WO2013191402A1 - 희석가스를 활용한 이산화황 가스로부터의 수소 및 황산의 제조방법 - Google Patents

희석가스를 활용한 이산화황 가스로부터의 수소 및 황산의 제조방법 Download PDF

Info

Publication number
WO2013191402A1
WO2013191402A1 PCT/KR2013/005081 KR2013005081W WO2013191402A1 WO 2013191402 A1 WO2013191402 A1 WO 2013191402A1 KR 2013005081 W KR2013005081 W KR 2013005081W WO 2013191402 A1 WO2013191402 A1 WO 2013191402A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur dioxide
gas
sulfuric acid
dioxide gas
hydrogen
Prior art date
Application number
PCT/KR2013/005081
Other languages
English (en)
French (fr)
Inventor
김창희
정성욱
조원철
강경수
박주식
배기광
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2013191402A1 publication Critical patent/WO2013191402A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/22Inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for producing hydrogen and sulfuric acid from sulfur dioxide gas using an electrochemical process, and more particularly, source gas is injected into an anode of an electrochemical cell equipped with an ion conductive polymer membrane and water is injected into a cathode of the electrochemical cell.
  • source gas is injected into an anode of an electrochemical cell equipped with an ion conductive polymer membrane and water is injected into a cathode of the electrochemical cell.
  • Hybrid-sulfur processes are one of the variables involved in the sulfur-based thermochemical cycle for hydrogen production.
  • Korean Patent No. 1039715 of the inventors discloses a process of producing hydrogen and sulfuric acid using sulfur dioxide by-product gas generated in the smelting process as a raw material of the anode reaction.
  • sulfur dioxide is crossover from the positive electrode to the negative electrode through the ion conductive polymer membrane during the electrochemical reaction.
  • sulfur dioxide generates solid sulfur (S) at the cathode through the following reduction reaction (Scheme 2).
  • This reaction not only reduces hydrogen production efficiency, but also generates sulfur (S) at the electrode surface and the electrode / electrolyte interface, thereby shortening the lifetime of the electrode and membrane electrode composite (MEA).
  • the present inventors have repeatedly studied to reduce the crossover of sulfur dioxide in the electrochemical process for producing hydrogen and sulfuric acid from sulfur dioxide gas, and as a result, the present invention has been completed.
  • An object of the present invention is to provide a method for producing hydrogen from sulfur dioxide (SO 2 ) gas using an electrochemical process that can reduce the crossover of sulfur dioxide.
  • Another object of the present invention is to increase the lifespan of the electrode and membrane electrode composite of the electrochemical cell used in the electrochemical process, and to increase the efficiency and economy of hydrogen production efficiency, from the sulfur dioxide gas using the electrochemical process To provide a method for producing hydrogen and sulfuric acid.
  • the present invention supplies the raw material gas to the anode of the electrochemical cell equipped with an ion conductive polymer membrane, supplying water to the cathode of the electrochemical cell and applying a voltage to the electrochemical cell to the hydrogen and sulfuric acid
  • the raw material gas provides a method for producing hydrogen and sulfuric acid from sulfur dioxide gas using an electrochemical process, characterized in that the mixed gas of sulfur dioxide gas and diluent gas.
  • the present invention is a method for producing hydrogen and sulfuric acid by supplying a source gas containing sulfur dioxide to the anode of the electrochemical cell, supplying water to the cathode of the electrochemical cell and applying a voltage to the electrochemical cell,
  • a method for producing hydrogen and sulfuric acid from sulfur dioxide gas using an electrochemical process characterized in that the mixed gas of sulfur dioxide gas and diluent gas generated during the smelting process.
  • the present invention uses an electrochemical process to reduce the crossover of sulfur dioxide at the cathode of an electrochemical cell by injecting diluent gas selected from hydrogen, nitrogen and air together with sulfur dioxide gas at the anode of the electrochemical cell as a source gas.
  • the present invention does not require a sulfur dioxide concentration step in the copper smelting process or hybrid sulfur hydrogen production process can increase the efficiency and economy accordingly.
  • FIG. 1 is a view schematically showing a method for producing hydrogen and sulfuric acid from sulfur dioxide gas using an electrochemical process according to the present invention.
  • FIG. 2 is a view schematically showing the configuration of a device that can be used in the method for producing hydrogen and sulfuric acid from sulfur dioxide gas using an electrochemical process according to an embodiment of the present invention.
  • FIG 3 is a graph showing the crossover current density versus time according to the concentration of sulfur dioxide in Test Example 1 according to the present invention.
  • Figure 4 is a graph showing the sulfur dioxide crossover flux against the concentration of sulfur dioxide in Test Example 2 according to the present invention.
  • the present invention provides a source gas to the anode of the electrochemical cell equipped with an ion conductive polymer membrane, supplying water to the cathode of the electrochemical cell and applying a voltage to the electrochemical cell to produce hydrogen and sulfuric acid, the source gas It is characterized by using a mixed gas of sulfur dioxide gas and diluent gas as.
  • an electrochemical cell generally used in a hybrid sulfur hydrogen production process commonly known in the art may be used without limitation.
