WO2012067338A2 - 레독스 흐름 전지용 전극, 그 전극의 제조방법, 레독스 흐름 전지용 전해액 제조장치, 그 제조방법, 전해액의 선택이온 농도계, 선택이온 농도 측정방법 및 자립용 전지 시스템 - Google Patents

레독스 흐름 전지용 전극, 그 전극의 제조방법, 레독스 흐름 전지용 전해액 제조장치, 그 제조방법, 전해액의 선택이온 농도계, 선택이온 농도 측정방법 및 자립용 전지 시스템 Download PDF

Info

Publication number
WO2012067338A2
WO2012067338A2 PCT/KR2011/006127 KR2011006127W WO2012067338A2 WO 2012067338 A2 WO2012067338 A2 WO 2012067338A2 KR 2011006127 W KR2011006127 W KR 2011006127W WO 2012067338 A2 WO2012067338 A2 WO 2012067338A2
Authority
WO
WIPO (PCT)
Prior art keywords
solution
electrolyte
electrode
chamber
redox
Prior art date
Application number
PCT/KR2011/006127
Other languages
English (en)
French (fr)
Other versions
WO2012067338A3 (ko
Inventor
위순명
다카무라다카츠구
Original Assignee
Wy Soon Myung
Takamura Takstsugu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100113328A external-priority patent/KR20120051944A/ko
Priority claimed from KR1020100113327A external-priority patent/KR101371164B1/ko
Priority claimed from KR20100116569A external-priority patent/KR101298174B1/ko
Priority claimed from KR1020100116813A external-priority patent/KR20120055208A/ko
Application filed by Wy Soon Myung, Takamura Takstsugu filed Critical Wy Soon Myung
Priority to EP11841113.1A priority Critical patent/EP2642572A4/en
Priority to CN2011800028783A priority patent/CN102687329A/zh
Publication of WO2012067338A2 publication Critical patent/WO2012067338A2/ko
Publication of WO2012067338A3 publication Critical patent/WO2012067338A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8615Bifunctional electrodes for rechargeable cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/20Application within closed fluid conduits, e.g. pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/60Application making use of surplus or waste energy
    • F05B2220/602Application making use of surplus or waste energy with energy recovery turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/60Application making use of surplus or waste energy
    • F05B2220/604Application making use of surplus or waste energy for domestic central heating or production of electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/80Size or power range of the machines
    • F05B2250/82Micromachines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow battery and a redox battery system, and more particularly, an electrode for a redox battery constituting a redox flow battery, a method of manufacturing the electrode, an electrolyte manufacturing apparatus for a redox flow battery, and a method of manufacturing the same,
  • the present invention relates to a selective ion concentration meter capable of measuring the concentration of the electrolyte constituting the redox flow battery, a method for measuring the selective ion concentration, and a self-supporting redox battery system.
  • renewable energy such as solar, wind, and fuel cells
  • renewable energy is greatly influenced by the location environment and natural conditions, so the output fluctuates so that it is impossible to supply continuously and the time difference between the point of energy production and demand occurs, which makes the energy storage system important.
  • MW-class large-capacity power storage batteries include lead acid batteries, NaS batteries, supercapacitors, lithium secondary batteries and redox flow batteries (RFBs).
  • the dual redox battery is an electrochemical charging device that stores and stores chemical energy of an electrolyte directly as electrical energy as a system in which an active material in an electrolyte is oxidized and reduced and charged and discharged.
  • the basic structure of the redox battery 10 is as shown in FIG. 1, and the components of the redox battery 10 circulate the positive / negative electrolyte tanks 11a / 11b in which active materials having different oxidation states are stored, and the active materials are charged and discharged.
  • the ion exchange membrane (membrane) 13 is positioned between two electrodes 14a and 14b to separate ions reacting with redox reactions during charging and discharging.
  • an electrolyte prepared by dissolving transition metals such as V, Fe, Cr, Cu, Ti, Mn, and Sn in a strong acid solution is used.
  • the prepared electrolyte is not stored in the cells (electrodes) 14a and 14b, but is stored in the external electrolyte tanks 11a and 11b in a liquid state, and the cells (through the pumps 12a and 12b during the charging and discharging process) are used. Electrodes) 14a and 14b.
  • the electrodes 14a and 14b used are inactive electrodes, and the electrode itself reacts between the surface of the electrode and the electrolyte without a chemical reaction, and thus has a long life, thereby distinguishing it from a conventional battery.
  • the battery stack (output) and the electrolyte tank (capacity) can be separated, the output and the capacity can be freely designed, and the installation location is less limited.
  • graphite As the redox battery electrodes 14a and 14b, graphite has been conventionally used without any inconvenience with respect to an electrolytic solution having good conductivity.
  • the graphite burned carbon, which is carbon fiber, at another high temperature, and when used as a redox battery electrode, there was a problem in that the anolyte and the catholyte were mixed as the electrolyte penetrated between the graphite plates.
  • a power storage device such as a battery
  • the installation of a power storage device is essential for the stable power supply of the power generation system using wind, solar, hydropower, etc.
  • lead acid batteries are used, but due to their short life, they need to be replaced periodically, and the maintenance problem is serious.
  • research on the redox flow battery energy storage system has been actively conducted since the problem of disposal of industrial waste caused by battery replacement is followed.
  • the performance of these redox flow batteries is inherent in parts such as the equivalent resistance of the electrodes, the distance between the electrodes, the comparative surface area of the fibrous activated carbon, and the equivalent resistance of the diaphragm (resistance component when it is equivalent in the resistor, not resistance when the ion permeates). Although it relates to the characteristic and the characteristic of electrolyte solution, the item regarding the characteristic of electrolyte solution is described here.
  • the redox battery is a type of battery in which redox is simultaneously performed at both the positive and negative poles, so the performance of the components described above is a little bad. However, if the basic characteristics of the electrolyte are not satisfactory, the battery lacks components. There is a problem that it does not move at all.
  • the requirement for electrolyte solution should be a solution of pentavalent vanadium salt as an anolyte solution and a solution of divalent vanadium salt as a catholyte solution. There is a characteristic that it does not work properly.
  • redox batteries store electricity in electrolytes, they increase storage power by increasing electrolytes rather than cells.
  • cells and electrolytes can be separated and installed, thus storing charged electrolyte in a sealed container.
  • Power can be stored at low cost over the long term.
  • Redox batteries do not require special manufacturing equipment to fabricate, so they can be fabricated to any specifications, from small (watts) to large (tens of thousands of kilowatts).
  • the electrolyte uses vanadium sulfate at both the anode and the cathode, there is no risk of ignition or explosion without worrying about overcharging or overdischarging, even if the liquid is mixed, no heat is generated or no harmful gas is generated.
  • Vanadium sulfate solution is neither acute nor chronic. It does not burn or burn in contact with clothing or hands.
  • the general battery has a performance controversy in terms of power density (storage power per unit weight) at the point of portable (portable), but in the case of a large power storage battery used in a fixed installation, such as a redox battery It is wrong to discuss performance in this paper, and it is necessary to discuss how much power can be safely, reliably, and stored at low cost. In that sense, there is no substitute for a redox battery in the storage of large power.
  • redox batteries are inherent in parts such as the equivalent resistance of the electrodes, the distance between the electrodes, the comparative surface area of the fibrous activated carbon, and the equivalent resistance of the diaphragm (resistance component when it is equivalent in the resistor, not resistance when the ion permeates). Although there is a thing related to the characteristics of the electrolyte solution, there is an item related to the property of the electrolyte solution.
  • the redox battery is a type of battery in which redox is simultaneously performed at both the positive and negative poles, so the performance of the components described above is a little bad. However, if the basic characteristics of the electrolyte are not satisfactory, the battery lacks components. There is a problem that it does not move at all.
  • the requirement for electrolyte solution should be a pentavalent vanadium salt solution for the anolyte solution and a divalent vanadium salt solution for the catholyte solution. If each ion concentration is about the same, it can operate as a battery, but if there is an extreme difference in concentration, The problem is that it doesn't work.
  • the electrolyte solution determines the charge capacity of electricity according to the concentration and amount, and affects the reversibility of the chemical reaction and the dynamic state of the solution, so that the valence can be controlled in the process of setting the optimized concentration and preparing the electrolyte solution.
  • the electrolyte solution determines the charge capacity of electricity according to the concentration and amount, and affects the reversibility of the chemical reaction and the dynamic state of the solution, so that the valence can be controlled in the process of setting the optimized concentration and preparing the electrolyte solution.
  • the electrolyte solution determines the charge capacity of electricity according to the concentration and amount, and affects the reversibility of the chemical reaction and the dynamic state of the solution, so that the valence can be controlled in the process of preparing the optimal concentration and preparing the electrolyte.
  • the selective ion concentration meter is for measuring the concentration of a specific ion and is a kind of diaphragm polarogram.
  • Polarograph is an electrochemical instrument invented in Japan that uses a mercury electrode, and it is possible to display the number of mercury particles by dropping the electrochemical equivalent. ought.
  • the double redox battery is an electrochemical storage device that directly stores the chemical energy of the electrolyte as electrical energy as a system in which an active material in the electrolyte is oxidized and reduced and charged and discharged.
  • the present invention has been made in order to solve the problems as described above, by inserting a thermoplastic film between the upper and lower graphite plate and applying a pressure using a heating roller to stick between the graphite plate and the anolyte and catholyte do not mix electricity
  • the present invention provides a method for producing a chemically superior redox battery electrode and a redox battery.
  • Still another object of the present invention is to provide an apparatus for preparing an electrolyte solution for redox flow batteries and a method of manufacturing the same, which can easily adjust the concentration of the electrolyte solution and the electron valence of ions used in the redox battery.
  • Still another object of the present invention is to provide a selective ion concentration meter and an ion concentration measuring method capable of measuring and determining the performance of an electrolyte for a redox battery even without specialized knowledge.
  • Still another object of the present invention is to provide an egg free redox battery system having excellent efficiency by using a hydroelectric generator and a redox battery.
  • the graphite plates 21, 22 are positioned to be spaced apart from each other up and down and the thermoplastic film between the graphite plates (21, 22) (23) and the step of pressing the upper and lower graphite plates (21, 22) using the heating roller 30, and attaching the upper and lower graphite plates (21, 22) to the thermoplastic film (23) with heat and pressure. It is configured by.
  • thermoplastic film 23 is any one of EVA, PP, PE, PVC, the thickness is characterized in that 10 ⁇ 15 ⁇ m.
  • the heating temperature of the heating roller 30 is lower than the melting temperature of the thermoplastic film 23, the pressure of the heating roller 30 is characterized in that 1 ⁇ 3kgf / cm2.
  • the redox battery according to the invention is characterized in that it has an electrode manufactured by the above-described method.
  • the apparatus for preparing an electrolyte solution for a redox flow battery and a method for manufacturing the same include an electrolytic cell in which an anode chamber, a stock solution chamber, a treatment liquid chamber, and a cathode chamber are formed; And a power supply unit for supplying power to the anode and the cathode, wherein an anion permeation membrane and a cationic permeation membrane are formed between the anode chamber and the stock solution chamber, and a cationic permeation membrane between the stock solution chamber and the treatment liquid chamber, and the treatment liquid chamber. And an anion permeable membrane and a cationic permeable membrane are respectively formed in the cathode chamber.
  • the apparatus for preparing an electrolyte solution for a redox flow battery and a method for manufacturing the same according to the present invention may further include a purification apparatus for purifying an electrolyte solution deteriorated or containing impurities.
  • the apparatus for preparing an electrolyte solution for a redox flow battery and a method of manufacturing the same is an alloy containing titanium and platinum or titanium and ruthenium
  • the electrode solution is sodium sulfate solution
  • the stock solution is oxidized It is a vanadium sulfate solution
  • the treatment solution is characterized in that the sulfuric acid solution.
  • an apparatus for preparing an electrolyte solution for a redox flow battery and a method for manufacturing the same include an electrode solution tank, a solution bath, and a solution bath in each of the anode chamber and the cathode chamber, the stock solution chamber, and the treatment chamber. And a circulation pump is connected to each of the pipes.
  • the apparatus for producing an electrolyte solution for redox flow battery and the method for manufacturing the same according to the present invention are characterized in that the pipe further includes a control means for controlling the flow rate supplied from the circulation pump to each chamber.
  • control means includes a pressure gauge and a control valve.
  • the apparatus for preparing an electrolyte solution for a redox flow battery and a method for manufacturing the same include an anion and a cationic permeation membrane between the anode chamber and the stock solution chamber, a cationic permeation membrane between the stock solution chamber and the treatment liquid chamber, and the treatment liquid chamber and the After partitioning between the cathode chamber and the anion permeable membrane and the cationic membrane, the anode and cathode chambers are filled with sodium sulfate solution, the stock solution chamber is filled with vanadium oxide sulfuric acid solution, the treatment chamber is filled with sulfuric acid solution, and the anode And supplying power to the cathode to move ions through the anion and cation permeable membrane.
  • the apparatus for preparing an electrolyte solution for redox flow battery according to the present invention and a method for manufacturing the same are characterized in that the amount of current flowing to each chamber is adjusted to generate a trivalent or tetravalent vanadium electrolyte.
  • the current amount is to use a constant current of 1.1 to 1.3 times the limit current value
  • the limit current value is the saline solution in each chamber, It is characterized by being a current value measured inside each chamber by passing a predetermined voltage.
  • Selective ion concentration meter and ion concentration measuring method comprises a first measuring module including a potential regulator and a first voltmeter for measuring the potential difference between the reference electrode and the reference electrode; A second measurement module included in a second voltmeter for measuring a load resistance and a potential difference between the working electrode and the reference electrode; An electrode portion in which the comparison electrode, the reference electrode, and the working electrode are arranged, an electrode solution is filled in the lower surface, and an ion selective permeable membrane is formed on the lower surface to selectively transmit the ion to be measured included in the sample to be measured; And a controller configured to calculate the concentration of the ion to be measured using the potential difference measured by the first voltmeter and the second voltmeter.
  • the selective ion concentration meter and the ion concentration measuring method according to the present invention is characterized in that the sample to be measured is a vanadium salt solution, the ion to be measured is vanadium ions.
  • the selective ion concentration meter and the ion concentration measuring method according to the present invention is characterized in that the comparison electrode and the reference electrode is gold or platinum, the working electrode is silver or lead.
  • the selective ion concentration meter and the ion concentration measuring method according to the present invention is characterized in that the electrode solution is 5-15% acetic acid or sulfuric acid.
  • the selective ion concentration meter and the ion concentration measuring method according to the present invention is characterized in that the ion selective permeable membrane is made of fluorine resin or polyvinyl chloride resin.
  • the control unit calculates the concentration of the vanadium ions by comparing the potential difference measured using the vanadium salt solution and the potential difference measured using a standard sample and And a display means for displaying the calculated concentration of ions, wherein the standard sample is one or more selected from ferrous chloride solution, ferric chloride solution, trichromium chloride solution, and vanadium sulfate solution. It is done.
  • the ion concentration measuring method is a method for measuring the selected ion concentration to measure the concentration of the target ion of the sample using a standard sample that knows the ion concentration, each of the reference solution, the standard sample and the measurement sample Sequentially contacting electrode portions of the selective ion concentration meter; A potential adjustment step of adjusting the potential regulator so that each voltage displayed on the voltmeter becomes zero by contact with the reference liquid, the standard sample, and the measurement sample; An ion potential measuring step of measuring an ion potential by preventing a current from flowing in the load resistance; And calculating a relationship between the ion concentration and the potential of the potential regulator using the data in the potential adjustment and the ion potential measurement step.
  • a micro hydroelectric power generation apparatus having a wing aberration rotated by the water introduced through the water pipe and a direct current generator for generating a direct current by the rotation of the blade aberration; And a stacked electrode in which a plurality of unit electrodes are stacked, a first electrolyte tank and a second electrolyte tank respectively storing active materials having different oxidation states, and an active material stored in the first and second electrolyte tanks, respectively.
  • a redox battery having a first pump and a second pump that perform charging and discharging by circulating through the stacked electrodes, respectively.
  • the micro hydro generator includes a body and a direct current generator coupled to an upper side of the body.
  • the body of the micro hydro generator is connected to a water pipe for introducing water to the outside one side and a drain pipe for draining the water to the other side
  • the inside of the body includes a wing aberration
  • the water pipe is divided into a plurality
  • a nozzle installed at an end of each branched branch pipe is connected to the outside of the body, and the blade aberration may rotate by water passing through the nozzle.
  • the micro hydroelectric power generation device may be provided by mounting the wing aberration to the generator for light vehicles.
  • the unit electrode may include two bright plates and a thermoplastic film interposed between the bright plates.
  • the thermoplastic film may be formed of a material in which pinholes are suppressed and electrolyte is inhibited from penetrating, and the thickness of the thermoplastic film may be 10 to 15 ⁇ m.
  • the thermoplastic film is polystyrene, polyethylene, polypropylene, polyethylene terephthalate, polyvinyl chloride, polycarbonate, polyvinylidene chloride, acetal, chimei, nylon, artificial rubber, synthetic rubber, and a thermoplastic resin mixture of ethylene and vinyl acetate It may consist of one or two or more mixtures or compounds.
  • thermoplastic film is sandwiched between the upper and lower graphite plates and the graphite plates are attached while applying pressure using a heating roller, so that the anolyte and the catholyte do not mix so that they are excellent in electrochemical and economically. effective.
  • the concentration of the electrolyte and the valence of ions can be efficiently controlled.
  • a redox flow battery electrolyte manufacturing apparatus and a method for manufacturing the same have high density, excellent charging efficiency, thermal and chemical stabilization, and economic and safety effects.
  • the selective ion concentration meter and the ion concentration measuring method according to the present invention having the above-described configuration, it is possible to efficiently measure the concentration of the redox battery electrolyte and the valence of ions without knowledge of electrochemistry.
  • mercury is not included in the test liquid, thereby preventing water pollution.
  • the selective ion concentration meter and the ion concentration measuring method according to the present invention has an effect that can be accurately measured and used easily.
  • the self-supporting redox battery system according to the present invention can build an efficient self-supporting redox battery system by using a small sized independent hydroelectric generator and a redox battery. Accordingly, it is possible to use an electronic device without supplying power within a certain degree.
  • 1 is a basic structural diagram of a general redox battery.
  • FIGS. 2A and 2B are views illustrating a manufacturing process of an electrode for a redox battery according to the present invention.
