WO2012070337A1 - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
WO2012070337A1
WO2012070337A1 PCT/JP2011/073971 JP2011073971W WO2012070337A1 WO 2012070337 A1 WO2012070337 A1 WO 2012070337A1 JP 2011073971 W JP2011073971 W JP 2011073971W WO 2012070337 A1 WO2012070337 A1 WO 2012070337A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
small
measured
measuring device
large current
Prior art date
Application number
PCT/JP2011/073971
Other languages
English (en)
French (fr)
Inventor
蛇口 広行
Original Assignee
アルプス・グリーンデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス・グリーンデバイス株式会社 filed Critical アルプス・グリーンデバイス株式会社
Priority to JP2012545657A priority Critical patent/JP5668224B2/ja
Publication of WO2012070337A1 publication Critical patent/WO2012070337A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates

Definitions

  • the present invention relates to a current sensor for measuring a current for driving a motor, a current supplied from a battery, a current for driving various electric devices, and the like.
  • a current sensor provided with a magnetic detection element such as a Hall element has been used to measure a current for driving a motor in an electric vehicle or a hybrid vehicle.
  • a magnetic detection element such as a Hall element
  • the measurement range is limited with one Hall element, it is difficult to measure a wide range from a small current to a large current with one current sensor. Therefore, in order to widen the measurement range, as disclosed in Patent Document 1, a configuration in which a magnetic detection element for small current and a magnetic detection element for large current are provided and used by switching them has been proposed.
  • the magnetic detection element for small current usually needs to have a high sensitivity, and for example, a GMR element is used.
  • a GMR element is used as a magnetic detection element for small current, once a large current flows through the path to be measured, hysteresis is generated in the GMR element due to a strong magnetic field generated from the large current. In some cases, there is a problem that accurate measurement cannot be performed.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a current sensor that can widen the measurement range and has high measurement accuracy.
  • the present invention includes a small current measuring device and a large current measuring device that measure a current to be measured flowing through a current path, and switches between the small current measuring device and the large current measuring device using a predetermined measured current value as a threshold value.
  • the small current measuring device has a magnetoresistive effect element for small current with a low saturation magnetic flux density due to the measured current and high measurement sensitivity with respect to the measured current
  • the large current measuring device is A high-current sensor element having a high saturation magnetic flux density due to the current to be measured and a low measurement sensitivity with respect to the current to be measured, and measuring a current value measured by the small current meter based on a current measured by the large current meter Correction means was provided for correction. For this reason, even if a magnetoresistive element is used for the measurement for a small current, the offset due to the influence of the hysteresis can be corrected, so that a wide range of current sensors can be provided with high accuracy.
  • the sensor element for large current is a magnetoresistive effect element
  • the sensor element for large current has a distance from the current path between the magnetoresistive effect element for small current and the current path. It can be arranged to be separated from the distance. For this reason, even if the same magnetoresistance effect element is used as the sensor element of the large current measuring device and the small current measuring device, hysteresis can be prevented from occurring in the large current sensor element, and a wide range of current sensors can be obtained with high accuracy. Can be provided.
  • the sensor element for large current is a magnetoresistive effect element, and a magnetic shield is disposed between the sensor element for large current and the current path so as to be sensitive to the magnetoresistive effect element. Can be lowered. For this reason, even if the same magnetoresistance effect element is used as the sensor element of the large current measuring device and the small current measuring device, hysteresis can be prevented from occurring in the large current sensor element, and a wide range of current sensors can be obtained with high accuracy. Can be provided.
  • the high-current sensor element of the present invention is a magnetoresistive element, and is a hard bias in a direction opposite to the direction of the magnetic field of the current to be measured flowing through the current path with respect to the large-current magnetoresistive element Can be applied to reduce the sensitivity to the magnetoresistive element for large current. For this reason, hysteresis can be prevented from occurring in the sensor element for large current, and a wide range of current sensors can be provided with high accuracy.
  • the high-current sensor element of the present invention can be a Hall element that does not have a magnetic core. For this reason, since hysteresis does not occur in the sensor element for large current, it is possible to provide a wide range of current sensors with high accuracy.
  • the high-current sensor element of the present invention can be a shunt resistor. For this reason, since hysteresis does not occur in the sensor element for large current, it is possible to provide a wide range of current sensors with high accuracy.
  • the present invention has an overlap region partially overlapping the measurement region of the magnetoresistive effect element for small current and the measurement region of the sensor element for large current of the present invention, the correction means in the overlap region
  • the correction value can be obtained from the difference between the measurement value obtained by the small current measuring device and the measurement value obtained by the large current measuring device. For this reason, since the offset can be corrected by a plurality of data in the overlap region, it is possible to provide a wide range of current sensors with high accuracy.
  • the large current measuring device of the present invention is provided with a first amplifier that amplifies the output of the large current sensor element, and the small current measuring device includes the small current magnetoresistive effect element.
  • a second amplifier for amplifying the output of the first amplifier is provided, and the first amplifier and the second amplifier can be configured by a class B push-pull amplifier circuit. For this reason, the dynamic range of the amplifier can be expanded, and the range of current values with low linearity can be narrowed by using a small current element with high sensitivity in the vicinity of (0A). Can be provided.
  • the present invention since a large current measuring device and a small current measuring device are provided, it is possible to measure from a small current to a large current and to widen the measurement range. Moreover, even if the magnetoresistive effect element constituting the small current measuring instrument is affected by the hysteresis due to the large current, the offset value can be corrected by the correcting means, and the measurement accuracy can be improved.
  • the current sensor includes a large current measuring device 1 and a small current measuring device 2 and processes signals output from the large current measuring device 1 and the small current measuring device 2 to send data to a circuit that evaluates the remaining battery level.
  • a signal processing device 3 for outputting is provided.
  • the large current measuring instrument 1 is composed of, for example, a large current sensor element 4 composed of a GMR (Giant Magneto Resistive) element and the like, and a first amplifier 5 for amplifying a signal output from the large current sensor element 4.