  • the electrochemical cell used in the present invention is largely provided with an ion conductive polymer membrane, for example, a cation exchange membrane, between the anode and the cathode.
  • an ion conductive polymer membrane for example, a cation exchange membrane
  • a sulfur dioxide diluting gas is supplied to a cathode of an electrochemical cell equipped with an ion conductive polymer membrane through a source gas supply unit, water is supplied to a cathode of the electrochemical cell, and a voltage is applied to the electrochemical cell.
  • sulfur dioxide is generated as sulfuric acid and hydrogen ions through oxidation with water at the anode of the electrochemical cell, while hydrogen ions transferred through the ion conductive polymer membrane are reduced at the cathode of the electrochemical cell to generate hydrogen. 1).
  • the process of generating hydrogen according to an embodiment of the present invention, in the present invention, respectively, from the sulfur dioxide gas supply unit 10 and the dilution gas supply unit 20 to the source gas supply unit 30
  • the water supply unit (60) Hydrogen is generated by applying a voltage to the electrochemical cell 40 while supplying water to the cathode of the chemical cell 40.
  • the hydrogen generated at the cathode of the electrochemical cell 40 is collected and stored in the hydrogen collecting unit 50.
  • the sulfur dioxide diluent gas is supplied to the anode of the electrochemical cell equipped with the ion conductive polymer membrane, water is supplied to the cathode of the electrochemical cell, and the voltage of 1.2 V or less to the electrochemical cell. It is preferable to apply hydrogen and to maintain the temperature of the electrochemical cell at 50 ⁇ 100 °C to produce hydrogen.
  • a diluent gas is mixed with one or two or more kinds selected from the group consisting of oxygen, nitrogen and air together with sulfur dioxide gas.
  • the amount of flux moved at a constant diffusion coefficient is proportional to the difference in concentration at the interface. Therefore, since the concentration of sulfur dioxide at the cathode of the electrochemical cell is constant, if the concentration of sulfur dioxide gas is decreased at the anode of the electrochemical cell, the concentration at the membrane interface is also reduced, thereby reducing the amount of sulfur dioxide gas being moved (crossed over). do.
  • the source gas in the present invention is 90 to 20 mol% of diluent gas, which is one or a mixture of two or more selected from the group consisting of sulfur dioxide gas 10 to 80 mol% and oxygen, nitrogen and air. More preferably 20 mol% of sulfur dioxide gas and 80 mol% of the diluent gas.
  • the concentration of sulfur dioxide gas in the source gas used in the present invention is less than 10 mol%, the overvoltage increases and the limit current density decreases, thereby reducing the hydrogen production efficiency and operating limit, thereby reducing the economic efficiency, sulfur dioxide gas in the source gas
  • concentration of is greater than 80 mol%, the effect of reducing the sulfur dioxide crossover at the cathode of the electrochemical cell may be insignificant.
  • Raw material gas used in the present invention is a gas containing sulfur dioxide, for example, by-product gas generated in the copper smelting process may be used.
  • the present invention can also produce hydrogen by supplying a raw material gas containing sulfur dioxide gas, a by-product gas generated in the copper smelting process, to the anode of the electrochemical cell and supplying water to the cathode of the electrochemical cell.
  • a method of using sulfur dioxide gas, which is a by-product gas generated in the smelting process, is disclosed in Korean Patent No. 1039715, which is incorporated herein by reference.
  • sulfur dioxide gas which is a by-product gas generated in the smelting process
  • the purified sulfur dioxide gas discharged from the drying tower has a low concentration of about 16 mol%, the mixed gas is used to increase the hydrogen production efficiency by electrochemical reaction, lower the cost of hydrogen production, and cause stable electrochemical reaction. Only sulfur dioxide should be separated off selectively.
  • Selective separation of sulfur dioxide in the mixed gas may be performed using an ionic liquid separation, or a selective membrane.
  • the raw material gas containing sulfur dioxide gas which is a by-product gas generated during the smelting process, is supplied to the anode of the electrochemical cell, water is supplied to the cathode of the electrochemical cell, and voltage is applied to the electrochemical cell to supply hydrogen.
  • sulfur dioxide is crossover to the cathode through the ion conductive polymer membrane by using a mixed gas of the sulfur dioxide gas generated in the smelting process and the above-described dilution gas as a source gas supplied to the anode of the electrochemical cell.
  • sulfur dioxide gas produced in the general copper smelting process is mainly mixed with air
  • sulfur dioxide mixed with pure oxygen when using the sulfur dioxide gas produced in the copper smelting process as in the present invention It is preferable to use a diluting gas, and of course, a sulfur dioxide diluting gas mixed with nitrogen or air may be used.
  • the raw material gas used above is a mixed gas of 10 to 80 mol% of sulfur dioxide gas and 90 to 20 mol% of diluent gas generated during the copper smelting process, and more preferably 20 mol% of sulfur dioxide gas and diluent gas. It is a mixed gas containing 80 mol%.
  • Hydrogen produced from sulfur dioxide gas using the electrochemical process according to the present invention can be used as fuel in a variety of fields, such as electric devices, fuel cells, hydrogen internal combustion engine, semiconductor process, ammonia production process, crude oil refining process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

