • Fitting No. 34 (comparative example), Si amount is large, the heat affected zone embrittlement phase is generated (HAZ), HAZ of CTOD value [delta] HAZ was low, ⁇ HAZ / ⁇ WM is insufficient.
  • Fitting No. In 36 (Comparative Example), the amount of Mn in the steel material is large and CeEBB is high, so the CTOD value ⁇ HAZ of the heat affected zone (HAZ) is low, and ⁇ HAZ / ⁇ WM is insufficient.
  • Fitting No. 41 (Comparative Example) has a large amount of Ti, and the joint No. 42 (comparative example) has a large amount of Al. 43 (comparative example) has a large amount of N. Therefore, due to oxides and nitrides, the CTOD value ⁇ HAZ of the heat affected zone (HAZ) decreases, and ⁇ HAZ / ⁇ WM is insufficient.
  • Fitting No. No. 44 (Comparative Example) has a small amount of O in the steel, and the joint No. In 45 (Comparative Example), since the amount of O in the steel material is large, the CTOD value ⁇ HAZ of the heat-affected zone (HAZ) is lowered, and ⁇ HAZ / ⁇ WM is insufficient.
  • Fitting No. 46 to 50 are examples in which the amounts of Mg and Ca are inappropriate, the CTOD value ⁇ HAZ of the heat affected zone (HAZ) is low, and ⁇ HAZ / ⁇ WM is insufficient.
  • Fitting No. in 51 (Comparative Example), the CeEBB of the steel material is low, and the strength of the steel material (base material) is reduced.
  • Fitting No. In 52 (Comparative Example), CeEBB of the steel material is high, so the CTOD value ⁇ HAZ of the heat affected zone (HAZ) is lowered, and ⁇ HAZ / ⁇ WM is insufficient.
  • Fitting No. 53 (Comparative Example) has a high C / CeEBB of the steel material, so the CTOD value ⁇ HAZ of the heat affected zone (HAZ) is low, and ⁇ HAZ / ⁇ WM is insufficient.
  • Fitting No. No. 54 has a small amount of Ni added to the weld metal (WM), and the joint no. 56 (Comparative Example) has a low CeEBW of the weld metal (WM), low CTOD value [delta] WM of WM, ⁇ BM / ⁇ WM is larger.
  • Fitting No. 55 (Comparative Example) has a large amount of Ni added to the weld metal (WM).
  • 57 (Comparative Example), since high CeEBW of the weld metal (WM), the heat-affected zone (HAZ) CTOD value [delta] HAZ was low in, ⁇ HAZ / ⁇ WM is insufficient.
  • the fracture toughness is less deteriorated than the fracture toughness of the steel (base material).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

質量%でC:0.02%~0.10%、Si:0.03%~0.30%、Mn:1.5%~2.5%、Ti:0.005%~0.015%、N:0.0020%~0.0060%、O:0.0010%~0.0035%、Mg:0.0003%~0.0027%、Ca:0.0003%~0.0027%、を少なくとも含有し、Al:0.015%以下、P:0.015%以下、S:0.010%以下に各々制限し、残部鉄及び不可避的不純物からなり、0.0006%≦Mg+Ca≦0.0040%を満足し、指標値CeEBBが0.42%~0.65%であって、前記鋼材の板厚方向に沿った断面の板厚中心部において、円相当径が1.0μm以上の酸化物の数が20個/mm以下であり、前記板厚中心部において、Mgを7%以上含有する円相当径が0.05μm以上0.5μm未満の酸化物の数が1×10~1×10個/mmである電子ビーム溶接用鋼材。