  • the sensor element 4 for large current is disposed at a distance from the current path 6 so as to be suitable for measuring a large current of 0.5 A to 1500 A, for example, and the saturation magnetic flux density due to the current to be measured is increased. I am doing so.
  • the high current sensor element 4 of the large current measuring device 1 has low measurement sensitivity with respect to the current to be measured flowing through the current path 6 and is suitable for measuring a small current of 0.5 A or less. It ’s gone.
  • the high-current sensor element 4 forms a bridge circuit and outputs a voltage with respect to the current to be measured.
  • the large current measuring device 1 may be constituted by a half-bridge circuit, and a system such as a magnetic proportional type or a magnetic balance type may be used.
  • the small current measuring device 2 includes a second amplifier 8 for amplifying a signal output from the magnetoresistive element 7 for small current made of a GMR element or the like. Contrary to the sensor element 4 for large current, the magnetoresistive element 7 for small current is set to have high measurement sensitivity with respect to the current to be measured flowing through the current path 6 and is suitable for measuring small currents (1 mA to 1 A). It has become. However, since the magnetoresistive effect element 7 for small current of the small current measuring device 2 has a low saturation magnetic flux density due to the current to be measured flowing through the current path 6, it is influenced by hysteresis after a large current flows through the current path 6. Since an offset occurs, it is necessary to correct by the correction processor 13.
  • the small current measuring device 1 may be constituted by a half-bridge circuit, and a system such as a magnetic proportional type or a magnetic balance type may be used.
  • FIG. 2 shows the arrangement of the large current sensor element 4 constituting the large current measuring instrument 1 and the small current magnetoresistive effect element 7 constituting the small current measuring instrument 2 with respect to the current path 6.
  • the large current sensor element 4 is located at a position far from the current path 6, and the small current magnetoresistive element 7 is arranged at a position near the current path 6.
  • the high current sensor element 4 of the large current measuring device 1 is set so that the saturation magnetic flux density is sufficiently high so as not to be saturated by the current to be measured flowing through the current path 6 so that hysteresis and offset due to hysteresis do not occur.
  • the small current magnetoresistive effect element 7 of the small current measuring device 2 is set so as to have high measurement sensitivity as described above and suitable for small current measurement.
  • the measurement range of the large current measuring device 1 and the measurement range of the small current measuring device 2 include an overlap region A (0.5 A to 1 A) and an overlap region B ( ⁇ 1 A to — 0.5A) is set.
  • the overlap regions A and B the magnetic flux density of the large current sensor element 4 constituting the large current measuring device 1 and the small current magnetoresistive effect element 7 constituting the small current measuring device 2 is saturated. Absent.
  • a correct value can be measured by the large current sensor element 4, but the small current magnetoresistive effect element 7 constituting the small current measuring device 2 is offset from the correct value due to the influence of hysteresis.
  • the difference between the measured values of the large-current sensor element 4 constituting the large-current measuring device 1 and the small-current magnetoresistive effect element 7 constituting the small-current measuring device 2 in the overlap regions A and B is described.
  • a current measurement value in a small current region where the absolute value of the current is smaller than the overlap regions A and B is calculated from the correction value ⁇ calculated from the average.
  • the signal processing device 3 includes a range discriminator 9, an output switching device 10, a correction amount calculator 11, a memory 12, and a correction processor 13.
  • the range discriminator 9 determines whether the measured current value is within the overlap areas A and B, outside the overlap areas A and B, or outside the overlap areas A and B. This is a function for discriminating whether it is in the current region or the small current region.
  • the output switcher 10 is a function for switching the output based on the determination of the range determiner 9.
  • the memory 12 stores, in the overlap regions A and B, the value measured by the large current measuring instrument 1, the value measured by the small current measuring instrument 2, and the correction value ⁇ calculated therefrom. Is.
  • the correction amount calculator 11 is a function for calculating a correction value based on the value measured by the large current measuring device 1 and the value measured by the small current measuring device 2 in the overlap regions A and B.
  • the value measured by the large current measuring instrument 1, the value measured by the small current measuring instrument 2, and the calculated correction value are stored in the memory 12.
  • the correction processor 13 is a value measured by the small current measuring device 2 based on the correction value obtained by the correction amount calculator 11 in a minute current region where the measured current value is outside the detectable region of the large current measuring device 1. Correct.
  • the flowchart shown in FIG. 5 starts when, for example, a current of 100 A or more once flows in the current path and the magnetic flux density of the small current magnetoresistive element 7 constituting the small current measuring device 2 is saturated. To do.
  • the current in the current path 6 is measured by the large current measuring device 1 and the small current measuring device 2 (51).
  • the value measured by the large current measuring device 1 is J (t)
  • the value measured by the small current measuring device 2 is j (t).
  • the absolute value of the measured value J (t) is smaller than I2
  • (54) corresponds to the range discriminator 9 described above.
  • the measured value J (t) of the large current measuring instrument 1 is output as the output value I. (55) and the measured value J (t) of the large current measuring device 1 and the measured value j (t) of the small current measuring device 2 are stored in the memory 12 (56).
  • the correction value ⁇ is added to the measurement value j (t) measured by the small current measuring instrument 2, and the value is output as the output value I (58).
  • FIG. 6 is another example of the flowchart shown in FIG.
  • the parts denoted by the same reference numerals as those in FIG. 5 are the same as those in FIG.
  • the flowchart of FIG. 6 when the absolute value of the measurement value J (t) is equal to or greater than I2, after the output value I is output (53), the presence or absence of the measurement value stored in the memory is determined by the flag “M”. (59). If the flag “M” is 1, it is determined that there is a measurement value stored in the memory, and J (t) and j (t) are deleted (60).
  • the reason for deleting the measurement value stored in the memory is that if the absolute value of the measurement value J (t) is equal to or greater than I2, the GMR element 7 of the low-power measuring instrument 2 may be saturated and the amount of offset may change. This is because the measured values J (t) and j (t) before the offset amount changes cannot be used for calculating the correction value ⁇ .
  • the flag “M” is set to 0 (61). The reason why the flag “M” is used is to reduce the load on the signal processing device 3 by checking whether or not there are a plurality of J (t) and j (t) stored in the memory. On the other hand, when the flag “M” is not 1, the measurement values stored in the memory have been erased, and thus steps 60 and 61 are omitted.