본 발명은 이온전도성 고분자막이 구비된 전기화학셀의 양극에 원료가스를 주입하고 전기화학셀의 음극에 물을 주입하여 전기화학 반응시켜 수소 및 황산을 제조하는 방법으로, 전기화학셀의 양극에 공급되는 원료가스로서 이산화황 가스 및 산소, 질소 및 공기로부터 선택되는 희석가스의 혼합가스를 주입함으로써 전기화학셀의 음극에서 이산화황의 크로스오버를 감소시키는 것을 특징으로 하는 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법에 관한 것이다.

Description

희석가스를 활용한 이산화황 가스로부터의 수소 및 황산의 제조방법
본 발명은 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법에 관한 것으로, 보다 상세하게는 이온전도성 고분자막이 구비된 전기화학셀의 양극에 원료가스를 주입하고 전기화학셀의 음극에 물을 주입하여 전기화학반응시켜 수소 및 황산을 제조하는 방법으로, 전기화학셀의 양극에 공급되는 원료가스로서 이산화황 가스 및 희석가스를 주입함으로써 전기화학셀의 음극에서 이산화황의 크로스오버를 감소시키는 것을 특징으로 하는 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법에 관한 것이다.
한정된 화석에너지로 인해 최근 유가의 고공행진이 계속되고 있어 대체할 새로운 에너지 개발이 시급해지고 있다. 또한, 지구 온난화 문제가 대두됨에 따라 온실가스가 발생하지 않는 친환경 에너지 개발에 적극 나서고 있다.
수소를 연료로 사용할 경우 연소시 공해물질이 생성되지 않기 때문에 현재 화석에너지가 갖고 있는 환경 오염문제를 해결할 수 있다. 이와 같이 수소에너지 기술은 이미 그 중요성이 국제사회에 널리 알려져 있다. 따라서, 미국, 일본, 독일을 비롯한 기술선진국들은 21세기 에너지 문제와 환경 문제를 한꺼번에 해결할 수 있는 거의 유일한 대안으로 수소에너지 기술의 연구에 심혈을 기울여 왔으며, 이미 상당한 성과를 거두고 있다.
이러한 성과 중 하나로서, 2007년 미국 SRNL(Savannah River National Laboratory)은 물에서 수소를 생산하기 위한 SDE(sulfur dioxide depolarized electrolyzer)의 100시간 논증 실험에 성공했다. SDE는 하이브리드-황 공정(HyS; Hybrid Sulfur Process)에 있어서 핵심 요소이다.
하이브리드-황 공정은 수소 생산을 위하여 황을 기반으로 하는 열화학 순환에 개입되는 변수 중 하나이다.
이산화황(SO2) 가스로부터 황산 및 수소를 생산하는 전기화학 공정은 양극에서 이산화황과 물이 산화반응을 통해 황산과 수소이온이 생산되고 음극에서는 이온전도성 고분자막을 통과하여 이동된 수소이온이 환원되어 수소를 생산하는 전기화학셀이 포함된 공정이며 반응식은 다음과 같다.
[반응식 1]
음극 반응: 2H+ + 2e- = H2
양극 반응: SO2 + 2H2O = H2SO4 + 2H+ + 2e-
전체 반응: SO2 + 2H2O = H2 + H2SO4
이러한 전기화학 공정은 미국 Westinghouse 사의 Hybrid Sulfur 수소생산 공정"에서 처음 적용되어 이산화황이 황산으로 재순환되는 수소생산 폐사이클 공정에서 사용되었다.
본 발명자의 한국등록특허 제1039715호에서는 동 제련 공정에서 생성되는 이산화황 부생가스를 양극 반응의 원료 물질로 이용하여 수소 및 황산을 생산해내는 공정을 개시하고 있다.
이와 같은 황산 및 수소를 생산하는 전기화학 공정에서는 전기화학 반응이 진행되는 동안 이산화황이 이온전도성 고분자막을 통하여 양극에서 음극으로 크로스오버(crossover) 된다. 이때 이산화황은 다음의 환원반응(반응식 2)을 통하여 음극에서 고상의 황(S)을 생성하게 된다.
[반응식 2]
음극 부반응: SO2 + 4H+ + 4e- = S + H2O
이러한 반응은 수소생산 효율을 감소시킬 뿐만 아니라 생성된 황(S)이 전극 표면과 전극/전해질 계면에 흡착되어 전극 및 막전극복합체(MEA)의 수명을 단축시킨다.