Description

電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
 本発明は、開先面に板状又は箔状のインサートメタルが挟まれた被溶接部に、電子ビームが照射され、溶接される電子ビーム溶接用鋼材とその製造方法、さらに、この鋼材の開先面にインサートメタルが挟まれた被溶接部に電子ビームを照射して形成された電子ビーム溶接継手に関するものである。
 本願は、2010年11月22日に、日本に出願された特願2010-260582号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球環境の温暖化の一因であるCOガスの削減や、石油等の化石燃料の将来的な枯渇に対処するため、再生可能な自然エネルギーの利用が積極的に試みられている。風力発電も、有望視されている再生可能エネルギーの一つであり、大規模な風力発電プラントが建設されつつある。
 風力発電に最も適している地域は、絶えず強風を期待できる地域である。そのため、洋上風力発電が、世界的な規模で計画され、実現されている(特許文献1~4、参照)。
 洋上に風力発電用鉄塔を建設するためには、海底の地盤に、鉄塔の基礎部分を打ち込む必要がある。海水面から、風力発電用のタービンの翼高を十分に確保するためには、基礎部分も十分な長さを持つことが必要である。
 そのため、鉄塔の基礎部分の構造は、板厚が50mm超、例えば、100mm程度、直径が4m程度の大断面を有する鋼管構造となる。この鉄塔の高さは80m以上に達する。そして、近年、風力発電用鉄塔のような巨大な鋼構造物を、建設現場近くの海岸にて、電子ビーム溶接で、簡易に、しかも、高能率で組み立てることが求められている。
 即ち、板厚100mmにも及ぶ極厚鋼板を、建設現場で、しかも、高能率で溶接するという、従来にない技術的要請がなされている。
 一般に、電子ビーム溶接、レーザービーム溶接などの高エネルギー密度ビーム溶接は、効率的な溶接である。しかし、レーザービームで溶接できる板厚には限度がある。また、従来の電子ビーム溶接は高真空状態に維持して真空チャンバー内で行う必要があった。そのため、従来、高エネルギー密度ビーム溶接で溶接することができる鋼板の板厚や大きさは、溶接装置の能力や真空チャンバー内の大きさによって制限されていた。
 これに対し、近年、被溶接部の近傍を減圧し、板厚100mm程度の極厚鋼板を、効率よく、建設の現地で溶接することができる電子ビーム溶接方法が提案されている。例えば、英国の溶接研究所では、低真空下で施工が可能な溶接方法(RPEBW:Reduced Pressured Electron Beam Welding:減圧電子ビーム溶接)が開発されている(特許文献5、参照)。
 この減圧電子ビーム溶接(RPEBW)を用いれば、風力発電塔用鉄塔のような大型構造物を建設する場合にも、溶接する部分を、局所的に真空状態におき、効率的に溶接することができる。RPEBW法では、真空チャンバー内で溶接する方法に比べ、真空度が低い状態で溶接する溶接方法であるが、従来のアーク溶接に比べ、溶接金属(WM)の靭性の向上が期待できる。
 一般に、溶接構造物の安全性を定量的に評価する指標として、破壊力学に基づく破壊靭性値δcが知られている。δcは、CTOD(Crack Tip Opening Displacement:亀裂端開口変位)試験で求められる。破壊靭性には試験片のサイズが影響するので、従来のVノッチシャルピー衝撃試験のような小型試験で良好な結果が得られても、大型鋼構造物の溶接継手に対するCTOD試験で、0℃で0.5mm以上の良好な破壊靭性値δcが得られるとは限らない。
 また、電子ビーム溶接法は、電子ビームの持つエネルギーにより、溶接部の母材を一旦溶融し、凝固させて溶接する方法であり、通常、電子ビーム溶接法による溶接部の成分組成は母材(鋼材)とほぼ同等である。一方、エレクトロガス溶接等の大入熱アーク溶接法では、溶接ワイヤー等により、溶接金属の硬さや、破壊靭性値δcなどの機械特性を調整する。通常の電子ビーム溶接法では溶接ワイヤーは利用されない。
 そこで、電子ビーム溶接継手の破壊靭性値δcを向上させるために、溶接金属(WM)の硬さや清浄度を適正化する方法が提案されている(例えば、特許文献6、7参照)。特許文献6には、溶接金属の硬さを、鋼材(母材)の硬さの110%超220%以下とし、かつ、溶接金属の幅を鋼材(母材)の板厚の20%以下とすることが提案されている。また、特許文献7には、溶接金属中のOの量が20ppm以上とし、粒径2.0μm以上の酸化物の量を10個/mm以下とすることが提案されている。
日本国特開2008-111406号公報 日本国特開2007-092406号公報 日本国特開2007-322400号公報 日本国特開2006-037397号公報 国際公開99/16101号パンフレット 日本国特開2007-21532号公報 日本国特開2008-88504号公報
 洋上風力発電用鉄塔の建設においては、鋼材を突き合わせて溶接した後、溶接部に熱処理を施すことなく、そのまま使用するので、溶接金属(WM)及び溶接熱影響部(HAZ:Heat-Affected Zone。以下、単に「熱影響部」という。)には、優れた靭性が要求される。電子ビーム溶接の場合、溶接ワイヤーを使用しないので、母材の成分組成を調整して、溶接金属及び熱影響部の靭性を制御することになる。
 従来、溶接金属における介在物、溶接金属の硬さと母材の硬さの関係、又は、溶接金属の幅を制御する方法が提案されているが、熱影響部の靭性が不十分であると、溶接部の全体としての破壊靭性は低下する。
 なお、板状又は箔状のNi(インサートメタル)を溶接面(開先面)に張付けて電子ビーム溶接を行い、溶接金属(WM)の靭性を、母材の靭性以上に高めることができる。しかし、この場合も母材の成分組成が適正でないと、溶接金属の硬さと熱影響部の硬さの差が顕著となる。すると硬さの差が非常に大きくなった部分である熱影響部の破壊靭性値δcが大きく低下することになる。
 また、本発明者らの検討によれば、電子ビーム溶接継手においては、インサートメタルを用いない場合であっても、靱性向上のために適切な成分組成が、溶接金属と熱影響部とで、必ずしも一致しない。そのため、従来のアーク溶接用高HAZ靭性鋼に、そのまま、電子ビーム溶接を施しても、溶接金属で、高い靱性は得られない。一方、電子ビーム溶接により形成される溶接金属の靱性を考慮して、アーク溶接用鋼材の成分組成を最適化しても、熱影響部で高靱性は得られない。
 即ち、電子ビーム溶接とアーク溶接とは、溶接手法及び形成される継手構造の点で基本的に異なるから、電子ビーム溶接に係る課題は、アーク溶接に係る課題解決手法で解決することはできない。
 本発明は、このような実情に鑑みなされたものであり、本発明の目的は、洋上風力発電用鉄塔の基礎部分を構成する板厚45mm以上の鋼材であって、開先面に板状又は箔状のインサートメタルが挟まれた被溶接部に電子ビームを照射し、高強度で、かつ、溶接金属(WM)、熱影響部(HAZ)、母材(BM:Base Metal)の破壊靱性値が適度にバランスした溶接継手を形成することができる電子ビーム溶接用鋼材とその製造方法である。本発明の別の目的は、この鋼材の開先面に板状又は箔状のインサートメタルが挟まれた被溶接部に電子ビームを照射して形成された電子ビーム溶接継手を提供することである。
 本発明は、開先面に板状又は箔状のインサートメタルが挟まれた被溶接部に電子ビームを照射し、溶接される電子ビーム溶接用鋼材において、Mnを1.5%質量以上添加して、焼入れ性を確保する。更に、この鋼材に強力な脱酸元素であるMg及び/又はCaを同時に添加して、Mgを含む微細な酸化物を生成させ、粒成長を抑制するピンニング粒子や、粒内変態の生成核として利用する。これによって、鋼材(BM)、熱影響部(HAZ)、及び、溶接金属(WM)の破壊靭性値を適度にバランスさせる。
 特に、溶接ワイヤーを使用せず、WM幅及びHAZ幅が狭く、入熱量が低い電子ビーム溶接においては、溶接金属(WM)及び熱影響部(HAZ)に、Mgを含む微細な酸化物を分散させることが、熱影響部(HAZ)におけるオーステナイト粒の粗大化を抑制するとともに、粒内フェライトの生成に顕著に寄与し、溶接部における破壊靱性の向上に貢献する。
 そして、本発明においては、新たに導入した電子ビーム溶接焼入れ性指標式CeEBB、CeEBWを制御して、鋼材(BM)、溶接金属(WM)、及び、熱影響部(HAZ)の破壊靱性を、適度にバランスさせ、インサートメタルを使用して形成された電子ビーム溶接継手全体として、所要の破壊靱性を確保する。さらに、本発明においては、焼入れ性を高めるために、Mn量を増大し、一方で、Cr、Mo、Cu、Ni、及び/又は、Nbの各量を低減し、電子ビーム溶接用鋼材の製造コストを低減する。
 電子ビーム溶接焼入れ性指標CeEBB、CeEBWは、インサートメタルを用いて形成する電子ビーム溶接継手の破壊靭性の向上のため、本発明者らが、新規に導入した指標である。指標CeEBB、CeEBWの技術的意義については、併せて導入した指標(比)“C/CeEBB”(C:C含有量)の技術的意義と併せて後述する。
 本発明の要旨は以下のとおりである。
(1)本発明の一態様にかかる電子ビーム溶接継手は、鋼材が電子ビームで溶接され、溶接金属が形成された電子ビーム溶接継手であって、前記鋼材の組成が、質量%で、C:0.02%~0.10%、Si:0.03%~0.30%、Mn:1.5%~2.5%、Ti:0.005%~0.015%、N:0.0020%~0.0060%、O:0.0010%~0.0035%、Mg:0.0003%~0.0027%、Ca:0.0003%~0.0027%、Nb:0%~0.020%、V:0%~0.030%、Cr:0%~0.50%、Mo:0%~0.50%、Cu:0%~0.25%、Ni:0%~0.50%、及び、B:0%~0.0030%を含有し、Al:0.015%以下に制限し、P:0.015%以下に制限し、S:0.010%以下に制限し、残部が鉄及び不可避的不純物からなり、前記鋼材の組成中のMg及びCaの質量%で表した含有量が、0.0006%≦Mg+Ca≦0.0040%を満足し、前記鋼材の組成を下記の式1に代入して求められる指標値CeEBBが0.42%~0.65%であって、前記鋼材の板厚方向に沿った断面の板厚中心部において、円相当径が1.0μm以上の酸化物の数が20個/mm以下であり、前記板厚中心部において、Mgを7%以上含有する円相当径が0.05μm以上0.5μm未満の酸化物の数が1×10~1×10個/mmであり、前記溶接金属の組成が、質量%で、C:0.02%~0.10%、Si:0.03%~0.30%、Mn:1.2%~2.4%、Ni:1.0~2.3%、Ti:0.005%~0.015%、N:0.0020%~0.0060%、O:0.0004%~0.0020%、Mg:0.0003%~0.0027%、Ca:0.0003%~0.0027%、Nb:0%~0.020%、V:0%~0.030%、Cr:0%~0.50%、Mo:0%~0.50%、Cu:0%~0.25%、及び、B:0%~0.0030%を含有し、Al:0.015%以下に制限し、P:0.015%以下に制限し、S:0.010%以下に制限し、前記溶接金属の組成中のMg及びCaの質量%で表した含有量が、0.0006%≦Mg+Ca≦0.0040%を満足し、前記溶接金属の組成を下記の式2に代入して求められる指標値CeEBWが0.56%~0.73%である、ことを特徴とする電子ビーム溶接継手。
 CeEBB=C+1/4Mn+1/15Cu+1/15Ni+1/5Cr+1/5Mo+1/5V ・・・(式1)
 ここで、C、Mn、Cu、Ni、Cr、Mo、及び、Vは、それぞれ、前記鋼材の組成中の各元素の質量%であり、
 CeEBW=C+1/4Mn+1/15Cu+1/15Ni+1/5Cr+1/5Mo+1/5V ・・・(式2)
 ここで、C、Mn、Cu、Ni、Cr、Mo、及び、Vは、それぞれ、前記溶接金属の組成中の各元素の質量%である。
(2)上記(1)の電子ビーム溶接継手において、前記指標値CeEBBに対する質量%で表した前記鋼材のC量の比であるC/CeEBBが0.02~0.15であってもよい。
(3)上記(1)又は(2)の電子ビーム溶接継手において、前記鋼材の厚さが45~150mmであってもよい。
(4)上記(1)又は(2)の電子ビーム溶接継手において、前記溶接金属のCTOD値をδWM、溶接熱影響部のCTOD値をδHAZ、鋼材のCTOD値をδBMと定義すると、0.8≦δBM/δWM≦1.25、及び、0.3≦δHAZ/δWM≦1.1を満足することを特徴とする請求項1又は2に記載の電子ビーム溶接継手。