  • the flag “M” is set to 1 (62), and the flag “N” is set to 0.
  • the flag “M” is a flag indicating the presence / absence of J (t) and j (t) stored in the memory
  • the flag “N” is the latest correction value ⁇ as described later. It is a flag indicating whether it is calculated.
  • the correction value ⁇ is calculated with the latest data.
  • the output value I is output using the already calculated correction value ⁇ (58). If the flag “N” is not 1, it is determined that the correction value ⁇ is not calculated with the latest data, and a plurality of measurement values J (t) and measurement values j (t) stored in the memory 12 are read out. The average value of each difference (J (t) -j (t)) is calculated (57). Thereafter, the flag “N” is set to 1 (65). The reason for using the flag “N” is to reduce the load on the signal processing device 3 by preventing the same calculation from being repeated.
  • FIG. 3 is a graph showing a hysteresis loop of the magnetoresistive effect element 7 for small current constituting the small current measuring device 2.
  • the horizontal axis represents the magnetic field (H) applied to the small current magnetoresistance effect element 7, and the vertical axis represents the magnetic flux density (B) of the small current magnetoresistance effect element 7.
  • the relationship between the magnetic field (H) and the magnetic flux density (B) is proportional starting from 0 (30 in FIG. 3).
  • the magnetic field (H) applied to the small current magnetoresistance effect element 7 increases in the positive direction, and the magnetic flux density (B) of the small current magnetoresistance effect element 7 is once saturated (31 in FIG. 3).
  • FIG. 4 is a graph showing the relationship between the measured current value and the output current value in the current sensor of the first embodiment.
  • J (t) indicates a measurement value measured by the large current measuring device 1, and the magnetic flux density of the large current sensor element 4 constituting the large current measuring device 1 is saturated by the applied magnetic field. Since there is no such thing, it always becomes a straight line, and the measured current value becomes the output current value as it is.
  • the absolute value is less than or equal to the set value I1
  • the measurement sensitivity of the high-current sensor element 4 is low, so that it cannot be measured by the high-current measuring instrument 1 (actually, the value of I1 has a margin).
  • I1 can also be measured by the large current measuring instrument 1).
  • j (t) indicates a measurement value measured by the small current measuring device 2, and hysteresis is generated once the magnetic flux density is saturated as shown in the graph of FIG. 3, so that the overlap regions A, B, An offset value that needs to be corrected occurs when I1 ⁇
  • the correction value ⁇ is obtained from the average of the difference between the measurement value J (t) measured by the large current measuring device 1 and the measurement value j (t) measured by the small current measuring device 2. Is calculated, and j (t) in the region I1 ⁇
  • the small current magnetoresistive element 4 constituting the small current measuring device 2 has a hysteresis due to the large current. Even if it is affected, the offset value can be corrected by the correction amount calculator 11 and the correction processor 13, and the measurement accuracy can be improved.
  • a magnetoresistive effect element is used for both the large current sensor element 4 and the small current magnetoresistive effect element 7, and the distance between the current path 6 and the large current sensor element 4 is set to the current path 6 and the small current magnetoresistance element. By making it longer than the distance to the effect element 7, it is possible to measure a large current and a small current. Therefore, the present invention can be realized with a simple structure by the same sensor element.
  • the present invention is not limited to the first embodiment described above.
  • the present invention can be modified as follows, and these embodiments also belong to the technical scope of the present invention.
  • a magnetoresistive effect element is used for both the large current sensor element 4 and the small current magnetoresistive effect element 7, and a magnetic shield is disposed between the large current sensor element 4 and the current path to provide a large current.
  • the sensitivity of the sensor element 4 may be configured to be lower than the sensitivity of the magnetoresistive effect element 7 for measuring a small current.
  • the measurement range can be expanded and the measurement accuracy can be increased.
  • the distance between the large current sensor element 4 and the small current magnetoresistive element 7 with respect to the current path 6 may be the same, assembly is facilitated.
  • the sensitivity of the large current sensor element 4 is reduced to the small current magnetic resistance.
  • the sensitivity may be lower than that of the effect element 7.
  • the measurement range can be expanded and the measurement accuracy can be increased.
  • the distance between the large current sensor element 4 and the small current magnetoresistive element 7 with respect to the current path 6 may be the same, assembly is facilitated.
  • the Hall element which does not have a magnetic core may be sufficient as the sensor element 4 for large currents.
  • the measurement range can be expanded and the measurement accuracy can be increased.
  • an inexpensive Hall element can be used without using an expensive magnetoresistive element, the cost can be reduced.
  • the Hall element having a magnetic core is one that compensates for the sensitivity of the Hall element and is expensive and has hysteresis due to the magnetic core. In this example, however, the Hall element is used as the sensor element 4 for large current. It is not necessary to compensate for the sensitivity of the element, it is possible to use a Hall element having no magnetic core, there is no hysteresis due to the core, and the cost can be reduced.
  • a shunt resistor may be used as the sensor element 4 for large current.
  • the measurement range can be expanded and the measurement accuracy can be increased.
  • an inexpensive shunt resistor can be used without using an expensive magnetoresistive element, the cost can be reduced.
  • the resistance value of the shunt resistor can be made sufficiently small and heat generation can be suppressed.
  • the shunt resistor has no hysteresis, the measurement value of the magnetoresistive element for small current 7 can be corrected correctly, so that the measurement accuracy can be increased.
  • Transistors are combined as the first amplifier 5 and the second amplifier 8 for amplifying the voltage output from the sensor element 4 for large current and the voltage output from the magnetoresistive effect element 7 for small current. It may be configured by a class B push-pull amplifier circuit.
  • a class B push-pull amplifier circuit When using a class B push-pull amplifier circuit, the output value for an input near 0V or 0A is usually distorted, making accurate measurement difficult, but combining with a magnetoresistive element with high sensitivity for small currents, class B push-pull amplification Even when the circuit is used, the linearity of the output value with respect to the input near 0 V or 0 A can be maintained, and the measurement range can be widened and the measurement accuracy can be increased as in the first embodiment. In particular, even when an inexpensive and simple class B push-pull amplifier circuit is used, the measurement accuracy with respect to a minute current can be increased. When the circuit scale can be increased, operational amplifiers can be used as the first amplifier 5 and the second amplifier 8.
  • the elements constituting the large current sensor element 4 and the small current magnetoresistive element 7 may be an AMR (Anisotropic Magneto Resistive) element or a TMR (Tunneling Magneto Resistive) element in addition to the GMR element. Good.

Abstract

 電流値に応じて2つのセンサを切り換えて測定する電流センサにおいて、小電流用に測定精度が高い磁気抵抗効果素子を用いても、ヒステリシスの影響によるオフセットを補正して、高精度でかつ広範囲の測定を可能とする。電流路(6)を流れる被測定電流を測定する大電流測定器(1)と小電流測定器(2)とを備え、大電流測定器(1)と小電流測定器(2)とを所定の測定電流値を閾値にして切り替える電流センサ装置において、小電流測定器(2)による測定電流値を大電流測定器(1)による測定電流値に基づいて補正する補正量算出器(11)と補正処理器(13)を設ける。

Description

電流センサ
 本発明は、モータを駆動するための電流やバッテリーから供給される電流、さらには、各種電気機器を駆動するための電流等を測定するための電流センサに関する。
 従来、電気自動車やハイブリッド車におけるモータ駆動用の電流を測定するためにホール素子等の磁気検出素子を備えた電流センサが用いられている。しかし、1個のホール素子では測定範囲が限られるため1つの電流センサで小電流から大電流までの広い範囲を測定することは難しかった。そこで、測定範囲を広げるために、特許文献1に開示されるように小電流用の磁気検出素子と大電流用の磁気検出素子を備え、それを切り替えて使う構成が提案されている。
特開2007-78417号公報
 小電流用の磁気検出素子には、通常感度の高いものが必要であり、例えばGMR素子が用いられる。しかしながら、小電流用の磁気検出素子にGMR素子を用いた場合、一旦、被測定路に大電流が流れるとそこから発生する強力な磁界によってGMR素子にヒステリシスが発生するため、小電流を測定する際に正確な測定ができなくなるという問題が発生する。
 本発明は、上記事情に鑑みてなされたもので、その目的は、測定範囲を広げることができ、かつ測定精度の高い電流センサを提供するところにある。
 本発明は、電流路を流れる被測定電流を測定する小電流測定器と大電流測定器とを備え、前記小電流測定器と前記大電流測定器とを所定の測定電流値を閾値にして切り替える電流センサ装置において、前記小電流測定器は、前記被測定電流による飽和磁束密度が低くかつ前記被測定電流に対する測定感度の高い小電流用磁気抵抗効果素子を有し、前記大電流測定器は、前記被測定電流による飽和磁束密度が高くかつ前記被測定電流に対する測定感度が低い大電流用センサ素子を有し、前記小電流測定器による測定電流値を前記大電流測定器による測定電流値に基づいて補正する補正手段を設けた。この為、小電流用の測定に磁気抵抗素子を用いても、ヒステリシスの影響によるオフセットを補正できるので、高精度でかつ広範囲の電流センサを提供することができる。
 また、本発明における前記大電流用センサ素子は、磁気抵抗効果素子であって、前記大電流用センサ素子は、前記電流路に対する距離が、前記小電流用磁気抵抗効果素子と前記電流路との距離よりも離れて配置されるようにすることができる。この為、大電流測定器と小電流測定器とのセンサ素子として同じ磁気抗効果素子を用いても、大電流用センサ素子にヒステリシスが生じないようにでき、高精度でかつ広範囲の電流センサを提供することができる。
 また、本発明の前記大電流用センサ素子は、磁気抵抗効果素子であって、前記大電流用センサ素子と前記電流路との間に磁気シールドを配設して、前記磁気抵抗効果素子に対する感度を低めることができる。この為、大電流測定器と小電流測定器とのセンサ素子として同じ磁気抗効果素子を用いても、大電流用センサ素子にヒステリシスが生じないようにでき、高精度でかつ広範囲の電流センサを提供することができる。
 また、本発明の前記大電流用センサ素子は、磁気抵抗効果素子であって、前記大電流用磁気抵抗効果素子に対して前記電流路を流れる被測定電流の磁界の向きに抗う方向のハードバイアスを印加して、前記大電流用磁気抵抗効果素子に対する感度を低めることができる。この為、大電流用センサ素子にヒステリシスが生じないようにでき、高精度でかつ広範囲の電流センサを提供することができる。
 また、本発明の前記大電流用センサ素子は、磁気コアを有さないホール素子とすることができる。この為、大電流用センサ素子にヒステリシスが生じないため、高精度でかつ広範囲の電流センサを提供することができる。
 また、本発明の前記大電流用センサ素子は、シャント抵抗とすることができる。この為、大電流用センサ素子にヒステリシスが生じないため、高精度でかつ広範囲の電流センサを提供することができる。
 また、本発明の前記小電流用磁気抵抗効果素子の測定領域と前記大電流用センサ素子の測定領域とに一部が重複するオーバーラップ領域を有し、前記補正手段は、前記オーバーラップ領域における前記小電流測定器による測定値と前記大電流測定器による測定値の差から補正値を求めることができる。この為、オーバーラップ領域における複数のデータにより、オフセットを補正できるので、高精度でかつ広範囲の電流センサを提供することができる。
 また、本発明の前記大電流測定器には、前記大電流用センサ素子の出力を増幅する第1の増幅器が設けられており、前記小電流測定器には、前記小電流用磁気抵抗効果素子の出力を増幅する第2の増幅器が設けられており、前記第1の増幅器及び前記第2の増幅器は、B級プッシュプル増幅回路から構成することができる。この為、増幅器のダイナミックレンジを広げられ、かつ、(0A)付近で感度の高い小電流用素子を使うことにより、線形性の低い電流値の範囲を狭くでき、高精度でかつ広範囲の電流センサを提供することができる。
 本発明によれば、大電流測定器と小電流測定器を設けたので小電流から大電流まで測定することができ測定範囲を広げることができる。しかも、小電流測定器を構成する磁気抵抗効果素子が大電流によるヒステリシスの影響を受けてもそれによるオフセット値を補正手段で補正することができ、測定精度を高めることができる。
本実施形態(第1実施形態)のブロック図を示す図である。 同実施形態(第1実施形態)の大電流センサと小電流センサの電流路からの位置関係を示す側面図である。 同実施形態(第1実施形態)の小電流用磁気抵抗素子における磁界と磁束密度のヒステリシスを示すグラフである。 同実施形態(第1実施形態)の被測定電流と検出電流の関係を示すグラフである。 同実施形態(第1実施形態)の電流検出過程を示すフローチャート図である。 同実施形態の電流検出過程を示す別のフローチャート図である。
<第1実施形態>
 以下、本発明の電流センサを具体化した第1実施形態について図1乃至図5を参照して説明する。
 まずは、本発明の電流センサの構成を図1に基づいて説明する。電流センサは、大電流測定器1と小電流測定器2を備えるとともに大電流測定器1と小電流測定器2から出力される信号を処理して後段のバッテリー残量を評価する回路へデータを出力する信号処理装置3を備えて構成される。
 大電流測定器1は、例えば、GMR(Giant Magneto Resistive)素子等からなる大電流用センサ素子4と大電流用センサ素子4から出力される信号を増幅するための第1の増幅器5から構成される。大電流用センサ素子4は、例えば0.5A~1500Aの大電流の測定に適したものになるように、電流路6から距離を離して配置して、被測定電流による飽和磁束密度が高くなるようにしている。但し、飽和磁束密度を高くしたために、大電流測定器1の大電流用センサ素子4は、電流路6を流れる被測定電流に対する測定感度が低くなり、0.5A以下の小電流の測定に向かなくなっている。
 また、大電流用センサ素子4は、図示しないがブリッジ回路を構成し、被測定電流に対する電圧を出力するようになっている。大電流測定器1はハーフブリッジ回路で構成してもよく、また磁気比例式、磁気平衡式などの方式を用いることも可能である。