현재까지는 상술한 황산 및 수소를 생산하는 전기화학 공정에서 이산화황이 양극에서 음극으로 크로스오버되는 문제점을 해결하기 위하여 이온전도성 고분자막의 종류나 두께를 변화시키거나 (John A. Staser et. al. "Transport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur Electrolyzer" Journal of The Electrochemical Society, 156 (7) B842-B847 2009), 양극과 음극 사이의 차압을 이용하여 이산화황의 크로스오버를 줄일 수 있는 시도가 이루어졌다 (John A. Staser et. al. "Sulfur Dioxide Crossover during the Production of Hydrogen and sulfuric Acid in a PEM Electrolyzer" Journal of The Electrochemical Society, 156 (7) B836-B841 2009).
하지만, 이산화황의 크로스오버가 저감되는 고분자막의 경우 주로 두께가 상대적으로 증가되어 이온전도도가 감소되거나, 이에 따라 과전압이 상승되는 단점이 있었다. 또한, 상술한 바와 같이 차압을 이용하는 경우에는 내압용의 복잡한 셀 구조로 변경해야 하는 단점이 있고 전체 공정이 상압인 것을 고려하면 별도의 가압 시스템 구축과 이에 따른 에너지 소모도 고려해야 하는 문제점을 가지고 있다.
상술한 문제점을 해결하기 위해 본 발명자들은 이산화황 가스로부터 수소 및 황산을 생산하는 전기화학 공정에서 이산화황의 크로스오버를 감소시키기 위한 연구를 거듭하였고, 그 결과 본 발명을 완성하기에 이르렀다.
본 발명의 목적은 이산화황의 크로스오버를 감소시킬 수 있는 전기화학 공정을 이용한 이산화황(SO2) 가스로부터 수소를 제조하는 방법을 제공하는데 있다.
본 발명의 다른 목적은 전기화학 공정에 사용되는 전기화학셀의 전극 및 막전극복합체의 수명을 증대시키고, 수소 생산 효율을 증대시켜 효율 및 경제성이 상승될 수 있는, 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법을 제공하는데 있다.
상기한 목적을 달성하기 위해, 본 발명은 이온전도성 고분자막이 구비된 전기화학셀의 양극에 원료가스를 공급하고 전기화학셀의 음극에 물을 공급하며 전기화학셀에 전압을 인가하여 수소 및 황산을 생산하는 방법으로, 상기 원료가스는 이산화황 가스 및 희석가스의 혼합가스인 것을 특징으로 하는 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법을 제공한다.
또한, 본 발명은 이산화황을 함유한 원료가스를 전기화학셀의 양극에 공급하고 전기화학셀의 음극에 물을 공급하며 전기화학셀에 전압을 인가하여 수소 및 황산을 생산하는 방법으로, 상기 원료가스는 동 제련 과정에서 발생한 이산화황 가스 및 희석가스의 혼합가스인 것을 특징으로 하는 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법을 제공한다.
본 발명은 전기화학셀의 양극에 이산화황 가스와 함께 수소, 질소 및 공기로부터 선택된 희석가스를 원료가스로서 주입함으로써 전기화학셀의 음극에서 이산화황의 크로스오버를 감소시키는 것을 특징으로 하는 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법을 제공함으로써, 이산화황 가스의 손실을 저감하고, 부반응으로 음극에 생성되는 고상의 황을 저감시켜 전극 및 막전극복합체의 수명 및 수소생산 효율을 증대시킬 수 있다.
또한, 본 발명은 동 제련 공정이나 하이브리드 황 수소생산 공정에서 이산화황 농축공정이 필요 없어 이에 따른 효율 및 경제성을 상승시킬 수 있다.
도 1은 본 발명에 따른 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법을 개략적으로 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법에서 사용할 수 있는 장치의 구성을 개략적으로 나타낸 도면이다.