(5)本発明の別の一態様にかかる電子ビーム溶接用の鋼材は、前記鋼材の成分が、質量%で、C:0.02%~0.10%、Si:0.03%~0.30%、Mn:1.5%~2.5%、Ti:0.005%~0.015%、N:0.0020%~0.0060%、O:0.0010%~0.0035%、Mg:0.0003%~0.0027%、Ca:0.0003%~0.0027%、Nb:0%~0.020%、V:0%~0.030%、Cr:0%~0.50%、Mo:0%~0.50%、Cu:0%~0.25%、Ni:0%~0.50%、及び、B:0%~0.0030%を含有し、Al:0.015%以下に制限し、P:0.015%以下に制限し、S:0.010%以下に制限し、残部が鉄及び不可避的不純物からなり、前記鋼材の組成中のMg及びCaの質量%で表した含有量が、0.0006%≦Mg+Ca≦0.0040%を満足し、前記鋼材の組成を下記の式1に代入して求められる指標値CeEBBが0.42%~0.65%であって、前記鋼材の板厚方向に沿った断面の板厚中心部において、円相当径が1.0μm以上の酸化物の数が20個/mm以下であり、前記板厚中心部において、Mgを7%以上含有する円相当径が0.05μm以上0.5μm未満の酸化物の数が1×10~1×10個/mmであることを特徴とする電子ビーム溶接用鋼材。
  CeEBB=C+1/4Mn+1/15Cu+1/15Ni+1/5Cr+1/5Mo+1/5V ・・・(式1)
 ここで、C、Mn、Cu、Ni、Cr、Mo、及び、Vは、それぞれ、前記鋼材の組成中の各元素の質量%である。
(6)上記(5)の電子ビーム溶接用の鋼材において、前記指標値CeEBBに対する質量%で表した前記鋼材のC量の比であるC/CeEBBが、0.02~0.15であってもよい。
(7)上記(5)又は(6)の電子ビーム溶接用の鋼材において、前記鋼材の厚さが45~150mmであってもよい。
(8)本発明の別の一態様にかかる製造方法は、上記(5)又は(6)の電子ビーム溶接用の鋼材の製造方法であって、前記鋼材を鋳造する際、前記鋼材を、1300~1100℃の温度域での冷却速度が9℃/min以上となるように冷却する工程と、前記鋳造工程の後、前記鋼材を950~1150℃に加熱し、その後、加工熱処理を施す工程と、を有する。
 電子ビーム溶接継手において、所定のCTOD値(破壊靭性値)を確保するためには、鋼材(BM)、溶接金属(WM)、及び、熱影響部(HAZ)の破壊靱性値を、適度にバランスさせることが重要である。
 即ち、鋼材(母材)と破壊靱性と熱影響部の破壊靱性が優れていても、溶接金属の破壊靱性が劣っていると、溶接金属が破壊の起点となる。また、溶接金属の破壊靱性が優れていても、熱影響部の破壊靭性が劣っていると、熱影響部を起点として破壊が進行する。このように、溶接継手の各部で破壊靭性にばらつきがあると、溶接継手全体としての破壊靱性は劣化する。
 電子ビーム溶接を適用した降伏強度355MPa級の鋼材の溶接部(溶接金属及び熱影響部)での脆性破壊は、旧オーステナイト粒の周辺に生成する粗大な粒界フェライトや、旧オーステナイト粒の内部にラス状に生成する上部ベイナイトやフェライトサイドプレート等が破壊の起点になって発錆する。
 そして、上部ベイナイトや旧オーステナイト粒界から生成した粗大なフェライトが起点となって脆性破壊するときの破面単位は、旧オーステナイトの粒径に依存する。したがって、析出物によるピンニング効果や粒内変態を利用して、溶接金属及び熱影響部における旧オーステナイトの粒径を小さくすることにより、溶接部の破壊靭性を改善することができる。
 そこで、本発明においては、極めて強力な脱酸元素であるMg及びCaを同時に鋼に添加して、鋼材(母材)だけでなく、Niを含むインサートメタルを介在させて電子ビーム溶接された溶接部の溶接金属及び熱影響部の旧オーステナイト粒内に、適切な粒径のMgを含む微細な酸化物を、適量分散させる。入熱量が低い電子ビーム溶接では、熱影響部(HAZ)に、Mgを含む微細な酸化物が残存して、粒成長を抑制するピンニング粒子として機能するので、熱影響部における粒成長が抑制されて、破壊靭性が向上する。
 また、微細なMg含有酸化物は、粒内変態の生成核となり、熱影響部に、粒内フェライトを生成させる。その結果、特に熱影響部の組織が微細になり、鋼材(母材)、熱影響部、及び、溶接金属の破壊靭性が向上するとともに、これら3つの破壊靱性のバランスが向上する。
 本発明によれば、降伏強度355MPa級の鋼材の溶接部に、Niを含むインサートメタルを介在させて電子ビーム溶接して形成された電子ビーム溶接継手において、溶接金属及び熱影響部における破壊靭性の劣化を抑制することができる。また、鋼材(母材)、熱影響部、及び、溶接金属の破壊靭性が適度にバランスした電子ビーム溶接継手を提供し、かつ、この溶接継手を形成し得る鋼材を低コストで提供することができる。
鋼材の強度及び靭性と金属組織との関係を定性的に示す図である。 焼入れ性と溶接金属の結晶粒径との関係を定性的に示す図である。 焼入れ性と熱影響部の高炭素マルテンサイト量との関係を定性的に示す図である。 鋼材(母材)の硬さに対する溶接金属の硬さの比と、溶接金属及び熱影響部の破壊靭性と、の関係を定性的に示す図である。 CeEBBと溶接金属及び熱影響部の破壊靭性値(δc)の関係を定性的に示す図である。 熱影響部の破壊靭性値とC/CeEBBとの関係を定性的に示す図である。 ノッチを導入した試験片を示す図である。 溶接継手のCTOD試験結果と、鋼材に含まれる酸化物の個数との関係を示す図である。 鋳片の冷却速度と、鋼材に含まれる微小なMg含有酸化物粒子の数との相関を示す図である。 鋳片の冷却速度と、鋼材に含まれる粗大な酸化物粒子の数との相関を示す図である。 鋼材中の全酸素量と、鋼材に含まれる微小なMg含有酸化物粒子の数との相関を示す図である。
 洋上風力発電用鉄塔の建設においては、鋼材を、溶接した後、継手部に熱処理を施すことなく、そのまま使用する。このため、溶接金属及び熱影響部には、優れた靭性が要求される。本発明においては、溶接金属の靭性を鋼材(母材)と同等にまで高めるため、溶接部に、Niを含むインサートメタルを介在させて電子ビーム溶接を行う。
 従来、電子ビーム溶接は、CrやMoを多量に含有する鋼(いわゆるCr-Mo鋼)やステンレス鋼、または高Ni鋼など、溶接金属の酸化物の生成が必要とされない鋼材に適用されてきた。ステンレス鋼の熱影響部には脆化相が生成しない。また、Cr-Mo高強度鋼の場合、熱影響部の組織は、図1に定性的に示したように靭性に優れる下部ベイナイトとなり、非常に高い靭性が得られる。
 本発明の実施形態にかかる電子ビーム溶接継手に用いる鋼材の板厚や強度は、特に限定されないが、例えば、洋上風力発電用鉄塔などに使用される、板厚が45~150mm、YP(降伏点)が約315MPa~550MPa、TS(引張強さ)が約450MPa~690MPaの構造用鋼を好適に使用できる。必要に応じて、板厚上限を120mm又は130mmとしてもよい。YP下限を340MPa又は355MPaに、YP上限を500MPa、460MPa又は420MPaとしてもよい。TS下限を470MPa又は490MPaに、TS上限を600MPa、570MPa又は550MPaとしてもよい。
 この種の鋼材は、YPが約355MPaの構造用鋼であり、Cr-Mo高強度鋼に比べて強度が低く、熱影響部の組織は、図1に定性的に示したように靭性が低い上部ベイナイトになる。このような鋼材を電子ビーム溶接すると、特に、熱影響部では、粒界フェライトや上部ベイナイトなどの粗大な組織が発達し、高炭素マルテンサイト(島状マルテンサイト又はM-A constituentともいう)が生成しやすい。したがって、構造用鋼を電子ビーム溶接する場合、熱影響部の靭性の確保は容易ではない。
 組織と靭性との関係については、結晶粒径の微細化が特に溶接金属の靭性の向上に有効であること、高炭素マルテンサイトが特に熱影響部の靭性を低下させることが知られている。また、成分と組織との関係については、焼入れ性指標Ceqを大きくすると、図2Aに示すように溶接金属の粒径が微細になること、図2Bに示すように熱影響部の高炭素マルテンサイトが増加することが知られている。
 また、溶接金属及び熱影響部の靭性を高めるには、溶接金属の硬さと鋼材(母材)の硬さのバランスが重要である。すなわち、図3に示したように、鋼材(母材)の硬さに対して、溶接金属の硬さを高めると、溶接金属の靭性は向上する。しかし、溶接金属の硬化の影響によって熱影響部に変形が集中するため、熱影響部の靭性は低下する。したがって、靭性の劣る上部ベイナイトの生成を防止するために焼入れ性を高めると、溶接金属の硬化が起こり、この影響によって、熱影響部の靭性が損なわれるという問題が生じる。
 このように、鋼の焼入れ性とWMの結晶粒径やHAZの高炭素マルテンサイトとの関係、鋼材(母材)の硬さに対するWMの硬さの比と溶接継手の靭性との関係は、定性的には公知であった。しかし、従来、鋼材の成分によって溶接継手の破壊靭性のバランスを制御するという考え方は存在しなかった。そのため、例えば、焼入れ性を高めた鋼材(母材)を電子ビーム溶接すると、WMの靭性は向上するものの、HAZの靭性が著しく低下するなどの問題が生じた。
 そこで、本発明者らは、インサートを介在させて形成された電子ビーム溶接において、優れた靭性を確保するため、電子ビーム溶接に適した焼入れ性を表示する指標を検討し、新たに“電子ビーム溶接焼入れ性指標CeEBB、CeEBW”を考案し導入した。即ち、下記(式1)で定義する“鋼材の電子ビーム焼入れ性指標CeEBB”及び、下記(式2)で定義する“溶接金属の電子ビーム焼入れ性指標CeEBW”は、電子ビーム溶接継手の破壊靭性をより高めるために、組織の形成に大きく影響する焼入れ性に着目し、所要の組織の生成を確実に確保することを考慮した新たな指標である。
  CeEBB=C+1/4Mn+1/15Cu+1/15Ni+1/5Cr+1/5Mo+1/5V ・・・(式1)
 ここで、C、Mn、Cu、Ni、Cr、Mo、及び、Vは、それぞれ、電子ビーム溶接継手の母材、つまり、電子ビーム溶接継手に用いる鋼材における各成分の含有量(質量%)である。CeEBB値の単位は質量%である。
  CeEBW=C+1/4Mn+1/15Cu+1/15Ni+1/5Cr+1/5Mo+1/5V ・・・(式2)
 ここで、C、Mn、Cu、Ni、Cr、Mo、及び、Vは、それぞれ、電子ビーム溶接継手の溶接金属における各成分の含有量(質量%)である。CeEBW値の単位は質量%である。
 なお、これらの成分のうちいずれかが鋼材に添加されていない場合、その元素の含有量に0を代入して(式1)および(式2)を用いればよい。
 例えば、Cu、Ni、Cr、Mo、及び、Vがいずれも含有されない鋼材の場合、CeEBBは上記式(式1)に替えて下記の式(式1´)を、CeEBWは上記式(式2)に替えて下記の式(式2´)を、用いればよい。
  CeEBB=C+1/4Mn・・・(式1´)
  CeEBW=C+1/4Mn・・・(式2´)
 ただし、Cu、Ni、Cr、Mo、及び、Vが不可避的不純物として含有している場合には、(式1)および(式2)によりCeEBBおよびCeEBWを計算することが好ましい。
 上記(式1)で定義するCeEBBは、硬さと相関する公知の炭素当量Ceq(=C+1/6Mn+1/15Cu+1/15Ni+1/5Cr+1/5Mo+1/5V)を基に、Mnが、電子ビーム溶接の際に蒸発して減少し、焼入れ性が低下することを考慮して作成された指標である。なお、インサートメタルを介在させて形成する電子ビーム溶接継手において、経験的に得られた、Mnの減少に起因する焼入れ性の低下の度合いに基づいて、Mnの係数を1/4とした。この係数の値は公知のCeqにおけるMnの係数1/6より大きい。
 指標値CeEBBは、(1)鋼材(母材)の成分を調整することによって、Ni含有箔を用いた電子ビーム溶接後の溶接金属における焼入れ性を所要の範囲で確保し、(2)この溶接金属において、微細なフェライトの生成を促進し、かつ、(3)熱影響部において、靭性を低下させる上部ベイナイトや高炭素マルテンサイトなどの生成を抑制するための指標である。
 図4に、電子ビーム溶接継手における溶接金属(WM)及び熱影響部(HAZ)の破壊靱性値(δc)とCeEBBとの関係を定性的に示す。実線の曲線は溶接金属の破壊靭性値(δcwm)であり、破線の曲線は熱影響部の破壊靭性値(δcha)である。二点鎖線の曲線は、仮想的にWMの硬さの影響を無視した場合の熱影響部の破壊靭性値(HAZ靭性の予測値)である。このようなHAZ靭性の予測値は、HAZの熱履歴を模擬した熱処理を施した試験片を用いて破壊靭性試験を行った場合などにより測定できる破壊靭性値である。
 WMの破壊靭性値(δcwm)は、インサートメタル(Ni箔など)を使用することにより、鋼材(母材)と同等にまで向上する。指標値CeEBBが大きくなると、HAZでは高炭素マルテンサイトの増加とHAZの硬化によってHAZ靭性の予測値が低下する。また、CeEBBが大きくなるとWMが硬化し、その影響を受けて、δchaはHAZ靭性の予測値よりも低下する。なお、Ni箔などを使用する場合、CeEBBが低くても靭性には問題ないが、強度が低下するため、CeEBBに下限値を定める必要がある。
