WO2012005042A1 - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
WO2012005042A1
WO2012005042A1 PCT/JP2011/059449 JP2011059449W WO2012005042A1 WO 2012005042 A1 WO2012005042 A1 WO 2012005042A1 JP 2011059449 W JP2011059449 W JP 2011059449W WO 2012005042 A1 WO2012005042 A1 WO 2012005042A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
sensor
magnetic
measured
detection
Prior art date
Application number
PCT/JP2011/059449
Other languages
English (en)
French (fr)
Inventor
田村 学
雅俊 野村
蛇口 広行
Original Assignee
アルプス・グリーンデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス・グリーンデバイス株式会社 filed Critical アルプス・グリーンデバイス株式会社
Priority to JP2012523785A priority Critical patent/JPWO2012005042A1/ja
Priority to CN2011800287896A priority patent/CN102959408A/zh
Publication of WO2012005042A1 publication Critical patent/WO2012005042A1/ja
Priority to US13/665,624 priority patent/US8970214B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0038Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a current sensor having high accuracy and low power consumption over a wide measurement range.
  • the magnitude of the current for driving a motor of an electric vehicle or a hybrid is measured by a current sensor. Further, in the motor driving battery, the remaining amount of the battery is managed by detecting the amount of current flowing in and out of the battery with a current sensor.
  • a current sensor there are a magnetic proportional type current sensor and a magnetic balance type current sensor.
  • a magnetic proportional current sensor In a magnetic proportional current sensor, a magnetic field proportional to the measured current passes through the core gap due to the lines of magnetic force generated in the magnetic core, and the magnetic detection element converts this magnetic field into a voltage signal, which is proportional to the measured current. Output voltage.
  • a magnetic balance type current sensor when a current to be measured flows, an output voltage is generated in the magnetic detection element by a magnetic field corresponding to the current, and a voltage signal output from the magnetic detection element is converted into a current, and a feedback coil Feedback.
  • the magnetic balance type current sensor operates so that the magnetic field generated by the feedback coil (cancellation magnetic field) and the magnetic field generated by the current to be measured cancel each other, so that the magnetic field is always zero.
  • the current is converted into a voltage and output as an output.
  • Patent Document 1 arranges a magnetic proportional current sensor using a Hall element and a magnetic balance type current sensor using a Hall element, depending on the magnitude of the current to be measured. A method of switching and using these is disclosed.
  • the measurement range of magnetic current sensors such as a magnetic balanced current sensor and a magnetic proportional current sensor is limited by various conditions such as magnetic saturation and power supply voltage. For this reason, when the current to be measured is measured with a magnetic current sensor, the use of the magnetic current sensor has been limited within the measurement range.
  • a magnetic proportional current sensor is used in a large current region, but the use of the magnetic proportional current sensor is limited to a range in which magnetic saturation does not occur, and a wide measurement range cannot be taken. It was.
  • two types of current sensors must be prepared separately. For this reason, space saving cannot be achieved and the manufacturing process becomes complicated.
  • the present invention has been made in view of such points, and an object of the present invention is to provide a current sensor that can widen the measurement range, can measure with high accuracy at a low current, and can save space.
  • the current sensor of the present invention includes a magnetic sensor whose characteristics change due to an induced magnetic field from a current to be measured, a shunt resistor connected in series to a current line that circulates the current to be measured, and an output of the magnetic sensor at a small current.
  • a switching unit that switches to magnetic detection using a voltage as a sensor output, and switches shunt resistance detection using a voltage difference of the shunt resistor as a sensor output when a large current is applied.
  • the switching unit provides a threshold within a range in which linearity is obtained in the output characteristics of the magnetic sensor, and a small current is detected when the magnitude of the current to be measured is smaller than the threshold. It is preferable to switch to the magnetic detection sometimes, and to switch to the shunt resistance detection when the current is larger than the threshold when the current is large. According to this configuration, the measurement range can be widened, and the measurement accuracy can be increased within a range in which linearity is obtained from the output characteristics of the magnetic sensor.
  • the magnetic sensor is provided on the shunt resistor via an insulating substrate. According to this configuration, since the resistance value of the shunt resistor is set low so that a large current can be measured, the current under measurement flowing through the shunt resistor can be detected by the magnetic sensor when the current is small.
  • the magnetic sensor is arranged in the vicinity of the magnetic sensor element whose characteristics are changed by the induced magnetic field from the current to be measured and the canceling magnetic field that cancels the induced magnetic field. It is preferable that the sensor be a magnetic balance type sensor including a feedback coil. According to this configuration, a highly accurate measurement can be performed at a small current, and a current sensor having a wide measurement range can be provided.
  • the magnetic sensor is a magnetic proportional sensor including a magnetic sensor element whose characteristics are changed by an induced magnetic field from the current to be measured. According to this configuration, it is possible to provide a current sensor with low power consumption at a small current and a wide measurement range.
  • a magnetic sensor whose characteristics are changed by an induced magnetic field from the current to be measured, a shunt resistor connected in series to a current line through which the current to be measured flows, and the magnetic sensor at a small current Switching to magnetic detection with the output voltage of the sensor as the sensor output and switching between the shunt resistance detection with the voltage difference of the shunt resistance as the sensor output at the time of a large current. Magnetic detection and shunt resistance detection are performed. Therefore, the measurement range can be widened, the measurement can be performed with high accuracy at a low current, and the space can be saved.
  • the magnetic proportional current sensor can measure a relatively small measured current with low power consumption with high accuracy.
  • the magnetic proportional current sensor cannot be used because the magnetic core is magnetically saturated due to the magnetic field and the subsequent output value is distorted, and the dynamic range of the current to be measured is narrow. It becomes a thing.
  • the magnetic balance type current sensor has a more complicated configuration than the magnetic proportional current sensor, but can measure the current to be measured with high accuracy even compared with the magnetic proportional current sensor.
  • the magnetic balance type current sensor cannot take a wide dynamic range of the current to be measured because there is an upper limit to the current that continues to flow through the feedback coil due to various conditions such as the power supply voltage.
  • a method of measuring the current to be measured from the voltage difference of the shunt resistor can be considered.