도 3은 본 발명에 따른 시험예 1에서 이산화황의 농도에 따른 시간에 대한 크로스오버 전류밀도를 나타낸 그래프이다.
도 4는 본 발명에 따른 시험예 2에서 이산화황의 농도에 대한 이산화황 크로스오버 플럭스를 나타낸 그래프이다.
이하, 본 발명에 따른 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법을 도면을 참조하여 구체적으로 설명한다.
본 발명은 이온전도성 고분자막이 구비된 전기화학셀의 양극에 원료가스를 공급하고 전기화학셀의 음극에 물을 공급하며 전기화학셀에 전압을 인가하여 수소 및 황산을 생산하는 방법에서, 상기 원료가스로서 이산화황 가스 및 희석가스의 혼합가스를 사용하는 것을 특징으로 한다.
본 발명에서 사용되는 전기화학셀로서 본 발명의 기술분야에서 통상적으로 알려진 하이브리드 황 수소생산 공정에서 일반적으로 사용되는 전기화학셀을 제한 없이 사용할 수 있다.
본 발명에서 사용되는 전기화학셀은 크게 양극과 음극 사이에 이온전도성 고분자막, 예를 들어 양이온 교환막이 구비되어 있다.
도 1을 참조하면, 본 발명에서는 이온전도성 고분자막이 구비된 전기화학셀의 양극에 원료가스 공급부를 통해 이산화황 희석가스를 공급하고 전기화학셀의 음극에 물을 공급하며 전기화학셀에 전압을 인가하는 경우, 전기화학셀의 양극에서는 이산화황이 물과 산화반응을 통해 황산과 수소 이온으로 생성되고 한편 전기화학셀의 음극에서는 이온전도성 고분자막을 통과하여 이동된 수소 이온이 환원되어 수소가 생성된다 (상기 반응식 1 참조).
도 2를 참조하여 본 발명의 일 실시예에 따라 수소를 생성하는 과정을 보다 구체적으로 설명하면, 본 발명에서는 이산화황 가스 공급부(10)와 희석가스 공급부(20)에서 원료가스 공급부(30)로 각각 이산화황 가스와 희석가스를 주입한 후 원료가스 공급부(30)에서 이들을 혼합하여 전기화학셀(40)의 양극에 이산화황 가스 및 희석가스의 혼합가스를 원료가스로서 공급하고, 물 공급부(60)에서 전기화학셀(40)의 음극에 물을 공급하면서 전기화학셀(40)에 전압을 인가하여 수소를 생성하게 된다. 이때 전기화학셀(40)의 음극에서 생성된 수소는 수소 포집부(50)에 포집 및 저장되게 된다.
본 발명의 일 실시형태에 있어서, 본 발명에서는 이온전도성 고분자막이 구비된 전기화학셀의 양극에 이산화황 희석가스를 공급하고 전기화학셀의 음극에 물을 공급하며, 전기화학셀에 1.2 V 이하의 전압을 인가하고 전기화학셀의 온도를 50~100℃ 로 유지하여 수소를 생산하는 것이 바람직하다.
본 발명에서는 이온전도성 고분자막이 구비된 전기화학셀(40)의 양극에 공급되는 원료가스로서 이산화황 가스와 함께 산소, 질소 및 공기로 이루어진 군으로부터 선택되는 1 종 또는 2 종 이상의 혼합물인 희석가스를 혼합하여 사용함으로써 이산화황이 이온 전도성 고분자막을 통하여 음극으로 크로스오버되는 문제점을 해결할 수 있다.
Ficks의 법칙에 따라 일정한 확산계수에서 이동되는 플럭스(flux)의 양은 계면의 농도 차이에 비례하게 된다. 따라서, 전기화학셀의 음극에서의 이산화황 농도가 일정하므로 전기화학셀의 양극에서 이산화황 가스의 농도가 감소하면 막계면에서의 농도도 감소하게 되고 이에 따라 이산화황 가스가 이동(크로스오버)되는 양도 감소하게 된다.
본 발명의 일 실시형태에 있어서, 본 발명에서 원료가스는 이산화황 가스 10~80 몰%와 산소, 질소 및 공기로 이루어진 군으로부터 선택되는 1 종 또는 2 종 이상의 혼합물인 희석가스 90~20 몰%을 포함하며, 보다 바람직하게는 이산화황 가스 20 몰%와 상기 희석가스 80 몰%를 포함한다.
본 발명에서 사용되는 원료가스에서 이산화황 가스의 농도가 10 몰% 미만인 경우 과전압이 증가하고 한계전류밀도가 감소하므로 이에 따라 수소생성 효율 및 운전한계가 감소하여 경제성이 떨어질 수 있고, 원료가스에서 이산화황 가스의 농도가 80 몰% 초과인 경우 전기화학셀의 음극에서의 이산화황 크로스오버를 저감시키는 효과가 미미할 수 있다.