 このように、指標値CeEBBによって溶接金属及び熱影響部の破壊靭性を総合的に評価することが可能になる。指標値CeEBBを適正範囲に定めれば、熱影響部の破壊靱性値を一点鎖線で示す目標値以上にすることができる。後述するピンニング粒子や粒内変態を活用する場合は、ピンニングや粒内変態の効果に応じてδchaが向上することになる。
 次に、本発明者らは、鋼材(母材)のC量及び指標値CeEBBと、鋼材(母材)、溶接金属、及び、熱影響部の靭性との関係について検討した。その結果、鋼材(母材)のC量とCeEBBとの比“C/CeEBB”の上限を制限することが好ましいことが解った。以下に、比“C/CeEBB”の技術的意義について説明する。
 比“C/CeEBB”は、熱影響部の焼入れ性が極端に偏らないようにするための指標である。本発明では、インサートメタルを使用するので、C/CeEBBの低下による溶接金属の焼入れ性の低下は、Niによって補うことができる。図5に、CeEBBと熱影響部の破壊靭性値との関係を示す。
 CeEBBは焼入れ性の指標であるから、CeEBBが大きくなると、熱影響部では高炭素マルテンサイトの生成が促進されて破壊靭性値が低下する。一方、熱影響部では、C量の増加によって高炭素マルテンサイトの生成が促進される。そのため、図5に示すように、熱影響部の破壊靭性値を確保するには、C/CeEBBを制限することが好ましい。
 本発明者らは、Niを含むインサートメタルを介在させて電子ビーム溶接した溶接継手の溶接金属の適正な成分組成についても検討した。溶接金属には、Niを含むインサートメタルからNiが添加されるので、溶接金属において靭性を確保するうえで、適正なNi量とCeEBWを明確にする必要がある。
 さらに、本発明者らは、溶接金属の破壊靭性値と熱影響部の破壊靱性値のバランスを改善する手法について検討した。その結果、適量のMg及びCaを同時に添加し、ピンニング粒子及び粒内変態の生成核として機能するMgを含む微細な酸化物を生成させると、インサートメタルが挟まれて形成された電子ビーム溶接継手の熱影響部及び溶接金属の靭性が向上することが解った。
 後述の予備実験により酸化物粒子の数と破壊靭性値との関係を調査した結果、以下の知見が得られた。Mgを7%以上含有する酸化物粒子は、その円相当径が0.05μm以上の時に、高い効率でピンニング作用及び粒内変態促進作用を示し、結晶粒の細粒子化に大きく貢献する。一方、粒径の比較的大きい酸化物(Mg含有酸化物を含む全酸化物)の粒子は、脆性破壊の起点ともなる。とりわけ、円相当径が1.0μm以上の酸化物は、破壊の起点となる傾向が特に高いため、その個数を可能な限り制限することが望ましい。その上で、円相当径が0.05μm以上0.5μm未満の、Mgを7%以上含む酸化物粒子を鋼材に適量含有させれば、脆性破壊を発生させること無く、効果的に結晶粒を細粒化できることが判った。
 この予備実験では、鋼材内の酸化物粒子のうち、(1)円相当径が0.05μm以上0.5μm未満で、Mgを7%以上含む酸化物粒子(以下単に「微小なMg含有酸化物」と称することがある)、(2)円相当径が1.0μm以上の全酸化物(以下単に、「粗大な酸化物」と称することがある)、の2クラスについてその数量を測定した。その上で、鋼材内の各クラスの酸化物粒子の数量と、この鋼材を用いた電子ビーム溶接後の継手の靭性値との関係を定量的に検証した。
 予備実験では、小型実験炉を用いて、質量%で、C:0.07%、Si:0.06%、Mn:2.0%、P:0.007%、S:0.002%、Ti:0.009%、Al:0.004%、Mg:0.0009%、Ca:0.0007%、N:0.005%を目標とした鋳片を製造した。鋳片の製造にあたって、各クラスの酸化物の個数を制御するために、以下の2つの工程を制御した。(i)溶湯の真空脱ガス処理の処理時間を変化させることによって鋳片の全酸素量を調整した。(ii)鋳造時に、鋳片を冷却するための冷却水量を調整することによって、1300~1100℃の温度域の鋳片の冷却速度を1~30℃/minの範囲で制御した。この予備実験で製造された各鋳片の成分組成は、上記の成分組成の目標値と、ほぼ一致した。また、製造された各鋳片の全酸素量は11ppm~39ppmであった。得られた鋳片を用いて、後述のACCにより板厚50mmの鋼板を製造した。上記鋼材の酸化物粒子の個数の測定方法は、後述の実施例で用いた方法に準じる。
 さらに、これらの鋼材に対して電子ビーム溶接を施して、溶接金属のNi濃度が2%となるように開先面にNi箔を挟み、I開先の突合せ溶接継手を作製した。この溶接方法の詳細は、後述の実施例に準ずる。これらの溶接継手の融合部(FL)部分にノッチが形成されたCTOD試験片を作成し、試験温度0℃でCTOD試験を実施した。この結果得られたHAZの破壊靭性値、δHAZが0.3mm以上の場合は、そのサンプルを合格とし、これ以外の場合は不合格とした。この予備実験の結果を図7~9に示す。図7~9において、CTOD試験に合格したサンプルは中空のプロットで、不合格のサンプルは塗りつぶされたプロットで示した。また、鋼中の酸素量が0.0035%以下のサンプルは菱型、0.0035%超のサンプルは三角形のプロットで示した。
 図7は、CTOD試験の結果と、上記微小なMg含有酸化物及び上記粗大な酸化物の個数との関係を示す。図7上で、CTOD試験に合格した溶接継手のプロット(中空の菱型)は全て、「本発明の範囲」として示した破線の四角の範囲内にある。つまり、HAZのCTOD値、δHAZが0.3mm以上となる条件は、(1)鋼材の板厚中心部において、円相当径が1.0μm以上の酸化物(上記粗大な酸化物)が20個/mm以下であり、かつ、(2)板厚中心部において、Mgを7%以上含有する円相当径が0.05μm以上0.5μm未満の酸化物(上記微小なMg含有酸化物)が1×10~1×10個/mmである、ことだった。
 次に、鋳片の1300~1100℃の温度域での冷却速度と、上記微小なMg含有酸化物粒子の数量との相関を検討した。図8Aに示すように、冷却速度が上昇すると、板厚中心部における微小なMg含有酸化物の数量が増加する傾向があった。特に真空脱ガス工程によって鋼中の全酸素量を0.0035%以下としたサンプル(菱型のプロット)では、鋳片の冷却速度が9℃/min以上の場合に、冷却速度に依存して酸化物の数量が増加する傾向が明確になった。この結果、上記の全酸素量及び冷却速度の範囲において、上記微小なMg含有酸化物の数量を1×10~1×10個/mmの範囲に制御できた。図8A上で、この冷却速度範囲を「本発明の範囲」として破線と矢印で示す。また、上記の全酸素量及び冷却速度の範囲を満たす全サンプルで、HAZのCTOD値、δHAZは、0.3mm以上だった(菱型の中空のプロット)。
 次に、鋳片の1300℃~1100℃の温度域での冷却速度と、上記粗大な酸化物粒子の数量との相関を検討した。図8Bに示すように、冷却速度が上昇すると、板厚中心部における粗大な酸化物の数量が減少する傾向があった。特に脱気工程によって鋼中の全酸素量を0.0035%以下としたサンプル(菱型のプロット)では、鋳片の冷却速度が9℃/min以上の場合、上記粗大なMg含有酸化物の数量は20個/mm以下の範囲にあった。図8B上で、この冷却速度範囲を「本発明の範囲」として破線と矢印で示す。
 次に、鋼中の全酸素量と、上記微小なMg含有酸化物粒子の数量との相関を検討した。図9に示すように、全酸素量が上昇すると、板厚中心部における上記微小なMg含有酸化物粒子の数量は増加する傾向があった。全酸素量が0.0035%超であると、鋳片の冷却速度を9℃/min以上としても、上記微小なMg含有酸化物の数量を1×10個/mm以下に制御できない場合がある。この場合、過剰な酸化物粒子が脆性破壊の起点となり、CTOD試験値を悪化させていると考えられる。図9上では、全酸素量が0.0035%(35ppm)以下の範囲を「本発明の範囲」として破線と矢印で示す。この酸素量の範囲内では、鋳片の冷却速度を9℃/min以上とした全てのサンプルが、0.3mm以上のδHAZ値を示した(菱型の中空のプロット)。
 上記予備実験の結果を総合して、発明者らは、以下の知見を得た。(1)板厚中心部に存在する粗大な酸化物粒子を少なくし、(2)粒内変態の変態核となる微小なMg含有酸化物の量を適切に制御することによって、電子ビーム溶接継手の熱影響部及び溶接金属の破壊靱性を向上できる。また、介在物粒子のサイズや個数を制御するためには、(3)鋼材中の全酸素濃度を適切な範囲に制御すること、及び(4)鋼材の鋳造時の冷却速度を適切な範囲に制御すること、が効果的であることがわかった。なお、予備実験で得られた鋳片の必要冷却速度9℃/minは、鋼の溶製及び鋳造を行う製鋼工場の取鍋精錬設備や鋳造設備の条件など(例えば、真空脱ガスの真空度、鋳造時の堰の形状など)により、変化するものと考えられる。このため、CTOD試験結果の向上のためには、所定の成分範囲で所定の酸化物粒子の数が得られればよく、必ずしも鋳造時の冷却速度を9℃/min以上に限定する必要はない。
 上記予備実験の結果に鑑み、本発明は、鋼材(母材)のC量、CeEBB、C/CeEBB、及び、酸化物粒子のサイズや個数を適正な範囲内に制御し、適量のMg及び/又はCaを添加する。そして、溶接部にNiを含むインサートメタルが挟まれて電子ビーム溶接される際に、鋼材(母材)の破壊靭性値に対する溶接金属及び熱影響部の破壊靭性値の比が向上し、破壊靱性値δcのばらつきを極力抑制できる。
 本発明の実施形態にかかる鋼材の組成は、質量%で、少なくとも、C:0.02%~0.10%、Si:0.03%~0.30%、Mn:1.5%~2.5%、Ti:0.005%~0.015%、N:0.0020%~0.0060%、O:0.0010%~0.0035%、Mg:0.0003%~0.0027%、Ca:0.0003%~0.0027%を含有する。上記鋼材の組成中のMg及びCaの含有量は、0.0006%≦Mg+Ca≦0.0040%を満足する必要がある。また、上記鋼材の組成に含まれる不可避的不純物のうち、P:0.015%以下、S:0.010%以下、Al:0.015%以下に制限する必要がある。
 また、上記鋼材は、必要に応じて、Nb:0%~0.020%、V:0%~0.030%、Cr:0%~0.50%、Mo:0%~0.50%、Cu:0%~0.25%、Ni:0%~0.50%、及び、B:0%~0.0030%を含有してもよい。
 上記鋼材の組成の残部は鉄及び不可避的不純物からなる。
 上記鋼材の溶接部に、Niを含むインサートメタルが挟まれて電子ビーム溶接された場合、溶接金属においては、Mn及びOが減少し、Niを増加する。この結果、溶接金属は、質量%で、少なくとも、C:0.02%~0.10%、Si:0.03%~0.30%、Mn:1.2%~2.4%、Ni:1.0%~2.3%、Ti:0.005%~0.015%、N:0.0020%~0.0060%、O:0.0004%~0.0020%、Mg:0.0003%~0.0027%、Ca:0.0003%~0.0027%を含有する。上記溶接金属の組成中のMg及びCaの含有量は、0.0006%≦Mg+Ca≦0.0040%を満足する必要がある。また、上記溶接金属の組成に含まれる不可避的不純物のうち、Al:0.015%以下、P:0.015%以下、S:0.010%以下に制限する必要がある。
 また、上記溶接金属は、必要に応じて、Nb:0%~0.020%、V:0%~0.030%、Cr:0%~0.50%、Mo:0%~0.50%、Cu:0%~0.25%、及び、B:0%~0.0030%を含有してもよい。
 上記溶接金属の組成の残部は鉄及び不可避的不純物からなる。
 以下、各元素の添加理由及び添加量について説明する。なお、%は質量%を意味する。
 Cは、強度の向上に寄与する元素である。溶接構造体としての強度を確保するため、0.02%以上添加する。C量の好ましい下限は0.03%であり、より好ましくは0.04%である。一方、C量が0.10%を超えると焼入性が増大し、靭性が低下するので、上限は0.10%以下とする。好ましい上限は0.08%又は0.07%であり、より好ましくは0.06%である。
 Siは、脱酸元素であり、鋼板の強度を確保するためにも有効な元素である。そのため、0.03%以上添加する。しかし、Siを過剰に添加すると、島状マルテンサイトが多量に生成し、特に、溶接金属及び熱影響部の靭性が低下するので、Si量の上限を0.30%とする。Si量の好ましい上限は0.25%又は0.20%であり、より好ましくは、0.15%である。
 Mnは、靭性を確保し、かつ、焼入れ性を高めて鋼板の強度を確保するのに有効な元素である。Mn量が1.5%未満では、鋼材の靭性、強度、及び、焼入れ性を十分に確保できない。また、電子ビーム溶接時、Mnが溶接金属から蒸発して、一部失われる。したがって、鋼材の靭性、強度、及び、焼入れ性、さらに、溶接金属の焼入れ性を確保するため、1.5%以上のMnを添加する。