  • the resistance value of the shunt resistor is set small in order to widen the dynamic range. Thereby, a large current to be measured can be detected, but sufficient measurement accuracy cannot be obtained when measuring a small current to be measured.
  • the present inventors pay attention to the above points, and by switching between magnetic detection and shunt resistance detection according to the magnitude of the current to be measured, the measurement range is widened and high accuracy is achieved at low currents.
  • the present inventors have found that measurement can be achieved and space saving can be realized, and the present invention has been achieved.
  • power consumption can be reduced by using magnetic proportional detection, and detection can be performed with high accuracy by using magnetic balance detection.
  • the essence of the present invention is that a magnetic sensor whose characteristics are changed by an induced magnetic field from a current to be measured, a shunt resistor connected in series to a current line that circulates the current to be measured, and the magnetic sensor at a small current.
  • a current sensor comprising: magnetic detection using the output voltage as a sensor output; and a switching unit that switches between shunt resistance detection using the voltage difference of the shunt resistance as a sensor output when the current is large. In other words, it is possible to detect with high accuracy at a small current and to save space.
  • FIG. 1 is a diagram showing a current sensor according to Embodiment 1 of the present invention.
  • the current sensor 1 shown in FIG. 1 is disposed in the vicinity of the current line through which the current to be measured flows.
  • the current sensor 1 controls a shunt resistor 11 connected in series to a current line, a magnetic balance type sensor 12 arranged with respect to the shunt resistor 11 via an insulating material 14, and the shunt resistor 11 and the magnetic balance type sensor 12.
  • a control unit 13 see FIG. 2.
  • the shunt resistor 11 has a large cross-sectional area and is set to have a low resistance so that the current sensor 1 can measure a large current.
  • the shunt resistor 11 is formed in a plate shape, and is integrated with the magnetic balance sensor 12 via an insulating material 14 attached to the plate surface. In this case, since the magnetic balance sensor 12 detects the current to be measured flowing through the shunt resistor 11 by the generated magnetic field, the measurement is performed without contact.
  • FIG. 2 is a block diagram showing the current sensor according to Embodiment 1 of the present invention.
  • the magnetic balance sensor 12 includes a feedback coil 121 disposed so as to generate a magnetic field that cancels a magnetic field generated by a current to be measured, and a bridge circuit 122 including a magnetoresistive effect element that is a magnetic detection element.
  • the control unit 13 amplifies the differential output of the shunt resistor 11, a differential / current amplifier 132 that amplifies the differential output of the bridge circuit 122 and controls the feedback current of the feedback coil 121, and magnetic It includes an I / V amplifier 133 that converts the feedback current of the balanced sensor 12 into a voltage, and a switch circuit 134 that switches between shunt resistance detection and magnetic balance detection.
  • the feedback coil 121 is disposed in the vicinity of the magnetoresistive effect element of the bridge circuit 122, and generates a canceling magnetic field that cancels the induced magnetic field generated by the current to be measured.
  • the magnetoresistive effect element of the bridge circuit 122 include a GMR (Giant Magneto Resistance) element and a TMR (Tunnel Magneto Resistance) element.
  • the magnetoresistive element changes its resistance value by applying an induced magnetic field from a current to be measured.
  • a magnetoresistive effect element it is easy to arrange the sensitivity axis in a direction parallel to the substrate surface on which the current sensor is installed, and a planar coil can be used.
  • the bridge circuit 122 has two outputs that generate a voltage difference according to the induced magnetic field generated by the current to be measured. Two outputs of the bridge circuit 122 are amplified by a differential / current amplifier 132. In the case of the magnetic balanced detection mode (balanced mode), the amplified output is given to the feedback coil 121 as a current (feedback current). This feedback current corresponds to a voltage difference according to the induced magnetic field. At this time, a cancellation magnetic field that cancels the induction magnetic field is generated in the feedback coil 121. Then, the current flowing through the feedback coil 121 when the induced magnetic field and the canceling magnetic field cancel each other is converted into a voltage by the I / V amplifier 133, and this voltage becomes the sensor output.
  • a differential / current amplifier 132 In the case of the magnetic balanced detection mode (balanced mode), the amplified output is given to the feedback coil 121 as a current (feedback current). This feedback current corresponds to a voltage difference according to the induced magnetic field. At this
  • the power supply voltage is set to a value close to the reference voltage for I / V conversion + (maximum value within the rated value of feedback coil resistance ⁇ feedback coil current at full scale), thereby providing feedback.
  • the current is automatically limited, and the effect of protecting the magnetoresistive effect element and the feedback coil can be obtained.
  • the differential of the two outputs of the bridge circuit 122 is amplified and used as a feedback current. However, only the midpoint potential is output from the bridge circuit, and the feedback current is based on the potential difference from a predetermined reference potential. It is good.
  • the switch circuit 134 switches between shunt resistance detection using the voltage difference from the differential amplifier 131 as sensor output and magnetic balance detection using the voltage converted by the I / V amplifier 133 as sensor output. In this way, the switch circuit 134 generates a magnetic field (cancellation magnetic field) that cancels the induced magnetic field caused by the current to be measured flowing in the current line (shunt resistor 11) in the balanced mode, and in the shunt resistance mode, Circuit control is performed so as not to generate a cancel magnetic field. That is, the switch circuit 134 switches ON / OFF of the feedback current in the magnetic balance detection mode.
  • the magnetic balanced sensor 12 has an upper limit on the current that continues to flow through the feedback coil 121 due to a shortage of the power supply voltage. Range is narrowed. Further, since the shunt resistor 11 is set to have a small resistance value, the output voltage at the time of a small current to be measured is very small, so that the measurement accuracy is low. Therefore, in order to widen the measurement range and improve the measurement accuracy when measuring small currents, magnetic balance detection is used in the region of relatively small current to be measured, and shunting is performed in the region of relatively large current to be measured. It is desirable to use resistance detection.
  • the switch circuit 134 switches between magnetic balance detection and shunt resistance detection (mode switching) by determining a threshold value for the current to be measured. Specifically, magnetic balance detection is performed on the small measured current side, and shunt resistance detection is performed on the larger measured current side.
  • the threshold value of the current to be measured will be described with reference to FIG.