본 발명에서 사용되는 원료가스는 이산화황을 포함하는 가스로서, 예를 들어 동 제련 과정에서 발생하는 부생가스가 사용될 수 있다.
본 발명은 또한 동 제련 과정에서 발생하는 부생가스인 이산화황 가스를 포함한 원료가스를 전기화학셀의 양극에 공급하고 전기화학셀의 음극에 물을 공급하여 수소를 생산할 수 있다.
동 제련 과정에서 발생하는 부생가스인 이산화황 가스를 사용하는 방법은 본 발명에 참조로서 포함되는 한국등록특허 제1039715호에 개시되어 있다.
한국등록특허 제1039715호를 참조하면 동 제련 과정에서 발생하는 부생가스인 이산화황 가스는 용련 과정에 사용되는 산소 부화 공기를 포함하므로 실질적으로 이산화황-공기의 혼합 가스이다. 건조탑에서 배출되는 정제된 이산화황 가스는 약 16몰%의 농도로 낮은 농도를 가짐에 따라 전기화학반응에 의해 수소 생산 효율을 증대시키고 수소 생성 단가를 낮추며, 안정적인 전기화학 반응을 일으키기 위해 상기 혼합 가스에서 이산화황만을 선택적으로 분리해야 한다.
상기 혼합 가스에서 이산화황의 선택적 분리는 이온 액 분리(ionic liquid separation), 또는 선택적 분리막(selective membrane)을 이용하여 수행될 수 있다.
본 발명에서는 상술한 바와 같이 동 제련 과정에서 발생하는 부생가스인 이산화황 가스를 포함한 원료가스로서 전기화학셀의 양극에 공급하고 전기화학셀의 음극에 물을 공급하며 전기화학셀에 전압을 인가하여 수소 및 황산을 생산하는 과정에서, 전기화학셀의 양극에 공급되는 원료가스로서 동 제련 과정에서 발생된 이산화황 가스 및 상술한 희석가스의 혼합가스를 사용함으로써 이산화황이 이온 전도성 고분자막을 통하여 음극으로 크로스오버되는 문제점을 해결할 수 있다.
본 발명의 일 실시형태에 있어서, 일반적인 동 제련 공정에서 생성되는 이산화황 가스는 주로 공기와 혼합되어 있기 때문에, 본 발명에서와 같이 동 제련 공정에서 생성되는 이산화황 가스를 사용하는 경우 순수한 산소와 혼합된 이산화황 희석가스를 사용하는 것이 바람직하며, 질소 또는 공기를 혼합된 이산화황 희석가스를 사용할 수도 있음은 물론이다.
상술한 바와 같이, 상기에서 사용되는 원료가스는 동 제련 과정에서 발생된 이산화황 가스 10~80 몰%와 희석가스 90~20 몰%의 혼합가스이며, 보다 바람직하게는 이산화황 가스 20 몰%와 희석가스 80 몰%를 포함하는 혼합가스이다.
본 발명에 따라 전기화학 공정을 이용한 이산화황 가스로부터의 제조된 수소는 전동장치, 연료전지, 수소 내연기관, 반도체 공정, 암모니아 제조공정, 원유 정제공정 등 다양한 분야에서 연료로서 사용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
시험예 1: 이산화황의 농도에 따른 크로스오버 측정 시험
이온전도성 고분자막을 통한 이산화황의 농도에 따른 크로스오버를 측정하기 위하여 전기화학 공정용 셀의 음극에 물을 공급하고 양극에 각각 20, 40, 60, 80, 100 몰% 농도의 이산화황 가스가 포함된 원료가스를 공급하였다. 이때 이산화황 가스를 희석하기 위한 희석가스로는 순수한 질소가스를 사용하였고 전기화학 공정용 셀의 온도는 90 로 유지하였다. 충분한 시간이 흐른 후 음극을 양극의 전위로, 즉 두 전극을 바꾸어 0.4 V의 정전압을 가하면 현 양극 (기존 음극)으로 이산화황 크로스오버가 생겨 이것이 전류밀도로 나타나게 되고 이를 측정하여 도 3에 나타내었다. 또한, 이산화황 크로스오버 플럭스를 측정하여 도 4에 나타내었다. 상기 이산화황 크로스오버 플럭스는 전류밀도로부터 페러데이(Faraday) 법칙을 이용하여 하기 수학식 1에 따라 계산할 수 있다.
[수학식 1]
J=-I/nF (I: 전류밀도, n: 전자이동수, F:96485 C/mol)
도 3 및 도 4를 참조하면, 이산화황 농도가 낮은 원료가스를 사용하여 전기화학 반응에 의해 수소를 생성하는 경우 낮은 전류밀도 및 이산화황 크로스오버 플럭스를 나타내는 것을 알 수 있고, 따라서 본 발명에 따르는 경우 이산화황이 이온 전도성 고분자막을 통하여 음극으로 크로스오버되는 문제점을 해결될 수 있다.