  • Figure 3 is a perspective view showing one embodiment of an electrolyte manufacturing apparatus for a redox flow battery according to the present invention.
  • Figure 4 is an explanatory view showing an embodiment of a redox flow battery electrolyte manufacturing apparatus and a manufacturing method according to the present invention.
  • FIG. 5 is a graph showing the voltage / current characteristics of the electrolyte solution manufacturing apparatus for redox flow battery of the present invention.
  • FIG. 6 is an explanatory view showing another embodiment according to the apparatus for preparing a redox flow battery electrolyte according to the present invention and a method of manufacturing the same.
  • FIG. 7 is a graph illustrating voltage / current characteristics of a refining apparatus in the electrolyte manufacturing apparatus for redox flow battery of the present invention and a method of manufacturing the same.
  • FIGS. 8A and 8B are explanatory views showing one embodiment of the selective ion concentration meter and the ion concentration measuring method according to the present invention.
  • FIG. 9 is a circuit diagram showing an equivalent circuit of the selective ion concentration meter and the ion concentration measuring method according to the present invention.
  • FIG. 10 is a graph showing the relationship between the ion concentration and the potential adjustment voltage in the selective ion concentration meter and the ion concentration measuring method according to the present invention.
  • FIG. 11 is a schematic diagram of a self-supporting redox battery system according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a hydroelectric power generation apparatus for explaining the principle of power generation according to an embodiment of the present invention.
  • FIG. 13 illustrates a structure of a unit electrode included in a stacked electrode according to an embodiment of the present invention.
  • FIGS. 2A and 2B are views illustrating a manufacturing process of an electrode for a redox battery according to the present invention.
  • the graphite plates 21 and 22 are positioned to be spaced apart from each other up and down, and the thermoplastic film 23 is sandwiched between the graphite plates 21 and 22.
  • thermoplastic film 23 is a material that does not penetrate into the electrolyte, and no pinholes are formed, and a very thin ultra-thin thermoplastic film is used.
  • the thermoplastic film 23 is a film that softens by heating, deforms and solidifies when applied to a state, but softens by reheating and can be repeatedly used.
  • the graphite plates 21 and 22 are pressed upwards and downwards by using the heating roller 30 to attach the graphite plates 21 and 22 to the thermoplastic film 23.
  • the heating temperature of the heating roller 30 is slightly lower than the melting temperature of the thermoplastic film 23, the pressure of the heating roller 30 is about 1 ⁇ 3kgf / cm2.
  • thermoplastic film 23 is pressed against the upper and lower graphite plates 21 and 22.
  • thermoplastic film 23 sandwiched between the upper and lower graphite plates 21 and 22 is partially destroyed by heat and pressure and is energized by the upper and lower carbon bonds, but the other part is insulated by the thermoplastic film 23 (such as Compression), the electrolyte solution can be prevented from penetrating between the graphite plates 21 and 22.
  • the graphite plates 21 and 22 which are not inconvenient with respect to the electrolytic solution having good conductivity can be manufactured suitable for the redox battery electrode 20 so that an electrode which is both electrochemically and economically excellent can be obtained. do.
  • Figure 3 is a perspective view showing one embodiment of a redox flow battery electrolyte manufacturing apparatus according to the present invention
  • Figure 4 is a description showing an embodiment of a redox flow battery electrolyte manufacturing apparatus and a manufacturing method according to the present invention.
  • the electrolyte manufacturing apparatus for a redox flow battery of the present invention as shown in the electrolytic cell 110, the anode chamber 111, the stock solution chamber 113, the processing liquid chamber 115 and the cathode chamber 117 is formed; And a power supply unit 130 for supplying power to the anode 131 and the cathode 133, wherein the anion permeable membrane 121 and the cationic permeable membrane are between the anode chamber 111 and the stock solution chamber 113.
  • a cation permeable membrane 123 between the stock solution chamber 113 and a process liquid chamber 115, and an anion permeable membrane 121 and a cation permeable membrane between the process liquid chamber 115 and the cathode chamber 117. 123 are formed respectively.
  • the positive electrode 131 and the negative electrode 133 are made of an alloy containing titanium and platinum or titanium and ruthenium.
  • the electrode solution 120 is sodium sulfate solution
  • the stock solution 140 is vanadium oxide sulfate solution.
  • the treatment solution 150 is preferably sulfuric acid solution.
  • an electrode solution tank 171, a solution bath 173, and a treatment solution bath 175 are provided in each of the anode chamber 111, the cathode chamber 117, the stock solution chamber 113, and the treatment solution chamber 115.
  • Each of the pipes 50 is connected to each other, and each of the pipes 50 is preferably connected to the circulation pump 151.
  • Each chamber and each tank are connected by pipes (hoses and pipes) to have a structure in which electrode solution, stock solution, and treatment solution can be circulated.
  • hydrogen ions (H + ) are transmitted through the anion permeable membrane 121 and the cation permeable membrane 123 in the anode chamber 111. Go to).
  • Amount of ionic species having a polarity (H +, V +, and so on) is negative the voltage is moved toward the cathode 133 is applied to the ion electrode having a negative polarity (OH -) is a positive electrode (131 is applied with a positive voltage Move toward).
  • the circulation pump 151 By operating the circulation pump 151, it is possible to adjust the output of the circulation pump 151 to equalize the injection pressure introduced into the electrolytic cell 110 in each tank.
  • the circulation pump 151 operates in a region slightly above the limit current.
  • the pipe 50 preferably further includes a control means for controlling the flow rate supplied from the circulation pump 151 to each chamber (111, 113, 115).
  • the control means includes a pressure gauge 141 and a control valve 143, it is also possible to have a control unit 60 that can adjust the control means or automatically control according to the set data.
  • sodium sulfate is disposed in the anode chamber 111 and the cathode chamber 117.
  • the solution is filled, the stock solution chamber 113 is filled with vanadium oxide sulfuric acid solution (VOSO 4 ), the treatment solution chamber 115 is filled with sulfuric acid solution, and power is supplied to the anode 131 and the cathode 133 to supply ions. They are preferably moved through the anion permeable membrane 121 and the cation permeable membrane 123.
  • VOSO 4 vanadium oxide sulfuric acid solution
  • the amount of current is to use a constant current of 1.1 to 1.3 times the limit current value, the limit current value is measured in each chamber by putting a saline solution in each chamber (111, 113, 115), flowing a predetermined voltage It is preferable that the current value be.
  • the operating point is set as such.
  • FIG. 6 is an explanatory view showing another embodiment of an apparatus for preparing an electrolyte and a method of manufacturing the same according to the present invention. As shown in FIG. It further comprises a refining apparatus used for refining.
  • the purification device is as follows when comparing the difference with the electrolyte production apparatus.
  • the by-product liquid chamber 125 is further included between the anode chamber 111 and the stock solution chamber 140, and the by-product liquid tank 172 is connected to the pipe 50 in response thereto.
  • the circulation process of the by-product liquid 120 is provided with a circulation pump 151 in the pipe 50 to move from the by-product liquid tank 172 to the by-product liquid chamber 112 and return to the by-product liquid tank 172 again. will be.
  • An anion permeable membrane 121 is formed between the by-product liquid chamber 120 and the stock solution chamber 140.
  • the stock solution is a deteriorated electrolyte solution or a stock solution with a relatively poor purity.
  • vanadium oxide sulfuric acid (VOSO 4 ) solution is used as the stock solution and dilute sulfuric acid is used as the treatment solution
  • sulfate ions in the stock solution are transferred to the by-product solution to become sulfuric acid
  • vanadium ions are transferred to the treatment solution to vanadium sulfate.
  • the refining apparatus is suitable for refining even when the salt is decomposed into an acid and an alkali once and then recombined to have a high refining degree and impurities such as an organic acid are mixed.
  • the refining device adjusts the limit current like the electrolyte manufacturing device and operates at a current slightly higher (10-20% increase).
  • An electrolytic solution manufacturing apparatus for redox flow batteries is fabricated and the limit current is measured.
  • 3% saline solution is added to each of the tanks 171, 173, and 175 to supply a voltage to measure the current flowing through the apparatus.
  • FIG. 5 is a graph showing voltage / current characteristics of an electrolyte manufacturing apparatus for a redox flow battery according to the present invention. As shown in FIG. 5, the voltage-current characteristic of the electrolyte manufacturing apparatus is obtained by subtracting the voltage from the current (E / I). ) And the inverse of current (1 / I) on the horizontal axis.
  • Constant voltage and constant current power supply is used for power supply, which can control 0.1V at maximum output 30 (V), and maximum output current can be used with maximum 3A.
  • the negative resistance means that the slope of the voltage current characteristic when the voltage applied to the load becomes negative becomes negative, and when the current decreases, the voltage drop increases, also referred to as negative resistance or negative characteristic.
  • the circulation pump 151 is operated to inject the respective liquids 120, 140, and 150 from the electrolytic cell, but at this time, the output of the circulation pump 151 is adjusted so that the injection pressure in each tank is the same. In addition, the flow rate of the liquid injected from the electrolytic cell is controlled by the control valve 143. This apparatus was made into injection pressure of 0.02 (MPa) and flow volume of 2.5 (L / min).
  • the flow rate fluctuates when oxygen and hydrogen, which are gases generated in the electrolytic cell, are discharged out of the tank, resulting in fluctuations in the amount of diffusion of ions in the membrane.
  • electrolytic dialysis uses a value slightly exceeding the limit current (usually 20 to 25% increase) as the conduction current.
  • the amount of tetravalent vanadium ions was increased to 0.8 (A) by 20% and the amount of trivalent vanadium ions was increased to 0.87 (A) by 30%.
  • the supply voltage at the limit current 0.67 (A) is 14.74 (V)
  • the supply voltage at 0.8 (A) with 20% increase is 19.2 (V)
  • supply at 0.87 (A) with 30% increase was 21.75 (V).
  • the throughput varies depending on the concentration of the stock solution, the circulation rate, and the energization current, but at the concentration of 10%, the circulation rate of 2.5L / min, the supply voltage of 19.2 (V), and the electrolytic current of 0.8 (A), the processing performance is generally 2.5L / h .
  • the apparatus for preparing an electrolyte solution for redox flow batteries according to the present invention is an electrolysis dialysis apparatus from the viewpoint of electrolysis of raw materials to separate and purify the product, but is separated and purified by electrolysis in a current region slightly exceeding the limit current of the membrane. Since it is possible to control the valence of a substance (transition metal element, etc.), it functions as a coordination switching device. Redox flow batteries use a trivalent vanadium solution in the anolyte and a tetravalent catholyte, so a device capable of controlling the valence is advantageous in this task.
  • the used electrolyte was double-permeated with a 20 ⁇ m cartridge filter, and the vanadium content was adjusted to 10%.
  • 10% sulfuric acid was injected into the by-product liquid tank 172 and pure water and the treatment liquid tank 175, and 10% sodium sulfate solution was used as the electrolyte solution.
  • FIG. 7 is a graph illustrating voltage / current characteristics of a refining apparatus in the electrolyte manufacturing apparatus for redox flow battery of the present invention and a method of manufacturing the same.
  • the limit current under these conditions was 0.72 (A).
  • the experiment was carried out four times, and the initial conduction current was delivered for 180 minutes with 5% increase (single dashed line), 10% increase (dashed line), 15% increase (solid line), and 20% increase (dashed line) of the limit current every 10 minutes. Voltage current was measured. In addition, the vanadium content of the treatment liquid was measured every 30 minutes by the colorimetric method.
  • the vanadium concentration of the treatment solution reached 8.8% at 150 minutes of electrolysis and 9.2% at 180 minutes.
  • FIG. 8A and 8B are explanatory diagrams showing an embodiment of the selective ion concentration meter and the ion concentration measuring method according to the present invention, as shown in FIG.
  • a first measurement module 210 comprising a first voltmeter 214 for measuring the potential difference
  • a second measurement module 230 including a load resistor 232 and a second voltmeter 234 measuring a potential difference between the working electrode 256 and the reference electrode 254;
  • the comparison electrode 252, the reference electrode 254, and the working electrode 256 are arranged, an electrode solution 258 is filled therein, and a measurement target ion included in the sample 270 to be measured on the lower surface.
  • the sample 270 to be measured is a vanadium salt solution, and the ion to be measured is vanadium ions.
  • the comparison electrode 252 and the reference electrode 254 are gold or platinum having excellent electrochemically stable conductivity
  • the working electrode 256 is silver or lead as an electrode subjected to oxidation and reduction by ions. desirable.
  • the electrode solution 258 is preferably 5 to 15% acetic acid or sulfuric acid.
  • the ion selective permeable membrane 259 is preferably made of a physically and chemically stable Teflon membrane or polyvinyl chloride (PVC), which is a poly tetra fluoro ethylene (PTFE).
  • PVC polyvinyl chloride
  • PTFE poly tetra fluoro ethylene
  • the control unit may include calculation means for calculating the concentration of vanadium ions by comparing the potential difference measured using a standard sample with the potential difference measured using the vanadium salt solution, and display means for displaying the calculated concentration of ions.
  • the standard sample is preferably any one or more selected from ferrous chloride solution, ferric chloride solution, trichromium chloride solution, vanadium sulfate solution.
  • the calculating means includes a storage unit for storing existing data such as a measured potential (voltage displayed on the first or second voltmeter) value, an expression, and the like, and a calculation unit for calculating the concentration of the ion to be measured using the measured data. It is preferable to comprise.
  • the concentration of the ion to be measured is calculated and displayed.
  • each of the reference solution, the standard sample and the sample to be measured 270 is selected from the electrode portion Sequentially contacting 250;
  • FIG. 9 is a circuit diagram showing an equivalent circuit of the selective ion concentration meter and the ion concentration measuring method according to the present invention. As shown, the selective ion concentration meter measures the potential difference between the comparison electrode 252 and the working electrode 256.
  • the oxidation potential which is the potential of the working electrode 256 generated through the ion selective permeable membrane 259, is applied to the comparison electrode 252, thereby reducing the ions generated in the selective ion concentration meter.
  • the potential becomes equivalent to the ion potential of the test liquid.
  • the ion potential of the test liquid can be known by measuring each potential according to the standard reagent.
  • 1,100mV which is the potential of the potentiometer when penetrated into 10% solution of softener trichrome in the above manner, is set as trivalent chromium ion potential (VCr 3+ ).
  • the ion potential is obtained.
  • the ion potential is obtained by measuring the potential of each standard sample because the output voltage of the voltage regulator when the current does not flow in the load resistance corresponds to the ion potential.
  • FIG. 10 is a graph showing the relationship between the ion concentration and the potential adjustment voltage in the selective ion concentration meter and the ion concentration measuring method according to the present invention, as shown in the relationship between the ion concentration and the ion concentration and the potential of the potential regulator, respectively.
  • the reference potential of is zero, a substantially linear relationship is established, and the concentration of the ion to be measured can be obtained.
  • the self-supporting redox battery system 301 may include a hydroelectric generator 310, a redox battery 10, and an inverter 330. Power charged in the redox battery 10 is converted by the inverter 330 is provided to the electronic device.
  • Hydroelectric generator 310 may be made of a body 311 and a DC generator 314 disposed on the upper portion of the body 311 as shown in FIG.
  • a wing aberration 312 is included inside the body 311, and a water pipe 312 for introducing water and a drain pipe 313 for draining water are connected to the outside of the body 311.
  • the hydroelectric generator 310 may be made by using a light vehicle generator as the DC generator 314 and mounting vane aberration 312 on the rotary shaft of the light automatic generator.
  • the hydroelectric generator 310 has advantages in terms of manufacturing cost and environment because it does not need to separately manufacture a dedicated generator.
  • the water pipe 312 is branched into several branches and connected to a nozzle (not shown) installed in the body 311. Water introduced through the forked branches 322 and 324 is sprayed onto the wing aberration 312 through the nozzles 426 and 428 to rotate the wing aberration 312.
  • the wing aberration 312 is coupled to a rotor (not shown) of the DC generator 314 to transmit the rotational force to the DC generator 314.
  • the number of nozzles 326 and 328 may be provided as four.
  • the number of the nozzles 326 and 328 may be variously provided according to the structures of the water pipe 312 and the body 311.
  • the drain pipe 313 performs a function of draining the water introduced by the water pipe 312 and may be sized in consideration of the amount of water accumulated in the body 311 by hitting the wing aberration 312. This is to prevent the rotation of the wing aberration 312 by the amount of water accumulated in the body 311.
  • the redox battery 320 includes a first electrolyte tank 322, a second electrolyte tank 324, a first pump 326, a second pump 328, and a stacked electrode 329.
  • the first electrolyte tank 322 and the second electrolyte tank 324 store active materials having different oxidation states.
  • the first pump 326 and the second pump 328 are connected to the first electrolyte tank 322 and the second electrolyte tank 324, respectively, to perform a function of circulating the active material during charging and discharging.
  • the stacked electrode 329 has a plurality of unit electrodes 391 connected thereto, and each unit electrode 391 includes an anode and a cathode separated by an ion exchange membrane (membrane).
  • an ion exchange membrane (membrane) is positioned between the positive electrode and the negative electrode to separate the ions reacting redox during charging and discharging.
  • the active material is an electrolyte in which transition metals such as V, Fe, Cr, Cu, Ti, Mn and Sn are dissolved in a strong acid aqueous solution.
  • the electrolyte is not stored in the stacked electrode 329, but is stored in the liquid state in the first and second electrolyte tanks 322 and 324 and laminated through the first and second pumps 326 and 328 during the charging and discharging process. It is supplied to the inside of the electrode 329.
  • the unit electrode 391 constituting the stacked electrode 329 according to the present exemplary embodiment is an inactive electrode, and the electrode itself reacts between the surface of the electrode and the electrolyte without a chemical reaction, and thus has a long life compared with the conventional secondary battery.
  • the redox battery 10 has an output because the stacked electrodes 329 for determining the output and the first and second electrolyte tanks 322 and 324 for storing the electrolyte for determining the charge capacity are separated. It can be designed freely and its capacity can be freely designed and installation is easy because there are few restrictions on the installation place.
  • the unit electrode 391 constituting the stacked electrode 329 according to the present embodiment will be described in detail with reference to FIG. 3.
  • the unit electrode 391 may include a thermoplastic film 394 interposed between two bright plates 392 and both bright plates 392.
  • the thermoplastic film 394 is a material that does not penetrate the electrolyte, and has no pinhole, and has a very thin film. For example, when the thermoplastic film 394 is softened by heating, when the force is applied to the state, the thermoplastic film 394 flows and deforms and solidifies. However, the thermoplastic film 394 softens and repeats by reheating.
  • the thermoplastic film 394 is a thermoplastic resin copolymer of polystyrene, polyethylene, polyethylene terephthalate, polyvinyl chloride, polycarbonate, polyvinylidene chloride (PVC), acetal, chimei, nylon, polypropylene, ethylene and vinyl acetate or Compatible mixtures, and the like.
  • the thermoplastic film 394 may be made of artificial rubber, synthetic rubber, or a mixture or compound of rubber and thermoplastic resin.
  • the thickness of the thermoplastic film 394 may be provided to approximately 10 ⁇ 15 ⁇ m. This thickness may vary depending on the use of the stacked electrode 329.
  • thermoplastic film 394 sandwiched between the two graphite plates 392 is electrically energized by carbon bonding, and the other part is insulated by the thermoplastic film 394. As a result, the electrolyte solution is prevented from penetrating between the two plate plates 392.
  • the multilayer electrode 329 according to the present embodiment can exhibit excellent electrochemical performance by using the graphite plate 392 having good conductivity and good reaction with the electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)