  • the output characteristic of the magnetic balance sensor 12 becomes constant when A1 or less, changes linearly from A1 to A2, and becomes constant again when A2 or more. It is desirable that the thresholds P1 and P2 of the current to be measured be set so that magnetic balance detection is used within a range in which linearity is maintained due to such output specific change. Furthermore, it is desirable that the threshold values P1 and P2 are set in a range where noise becomes a problem in the shunt resistance detection within a range in which linearity is maintained. The threshold values P1 and P2 may be set within the range in which the linearity of the output characteristics of the magnetic balance sensor 12 is obtained, and may be set to the upper limit and the lower limit of the range in which the linearity is obtained.
  • the linearity of the output characteristics of the magnetic sensor is caused by the characteristics of the magnetoresistive effect element and the distance between the magnetoresistive effect element and the feedback coil 121. Therefore, the linearity is appropriately set according to these factors. Further, the threshold value for switching from magnetic balance detection to shunt resistance detection may be provided with hysteresis to avoid frequent switching.
  • the switch circuit 134 may switch between magnetic balance detection and shunt resistance detection by an external signal. By doing in this way, the power consumption of a current sensor can be suppressed at a timing when the user wants to save power, such as in a sleep mode. In this case, a mode signal is input to the switch circuit 134 from the outside.
  • the switch circuit 134 indicates information indicating in which mode the current to be measured is measured (a signal indicating a magnetic balance detection state or a shunt resistance detection state). ) May be output to the outside. Thereby, it is possible to confirm which mode the current sensor is currently in.
  • the switch circuit 134 is configured to be connectable to an external monitor.
  • the switch circuit 134 automatically switches the mode, the threshold value may be determined for the current to be measured, and the mode may be switched based on the result, from the device equipped with the current sensor. Mode switching may be performed based on the information.
  • FIG. 4A is a comparative example, and shows a case where a small current is measured by a shunt resistance type.
  • FIG. 4B shows this embodiment, and shows a case where a small current is measured by a magnetic balance type.
  • FIG. 5A is a comparative example, and shows a case where a large current is measured by a magnetic balance method.
  • FIG. 5B shows the present embodiment, and shows a case where a large current is measured by a shunt resistance type.
  • the measurement is performed by the magnetic balance method in a small current region where sufficient measurement accuracy cannot be obtained by the shunt resistance method, and by the shunt resistance method in a large current region other than the small current region.
  • the method is switched.
  • the measurement range can be expanded and the measurement accuracy at a small current can be increased.
  • the single current sensor 1 can switch between magnetic balance detection and shunt resistance detection, space saving can be achieved.
  • FIG. 6 is a block diagram showing a current sensor according to Embodiment 2 of the present invention.
  • the current sensor 2 controls the shunt resistor 21 connected in series to the current line, the magnetic proportional sensor 22 arranged with respect to the shunt resistor 21 via an insulating substrate, and the shunt resistor 21 and the magnetic proportional sensor 22.
  • the magnetic proportional sensor 22 includes a bridge circuit 222 including two magnetoresistive elements that are magnetic detection elements and two fixed elements.
  • the control unit 23 includes a differential amplifier 231 that amplifies the differential output of the shunt resistor 21, a differential amplifier 232 that amplifies the differential output of the bridge circuit 222, and a switch circuit that switches between shunt resistance detection and magnetic proportional detection. 234.
  • the switch circuit 234 uses the voltage of the differential amplifier 231 as a sensor output in the shunt resistance detection mode, and uses the voltage of the differential amplifier 232 as a sensor output in the magnetic proportional detection mode.
  • the magnetic proportional sensor 22 cannot be used because the magnetic core and the magnetoresistive element are magnetically saturated due to the magnetic field, and the output value thereafter becomes out of order.
  • the dynamic range of the measurement current is narrowed.
  • the magnetic proportional sensor 22 consumes less power than other methods such as shunt resistance detection and magnetic proportional detection when the current to be measured is small.
  • the shunt resistor 21 has a small resistance value, the measurement accuracy of a small current to be measured is low. Therefore, in order to increase the measurement range, increase the measurement accuracy during small current measurement, and reduce the power consumption, magnetic proportional detection is used in the region of a relatively small current to be measured. It is desirable to use shunt resistance detection in the measurement current region.
  • the switch circuit 234 determines a threshold value for the current to be measured, and performs a magnetic proportional detection on the smaller measured current side and a shunt resistance detection on the larger measured current side.
  • the threshold is set within the range in which linearity is obtained.
  • the measurement is performed by the magnetic proportional method in the small current region where sufficient measurement accuracy cannot be obtained by the shunt resistance method, and is measured by the shunt resistance method in the large current region other than the small current region.
  • the measurement method is switched to.
  • the measurement range can be expanded and the measurement accuracy at a small current can be increased.
  • the second embodiment uses magnetic proportional detection in the small electricity region, the power consumption can be reduced as compared with the first embodiment.
  • the single current sensor 1 can switch between magnetic balance detection and shunt resistance detection, space saving can be achieved.
  • the current sensor according to the first and second embodiments described above can be applied to a device having a large current mode and a small current mode during operation.
  • the current sensor is used in a battery current sensor of an electric vehicle or a hybrid car. Applicable.
  • a current of about several hundred A flows from the battery.
  • the current detection is performed by the shunt resistance type in the embodiment.
  • the vehicle is stopped and parked, almost no current flows, and self-discharge or dark current of 1 A or less occurs.
  • current detection by the magnetic balance type of the above embodiment is performed. This makes it possible to detect the amount of battery usage with high accuracy, expand the range of battery usage, and improve the travel distance and reduce the amount of battery usage.
  • the present invention is not limited to the first and second embodiments, and can be implemented with various modifications.
  • the connection relationship and size of each element in the first and second embodiments can be changed as appropriate.
  • a magnetoresistive effect element is used for the magnetic balance type current sensor.
  • a Hall element or other magnetic detection element is used for the magnetic balance type current sensor. Also good.
  • the present invention can be implemented with appropriate modifications without departing from the scope of the present invention.
  • the present invention can be applied to a current sensor for detecting a current for driving a motor of an electric vehicle or a hybrid car or charging / discharging of a battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

 広い測定範囲にわたる高精度の測定及び省電力化を両立でき、しかも省スペース化を図ることができる電流センサを提供すること。本発明の電流センサは、被測定電流からの誘導磁界の印加により特性が変化する磁気センサ素子の近傍に配置され、前記誘導磁界を相殺するキャンセル磁界を発生するフィードバックコイル(121)とを含む磁気平衡式センサと、被測定電流を流通する電流線に直列に接続されたシャント抵抗(11)と、小電流時に磁気平衡式検出に切り替え、大電流時にシャント抵抗式検出に切り替えるスイッチ回路(134)と、を具備することを特徴とする。

Description

電流センサ
 本発明は、広い測定範囲にわたって高精度かつ低消費電力である電流センサに関する。
 例えば、電気自動車やハイブリット(電気とガソリンの併用)車のモータ駆動用の電流の大きさは、電流センサにより測定される。また、モータ駆動用バッテリーにおいても、バッテリーから出入りする電流量を電流センサにより検知することで、バッテリー残量管理を行っている。この電流センサとしては、磁気比例式電流センサと、磁気平衡式電流センサとがある。磁気比例式電流センサにおいては、磁性体コアの中に生じた磁力線によりコアギャップに被測定電流に比例した磁界が通り、磁気検出素子がこの磁界を電圧信号に変換して、被測定電流に比例した出力電圧を発生する。一方、磁気平衡式電流センサにおいては、被測定電流が流れると、電流に応じた磁界により磁気検出素子に出力電圧が生じ、この磁気検出素子から出力された電圧信号が電流に変換されてフィードバックコイルにフィードバックされる。そして、磁気平衡式電流センサは、このフィードバックコイルにより発生する磁界(キャンセル磁界)と被測定電流により生じる磁界とが打ち消しあって磁界が常に0になるように動作し、このときフィードバックコイルに流れるフィードバック電流を電圧変換させて出力として取り出す。
 上記電流センサにおける磁気検出素子としては、例えば、ホール素子やGMR(Giant Magneto Resistance)素子のような磁気抵抗効果素子が用いられる。磁気検出素子としてホール素子を用いた磁気比例式電流センサでは、測定レンジを広げると、被測定電流が小さいときに分解能が落ち、磁気検出素子としてホール素子を用いた磁気平衡式電流センサでは、大電流による磁場を打ち消しきれない。このため、両者の欠点を補う方法として、特許文献1には、ホール素子を用いた磁気比例式電流センサとホール素子を用いた磁気平衡式電流センサを配置して、被測定電流の大小に応じてこれらを切り替えて用いる方法が開示されている。
特開2007-78416号公報
 ところで、磁気平衡式電流センサおよび磁気比例式電流センサ等の磁気式電流センサは、磁気飽和や電源電圧の諸条件等により測定レンジが制限されている。このため、被測定電流を磁気式電流センサで測定する場合には、磁気式電流センサの使用が測定レンジ内に限られていた。特許文献1に開示された技術では、大電流領域で磁気比例式電流センサが使用されるが、磁気比例式電流センサの使用が磁気飽和しない範囲に限られ、測定レンジを広くとることができなかった。また、特許文献1に開示された技術では、2種類の電流センサを別々に用意しなければならない。このため、省スペース化が図れず、また製造プロセスも複雑になる。
 本発明はかかる点に鑑みてなされたものであり、測定範囲を広くすると共に、低電流時に高精度に測定でき、しかも省スペース化を図ることができる電流センサを提供することを目的とする。
 本発明の電流センサは、被測定電流からの誘導磁界により特性が変化する磁気センサと、前記被測定電流を流通する電流線に直列に接続されたシャント抵抗と、小電流時に前記磁気センサの出力電圧をセンサ出力とする磁気式検出に切り替え、大電流時に前記シャント抵抗の電圧差をセンサ出力とするシャント抵抗式検出を切り替える切替部と、を具備することを特徴とする。
 この構成によれば、小電流時には磁気式検出により高精度とし、大電流時にはシャント抵抗式検出により測定レンジを広くすることができる。また、単一の電流センサにおいて磁気式検出及びシャント抵抗式検出を切り替えることができるため、省スペース化を図ることができる。
 本発明の電流センサにおいては、前記切替部は、前記磁気センサの出力特性で直線性が得られる範囲内に閾値を設け、前記被測定電流の大きさが、前記閾値よりも小さい場合を小電流時として前記磁気式検出に切り替え、前記閾値以上の場合を大電流時として前記シャント抵抗式検出に切り替えることが好ましい。この構成によれば、測定レンジを広げることができると共に、磁気センサの出力特性で直線性が得られる範囲内では測定精度を高めることができる。
 本発明の電流センサにおいては、前記磁気センサは、前記シャント抵抗に絶縁基板を介して設けられたことが好ましい。この構成によれば、大電流を測定可能なようにシャント抵抗の抵抗値が低く設定されるので、小電流時に磁気センサによりシャント抵抗に流れる被測定電流を検出することができる。
 本発明の電流センサにおいては、前記磁気センサは、前記被測定電流からの誘導磁界により特性が変化する磁気センサ素子と前記磁気センサ素子の近傍に配置され、前記誘導磁界を相殺するキャンセル磁界を発生するフィードバックコイルとを含む磁気平衡式センサであることが好ましい。この構成によれば、小電流時に高精度の測定を可能とし、測定レンジの広い電流センサを提供できる。
 本発明の電流センサにおいては、前記磁気センサは、前記被測定電流からの誘導磁界により特性が変化する磁気センサ素子を含む磁気比例式センサであることが好ましい。この構成によれば、小電流時に低消費電力とし、測定レンジの広い電流センサを提供できる。
 本発明の電流センサによれば、被測定電流からの誘導磁界により特性が変化する磁気センサと、前記被測定電流を流通する電流線に直列に接続されたシャント抵抗と、小電流時に前記磁気センサの出力電圧をセンサ出力とする磁気式検出に切り替え、大電流時に前記シャント抵抗の電圧差をセンサ出力とするシャント抵抗式検出を切り替える切替部と、を具備しており、単一の電流センサで磁気式検出及びシャント抵抗式検出を行う。このため、測定レンジを広くすると共に、低電流時に高精度に測定でき、しかも省スペース化を図ることができる。
本発明の実施の形態1に係る電流センサを示す図である。 本発明の実施の形態1に係る電流センサのブロック図である。 本発明の実施の形態1に係る被測定電流の閾値の説明図である。 本発明の実施の形態1に係る磁気平衡式の測定結果の説明図である。 本発明の実施の形態1に係るシャント抵抗式の測定結果の説明図である。 本発明の実施の形態2に係る電流センサのブロック図である。
 磁気比例式電流センサは、少ない消費電力で比較的小さな被測定電流を高精度に測定することができる。しかしながら、磁気比例式電流センサは、被測定電流が大きい場合には、その磁場により磁性体コアが磁気飽和してその後の出力値が狂ってしまうため利用できず、被測定電流のダイナミックレンジが狭いものとなってしまう。一方、磁気平衡式電流センサは、磁気比例式電流センサよりも構成が複雑ではあるが、磁気比例と比較しても高精度で被測定電流を測定することができる。しかしながら、磁気平衡式電流センサは、被測定電流が大きい場合には、電源電圧等の諸条件によりフィードバックコイルに流し続ける電流に上限があるため、被測定電流のダイナミックレンジを広くとることができない。
 ダイナミックレンジを広げるためには、シャント抵抗の電圧差から被測定電流を測定する方法が考えられる。このシャント抵抗式の測定方法では、ダイナミックレンジを広げるためにシャント抵抗の抵抗値を小さく設定する。これにより、大きな被測定電流を検出できるが、小さな被測定電流の測定時に十分な測定精度が得られない。
 本発明者らは上記の点に着目し、被測定電流の大小に応じて磁気式検出とシャント抵抗式検出とを切り替えて利用することにより、測定レンジを広くすると共に、低電流時に高精度な測定を図ることができ、しかも省スペース化を実現できることを見出し、本発明をするに至った。特に、相対的に小さい電流を測定する際に、磁気比例式検出を用いることにより消費電力を小さくでき、磁気平衡式検出を用いることにより高精度に検出できる。
 すなわち、本発明の骨子は、被測定電流からの誘導磁界により特性が変化する磁気センサと、前記被測定電流を流通する電流線に直列に接続されたシャント抵抗と、小電流時に前記磁気センサの出力電圧をセンサ出力とする磁気式検出、及び、大電流時に前記シャント抵抗の電圧差をセンサ出力とするシャント抵抗式検出を切り替える切替部と、を具備する電流センサにより、測定レンジを広くすると共に、小電流時に高精度に検出でき、しかも省スペース化を図ることである。
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。
(実施の形態1)
 図1は、本発明の実施の形態1に係る電流センサを示す図である。本実施の形態においては、図1に示す電流センサ1は、被測定電流が流れる電流線の近傍に配設される。電流センサ1は、電流線に直列接続されたシャント抵抗11と、シャント抵抗11に対して絶縁材14を介して配置された磁気平衡式センサ12と、シャント抵抗11および磁気平衡式センサ12を制御する制御部13(図2参照)とを有している。シャント抵抗11は、断面積が大きく形成され、電流センサ1において大電流を測定可能なように抵抗値が低く設定されている。シャント抵抗11は、板状に形成されており、板面に取り付けられた絶縁材14を介して磁気平衡式センサ12と一体となっている。この場合、磁気平衡式センサ12は、シャント抵抗11を流れる被測定電流を発生磁界により検出するため、非接触での測定となっている。
 図2は、本発明の実施の形態1に係る電流センサを示すブロック図である。磁気平衡式センサ12は、被測定電流によって発生する磁界を打ち消す磁界を発生可能に配置されたフィードバックコイル121と、磁気検出素子である磁気抵抗効果素子からなるブリッジ回路122とから構成されている。制御部13は、シャント抵抗11の差動出力を増幅する差動アンプ131と、ブリッジ回路122の差動出力を増幅し、フィードバックコイル121のフィードバック電流を制御する差動・電流アンプ132と、磁気平衡式センサ12のフィードバック電流を電圧に変換するI/Vアンプ133と、シャント抵抗式検出及び磁気平衡式検出を切り替えるスイッチ回路134とを含む。
 フィードバックコイル121は、ブリッジ回路122の磁気抵抗効果素子の近傍に配置されており、被測定電流により発生する誘導磁界を相殺するキャンセル磁界を発生する。ブリッジ回路122の磁気抵抗効果素子としては、GMR(Giant Magneto Resistance)素子やTMR(Tunnel Magneto Resistance)素子などを挙げることができる。磁気抵抗効果素子は、被測定電流からの誘導磁界の印加により抵抗値が変化する。また、磁気抵抗効果素子を用いることにより、電流センサを設置する基板面と平行な方向に感度軸を配置し易く、平面コイルを使用することが可能となる。
 ブリッジ回路122は、被測定電流により生じた誘導磁界に応じた電圧差を生じる2つの出力を備える。ブリッジ回路122の2つの出力は差動・電流アンプ132で増幅される。磁気平衡式検出のモード(平衡式モード)の場合には、増幅された出力がフィードバックコイル121に電流(フィードバック電流)として与えられる。このフィードバック電流は、誘導磁界に応じた電圧差に対応する。このとき、フィードバックコイル121には、誘導磁界を相殺するキャンセル磁界が発生する。そして、誘導磁界とキャンセル磁界とが相殺される平衡状態となったときのフィードバックコイル121に流れる電流がI/Vアンプ133で電圧に変換され、この電圧がセンサ出力となる。
 なお、差動・電流アンプ132においては、電源電圧を、I/V変換の基準電圧+(フィードバックコイル抵抗の定格内最大値×フルスケール時フィードバックコイル電流)に近い値に設定することで、フィードバック電流が自動的に制限され、磁気抵抗効果素子やフィードバックコイルを保護する効果が得られる。また、ここではブリッジ回路122の二つの出力の差動を増幅してフィードバック電流に用いたが、ブリッジ回路からは中点電位のみを出力とし、所定の基準電位との電位差をもとにフィードバック電流としてもよい。
 スイッチ回路134は、差動アンプ131からの電圧差をセンサ出力とするシャント抵抗式検出、及び、I/Vアンプ133で変換された電圧をセンサ出力とする磁気平衡式検出を切り替える。このように、スイッチ回路134は、平衡式モードの際に、電流線(シャント抵抗11)に流れる被測定電流による誘導磁界を打ち消す磁界(キャンセル磁界)を生じさせ、シャント抵抗式モードの際に、キャンセル磁界を生じさせないように回路制御を行う。すなわち、スイッチ回路134は、磁気平衡式検出モードのフィードバック電流のON/OFFを切り替える。
 上述したように、磁気平衡式センサ12は、被測定電流が大きい場合には、電源電圧の不足等によりフィードバックコイル121に流し続ける電流に上限があるため、出力が飽和して被検出電流の測定レンジが狭くなる。また、シャント抵抗11は、抵抗値が小さく設定されているため、小さな被測定電流時の出力電圧が非常に小さいため、測定精度が低くなる。したがって、測定レンジを広くし、しかも小電流測定時の測定精度を高めるためには、相対的に小さい被測定電流の領域で磁気平衡式検出を用い、相対的に大きい被測定電流の領域でシャント抵抗式検出を用いることが望ましい。
 したがって、スイッチ回路134は、被測定電流に対して閾値判定することにより、磁気平衡式検出とシャント抵抗式検出とを切り替える(モード切り替え)。具体的には、小さい被測定電流側で磁気平衡式検出とし、それより大きい被測定電流側でシャント抵抗式検出とする。ここで、図3を参照して、被測定電流の閾値について説明する。
 図3に示すように、磁気平衡式センサ12の出力特性は、A1以下で一定となり、A1からA2までは直線的に変化し、A2以上で再び一定となる。このような出力特定の変化により、被測定電流の閾値P1、P2は、直線性が維持される範囲内で磁気平衡式検出が用いられるように設定されることが望ましい。さらに、閾値P1、P2は、直線性が維持される範囲内において、シャント抵抗式検出でノイズが問題となる範囲に設定されることが望ましい。なお、閾値P1、P2は、磁気平衡式センサ12の出力特性の直線性が得られる範囲内であればよく、直線性の得られる範囲の上限および下限に設定されてもよい。
 なお、磁気センサの出力特性の直線性は、磁気抵抗効果素子の特性や磁気抵抗効果素子とフィードバックコイル121との間の距離に起因するので、これらの要因に応じて適宜設定する。また、磁気平衡式検出からシャント抵抗式検出に切り替える閾値は、頻繁な切り替えを避けるためにヒステリシスを設けても良い。
 また、スイッチ回路134は、外部信号により磁気平衡式検出とシャント抵抗式検出を切り替えても良い。このようにすることにより、スリープモードなど、ユーザが省電力化したいタイミングで、電流センサの消費電力を抑えることができる。この場合においては、モード信号が外部からスイッチ回路134に入力される。
 また、スイッチ回路134は、自動的にモード切り替えを行う場合には、どちらのモードで被測定電流を測定しているかの情報(磁気平衡式検出状態又はシャント抵抗式検出状態であることを示す信号)を外部に出力するように構成しても良い。これにより、電流センサが現在どのモードであるかを確認することができる。この場合においては、スイッチ回路134が外部モニタに接続可能に構成される。なお、スイッチ回路134において自動的にモード切り替えを行う場合には、被測定電流に対して閾値判定を行い、その結果に基づいてモード切り替えを行っても良く、電流センサが装着されている機器からの情報に基づいてモード切り替えを行っても良い。
 ここで、本発明の電流センサを用いて、磁気平衡式検出とシャント抵抗式検出とについて説明する。ここでは、小電流の測定時および大電流の測定時のそれぞれにおいて、磁気平衡式の測定結果とシャント抵抗式の測定結果とを比較しつつ説明する。先ず、小電流時の測定について説明する。図4Aは比較例であり、小電流をシャント抵抗式で測定した場合を示す。図4Bは本実施の形態であり、小電流を磁気平衡式で測定した場合を示す。
 図4Aの比較例に示すように、±1A以内(例えば、±0.20A以内)の小電流がシャント抵抗式で測定されると、直線的な出力傾向を示すものの50mA程度の分解能で誤差を生じる。これは、シャント抵抗11が、大電流を測定するために抵抗値が小さく設定されているからである。よって、小電流領域においてシャント抵抗式で測定する場合には、ノイズにより十分な測定精度が得られない。一方、図4Bの本実施の形態に示すように、±1A以内(例えば、±0.20A以内)の小電流が磁気平衡式で測定されると、1mA以下の分解能でも直線的な出力特性が得られる。よって、小電流領域において磁気平衡式で測定する場合には、十分な測定精度を得ることができる。
 次に、大電流時の測定について説明する。図5Aは比較例であり、大電流を磁気平衡式で測定した場合を示す。図5Bは本実施の形態であり、大電流をシャント抵抗式で測定した場合を示す。
 図5Aの比較例に示すように、±1500Aの範囲内で電流が磁気平衡式で測定されると、±500A以上で直線性が劣化する。これは、磁気平衡式センサが、電源電圧等の諸条件によりフィードバックコイル121に流し続ける電流に上限があるからである。よって、大電流領域において磁気平衡式で測定する場合には、ダイナミックレンジを広くとることができない。一方、図5Bの本実施の形態に示すように、±1500Aの範囲内で電流がシャント抵抗式で測定されると、±1500A程度でも直線性が保たれる。よって、大電流領域においてシャント抵抗式で測定する場合には、ダイナミックレンジを広くとることができる。
 したがって、実施の形態1においては、シャント抵抗式により十分な測定精度が得られない小電流領域において磁気平衡式で測定し、小電流領域以外の大電流領域でシャント抵抗式により測定するように測定方式を切り替えている。これにより、測定レンジを広げることができると共に、小電流時の測定精度を高めることが可能となる。また、単一の電流センサ1において磁気平衡式検出及びシャント抵抗式検出を切り替えることができるため、省スペース化を図ることができる。
(実施の形態2)
 次に、本発明の実施の形態2について説明する。実施の形態2は、上述した実施の形態1と磁気平衡式センサの代わりに磁気比例式センサを用いた点についてのみ相違する。したがって、特に相違点のみ説明する。
 図6は、本発明の実施の形態2に係る電流センサを示すブロック図である。電流センサ2は、電流線に直列接続されたシャント抵抗21と、シャント抵抗21に対して絶縁基板を介して配置された磁気比例式センサ22と、シャント抵抗21および磁気比例式センサ22を制御する制御部23とを有している。磁気比例式センサ22は、磁気検出素子である2つの磁気抵抗効果素子及び2つの固定素子からなるブリッジ回路222とから構成されている。制御部23は、シャント抵抗21の差動出力を増幅する差動アンプ231と、ブリッジ回路222の差動出力を増幅する差動アンプ232と、シャント抵抗式検出及び磁気比例式検出を切り替えるスイッチ回路234とを含む。スイッチ回路234は、シャント抵抗式検出モードにおいては、差動アンプ231の電圧をセンサ出力とし、磁気比例式検出モードにおいては、差動アンプ232の電圧をセンサ出力とする。
 上述したように、磁気比例式センサ22は、被測定電流が大きい場合には、その磁場により磁性体コアや磁気抵抗素子が磁気飽和してその後の出力値が狂ってしまうため利用できず、被測定電流のダイナミックレンジが狭くなる。また、磁気比例式センサ22は、被測定電流が小さい場合に、シャント抵抗式検出や磁気比例式検出等の他の方式に比べて消費電量が小さくなる。一方、シャント抵抗21は、抵抗値が小さく設定されているため、小さな被測定電流の測定精度が低くなる。したがって、測定レンジを広くし、しかも小電流測定時の測定精度を高めると共に消費電力を小さくするためには、相対的に小さい被測定電流の領域で磁気比例式検出を用い、相対的に大きい被測定電流の領域でシャント抵抗式検出を用いることが望ましい。
 そこで、本実施の形態では、スイッチ回路234が、被測定電流に対して閾値判定し、小さい被測定電流側で磁気比例式検出とし、それより大きい被測定電流側でシャント抵抗式検出とする。なお、磁気比例式センサにおいても、磁気平衡式センサと同様に出力特性に直線性が得られる範囲が限られるため(図3参照)、直線性が得られる範囲内に閾値が設定される。
 このように、実施の形態2においては、シャント抵抗式により十分な測定精度が得られない小電流領域において磁気比例式で測定し、小電流領域以外の大電流領域でシャント抵抗式により測定するように測定方式を切り替えている。これにより、測定レンジを広げることができると共に、小電流時の測定精度を高めることが可能となる。また、実施の形態2は、小電量領域において磁気比例式検出を用いているため、実施の形態1と比較して消費電力を小さくできる。また、単一の電流センサ1において磁気平衡式検出及びシャント抵抗式検出を切り替えることができるため、省スペース化を図ることができる。
 なお、上記した実施の形態1及び実施の形態2に係る電流センサは、動作時の大電流モードと小電流モードを有する機器に適用可能であり、例えば、電気自動車やハイブリットカーのバッテリー電流センサに適用可能である。
 例えば、走行時のモータ駆動時は、バッテリーより数百A程度の電流が流れる。この場合、前記実施の形態におけるシャント抵抗式での電流検出を行う。また、停車時および駐車時は、電流がほとんど流れておらず、1A以下の自己放電や暗電流である。この場合、前記実施の形態の磁気平衡式での電流検出を行う。これにより、バッテリー使用量を精度良く検出することが可能となり、バッテリーの使用範囲を広げることができ、走行距離の向上やバッテリー使用量の削減に効果がある。
 本発明は上記実施の形態1、2に限定されず、種々変更して実施することができる。例えば、上記実施の形態1、2における各素子の接続関係、大きさなどは適宜変更して実施することが可能である。また、上記実施の形態においては、磁気平衡式電流センサに磁気抵抗効果素子を用いた場合について説明しているが、磁気平衡式電流センサにホール素子やその他の磁気検出素子を用いて構成してもよい。その他、本発明は、本発明の範囲を逸脱しないで適宜変更して実施することができる。
 本発明は、電気自動車やハイブリッドカーのモータ駆動用の電流やバッテリーの充放電を検出する電流センサに適用することが可能である。
 本出願は、2010年7月7日出願の特願2010-154496に基づく。この内容は、全てここに含めておく。

Claims (5)

  1.  被測定電流からの誘導磁界により特性が変化する磁気センサと、
     前記被測定電流を流通する電流線に直列に接続されたシャント抵抗と、
     小電流時に前記磁気センサの出力電圧をセンサ出力とする磁気式検出に切り替え、大電流時に前記シャント抵抗の電圧差をセンサ出力とするシャント抵抗式検出を切り替える切替部と、を具備することを特徴とする電流センサ。
  2.  前記切替部は、前記磁気センサの出力特性で直線性が得られる範囲内に閾値を設け、前記被測定電流の大きさが、前記閾値よりも小さい場合を小電流時として前記磁気式検出に切り替え、前記閾値以上の場合を大電流時として前記シャント抵抗式検出に切り替えることを特徴とする請求項1に記載の電流センサ。
  3.  前記磁気センサは、前記シャント抵抗に絶縁基板を介して設けられたことを特徴とする請求項1または請求項2に記載の電流センサ。
  4.  前記磁気センサは、前記被測定電流からの誘導磁界により特性が変化する磁気センサ素子と前記磁気センサ素子の近傍に配置され、前記誘導磁界を相殺するキャンセル磁界を発生するフィードバックコイルとを含む磁気平衡式センサであることを特徴とする請求項1から請求項3のいずれかに記載の電流センサ。
  5.  前記磁気センサは、前記被測定電流からの誘導磁界により特性が変化する磁気センサ素子を含む磁気比例式センサであることを特徴とする請求項1から請求項3のいずれかに記載の電流センサ。
PCT/JP2011/059449 2010-07-07 2011-04-15 電流センサ WO2012005042A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012523785A JPWO2012005042A1 (ja) 2010-07-07 2011-04-15 電流センサ
CN2011800287896A CN102959408A (zh) 2010-07-07 2011-04-15 电流传感器
US13/665,624 US8970214B2 (en) 2010-07-07 2012-10-31 Current sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-154496 2010-07-07
JP2010154496 2010-07-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/665,624 Continuation US8970214B2 (en) 2010-07-07 2012-10-31 Current sensor

Publications (1)

Publication Number Publication Date
WO2012005042A1 true WO2012005042A1 (ja) 2012-01-12

Family

ID=45441028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059449 WO2012005042A1 (ja) 2010-07-07 2011-04-15 電流センサ

Country Status (4)

Country Link
US (1) US8970214B2 (ja)
JP (1) JPWO2012005042A1 (ja)
CN (1) CN102959408A (ja)
WO (1) WO2012005042A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113799A (ja) * 2011-11-30 2013-06-10 Ricoh Co Ltd 電流検知装置、電流検知素子および電流検知方法
JP2015210272A (ja) * 2014-04-28 2015-11-24 タイコ エレクトロニクス アンプ コリア カンパニーTyco Electronics AMP Korea Co.,Ltd ハイブリッド電流センサアセンブリ
CN105122078A (zh) * 2013-02-14 2015-12-02 J·S·帕斯理查企业有限责任公司 用于带具有分流器的环件的mri的磁场生成
JP2021124289A (ja) * 2020-01-31 2021-08-30 Tdk株式会社 電流センサ、磁気センサ及び回路

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558445B (zh) * 2013-11-13 2019-05-21 福禄克精密测量有限公司 电流检测电路以及测量装置
US9709609B2 (en) * 2014-07-14 2017-07-18 Covidien Lp Systems and methods for improving the range of sensor systems
GB201417993D0 (en) * 2014-10-10 2014-11-26 Trw Ltd A current measurement circuit
US10164481B2 (en) * 2016-11-21 2018-12-25 Witricity Corporation Current shunt monitor
KR102258813B1 (ko) 2018-11-20 2021-05-31 주식회사 엘지에너지솔루션 복합형 전류 측정장치
JP2021117056A (ja) * 2020-01-23 2021-08-10 キヤノン株式会社 電流検出装置および電源装置
CN115777068B (zh) * 2020-05-28 2024-09-27 日产自动车株式会社 电流检测装置及电流检测方法
CN112415251A (zh) * 2020-11-04 2021-02-26 汉华智能科技(佛山)有限公司 一种测量仪表用高动态范围交/直流电流的隔离测量方法
JP7273876B2 (ja) * 2021-03-08 2023-05-15 Tdk株式会社 磁気センサ装置、インバータ装置およびバッテリ装置
CN114264859A (zh) * 2021-12-21 2022-04-01 江苏多维科技有限公司 一种电流传感器
CN117289012B (zh) * 2023-11-24 2024-02-13 浙江森尼克半导体有限公司 双电流输入输出、双隔离的电流传感器、电流检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082971A (ja) * 1983-10-14 1985-05-11 Toyota Motor Corp 電気自動車用電流検出装置
JPH07218552A (ja) * 1994-02-04 1995-08-18 Nippon Soken Inc 電流測定装置
JP2007078416A (ja) * 2005-09-12 2007-03-29 Denso Corp 電流センサおよび電流検出方法
JP2007198917A (ja) * 2006-01-26 2007-08-09 Ntt Data Ex Techno Corp 電流計測回路及びその集積回路素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229927A (ja) * 1994-02-22 1995-08-29 Mitsubishi Electric Corp 電流センサ
JP2005003601A (ja) * 2003-06-13 2005-01-06 Fuji Electric Holdings Co Ltd ハイブリッドセンサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082971A (ja) * 1983-10-14 1985-05-11 Toyota Motor Corp 電気自動車用電流検出装置
JPH07218552A (ja) * 1994-02-04 1995-08-18 Nippon Soken Inc 電流測定装置
JP2007078416A (ja) * 2005-09-12 2007-03-29 Denso Corp 電流センサおよび電流検出方法
JP2007198917A (ja) * 2006-01-26 2007-08-09 Ntt Data Ex Techno Corp 電流計測回路及びその集積回路素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113799A (ja) * 2011-11-30 2013-06-10 Ricoh Co Ltd 電流検知装置、電流検知素子および電流検知方法
CN105122078A (zh) * 2013-02-14 2015-12-02 J·S·帕斯理查企业有限责任公司 用于带具有分流器的环件的mri的磁场生成
CN105122078B (zh) * 2013-02-14 2019-04-05 J·S·帕斯理查企业有限责任公司 具有单个厚环件的磁共振成像
CN105122078B9 (zh) * 2013-02-14 2019-06-04 J·S·帕斯理查企业有限责任公司 具有单个厚环件的磁共振成像
JP2015210272A (ja) * 2014-04-28 2015-11-24 タイコ エレクトロニクス アンプ コリア カンパニーTyco Electronics AMP Korea Co.,Ltd ハイブリッド電流センサアセンブリ
JP2021124289A (ja) * 2020-01-31 2021-08-30 Tdk株式会社 電流センサ、磁気センサ及び回路
JP7140149B2 (ja) 2020-01-31 2022-09-21 Tdk株式会社 電流センサ、磁気センサ及び回路

Also Published As

Publication number Publication date
US8970214B2 (en) 2015-03-03
JPWO2012005042A1 (ja) 2013-09-02
CN102959408A (zh) 2013-03-06
US20130057275A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
WO2012005042A1 (ja) 電流センサ
JP5604652B2 (ja) 電流センサ
JP5531213B2 (ja) 電流センサ
JP5699301B2 (ja) 電流センサ
WO2012011306A1 (ja) 電流センサ
WO2012053296A1 (ja) 電流センサ
US8847591B2 (en) Current sensor
JP4816952B2 (ja) 電流センサ
JP5668224B2 (ja) 電流センサ
US11397225B2 (en) Current sensor, magnetic sensor and circuit
WO2013038867A1 (ja) 電流センサ
WO2012046547A1 (ja) 電流センサ
JP5487403B2 (ja) 電流センサ
JP2010286415A (ja) 電流センサユニット
WO2012046537A1 (ja) 電流センサ
JPH07209336A (ja) 電流センサ
JP2010286270A (ja) 電流センサ
WO2012063584A1 (ja) 電流センサ
JP2012225872A (ja) 電流センサ
JP2009168644A (ja) 磁気平衡式電流センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180028789.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803378

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012523785

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803378

Country of ref document: EP

Kind code of ref document: A1