 Mn量の好ましい下限は1.6%又は1.7%であり、より好ましくは1.8%である。ただし、Mn量が2.5%を超えると、焼入れ性が過大に増大し、特に熱影響部の靭性が低下するので、Mn量の上限を2.5%とする。好ましい上限は2.4%であり、より好ましくは2.3%である。
 Pは、不可避的不純物であり、鋼材(BM)、溶接金属(WM)、及び、熱影響部(HAZ)の靭性に悪影響を及ぼす。特に、熱影響部(HAZ)の靭性を確保するためには、Pは少ないことが好ましく、0.015%以下に制限する。好ましいP量は、0.010%以下又は0.006%以下である。P量の下限を特に限定する必要はなく、その下限は0%である。しかし、製造コストの観点から、0.001%未満の極低P化は不必要であり、P量を0.001%以上としてもよい。
 Sは、不可避的不純物であり、MnSを形成する。MnSは、微細なTiNや、Mgを含む酸化物を核として析出し、Mn希薄領域を形成して、粒内フェライトの生成(粒内変態)を促進する。このためには、Sを0.0001%以上含有させることが好ましい。好ましいS量の下限は0.001%である。必要に応じて、S量の下限を0.002%としてもよい。上記効果が不要な場合、S量の下限を限定せず、下限を0%としてもよい。一方、Sを過剰に含有すると、特に、熱影響部(HAZ)の靭性が低下するので、S量の上限を0.010%以下に制限する。好ましいS量の上限は、0.007%又は0.005%以下である。
 Tiは、NやOと結合して、結晶粒の微細化に寄与する微細な窒化物(TiN)や酸化物を形成する。入熱量が低い電子ビーム溶接継手においては、熱影響部(HAZ)に微細なTiNが残存して、粒内変態の生成核として作用する。
 粒成長の抑制や粒内変態により、特に熱影響部(HAZ)の靭性を向上させるために、Tiを0.005%以上添加する。好ましいTi量の下限は0.007%以上である。一方、Ti量が過剰であると、粗大なTiNが生成し、かえって靭性が劣化するので、Ti量の上限を0.015%とする。好ましいTi量の上限は0.012%である。
 Nは、Tiと結合して微細な窒化物を形成する元素である。Nは、鋼材(母材)の結晶粒の微細化や、ピンニング効果による熱影響部における粒径の粗大化の防止や、粒内変態による粒径の微細化によって、特に熱影響部(HAZ)の靭性を高める。この効果を得るためには、N量の下限を0.0020%とする。好ましいN量の下限は0.0030%である。
 一方、N量が過剰であると、鋼材(母材)及び熱影響部の靭性に悪影響を及ぼすので、N量の上限を0.0060%とする。N量の好ましい上限は0.0050%である。
 Oは、Mgを含む微細な酸化物を生成する。この添加効果を得るため、Oを0.0010%以上添加する。なお、本発明の実施形態に従って一般的な条件で電子ビーム溶接を行うと、その過程において、溶接金属では、鋼材のO量の内、約半分程度が失われる場合が多い。このため、鋼材(母材)のO量の下限は0.0015%以上が好ましい。より好ましくは0.0020%以上である。
 しかし、Oが過剰であると、酸化物が粗大になり、破壊の起点となって、鋼材(母材)や熱影響部の靭性に悪影響を及ぼす。このため、鋼材(母材)のO量の上限を0.0035%とする。組成や製造工程等の条件で鋼材に過剰な酸化物が生成しやすい場合、O量の上限を0.0032%、0.0029%、または0.0025%としてもよい。
 Mgは、本発明において極めて重要な元素である。Mgは、微細な酸化物を形成し、粒内変態の促進に寄与する。Mg酸化物をピンニング粒子として利用するために、Mgを0.0003%以上添加する。粒内変態を促進するには、Mg量が0.0005%、又は0.0007%以上であることが好ましい。
 一方、0.0027%を超えてMgを添加すると、粗大な酸化物が生成し易くなり、鋼材(母材)及び熱影響部の靭性が低下するので、上限を0.0027%とする。より好ましいMg量の上限は0.0025%、0.0023%、又は0.0021%である。
 Caは、強力な脱酸元素であり、Mg酸化物の粗大化を抑制して、微細なMgの酸化物を確保するため、0.0003%以上を添加する。また、Caは、CaSを生成し、圧延方向に伸長したMnSの生成の抑制にも有用である。鋼材の板厚方向の特性、特に、耐ラメラティアー性を改善するためには、0.0005%、又は0.0007%以上のCa添加が好ましい。
 一方、Caが0.0027%を超えると、粗大な酸化物が生成し易くなり、鋼材(母材)及び熱影響部の靱性が低下する。したがって、Caの上限を0.0027%とする。より好ましいCa量の上限は0.0025%、又は0.0023%である。
 本発明では、Mg及びCaを同時に添加する。これは、Caの添加によって脱酸を強化し、Mg酸化物の粗大化を抑制するためである。即ち、CaはMgよりも優先的に酸化物を形成するので、Mg酸化物の粗大化が抑制されて、Mg含有微細酸化物の生成が促進される。
 微細なMg酸化物は、ピンニング粒子及び粒内変態核として作用し、TiNの生成核にもなる。旧オーステナイト粒内のフェライトの核生成を補強し、旧オーステナイト粒内組織の微細化を図り、粗大オーステナイトの生成を抑制するため、MgとCaを、合計で0.0006%以上添加する。MgとCaの合計量の下限は、0.0010%又は0.0015%としてもよい。
 一方、MgとCaの合計量が過剰であると、酸化物が凝集し、粗大化して、鋼材(母材)及び熱影響部の靭性に悪影響を及ぼすので、合計量の上限は0.0040%とする。MgとCaの合計量の上限は0.0030%が好ましく、さらに好ましくは0.0025%である。
 本発明の実施形態にかかる鋼材は、さらに、Al、Nb、及び/又は、Vを、以下の理由で、一定限度内で含有してもよい。
 Alは必要に応じて添加する選択元素であり、添加量は0%でも良い。添加した場合、脱酸、及び、ミクロ組織の微細化により、鋼材(母材)の靭性を向上させる効果がある。この添加効果を得るためには、0.001%以上のAl添加が好ましい。より好ましいAl量は0.003%以上、または0.005%以上である。
 ただし、Al酸化物は、フェライト変態核生成能力が小さく、粒内変態にほとんど寄与しないので、Alを添加する場合も、不可避的不純物として混入する場合も、Al量の上限は0.015%以下に制限する。Al酸化物が粗大になると、破壊の起点になるので、好ましい上限は0.012%である。より好ましくは0.010%以下である。
 Nbは、焼入れ性を向上させて、鋼板の強度を高めるのに有効である。このため、必要に応じて、Nbを0.001%以上添加してもよい。好ましくはNbを0.003%以上添加する。ただし、Nbを過剰に添加すると、特に熱影響部(HAZ)の靭性が低下するので、Nb量の上限を0.020%とする。好ましいNb量の上限は0.012%であり、より好ましくは0.010%である。Nbの添加は必須でなく、添加量が0%でもよい。
 Vの添加は必須でなく、V量は0%でもよいが、必要に応じて少量の添加をした場合、焼入れ性及び焼戻し軟化抵抗を高める効果を有する。この添加効果を得るためには、Vを0.005%以上を添加する。好ましくはVを0.010%以上を添加する。ただし、Vを過剰に添加すると、特に熱影響部(HAZ)の靭性が低下するので、V量の上限を0.030%とする。好ましいV量の上限は0.025%である。より安定した焼入れ性を求める場合、V量を0.020%未満、または0.018%以下に制限しても良い。
 本発明の実施形態にかかる鋼材は、必要に応じ、さらに、Cr、Mo、Cu、及び、Niの1種又は2種以上を含有してもよい。これらの元素は、靭性の向上に有効な元素であり、添加の効果を得るためには、Cr、Mo、Cu、及び/又は、Niを、0.05%以上添加する。これらの各元素の添加は必須でなく、添加量が0%でもよい。
 また、Cr、Mo、Cu、及び、Niは、高価であるので、経済的観点から、Cr:0.50%以下、Mo:0.50%以下、Cu:0.25%以下、Ni:0.50%以下とする。特に、Mn量を高めた本発明の実施形態にかかる鋼材では、これらの元素を過剰に添加すると、焼入れ性が高くなりすぎて、靭性のバランスを損なうことがある。したがって、好ましくは、Cr、Mo、Cu、及び/又は、Niの合計量を0.70%以下とし、さらに好ましくは、この合計量を0.50%以下とする。
 本発明の実施形態にかかる鋼材は、必要に応じ、さらに、Bを含有しても良い。Bの添加は必須でなく、B量が0%でもよいが、Bを少量添加すると焼入性が大きく向上する。このため、冷却速度を確保するのが困難な場合など必要に応じて、0.0030%を上限にBを添加してもよい。焼入性向上効果を得るためには、Bを0.0002%以上添加する。
 本発明の実施形態にかかる鋼材においては、電子ビーム溶接した場合、溶接金属のMn量及びO量が、鋼材(母材)のMn量及びO量よりも少なくなる。これは、電子ビーム溶接を真空中で行う際に、溶接金属では、Mnの一部が蒸発するとともに、酸化物が溶接金属から浮上して排出されるからである。したがって、溶接金属のMn量及びO量を、それぞれ、質量%で、Mn:1.2%~2.4%、及び、O:0.0004%~0.0020%とする。溶接金属のMn量の下限は1.4%又は1.6%でもよく、上限は2.0%又は1.8%でもよい。
 なお、本発明の実施形態に従って一般的な条件で電子ビーム溶接を行うと、その過程において、溶接金属では、鋼材のO量の内、約半分程度が失われる場合が多い。例えば、鋼材のO量が0.0035%以下のとき、溶接後の継手において、溶接金属中のO量は約0.0020%以下となる場合が多い。溶接金属のO量を、20ppm未満、19ppm以下、18ppm以下又は17ppm以下としてもよい。溶接金属のO量の下限を必ずしも設ける必要はないが、4ppm以上、8ppm以上、10ppm以上、12ppm以上、又は14ppm以上としても、差し支えない。
 本発明の実施形態にかかる鋼材において、電子ビーム溶接継手を形成する際、溶接金属の靭性を高めるため、被溶接部(開先突合せ部)の開先面に、Niを含むインサートメタルを挟み、溶接金属にNiを添加する。溶接金属の靭性を顕著に高め、好ましくは溶接金属の破壊靭性値を鋼材(母材)の0.8倍以上にするには、溶接金属のNiを1.0%以上にすることが必要である。溶接金属のNi量の下限は、1.3%又は1.6%でもよい。
 一方、Ni量が過剰になると、溶接金属の硬度が上昇し、熱影響部の破壊靭性に悪影響を及ぼす。特に、熱影響部の靭性を確保するために、Ni量の上限を2.3%以下とする。なお、溶接金属のNiが過剰であると、高炭素マルテンサイトが生成しやすくなり、溶接金属の硬度が上昇し、破壊靭性が低下することがある。溶接金属のNi量の上限は、2.2%又は2.0%でもよい。
 ピンニング効果によって溶接金属の靭性を高めるために添加するMgとCaの量が少ない場合、溶接金属のNi量を増加することが好ましい。インサートメタルとしては、Ni合金、又は純Niを使用することができる。純Niを使用すれば簡便である。
 本発明の実施形態にかかる電子ビーム溶接用鋼材においては、鋼材(母材)の組成を下記(式1)に代入して、電子ビーム溶接焼入れ性指標値であるCeEBBを求め、この指標値CeEBBを0.42%~0.65%とする。なお、%は質量%を意味する。
  CeEBB=C+1/4Mn+1/15Cu+1/15Ni+1/5Cr+1/5Mo+1/5V ・・・(式1)
 ここで、C、Mn、Cu、Ni、Cr、Mo、及び、Vは、それぞれ、鋼材成分の含有量(質量%)である。CeEBB値の単位は質量%である。
 電子ビーム溶接焼入れ性指標CeEBBを求めるための(式1)は、被溶接部の開先面にNiを含むインサートメタルを挟むことにより形成された電子ビーム溶接継手の溶接金属において、Ni量を1.0%~2.3%とすることを考慮して作成されている。
 鋼材の電子ビーム溶接焼入れ性指標値CeEBBの下限は、鋼材(母材)の強度を確保するため、0.42%とする。CeEBBは、好ましくは0.45%以上、より好ましくは0.48%以上としてもよい。一方、CeEBBが0.65%を超えると、熱影響部の破壊靭性が不十分になるので、上限を0.65%とする。好ましい上限は0.60%、より好ましくは0.58%としてもよい。
 本発明の実施形態にかかる鋼材の、板厚方向に沿った断面の板厚中心部において、円相当径が1.0μm以上の全酸化物粒子(粗大な酸化物粒子)の数は20個/mm以下とする。また、同じく板厚中心部において、Mgを7%以上含有する円相当径が0.05μm以上0.5μm未満の酸化物粒子(微小なMg含有粒子)の数は1×10~1×10個/mmとする。上記粗大な酸化物粒子の数が20個/mm超であると、この酸化物粒子が破壊の起点となって、熱影響部および溶接金属の破壊靭性が不十分になる。上記微小なMg含有粒子の数が1×10未満であると、Mg含有粒子によるピンニング作用が不十分となって、熱影響部および溶接金属の靭性に悪影響を及ぼす。上記微小なMg含有粒子の数が1×10超であると、過剰なMg含有粒子が破壊の起点となる傾向が高まり、熱影響部および溶接金属の破壊靭性が不十分になる。