 小電流測定器2は、GMR素子等からなる小電流用磁気抵抗効果素子7から出力される信号を増幅するための第2の増幅器8から構成される。小電流用磁気抵抗効果素子7は、大電流用センサ素子4とは逆に、電流路6を流れる被測定電流に対する測定感度が高く設定されており、小電流(1mA~1A)の測定に適したものとなっている。但し、小電流測定器2の小電流用磁気抵抗効果素子7は、電流路6を流れる被測定電流による飽和磁束密度が低いため、電流路6に大電流が流れた後は、ヒステリシスの影響によるオフセットが生じるため、補正処理器13により、補正する必要がある。また、小電流用磁気抵抗効果素子7も大電流用センサ素子4同様、図示しないがブリッジ回路を構成し、被測定電流に対する電圧を出力するようになっている。小電流測定器1はハーフブリッジ回路で構成してもよく、また磁気比例式、磁気平衡式などの方式を用いることも可能である。
 図2に、大電流測定器1を構成する大電流用センサ素子4と小電流測定器2を構成する小電流用磁気抵抗効果素子7の電流路6に対する配置を示す。図示するように、大電流用センサ素子4は電流路6との距離が遠い位置にあり、小電流用磁気抵抗効果素子7は電流路6との距離が近い位置に配置されている。これによって、大電流測定器1の大電流用センサ素子4は、電流路6を流れる被測定電流によって飽和しないように充分飽和磁束密度を高く設定し、ヒステリシス及びヒステリシスによるオフセットが生じないように設定する。一方、小電流測定器2の小電流用磁気抵抗効果素子7は、上述したとおり測定感度が高く、小電流の測定に適したように設定する。
 また、大電流測定器1の測定範囲と小電流測定器2の測定範囲には、後述するグラフに示すようにオーバーラップ領域A(0.5A~1A)、オーバーラップ領域B(―1A~―0.5A)が設定されている。このオーバーラップ領域A、Bにおいては、大電流測定器1を構成する大電流用センサ素子4及び、小電流測定器2を構成する小電流用磁気抵抗効果素子7の磁束密度とも飽和することはない。この時大電流用センサ素子4によって正しい値を測定することができるが、小電流測定器2を構成する小電流用磁気抵抗効果素子7においてはヒステリシスの影響により正しい値からオフセットがかかっている。そして後述するようにこのオーバーラップ領域A、Bにおける大電流測定器1を構成する大電流用センサ素子4と小電流測定器2を構成する小電流用磁気抵抗効果素子7の測定値の差の平均から算出した補正値Δから電流の絶対値がオーバーラップ領域A、Bより小さな小電流領域における電流測定値を算出する。これにより、ヒステリシスの影響によりオフセットが生じた小電流測定器2の小電流用磁気抵抗効果素子7の電流測定値を正しい値に補正できる。
 信号処理装置3は、レンジ判別器9、出力切替器10、補正量算出器11、メモリ12、補正処理器13とを備えて構成される。
 レンジ判別器9は、被測定電流値がオーバーラップ領域A、B内か、オーバーラップ領域A、B外か、またオーバーラップ領域A、B外の場合、オーバーラップ領域A、Bを挟んで大電流の領域にあるのか小電流の領域にあるのかを判別するための機能である。
 出力切替器10は、レンジ判別器9の判別に基づき出力を切り替えるための機能である。
 メモリ12は、オーバーラップ領域A、Bにおいて、大電流用測定器1で測定した値と小電流用測定器2で測定した値、及びそれらから算出される補正値Δを保存しておくためのものである。
 補正量算出器11は、オーバーラップ領域A、Bにおける大電流用測定器1で測定された値と小電流用測定器2で測定された値に基づき補正値を算出するための機能であり、大電流用測定器1で測定された値と小電流用測定器2で測定された値及び、算出された補正値はメモリ12に保存される。
 補正処理器13は、被測定電流値が大電流用測定器1の検出可能領域外の微小電流域において、上記補正量算出器11で求めた補正値に基づき小電流測定器2によって測定した値を補正する。
 次に、本発明の作用を図5のフローチャートに基づいて説明する。図5に示すフローチャートは、例えば、既に電流路に100A以上の電流が一旦流れて小電流測定器2を構成する小電流用磁気抵抗効果素子7の磁束密度が飽和された状態にあるところから開始する。大電流測定器1及び小電流測定器2によって電流路6の電流が測定される(51)。大電流測定器1によって測定された値をJ(t)、小電流測定器2によって測定された値をj(t)とする。
 続いて、大電流測定器2によって測定された値J(t)が予め設定されている第1の設定値I2(1A)以上か否か判断する(52)。測定値J(t)の絶対値がI2以上であれば測定レンジを大電流レンジとして、そのまま大電流測定器1で測定した値であるJ(t)を出力値Iとして出力する(53)。
 測定値J(t)の絶対値がI2より小さければ、引き続き測定値J(t)の絶対値が予め設定した第2の設定値I1以上か否かを判断する(54)。測定値J(t)の絶対値が第2の設定値I1以上であればオーバーラップ領域A、Bと判断する。測定値J(t)の絶対値が第2の設定値I1より小さければ測定レンジを小電流レンジとする。ここで、測定値J(t)の絶対値が第1の設定値I2以上か否かの判断(52)、及び測定値J(t)の絶対値が第2の設定値I1以上か否かの判断(54)が、上記レンジ判別器9に相当する。
 測定値J(t)の絶対値が第2の設定値I1以上で、オーバーラップ領域A、Bと判断した場合には、大電流測定器1の測定値J(t)を出力値Iとして出力する(55)とともに大電流測定器1の測定値J(t)と小電流測定器2の測定値j(t)をメモリ12に保存する(56)。
 測定値J(t)の絶対値が第2の測定値I1より小さく、小電流レンジとした場合、メモリ12に保存されている複数の測定値J(t)及び測定値j(t)を読み出してそれぞれの差(J(t)-j(t))の平均値を算出する(57)。この平均値が補正値Δとなる。この補正値Δの算出(57)が上記補正量算出器11に相当する。
 補正値Δを算出後、小電流測定器2による測定値j(t)に補正値Δを加え、その値を出力値Iとして出力する(58)。
 図6は、図5で示したフローチャートの別の例である。図5と同じ符号を付けた部分は、図5と同じであるため説明を省略する。図6のフローチャートでは、測定値J(t)の絶対値がI2以上の場合、出力値Iとして出力(53)した後、メモリに保存されている測定値の有無をフラグ「M」によって判断する(59)。フラグ「M」が1であれば、メモリに保存されている測定値が有ると判断し、J(t)とj(t)を削除する(60)。メモリに保存されている測定値を削除する理由は、測定値J(t)の絶対値がI2以上となると、小電力測定器2のGMR素子7が飽和し、オフセットの量が変化する可能性があり、オフセット量が変化する前の測定値、J(t)とj(t)が補正値Δの計算に使えなくなるからである。メモリに保存されているJ(t)とj(t)を消去(60)すると、フラグ「M」を0にする(61)。フラグ「M」を使う理由は、メモリに複数保存されているJ(t)とj(t)の有無を調べたり、削除したりすることは、信号処理装置3の負荷を減らすためである。また、フラグ「M」が1でない場合は、メモリに保存されている測定値が消去済みであるため、ステップ60、61を省略する。
 測定値J(t)の絶対値が第2の設定値I1以上で、オーバーラップ領域A、Bと判断した場合には、大電流測定器1の測定値J(t)と小電流測定器2の測定値j(t)をメモリ10に保存(56)した後、フラグ「M」を1にする(62)と共に、フラグ「N」を0にする。フラグ「M」は上述したとおり、メモリに保存されているJ(t)とj(t)の有無を示すフラグであり、フラグ「N」は、後述するとおり、補正値Δが最新のデータで算出されているか示すフラグである。
 測定値J(t)の絶対値が第2の測定値I1より小さく、小電流レンジとした場合、フラグ「N」が1であれば(64)、補正値Δが最新のデータで算出されていると判断し、既に計算済みの補正値Δを使って、出力値Iを出力する(58)。フラグ「N」が1でなければ、補正値Δが最新のデータで算出されていないと判断し、メモリ12に保存されている複数の測定値J(t)及び測定値j(t)を読み出してそれぞれの差(J(t)-j(t))の平均値を算出する(57)。その後、フラグ「N」を1にする(65)。フラグ「N」を使う理由は、同一の計算を繰り返すことを防止することにより、信号処理装置3の負荷を減らすためである。
 図3は、小電流測定器2を構成する小電流用磁気抵抗効果素子7のヒステリシスループを示すグラフである。図3中、横軸は小電流用磁気抵抗効果素子7に印加される磁場(H)、縦軸は小電流用磁気抵抗効果素子7の磁束密度(B)を表し、小電流用磁気抵抗効果素子7の磁束密度が飽和していない状態であれば、磁場(H)と磁束密度(B)の関係は0を始点にして比例する(図3中、30)。しかし、小電流用磁気抵抗効果素子7に印加される磁場(H)が正の方向に増加し、小電流用磁気抵抗効果素子7の磁束密度(B)が一旦飽和(図3中、31)してしまうと、その後、印加される磁場(H)が減少しても磁束密度(B)にはオフセットΔBが発生する(図3中、32)。さらに、磁場(H)を負の方向に強くしていき、GMR素子7が負の方向に磁束密度(B)が飽和(図3中、33)すると、その後、磁場(H)を増加させるとオフセットΔBが発生することになる(図3中、34)。
 図4は、第1実施形態の電流センサにおける被測定電流値と出力電流値の関係を示すグラフである。図4中、J(t)は大電流測定器1によって測定された測定値を示し、大電流測定器1を構成する大電流用センサ素子4は印加される磁場によって磁束密度が飽和してしまうことがないため、常に直線となり、被測定電流値がそのまま出力電流値となる。但し、絶対値が設定値I1以下においては、大電流用センサ素子4の測定感度が低いため大電流測定器1によって測定することはできない(実際にはI1の値には余裕を持たせており、I1においても大電流測定器1によって測定できる)。
 図4中、j(t)が小電流測定器2によって測定された測定値を示し、図3のグラフで示すように磁束密度が一旦飽和するとヒステリシスが発生するため、オーバーラップ領域A、B、I1<|J(t)|<I2おいて補正を必要とするオフセット値が発生する。
 上述したオーバーラップ領域A、Bにおいて、大電流測定器1によって測定された測定値J(t)と小電流測定器2によって測定された測定値j(t)との差の平均から補正値Δが算出され、その補正値ΔによってI1<|J(t)|領域におけるj(t)を補正する。
 上記の通りの構成としたため、大電流測定器1と小電流測定器2を設け切り替えて使う電流センサにおいて、小電流測定器2を構成する小電流用磁気抵抗効果素子4が大電流によるヒステリシスの影響を受けても補正量算出器11及び補正処理器13によってオフセット値を補正することができ、測定精度を高めることができる。
 大電流用センサ素子4と小電流用磁気抵抗効果素子7とに共に磁気抵抗効果素子を用いると共に、電流路6と大電流用センサ素子4との距離を、電流路6と小電流用磁気抵抗効果素子7との距離よりも長くすることによって、大電流及び小電流の測定を可能な構成としたため、同一のセンサ素子によって、簡単な構成で本発明を実現できる。
<変形例>
 本発明は上記第1実施形態に限定されるものではなく、例えば次のように変形して実施することができ、これらの実施形態も本発明の技術的範囲に属する。
 (1)大電流用センサ素子4と小電流用磁気抵抗効果素子7とに共に磁気抵抗効果素子を用いると共に、大電流用センサ素子4と電流路との間に磁気シールドを配置して大電流用センサ素子4の感度を小電流測定用磁気抵抗効果素子7の感度より低めるように構成してもよい。これによって、上記第1実施形態同様、測定範囲を広げることと、測定精度を高めることができる。しかも、大電流用センサ素子4と小電流用磁気抵抗効果素子7の電流路6に対する距離は同じでよいので組み立てが容易となる。
 (2)大電流用センサ素子4に対しては電流路6を流れる被測定電流の磁界の向きに抗う方向のハードバイアスを印加することで大電流用センサ素子4の感度を小電流用磁気抵抗効果素子7の感度より低めるように構成してもよい。これによって、上記第1実施形態同様、測定範囲を広げることと、測定精度を高めることができる。しかも、大電流用センサ素子4と小電流用磁気抵抗効果素子7の電流路6に対する距離は同じでよいので組み立てが容易となる。
 (3)大電流用センサ素子4として磁気コアを有さないホール素子であってもよい。これによって、上記第1実施形態同様、測定範囲を広げることと、測定精度を高めることができる。しかも、高価な磁気抵抗効果素子を使わずに安価なホール素子を用いることができるためコストダウンが可能となる。磁気コアを有するホール素子は、ホール素子の感度を補ったもので、高価である上に磁気コアに起因したヒステリシスを持つものであるが、この例では大電流用センサ素子4として用いるため、ホール素子の感度を補う必要が無く、磁気コアを有さないホール素子を用いることが可能で、コアに起因したヒステリシスも無く、コストダウンが可能となる。
 (4)大電流用センサ素子4としてシャント抵抗を用いてもよい。これによって、上記第1実施形態同様、測定範囲を広げることと、測定精度を高めることができる。しかも、高価な磁気抵抗効果素子を使わずに安価なシャント抵抗を用いることができるためコストダウンが可能となる。シャント抵抗を用いて大電流から小電流まで広いレンジで電流を計測する場合、大電流では発熱を抑えるために抵抗は出来るだけ小さくしたいが、抵抗が小さいと小電流での信号電圧が小さくなるため、あまり抵抗を小さくできないという問題がある。一方、この例では、大電流用センサ素子4としてシャント抵抗を用い、小電流用の測定にはGMR素子を用いるので、シャント抵抗の抵抗値は十分に小さく出来、発熱を抑えることができる。また、シャント抵抗はヒステリシスがないため、小電流用磁気抵抗効果素子7の測定値を正しく補正できるため測定精度を高くできる。
 (5)大電流用センサ素子4から出力される電圧や、小電流用磁気抵抗効果素子7から出力される電圧を増幅するための第1の増幅器5及び第2の増幅器8としてトランジスタを組み合わせたB級プッシュプル増幅回路によって構成するものであってもよい。B級プッシュプル増幅回路を用いる場合通常0V又は0A付近の入力に対する出力値が歪んで正確な測定が難しくなるが、小電流用に感度の高い磁気抵抗効果素子と組み合わせることでB級プッシュプル増幅回路を用いた場合でも0V又は0A付近の入力に対する出力値の線形性を維持でき、上記第1実施形態同様、測定範囲を広げることと、測定精度を高めることができる。特に、安価で構成が簡単なB級プッシュプル増幅回路を用いた場合でも微小電流に対する測定精度を高めることができる。尚、回路規模を大きくできる場合には、第1の増幅器5及び第2の増幅器8として、オペアンプを用いることもできる。
 (6)大電流用センサ素子4や、小電流用磁気抵抗効果素子7を構成する素子は、GMR素子の他に、AMR(Anisotropic Magneto Resistive)素子やTMR(Tunneling Magneto Resistive)素子であってもよい。
 その他、本発明は要旨を逸脱しない範囲で種々変更して実施することができる。
 本出願は、2010年11月26日出願の特願2010-264088に基づく。この内容は、全てここに含めておく。

Claims (9)

  1.  電流路を流れる被測定電流を測定する小電流測定器と大電流測定器とを備え、前記小電流測定器と前記大電流測定器とを所定の測定電流値を閾値にして切り替える電流センサ装置において、
     前記小電流測定器は、前記被測定電流による飽和磁束密度が低くかつ前記被測定電流に対する測定感度の高い小電流用磁気抵抗効果素子を有し、
     前記大電流測定器は、前記被測定電流による飽和磁束密度が高くかつ前記被測定電流に対する測定感度が低い大電流用センサ素子を有し、
     前記小電流測定器による測定電流値を前記大電流測定器による測定電流値に基づいて補正する補正手段を設けたことを特徴とする電流センサ。
  2.  前記大電流用センサ素子は、磁気抵抗効果素子であって、
     前記大電流用センサ素子は、前記電流路に対する距離が、前記小電流用磁気抵抗効果素子と前記電流路との距離よりも離れて配置されていることを特徴とする請求項1記載の電流センサ。
  3.  前記大電流用センサ素子は、磁気抵抗効果素子であって、
     前記大電流用センサ素子と前記電流路の間に磁気シールドを配設して、前記大電流用磁気抵抗効果素子に対する感度を低めたことを特徴とする請求項1記載の電流センサ。
  4.  前記大電流用センサ素子は、磁気抵抗抵抗効果素子であって、
     前記大電流用センサ素子に対して前記電流路を流れる被測定電流の磁界の向きに抗う方向のハードバイアスを印加して、前記大電流用センサ素子に対する感度を低めたことを特徴とする請求項1記載の電流センサ。
  5.  前記大電流用センサ素子は、磁気コアを有さないホール素子であることを特徴とする請求項1記載の電流センサ。
  6.  前記大電流用センサ素子は、シャント抵抗であることを特徴とする請求項1記載の電流センサ。
  7.  前記小電流用磁気抵抗効果素子の測定領域と前記大電流用センサ素子の測定領域とは、一部が重複するオーバーラップ領域を有し、前記補正手段は、前記オーバーラップ領域における前記小電流測定器による測定値と前記大電流測定器による測定値の差から補正値を求めることを特徴とする請求項1乃至6何れかに記載の電流センサ。
  8.  前記大電流測定器には、前記大電流用センサ素子の出力を増幅する第1の増幅器が設けられており、
     前記小電流測定器には、前記小電流用磁気抵抗効果素子の出力を増幅する第2の増幅器が設けられており、
     前記第1の増幅器及び前記第2の増幅器は、B級プッシュプル増幅回路から構成されることを特徴とする請求項1乃至6何れかに記載の電流センサ。
  9.  前記大電流測定器には、前記大電流用センサ素子の出力を増幅する第1の増幅器が設けられており、
     前記小電流測定器には、前記小電流用磁気抵抗効果素子の出力を増幅する第2の増幅器が設けられており、
     前記第1の増幅器及び前記第2の増幅器は、B級プッシュプル増幅回路から構成されることを特徴とする請求項7に記載の電流センサ。
PCT/JP2011/073971 2010-11-26 2011-10-18 電流センサ WO2012070337A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012545657A JP5668224B2 (ja) 2010-11-26 2011-10-18 電流センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-264088 2010-11-26
JP2010264088 2010-11-26

Publications (1)

Publication Number Publication Date
WO2012070337A1 true WO2012070337A1 (ja) 2012-05-31

Family

ID=46145694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073971 WO2012070337A1 (ja) 2010-11-26 2011-10-18 電流センサ

Country Status (2)

Country Link
JP (1) JP5668224B2 (ja)
WO (1) WO2012070337A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505040A (ja) * 2011-12-16 2015-02-16 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 電流測定回路、バッテリ、及び車両
KR101524560B1 (ko) * 2013-12-24 2015-06-01 만도헬라일렉트로닉스(주) 전류 센서 오프셋 보정장치 및 그 보정방법
JP2015125019A (ja) * 2013-12-25 2015-07-06 株式会社東芝 電流センサ、電流測定モジュール及びスマートメータ
JP2015210272A (ja) * 2014-04-28 2015-11-24 タイコ エレクトロニクス アンプ コリア カンパニーTyco Electronics AMP Korea Co.,Ltd ハイブリッド電流センサアセンブリ
WO2016021575A1 (ja) * 2014-08-05 2016-02-11 アルプス・グリーンデバイス株式会社 電流センサ
JP2016038219A (ja) * 2014-08-05 2016-03-22 アルプス・グリーンデバイス株式会社 電流センサ
CN105490607A (zh) * 2014-10-06 2016-04-13 Acs运动控制有限公司 用于高性能运动控制的电机伺服驱动器
JP2019039928A (ja) * 2018-10-25 2019-03-14 株式会社東芝 電流センサ、電流測定モジュール及びスマートメータ
WO2020040921A1 (en) * 2018-08-20 2020-02-27 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
US10605874B2 (en) 2018-08-06 2020-03-31 Allegro Microsystems, Llc Magnetic field sensor with magnetoresistance elements having varying sensitivity
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694756A (ja) * 1992-09-09 1994-04-08 Komatsu Ltd 交流信号の検出誤差補正装置
JPH06222083A (ja) * 1993-01-28 1994-08-12 Meidensha Corp Pwmインバータの電流補償装置
JP2004132790A (ja) * 2002-10-09 2004-04-30 Fuji Electric Holdings Co Ltd 電流センサ
JP2007078417A (ja) * 2005-09-12 2007-03-29 Denso Corp 電流センサおよび電流検出方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3071566B2 (ja) * 1992-06-30 2000-07-31 京セラ株式会社 原稿読み取り装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694756A (ja) * 1992-09-09 1994-04-08 Komatsu Ltd 交流信号の検出誤差補正装置
JPH06222083A (ja) * 1993-01-28 1994-08-12 Meidensha Corp Pwmインバータの電流補償装置
JP2004132790A (ja) * 2002-10-09 2004-04-30 Fuji Electric Holdings Co Ltd 電流センサ
JP2007078417A (ja) * 2005-09-12 2007-03-29 Denso Corp 電流センサおよび電流検出方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505040A (ja) * 2011-12-16 2015-02-16 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 電流測定回路、バッテリ、及び車両
KR101524560B1 (ko) * 2013-12-24 2015-06-01 만도헬라일렉트로닉스(주) 전류 센서 오프셋 보정장치 및 그 보정방법
JP2015125019A (ja) * 2013-12-25 2015-07-06 株式会社東芝 電流センサ、電流測定モジュール及びスマートメータ
JP2015210272A (ja) * 2014-04-28 2015-11-24 タイコ エレクトロニクス アンプ コリア カンパニーTyco Electronics AMP Korea Co.,Ltd ハイブリッド電流センサアセンブリ
JPWO2016021575A1 (ja) * 2014-08-05 2017-04-27 アルプス電気株式会社 電流センサ
WO2016021575A1 (ja) * 2014-08-05 2016-02-11 アルプス・グリーンデバイス株式会社 電流センサ
JP2016038219A (ja) * 2014-08-05 2016-03-22 アルプス・グリーンデバイス株式会社 電流センサ
CN105490607A (zh) * 2014-10-06 2016-04-13 Acs运动控制有限公司 用于高性能运动控制的电机伺服驱动器
JP2016077140A (ja) * 2014-10-06 2016-05-12 エーシーエス・モーション・コントロール・リミテッド 高性能の動き制御のためのモーター・サーボ・ドライブ
US10605874B2 (en) 2018-08-06 2020-03-31 Allegro Microsystems, Llc Magnetic field sensor with magnetoresistance elements having varying sensitivity
WO2020040921A1 (en) * 2018-08-20 2020-02-27 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
US10935612B2 (en) 2018-08-20 2021-03-02 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
JP2019039928A (ja) * 2018-10-25 2019-03-14 株式会社東芝 電流センサ、電流測定モジュール及びスマートメータ
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor

Also Published As

Publication number Publication date
JP5668224B2 (ja) 2015-02-12
JPWO2012070337A1 (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5668224B2 (ja) 電流センサ
CN108226822B (zh) 磁性传感器电路和系统及用于形成磁性传感器电路的方法
JP5604652B2 (ja) 電流センサ
US8847591B2 (en) Current sensor
US11204374B2 (en) Current sensor, and manufacturing method for current sensor
US20090012733A1 (en) Offset correction program and electronic compass
WO2012005042A1 (ja) 電流センサ
JP4936030B2 (ja) 磁気センサ
JP2000055999A (ja) 磁気センサ装置および電流センサ装置
US8203337B2 (en) Elimination of errors due to aging in magneto-resistive devices
JPWO2014006914A1 (ja) 電流センサの製造方法及び電流センサ
CN109307793A (zh) 偏差推定装置及方法、磁传感器的修正装置以及电流传感器
US11243274B2 (en) Magnetic sensor system
JP6897107B2 (ja) 電流センサの信号補正方法、及び電流センサ
JP6897106B2 (ja) 電流センサの信号補正方法、及び電流センサ
JP2010286415A (ja) 電流センサユニット
US8140285B2 (en) Compass system and method for determining a reference field strength
JP5126536B2 (ja) 磁気比例式電流センサのゲイン調整方法
JP7273876B2 (ja) 磁気センサ装置、インバータ装置およびバッテリ装置
JP2008096213A (ja) ホールセンサ及びホール電圧補正方法
JP2014181981A (ja) 電流センサ
CN108469594B (zh) 一种高精度、闭环式梯度磁阻传感器
JP5531216B2 (ja) 電流センサ
US20140125328A1 (en) Magnetic detection device
US11630130B2 (en) Channel sensitivity matching

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012545657

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842686

Country of ref document: EP

Kind code of ref document: A1