Claims (16)

  1. 이온전도성 고분자막이 구비된 전기화학셀의 양극에 원료가스를 공급하고 전기화학셀의 음극에 물을 공급하며 전기화학셀에 전압을 인가하여 수소 및 황산을 생산하는 방법으로,
    상기 원료가스는 이산화황 가스 및 희석가스의 혼합가스인 것을 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법.
  2. 청구항 1에 있어서,
    상기 희석가스는 산소, 질소 및 공기로 이루어진 군으로부터 선택되는 1 종 또는 2 종 이상의 혼합물인 것을 특징으로 하는 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법.
  3. 청구항 1에 있어서,
    상기 이온전도성 고분자막은 양이온 교환막인 것을 특징으로 하는 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법.
  4. 청구항 1 또는 2에 있어서,
    상기 원료가스는 이산화황 가스 10~80 몰%와 희석가스 90~20 몰%를 포함하는 것을 특징으로 하는 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법.
  5. 청구항 4에 있어서,
    상기 원료가스는 이산화황 가스 20 몰%와 희석가스 80 몰%를 포함하는 것을 특징으로 하는 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법.
  6. 청구항 1에 있어서,
    상기 전기화학셀에 1.2 V 이하의 전압을 인가하고 전기화학셀의 온도를 50~100 로 유지하여 수소를 생산하는 것을 특징으로 하는 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법.
  7. 이산화황을 함유한 원료가스를 전기화학셀의 양극에 공급하고 전기화학셀의 음극에 물을 공급하며 전기화학셀에 전압을 인가하여 수소 및 황산을 생산하는 방법으로,
    상기 원료가스는 동 제련 과정에서 발생한 이산화황 가스 및 희석가스의 혼합가스인 것을 특징으로 하는 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법.
  8. 청구항 7에 있어서,
    상기 희석가스는 산소, 질소 및 공기로 이루어진 군으로부터 선택되는 1 종 또는 2 종 이상의 혼합물인 것을 특징으로 하는 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법.
  9. 청구항 7에 있어서,
    상기 이온전도성 고분자막은 양이온 교환막인 것을 특징으로 하는 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법.
  10. 청구항 7 또는 8에 있어서,
    상기 원료가스는 이산화황 가스 10~80 몰%와 희석가스 90~20 몰%를 포함하는 것을 특징으로 하는 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법.
  11. 청구항 10에 있어서,
    상기 원료가스는 이산화황 가스 20 몰%와 희석가스 80 몰%를 포함하는 것을 특징으로 하는 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법.
  12. 청구항 7에 있어서,
    상기 전기화학셀에 1.2 V 이하의 전압을 인가하고 전기화학셀의 온도를 50~100 로 유지하여 수소를 생산하는 것을 특징으로 하는 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법.
  13. 제 1 항 내지 제 12 항에 중 어느 한 항에 따라 수소 및 황산을 제조하기 위한 장치로서, 이온전도성 고분자막, 양극 및 음극을 포함하는 전기화학셀, 상기 전기화학셀의 양극에 원료가스를 공급하는 원료가스 공급부, 상기 전기화학셀의 음극에 물을 공급하는 물 공급부 및 생성된 수소를 포집하는 수소 포집부를 포함하는 것을 특징으로 하는 이산화황 가스로부터의 수소 및 황산을 제조하기 위한 장치.
  14. 청구항 13에 있어서,
    상기 원료가스 공급부는 이산화황 가스 공급부 및 희석가스 공급부를 포함하는 것을 특징으로 하는 이산화황 가스로부터의 수소 및 황산을 제조하기 위한 장치.
  15. 제 1 항 내지 제 12 항에 중 어느 한 항에 따라 제조된 수소를 사용하는 수소 내연기관.
  16. 제 1 항 내지 제 12 항에 중 어느 한 항에 따라 제조된 수소를 사용하는 연료전지.
PCT/KR2013/005081 2012-06-22 2013-06-10 희석가스를 활용한 이산화황 가스로부터의 수소 및 황산의 제조방법 WO2013191402A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120067584A KR101410911B1 (ko) 2012-06-22 2012-06-22 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법
KR10-2012-0067584 2012-06-22

Publications (1)

Publication Number Publication Date
WO2013191402A1 true WO2013191402A1 (ko) 2013-12-27

Family

ID=49768960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005081 WO2013191402A1 (ko) 2012-06-22 2013-06-10 희석가스를 활용한 이산화황 가스로부터의 수소 및 황산의 제조방법

Country Status (2)

Country Link
KR (1) KR101410911B1 (ko)
WO (1) WO2013191402A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11230771B2 (en) 2016-11-23 2022-01-25 Hys Energy Ltd Hydrogen production in the process of electrochemical treatment of sulfur-containing acid gases (hydrogen sulfide or sulfur dioxide) supplied in solution with amine-based or other organic absorbents

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3794164A4 (en) * 2018-05-18 2022-03-09 California Institute of Technology PROCESS FOR CONVERTING REDUCED SULFUR SPECIES AND WATER INTO HYDROGEN AND SULFURIC ACID
JP2022544772A (ja) 2019-08-13 2022-10-21 カリフォルニア インスティチュート オブ テクノロジー カルシウム含有岩石および鉱物から酸化カルシウムまたは普通ポルトランドセメントを作製するプロセス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244794A (en) * 1979-07-31 1981-01-13 The United States Of America As Represented By The United States Department Of Energy Hydrogen production by the decomposition of water
US4443316A (en) * 1980-11-06 1984-04-17 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Electrolysis cell with intermediate chamber for electrolyte flow
US20090000956A1 (en) * 2005-04-12 2009-01-01 University Of South Carolina Production of Low Temperature Electrolytic Hydrogen
KR20100086580A (ko) * 2009-01-23 2010-08-02 한국에너지기술연구원 동 제련 부생가스의 처리 방법
US20120067740A1 (en) * 2009-05-25 2012-03-22 Outotec Oyj Method for concentrating dilute sulfuric acid and an apparatus for concentrating dilute sulfuric acid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1984444A (en) * 1933-07-13 1934-12-18 Charles W Thornhill Fuel valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244794A (en) * 1979-07-31 1981-01-13 The United States Of America As Represented By The United States Department Of Energy Hydrogen production by the decomposition of water
US4443316A (en) * 1980-11-06 1984-04-17 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Electrolysis cell with intermediate chamber for electrolyte flow
US20090000956A1 (en) * 2005-04-12 2009-01-01 University Of South Carolina Production of Low Temperature Electrolytic Hydrogen
KR20100086580A (ko) * 2009-01-23 2010-08-02 한국에너지기술연구원 동 제련 부생가스의 처리 방법
US20120067740A1 (en) * 2009-05-25 2012-03-22 Outotec Oyj Method for concentrating dilute sulfuric acid and an apparatus for concentrating dilute sulfuric acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11230771B2 (en) 2016-11-23 2022-01-25 Hys Energy Ltd Hydrogen production in the process of electrochemical treatment of sulfur-containing acid gases (hydrogen sulfide or sulfur dioxide) supplied in solution with amine-based or other organic absorbents

Also Published As

Publication number Publication date
KR101410911B1 (ko) 2014-06-23
KR20140000736A (ko) 2014-01-06

Similar Documents

Publication Publication Date Title
US11532832B2 (en) All-vanadium sulfate acid redox flow battery system
Kirkaldy et al. A practical, organic-mediated, hybrid electrolyser that decouples hydrogen production at high current densities
KR101367618B1 (ko) 바나듐산화물을 이용한 바나듐 레독스 흐름전지용 전해액 제조방법
Rudolph et al. Corrosion prevention of graphite collector in vanadium redox flow battery
WO2017023029A1 (ko) 기액 접촉 효율이 높은 산성가스 제거를 위한 전기분해 반응기 및 방법
Rossi et al. Using a vapor-fed anode and saline catholyte to manage ion transport in a proton exchange membrane electrolyzer
CN108699709A (zh) 用于电化学利用二氧化碳的方法和装置
CN102190573A (zh) 一种电化学催化还原二氧化碳制备甲酸的方法
WO2012067338A2 (ko) 레독스 흐름 전지용 전극, 그 전극의 제조방법, 레독스 흐름 전지용 전해액 제조장치, 그 제조방법, 전해액의 선택이온 농도계, 선택이온 농도 측정방법 및 자립용 전지 시스템
Kim et al. 1, 2-Dimethylimidazole based bromine complexing agents for vanadium bromine redox flow batteries
CN102448876B (zh) 浓缩稀硫酸的方法和浓缩稀硫酸的设备
Petrov et al. Low temperature removal of hydrogen sulfide from sour gas and its utilization for hydrogen and sulfur production
WO2013191402A1 (ko) 희석가스를 활용한 이산화황 가스로부터의 수소 및 황산의 제조방법
CN104505538B (zh) 一种铅酸蓄电池抑制负极板析氢的电解液添加剂
WO2013191403A1 (ko) 전기화학 공정을 이용한 이산화황 가스로부터의 수소 및 황산의 제조방법
WO2016052985A1 (ko) 이산화탄소의 전기화학적 환원 방법 및 장치
WO2018079965A1 (ko) 효율적인 수소-전기 생산이 가능한 역전기 투석 장치를 이용한 하이브리드 발전 시스템 및 에너지 자립형 수소-전기 복합 충전 스테이션
CN105862072B (zh) 一种锌还原硝基苯的新型技术方法
KR101294182B1 (ko) 연료전지용 전해질막 검사장치 및 방법
CN107871881A (zh) 一种钒电池用电解液及其制备方法
WO2024205143A1 (ko) 이산화탄소 반응물을 전해액으로 활용하는 수전해 장치
WO2022114638A1 (ko) 과산화수소를 이용한 저전압 수소 발생 시스템
CN105023764B (zh) 一种超级电容器用复合电解液
KR101063671B1 (ko) 이산화황 제거 및 수소 생성 장치
Kim et al. SO2 permeability and proton conductivity of sPEEK membranes for SO2-depolarized electrolyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13806276

Country of ref document: EP

Kind code of ref document: A1