 なお、上記粗大な酸化物粒子数の測定方法としては、例えば、鋼材の板厚方向の中央部の断面試料を用いて、FE-SEM(Field Emission Scanning Electron Microscope)による測定を行う。
 また、上記微小なMg含有酸化物数の測定方法としては、例えば、鋼材の板厚方向の中央部の断面試料を用いてFE-TEM(Field Emission Transmission Electron Microscope)による測定を行う。さらに、抽出レプリカ膜を作成してTEMで観察し、EDX法(Energy Dispersive X-ray Spectrometry)で測定されるMgの重量比が7%以上である粒子について、Mgを7%以上含有する酸化物粒子であると判定する。
 電子ビーム溶接焼入れ性指標CeEBBに対するC量の比(C/CeEBB)は、溶接金属の焼入れ性と、熱影響部と鋼材(母材)の焼入れ性のバランスを表する指標である。C/CeEBBは、0.15以下の値を取ることが好ましい。C量が、Mn、Cu、Ni、Cr、Mo、及び/又は、Vの量に対して過剰になり、C/CeEBBが0.15を超えると、熱影響部の破壊靭性が低下することがある。より好ましいC/CeEBBの上限は0.13であり、さらに好ましくは0.11である。
 一方、Niを含むインサートメタルが溶接部の開先面に挟まれて電子ビーム溶接された場合、鋼材(母材)のC/CeEBBの低下による溶接金属の焼入れ性の低下は、Niで補うことができる。したがって、C/CeEBBの下限は規定しないが、C量が下限の値をとり、Mn、Cu、Ni、Cr、Mo、及び、Vの量が上限の値をとる場合が、実質的にC/CeEBBの下限となり、本発明では0.02である。
 なお、C量を増加し、Cu、Ni、Cr、Mo、及び/又は、Vの量を低減すると、合金コストを削減することができるので、C/CeEBBの下限は、より好ましくは0.04以上、さらに好ましくは0.06以上とする。
 さらに、本発明の実施形態にかかる、溶接部の開先面にNiを含むインサートメタルが挟まれて形成された電子ビーム溶接継手においては、溶接金属の組成を下記(式2)に代入して、溶接金属の電子ビーム溶接焼入れ性指標値であるCeEBWを求め、この指標値CeEBWを0.56%~0.73%とする。なお、%は質量%を意味する。
  CeEBW=C+1/4Mn+1/15Cu+1/15Ni+1/5Cr+1/5Mo+1/5V ・・・(式2)
 ここで、C、Mn、Cu、Ni、Cr、Mo、及び、Vは、それぞれ、溶接金属における成分の含有量(質量%)である。CeEBW値の単位は質量%である。
 溶接金属のCeEBWは、溶接金属の焼入れ性を確保するために、0.56%以上とする。溶接金属のCeEBWの下限は、より好ましくは0.60%とする。一方、溶接金属のCeEBWが0.73%を超えると、溶接金属が硬化して、溶接継手の破壊靭性が不十分になる。溶接金属のCeEBWの上限は、より好ましくは0.70%である。
 本発明の実施形態にかかる鋼材を用いて、電子ビーム溶接で形成された溶接継手において、溶接金属のCTOD値:δWM、熱影響部のCTOD値:δHAZ、及び、鋼材(母材)のCTOD値δBMが、下記(式3)と(式4)を満足することが好ましい。
  0.8≦δBM/δWM≦1.25 ・・・(式3)
  0.3≦δHAZ/δWM≦1.1 ・・・(式4)
 ただし、δWM、δHAZ、及び、δBMは、0℃で三点曲げCTOD試験を6回行ったときのCTOD値の最低値である。CTOD値が1.0mm以上となった場合は延性破壊したものとみなし、CTOD値を1.0mmとして上記計算を行う。
 δBM/δWMが0.8未満、及び/又は、δHAZ/δWMが0.3未満であると、δBM、δWM、及び、δHAZのバランスが極端に悪くなり、溶接部の破壊靱性が大きく低下する。このため、δBM/δWMの下限は0.8とし、δHAZ/δWMの下限は0.3とする。δBM/δWMの上限は、δWMがδBMの0.8倍以上であることが好ましいので、1.25以下とする。
 δWMはδBMとほぼ同等であることがより好ましく、δBM/δWMの好ましい上限は1.1である。同様に、δHAZはδWMとほぼ同等であることが好ましく、δHAZ/δWMの上限を1.1以下とする。
 本発明のように、微細なMg含有酸化物を利用する鋼を電子ビーム溶接する場合は、HAZの破壊靭性を鋼材(母材)と同等にまで高めることは難しい。したがって、特に、鋼材(母材)及びWMの破壊靭性を高める必要がある場合、δHAZ/δWMの好ましい上限は0.6であり、より好ましくは0.5である。
 即ち、本発明の実施形態にかかる鋼材によれば、電子ビーム溶接後の溶接継手における溶接金属及び熱影響部の破壊靭性の、鋼材(母材)の破壊靱性と比較しての劣化が少なく、各部の破壊靭性が適度にバランスした溶接継手を得ることができる。
 電子ビーム溶接は、簡易な設備で達成できる低真空度、例えば、10Pa以下の減圧下で行うことができる。真空度の下限は、設備の能力にもよるが、10-2Paが好ましい。溶接条件は、加速電圧130~180V、ビーム電流100~130mA、溶接速度100~250mm/分の範囲内で、装置の性能や鋼材の厚さに応じて決定する。例えば、厚さ80mmの場合、加速電圧175V、ビーム電流120mA、溶接速度125mm/分程度が推奨される。
 電子ビーム溶接を行う際、被溶接部の開先面の間にNiを含むインサートメタルを挟む。Niを含むインサートメタルとしては、Ni基合金箔、Ni-Fe合金箔、純Ni箔を使用することができる。
 Ni箔を使用すると、鋼材のNi量と目標とする溶接金属中のNi量、及び、鋼材の寸法と溶接金属の幅から、目標のNi量とするのに必要な、インサートメタルの厚さを簡便に計算することができる。純Ni箔は、必要な厚さの箔を準備してもよいが、薄い箔を必要な厚さになるように、複数枚重ねてもよい。
 例えば、Ni量が0%の鋼材(母材)を用いて、Ni量が2%の溶接金属となる溶接継手としたい場合、先ずは予備実験などで電子ビーム溶接後の溶接金属の幅を調査する。その結果、溶接金属の幅が4.0mmと判明した場合、厚さ0.08mmのNi箔を挟んで電子ビーム溶接を行うと、Ni量が約2%の溶接金属の電子ビーム溶接継手が得られる。
 次に、本発明の実施形態にかかる鋼材の製造方法について説明する。本発明の実施形態にかかる方法では、スラブ(鋼片)などの鋼材を鋳造する鋳造工程において、例えば9℃/min以上の速度で冷却することによって、上記粗大な酸化物の数量を20個/mm以下に制限することができる。同時に、上記微小なMg含有酸化物を1×10以上確保することが出来る。
 鋼材(鋼片)の製造方法は、工業的には、連続鋳造法が好ましい。連続鋳造法によれば、鋳造後の冷却速度を高めて、生成する酸化物とTi窒化物を微細化することができる。このため、靭性向上の点から、連続鋳造法が好ましい。
 連続鋳造において、鋳片の冷却速度を9℃/min以上に高める具体的な手段としては、連続鋳造機内の冷却帯の高圧化および高水量化、鋳型厚みの減厚化、鋳片未凝固層の圧下によるスラブ厚減少等が挙げられる。これらの手段を用いた場合、鋳片の冷却速度の上限は、一般的には30℃/min程度となる。
 一般に、高Mn鋼は、炭素鋼や低合金鋼に比較して熱間加工性が劣るので、適正な条件で、加工熱処理を施す必要がある。本発明にかかる方法では、鋳造された前記成分組成の鋼材(鋼片)を、950~1150℃に加熱する。加熱温度が950℃未満であると、熱間圧延時の変形抵抗が大きくなり、生産性が低下する。一方、1150℃を超えて加熱すると、鋼材(鋼片)のTi窒化物が粗大化して、鋼材(母材)や熱影響部の靱性が低下することがある。
 鋼材(鋼片)を950~1150℃に加熱した後、必要な鋼材の強度や靭性を得るために、加工熱処理(TMCP:Thermo-Mechanical Controlled Processing)を施す。加工熱処理は、鋼材の強度及び靱性を高めるために有効で、例えば、(1)制御圧延(CR:Controlled Rolling)、(2)制御圧延-加速冷却(ACC:Accelerated Cooling)、(3)圧延後直接焼入れ-焼戻し処理(DQT:Direct Quenching and Tempering)等の方法がある。本発明では、破壊靭性の向上の点で、(2)制御圧延-加速冷却法、及び、(3)圧延後直接焼入れ-焼戻し処理が好ましい。
 未再結晶温度域(約900℃以下)で行う制御圧延は、鋼材の組織を微細化し、強度及び靭性の向上に有効である。本発明では、加工フェライトの生成を防止するため、制御圧延をAr変態点以上の温度で終了することが好ましい。
 特に、制御圧延を行う場合、引き続き、加速冷却を行うと、ベイナイトやマルテンサイトなどの硬質相が生成して、強度が向上する。強度及び靭性を確保するためには、加速冷却の停止温度は400~600℃が好ましい。圧延後の直接焼入れは、制御圧延の温度域より高温の温度域で熱間圧延を行った後、水冷等によって焼入れる方法である。この方法によれば、通常、強度が上昇するので、焼戻しを行って靭性を確保する。焼戻し温度は400~650℃が好ましい。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 (実施例)
 表1及び表2に示す成分組成の鋼材を用いて、表3及び表4に示す条件により、鋼材を製造した。鋼材から試験片を採取し、引張試験及びCTOD試験を行い、鋼材(母材)の引張強度及び破壊靭性値を測定した。鋼材(母材)の強度は、板厚1/2部から圧延方向を長手方向として試験片を採取し、JIS Z 2241に基づいて測定した。なお、降伏応力が355~420MPaであるものを良好と評価した。
 鋼材に電子ビーム溶接を施し、I開先の突合せ溶接継手を作製した。電子ビーム溶接は、RPEBW法を採用し、純Ni箔をインサートメタルとして使用し、1mbar程度の真空下で、電圧175V、電流120mA、溶接速度125mm/分程度の条件で行った。溶接ビード幅は3.0~5.5mmである。溶接金属から試料を採取し、成分組成を分析した。結果を表5及び表6に示す。
 また、溶接継手から、(a)板厚60mm未満の場合は、t(板厚)×2tの寸法の試験片、(b)板厚60mm以上の場合は、t(板厚)×tの寸法の試験片を、各6本採取した。試験片に、ノッチとして、50%疲労亀裂を、溶接金属(WM)の中央、融合部(FL)、及び、鋼材(母材、BM)の各位置に導入した。ノッチを導入した試験片を図6に示す。
 試験温度0℃で、CTOD試験を実施し、破壊靭性値δcを求めた。各ノッチ位置で、6本の最低値を、それぞれ、破壊靭性値δWM、δHAZ、δBMとした。なお、電子ビーム溶接継手では、熱影響部の幅が狭いので、融合部にノッチを導入した試験片を用いて熱影響部のCTOD値δHAZを測定した。CTOD値が1.0mm以上となった場合は延性破壊したものとみなし、CTOD値を1.0mmとして上記計算を行った。
 表7及び表8に、溶接継手の溶接金属(WM)のCTOD値δWM、熱影響部(HAZ)のCTOD値δHAZ、鋼材(母材、BM)のCTOD値δBMに基づくδBM/δWM、及び、δHAZ/δWMを示した。
 鋼材の酸化物粒子の個数は、以下の方法で測定した。板厚方向の中央部の断面試料を各鋼材から作製し、円相当径が1.0μm以上の酸化物粒子(粗大な全酸化物粒子)については、FE-SEM(Field Emission Scanning Electron Microscope)を用いて観察し、その粒子サイズと個数を測定した。円相当径が0.05μm以上0.5μm未満のMg含有酸化物粒子(微小なMg含有酸化物粒子)については、同じく板厚方向の中央から試料を採取し、SPEED法(Selective Potentiostatic Etching by Electrolyic Dissolution)で電解研磨した試料から、抽出レプリカ膜を作成して10000~1000000倍のFE-TEM(Field Emission Transmission Electron Microscope)で観察した。EDX法(Energy Dispersive X-ray Spectrometry)により、特性X線から求められたMgの重量比が7%以上の介在物粒子をTi含有介在物粒子と判定した。これらの結果から、Ti含有介在物粒子のサイズと個数を測定した。各試料の板厚中心部において20視野以上の観察を行い、単位面積あたりの介在物粒子(上記微小なMg含有酸化物粒子及び上記粗大な介在物粒子)の個数の平均値を計算した。
Figure JPOXMLDOC01-appb-T000001
 