Abstract

본 발명은 레독스 흐름 전지와 레독스 전지 시스템에 대한 것으로서, 더욱 상세하게는 레독스 흐름 전지를 구성하는 레독스 전지용 전극 및 그 전극의 제조방법, 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법, 레독스 흐름 전지를 구성하는 전해액의 농도를 측정할 수 있는 선택이온 농도계 및 선택이온 농도 측정방법과 자립형 레독스 전지시스템에 관한 것이다. 본 발명에 따른 자립용 레독스전지시스템은 도수관을 통해 유입된 물에 의해 회전하는 날개수차와 상기 날개수차의 회전에 의해 직류전류를 발생하는 직류발전기를 구비한 마이크로 수력발전장치; 및 단위전극이 다수개 적층된 적층전극과, 산화상태가 각 다른 활물질을 각각 저장하는 제1 전해질탱크 및 제2 전해질탱크와, 상기 제1 및 제2 전해질탱크에 각각 연결되어 이들에 저장된 활물질을 상기 적층전극을 통하여 각각 순환함으로써 충전 및 방전을 수행하는 제1 펌프 및 제2 펌프를 구비하는 레독스전지;을 포함하는 것을 특징으로 한다.

Description

레독스 흐름 전지용 전극, 그 전극의 제조방법, 레독스 흐름 전지용 전해액 제조장치, 그 제조방법, 전해액의 선택이온 농도계, 선택이온 농도 측정방법 및 자립용 전지 시스템
본 발명은 레독스 흐름 전지와 레독스 전지 시스템에 대한 것으로서, 더욱 상세하게는 레독스 흐름 전지를 구성하는 레독스 전지용 전극 및 그 전극의 제조방법, 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법, 레독스 흐름 전지를 구성하는 전해액의 농도를 측정할 수 있는 선택이온 농도계 및 선택이온 농도 측정방법과 자립형 레독스 전지시스템에 관한 것이다.
전 세계적으로 에너지 수요가 증가하는 추세이며 화석연료의 지속적인 사용 결과로 CO2를 계속 배출하게 되어 환경오염을 초래하고 있다.
이러한 온실가스 배출 억제를 위해 태양광, 풍력, 연료전지 등 신재생에너지가 각광을 받으면서 실용 보급이 진행되고 있다.
재생에너지는 입지환경이나 자연조건에 크게 영향을 받으므로 출력 변동이 심하여 연속적 공급이 불가능하고 에너지 생산시점과 수요시점의 시간차가 발생하게 되어 에너지저장 시스템이 중요하게 대두된다.
MW급 대용량 전력저장용 전지로써 납축전지, NaS전지, 초고용량 커패시터(supercapacitor), 리튬이차전지 및 레독스 전지(RFB, redox flow battery)가 있다.
이중 레독스 전지는 기존 이차전지와는 달리 전해액 중의 활물질(active material)이 산화·환원되어 충방전되는 시스템으로 전해액의 화학적 에너지를 직접 전기에너지로 저장시키는 전기화학적 충전장치이다.
상기한 레독스 전지(10)의 기본적인 구조는 도 1과 같으며, 구성 요소는 산화상태가 각각 다른 활물질이 저장되어 있는 양/음 전해질 탱크(11a/11b)와, 충·방전시 활물질을 순환시키는 펌프(12a,12b), 그리고 이온교환막(멤브레인)(13)으로 분리되어 있는 양/음 전극(14a/14b)이 있다.
상기 이온교환막(멤브레인)(13)은 충·방전시 레독스 반응하는 이온을 분리하기 위해 두 전극(14a,14b) 사이에 위치된다.
이때 활물질로는 V, Fe, Cr, Cu, Ti, Mn, 그리고 Sn 등의 전이금속을 강산 수용액에 용해하여 제조한 전해질을 사용한다.
제조한 전해질은 셀(전극)(14a,14b) 내에 저장되어 있지 않고, 외부의 전해질 탱크(11a,11b)에 액체 상태로 저장되며, 충·방전 과정 중에 펌프(12a,12b)를 통하여 셀(전극)(14a,14b) 내부로 공급되는 전지이다.
또한, 사용하는 전극(14a,14b)은 비활성 전극으로 전극 자체는 화학 반응 없이 전극 표면과 전해질 사이에서 반응을 하여 수명이 길다는 장점이 있어 기존 전지와 차별화된다.
또한, 전지 스택(출력)과 전해액 탱크(용량)가 분리할 수 있는 구조이기 때문에 출력과 용량을 자유롭게 설계 가능하며 설치 장소에 제한도 적은 편이다.
상기 레독스 전지용 전극(14a,14b)으로 종래에는 도전성능이 좋은 전해액에 대하여 불편함이 없는 그라파이트(graphite)를 사용하였다. 상기 그라파이트는 탄소 섬유인 카본을 한 번 더 고온에서 태운 것으로, 레독스 전지용 전극으로 사용하는 경우 그라파이트판 사이로 전해액이 침투하는 것에 따라 양극액과 음극액이 섞이는 문제점이 있었다.
또한 풍력, 태양광, 수력 등을 이용한 발전시스템의 안정적인 전원 공급을 위해 배터리와 같은 전력 저장 장치의 설치가 필수적이다. 현재는 납축전지를 사용하고 있으나 단수명으로 인해 주기적으로 교체하여야 하고 유지 보수의 문제가 심각하다. 특히 배터리 교체시 발생하는 산업폐기물의 처리 문제도 뒤따르기 때문에 최근 레독스 흐름 전지(Redox Flow Battery) 에너지저장 시스템에 대한 연구가 활발히 이루어지고 있다.
이러한 레독스 흐름 전지의 성능은 전극의 등가 저항, 전극 간 거리, 섬유상 활성탄의 비교표면적, 격막의 등가저항(이온이 투과할 때의 저항이 아닌 저항기에서 등가 하였을 때의 저항성분) 등 부품 고유의 특성에 관계되는 것과 전해액의 특성에 관계되는 것이 있으나, 여기서는 전해액의 특성에 관계하는 항목에 대하여 서술한다.
레독스 전지는 양극과 음극에서 동시에 산화환원이 이루어지는 형식의 전지이기 때문에 앞서 기술한 부품 고유의 성능은 조금 나빠도 움직이는 데에 문제가 없으나, 전해액의 기본적인 특성이 만족 되지 않는다면 전지로서 구성요소가 결여되어 전혀 움직이지 않는다는 문제점이 있다.
그렇다면 전해액으로서 필요한 요건은 양극액으로서는 5가 바나듐염 용액이며, 음극액으로서는 2가 바나듐염 용액이여야 할 필요가 있으며, 각각의 이온 농도가 거의 같다면 전지로서 작동할 수 있으나 극단적으로 농도 차가 있다면 제대로 작동하지 않는다는 특성이 있다.
레독스 전지는 전해액에 전기를 비축하기 때문에 셀을 늘리는 것이 아닌 전해액을 늘리는 것에 의해 저장전력을 증가시키며, 셀과 전해액을 분리설치가 가능하기 때문에 충전이 완료된 전해액을 밀폐된 용기에 보존하는 것에 따라 장기에 걸쳐 낮은 비용으로 전력을 저장할 수 있다. 레독스 전지는 제작하기 위해 특별한 제조설비를 필요로 하지 않기 때문에 소형(수 와트)부터 대형(수만 킬로와트)까지 임의 사양으로 제작할 수 있다.
전해액은 양극도 음극도 바나듐 황산염을 사용하기 때문에 만에 하나 액체가 섞이더라도 열이 발생하거나 유해한 가스의 발생 등이 없고 안전하며, 과충전이나 과방전의 걱정 없이 발화나 폭발의 위험성은 일체 없다.
바나듐 황산염 용액은 급성 독성도 만성 독성도 없다. 의복이나 손에 닿아도 타거나 화상을 입는 일도 없다.
한편, 일반적인 전지는 포터블(가반성)이란 시점에서 전력밀도(단위 중량당 저장 전력량)이라는 척도에서 성능 논란이 있으나, 레독스 전지와 같은 고정설치로 사용하는 대전력 비축용 전지의 경우는 이러한 척도에서 성능을 논하는 것은 잘못된 것으로 전력을 얼마만큼 안전하게 안정적으로 저렴한 비용으로 비축 가능한가를 논할 필요가 있다. 그러한 의미에서는 큰 전력의 비축에 있어서는 레독스 전지 이외에 대체할 수 있는 것이 없다.
이러한 레독스 전지의 성능은 전극의 등가 저항, 전극 간 거리, 섬유상 활성탄의 비교표면적, 격막의 등가저항(이온이 투과할 때의 저항이 아닌 저항기에서 등가 하였을 때의 저항성분) 등 부품 고유의 특성에 관계되는 것과 전해액의 특성에 관계되는 것이 있으나, 여기서는 전해액의 특성에 관계하는 항목에 대하여 서술한다.
레독스 전지는 양극과 음극에서 동시에 산화환원이 이루어지는 형식의 전지이기 때문에 앞서 기술한 부품 고유의 성능은 조금 나빠도 움직이는 데에 문제가 없으나, 전해액의 기본적인 특성이 만족 되지 않는다면 전지로서 구성요소가 결여되어 전혀 움직이지 않는다는 문제점이 있다.
그렇다면 전해액으로서 필요한 요건은 양극액으로서는 5가 바나듐염용액이며, 음극액으로서는 2가 바나듐염 용액이여야 할 필요가 있으며, 각각의 이온 농도가 거의 같다면 전지로서 작동할 수 있으나 극단적으로 농도차가 있다면 제대로 작동하지 않는다는 문제가 있다.
따라서 전해질 용액은 농도와 양에 따라서 전기의 충전 용량을 결정하고, 화학반응의 가역성과 용액의 동역학적 상태의 영향을 끼치므로 최적화된 농도의 설정과 전해액을 제조하는 과정에서 원자가를 제어할 수 있는 기술이 부족하며, 전해액의 안정화를 위해 황산을 다량 사용하고 있다는 문제가 있다.
또한 전해질 용액은 농도와 양에 따라서 전기의 충전 용량을 결정하고, 화학반응의 가역성과 용액의 동역학적 상태의 영향을 끼치므로 최적화된 농도의 설정과 전해액을 제조하는 과정에서 원자가를 제어할 수 있는 기술이 부족하다는 문제가 있다.
전해액의 특성을 조사하는 데에는 통상 특수한 산화환원전위계(사이크릭 볼타메토리)를 이용하고 있으나, 이 장치의 개념을 이해하여 얻을 수 있는 데이터로부터 성능의 우열을 판단하기 위해서는 일정의 전기화학적 지식이 필요하여 사용이 불편하다는 문제가 있다.
한편, 선택이온농도계는 특정의 이온의 농도를 계측하기 위한 것으로 격막 폴라로그라프의 한 종류이다. 폴라로그라프(polarograph)는 일본에서 발명된 전기회학계측기로 수은전극을 이용한 전기분해장치이며, 전기화학당량을 낙하시켜 수은 입자의 수를 표시하는 것이 가능하기 때문에 현재에도 이 원리를 이용한 계측기가 만들어지고 있다.
그러나 이러한 형식의 장치는 전극(수은입자)이 피검액으로 직접 작용하기 때문에 수은과 반응하기 쉬운 용액 등은 사용하기 어렵고, 피검액에 수은이 혼입될 가능성이 있으며, 배수에 의한 환경오염도 문제가 된다
이중 레독스전지는 기존 이차전지와는 달리 전해액 중의 활물질(active material)이 산화·환원되어 충방전되는 시스템으로 전해액의 화학적 에너지를 직접 전기에너지로 저장시키는 전기화학적 축전장치이다.
레독스전지의 단점이 보완되면서 이를 축적장치로 응용하고자 하는 시도가 여려 산업분야에서 나타나고 있다. 그러나 이러한 노력은 자동차와 같은 특정 산업분야에서만 진행되고 있으며, 다양한 분야에 아직 적극적으로 활용되지 못하는 실정이다.
본 발명은 상기한 바와 같은 문제를 해결하기 위하여 안출한 것으로서, 상하의 그라파이트판 사이에 열가소성 필름을 끼워 넣고 가열롤러를 이용하여 압력을 가하면서 그라파이트판 사이를 붙임으로써 양극액과 음극액이 섞이지 않아 전기화학적으로 뛰어난 레독스 전지용 전극의 제조방법 및 그 레독스 전지를 제공하는데 있다.
본 발명의 또 다른 목적은 레독스 전지에 사용되는 전해액의 농도 및 이온의 전자가를 용이하게 조절할 수 있는 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 전문적인 지식이 없더라도 레독스 전지용 전해액의 성능을 측정 및 판단할 수 있는 선택이온농도계 및 이온농도 측정방법을 제공하는 것이다.
본 발명의 또 다른 목적은 수력발전장치와 레독스 전지를 이용함으로써 효율이 뛰어난 난 자립용 레독스전지시스템을 제공하는 것이다.
상술한 목적을 달성하기 위한 본 발명의 실시예에 따른 레독스 전지용 전극의 제조방법은, 상하로 서로 이격되게 그라파이트판(21,22)을 위치시키고 그 그라파이트판(21,22) 사이에 열가소성 필름(23)을 끼워 넣는 단계와, 가열롤러(30)를 이용하여 상하의 그라파이트판(21,22)을 가압하여 상하의 그라파이트판(21,22)을 열과 압력으로 열가소성 필름(23)에 붙이는 단계를 포함하여 구성된다.
또한, 상기 열가소성 필름(23)은 EVA, PP, PE, PVC 중 어느 하나이고, 두께는 10~15㎛인 것을 특징으로 한다.
또한, 상기 가열롤러(30)의 가열온도는 열가소성 필름(23)의 용해온도보다 낮고, 가열롤러(30)의 압력은 1~3kgf/㎠인 것을 특징으로 한다.
그리고 본 발명에 따른 레독스 전지는 상술한 방법으로 제조된 전극을 갖는 것을 특징으로 한다.
본 발명에 따른 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법은 양극 챔버, 원액 챔버, 처리액 챔버 및 음극 챔버가 형성되는 전해조; 및 양극 및 음극에 전원을 공급하는 전원부;를 포함하는 것이되, 상기 양극 챔버와 원액 챔버 사이에는 음이온 투과막과 양이온 투과막, 상기 원액 챔버와 처리액 챔버 사이에는 양이온 투과막, 상기 처리액 챔버와 음극 챔버에는 음이온 투과막과 양이온 투과막이 각각 형성되는 것을 특징으로 한다.
또한, 본 발명에 따른 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법은 열화되거나 불순물이 함유된 전해액을 정제하는 정제장치를 더욱 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법은 상기 양극 및 음극은 티타늄과 백금 또는 티타늄과 루테늄을 포함하는 합금이며, 상기 전극액은 황산 나트륨용액인 것이며, 상기 원액은 산화 바나듐 황산용액이고, 상기 처리액은 황산용액인 것을 특징으로 한다.
또한, 본 발명에 따른 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법은 상기 양극 챔버 및 음극 챔버, 상기 원액 챔버, 상기 처리액 챔버의 각각에 전극액 수조, 원액 수조, 처리액 수조가 배관으로 각각 연결되어 있고, 상기 각각의 배관에는 순환 펌프가 연결되어 있는 것을 특징으로 한다.
또한, 본 발명에 따른 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법은 상기 배관에는 상기 순환 펌프에서 각 챔버로 공급하는 유량을 제어하기 위한 제어수단을 더욱 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법은 상기 제어수단은 압력계 및 제어밸브를 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법은 양극 챔버와 원액 챔버 사이에는 음이온 및 양이온 투과막, 상기 원액 챔버와 상기 처리액 챔버에는 양이온 투과막, 상기 처리액 챔버와 상기 음극 챔버 사이에는 음이온 투과막 및 양이온 투과막으로 구획한 후, 상기 양극 및 음극 챔버에는 황산 나트륨 용액을 채우고, 상기 원액 챔버에는 산화 바나듐 황산 용액을 채우며, 상기 처리액 챔버에는 황산 용액을 채우고, 양극 및 음극에 전원을 공급하여 이온들이 상기 음이온 및 양이온 투과막을 통해 이동시키는 것을 특징으로 한다.
또한, 본 발명에 따른 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법은 3가 또는 4가의 바나듐 전해액이 생성되도록 각 챔버로 흐르는 전류량을 조절하는 것을 특징으로 한다.
또한, 본 발명에 따른 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법은 상기 전류량은 한계전류 값의 1.1~1.3 배의 정전류를 사용하는 것이되, 상기 한계전류 값이란 상기 각 챔버에 식염수를 넣고, 소정의 전압을 흘려 보내 각 챔버 내부에서 계측되는 전류 값인 것을 특징으로 한다.
본 발명에 따른 선택이온농도계 및 이온농도 측정방법은 전위조정기 및 비교전극과 기준전극의 전위차를 측정하는 제1전압계를 포함하는 제1측정 모듈; 부하저항 및 작용전극과 상기 기준전극의 전위차를 측정하는 제2전압계가 포함하는 제2측정 모듈; 상기 비교전극, 상기 기준전극 및 상기 작용전극이 배열되고, 내부에는 전극액이 채워지며, 하부면에는 측정대상시료 내에 포함된 측정대상이온을 선택적으로 투과시키는 이온선택투과막이 형성되는 전극부; 및 상기 제1전압계와 상기 제2전압계에서 측정된 전위차를 이용하여 상기 측정대상이온의 농도를 계산하는 제어부;를 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 선택이온농도계 및 이온농도 측정방법은 상기 측정대상시료는 바나듐염 용액이고, 상기 측정대상이온은 바나듐 이온인 것을 특징으로 한다.
또한, 본 발명에 따른 선택이온농도계 및 이온농도 측정방법은 상기 비교전극 및 상기 기준전극은 금 또는 백금이고, 상기 작용전극은 은 또는 납인 것을 특징으로 한다.
또한, 본 발명에 따른 선택이온농도계 및 이온농도 측정방법은 상기 전극액은 5~15%의 초산 또는 황산인 것을 특징으로 한다.
또한, 본 발명에 따른 선택이온농도계 및 이온농도 측정방법은 상기 이온선택투과막은 불소수지 또는 폴리염화비닐수지로 이루어지는 것을 특징으로 한다.
또한, 본 발명에 따른 선택이온농도계 및 이온농도 측정방법은 상기 제어부는 표준시료을 이용하여 측정한 전위차와 상기 바나듐염 용액을 이용하여 측정한 전위차를 비교하여 상기 바나듐 이온의 농도를 계산하는 연산수단과 계산된 이온의 농도를 표시하는 표시수단을 포함하는 것이되, 상기 표준시료은 염화 제1철 용액, 염화 제2철 용액, 염화 제3크롬 용액, 황산 바나질 용액 중에서 어느 하나 이상이 선택되는 것을 특징으로 한다.
또한, 본 발명에 따른 이온농도 측정방법은 이온 농도를 알고 있는 표준시료을 이용하여 시료의 측정대상이온의 농도를 측정하는 선택이온농도를 측정하는 방법에 있어서, 기준액, 표준시료 및 측정시료 각각을 선택이온농도계의 전극부에 순차적으로 접촉시키는 단계; 상기 기준액, 표준시료 및 측정시료와의 접촉에 의해 전압계에 표시되는 각각의 전압이 제로가 되도록 전위조정기를 조정하는 전위조정 단계; 부하저항에 전류가 흐르지 않도록 하여 이온전위를 측정하는 이온전위측정 단계; 및 상기 전위조정 및 이온전위측정 단계에서의 데이터를 이용하여 이온농도와 전위조정기의 전위와의 관계를 연산하는 연산단계;를 포함하는 것을 특징으로 한다.
본 발명에 따른 자립용 레독스전지시스템은, 도수관을 통해 유입된 물에 의해 회전하는 날개수차와 상기 날개수차의 회전에 의해 직류전류를 발생하는 직류발전기를 구비한 마이크로 수력발전장치; 및 단위전극이 다수개 적층된 적층전극과, 산화상태가 각 다른 활물질을 각각 저장하는 제1 전해질탱크 및 제2 전해질탱크와, 상기 제1 및 제2 전해질탱크에 각각 연결되어 이들에 저장된 활물질을 상기 적층전극을 통하여 각각 순환함으로써 충전 및 방전을 수행하는 제1 펌프 및 제2 펌프를 구비하는 레독스전지;를 포함하는 것을 특징으로 한다.
상기 마이크로 수력발전장치는 몸체와, 몸체의 상부측에 결합된 직류발전기를 포함한다.
여기서, 상기 마이크로 수력발전장치의 몸체는 외부 일측에 물을 유입하기 위한 도수관과 외부 타측에 물을 배수하기 위한 배수관이 연결되며, 상기 몸체의 내부에는 날개수차를 포함하며, 상기 도수관은 다수개로 분기되고 각 분기된 분기도수관의 단부에 설치된 노즐이 상기 몸체의 외측에 관통하여 연결되며, 상기 노즐을 통과한 물에 의해 상기 날개수차가 회전할 수 있다.
상기 마이크로 수력발전장치는 경자동차용 발전기에 날개수차를 장착하는 것에 의해 마련될 수 있다.
그리고 상기 단위전극은 2개의 그라이트판들과 상기 그라이트판들 사이에 개재된 열가소성필름을 포함할 수 있다. 여기서 상기 열가소성필름은 핀홀의 형성이 억제되고 전해액이 침투가 억제되는 재질로 마련되며, 두께가 10~15㎛로 이루어질 수 있다. 또한 상기 열가소성필름은 폴리스티렌, 폴리에틸렌, 폴리프로필렌, 폴리에틸렌 테레프탈레이트, 폴리염화비닐, 폴리카보네이트, 폴리염화비닐리덴, 아세탈, 치메이, 나일론, 인조고무, 합성고무, 및 에틸렌과 비닐 아세테이트의 열가소성 수지 혼합물 중 하나 또는 2이상의 혼합물 또는 화합물로 이루어질 수 있다.
상술한 과제의 해결 수단에 의하면, 상하의 그라파이트판 사이에 열가소성 필름을 끼워 넣고 가열롤러를 이용하여 압력을 가하면서 그라파이트판 사이를 붙임으로써 양극액과 음극액이 섞이지 않아 전기화학적으로 뛰어나고, 경제적으로도 효과적이다.
이상과 같은 구성의 본 발명에 따른 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법에 의하면 전해액의 농도 및 이온의 전자가를 효율적으로 제어할 수 있는 효과가 있다.
또한, 본 발명에 따른 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법에 의하면 밀도가 높아 충전 효율이 우수하며 열적, 화학적으로 안정화되어 경제성 및 안전성이 우수하다는 효과가 있다.
또한, 본 발명의 목적은 사용에 의해 열화되거나 불순물이 포함된 전해액을 재생할 수 있는 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법을 제공하는 것이다.
또한, 본 발명에 따른 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법에 의하면 신품 재생액은 물론 사용에 의해 충전효율이 떨어지는 전해액을 재생할 수 있는 효과가 있다.
이상과 같은 구성의 본 발명에 따른 선택이온농도계 및 이온농도 측정방법에 의하면 전기화학에 대한 지식이 없이도 레독스 전지용 전해액의 농도 및 이온의 전자가를 효율적으로 측정할 수 있는 효과가 있다.
또한, 본 발명에 따른 선택이온 농도계 및 이온농도 측정방법에 의하면 수은이 피검액에 포함되지 않아 수질오염을 방지하는 효과가 있다.
또한, 본 발명에 따른 선택이온 농도계 및 이온농도 측정방법에 의하면 정확하게 측정이 되고 간편하게 사용할 수 있다는 효과가 있다.
본 발명에 따른 자립용 레독스 전지 시스템은 소규모 자립용 수력발전장치와 레독스전지를 이용함으로써 효율이 뛰어난 자립용 레독스전지시스템을 구축할 수 있다. 이에 따라 일정한도 내에서 전원의 공급없이 전자기기의 사용이 가능하다.
도 1은 일반적인 레독스 전지의 기본적인 구조도이다.
도 2a와 도 2b는 본 발명에 따른 레독스 전지용 전극의 제조공정을 나타내는 도면이다.
도 3은 본 발명에 따른 레독스 흐름 전지용 전해액 제조장치의 일실시예를 도시하는 사시도이다.
도 4는 본 발명에 따른 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법의 일실시예를 도시하는 설명도이다.
도 5는 본 발명의 레독스 흐름 전지용 전해액 제조장치의 전압/전류 특성을 도시하는 그래프이다.
도 6은 본 발명에 따른 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법에 따른 또 다른 실시예를 도시하는 설명도이다.
도 7은 본 발명의 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법에서 정제장치의 전압/전류 특성을 도시하는 그래프이다.
도 8a 및 8b는 본 발명에 따른 선택 이온 농도계 및 이온 농도 측정방법의 일실시예를 도시하는 설명도이다.
도 9는 본 발명에 따른 선택이온농도계 및 이온농도 측정방법의 등가회로를 도시하는 회로도이다.
도 10은 본 발명에 따른 선택이온농도계 및 이온농도 측정방법에서 이온농도와 전위조정전압과의 관계를 도시하는 그래프이다.
도 11은 본 발명의 일 실시예에 따른 자립용 레독스전지 시스템의 개략도이다.
도 12는 본 발명의 일 실시예에 따른 발전의 원리를 설명하기 수력발전장치의 개략도이다.
도 13은 본 발명의 일 실시예에 따른 적층적극에 포함되는 단위전극의 구조를 나타낸 도면이다.
이하 본 발명의 실시예에 대하여 첨부된 도면을 참고로 그 구성 및 작용을 설명하기로 한다.
본 발명의 설명에서 동일 또는 유사한 구성요소는 동일 또는 유사한 도면번호를 부여하고, 그 자세한 설명은 생략하기로 한다.
도 2a와 도 2b는 본 발명에 따른 레독스 전지용 전극의 제조공정을 나타내는 도면이다.
먼저, 도 2a에 도시된 바와 같이 상하로 서로 이격되게 그라파이트판(21,22)을 위치시키고 그 그라파이트판(21,22) 사이에 열가소성 필름(23)을 끼워 넣는다.
이때 열가소성 필름(23)은 전해액에 침투하지 않는 재질로 핀홀이 형성되지 않으며, 아주 얇은 극박의 열가소성 필름을 사용한다.
예를 들어 상기 열가소성(Thermoplastic) 필름(23)은 가열에 의해 연화할 때, 그 상태에 힘을 가하면 유동하여 변형되고 고화하지만, 재가열에 의해 연화하여 반복사용할 수 있는 필름으로, EVA(ethylene-vinyl acetate copolymer), PP(polypropylene), PE(polyetylene), PVC(PolyVinylChloride) 등이고, 열가소성 필름(23)의 두께는 10~15㎛인 것이 바람직하다.
다음 도 2b에 도시된 바와 같이 가열롤러(30)를 이용하여 상하에서 그라파이트판(21,22)을 서로를 향하도록 가압하여 상하의 그라파이트판(21,22)을 열가소성 필름(23)에 붙인다.
이때 가열롤러(30)의 가열온도는 열가소성 필름(23)의 용해온도보다 약간 낮게 하고, 가열롤러(30)의 압력은 1~3kgf/㎠ 정도로 한다.
이에 의해 열가소성 필름(23)이 상하의 그라파이트판(21,22)에 압착된다.
이 방식은 상하 그라파이트판(21,22) 사이에 끼워진 열가소성 필름(23)이 열과 압력에 의해 부분 파괴되어 상하의 탄소 결합으로 통전하지만, 그 외의 부분은 열가소성 필름(23)에 의해 절연되기(이를 테면, 압착되기) 때문에 전해액이 그라파이트판(21,22) 사이에 침투하는 것을 방지할 수 있다.
즉, 본 발명에 의하면 도전성능이 좋은 전해액에 대하여 불편함이 없는 그라파이트판(21,22)을 레독스 전지용 전극(20)에 적합하게 제조하여 전기화학적으로도 경제적으로도 뛰어난 전극을 얻을 수 있게 된다.
도 3은 본 발명에 따른 레독스 흐름 전지용 전해액 제조장치의 일실시예를 도시하는 사시도이며, 도 4는 본 발명에 따른 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법의 일실시예를 도시하는 설명도로서, 도시된 바와 같이 본 발명의 레독스 흐름 전지용 전해액 제조장치는 양극 챔버(111), 원액 챔버(113), 처리액 챔버(115) 및 음극 챔버(117)가 형성되는 전해조(110); 및 양극(131) 및 음극(133)에 전원을 공급하는 전원부(130);를 포함하는 것이되, 상기 양극 챔버(111)와 원액 챔버(113) 사이에는 음이온 투과막(121)과 양이온 투과막(123), 상기 원액 챔버(113)와 처리액 챔버(115) 사이에는 양이온 투과막(123), 상기 처리액 챔버(115)와 음극 챔버(117)에는 음이온 투과막(121)과 양이온 투과막(123)이 각각 형성되는 것이다.
상기 양극(131) 및 음극(133)은 티타늄과 백금 또는 티타늄과 루테늄을 포함하는 합금으로 이루어지며, 상기 전극액(120)은 황산 나트륨용액인 것이며, 상기 원액(140)은 산화 바나듐 황산용액이고, 상기 처리액(150)은 황산용액인 것이 바람직하다.
상기 양극 챔버(111) 및 음극 챔버(117), 상기 원액 챔버(113), 상기 처리액 챔버(115)의 각각에 전극액 수조(171), 원액 수조(173), 처리액 수조(175)가 배관(50)으로 각각 연결되어 있고, 상기 각각의 배관(50)에는 순환 펌프(151)가 연결되어 있는 것이 바람직하다. 각 챔버와 각 수조는 배관(호스, 파이프)으로 연결되어 있어 전극액, 원액, 처리액이 순환할 수 있는 구조를 가지게 된다.
상기 순환과정에서 발생하는 이온물질의 이온 투과막에서의 물질이동은 양극 챔버(111)에서는 수소이온(H+)은 음이온 투과막(121) 및 양이온 투과막(123)을 투과하여 원액 챔버(113)로 이동한다.
즉 양극(131)에 양전압이 인가되고 음극(133)에 음전압이 인가되면 전기장이 형성되고 상기 전기장에 의하여 이온 물질들은 이온투과막(121, 123)을 통해 이동하게 된다.
양의 극성을 가지는 이온 물질(H+, V+ 등)은 음전압이 인가되는 음극(133)을 향하여 이동되고, 음의 극성을 가지는 이온 물질(OH-)은 양전압이 인가되는 양극(131)을 향하여 이동하게 된다.
순환 펌프(151)를 동작시켜 각 수조에서 전해조(110)로 유입되는 주입압력을 같도록 순환 펌프(151)의 출력을 조정할 수 있게 된다. 본 발명의 레독스 흐름 전지용 전해액 제조장치에 있어서 한계전류를 약간 넘는 영역에서 가동하는 것이 순환 펌프(151)이다.
상기 배관(50)에는 상기 순환 펌프(151)에서 각 챔버(111, 113, 115)로 공급하는 유량을 제어하기 위해 제어수단을 더욱 포함하는 것이 바람직하다.
상기 제어수단은 압력계(141) 및 제어밸브(143)를 포함하는 것이며, 제어수단을 조절하거나 설정된 데이터에 맞춰 자동제어할 수 있는 제어부(60)를 두는 것도 가능하다.
양극 챔버(111)와 원액 챔버(113) 사이에는 음이온 투과막(121) 및 양이온 투과막(123), 상기 원액 챔버(113)와 상기 처리액 챔버(115)에는 양이온 투과막(123), 상기 처리액 챔버(115)와 상기 음극 챔버(117) 사이에는 음이온 투과막(121) 및 양이온 투과막(123)을 순차적으로 구획한 후, 상기 양극 챔버(111) 및 음극 챔버(117)에는 황산 나트륨 용액을 채우고, 상기 원액 챔버(113)에는 산화 바나듐 황산 용액(VOSO4)을 채우며, 상기 처리액 챔버(115)에는 황산 용액을 채우고, 양극(131) 및 음극(133)에 전원을 공급하여 이온들이 상기 음이온 투과막(121) 및 양이온 투과막(123)을 통해 이동시키는 것이 바람직하다.
3가 또는 4가의 바나듐 전해액이 생성되도록 각 챔버(111, 113, 115)로 흐르는 전류량을 조절하는 것이 바람직하다.
원액에서 산화 바나듐 황산염(VOSO4)을 사용했을 경우, 산소 이온(O-2)은 전극액에서 이동해 온 수소 이온(H+)과 화합하여 일부는 물(H2O)이 되고, 또 다른 일부는 산소(O2)가 된다. 이때 해리된 바나듐 이온(V+3 또는 V+4)이 처리액 챔버(115) 내에 확산 된다.
한편 황산 이온(SO4 -2)은 전극액에서 공급된 수소 이온과 화합하여 황산(H2SO4)이 된다.
상기 전류량은 한계전류 값의 1.1~1.3 배의 정전류를 사용하는 것이되, 상기 한계전류 값이란 상기 각 챔버(111, 113, 115)에 식염수를 넣고, 소정의 전압을 흘려 보내 각 챔버 내부에서 계측되는 전류 값인 것이 바람직하다.
말하자면 원액(140)을 전기분해하여 그 생성물이 이온투과막(121, 123)을 거쳐 정제분리하기 때문에 동작점을 그와 같은 설정으로 하는 것이다.
도 6은 본 발명에 따른 전해액의 제조장치 및 그 제조방법에 따른 또 다른 실시예를 도시하는 설명도로서, 도 3 또는 도 6에 도시된 바와 같이 열화되거나 불순물이 포함되어 있어 순도가 좋지 않은 원료를 정제할 때에 사용하는 정제장치를 더욱 포함하는 것이다.
상기 정제장치는 전해액 제조장치와의 차이점을 비교하면 다음과 같다.
양극 챔버(111)와 원액 챔버(140) 사이에는 부생액 챔버(125)가 더욱 포함되어 있으며, 그에 대응하여 부생액 수조(172)가 배관(50)으로 연결되어 있다.
부생액(120)의 순환과정은 상기 배관(50)에 순환 펌프(151)가 구비되어 부생액 수조(172)에서 부생액 챔버(112)로 이동한 후 다시 부생액 수조(172)로 돌아오는 것이다.
부생액 챔버(120)와 원액 챔버(140) 사이에는 음이온 투과막(121)이 형성되어 있다.
또한, 정제장치에서는 원액이 열화된 전해액 또는 순도가 비교적 좋지 않은 원액인 것이 주로 사용된다.
예를 들어, 전극액(120)에 황산나트륨 용액(Na2SO4), 원액(140)에 메타바나진산 암모니움(NH4VO3) 용액, 처리액에 희황산(묽은 황산)을 사용한 경우 원액(140)의 암모니움이온(NH4 +)은 부생액으로 이동하여 암모니아수가 되며, 바나듐이온은 처리액으로 이동하여 황산바나듐용액이 된다.
또한 원액에 산화바나듐 황산(VOSO4)용액을 처리액에 희황산을 사용한 경우 원액의 황산이온은 부생액으로 이동하여 황산이 되며, 바나듐이온은 처리액으로 이동하여 황산바나듐이 된다.
정제장치는 소금을 한번 산과 알칼리로 분해한 뒤에 재차 화합시키기 위해 정제도가 높고 유기산 등의 불순물이 혼입된 경우 등에도 알맞게 정제가 가능하다. 정제장치의 조정방법은 전해액 제조장치과 같이 한계전류를 계측하여 이것을 조금 넘는 전류(10~20%증가)에서 작동시킨다.
이하, 본 발명에 따른 레독스 흐름 전지용 전해액 제조장치 및 제조방법을 바람직한 실시예를 통하여 보다 구체적으로 설명한다.
<실시예 1>
1. 식염수를 이용한 레독스 흐름 전지용 전해액 제조장치의 조정
레독스 흐름 전지용 전해액 제조장치를 제작하고 한계전류의 계측을 실행한다.
각 수조(171, 173, 175)에 3%의 식염수를 넣어 전압을 흘려보내 장치에 흐르는 전류를 계측한다.
도 5는 본 발명의 레독스 흐름 전지용 전해액 제조장치의 전압/전류 특성을 도시하는 그래프로서, 도시된 바와 같이 전해액 제조장치의 전압-전류의 특성으로 세로축에는 전압을 전류에서 뺀 수치(E/I)를 그리고 가로축에는 전류의 역수(1/I)를 눈금을 그어 놓는다.
전원에는 정전압, 정전류 전원을 사용하여 최대출력30(V)에서 0.1V정도의 제어가 가능하며 출력전류는 최대 3A로도 충분히 사용 가능하다.
식염수에서는 전류축의 1.3의 부근에서 부성저항이 발생하고 있으나, 이것은 막에서 확산된 나트륨 이온량이 막에서 외부로 끌어내는 이온량에 도달하지 않고 공급된 전류에 의해 식염수가 전기분해되는 것을 나타내고 있다. 이 예에서는 부성저항이 발생하는 점은 1.1~1.3이기 때문에 한계전류는 그 역수(1/1.3~1/1.1)가 되며, 0.77~0.91(A)가 된다.
여기서, 부성저항이란 부하에 가하는 전압을 변화시켰을 때의 전압 전류특성의 경사가 마이너스로 되고 전류를 감소시키면 전압 강하가 증가하는 것을 말하며, 부저항 또는 부특성이라고도 한다.
2.레독스 흐름 전지용 전해액 제조장치의 성능시험
다음으로 실제로 사용하는 경우의 한계전류를 계측한다.
각 수조의 식염수를 버리고 순수한 물을 이용하여 장치 내부를 충분히 세정한 후에 전극액 수조(171)에 황산나트륨 10%용액, 원액 수조(173)에 산화바나듐 황산10%용액 처리액 수조(175)에 황산 10%용액을 각각 주입한다.
순환 펌프(151)를 동작시켜 전해조에서 각각의 액(120, 140, 150)을 주입하게 되나 이 때 각 수조에서의 주입압력이 같도록 순환 펌프(151)의 출력을 조정한다. 또한 전해조에서 주입된 액체의 유량도 같도록 제어밸브(143)로 조절한다. 본 장치는 주입압력 0.02(MPa), 유량 2.5(L/min)으로 하였다.
도 5에 도시된 바와 같이 실사용시에서는 용액의 전지전도도가 높은 것과 액체를 순환시키는 것에 따른 한계전류는 낮아 1/I는 1.5에 약 0.67(A)가 된다.
또한 부성저항 영역에서 전류의 수치가 불규칙하게 나타나는 현상이 발생하고 있으나 이것은 액체의 순환량의 변동에 기인하고 있다.
전해조 안에서 발생한 가스인 산소 및 수소가 수조 바깥으로 배출될 때에 유량이 변동하여 그 결과 막에서의 이온의 확산량과 변동하기 때문이나 전체적으로는 직성성도 좋고 전류 가변범위도 넓다.
통상의 전기투석에서는 한계전류 이하에서 사용하고 있으나, 본 발명에서는 전해투석에서는 한계전류를 조금 초과하는 수치(일반적으로 20~25% 증가)를 통전 전류로 한다. 본 장치에서는 4가 바나듐 이온을 생성시키는 경우는 20% 증가한 0.8(A)로 하고 3가 바나듐 이온을 생성시킨 경우에는 30% 증가한 0.87(A)로 공급하였다.
또한 한계전류 0.67(A)일 때의 공급전압은 14.74(V)로, 20%증가시킨 0.8(A)일 때의 공급전압은 19.2(V), 30% 증가시킨 0.87(A)일 때의 공급전압은 21.75(V)였다.
처리량은 원액농도나 순환량, 통전 전류등에 의해 달라지나, 농도 10%, 순환량 2.5L/min, 공급전압 19.2(V), 전해전류 0.8(A)일 때 대체적으로 2.5L/h의 처리성능을 보였다.
3. 결론
상기 실험과 같이 본 발명의 레독스 흐름 전지용 전해액 제조장치는 원료를 전기분해 하여 그 생성물을 분리정제하는 관점에서는 전기분해투석장치이지만, 막의 한계전류를 조금 초과하여 전류영역에서 전해하는 것에 의해 분리정제하는 물질(천이금속원소 등)의 원자가를 제어하는 것이 가능하기 때문에 배위전환장치로서 기능한다. 레독스 흐름배터리는 양극액에 4가 음극액에 3가의 바나듐용액을 사용하기 때문에 원자가를 제어할 수 있는 장치는 이러한 작업에서 유리하다.
<실시예 2>
원액(140)에서는 사용이 끝난 전해액을 20㎛ 카트리지필터에서 이중투과시킨 것을 사용하며, 바나듐 함유량을 10%로 조정하였다. 부생액 수조(172)에는 순수한 물, 그리고 처리액 수조(175)에는 10%황산을 주입하고, 전해액에는 10%의 황산나트륨 용액을 사용하였다.
도 7은 본 발명의 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법에서 정제장치의 전압/전류 특성을 도시하는 그래프이다.
이러한 조건에서의 한계전류는 0.72(A)였다. 실험은 4회 진행하여 초기통전전류를 한계전류의 5%증가(일점쇄선), 10%증가(파선), 15%증가(실선), 20%증가(점선)으로 각각 180분간 전해하여 10분마다 전압전류를 계측하였다. 또한 30분 마다 처리액의 바나듐함유량을 비색법을 통하여 계측하였다.
그 결과, 처리액의 바나듐 농도는 150분의 전해에서 8.8%, 180분에서 9.2%에 달하였다.
상기 처리액의 바나듐 농도를 전압전류특성과 비교해 보면 전류의 변화가 하향정지 한 부근(150분)에서 바나듐 이온의 이동량도 큰 폭으로 감소하며, 180분에서 거의 평행상태가 되어 있는 것을 알 수 있다.
도 8a 및 8b는 본 발명에 따른 선택이온농도계 및 이온농도 측정방법의 일실시예를 도시하는 설명도로서, 도시된 바와 같이 전위조정기(212) 및 비교전극(252)과 기준전극(254)의 전위차를 측정하는 제1전압계(214)를 포함하는 제1측정 모듈(210); 부하저항(232) 및 작용전극(256)과 상기 기준전극(254)의 전위차를 측정하는 제2전압계(234)가 포함하는 제2측정 모듈(230); 상기 비교전극(252), 상기 기준전극(254) 및 상기 작용전극(256)이 배열되고, 내부에는 전극액(258)이 채워지며, 하부면에는 측정대상시료(270) 내에 포함된 측정대상이온을 선택적으로 투과시키는 이온선택투과막(259)이 형성되는 전극부(250); 및 상기 제1전압계(214)와 상기 제2전압계(234)에서 측정된 전위차를 이용하여 상기 측정대상이온의 농도를 계산하는 제어부;를 포함하는 것이다.
상기 측정대상시료(270)는 바나듐염 용액이고, 상기 측정대상이온은 바나듐 이온인 것이다.
상기 비교전극(252) 및 상기 기준전극(254)은 전기화학적으로 안정된 도전성이 우수한 금 또는 백금인 것이 바람직하고, 상기 작용전극(256)은 이온에 의한 산화, 환원을 받는 전극으로서 은 또는 납인 것이 바람직하다.
상기 전극액(258)은 5~15%의 초산 또는 황산인 것이 바람직하다.
상기 이온선택투과막(259)은 물리적, 화학적으로 안정한 불소수지(PTFE, Poly Tetra Fluoro Ethylene)인 테프론막 또는 폴리염화비닐수지(PVC, Polyvinyl chloride)로 이루어지는 것이 바람직하다.
상기 제어부는 표준시료을 이용하여 측정한 전위차와 상기 바나듐염 용액을 이용하여 측정한 전위차를 비교하여 상기 바나듐 이온의 농도를 계산하는 연산수단과 계산된 이온의 농도를 표시하는 표시수단을 포함하는 것이되, 상기 표준시료는 염화 제1철 용액, 염화 제2철 용액, 염화 제3크롬 용액, 황산 바나질 용액 중에서 어느 하나 이상이 선택되는 것이 바람직하다.
연산수단은 측정된 전위(제1 또는 제2전압계에 표시되는 전압)값 등의 기존의 데이터, 연산식 등을 기억하는 기억부와 측정된 데이터를 이용하여 측정대상이온의 농도를 연산하는 연산부를 포함하여 구성되는 것이 바람직하다.
최종적인 이온농도를 구하기 위해서는 미리 농도를 알고 있는 이온들로 구성되는 표준시료의 데이터를 입력하고 이를 이용하여 이온농도와 전위조정기의 전위 사이의 관계식을 얻고, 이 관계식을 이용하여 측정대상시료 내에 포함되는 측정대상이온의 농도를 연산하여 표시하는 것이다.
이미 이온 농도를 알고 있는 표준시료을 이용하여 시료의 측정대상이온의 농도를 측정하는 선택이온농도를 측정하는 방법에 있어서, 기준액, 표준시료 및 측정대상시료(270) 각각을 선택이온농도계의 전극부(250)에 순차적으로 접촉시키는 단계; 상기 기준액, 표준시료 및 측정대상시료(270)와의 접촉에 의해 전압계(214, 234)에 표시되는 각각의 전압이 제로가 되도록 전위조정기(212)를 조정하는 전위조정 단계; 부하저항(232)에 전류가 흐르지 않도록 하여 이온전위를 측정하는 이온전위측정 단계; 및 상기 전위조정 및 이온전위측정 단계에서의 데이터를 이용하여 이온농도와 전위조정기의 전위와의 관계를 연산하는 연산단계;를 포함하는 것이다.
도 9는 본 발명에 따른 선택이온농도계 및 이온농도 측정방법의 등가회로를 도시하는 회로도로서, 도시된 바와 같이 선택이온농도계는 비교전극(252)과 작용전극(256) 간의 전위차를 계측하는 것이다.
이온선택투과막(259)을 통하여 생성된 작용전극(256)의 전위인 산화전위를 비교전극(252)에 대하여 역전압을 거는 것으로서, 선택이온농도계 내부에 생성된 이온을 환원한 결과 전위조정기의 전위가 피검액의 이온전위와 등가를 이루게 된다.
*즉 부하저항(232)에 전류가 흐르지 않도록 할 때의 전위조정기(212)의 출력전압이 이온전위에 상당하므로 표준시약에 따라 각각의 전위를 계측하면 피검액의 이온전위를 알 수 있게 된다.
이하, 본 발명에 따른 선택이온농도계 및 이온농도 측정방법을 바람직한 실시예를 통하여 보다 구체적으로 설명한다.
<실시예1>
먼저 선택이온농도계를 시판되는 시약에 의해 교정(전위조정)하는 방법에 대해 설명한다.
① 선택이온농도계가 공기중에 있을 때, 선택이온농도계 내부에서는 작용전극(56)이 마이너스(-), 기준전극(254)이 플라스(+)가 된다. 따라서, 전압계의 침은 약간 플라스(+)에 치우쳐 있다.
② 비교전극(252)의 표면이 오염되지 않고 시료(270)과의 사이에 전위차가 없는 것으로 선택이온농도계를 기준액인 10%의 희황산에 침투하여 제로조정을 행한다. 즉 전압계의 침이 제로를 가르치도록 조정한다. 이 때에 전위조정기의 전위인 약200mV가 제로전위가 된다.
③ 선택이온농도계를 기준액에서 빼고 세척하여 물기를 제거한 후, 염화제1철 10%용액에 침투시킨다. 이때, 전압계의 흔들림은 마이너스 측에서 흔들리기 때문에 전위조정을 하여 전압계의 진동을 제로가 되도록 한다. 이 때의 전위조정기의 전위인 400mV를 1가 철 이온 전위(VFe+)로 한다.
④ 상기와 같은 형식으로 연화 제2철 10%용액에 침투시켜 제로로 조정하고 그때의 전위조정기의 전위인 약 600mV를 2가철이온 전위(VFe2+)로 한다.
⑤ 상기와 같은 형식으로 연화제3크롬 10%용액에 침투시켰을 때의 전위조정기의 전위인 약 1,100mV를 3가크롬이온 전위(VCr3+)로 한다.
⑥ 상기와 같은 형식으로 황산 바나질 10%용액에 침투시켰을 때의 전위조정기의 전위인 약 1,200mV를 4가바나듐이온(VV4+)전위로 하는 과정을 거치게 된다.
상기와 같은 과정을 통해 각 시료들에 따른 전위조정기의 전위를 구한 후, 이온전위를 구한다.
이온전위는 부하저항에 전류가 흐르지 않도록 할 때의 전압조정기의 출력전압이 이온전위에 상당하는 것이므로 각각의 표준시료의 전위를 측정하여 알 수 있다.
도 10은 본 발명에 따른 선택이온농도계 및 이온농도 측정방법에서 이온농도와 전위조정전압과의 관계를 도시하는 그래프로서, 도시된 바와 같이 이온농도와 이온농도와 전위조정기의 전위와의 관계는 각각의 기준전위를 제로로 하였을 때에 거의 직선적으로 변화하는 관계가 성립하게 되어, 측정대상이온의 농도를 구할 수 있게 된다.
도 11은 본 발명의 일 실시예에 따른 자립용 레독스전지시스템에 대한 개략도이다. 본 실시예에 따른 자립용 레독스전지시스템(301)은 수력발전장치(310), 레독스전지(10), 인버터(330)로 이루어질 수 있다. 레독스전지(10)에 충전된 전력은 인버터(330)를 통해 변환되어 전자기기에 제공된다.
수력발전장치(310)는 도 2에 도시된 바와 같이 몸체(311)와 몸체(311)의 상부에 배치된 직류발전기(314)로 이루어 질수 있다. 몸체(311)의 내부에는 날개수차(312)가 포함되며, 몸체(311)의 외측에는 물을 유입하기 위한 도수관(312)과 물을 배수하기 위한 배수관(313)이 연결된다. 여기서 수력발전장치(310)는 직류발전기(314)로 경자동차용 발전기를 사용하고 경자동용 발전기의 회전축에 날개수차(312)를 장착하는 것에 의해 만들어 질 수 있다.
이와 같이 본 실시예에 따른 수력발전장치(310)는 전용 발전기를 별도로 제작할 필요가 없기 때문에 제조비용 및 환경측면에서 장점을 가진다.
도수관(312)은 여러갈래로 분기되어 몸체(311)에 설치된 노즐(미도시)에 연결된다. 여러갈래로 분기된 분기관(322, 324)을 통해 유입된 물은 노즐(426, 428)을 통해 날개수차(312)에 분사되어 날개수차(312)를 회전시킨다. 날개수차(312)는 회전력을 직류발전기(314)에 전달하기 위해 직류발전기(314)의 회전자(미도시)에 결합된다.
본 실시예에서 노즐(326, 328)의 갯수는 4개로 마련될 수 있다. 이러한 노즐(326,328)의 갯수는 도수관(312) 및 몸체(311)의 구조에 따라 다양하게 마련될 수 있다.
배수관(313)은 도수관(312)에 의해 유입된 물을 배수하는 기능을 수행하며 날개수차(312)에 부딪쳐 몸체(311)에 축적되는 물의 양을 고려하여 크기를 정할 수 있다. 이것은 몸체(311)에 축적된 물의 양에 의해 날개수차(312)의 회전이 방해받지 않도록 하기 위함이다.
레독스전지(320)는 제1 전해질탱크(322), 제2 전해질탱크(324), 제1 펌프(326), 제2 펌프(328), 적층전극(329)으로 이루어진다.
제1 전해질탱크(322) 및 제2 전해질탱크(324)는 산화상태가 각각 다른 활물질을 저장한다. 제1 펌프(326) 및 제2 펌프(328)는 제1 전해질탱크(322) 및 제2 전해질탱크(324)에 각각 연결되어 충전 및 방전시 활물질을 순환시키는 기능을 수행한다. 적층전극(329)은 다수개의 단위전극(391)이 연결된 것으로 각각의 단위전극(391)은 이온교환막(멤브레인)으로 분리된 양극 및 음극 전극으로 구성된다.
여기서 이온교환막(멤브레인)은 충전 및 방전시 레독스 반응하는 이온을 분리하기 위해 양극 및 음극 전극 사이에 위치한다. 그리고 활물질은 V, Fe, Cr, Cu, Ti, Mn 및 Sn 등의 전이금속을 강산 수용액에 용해된 전해질이다.
전해질은 적층전극(329) 내에 저장되지 않고, 제1 및 제2 전해질탱크(322, 324)에 액체 상태로 저장되며, 충·방전 과정 중에 제1 및 제2 펌프(326, 328)를 통하여 적층전극(329)의 내부로 공급된다.
본 실시예에 따른 적층전극(329)을 구성하는 단위전극(391)은 비활성 전극으로 전극 자체는 화학 반응 없이 전극 표면과 전해질 사이에서 반응하기 때문에 종래 이차 전지에 비해 수명이 길다는 장점을 가진다.
또한 본 실시예에 따른 레독스전지(10)는 출력을 결정하는 적층전극(329)과 충전용량을 결정하는 전해액을 저장하는 제1 및 제2 전해질탱크(322, 324)가 분리되어 있기 때문에 출력과 용량을 자유롭게 설계할 수 있으며 설치 장소에 제약이 적기 때문에 용이한 설치가 가능하다.
이하에서는 도 3를 참조하여 본 실시예에 따른 적층전극(329)을 구성하는 단위전극(391)에 대하여 구체적으로 설명한다. 도 3에 도시된 바와 같이, 단위전극(391)은 2개의 그라이트판(392)과 양 그라이트판(392) 사이에 개재된 열가소성필름(394)을 포함할 수 있다.
열가소성필름(394)은 전해액이 침투하지 않는 재질로 핀홀이 형성되지 않으며, 아주 얇은 막의 형태를 가진다. 예를 들어 열가소성필름(394)은 가열에 의해 연화할 때, 그 상태에 힘을 가하면 유동하여 변형되고 고화되지만, 재가열에 의해 연화하여 반복할 수 있는 특징을 가진다. 열가소성필름(394)은 폴리스티렌, 폴리에틸렌, 폴리에틸렌 테레프탈레이트, 폴리염화비닐, 폴리카보네이트, 폴리염화비닐리덴(PVC), 아세탈, 치메이, 나일론, 폴리프로필렌, 에틸렌 및 비닐 아세테이트의 열가소성 수지 공중합체 또는 그의 상용성 혼합물 등으로 이루어 질수 있다. 또한 열가소성필름(394)은 인조고무, 합성고무 또는 고무와 열가소성수지의 혼합물 또는 화합물 등으로 이루어 질 수 있다.
열가소성필름(394)의 두께는 대략 10~15㎛로 마련될 수 있다. 이러한 두께는 적층전극(329)의 용도에 따라 달라 질 수 있다.
양 그라파이트판(392) 사이에 끼워진 열가소성필름(394)은 탄소 결합에 의해 전기적 통전되며 그 외의 부분은 열가소성필름(394)에 의해 절연된 상태이다. 이에 의해 양 그라이트판(392) 사이에 전해액이 침투되는 것이 방지된다.
이와 같이 본 실시예에 따른 적층전극(329)은 도전성능이 좋은면서 전해액과의 반응이 좋은 그라파이트판(392)을 사용함으로써 전기화학적으로도 뛰어난 성능을 발휘할 수 있다.
이상에서 설명된 본 발명은 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그러므로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.

Claims (27)

  1. 상하로 서로 이격되게 그라파이트판(21,22)을 위치시키고 상기 그라파이트판 (21,22)사이에 열가소성 필름(23)을 끼워 넣는 단계;
    가열롤러(30)를 이용하여 상하의 그라파이트판(21,22)을 가압하여 상하의 그라파이트판(21,22)을 열과 압력으로 열가소성 필름(23)에 붙이는 단계를 포함하는 레독스 전지용 전극의 제조방법.
  2. 제 1 항에 있어서,
    상기 열가소성 필름(23)은 EVA, PP, PE, PVC 둥 어느 하나이고, 두께는 10~15㎛인 것을 특징으로 하는 레독스 전지용 전극의 제조방법.
  3. 제 1 항에 있어서,
    상기 가열롤러(30)의 가열온도는 열가소성 필름(23)의 용해온도보다 낮고, 가열롤러(30)의 압력은 1~3kgf/㎠인 것을 특징으로 하는 레독스 전지용 전극의 제조방법.
  4. 제 1 항 내지 제 3항 중 어느 한 항에 의해 제조된 전극(20)이 구비된 레독스 전지.
  5. 양극 챔버, 원액 챔버, 처리액 챔버 및 음극 챔버가 형성되는 전해조; 및
    양극 및 음극에 전원을 공급하는 전원부;를 포함하는 것이되,
    상기 양극 챔버와 원액 챔버 사이에는 음이온 투과막과 양이온 투과막, 상기 원액 챔버와 처리액 챔버 사이에는 양이온 투과막, 상기 처리액 챔버와 음극 챔버에는 음이온 투과막과 양이온 투과막이 각각 형성되는 것을 특징으로 하는 레독스 흐름 전지용 전해액 제조장치.
  6. 제5항에 있어서,
    열화되거나 불순물이 함유된 전해액을 정제하는 정제장치를 더욱 포함하는 것을 특징으로 하는 레독스 흐름 전지용 전해액 제조장치.
  7. 제5항에 있어서,
    상기 양극 및 음극은 티타늄과 백금 또는 티타늄과 루테늄을 포함하는 합금이며, 전극액은 황산 나트륨용액인 것이며, 상기 원액은 산화 바나듐 황산용액이고, 상기 처리액은 황산용액인 것을 특징으로 하는 레독스 흐름 전지용 전해액 제조장치.
  8. 제5항에 있어서,
    상기 양극 챔버 및 음극 챔버, 상기 원액 챔버, 상기 처리액 챔버의 각각에 전극액 수조, 원액 수조, 처리액 수조가 배관으로 각각 연결되어 있고,
    상기 각각의 배관에는 순환 펌프가 연결되어 있는 것을 특징으로 하는 레독스 흐름 전지용 전해액 제조장치.
  9. 제8항에 있어서,
    상기 배관에는 상기 순환 펌프에서 각 챔버로 공급하는 유량을 제어하기 위해 제어수단을 더욱 포함하는 것을 특징으로 하는 레독스 흐름 전지용 전해액 제조장치.
  10. 제9항에 있어서,
    상기 제어수단은 압력계 및 제어밸브를 포함하는 것을 특징으로 하는 레독스 흐름 전지용 전해액 제조장치.
  11. 양극 챔버와 원액 챔버 사이에는 음이온 및 양이온 투과막, 상기 원액 챔버와 처리액 챔버에는 양이온 투과막, 상기 처리액 챔버와 음극 챔버 사이에는 음이온 투과막 및 양이온 투과막으로 구획한 후,
    상기 양극 및 음극 챔버에는 황산 나트륨 용액을 채우고, 상기 원액 챔버에는 산화 바나듐 황산 용액을 채우며, 상기 처리액 챔버에는 황산 용액을 채우고, 양극 및 음극에 전원을 공급하여 이온들이 상기 음이온 및 양이온 투과막을 통해 이동시키는 것을 특징으로 하는 전해액 제조방법.
  12. 제11항에 있어서,
    3가 또는 4가의 바나듐 전해액이 생성되도록 각 챔버로 흐르는 전류량을 조절하는 것을 특징으로 하는 전해액 제조방법.
  13. 제12항에 있어서,
    상기 전류량은 한계전류 값의 1.1~1.3 배의 전류를 사용하는 것이며, 상기 한계전류 값은 0.77~0.91[A] 전류인 것을 특징으로 하는 전해액 제조방법.
  14. 전위조정기 및 비교전극과 기준전극의 전위차를 측정하는 제1전압계를 포함하는 제1측정 모듈;
    부하저항 및 작용전극과 상기 기준전극의 전위차를 측정하는 제2전압계가 포함하는 제2측정 모듈;
    상기 비교전극, 상기 기준전극 및 상기 작용전극이 배열되고, 내부에는 전극액이 채워지며, 하부면에는 측정대상시료 내에 포함된 측정대상이온을 선택적으로 투과시키는 이온선택투과막이 형성되는 전극부; 및
    상기 제1전압계와 상기 제2전압계에서 측정된 전위차를 이용하여 상기 측정대상이온의 농도를 계산하는 제어부;
    를 포함하는 것을 특징으로 하는 선택이온농도계.
  15. 제14항에 있어서,
    상기 측정대상시료는 바나듐염 용액이고, 상기 측정대상이온은 바나듐 이온인 것을 특징으로 하는 선택이온농도계.
  16. 제14항에 있어서,
    상기 비교전극 및 상기 기준전극은 금 또는 백금이고, 상기 작용전극은 은 또는 납인 것을 특징으로 하는 선택이온농도계.
  17. 제14항에 있어서,
    상기 전극액은 5~15%의 초산 또는 황산인 것을 특징으로 하는 선택이온농도계.
  18. 제14항에 있어서,
    상기 이온선택투과막은 불소수지 또는 폴리염화비닐수지로 이루어지는 것을 특징으로 하는 선택이온농도계.
  19. 제14항에 있어서,
    상기 제어부는 표준시료을 이용하여 측정한 전위차와 상기 바나듐염 용액을 이용하여 측정한 전위차를 비교하여 상기 바나듐 이온의 농도를 계산하는 연산수단과 계산된 이온의 농도를 표시하는 표시수단을 포함하는 것이되,
    상기 표준시료는 염화 제1철 용액, 염화 제2철 용액, 염화 제3크롬 용액, 황산 바나질 용액 중에서 어느 하나 이상이 선택되는 것을 특징으로 하는 선택이온농도계.
  20. 이온 농도를 알고 있는 표준시료를 이용하여 시료의 측정대상이온의 농도를 측정하는 선택이온농도를 측정하는 방법에 있어서,
    기준액, 표준시료 및 측정시료 각각을 선택이온농도계의 전극부에 순차적으로 접촉시키는 단계;
    상기 기준액, 표준시료 및 측정시료와의 접촉에 의해 전압계에 표시되는 각각의 전압이 제로가 되도록 전위조정기를 조정하는 전위조정 단계;
    부하저항에 전류가 흐르지 않도록 하여 이온전위를 측정하는 이온전위측정 단계; 및
    상기 전위조정 및 이온전위측정 단계에서의 데이터를 이용하여 이온농도와 전위조정기의 전위와의 관계를 연산하는 연산단계;
    를 포함하는 것을 특징으로 하는 이온농도 측정방법.
  21. 도수관을 통해 유입된 물에 의해 회전하는 날개수차와 상기 날개수차의 회전에 의해 직류전류를 발생하는 직류발전기를 구비한 마이크로 수력발전장치; 및
    단위전극이 다수개 적층된 적층전극과, 산화상태가 다른 활물질을 각각 저장하는 제1 전해질탱크 및 제2 전해질탱크와, 상기 제1 및 제2 전해질탱크에 각각 연결되어 이들에 저장된 활물질을 상기 적층전극을 통하여 각각 순환함으로써 상기 수력발전 장치를 통한 충전 및 방전을 수행하는 제1 펌프 및 제2 펌프를 구비하는 레독스전지;를
    포함하는 것을 특징으로 하는 자립형 레독스전지시스템.
  22. 제21항에 있어서,
    상기 마이크로 수력발전장치는 몸체와, 상기 몸체의 상부측에 결합된 직류발전기를 포함하는 것을 특징으로 하는 자립형 레독스전지시스템.
  23. 제22항에 있어서,
    상기 마이크로 수력발전장치의 몸체는 외부 일측에 물을 유입하기 위한 도수관과 외부 타측에 물을 배수하기 위한 배수관이 연결되며, 상기 몸체의 내부에는 날개수차를 포함하며,
    상기 도수관은 다수개로 분기되고 각 분기된 분기도수관의 단부에 설치된 노즐이 상기 몸체의 외측에 관통하여 연결되며, 상기 노즐을 통과한 물에 의해 상기 날개수차가 회전하는 것을 특징으로 하는 자립형 레독스전지시스템.
  24. 제 21 항에 있어서,
    상기 마이크로 수력발전장치는 경자동차용 발전기에 날개수차를 장착하는 것에 의해 마련된 것을 특징으로 하는 자립형 레독스전지시스템.
  25. 제21항에 있어서,
    상기 단위전극은 2개의 그라파이트판들과 상기 그라파이트판들 사이에 개재된 열가소성필름을 포함하는 것을 특징으로 하는 자립형 레독스전지시스템.
  26. 제25항에 있어서,
    상기 열가소성필름은 핀홀의 형성이 억제되고 전해액이 침투가 억제되는 재질로 마련되며, 두께가 10~15㎛인 것을 특징으로 하는 자립형 레독스전지시스템.
  27. 제25항에 있어서, 상기 열가소성필름은 폴리스티렌, 폴리에틸렌, 폴리프로필렌, 폴리에틸렌 테레프탈레이트, 폴리염화비닐, 폴리카보네이트, 폴리염화비닐리덴, 아세탈, 치메이, 나일론, 인조고무, 합성고무, 및 에틸렌과 비닐 아세테이트의 열가소성 수지 혼합물 중 하나 또는 2이상의 혼합물 또는 화합물로 이루어진 것을 특징으로 하는 자립형 레독스전지시스템.
PCT/KR2011/006127 2010-11-15 2011-08-19 레독스 흐름 전지용 전극, 그 전극의 제조방법, 레독스 흐름 전지용 전해액 제조장치, 그 제조방법, 전해액의 선택이온 농도계, 선택이온 농도 측정방법 및 자립용 전지 시스템 WO2012067338A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11841113.1A EP2642572A4 (en) 2010-11-15 2011-08-19 ELECTRODE FOR REDOX CIRCULATION BATTERY, METHOD FOR MANUFACTURING SAME, APPARATUS AND METHOD FOR MANUFACTURING ELECTROLYTE FOR REDOX CIRCULATION BATTERY, DEVICE AND METHOD FOR MEASURING SELECTED IONIC ELECTROLYTE CONCENTRATION, AND AUTONOMOUS BATTERY SYSTEM
CN2011800028783A CN102687329A (zh) 2010-11-15 2011-08-19 氧化还原液流电池用电极、制造所述电极的方法、氧化还原液流电池用电解液、制造所述电解液的方法、用于电解液的选择性离子浓度计、测量选择性离子浓度的方法和自氧化还原液流电池系统

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2010-0113328 2010-11-15
KR1020100113328A KR20120051944A (ko) 2010-11-15 2010-11-15 레독스 흐름 전지용 전해액 제조장치 및 그 제조방법
KR1020100113327A KR101371164B1 (ko) 2010-11-15 2010-11-15 레독스 전지용 전극의 제조방법 및 그 레독스 전지
KR10-2010-0113327 2010-11-15
KR10-2010-0116813 2010-11-23
KR10-2010-0116569 2010-11-23
KR20100116569A KR101298174B1 (ko) 2010-11-23 2010-11-23 선택이온농도계 및 이온농도 측정방법
KR1020100116813A KR20120055208A (ko) 2010-11-23 2010-11-23 자립용 레독스전지시스템

Publications (2)

Publication Number Publication Date
WO2012067338A2 true WO2012067338A2 (ko) 2012-05-24
WO2012067338A3 WO2012067338A3 (ko) 2012-08-23

Family

ID=46084453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006127 WO2012067338A2 (ko) 2010-11-15 2011-08-19 레독스 흐름 전지용 전극, 그 전극의 제조방법, 레독스 흐름 전지용 전해액 제조장치, 그 제조방법, 전해액의 선택이온 농도계, 선택이온 농도 측정방법 및 자립용 전지 시스템

Country Status (3)

Country Link
EP (1) EP2642572A4 (ko)
CN (1) CN102687329A (ko)
WO (1) WO2012067338A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101506951B1 (ko) * 2014-10-08 2015-03-30 엄영준 레독스 흐름 전지 전해액 제조장치 및 그 제조방법
KR20200029263A (ko) * 2018-09-10 2020-03-18 한국과학기술연구원 전기화학적 흐름 전지 및 이를 이용한 실시간 전기화학적 특성 분석 시스템

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105375037B (zh) * 2015-10-27 2018-01-19 华北电力科学研究院有限责任公司 一种固态参比电极及其制备方法
ES1158584Y (es) * 2016-04-05 2016-09-09 Ramirez Alberto Andrés Santana Central eléctrica iónica
AU2017340781B2 (en) 2016-10-07 2020-01-16 Largo Clean Energy Corp. Electrochemical-based purification of electrolyte solutions, and related systems and methods
AT519236B1 (de) * 2016-12-13 2018-05-15 Gildemeister Energy Storage Gmbh Reinigungsverfahren für eine Elektrolytflüssigkeit einer Redox-Durchflussbatterie
US10483567B2 (en) * 2017-01-04 2019-11-19 Saudi Arabian Oil Company Mechanical energy storage in flow batteries to enhance energy storage
EP3522281B1 (en) * 2017-02-10 2021-04-07 LG Chem, Ltd. Method and device for recycling electrolyte of flow battery
KR101862725B1 (ko) * 2017-11-29 2018-05-30 스탠다드에너지(주) 레독스 흐름전지
CN113564680B (zh) * 2021-09-26 2021-12-07 江苏泛宇能源有限公司 铁铬电解液的纯化方法及由此获得的铁铬电解液
WO2023095076A1 (en) * 2021-11-25 2023-06-01 Aqua-Cell Energy Inc. Bipolar electrodialysis based flow battery system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101286A (ja) * 1995-10-04 1997-04-15 Kashimakita Kyodo Hatsuden Kk バナジウムレドックスフロー電池用電解液のバナジウムイオンの価数と濃度の測定方法及びその装置
CN1502141A (zh) * 2000-08-16 2004-06-02 ˹���ն�ǻ�����޹�˾ 用不对称钒电解槽制备钒电解液和用不对称钒电解槽使工作态钒氧化还原电池电解液的充电状态重新平衡
JP3970083B2 (ja) * 2002-04-23 2007-09-05 住友電気工業株式会社 レドックスフロー電池システムの運転方法
AU2003901763A0 (en) * 2003-04-14 2003-05-01 Michael Kazacos Novel bromide redox flow cells and batteries
DK1905117T3 (da) * 2005-06-20 2019-08-19 Newsouth Innovations Pty Ltd Forbedrede perfluorerede membraner og forbedrede elektrolytter til redoxceller og batterier
WO2008148148A1 (en) * 2007-06-07 2008-12-11 V-Fuel Pty Ltd Efficient energy storage systems using vanadium redox batteries for electricity trading, fossil fuel reduction and electricity power cost savings for consumers
US7820321B2 (en) * 2008-07-07 2010-10-26 Enervault Corporation Redox flow battery system for distributed energy storage

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2642572A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101506951B1 (ko) * 2014-10-08 2015-03-30 엄영준 레독스 흐름 전지 전해액 제조장치 및 그 제조방법
KR20200029263A (ko) * 2018-09-10 2020-03-18 한국과학기술연구원 전기화학적 흐름 전지 및 이를 이용한 실시간 전기화학적 특성 분석 시스템
KR102116043B1 (ko) 2018-09-10 2020-05-28 한국과학기술연구원 전기화학적 흐름 전지 및 이를 이용한 실시간 전기화학적 특성 분석 시스템

Also Published As

Publication number Publication date
EP2642572A4 (en) 2015-03-04
CN102687329A (zh) 2012-09-19
EP2642572A2 (en) 2013-09-25
WO2012067338A3 (ko) 2012-08-23

Similar Documents

Publication Publication Date Title
WO2012067338A2 (ko) 레독스 흐름 전지용 전극, 그 전극의 제조방법, 레독스 흐름 전지용 전해액 제조장치, 그 제조방법, 전해액의 선택이온 농도계, 선택이온 농도 측정방법 및 자립용 전지 시스템
CN101213700B (zh) 用于氧化还原电池和电池组的改进的全氟化膜和改进的电解液
KR100429040B1 (ko) 고분자 전해질형 연료전지의 특성회복방법
CN102190573B (zh) 一种电化学催化还原二氧化碳制备甲酸的方法
WO2018147682A1 (ko) 플로우 배터리의 전해액 재생방법 및 재생장치
US20100084259A1 (en) Operation method of ozonizer and ozonizer apparatus used therefor
Katayama et al. Electrodeposition of metallic lithium on a tungsten electrode in 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfone) imide room-temperature molten salt
WO2021075816A1 (ko) 높은 환원 전위를 갖는 전자 흡수체를 이용한 미생물 연료전지 및 이를 이용한 전기 에너지 생산방법
Rudolph et al. Corrosion prevention of graphite collector in vanadium redox flow battery
WO2018066939A1 (ko) 전류가 가시화되어 양적 측정이 가능한 쌍극전극 어셈블리, 이를 사용한 전기화학전지 및 전기화학전지 관리시스템
WO2016163773A1 (ko) 고분자 전해질막, 이를 포함하는 전기화학 전지 및 흐름전지, 고분자 전해질막의 제조방법 및 흐름 전지용 전해액
CN108780907A (zh) 膜组件、电极组件、膜电极组件以及由这些组件制成的电化学电池和液流蓄电池
Fang et al. Guanidinium-based ionic liquids as new electrolytes for lithium battery
CN108598543B (zh) 一种液流电池
JP2021177484A (ja) 高分子電解質膜型燃料電池の過充電保護用可逆シャント
WO2017007212A1 (ko) 플로우 전지
TW201327993A (zh) 用於氧化還原液流電池之電極及其製造方法、用於氧化還原液流電池之電解液及其製造方法、用於電解液之選擇性離子濃度計以及選擇性離子濃度之測量方法和自氧化還原液流電池系統
CN110444797A (zh) 钒氧化还原液流电池电解液的制备方法
WO2013191402A1 (ko) 희석가스를 활용한 이산화황 가스로부터의 수소 및 황산의 제조방법
US3261716A (en) Method of operating a fuel cell containing a sulfuric-nitric acid electrolyte
Kalu et al. Use of a hydrogen anode for nitrate waste destruction
JP4547853B2 (ja) 高分子電解質型燃料電池の運転方法および特性回復方法
CN106129406B (zh) 一种光伏储能锂离子电池
CN110387554B (zh) 一种电解系统以及一种电解二氧化碳的方法
JPS57124864A (en) Gas diffusion electrode of fuel cell

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002878.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841113

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011841113

Country of ref document: EP