 空欄は、合金元素を意図的には添加しないことを意味する。
Figure JPOXMLDOC01-appb-T000002
 
 下線は、本発明の範囲外又は好ましい範囲外であることを意味する。空欄は、合金元素を意図的には添加しないことを意味する。
 以下の表3、表4、7、8において、加工熱処理欄の凡例は、以下の通りである。
  CR:制御圧延(強度・靭性に最適な温度での圧延)
  ACC:加速冷却(制御圧延後に400~600℃の温度域まで水冷)
  DQT:圧延直後に焼入れ-焼き戻し処理
 靭性値(CTOD値)が1.0mm以上となった場合は、鋼材が延性破壊したものとみなし、靭性値を1.0mmとして計算を行った。
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 下線は、比較例にかかる鋼材、または数値が好ましい範囲外であることを意味する。
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
 下線は、比較例にかかる鋼材、本発明の範囲外、又は好ましい範囲外であることを意味する。空欄は、該当する合金元素を意図的には添加しないことを意味する。
Figure JPOXMLDOC01-appb-T000007
 
 下線は、本発明の範囲外又は好ましい範囲外であることを意味する。
Figure JPOXMLDOC01-appb-T000008
 
 下線は、比較例にかかる鋼材、または好ましい範囲外であることを意味する。
 表1、表5、及び、表7に示すように、発明例の継手No.1~31は、鋼材(母材)及び溶接金属の成分組成、CeEBB、及び、C/CeEBBが、いずれも、本発明の範囲内にあるものであり、鋼材(BM)、熱影響部(HAZ)、溶接金属(WM)の破壊靭性値δcの比、δBM/δWM、及び、δHAZ/δWMが十分な値を示している。
 これに対し、表2、表6、及び、表8に示すように、比較例の継手No.32は、C量が少なく、Mn量が多いため、CeEBBが高くなり、熱影響部(HAZ)のCTOD値δHAZが低下し、δHAZ/δWMが不十分である。
 継手No.33(比較例)は、C量が多いため、熱影響部(HAZ)のCTOD値δHAZが低下し、δHAZ/δWMが不十分である。
 継手No.35(比較例)は、鋼材のMn量が少なく、CeEBBが低いため、鋼材(母材)の強度が低く、溶接金属(WM)のCTOD値(δWM)が低下し、δBM/δWM及びδHAZ/δWMが大きくなっている。
 継手No.34(比較例)は、Si量が多く、熱影響部(HAZ)に脆化相が生成し、HAZのCTOD値δHAZが低く、δHAZ/δWMが不十分である。継手No.36(比較例)は、鋼材のMn量が多く、CeEBBが高いため、熱影響部(HAZ)のCTOD値δHAZが低くなり、δHAZ/δWMが不十分である。
 継手No.37及び38(比較例)は、それぞれ、P量、S量が多いため、熱影響部(HAZ)のCTOD値δHAZが低く、δHAZ/δWMが不十分である。継手No.39及び40(比較例)は、それぞれ、Nb量、V量が多いため、熱影響部(HAZ)のCTOD値δHAZが低く、δHAZ/δWMが不十分である。
 継手No.41(比較例)は、Ti量が多く、継手No.42(比較例)は、Al量が多く、継手No.43(比較例)は、N量が多い。そのため、酸化物や窒化物に起因して、熱影響部(HAZ)のCTOD値δHAZが低下し、δHAZ/δWMが不十分である。
 継手No.44(比較例)は、鋼材のO量が少なく、継手No.45(比較例)は、鋼材のO量が多いため、熱影響部(HAZ)のCTOD値δHAZが低下し、δHAZ/δWMが不十分である。継手No.46~50(比較例)は、Mg量、Ca量が不適切な例であり、熱影響部(HAZ)のCTOD値δHAZが低く、δHAZ/δWMが不十分である。
 継手No.51(比較例)は、鋼材のCeEBBが低く、鋼材(母材)の強度が低下している。継手No.52(比較例)は、鋼材のCeEBBが高いため、熱影響部(HAZ)のCTOD値δHAZが低下し、δHAZ/δWMが不十分である。継手No.53(比較例)は、鋼材のC/CeEBBが高いため、熱影響部(HAZ)のCTOD値δHAZが低く、δHAZ/δWMが不十分である。
 継手No.54(比較例)は、溶接金属(WM)に添加するNi量が少なく、継手No.56(比較例)は、溶接金属(WM)のCeEBWが低いため、WMのCTOD値δWMが低く、δBM/δWMが大きくなっている。
 継手No.55(比較例)は、溶接金属(WM)に添加するNi量が多く、継手No.57(比較例)は、溶接金属(WM)のCeEBWが高いため、熱影響部(HAZ)のCTOD値δHAZが低く、δHAZ/δWMが不十分である。
 本発明によれば、降伏強度355MPa級の鋼材の電子ビーム溶接継手の溶接金属及び熱影響部において、鋼材(母材)の破壊靱性に比較して、破壊靭性の劣化が少ない。このため、各部の破壊靭性が適度にバランスした電子ビーム溶接継手と、この溶接継手を形成でき、洋上風力発電用鉄塔の基礎部分の建設に適した鋼材を安価に提供することができる。よって、本件発明は、大型鋼構造物建設産業において利用可能性が高いものである。

Claims (8)

  1.  鋼材が電子ビームで溶接され、溶接金属が形成された電子ビーム溶接継手であって、前記鋼材の組成が、質量%で、
     C:0.02%~0.10%、
     Si:0.03%~0.30%、
     Mn:1.5%~2.5%、
     Ti:0.005%~0.015%、
     N:0.0020%~0.0060%、
     O:0.0010%~0.0035%、
     Mg:0.0003%~0.0027%、
     Ca:0.0003%~0.0027%、
     Nb:0%~0.020%、
     V:0%~0.030%、
     Cr:0%~0.50%、
     Mo:0%~0.50%、
     Cu:0%~0.25%、
     Ni:0%~0.50%、及び、
     B:0%~0.0030%を含有し、
     Al:0.015%以下に制限し、
     P:0.015%以下に制限し、
     S:0.010%以下に制限し、
     残部が鉄及び不可避的不純物からなり、
     前記鋼材の組成中のMg及びCaの質量%で表した含有量が、0.0006%≦Mg+Ca≦0.0040%を満足し、
     前記鋼材の組成を下記の式1に代入して求められる指標値CeEBBが0.42%~0.65%であって、
     前記鋼材の板厚方向に沿った断面の板厚中心部において、円相当径が1.0μm以上の酸化物の数が20個/mm以下であり、
     前記板厚中心部において、Mgを7%以上含有する円相当径が0.05μm以上0.5μm未満の酸化物の数が1×10~1×10個/mmであり、
     前記溶接金属の組成が、質量%で、
     C:0.02%~0.10%、
     Si:0.03%~0.30%、
     Mn:1.2%~2.4%、
     Ni:1.0~2.3%、
     Ti:0.005%~0.015%、
     N:0.0020%~0.0060%、
     O:0.0004%~0.0020%、
     Mg:0.0003%~0.0027%、
     Ca:0.0003%~0.0027%、
     Nb:0%~0.020%、
     V:0%~0.030%、
     Cr:0%~0.50%、
     Mo:0%~0.50%、
     Cu:0%~0.25%、及び、
     B:0%~0.0030%を含有し、
     Al:0.015%以下に制限し、
     P:0.015%以下に制限し、
     S:0.010%以下に制限し、
     前記溶接金属の組成中のMg及びCaの質量%で表した含有量が、0.0006%≦Mg+Ca≦0.0040%を満足し、
     前記溶接金属の組成を下記の式2に代入して求められる指標値CeEBWが0.56%~0.73%である、
     ことを特徴とする電子ビーム溶接継手。
      CeEBB=C+1/4Mn+1/15Cu+1/15Ni+1/5Cr+1/5Mo+1/5V ・・・(式1)
     ここで、C、Mn、Cu、Ni、Cr、Mo、及び、Vは、それぞれ、前記鋼材の組成中の各元素の質量%であり、
     CeEBW=C+1/4Mn+1/15Cu+1/15Ni+1/5Cr+1/5Mo+1/5V ・・・(式2)
     ここで、C、Mn、Cu、Ni、Cr、Mo、及び、Vは、それぞれ、前記溶接金属の組成中の各元素の質量%である。
  2.  前記指標値CeEBBに対する質量%で表した前記鋼材のC量の比であるC/CeEBBが0.02~0.15であることを特徴とする請求項1に記載の電子ビーム溶接継手。
  3.  前記鋼材の厚さが45~150mmであることを特徴とする請求項1又は2に記載の電子ビーム溶接継手。
  4.  前記溶接金属のCTOD値をδWM、溶接熱影響部のCTOD値をδHAZ、鋼材のCTOD値をδBMと定義すると、
      0.8≦δBM/δWM≦1.25、及び、
      0.3≦δHAZ/δWM≦1.1
     を満足することを特徴とする請求項1又は2に記載の電子ビーム溶接継手。
  5.  電子ビーム溶接用の鋼材であって、前記鋼材の成分が、質量%で、
     C:0.02%~0.10%、
     Si:0.03%~0.30%、
     Mn:1.5%~2.5%、
     Ti:0.005%~0.015%、
     N:0.0020%~0.0060%、
     O:0.0010%~0.0035%、
     Mg:0.0003%~0.0027%、
     Ca:0.0003%~0.0027%、
     Nb:0%~0.020%、
     V:0%~0.030%、
     Cr:0%~0.50%、
     Mo:0%~0.50%、
     Cu:0%~0.25%、
     Ni:0%~0.50%、及び、
     B:0%~0.0030%を含有し、
     Al:0.015%以下に制限し、
     P:0.015%以下に制限し、
     S:0.010%以下に制限し、
     残部が鉄及び不可避的不純物からなり、
     前記鋼材の組成中のMg及びCaの質量%で表した含有量が、0.0006%≦Mg+Ca≦0.0040%を満足し、
     前記鋼材の組成を下記の式1に代入して求められる指標値CeEBBが0.42%~0.65%であって、
     前記鋼材の板厚方向に沿った断面の板厚中心部において、円相当径が1.0μm以上の酸化物の数が20個/mm以下であり、
     前記板厚中心部において、Mgを7%以上含有する円相当径が0.05μm以上0.5μm未満の酸化物の数が1×10~1×10個/mmである
     ことを特徴とする電子ビーム溶接用鋼材。
      CeEBB=C+1/4Mn+1/15Cu+1/15Ni+1/5Cr+1/5Mo+1/5V ・・・(式1)
     ここで、C、Mn、Cu、Ni、Cr、Mo、及び、Vは、それぞれ、前記鋼材の組成中の各元素の質量%である。
  6.  前記指標値CeEBBに対する質量%で表した前記鋼材のC量の比であるC/CeEBBが、0.02~0.15であることを特徴とする請求項5に記載の電子ビーム溶接用鋼材。
  7.  前記鋼材の厚さが45~150mmであることを特徴とする請求項5又は6に記載の電子ビーム溶接用鋼材。
  8.  請求項5又は6に記載の電子ビーム溶接用鋼材の製造方法であって、
     前記鋼材を鋳造する際、前記鋼材を、1300~1100℃の温度域での冷却速度が9℃/min以上となるように冷却する工程と、
     前記鋳造工程の後、前記鋼材を950~1150℃に加熱し、その後、加工熱処理を施す工程と、
     を有することを特徴とする電子ビーム溶接用鋼材の製造方法。
PCT/JP2011/074818 2010-11-22 2011-10-27 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法 WO2012070359A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012512120A JP5015360B2 (ja) 2010-11-22 2011-10-27 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
CN201180040331.2A CN103069039B (zh) 2010-11-22 2011-10-27 电子束焊接接头及电子束焊接用钢材及其制造方法
EP11842484.5A EP2594657B1 (en) 2010-11-22 2011-10-27 Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
KR1020137004138A KR101346961B1 (ko) 2010-11-22 2011-10-27 전자 빔 용접 조인트 및 전자 빔 용접용 강재와 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010260582A JP2011246808A (ja) 2010-04-30 2010-11-22 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
JP2010-260582 2010-11-22

Publications (1)

Publication Number Publication Date
WO2012070359A1 true WO2012070359A1 (ja) 2012-05-31

Family

ID=46147139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074818 WO2012070359A1 (ja) 2010-11-22 2011-10-27 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法

Country Status (5)

Country Link
EP (1) EP2594657B1 (ja)
JP (1) JP5015360B2 (ja)
KR (1) KR101346961B1 (ja)
CN (1) CN103069039B (ja)
WO (1) WO2012070359A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2581696C1 (ru) * 2015-01-19 2016-04-20 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства горячекатаных листов из низколегированной стали
RU2653954C2 (ru) * 2016-02-02 2018-05-15 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства толстолистового проката для изготовления электросварных газонефтепроводных труб большого диаметра категории прочности х42-х56, стойких против индуцированного водородом растрескивания в h2s -содержащих средах
RU2637544C1 (ru) * 2017-02-28 2017-12-05 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства толстолистового штрипса из низколегированной стали
RU2724217C1 (ru) * 2020-02-04 2020-06-22 Антон Владимирович Шмаков Способ производства стального проката

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347918A (ja) * 1989-04-08 1991-02-28 Kobe Steel Ltd 含b鋼の製造方法
JPH0860293A (ja) * 1994-08-24 1996-03-05 Sumitomo Metal Ind Ltd 高張力鋼
JPH0941083A (ja) * 1995-07-28 1997-02-10 Nkk Corp 耐hic及び耐sscc特性に優れた電縫管及びその製造方法
WO1999016101A2 (en) 1997-09-24 1999-04-01 The Welding Institute Charged particle beam emitting assembly
JP2004011008A (ja) * 2002-06-11 2004-01-15 Nippon Steel Corp 溶接部靭性の優れた鋼材及び構造物
JP2004162150A (ja) * 2002-11-15 2004-06-10 Nippon Steel Corp 溶接熱影響部の靭性に優れた鋼材および鋼溶接部材
JP2006037397A (ja) 2004-07-23 2006-02-09 Kinsho Bussan Kk 洋上風力発電施設の施工方法
JP2007021532A (ja) 2005-07-15 2007-02-01 Nippon Steel Corp 耐脆性破壊発生特性に優れた電子ビーム溶接継手
JP2007092406A (ja) 2005-09-29 2007-04-12 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd 水上構造物の基礎構造
JP2007322400A (ja) 2006-06-05 2007-12-13 Nsk Ltd カプセル破壊量測定方法
JP2008088504A (ja) 2006-10-02 2008-04-17 Nippon Steel Corp 耐脆性破壊発生特性に優れた電子ビーム溶接継手
JP2008111406A (ja) 2006-10-31 2008-05-15 Shimizu Corp 洋上風力発電施設およびその施工方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2653594B2 (ja) * 1991-12-18 1997-09-17 新日本製鐵株式会社 溶接熱影響部靭性の優れた厚鋼板の製造方法
JP3507339B2 (ja) * 1998-04-15 2004-03-15 新日本製鐵株式会社 溶接熱影響部の靱性に優れた鋼板
JP3699639B2 (ja) * 1999-07-22 2005-09-28 新日本製鐵株式会社 溶接熱影響部の靭性に優れた鋼材およびその製造方法
EP1221493B1 (en) * 2000-05-09 2005-01-12 Nippon Steel Corporation THICK STEEL PLATE BEING EXCELLENT IN CTOD CHARACTERISTIC IN WELDING HEAT AFFECTED ZONE AND HAVING YIELD STRENGTH OF 460 Mpa OR MORE
JP4116810B2 (ja) * 2002-04-09 2008-07-09 新日本製鐵株式会社 高エネルギー密度溶接用耐サワー鋼材及び鋼構造物
JP3745722B2 (ja) * 2002-10-02 2006-02-15 新日本製鐵株式会社 変形能及び溶接部靭性に優れた高強度鋼管及び高強度鋼板の製造法
JP3863849B2 (ja) * 2003-01-09 2006-12-27 新日本製鐵株式会社 溶接金属靭性に優れる大入熱エレクトロスラグ溶接用裏当
JP4276576B2 (ja) * 2004-04-20 2009-06-10 新日本製鐵株式会社 大入熱溶接熱影響部靭性に優れた厚手高強度鋼板
JP4660315B2 (ja) * 2005-08-09 2011-03-30 新日本製鐵株式会社 靭性に優れた厚手高強度鋼板の製造方法及び靭性に優れた厚手高強度鋼板
JP5085364B2 (ja) * 2007-02-09 2012-11-28 新日本製鐵株式会社 脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板
JP5110989B2 (ja) * 2007-07-12 2012-12-26 株式会社神戸製鋼所 脆性亀裂伝播停止特性に優れた大入熱溶接用厚鋼板
JP4949210B2 (ja) * 2007-11-27 2012-06-06 新日本製鐵株式会社 溶接熱影響部の靭性が優れた鋼およびその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347918A (ja) * 1989-04-08 1991-02-28 Kobe Steel Ltd 含b鋼の製造方法
JPH0860293A (ja) * 1994-08-24 1996-03-05 Sumitomo Metal Ind Ltd 高張力鋼
JPH0941083A (ja) * 1995-07-28 1997-02-10 Nkk Corp 耐hic及び耐sscc特性に優れた電縫管及びその製造方法
WO1999016101A2 (en) 1997-09-24 1999-04-01 The Welding Institute Charged particle beam emitting assembly
JP2004011008A (ja) * 2002-06-11 2004-01-15 Nippon Steel Corp 溶接部靭性の優れた鋼材及び構造物
JP2004162150A (ja) * 2002-11-15 2004-06-10 Nippon Steel Corp 溶接熱影響部の靭性に優れた鋼材および鋼溶接部材
JP2006037397A (ja) 2004-07-23 2006-02-09 Kinsho Bussan Kk 洋上風力発電施設の施工方法
JP2007021532A (ja) 2005-07-15 2007-02-01 Nippon Steel Corp 耐脆性破壊発生特性に優れた電子ビーム溶接継手
JP2007092406A (ja) 2005-09-29 2007-04-12 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd 水上構造物の基礎構造
JP2007322400A (ja) 2006-06-05 2007-12-13 Nsk Ltd カプセル破壊量測定方法
JP2008088504A (ja) 2006-10-02 2008-04-17 Nippon Steel Corp 耐脆性破壊発生特性に優れた電子ビーム溶接継手
JP2008111406A (ja) 2006-10-31 2008-05-15 Shimizu Corp 洋上風力発電施設およびその施工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2594657A4

Also Published As

Publication number Publication date
CN103069039B (zh) 2014-08-20
CN103069039A (zh) 2013-04-24
JPWO2012070359A1 (ja) 2014-05-19
EP2594657B1 (en) 2016-11-30
EP2594657A1 (en) 2013-05-22
EP2594657A4 (en) 2014-04-23
JP5015360B2 (ja) 2012-08-29
KR20130027574A (ko) 2013-03-15
KR101346961B1 (ko) 2014-01-02

Similar Documents

Publication Publication Date Title
US10500817B2 (en) Electron-beam welded joint, steel for electron-beam welding, and method of manufacturing the same
US8623154B2 (en) Electron-beam welded joint, steel for electron-beam welding, and manufacturing method
JP5015360B2 (ja) 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
JP2011246806A (ja) 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
JP5273299B2 (ja) 電子ビーム溶接継手及び電子ビーム溶接用鋼材
JP5177325B2 (ja) 電子ビーム溶接継手及び電子ビーム溶接継手用鋼板とその製造方法
JP5135559B2 (ja) 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
JP5135560B2 (ja) 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
JP5273301B2 (ja) 電子ビーム溶接継手及び電子ビーム溶接用鋼材
JP2011246808A (ja) 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
JP2011246807A (ja) 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
JP2011246803A (ja) 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040331.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012512120

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842484

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011842484

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011842484

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137004138

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE