WO2012067207A1 - 電動ブレーキアクチュエータの車体取付構造 - Google Patents

電動ブレーキアクチュエータの車体取付構造 Download PDF

Info

Publication number
WO2012067207A1
WO2012067207A1 PCT/JP2011/076583 JP2011076583W WO2012067207A1 WO 2012067207 A1 WO2012067207 A1 WO 2012067207A1 JP 2011076583 W JP2011076583 W JP 2011076583W WO 2012067207 A1 WO2012067207 A1 WO 2012067207A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
port
boss
cylinder
vehicle
Prior art date
Application number
PCT/JP2011/076583
Other languages
English (en)
French (fr)
Inventor
井上 亜良太
孝明 大西
一昭 村山
雄大 堀内
誠 澤井
薫 赤羽根
亨 間渕
小林 伸之
Original Assignee
本田技研工業株式会社
日信工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社, 日信工業株式会社 filed Critical 本田技研工業株式会社
Priority to EP11842290.6A priority Critical patent/EP2641798B1/en
Priority to JP2012544311A priority patent/JP5711760B2/ja
Priority to US13/885,067 priority patent/US9551363B2/en
Priority to CN201180054718.3A priority patent/CN103209874B/zh
Publication of WO2012067207A1 publication Critical patent/WO2012067207A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/08Brake cylinders other than ultimate actuators
    • B60T17/088Mounting arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/3675Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units
    • B60T8/368Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units combined with other mechanical components, e.g. pump units, master cylinders
    • B60T8/3685Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units combined with other mechanical components, e.g. pump units, master cylinders characterised by the mounting of the modulator unit onto the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/082Engine compartments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T11/00Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant
    • B60T11/10Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant transmitting by fluid means, e.g. hydraulic
    • B60T11/16Master control, e.g. master cylinders

Definitions

  • the present invention relates to a vehicle body mounting structure for an electric brake actuator in a vehicle brake system.
  • a brake system for a vehicle for example, one having a booster such as a negative pressure booster or a hydraulic booster is known.
  • a booster such as a negative pressure booster or a hydraulic booster
  • an electric booster that uses an electric motor as a boost source is known (see, for example, Patent Document 1).
  • the electric booster disclosed in Patent Document 1 includes a main piston that moves forward and backward by operating a brake pedal, a cylindrical booster piston that is externally fitted so as to be relatively displaceable with the main piston, and the rotational force of the electric motor. Is transmitted to the booster piston as booster thrust, for example, a rotation-linear motion conversion mechanism such as a ball screw.
  • the main piston and the booster piston are used as the pistons of the master cylinder, and the front ends thereof face the pressure chambers of the master cylinder, so that the operator can input from the brake pedal to the main piston.
  • the brake fluid pressure can be generated in the master cylinder by the generated thrust and the booster thrust input from the electric motor to the booster piston.
  • This invention solves the said conventional problem, and makes it a subject to provide the vehicle body attachment structure of the electric brake actuator which can form a mount part easily.
  • the present invention provides the electric motor in the vehicle brake system, comprising: an input device to which an operator's brake operation is input; and an electric brake actuator that generates brake fluid pressure based on at least an electric signal corresponding to the brake operation.
  • a vehicle body mounting structure for a brake actuator wherein the electric brake actuator includes: an actuator mechanism that generates a driving force based on the electrical signal; and a piston that is moved in an axial direction by the driving force transmitted from the actuator mechanism.
  • a cylinder mechanism that applies pressure to the brake fluid, and a plurality of unprocessed bosses are formed in advance in the cylinder mechanism, and one of the bosses is formed for mounting the electric brake actuator to the vehicle body, The boss of the port communicates with the cylinder mechanism. Characterized in that it is formed as a use.
  • a plurality of bosses are formed in advance in the cylinder mechanism, the boss on one side is processed for the port, and the boss on the side not used as the port (the discarded boss side) is the second mount portion.
  • the boss on the side not used as the port is the second mount portion.
  • the port processing bosses are formed on both sides in the vehicle width direction.
  • mount boss is formed on the outer side in the vehicle width direction
  • the port boss is formed on the inner side in the vehicle width direction
  • the space on the right side of the electric brake actuator can be made larger than that on the left side. Maintenance becomes easy.
  • the port processing boss is formed so as to be directed upward and downward in the vertical direction.
  • boss for the port is characterized in that an input port for inputting brake fluid and an output port for outputting brake fluid are formed on the same boss.
  • FIG. 1 It is a figure showing the arrangement composition in vehicles of the brake system for vehicles to which the body attachment structure of the motor cylinder device concerning the embodiment of the present invention was applied. It is a schematic structure figure showing a brake system for vehicles. It is a disassembled perspective view of a motor cylinder apparatus. It is a disassembled perspective view of a driving force transmission part. It is the perspective view seen from the slanting lower part of the motor cylinder device. It is a disassembled perspective view for demonstrating the method of attaching a motor cylinder apparatus to a vehicle body. A motor cylinder apparatus is shown, (a) is a top view, (b) is a front view.
  • FIG. 1 It is a figure which shows the arrangement configuration in the vehicle of the vehicle brake system to which the vehicle body attachment structure of the motor cylinder apparatus which concerns on a modification is applied. It is a front view of the motor cylinder apparatus which concerns on a modification. The motor cylinder apparatus which concerns on another modification is shown, (a) is a front view, (b) is sectional drawing when a cylinder mechanism is cut
  • unit for attaching a motor cylinder apparatus to a vehicle body is shown, (a) when it sees from diagonally forward, (b) when it sees from upper direction, and (c) when it sees from an axial direction. is there. It is a figure when the assembly
  • FIG. 1 is a diagram illustrating an arrangement configuration in a vehicle V of a vehicle brake system to which a vehicle body mounting structure for an electric brake actuator according to an embodiment of the present invention is applied. Note that the front, rear, left and right directions of the vehicle V are indicated by arrows in FIG.
  • the vehicle brake system 10 shown in FIG. 1 transmits a hydraulic signal to a by-wire (By ⁇ ⁇ ⁇ ⁇ Wire) type brake system that transmits an electric signal to operate a brake for normal use and a fail-safe operation. It is configured with both of the traditional hydraulic brake systems that actuate the brakes.
  • the vehicle brake system 10 includes an input device 14 to which an operator's brake operation is input, and a motor cylinder device as an electric brake actuator that generates brake fluid pressure based on at least an electric signal corresponding to the brake operation. 16 and a vehicle stability assist device 18 (hereinafter referred to as VSA device 18, VSA; registered trademark) as a vehicle behavior stabilization device that supports the stabilization of the vehicle behavior based on the brake fluid pressure generated by the motor cylinder device 16. ).
  • VSA device 18, VSA registered trademark
  • the input device 14, the motor cylinder device 16, and the VSA device 18 have an engine room (structure mounting) in which a structure 3 such as an engine and a traveling motor provided in front of the dashboard 2 of the vehicle V is mounted. Chamber R) is arranged separately from each other via piping tubes 22a to 22f. Further, as a by-wire brake system, the input device 14 and the motor cylinder device 16 are electrically connected to a control means (not shown) through a harness (not shown).
  • the motor cylinder device 16 may include means for generating a hydraulic pressure based on not only an electric signal corresponding to a driver's brake operation but also an electric signal corresponding to another physical quantity.
  • the electrical signal corresponding to the other physical quantity is, for example, an ECU (Electronic Control Unit) that determines the situation around the vehicle V with a sensor or the like without depending on the driver's brake operation, as in an automatic brake system. A signal for avoiding a collision of the vehicle V and the like.
  • the VSA device 18 suppresses, for example, an ABS (anti-lock braking system) function for preventing wheel lock during braking, a TCS (traction control system) function for preventing wheel slipping during acceleration, and a side slip during turning.
  • ABS anti-lock braking system
  • TCS traction control system
  • side slip during turning For example, it is attached to the vehicle body via a bracket, for example, on the front side of the right end in the vehicle width direction.
  • the vehicle behavior stabilization device is not limited to the VSA device 18 and may be an ABS device having only an ABS (anti-lock brake system) function for preventing wheel lock during braking.
  • FIG. 2 is a schematic configuration diagram of the vehicle brake system 10. The hydraulic path will be described.
  • the connection port 20a of the input device 14 and the connection point A1 are connected by the first piping tube 22a with reference to the connection point A1 in FIG.
  • the connection point A1 are connected by the second piping tube 22b, and the introduction port 26a of the VSA device 18 and the connection point A1 are connected by the third piping tube 22c.
  • connection point A2 in FIG. 2 With reference to another connection point A2 in FIG. 2, the other connection port 20b of the input device 14 and the connection point A2 are connected by the fourth piping tube 22d, and the other output port 24b of the motor cylinder device 16 is connected.
  • the connection point A2 is connected by the fifth piping tube 22e, and the other introduction port 26b of the VSA device 18 and the connection point A2 are connected by the sixth piping tube 22f.
  • the VSA device 18 is provided with a plurality of outlet ports 28a to 28d.
  • the first outlet port 28a is connected to the wheel cylinder 32FR of the disc brake mechanism 30a provided on the right front wheel by the seventh piping tube 22g.
  • the second outlet port 28b is connected to the wheel cylinder 32RL of the disc brake mechanism 30b provided on the left rear wheel by the eighth piping tube 22h.
  • the third outlet port 28c is connected to the wheel cylinder 32RR of the disc brake mechanism 30c provided on the right rear wheel by the ninth piping tube 22i.
  • the fourth outlet port 28d is connected to the wheel cylinder 32FL of the disc brake mechanism 30d provided on the left front wheel by the tenth piping tube 22j.
  • brake fluid is supplied to the wheel cylinders 32FR, 32RL, 32RR, 32FL of the disc brake mechanisms 30a-30d by the piping tubes 22g-22j connected to the outlet ports 28a-28d, and the wheel cylinders 32FR, As the hydraulic pressure in 32RL, 32RR, and 32FL increases, each wheel cylinder 32FR, 32RL, 32RR, and 32FL is actuated to the corresponding wheel (right front wheel, left rear wheel, right rear wheel, left front wheel). A braking force is applied.
  • the vehicle brake system 10 is provided so as to be mountable on various vehicles including, for example, an automobile driven by only an engine (internal combustion engine), a hybrid automobile, an electric automobile, and a fuel cell automobile.
  • the vehicle brake system 10 can be applied to any of front wheel drive, rear wheel drive, and four wheel drive.
  • the input device 14 includes a tandem master cylinder 34 that can generate hydraulic pressure by operating the brake pedal 12 by the driver, and a first reservoir 36 attached to the master cylinder 34.
  • a tandem master cylinder 34 that can generate hydraulic pressure by operating the brake pedal 12 by the driver, and a first reservoir 36 attached to the master cylinder 34.
  • two pistons 40a and 40b spaced apart from each other by a predetermined distance along the axial direction of the cylinder tube 38 are slidably disposed.
  • One piston 40 a is disposed close to the brake pedal 12 and is connected to the brake pedal 12 via a push rod 42. Further, the other piston 40b is arranged farther from the brake pedal 12 than the one piston 40a.
  • a pair of piston packings 44a and 44b are mounted on the outer peripheral surfaces of the one and the other pistons 40a and 40b via annular stepped portions, respectively.
  • a spring member 50a is disposed between the one and the other pistons 40a and 40b, and another spring member 50b is disposed between the other piston 40b and the side end portion of the cylinder tube 38. Is done.
  • packing may be provided on the inner peripheral surface of the cylinder tube 38.
  • the cylinder tube 38 of the master cylinder 34 is provided with two supply ports 46a and 46b, two relief ports 52a and 52b, and two output ports 54a and 54b.
  • each supply port 46a (46b) and each relief port 52a (52b) are provided so as to join and communicate with a reservoir chamber (not shown) in the first reservoir 36, respectively.
  • a first pressure chamber 56a and a second pressure chamber 56b that generate brake fluid pressure corresponding to the pedaling force by which the driver (operator) steps on the brake pedal 12 are provided.
  • the first pressure chamber 56a is provided so as to communicate with the connection port 20a via the first hydraulic pressure path 58a
  • the second pressure chamber 56b communicates with the other connection port 20b via the second hydraulic pressure path 58b.
  • a pressure sensor Pm is disposed between the master cylinder 34 and the connection port 20a upstream of the first hydraulic pressure path 58a, and a normally open type is provided downstream of the first hydraulic pressure path 58a.
  • a first shut-off valve 60a composed of a (normally open type) solenoid valve is provided. This pressure sensor Pm detects the hydraulic pressure upstream of the first shutoff valve 60a on the master cylinder 34 side on the first hydraulic pressure path 58a.
  • a second shutoff valve 60b composed of a normally open type (normally open type) solenoid valve is provided.
  • a pressure sensor Pp is provided on the downstream side of the second hydraulic pressure path 58b. The pressure sensor Pp detects the hydraulic pressure downstream of the wheel cylinders 32FR, 32RL, 32RR, and 32FL from the second shutoff valve 60b on the second hydraulic pressure path 58b.
  • the normal open in the first shut-off valve 60a and the second shut-off valve 60b is a valve configured such that the normal position (the position of the valve body at the time of demagnetization (non-energization)) is in the open position (normally open).
  • the first shut-off valve 60a and the second shut-off valve 60b show the state at the time of excitation (the same applies to the third shut-off valve 62 described later).
  • a branch hydraulic pressure path 58c branched from the second hydraulic pressure path 58b is provided in the second hydraulic pressure path 58b between the master cylinder 34 and the second shutoff valve 60b, and the branched hydraulic pressure path 58c includes A third shut-off valve 62 composed of a normally closed type (normally closed type) solenoid valve and a stroke simulator 64 are connected in series.
  • the normal close in the third shut-off valve 62 refers to a valve configured such that the normal position (the position of the valve body at the time of demagnetization (non-energization)) is in the closed position (normally closed).
  • the stroke simulator 64 is disposed on the second hydraulic pressure path 58b and closer to the master cylinder 34 than the second shut-off valve 60b.
  • the stroke simulator 64 is provided with a hydraulic pressure chamber 65 communicating with the branch hydraulic pressure path 58 c, and brake fluid (brake fluid) led out from the second pressure chamber 56 b of the master cylinder 34 through the hydraulic pressure chamber 65. ) Is provided so as to be absorbable.
  • the stroke simulator 64 is a simulator that is urged by a first return spring 66a having a high spring constant, a second return spring 66b having a low spring constant, and the first and second return springs 66a and 66b arranged in series.
  • a piston 68, the pedal reaction force increase gradient is set low when the brake pedal 12 is depressed, and the pedal reaction force is set high when the brake pedal 12 is depressed late, so that the pedal feeling of the brake pedal 12 is equivalent to that of the existing master cylinder. It is provided to become.
  • the hydraulic pressure path is roughly divided into a first hydraulic pressure system 70a that connects the first pressure chamber 56a of the master cylinder 34 and the plurality of wheel cylinders 32FR and 32RL, a second pressure chamber 56b of the master cylinder 34, and a plurality of pressure paths.
  • the second hydraulic system 70b is connected to the wheel cylinders 32RR and 32FL.
  • the first hydraulic system 70a includes a first hydraulic path 58a that connects the output port 54a of the master cylinder 34 (cylinder tube 38) and the connection port 20a in the input device 14, and the connection port 20a of the input device 14 and the motor cylinder.
  • Piping tubes 22a and 22b connecting the output port 24a of the device 16, piping tubes 22b and 22c connecting the output port 24a of the motor cylinder device 16 and the introduction port 26a of the VSA device 18, and a lead-out port of the VSA device 18
  • the pipe tubes 22g and 22h connect the 28a and 28b and the wheel cylinders 32FR and 32RL, respectively.
  • the second hydraulic system 70b includes a second hydraulic path 58b that connects the output port 54b of the master cylinder 34 (cylinder tube 38) in the input device 14 and the other connection port 20b, and another connection port of the input device 14.
  • Piping tubes 22d and 22e that connect 20b and the output port 24b of the motor cylinder device 16
  • piping tubes 22e and 22f that connect the output port 24b of the motor cylinder device 16 and the introduction port 26b of the VSA device 18
  • the hydraulic path is constituted by the first hydraulic system 70a and the second hydraulic system 70b, so that the wheel cylinders 32FR, 32RL and the wheel cylinders 32RR, 32FL are independently operated, Mutually independent braking forces can be generated.
  • the motor cylinder device 16 includes an actuator mechanism 74 including an electric motor 72 and a driving force transmission unit 73, and a cylinder mechanism 76 biased by the actuator mechanism 74.
  • the driving force transmission unit 73 of the actuator mechanism 74 includes a gear mechanism (deceleration mechanism) 78 that transmits the rotational driving force of the electric motor 72, a ball screw shaft 80a that converts the rotational driving force into a linear driving force, and A ball screw structure 80 including a ball 80b.
  • the cylinder mechanism 76 includes a substantially cylindrical cylinder body 82 and a second reservoir 84 attached to the cylinder body 82.
  • the second reservoir 84 is connected to the first reservoir 36 attached to the master cylinder 34 of the input device 14 by a piping tube 86, and the brake fluid stored in the first reservoir 36 is passed through the piping tube 86 to the second reservoir 84.
  • 84 is provided so as to be supplied in the inside.
  • a first slave piston 88a and a second slave piston 88b that are spaced apart from each other by a predetermined distance along the axial direction of the cylinder body 82 are slidably disposed.
  • the first slave piston 88a is disposed in the vicinity of the ball screw structure 80, contacts the one end of the ball screw shaft 80a, and is displaced in the direction of the arrow X1 or X2 integrally with the ball screw shaft 80a.
  • the second slave piston 88b is arranged farther from the ball screw structure 80 side than the first slave piston 88a.
  • a pair of slave piston packings 90a and 90b are respectively attached to the outer peripheral surfaces of the first and second slave pistons 88a and 88b via annular step portions.
  • a first back chamber 94a and a second back chamber 94b are formed between the pair of slave piston packings 90a and 90b, respectively, and communicate with reservoir ports 92a and 92b described later.
  • a first return spring 96a is disposed between the first and second slave pistons 88a and 88b, and a second return spring is provided between the second slave piston 88b and the side end of the cylinder body 82. 96b is disposed.
  • the cylinder body 82 of the cylinder mechanism 76 is provided with two reservoir ports 92a and 92b and two output ports 24a and 24b.
  • the reservoir port 92a (92b) is provided so as to communicate with a reservoir chamber (not shown) in the second reservoir 84.
  • a first hydraulic pressure chamber 98a that generates a brake hydraulic pressure output from the output port 24a to the wheel cylinders 32FR and 32RL side, and the other output port 24b to the wheel cylinders 32RR and 32FL side.
  • a second hydraulic pressure chamber 98b for generating the output brake hydraulic pressure is provided.
  • a regulating means 100 is provided between the first slave piston 88a and the second slave piston 88b to regulate the maximum distance and the minimum distance between the first slave piston 88a and the second slave piston 88b.
  • the second slave piston 88b is provided with a stopper pin 102 that restricts the sliding range of the second slave piston 88b and prevents an overreturn to the first slave piston 88a. At the time of backup in which braking is performed with the brake fluid pressure generated in step 1, the failure of another system is prevented when one system fails.
  • the VSA device 18 is a well-known one, and a first brake system that controls a first hydraulic system 70a connected to disc brake mechanisms 30a and 30b (wheel cylinder 32FR and wheel cylinder 32RL) of the right front wheel and the left rear wheel. 110a and a second brake system 110b for controlling the second hydraulic system 70b connected to the disc brake mechanisms 30c, 30d (wheel cylinder 32RR, wheel cylinder 32FL) of the right rear wheel and the left rear wheel.
  • the first brake system 110a is a hydraulic system connected to a disc brake mechanism provided on the left front wheel and the right front wheel
  • the second brake system 110b is a disc brake provided on the left rear wheel and the right rear wheel. It may be a hydraulic system connected to the mechanism.
  • first brake system 110a is composed of a hydraulic system connected to a disc brake mechanism provided on the right front wheel and the right rear wheel on one side of the vehicle body
  • second brake system 110b is composed of a left front wheel and a left rear wheel on the vehicle body side.
  • a hydraulic system connected to a disc brake mechanism provided on the wheel may be used.
  • first brake system 110a and the second brake system 110b have the same structure, the corresponding parts in the first brake system 110a and the second brake system 110b are assigned the same reference numerals, and The description of the second brake system 110b will be appropriately added in parentheses, with a focus on the description of the first brake system 110a.
  • the first brake system 110a (second brake system 110b) has a first common hydraulic pressure path 112 and a second common hydraulic pressure path 114 that are common to the wheel cylinders 32FR, 32RL (32RR, 32FL).
  • the VSA device 18 includes a regulator valve 116 formed of a normally open type solenoid valve disposed between the introduction port 26a and the first common hydraulic pressure path 112, and arranged in parallel with the regulator valve 116 from the introduction port 26a side.
  • a first check valve 118 that permits the flow of brake fluid to the first common hydraulic pressure passage 112 side (blocks the flow of brake fluid from the first common hydraulic pressure passage 112 side to the introduction port 26a side);
  • a first in-valve 120 composed of a normally open type solenoid valve disposed between the common hydraulic pressure path 112 and the first outlet port 28a, and a first inlet valve 120 disposed in parallel with the first inlet valve 120 from the first outlet port 28a side.
  • a second in-valve comprising a second check valve 122 (which prevents the flow of brake fluid to the 8a side) and a normally open type solenoid valve disposed between the first common hydraulic pressure passage 112 and the second outlet port 28b.
  • 124 and the second inlet valve 124 are arranged in parallel to allow the brake fluid to flow from the second lead-out port 28b side to the first common hydraulic pressure path 112 side (second lead-out from the first common hydraulic pressure path 112 side).
  • a third check valve 126 for inhibiting the flow of brake fluid to the port 28b side.
  • the VSA device 18 includes a first out valve 128 including a normally closed solenoid valve disposed between the first outlet port 28a and the second common hydraulic pressure path 114, a second outlet port 28b, and a second outlet port 28b.
  • a second out valve 130 composed of a normally closed solenoid valve disposed between the common hydraulic pressure path 114, a reservoir 132 connected to the second common hydraulic pressure path 114, and a first common hydraulic pressure path 112; It is arranged between the second common hydraulic pressure path 114 and allows the brake fluid to flow from the second common hydraulic pressure path 114 side to the first common hydraulic pressure path 112 side (from the first common hydraulic pressure path 112 side).
  • a second check valve 134 (which blocks the flow of brake fluid to the second common hydraulic pressure path 114 side) and a second check valve 134 disposed between the fourth check valve 134 and the first common hydraulic pressure path 112.
  • a suction valve 138 and a discharge valve 140 that allow the brake fluid to flow to the tank (block the brake fluid from the first common hydraulic pressure passage 112 side to the second common hydraulic pressure passage 114 side), and the pump 136.
  • positioned between the 2nd common hydraulic pressure path 114 and the introduction port 26a are provided.
  • the brake fluid generated in the first hydraulic chamber 98a of the motor cylinder device 16 is output from the output port 24a of the motor cylinder device 16 on the hydraulic pressure path close to the introduction port 26a.
  • a pressure sensor Ph for detecting pressure is provided. Detection signals detected by the pressure sensors Pm, Pp, and Ph are introduced into control means (not shown).
  • the vehicle brake system 10 according to the present embodiment is basically configured as described above. Next, the operation and effect will be described.
  • the first shut-off valve 60a and the second shut-off valve 60b which are normally open type solenoid valves, are closed by excitation, and the third shut-off solenoid valve is the third.
  • the shut-off valve 62 is opened by excitation (see FIG. 2). Accordingly, since the first hydraulic pressure system 70a and the second hydraulic pressure system 70b are blocked by the first cutoff valve 60a and the second cutoff valve 60b, the brake hydraulic pressure generated in the master cylinder 34 of the input device 14 is applied to the disc brake. There is no transmission to the wheel cylinders 32FR, 32RL, 32RR, 32FL of the mechanisms 30a-30d.
  • the brake hydraulic pressure generated in the second pressure chamber 56b of the master cylinder 34 is transmitted to the hydraulic pressure chamber 65 of the stroke simulator 64 via the branch hydraulic pressure path 58c and the third shut-off valve 62 in the valve open state. Is done.
  • the simulator piston 68 is displaced against the spring force of the return springs 66a and 66b by the brake hydraulic pressure supplied to the hydraulic pressure chamber 65, so that the stroke of the brake pedal 12 is allowed and a pseudo pedal reaction is achieved. A force is generated and applied to the brake pedal 12. As a result, it is possible to obtain a brake feeling that is comfortable for the driver.
  • the control means drives the electric motor 72 of the motor cylinder device 16 to urge the actuator mechanism 74 and detect the first return spring 96a.
  • the 1st slave piston 88a and the 2nd slave piston 88b are displaced toward the arrow X1 direction in FIG. 2 against the spring force of the 2nd return spring 96b. Due to the displacement of the first slave piston 88a and the second slave piston 88b, the brake fluid pressure in the first fluid pressure chamber 98a and the second fluid pressure chamber 98b is pressurized to generate a desired brake fluid pressure. .
  • the brake hydraulic pressure in the first hydraulic pressure chamber 98a and the second hydraulic pressure chamber 98b in the motor cylinder device 16 is supplied to the disc brake mechanism 30a via the first and second inlet valves 120 and 124 in the valve open state of the VSA device 18.
  • wheel cylinders 32FR, 32RL, 32RR, 32FL, and the wheel cylinders 32FR, 32RL, 32RR, 32FL are operated to apply a desired braking force to each wheel.
  • the motor cylinder device 16 that functions as an electric brake actuator (power hydraulic pressure source) and a control unit such as an ECU (not shown) that performs by-wire control can operate normally.
  • a so-called brake-by-wire brake system in which the disc brake mechanisms 30a to 30d are operated with the brake fluid pressure generated by the motor cylinder device 16 in the state of being shut off by the shut-off valve 60a and the second shut-off valve 60b is active.
  • it can be suitably applied to a vehicle such as an electric vehicle that does not have negative pressure due to an internal combustion engine that has been used for a long time.
  • the motor cylinder device 16 or the like becomes inoperable, the first cutoff valve 60a and the second cutoff valve 60b are opened, and the third cutoff valve 62 is closed so that the master cylinder 34
  • the generated brake fluid pressure is transmitted to the disc brake mechanisms 30a to 30d (wheel cylinders 32FR, 32RL, 32RR, 32FL), and the disc brake mechanisms 30a to 30d (wheel cylinders 32FR, 32RL, 32RR, 32FL) are operated.
  • the so-called traditional hydraulic brake system becomes active.
  • FIG. 3 is an exploded perspective view of the motor cylinder device
  • FIG. 4 is an exploded perspective view of the driving force transmission unit
  • FIG. 5 is a perspective view of the motor cylinder device viewed from obliquely below
  • FIG. 6 is a method of attaching the motor cylinder device to the vehicle body.
  • FIG. 7 is a side view of the motor cylinder device.
  • the motor cylinder device 16 includes an electric motor 72 that is driven based on an electric signal from a control unit (not shown), a driving force transmission unit 73 that transmits a driving force by the electric motor 72, and a driving force transmission. And a cylinder mechanism 76 that applies pressure to the brake fluid by moving the first and second slave pistons 88a and 88b (see FIG. 2) in the axial direction by the driving force transmitted from the portion 73.
  • the electric motor 72 and the driving force transmission portion 73 constitute an actuator mechanism 74 described in the claims.
  • the electric motor 72, the driving force transmission unit 73, and the cylinder mechanism 76 are configured to be separable from each other.
  • the electric motor 72 has a base portion 161 to which a harness (not shown) is connected, and a plurality of through holes 162 into which the bolts 201 are inserted are formed in the base portion 161.
  • a flange portion 82a is provided at the end of the cylinder body 76 on the driving force transmission portion 73 side of the cylinder body 82, and a plurality of through holes 82b through which the bolts 202 are inserted are formed in the flange portion 82a. Yes.
  • the driving force transmission unit 73 includes a case body 171 that accommodates a driving force transmission mechanical element (not shown) such as a gear mechanism or a ball screw structure.
  • the case body 171 includes a housing 172 disposed on the cylinder mechanism 76 side, and a cover 173 that covers an opening end of the housing 172 opposite to the cylinder mechanism 76.
  • the housing 172 and the cover 173 of the driving force transmission unit 73 are made of a metal such as an aluminum alloy (the same applies to the cylinder body 82 of the cylinder mechanism 76).
  • a motor mounting screw hole 174 for attaching the electric motor 72 to the driving force transmission part 73 is formed at a position corresponding to the through hole 162. Further, a flange portion 175 is provided at an end portion of the housing 172 on the cylinder mechanism 76 side, and a cylinder mechanism attaching screw hole 176 for attaching the cylinder mechanism 76 to the driving force transmitting portion 73 is provided in the flange portion 175. Is formed at a position corresponding to the through hole 82b.
  • a motor mounting surface 172 a to which the base 161 of the electric motor 72 is mounted is formed in the housing 172 of the driving force transmission unit 73 toward the axial direction of the cylinder mechanism 76.
  • a cylinder mechanism attachment surface 172b to which the flange portion 82a of the cylinder mechanism 76 is attached is formed on the flange portion 175 of the housing 172 toward the axial direction of the cylinder mechanism.
  • the cylinder mechanism mounting surface 172b is formed to protrude toward the cylinder mechanism 76 from the motor mounting surface 172a.
  • a motor mounting surface 172 a is formed above the cylinder mechanism mounting surface 172 b, and the electric motor 72 is positioned above the cylinder mechanism 76.
  • the cylinder mechanism 76 has a substantially cylindrical cylinder main body 82, a flange portion 82 a is formed at the base end of the cylinder main body 82, and a boss 83 a that is spaced apart from each other in the axial direction (center axis CL) on the distal end side.
  • 83b, 85a, and 85b are formed to protrude.
  • the bosses 83a and 83b are formed toward the outer side (left side) in the vehicle width direction, and the bosses 85a and 85b are formed toward the inner side (right side) in the vehicle width direction.
  • the bosses 83a and 83b are processed for the second mount portion (for mounting) and are formed in a substantially cylindrical shape.
  • the bosses 83 a and 83 b are formed with circular mounting holes 83 a 1 and 83 b 1 from the front end surface toward the inside of the cylinder mechanism 76.
  • the mount holes 83a1 and 83b1 have screw holes into which bolts 206 (see FIG. 6), which will be described later, are screwed.
  • the mount holes 83a1 and 83b1 are formed so as not to communicate with the first hydraulic chamber 98a and the second hydraulic chamber 98b in the cylinder body 82.
  • bosses 85a and 85b are processed for ports and are formed in a substantially cylindrical shape.
  • the boss 85a is formed with an output port 24a so as to communicate with the first hydraulic chamber 98a in the cylinder body 82.
  • the boss 85b is formed with an output port 24b so as to communicate with the second hydraulic chamber 98b in the cylinder body 82.
  • the electric motor 72 is attached and fixed to the driving force transmitting portion 73 by inserting the bolt 201 into the through hole 162 and screwing it into the motor mounting screw hole 174.
  • the cylinder mechanism 76 is attached and fixed to the driving force transmitting portion 73 by inserting the bolt 202 through the through hole 82b and screwing it into the cylinder mechanism attaching screw hole 176.
  • the gear mechanism 78 includes a pinion gear 78a (see FIG. 2) fixed to the output shaft of the electric motor 72, an idle gear 78b meshed with the pinion gear 78a, and a ring gear 78c meshed with the idle gear 78b.
  • the ball screw structure 80 includes a ball screw shaft 80a whose tip side is connected to the first slave piston 88a, a ball 80b (see FIG. 2) disposed in a screw groove on the ball screw shaft 80a, and a ball 80b. And a nut portion 80c screwed to the ball screw shaft 80a.
  • the nut portion 80c is, for example, press-fitted and fixed to the inner peripheral surface of the ring gear 78c.
  • the ball screw The structure 80 is converted into a linear driving force, and the ball screw shaft 80a can move back and forth along the axial direction.
  • the housing 172 and the cover 173 of the case body 171 are configured to be separable from each other.
  • a plurality of through holes 177 through which the bolts 203 are inserted are formed in the housing 172 so as to be positioned around the central axis CL (see FIG. 3) of the first and second slave pistons 88a and 88b (see FIG. 2).
  • a plurality of housing mounting screw holes 178 are formed at positions corresponding to the through holes 177 of the cover 173. Then, the housing 172 and the cover 173 are coupled to each other by inserting the bolt 203 through the through hole 177 and screwing it into the housing mounting screw hole 178.
  • 4 indicates a bearing that rotatably supports the tip of the output shaft of the electric motor 72, and the bearing 179 is fitted into a hole 180 formed in the cover 173.
  • the motor cylinder device 16 is provided with a first mount portion 181 for attaching the motor cylinder device 16 to the vehicle body 1 such as a side frame (see FIG. 1).
  • the first mount portion 181 has a left mount hole 182 located on the left side, a right mount hole 183 located on the right side, and a lower position located below when viewed from the cover 173 side in the direction of the central axis CL (see FIG. 3).
  • a mounting hole 184 is provided.
  • the left and right mount holes 182 to 184 each have a cylindrical recess.
  • the first mount portion 181 has a through hole 185 formed along the common axis of the left mount hole 182 and the right mount hole 183 and having an axis perpendicular to the central axis CL (see FIG. 3). Yes.
  • the first mount portion 181 is provided near the center of gravity of the motor cylinder device 16. Specifically, of the electric motor 72, the driving force transmission unit 73, and the cylinder mechanism 76, a portion where the center of gravity of the motor cylinder device 16 exists (or a portion closest to the center of gravity), here, the driving force transmission unit 73 is provided with a first mount portion 181. More specifically, the first mount portion 181 is provided in the housing 172 of the driving force transmission portion 73 in which the motor mounting screw hole 174 (see FIG. 4) is formed. However, the installation position of the first mount unit 181 may be in the vicinity of the center of gravity of the motor cylinder device 16 and is not necessarily limited to the driving force transmission unit 73 or the housing 172. According to such a configuration, the vicinity of the center of gravity of the motor cylinder device 16 can be supported, and the shake can be reduced even when receiving a force such as vibration.
  • the motor cylinder device 16 is attached to the vehicle body 1 such as a side frame (see FIG. 1) via a mounting bracket 190 with respect to the first mount portion 181 (see FIG. 5). Further, the motor cylinder device 16 is attached to the vehicle body 1 such as a side frame (see FIG. 1) via the attachment bracket 213 with respect to the second mount portion (bosses 83a and 83b).
  • the mounting bracket 190 includes a pair of side plates 195 and 195 for sandwiching and supporting the motor cylinder device 16 from the left and right directions by screw fastening using bolts (male thread members) 204, and both lower sides of the pair of side plates 195 and 195. And a support plate 192 constituted by a substantially horizontal bottom plate 194 that supports the intermediate portion (center portion) of the motor cylinder device 16 from below.
  • the mounting bracket 190 includes a back plate 191 connected to the side plates 195 and 195 and the bottom plate 194 and extending in a substantially vertical direction, and a fixing plate 193 connected to the back plate 191 and fixed to the vehicle body. In the vicinity of the center of the back plate 191, an opening 191a into which the protruding portion 173a of the cover 173 is inserted is formed.
  • the one side plate 195 is formed with a substantially U-shaped notch 195a through which the bolt 204 can be inserted, and the other side plate 195 is formed with a through hole 195b through which the bolt 204 is inserted.
  • a nut 195c to which the bolt 204 can be screwed is fixed to the outside of the through hole 195b of the side plate 195 by, for example, welding.
  • a pin 194 a is erected at the center of the upper surface of the bottom plate 194.
  • a second collar 197 having a long cylindrical first collar 198, a rubber bush 196, a cylindrical portion 197a and a flange 197b formed at the end thereof, And bolts 204 are used.
  • the rubber bush 196 is a rubber-made substantially cylindrical buffer member that can absorb vibrations and shocks.
  • the first collar 198 is inserted and arranged in the through hole 185 of the mounting bracket 190. Subsequently, the cylindrical portion 197a of the second collar 197 fitted into the central hole of the rubber bush 196 is fitted into the left mount hole 182 and the right mount hole 183, respectively. Further, the rubber bush 196 is fitted into the lower mount hole 184 and attached. Then, the motor cylinder device 16 is installed on the bottom plate 194 of the mounting bracket 190 so that the pin 194a is inserted into the central hole of the rubber bush 196 mounted in the lower mount hole 184. Thus, the lower mount hole 184 supports the intermediate portion of the motor cylinder device 16 from below.
  • the rubber bush 196 and the second collar 197 mounted in the left mount hole 182 and the right mount hole 183 of the motor cylinder device 16 are respectively connected to the notch 195a and the through hole of the side plate 195. Facing 195b respectively. Therefore, the bolt 204 can be inserted through the notch 195a, the second collar 197, the rubber bush 196, the first collar 198, the rubber bush 196, and the second collar 197 in order and screwed into the nut 195c. At this time, the bolt 204 is inserted into the through hole 185.
  • the motor cylinder device 16 is supported by the left mount hole 182 and the right mount hole 183 so as to be sandwiched between the pair of side plates 195 and 195 from the left and right directions.
  • the fixing plate 193 of the mounting bracket 190 is fixed to the vehicle body 1 such as a side frame (see FIG. 1) by screw fastening, welding, or the like directly or through another connecting member (not shown).
  • the first mount portion 181 of the motor cylinder device 16 is floatingly supported (elastically supported) on the vehicle body side via the rubber bushing 196, it can absorb vibrations and impacts.
  • the mounting bracket 213 is formed of a steel plate or the like, and a through hole 213a into which a fastening bolt 206 can be inserted is formed at a position corresponding to the mounting holes 83a1 and 83b1 of the bosses 83a and 83b.
  • the rubber bushing 214 is a rubber-made substantially cylindrical buffer member capable of absorbing vibration and impact, and has a shape that can be fitted into the mount holes 83a1 and 83b1.
  • the collar 215 is inserted into the central hole of the rubber bush 214, and the rubber bush 214 is pressed and inserted into the mount holes 83a1 and 83b1.
  • the bolt 206 is inserted into the through-hole 213 and the collar 215 of the mounting bracket 213, and the bolt 206 is screwed into screw holes (not shown) formed in the mount holes 83a1 and 83b1, so that the motor cylinder device 16 is mounted.
  • the bracket 213 is supported.
  • the motor cylinder device 16 is floatingly supported with respect to the mounting bracket 213.
  • the mounting bracket 213 is formed to extend to the vehicle body 1 (see FIG. 1) such as a side frame, for example, and is screwed to the vehicle body 1 directly or via another connecting member (not shown). Fixed by welding or the like.
  • the motor cylinder device 16 has a vehicle body such as a side frame extending in the front-rear direction, for example, as indicated by a white arrow through a mounting bracket 213 (see FIG. 7B). 1 (see FIG. 1) is fixed in a state of being arranged on the side. Specifically, the mounting bracket 213 is formed to extend to the vehicle body 1 and is fixed to the vehicle body 1 by screw fastening, welding, or the like directly or via another connecting member (not shown).
  • the second piping tube 22b and the fifth piping tube 22e (hereinafter abbreviated as piping tubes) through which the brake fluid flows are connected to the output ports 24a and 24b formed in the bosses 85a and 85b.
  • the piping tubes 22b and 22e are formed by bending a metal pipe such as a steel pipe into a predetermined shape (the same applies to other piping tubes).
  • the cylinder mechanism 76 includes a first hydraulic chamber 98a and a second hydraulic chamber 98b (see FIG. 2) formed side by side in the direction of the central axis CL (see FIG. 3). It is.
  • the output port 24a is a primary port that communicates with the first hydraulic chamber 98a
  • the output port 24b is a secondary port that communicates with the second hydraulic chamber 98b.
  • the piping tubes 22b and 22e extending from the output ports 24a and 24b in a direction orthogonal to the central axis CL are bent toward the base end side of the cylinder mechanism 76 and then moved toward the motor cylinder device 16 side. Thus, it is disposed along the axial direction of the cylinder mechanism 76 (the central axis CL direction). After that, it is arranged along the dashboard 2 and connected to the input device 14 and the VSA device 18 via a joint.
  • the cylinder mechanism 76 has the unprocessed bosses 83a, 83b, 85a, 85b formed in advance in a plurality of directions (two directions).
  • the bosses 83a and 83b are formed for mounting to attach the motor cylinder device 16 to the vehicle body 1, and the other bosses 85a and 85b are for ports communicating with the cylinder mechanism 76 (the first hydraulic pressure chamber 98a and the second hydraulic pressure chamber 98b). Therefore, it is not necessary to newly form a mount portion in the cylinder mechanism 76.
  • the mounting holes 83a1 and 83b1 having screw holes for fastening bolts on the bosses 83a and 83b (discarding bosses)
  • the mounting portion can be easily processed.
  • the mounting bosses 83a and 83b are formed on the outer side (left side) in the vehicle width direction, and the port bosses 85a and 85b are formed in the vehicle width direction.
  • the motor cylinder device 16 is fixed to the left front side frame (vehicle body 1), the space on the right side of the motor cylinder device 16 should be secured as a larger space than the left side. Therefore, maintenance such as replacement of the piping tubes 22b and 22e and handling of the piping tubes 22b and 22e are facilitated.
  • FIG. 8 is a diagram showing an arrangement configuration of a vehicle brake system to which a vehicle cylinder mounting structure of a motor cylinder device according to a modified example is applied
  • FIG. 9 is a front view of the motor cylinder device according to the modified example.
  • symbol is attached
  • the arrangement of the input device 14, the motor cylinder device 16, and the VSA device 18 is the same as that shown in FIG.
  • the motor cylinder device 16A (16B) is different from the motor cylinder device 16 described above in that four types of piping tubes 22o, 22p, 22q, and 22r are connected. That is, the motor cylinder device 16A (16B) is connected to the connection ports 20a and 20b (see FIG. 2) of the input device 14 through the piping tubes 22o and 22p. The motor cylinder device 16A (16B) is connected to the VSA device 18 via piping tubes 22q and 22r.
  • bosses 87a, 87b, 87c in three directions are formed on the cylinder body 82A of the cylinder mechanism 76.
  • bosses 87a, 87b, 87c in three directions are formed on the cylinder body 82A of the cylinder mechanism 76.
  • one of the port corresponding to the first hydraulic pressure chamber 98a and the port corresponding to the second hydraulic pressure chamber 98b will be illustrated and described.
  • the boss 87a is formed for mounting and protrudes toward the outside (left side) in the vehicle width direction.
  • the boss 87b is formed for a port and protrudes toward the inner side (right side) in the vehicle width direction.
  • the boss 87c is formed for a port and protrudes upward in the vertical direction.
  • bosses 87a, 87b, 87c are formed in advance in the cylinder mechanism 76, one boss 87a is used for mounting, and the other bosses 87b, 87c are used for ports. Since it is formed, it is not necessary to newly form a mount portion in the cylinder mechanism 76, and it is only necessary to form a mount hole having a screw hole for bolt fastening in the boss 87a, so that the mount portion can be easily processed.
  • the mounting boss 87a is formed on the outer side (left side) in the vehicle width direction, and the port bosses 87b and 87c are formed on the inner side (right side) in the vehicle width direction and on the upper side in the vertical direction.
  • the motor cylinder device 16A is fixed to the side frame (the vehicle body 1), it is easy to secure the space on the right side and the upper side of the motor cylinder device 16A as a larger space compared to the left side, so that the piping tubes 22o, 22p, Maintenance such as replacement of 22q and 22r and handling of the piping tubes 22o to 22r are facilitated.
  • FIG. 10 shows a motor cylinder device according to another modification, wherein (a) is a front view and (b) is a cross-sectional view when the cylinder mechanism is cut at the port position.
  • bosses 89a and 89b in two directions are formed on a cylinder body 82B of a cylinder mechanism 76.
  • the boss 89a protrudes outward (left side) in the vehicle width direction for mounting.
  • the boss 89b projects toward the inner side (right side) in the vehicle width direction for the port.
  • an input port for inputting brake fluid and an output port for outputting brake fluid are formed on the same boss 89b. That is, the boss 89b is configured as an input / output port.
  • a communication hole 89b1 communicating with the first hydraulic chamber 98a (second hydraulic chamber 98b) is formed in the boss 89b of the cylinder body 82B.
  • a connector 89s is attached to the end of the piping tube 22o (22p) connected to the input device 14 and the end of the piping tube 22q (22r) connected to the VSA device 18.
  • the connector 89s is configured to be attachable / detachable via the communication hole 89b1 and an attaching / detaching means (not shown).
  • the piping tubes 22o (22p) and 22q (22r) are inserted through the connector 89s, and the ends of the piping tubes 22o (22p) and 22q (22r) are configured to communicate with the communication hole 89b1. .
  • bosses 89a and 89b are formed in the cylinder mechanism 76 in advance, one boss 89a is used for mounting and the other boss 89b is used for ports. It is not necessary to newly form a mount portion in the cylinder mechanism 76, and it is only necessary to form a mount hole having a screw hole for fastening by the bolt 206 in the boss 89a, so that the mount portion can be easily processed.
  • the mounting boss 89a is formed on the outer side (left side) in the vehicle width direction and the port boss 89b is formed on the inner side (right side) in the vehicle width direction, the left front side frame (vehicle body 1)
  • the motor cylinder device 16B is fixed to the motor cylinder device 16B, it is easy to secure a larger space on the right side of the motor cylinder device 16B than on the left side, so that maintenance such as replacement of the piping tubes 22o, 22p, 22q, and 22r is possible. It becomes easy.
  • FIG. 11 is a front view showing a motor cylinder device according to still another modification. That is, in the motor cylinder device 16C, two-direction bosses 85c and 85d are formed on the cylinder body 82C of the cylinder mechanism 76. The boss 85c protrudes downward in the vertical direction for mounting. The boss 85d protrudes upward in the vertical direction for the port.
  • the port formation pattern in the cylinder mechanism 76 is not limited to the configuration in which the ports are formed in two directions at positions facing each other with the cylinder main body 82 interposed therebetween, and is formed in two directions orthogonal to the cylinder main body 82. It may be a configuration.
  • the mounting boss may be on the outer side in the vehicle width direction, and the port boss may be on the upper side (or lower side) in the vertical direction.
  • hub in four directions of up-down and left-right with respect to the cylinder main body 82 may be sufficient.
  • the case where the input device 14 is applied to a right-hand drive vehicle disposed on the right side in the engine room R has been described as an example.
  • the input device 14 is disposed on the left side in the engine room R. You may apply to a left-hand drive vehicle.
  • FIG. 12 is a diagram illustrating an arrangement configuration in a vehicle of a vehicle brake system to which a vehicle cylinder mounting structure for a motor cylinder device according to another embodiment is applied.
  • the vehicle brake system 10 shown in FIG. 12 has a vehicle body mounting structure of a motor cylinder device 16D instead of the vehicle body mounting structure of the motor cylinder device 16 described above.
  • symbol is attached
  • the motor cylinder device 16D is attached to the side frame (vehicle body) 1 with the front and rear directions reversed from those of the motor cylinder device 16 described above.
  • FIG. 13 is an exploded perspective view showing the vehicle body mounting structure of the motor cylinder device.
  • the motor cylinder device 16D includes a cylinder body 282 of the cylinder mechanism 76 instead of the cylinder body 82 of the cylinder mechanism 76 of the motor cylinder device 16 described above.
  • the internal mechanism of the cylinder mechanism 76 is configured in the same manner as the motor cylinder device 16.
  • the cylinder body 282 has a substantially cylindrical shape, a flange portion 282a is formed at the base end portion of the cylinder body 282, and substantially cylindrical bosses 283a, 283b, 283c are formed to protrude to the side (left side). Yes.
  • the bosses 283a and 283b are configured as throwing bosses in the present embodiment, and are formed at intervals in the axial direction (center axis CL).
  • the boss 283b is positioned in the vicinity of the tip of the cylinder body 282, and the boss 283a is configured to be positioned at a substantially central portion in the axial direction of the cylinder body 282 on the base end side (front side) with respect to the boss 283b. Further, the boss 283a on the proximal end side is located slightly above the boss 283b on the distal end side in the vertical direction (vertical direction).
  • the boss 283c is a portion configured as one mount portion of a mounting bracket 290 to be described later, and is located below the vicinity of the boss 283a on the base end side.
  • the boss diameter D1 of the boss 283c is configured to be larger than the boss diameter D2 of the bosses 283a and 283b.
  • a screw hole 283c1 (not shown in the thread groove) in which a bolt 300 described later is screwed is formed in the center of the boss 283c.
  • a boss 285b is formed on the cylinder body 282 on the opposite side (right side) of the bosses 283a, 283b, 283c at the positions corresponding to the bosses 283a, 283b (the boss on the base end side is not shown).
  • Boss 285c (see FIG. 15) is formed at the corresponding position.
  • a boss 285b (one not shown) corresponding to the boss 283a, 283b is used for the port.
  • the housing 172 of the driving force transmission unit 73 includes a bolt 280 (see FIG. 13) on the left side, a bolt 282 (see FIG. 15) on the right side, and a bolt 284 (see FIG. 15) on the bottom.
  • the base end of the bolt 280 is attached to the housing 172 via a rubber bush 280a.
  • the bolts 282 and 284 are similarly attached to the housing 172 via rubber bushes.
  • the bolts 280, 282, and 284 are configured to be located on a plane orthogonal to the axial direction (center axis CL).
  • the rubber bush 280a is a substantially cylindrical buffer member made of rubber that can absorb vibrations and shocks (the same applies to rubber bushes 298 and 299 described later).
  • the motor cylinder device 16D is fastened to the side frame 1 (see FIG. 12) provided on the front side of the figure via bolts 286 and 288 via the fixing portions 291 and 292 of the mounting bracket 290. A method for mounting the motor cylinder device 16D and the mounting bracket 290 will be described later.
  • FIG. 14 is a perspective view showing a bracket alone for attaching the motor cylinder device to the vehicle body, (a) when viewed from diagonally forward, (b) when viewed from above, and (c) when viewed from the axial direction.
  • the motor cylinder device 16D is attached to the side frame 1 (see FIG. 12) via one mounting bracket 290.
  • the mounting bracket 290 is formed of a steel plate or the like, and side plates 293 and 294 for supporting the motor cylinder device 16D (see FIG. 13) sandwiched from the left and right directions,
  • a substantially horizontal and substantially rectangular bottom plate 295 that is connected to both lower sides of the side plates 293 and 294 and supports an intermediate portion (a lower portion of the housing 172, see FIG. 16) of the motor cylinder device 16D from below, and is connected to the bottom plate 295 and substantially vertical.
  • a back plate 296 along the direction and an extension plate 297 that is connected to the side plate 294 and supports the tip of the motor cylinder device 16D (the left side of the cylinder body 282, see FIG. 16).
  • the side plate 293 rises vertically upward from the rear side of the right edge of the bottom plate 295, and a notch 293a having a U-shape is formed at the upper edge of the side plate 293.
  • the height position of the notch 293a is configured to correspond to a bolt 282 (see FIG. 15) provided on the left side of the housing 172.
  • the side plate 294 rises upward from the rear side of the left edge of the bottom plate 295 in the vertical direction, and is longer than the right side plate portion 293a.
  • the side plate 294 has a long hole 294a extending in the vertical direction at a position facing the notch 293a in the left-right direction.
  • the lower end portion of the long hole 294a is set at a height position corresponding to the notch 293a.
  • the side plate 294 is formed with a hole 294b for lightening above the long hole 294a.
  • the above-described fixing portion 292 is connected to the upper end of the side plate 294, and the fixing portion 292 is configured to extend substantially to the left.
  • an extension plate 297 extending rearward is fixed to the side plate 294 by welding or the like.
  • the extension plate 297 is formed separately from the side plate 294 or the like, but the extension plate 297 may be formed integrally with the side plate 294 or the like.
  • a long hole 297 a is formed at the tip of the extension plate 297.
  • the long hole 297a has a front edge formed linearly and a rear edge formed curved.
  • the back plate 296 has a substantially circular shape and is configured to stand upward from the front edge of the bottom plate 295 in the vertical direction.
  • the back plate 296 is formed with a large-diameter opening 296a penetrating through the center thereof.
  • the opening 296a is formed to have a larger diameter than the cylindrical protruding portion 173a of the cover 173 (see FIG. 13) of the driving force transmitting portion 73.
  • the above-described fixing portion 291 is connected to the upper end of the back plate 296, and the fixing portion 291 is configured to extend substantially forward.
  • the bottom plate 295 is formed with a through-hole 295a through which a bolt 282 (see FIG. 15) is inserted at the center in the left-right direction (vehicle width direction) between the side plates 293 and 294. Has been. Further, the bottom plate 295 is formed with a hole 295b for removing the meat in front of the through hole 295a.
  • the extension plate 297 includes a base end portion 297b that extends in the front-rear direction and is fixed to the side plate 294, an intermediate portion 297c that extends to the right side (side plate 293 side) with respect to the base end portion 297b, and a front end that extends in the front-rear direction. Part 297d and configured to exhibit a crank shape.
  • the long hole 297a is formed in the tip portion 297d.
  • a bolt insertion hole 291a through which a fastening bolt 286 (see FIG. 13) is inserted is formed at the tip of the fixing portion 291.
  • a U-shaped notch 292a into which a fastening bolt 288 (see FIG. 13) is inserted is formed at the tip of the fixing portion 292.
  • the extension plate 297 is configured to incline downward in the vertical direction from the base end portion 297b to the tip end portion 297d. Further, the distal end portion 297 d of the extension plate 297 is located on the inner side (right side) than the side plate 294.
  • the protrusion 173 a of the cover 173 of the driving force transmission unit 73 is inserted into the opening 296 a of the back plate 296.
  • the lower part of the driving force transmitting portion 73 of the motor cylinder device 16D is placed so that the bottom plate 295 is located below, the side plate 294 is located on the left side, and the side plate 293 is located on the right side.
  • the bolt 280 on the motor cylinder device 16D side is inserted into the elongated hole 294a of the side plate 294, the bolt 282 (see FIG.
  • the bolt 300 is inserted into the hole 298a, the long hole 297a of the rubber bush 298, and the hole 299a of the rubber bush 299 in a state where the left and right sides of the distal end portion 297d of the extension plate 297 are sandwiched between the pair of rubber bushes 298 and 299. Then, it is screwed into a screw hole 283c1 formed in the boss 283c of the cylinder body 282. As a result, the extension plate 297 is elastically supported by the cylinder body 282.
  • FIG. 15 is a view of the bracket assembled to the motor cylinder device as viewed from the axial direction
  • FIG. 16 is a perspective view illustrating the bracket assembled to the motor cylinder device.
  • the left and right side portions of the driving force transmission portion 73 are sandwiched between the side plates 293 and 294, and the lower portion is elastically supported by the bottom plate 295.
  • the left side portion of the cylinder body 282 of the cylinder mechanism 76 is elastically supported by the extension plate 297.
  • the mounting bracket 290 is configured to elastically support the motor cylinder device 16D at four points.
  • unprocessed bosses 283a, 283b, 283c, 285b, 285c are formed in advance in a plurality of directions (two directions) on the cylinder mechanism 76, and one boss 283c is formed.
  • Is formed for mounting the motor cylinder device 16D to the side frame (vehicle body) 1, and the other boss 285b (the other is not shown) is a cylinder mechanism 76 (first hydraulic chamber 98a, second hydraulic chamber 98b). Therefore, it is not necessary to newly form a mount portion in the cylinder mechanism 76.
  • the mount portion can be easily processed.
  • the motor cylinder device 16D is supported at four points via the mounting bracket 290, so that it occurs when the electric motor 72 is driven. Vibration, for example, rotational vibration W (see FIG. 16) around the three-point supported portion on the housing 172 side can be suppressed. As a result, it is possible to suppress noise generated by vibration generation.
  • the boss diameter D1 of the boss 283c is made larger than the boss diameter D2 of the boss 283a, 283b, so that the vibration generated when the electric motor 72 is driven is more effective. As a result, it is possible to more effectively suppress noise generated with vibration.
  • the three-point support on the housing 172 side of the driving force transmission unit 73 has been described by taking as an example the case of using bolts 280, 282, 284, nuts 281, 283, 285, and the like.
  • a configuration of three-point support similar to the case of the motor cylinder device 16 shown in FIG. 6 may be used.
  • the case where the mounting direction of the motor cylinder device 16D is reversed is described as an example, but the side frame (vehicle body) 1 is arranged in the same arrangement as the motor cylinder device 16 shown in FIG.
  • the structure which attaches may be sufficient.
  • the right side plate 293, the left side plate 294, and the extension portion 296 of the mounting bracket 290 are interchanged, and the support portion of the extension plate 297 is a boss 285c (see FIG. 15), and the boss 283a, This can be dealt with by using a port as the port 283b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

 シリンダ機構(76)には、未加工のボス(83a、83b、85a、85b)が予め2方向に形成され、一方のボス(83a、83b)はモータシリンダ装置(16)を車体に取り付けるマウント用として形成され、他のボス(85a、85b)はシリンダ機構(76)と連通するポート用として形成される。また、マウント用のボス(83a、83b)は、車幅方向の外側に形成され、ポート用のボス(85a、85b)は、車幅方向の内側に形成されている。

Description

電動ブレーキアクチュエータの車体取付構造
 本発明は、車両用ブレーキシステムにおける電動ブレーキアクチュエータの車体取付構造に関する。
 従来、車両(自動車)用のブレーキシステムとしては、例えば、負圧式ブースタや油圧式ブースタ等の倍力装置を備えるものが知られている。また、近年では、電動モータを倍力源として利用する電動倍力装置が知られている(例えば、特許文献1参照)。
 この特許文献1に開示された電動倍力装置は、ブレーキペダルの操作によって進退運動する主ピストンと、この主ピストンと相対変位可能に外嵌された筒状のブースタピストンと、電動モータの回転力をブースタピストンにブースタ推力として伝達する、例えばボールねじ等の回転-直動変換機構とを備えている。
 この電動倍力装置によれば、主ピストンとブースタピストンとをマスタシリンダのピストンとして利用し、それぞれの前端部をマスタシリンダの圧力室に臨ませることで、操作者によってブレーキペダルから主ピストンに入力される推力と、電動モータからブースタピストンに入力されるブースタ推力とによって、ブレーキ液圧をマスタシリンダ内に発生させることができる。
特開2010-23594号公報
 ところで、特許文献1に開示された電動倍力装置では、マスタシリンダが装置から突出して形成される部分であるため、マスタシリンダの部分に車体に取り付けるためのマウント部が必要となる。しかし、このようなマウント部を形成(加工)する製造工程は非常に煩雑な作業となる。
 本発明は、前記従来の問題を解決するものであり、マウント部を容易に形成することが可能な電動ブレーキアクチュエータの車体取付構造を提供することを課題とする。
 本発明は、操作者のブレーキ操作が入力される入力装置と、少なくとも前記ブレーキ操作に応じた電気信号に基づいてブレーキ液圧を発生させる電動ブレーキアクチュエータと、を備えた車両用ブレーキシステムにおける前記電動ブレーキアクチュエータの車体取付構造であって、前記電動ブレーキアクチュエータは、前記電気信号に基づいて駆動力を発生させるアクチュエータ機構と、前記アクチュエータ機構から伝達される駆動力によりピストンを軸方向に移動させることでブレーキ液に圧力を付与するシリンダ機構とを有し、前記シリンダ機構には、未加工のボスが予め複数形成され、一の前記ボスは前記電動ブレーキアクチュエータを車体に取り付けるマウント用として形成され、他の前記ボスは前記シリンダ機構と連通するポート用として形成されていることを特徴とする。
 これによれば、シリンダ機構に予めボスを複数形成しておき、一の側のボスをポート用としてポート用の加工を施し、ポートとして使用しない側のボス(捨てボス側)を第2マウント部としてマウント用の加工を施すことで、新たにマウント部を電動ブレーキアクチュエータに形成する必要がない。しかも、例えば捨てボス側にボルトによる締結用のねじ穴を形成するだけで済むので、マウント部の加工が容易になる。
 また、前記ポート加工用のボスは、車幅方向の両側に形成されていることを特徴とする。
 これによれば、メンテナンス時などに、車体の下側または上側からアクセスする場合、マウント側とポート側のそれぞれのボスに容易にアクセスすることが可能になる。
 また、前記マウント用のボスは、車幅方向の外側に形成され、前記ポート用のボスは、車幅方向の内側に形成されていることを特徴とする。
 これによれば、例えば車体(サイドフレーム)の左側にマウントした場合、電動ブレーキアクチュエータの右側の空間を前記左側に比べて大きな空間とすることが可能であるので、液圧用の配管の着脱などのメンテナンスが容易になる。
 また、前記ポート加工用のボスは、鉛直方向の上方および下方に向けて形成されていることを特徴とする。
 これによれば、下方に向くボスをマウント用として、上方に向くボスをポート用として使用することで、シリンダ機構に接続される液圧用の配管の組み付け時や交換時にエアが混入したとしても、このようなエアをシリンダ機構から排出することが容易になる。
 また、前記ポート用のボスには、ブレーキ液が入力される入力ポートと、ブレーキ液が出力される出力ポートとが、同一のボスに形成されていることを特徴とする。
 これによれば、入力ポートと出力ポートを別々に形成する必要がないので、ポートの加工が容易になる。
 本発明によれば、マウント部を容易に形成することが可能な電動ブレーキアクチュエータの車体取付構造を提供できる。
本発明の実施形態に係るモータシリンダ装置の車体取付構造が適用された車両用ブレーキシステムの車両における配置構成を示す図である。 車両用ブレーキシステムを示す概略構成図である。 モータシリンダ装置の分解斜視図である。 駆動力伝達部の分解斜視図である。 モータシリンダ装置の斜め下方から見た斜視図である。 モータシリンダ装置を車体に取り付ける方法を説明するための分解斜視図である。 モータシリンダ装置を示し、(a)は上面図、(b)は正面図である。 変形例に係るモータシリンダ装置の車体取付構造が適用された車両用ブレーキシステムの車両における配置構成を示す図である。 変形例に係るモータシリンダ装置の正面図である。 別の変形例に係るモータシリンダ装置を示し、(a)は正面図、(b)はシリンダ機構をポートの位置で切断したときの断面図である。 さらに別の変形例に係るモータシリンダ装置を示す正面図である。 別の実施形態に係るモータシリンダ装置の車体取付構造が適用された車両用ブレーキシステムの車両における配置構成を示す図である。 モータシリンダ装置の車体取付構造を示す分解斜視図である。 モータシリンダ装置を車体に取り付けるためのブラケット単体を示す斜視図を示し、(a)は斜め前方から見たとき、(b)は上方から見たとき、(c)は軸方向から見たときである。 モータシリンダ装置へのブラケットの組付状態を軸方向から見たときの図である。 モータシリンダ装置へのブラケットの組付状態を示す斜視図である。
 次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
 図1は、本発明の実施形態に係る電動ブレーキアクチュエータの車体取付構造が適用された車両用ブレーキシステムの車両Vにおける配置構成を示す図である。なお、車両Vの前後左右の方向を図1に矢印で示す。
 図1に示す車両用ブレーキシステム10は、通常時用として、電気信号を伝達してブレーキを作動させるバイ・ワイヤ(By Wire)式のブレーキシステムと、フェイルセイフ時用として、油圧を伝達してブレーキを作動させる旧来の油圧式のブレーキシステムの双方を備えて構成される。
 このため、車両用ブレーキシステム10は、操作者のブレーキ操作が入力される入力装置14と、少なくとも前記ブレーキ操作に応じた電気信号に基づいてブレーキ液圧を発生させる電動ブレーキアクチュエータとしてのモータシリンダ装置16と、モータシリンダ装置16で発生したブレーキ液圧に基づいて車両の挙動の安定化を支援する車両挙動安定化装置としてのビークルスタビリティアシスト装置18(以下、VSA装置18という、VSA;登録商標)とを備えて構成されている。
 これらの入力装置14、モータシリンダ装置16、及び、VSA装置18は、車両Vのダッシュボード2の前方に設けられたエンジンや走行用モータ等の構造物3が搭載されるエンジンルーム(構造物搭載室)Rに、配管チューブ22a~22fを介して互いに分離して配置されている。また、バイ・ワイヤ式のブレーキシステムとして、入力装置14とモータシリンダ装置16とは、図示しないハーネスによって図示しない制御手段と電気的に接続されている。
 なお、モータシリンダ装置16は、運転者のブレーキ操作に応じた電気信号だけではなく、他の物理量に応じた電気信号に基づいて液圧を発生させる手段を備えていてもよい。他の物理量に応じた電気信号とは、例えば、自動ブレーキシステムのような、運転者のブレーキ操作によらずに、ECU(Electronic Control Unit)が車両Vの周囲の状況をセンサ等で判断して、車両Vの衝突等を回避するための信号などである。
 VSA装置18は、例えば、ブレーキ時の車輪ロックを防ぐABS(アンチロック・ブレーキ・システム)機能、加速時などの車輪空転を防ぐTCS(トラクション・コントロール・システム)機能、旋回時の横すべりを抑制する機能などを備えて構成され、車幅方向の右端の前側に、例えばブラケットを介して車体に取り付けられている。なお、車両挙動安定化装置としては、VSA装置18に限定されるものではなく、ブレーキ時の車輪ロックを防ぐABS(アンチロック・ブレーキ・システム)機能のみを有するABS装置であってもよい。
 図2は、車両用ブレーキシステム10の概略構成図である。
 液圧路について説明すると、図2中の連結点A1を基準として、入力装置14の接続ポート20aと連結点A1とが第1配管チューブ22aによって接続され、また、モータシリンダ装置16の出力ポート24aと連結点A1とが第2配管チューブ22bによって接続され、さらに、VSA装置18の導入ポート26aと連結点A1とが第3配管チューブ22cによって接続されている。
 図2中の他の連結点A2を基準として、入力装置14の他の接続ポート20bと連結点A2とが第4配管チューブ22dによって接続され、また、モータシリンダ装置16の他の出力ポート24bと連結点A2とが第5配管チューブ22eによって接続され、さらに、VSA装置18の他の導入ポート26bと連結点A2とが第6配管チューブ22fによって接続されている。
 VSA装置18には、複数の導出ポート28a~28dが設けられる。第1導出ポート28aは、第7配管チューブ22gによって右側前輪に設けられたディスクブレーキ機構30aのホイールシリンダ32FRと接続される。第2導出ポート28bは、第8配管チューブ22hによって左側後輪に設けられたディスクブレーキ機構30bのホイールシリンダ32RLと接続される。第3導出ポート28cは、第9配管チューブ22iによって右側後輪に設けられたディスクブレーキ機構30cのホイールシリンダ32RRと接続される。第4導出ポート28dは、第10配管チューブ22jによって左側前輪に設けられたディスクブレーキ機構30dのホイールシリンダ32FLと接続される。
 この場合、各導出ポート28a~28dに接続される配管チューブ22g~22jによってブレーキ液がディスクブレーキ機構30a~30dの各ホイールシリンダ32FR、32RL、32RR、32FLに対して供給され、各ホイールシリンダ32FR、32RL、32RR、32FL内の液圧が上昇することにより、各ホイールシリンダ32FR、32RL、32RR、32FLが作動し、対応する車輪(右側前輪、左側後輪、右側後輪、左側前輪)に対して制動力が付与される。
 なお、車両用ブレーキシステム10は、例えば、エンジン(内燃機関)のみによって駆動される自動車、ハイブリッド自動車、電気自動車、燃料電池自動車等を含む各種車両に対して搭載可能に設けられる。また、車両用ブレーキシステム10は、前輪駆動、後輪駆動、四輪駆動のいずれにも適用可能である。
 入力装置14は、運転者によるブレーキペダル12の操作によって液圧を発生可能なタンデム式のマスタシリンダ34と、前記マスタシリンダ34に付設された第1リザーバ36とを有する。このマスタシリンダ34のシリンダチューブ38内には、前記シリンダチューブ38の軸方向に沿って所定間隔離間する2つのピストン40a、40bが摺動自在に配設される。一方のピストン40aは、ブレーキペダル12に近接して配置され、プッシュロッド42を介してブレーキペダル12と連結される。また、他方のピストン40bは、一方のピストン40aよりもブレーキペダル12から離間して配置される。
 この一方及び他方のピストン40a、40bの外周面には、環状段部を介して一対のピストンパッキン44a、44bがそれぞれ装着される。一対のピストンパッキン44a、44bの間には、それぞれ、後記するサプライポート46a、46bと連通する背室48a、48bが形成される。また、一方及び他方のピストン40a、40bとの間には、ばね部材50aが配設され、他方のピストン40bとシリンダチューブ38の側端部との間には、他のばね部材50bが配設される。なお、ピストン40a、40bの外周面にピストンパッキン44a、44bを設ける代わりに、シリンダチューブ38の内周面にパッキンを配設してもよい。
 マスタシリンダ34のシリンダチューブ38には、2つのサプライポート46a、46bと、2つのリリーフポート52a、52bと、2つの出力ポート54a、54bとが設けられる。この場合、各サプライポート46a(46b)及び各リリーフポート52a(52b)は、それぞれ合流して第1リザーバ36内の図示しないリザーバ室と連通するように設けられる。
 また、マスタシリンダ34のシリンダチューブ38内には、運転者(操作者)がブレーキペダル12を踏み込む踏力に対応したブレーキ液圧を発生させる第1圧力室56a及び第2圧力室56bが設けられる。第1圧力室56aは、第1液圧路58aを介して接続ポート20aと連通するように設けられ、第2圧力室56bは、第2液圧路58bを介して他の接続ポート20bと連通するように設けられる。
 マスタシリンダ34と接続ポート20aとの間であって、第1液圧路58aの上流側には圧力センサPmが配設されると共に、第1液圧路58aの下流側には、ノーマルオープンタイプ(常開型)のソレノイドバルブからなる第1遮断弁60aが設けられる。この圧力センサPmは、第1液圧路58a上において、第1遮断弁60aよりもマスタシリンダ34側の上流の液圧を検知するものである。
 マスタシリンダ34と他の接続ポート20bとの間であって、第2液圧路58bの上流側には、ノーマルオープンタイプ(常開型)のソレノイドバルブからなる第2遮断弁60bが設けられると共に、第2液圧路58bの下流側には、圧力センサPpが設けられる。この圧力センサPpは、第2液圧路58b上において、第2遮断弁60bよりもホイールシリンダ32FR、32RL、32RR、32FL側の下流側の液圧を検知するものである。
 この第1遮断弁60a及び第2遮断弁60bにおけるノーマルオープンとは、ノーマル位置(消磁(非通電)時の弁体の位置)が開位置の状態(常時開)となるように構成されたバルブをいう。なお、図2において、第1遮断弁60a及び第2遮断弁60bは励磁時の状態を示す(後記する第3遮断弁62も同様)。
 マスタシリンダ34と第2遮断弁60bとの間の第2液圧路58bには、前記第2液圧路58bから分岐する分岐液圧路58cが設けられ、前記分岐液圧路58cには、ノーマルクローズタイプ(常閉型)のソレノイドバルブからなる第3遮断弁62と、ストロークシミュレータ64とが直列に接続される。この第3遮断弁62におけるノーマルクローズとは、ノーマル位置(消磁(非通電)時の弁体の位置)が閉位置の状態(常時閉)となるように構成されたバルブをいう。
 このストロークシミュレータ64は、第2液圧路58b上であって、第2遮断弁60bよりもマスタシリンダ34側に配置されている。前記ストロークシミュレータ64には、分岐液圧路58cに連通する液圧室65が設けられ、前記液圧室65を介して、マスタシリンダ34の第2圧力室56bから導出されるブレーキ液(ブレーキフルード)が吸収可能に設けられる。
 また、ストロークシミュレータ64は、互いに直列に配置されたばね定数の高い第1リターンスプリング66aとばね定数の低い第2リターンスプリング66bと、前記第1及び第2リターンスプリング66a、66bによって付勢されるシミュレータピストン68とを備え、ブレーキペダル12の踏み込み前期時にペダル反力の増加勾配を低く設定し、踏み込み後期時にペダル反力を高く設定してブレーキペダル12のペダルフィーリングを既存のマスタシリンダと同等となるように設けられている。
 液圧路は、大別すると、マスタシリンダ34の第1圧力室56aと複数のホイールシリンダ32FR、32RLとを接続する第1液圧系統70aと、マスタシリンダ34の第2圧力室56bと複数のホイールシリンダ32RR、32FLとを接続する第2液圧系統70bとから構成される。
 第1液圧系統70aは、入力装置14におけるマスタシリンダ34(シリンダチューブ38)の出力ポート54aと接続ポート20aとを接続する第1液圧路58aと、入力装置14の接続ポート20aとモータシリンダ装置16の出力ポート24aとを接続する配管チューブ22a、22bと、モータシリンダ装置16の出力ポート24aとVSA装置18の導入ポート26aとを接続する配管チューブ22b、22cと、VSA装置18の導出ポート28a、28bと各ホイールシリンダ32FR、32RLとをそれぞれ接続する配管チューブ22g、22hとによって構成される。
 第2液圧系統70bは、入力装置14におけるマスタシリンダ34(シリンダチューブ38)の出力ポート54bと他の接続ポート20bとを接続する第2液圧路58bと、入力装置14の他の接続ポート20bとモータシリンダ装置16の出力ポート24bとを接続する配管チューブ22d、22eと、モータシリンダ装置16の出力ポート24bとVSA装置18の導入ポート26bとを接続する配管チューブ22e、22fと、VSA装置18の導出ポート28c、28dと各ホイールシリンダ32RR、32FLとをそれぞれ接続する配管チューブ22i、22jとを有する。
 この結果、液圧路が第1液圧系統70aと第2液圧系統70bとによって構成されることにより、各ホイールシリンダ32FR、32RLと各ホイールシリンダ32RR、32FLとをそれぞれ独立して作動させ、相互に独立した制動力を発生させることができる。
 モータシリンダ装置16は、電動モータ72及び駆動力伝達部73を備えたアクチュエータ機構74と、アクチュエータ機構74によって付勢されるシリンダ機構76とを有する。また、アクチュエータ機構74の駆動力伝達部73は、電動モータ72の回転駆動力を伝達するギヤ機構(減速機構)78と、この回転駆動力を直線方向駆動力に変換する、ボールねじ軸80a及びボール80bを含むボールねじ構造体80とを有している。
 シリンダ機構76は、略円筒状のシリンダ本体82と、前記シリンダ本体82に付設された第2リザーバ84とを有する。第2リザーバ84は、入力装置14のマスタシリンダ34に付設された第1リザーバ36と配管チューブ86で接続され、第1リザーバ36内に貯留されたブレーキ液が配管チューブ86を介して第2リザーバ84内に供給されるように設けられる。
 シリンダ本体82内には、前記シリンダ本体82の軸方向に沿って所定間隔離間する第1スレーブピストン88a及び第2スレーブピストン88bが摺動自在に配設される。第1スレーブピストン88aは、ボールねじ構造体80側に近接して配置され、ボールねじ軸80aの一端部に当接して前記ボールねじ軸80aと一体的に矢印X1又はX2方向に変位する。また、第2スレーブピストン88bは、第1スレーブピストン88aよりもボールねじ構造体80側から離間して配置される。
 この第1及び第2スレーブピストン88a、88bの外周面には、環状段部を介して一対のスレーブピストンパッキン90a、90bがそれぞれ装着される。一対のスレーブピストンパッキン90a、90bの間には、それぞれ、後記するリザーバポート92a、92bとそれぞれ連通する第1背室94a及び第2背室94bが形成される。また、第1及び第2スレーブピストン88a、88bとの間には、第1リターンスプリング96aが配設され、第2スレーブピストン88bとシリンダ本体82の側端部と間には、第2リターンスプリング96bが配設される。
 シリンダ機構76のシリンダ本体82には、2つのリザーバポート92a、92bと、2つの出力ポート24a、24bとが設けられる。この場合、リザーバポート92a(92b)は、第2リザーバ84内の図示しないリザーバ室と連通するように設けられる。
 また、シリンダ本体82内には、出力ポート24aからホイールシリンダ32FR、32RL側へ出力されるブレーキ液圧を発生させる第1液圧室98aと、他の出力ポート24bからホイールシリンダ32RR、32FL側へ出力されるブレーキ液圧を発生させる第2液圧室98bが設けられる。
 なお、第1スレーブピストン88aと第2スレーブピストン88bとの間には、第1スレーブピストン88aと第2スレーブピストン88bの最大距離と最小距離とを規制する規制手段100が設けられ、さらに、第2スレーブピストン88bには、前記第2スレーブピストン88bの摺動範囲を規制して、第1スレーブピストン88a側へのオーバーリターンを阻止するストッパピン102が設けられ、これによって、特に、マスタシリンダ34で発生したブレーキ液圧で制動するバックアップ時において、1系統の失陥時に他系統の失陥が防止される。
 VSA装置18は、周知のものからなり、右側前輪及び左側後輪のディスクブレーキ機構30a、30b(ホイールシリンダ32FR、ホイールシリンダ32RL)に接続された第1液圧系統70aを制御する第1ブレーキ系110aと、右側後輪及び左側後輪のディスクブレーキ機構30c、30d(ホイールシリンダ32RR、ホイールシリンダ32FL)に接続された第2液圧系統70bを制御する第2ブレーキ系110bとを有する。なお、第1ブレーキ系110aは、左側前輪及び右側前輪に設けられたディスクブレーキ機構に接続された液圧系統で、第2ブレーキ系110bは、左側後輪及び右側後輪に設けられたディスクブレーキ機構に接続された液圧系統であってもよい。さらに、第1ブレーキ系110aは、車体片側の右側前輪及び右側後輪に設けられたディスクブレーキ機構に接続された液圧系統からなり、第2ブレーキ系110bは、車体片側の左側前輪及び左側後輪に設けられたディスクブレーキ機構に接続された液圧系統であってもよい。
 この第1ブレーキ系110a及び第2ブレーキ系110bは、それぞれ同一構造からなるため、第1ブレーキ系110aと第2ブレーキ系110bで対応するものには同一の参照符号を付していると共に、第1ブレーキ系110aの説明を中心にして、第2ブレーキ系110bの説明を括弧書きで適宜付記する。
 第1ブレーキ系110a(第2ブレーキ系110b)は、ホイールシリンダ32FR、32RL(32RR、32FL)に対して、共通する第1共通液圧路112及び第2共通液圧路114を有する。VSA装置18は、導入ポート26aと第1共通液圧路112との間に配置されたノーマルオープンタイプのソレノイドバルブからなるレギュレータバルブ116と、前記レギュレータバルブ116と並列に配置され導入ポート26a側から第1共通液圧路112側へのブレーキ液の流通を許容する(第1共通液圧路112側から導入ポート26a側へのブレーキ液の流通を阻止する)第1チェックバルブ118と、第1共通液圧路112と第1導出ポート28aとの間に配置されたノーマルオープンタイプのソレノイドバルブからなる第1インバルブ120と、前記第1インバルブ120と並列に配置され第1導出ポート28a側から第1共通液圧路112側へのブレーキ液の流通を許容する(第1共通液圧路112側から第1導出ポート28a側へのブレーキ液の流通を阻止する)第2チェックバルブ122と、第1共通液圧路112と第2導出ポート28bとの間に配置されたノーマルオープンタイプのソレノイドバルブからなる第2インバルブ124と、前記第2インバルブ124と並列に配置され第2導出ポート28b側から第1共通液圧路112側へのブレーキ液の流通を許容する(第1共通液圧路112側から第2導出ポート28b側へのブレーキ液の流通を阻止する)第3チェックバルブ126とを備える。
 さらに、VSA装置18は、第1導出ポート28aと第2共通液圧路114との間に配置されたノーマルクローズタイプのソレノイドバルブからなる第1アウトバルブ128と、第2導出ポート28bと第2共通液圧路114との間に配置されたノーマルクローズタイプのソレノイドバルブからなる第2アウトバルブ130と、第2共通液圧路114に接続されたリザーバ132と、第1共通液圧路112と第2共通液圧路114との間に配置されて第2共通液圧路114側から第1共通液圧路112側へのブレーキ液の流通を許容する(第1共通液圧路112側から第2共通液圧路114側へのブレーキ液の流通を阻止する)第4チェックバルブ134と、前記第4チェックバルブ134と第1共通液圧路112との間に配置されて第2共通液圧路114側から第1共通液圧路112側へブレーキ液を供給するポンプ136と、前記ポンプ136の前後に設けられ第2共通液圧路114側から第1共通液圧路112側へのブレーキ液の流通を許容する(第1共通液圧路112側から第2共通液圧路114側へのブレーキ液の流通を阻止する)吸入弁138及び吐出弁140と、前記ポンプ136を駆動するモータMと、第2共通液圧路114と導入ポート26aとの間に配置されるサクションバルブ142とを備える。
 なお、第1ブレーキ系110aにおいて、導入ポート26aに近接する液圧路上には、モータシリンダ装置16の出力ポート24aから出力され、前記モータシリンダ装置16の第1液圧室98aで発生したブレーキ液圧を検知する圧力センサPhが設けられる。各圧力センサPm、Pp、Phで検出された検出信号は、図示しない制御手段に導入される。
 本実施形態に係る車両用ブレーキシステム10は、基本的に以上のように構成されるものであり、次にその作用効果について説明する。
 車両用ブレーキシステム10が正常に機能する正常時には、ノーマルオープンタイプのソレノイドバルブからなる第1遮断弁60a及び第2遮断弁60bが励磁で弁閉状態となり、ノーマルクローズタイプのソレノイドバルブからなる第3遮断弁62が励磁で弁開状態となる(図2参照)。従って、第1遮断弁60a及び第2遮断弁60bによって第1液圧系統70a及び第2液圧系統70bが遮断されているため、入力装置14のマスタシリンダ34で発生したブレーキ液圧がディスクブレーキ機構30a~30dのホイールシリンダ32FR、32RL、32RR、32FLに伝達されることはない。
 このとき、マスタシリンダ34の第2圧力室56bで発生したブレーキ液圧は、分岐液圧路58c及び弁開状態にある第3遮断弁62を経由してストロークシミュレータ64の液圧室65に伝達される。この液圧室65に供給されたブレーキ液圧によってシミュレータピストン68がリターンスプリング66a、66bのばね力に抗して変位することにより、ブレーキペダル12のストロークが許容されると共に、擬似的なペダル反力を発生させてブレーキペダル12に付与される。この結果、運転者にとって違和感のないブレーキフィーリングが得られる。
 このようなシステム状態において、図示しない制御手段は、運転者によるブレーキペダル12の踏み込みを検出すると、モータシリンダ装置16の電動モータ72を駆動させてアクチュエータ機構74を付勢し、第1リターンスプリング96a及び第2リターンスプリング96bのばね力に抗して第1スレーブピストン88a及び第2スレーブピストン88bを図2中の矢印X1方向に向かって変位させる。この第1スレーブピストン88a及び第2スレーブピストン88bの変位によって第1液圧室98a及び第2液圧室98b内のブレーキ液圧がバランスするように加圧されて所望のブレーキ液圧が発生する。
 このモータシリンダ装置16における第1液圧室98a及び第2液圧室98bのブレーキ液圧は、VSA装置18の弁開状態にある第1、第2インバルブ120、124を介してディスクブレーキ機構30a~30dのホイールシリンダ32FR、32RL、32RR、32FLに伝達され、前記ホイールシリンダ32FR、32RL、32RR、32FLが作動することにより各車輪に所望の制動力が付与される。
 換言すると、本実施形態に係る車両用ブレーキシステム10では、電動ブレーキアクチュエータ(動力液圧源)として機能するモータシリンダ装置16やバイ・ワイヤ制御する図示しないECU等の制御手段が作動可能な正常時において、運転者がブレーキペダル12を踏むことでブレーキ液圧を発生するマスタシリンダ34と各車輪を制動するディスクブレーキ機構30a~30d(ホイールシリンダ32FR、32RL、32RR、32FL)との連通を第1遮断弁60a及び第2遮断弁60bで遮断した状態で、モータシリンダ装置16が発生するブレーキ液圧でディスクブレーキ機構30a~30dを作動させるという、いわゆるブレーキ・バイ・ワイヤ方式のブレーキシステムがアクティブになる。このため、本実施形態では、例えば、電気自動車等のように、旧来から用いられていた内燃機関による負圧が存在しない車両に好適に適用することができる。
 一方、モータシリンダ装置16等が作動不能となる異常時では、第1遮断弁60a及び第2遮断弁60bをそれぞれ弁開状態とし、且つ、第3遮断弁62を弁閉状態としてマスタシリンダ34で発生するブレーキ液圧をディスクブレーキ機構30a~30d(ホイールシリンダ32FR、32RL、32RR、32FL)に伝達して、前記ディスクブレーキ機構30a~30d(ホイールシリンダ32FR、32RL、32RR、32FL)を作動させるという、いわゆる旧来の油圧式のブレーキシステムがアクティブになる。
 次に、モータシリンダ装置16についてさらに詳細に説明する。図3はモータシリンダ装置の分解斜視図、図4は駆動力伝達部の分解斜視図、図5はモータシリンダ装置の斜め下方から見た斜視図、図6はモータシリンダ装置を車体に取り付ける方法を説明するための分解斜視図、図7はモータシリンダ装置の側面図である。
 図3に示すように、モータシリンダ装置16は、図示しない制御手段からの電気信号に基づいて駆動する電動モータ72と、電動モータ72による駆動力を伝達する駆動力伝達部73と、駆動力伝達部73から伝達される駆動力により第1及び第2スレーブピストン88a、88b(図2参照)を軸方向に移動させることでブレーキ液に圧力を付与するシリンダ機構76とを有している。なお、電動モータ72と駆動力伝達部73とで、特許請求の範囲に記載のアクチュエータ機構74が構成されている。
 電動モータ72、駆動力伝達部73、及びシリンダ機構76は、互いに分離可能に構成されている。電動モータ72は、図示しないハーネスが接続される基部161を有しており、基部161にはボルト201が挿通される貫通孔162が複数形成されている。また、シリンダ機構76のシリンダ本体82の駆動力伝達部73側の端部には、フランジ部82aが設けられており、フランジ部82aにはボルト202が挿通される貫通孔82bが複数形成されている。
 駆動力伝達部73は、ギヤ機構、ボールねじ構造体等の駆動力伝達用機械要素(不図示)を内部に収容するケース体171を有している。ケース体171は、シリンダ機構76側に配置されるハウジング172と、ハウジング172のシリンダ機構76と反対側の開口端を覆うカバー173とを備えている。駆動力伝達部73のハウジング172及びカバー173は、アルミニウム合金等の金属から形成されている(シリンダ機構76のシリンダ本体82も同様)。
 駆動力伝達部73のハウジング172には、電動モータ72を駆動力伝達部73に取り付けるためのモータ取付用ねじ孔174が前記貫通孔162と対応する位置に形成されている。また、ハウジング172のシリンダ機構76側の端部には、フランジ部175が設けられており、フランジ部175には、シリンダ機構76を駆動力伝達部73に取り付けるためのシリンダ機構取付用ねじ孔176が前記貫通孔82bと対応する位置に形成されている。
 また、駆動力伝達部73のハウジング172には、電動モータ72の基部161が取り付けられるモータ取付面172aがシリンダ機構76の軸方向に向けて形成されている。また、ハウジング172のフランジ部175には、シリンダ機構76のフランジ部82aが取り付けられるシリンダ機構取付面172bが、シリンダ機構の軸方向に向けて形成されている。また、シリンダ機構取付面172bは、モータ取付面172aよりもシリンダ機構76側に突出して形成されている。また、シリンダ機構取付面172bの上方にモータ取付面172aが形成され、電動モータ72がシリンダ機構76の上方に位置している。
 シリンダ機構76は、略円筒状のシリンダ本体82を有し、このシリンダ本体82の基端にフランジ部82aが形成され、先端側に互いに軸方向(中心軸CL)に間隔を開けてボス83a、83b、85a、85bが突出して形成されている。ボス83a、83bは、車幅方向の外側(左側)に向けて形成され、ボス85a、85bは、車幅方向の内側(右側)に向けて形成されている。
 ボス83a、83bは、第2マウント部用(マウント用)として加工されるものであり、略円柱状に形成されたものである。ボス83a、83bは、先端面からシリンダ機構76の内側に向けて円形のマウント穴83a1、83b1が形成される。なお、図示していないが、マウント穴83a1、83b1は、その底面に後記するボルト206(図6参照)がねじ込まれるねじ穴を有している。また、マウント穴83a1、83b1は、シリンダ本体82内の第1液圧室98a、第2液圧室98bと連通しないように形成されている。
 一方、ボス85a、85bは、ポート用として加工されるものであり、略円柱状に形成されたものである。ボス85aは、シリンダ本体82内の第1液圧室98aと連通するように出力ポート24aが形成されている。またボス85bは、シリンダ本体82内の第2液圧室98bと連通するように出力ポート24bが形成されている。
 そして、電動モータ72は、ボルト201を貫通孔162に挿通させてモータ取付用ねじ孔174にねじ込むことによって、駆動力伝達部73に取り付けられて固定される。また、シリンダ機構76は、ボルト202を貫通孔82bに挿通させてシリンダ機構取付用ねじ孔176にねじ込むことによって、駆動力伝達部73に取り付けられて固定される。
 図4に示すように、ケース体171(図3参照)の内部に、ギヤ機構78とボールねじ構造体80とが収容されている。ギヤ機構78は、電動モータ72の出力軸に固定されたピニオンギア78a(図2参照)と、ピニオンギア78aに噛合されるアイドルギア78bと、アイドルギア78bに噛合されるリングギア78cとを備えている。また、ボールねじ構造体80は、先端側が第1スレーブピストン88aに連結されるボールねじ軸80aと、ボールねじ軸80a上のねじ溝に配置されるボール80b(図2参照)と、ボール80bを介してボールねじ軸80aに螺合されるナット部80cとを備えている。
 そして、ナット部80cは、リングギア78cの内周面に例えば圧入されて固定されており、これにより、ギヤ機構78から伝達される回転駆動力は、ナット部80cに入力された後、ボールねじ構造体80によって直線方向駆動力に変換され、ボールねじ軸80aが軸方向に沿って進退動作することができる。
 ケース体171のハウジング172とカバー173とは、互いに分離可能に構成されている。第1及び第2スレーブピストン88a、88b(図2参照)の中心軸CL(図3参照)周りに位置するように、ハウジング172にはボルト203が挿通される貫通孔177が複数形成されており、カバー173の貫通孔177と対応する位置には、ハウジング取付用ねじ孔178が複数形成されている。そして、ボルト203を貫通孔177に挿通させてハウジング取付用ねじ孔178にねじ込むことによって、ハウジング172とカバー173とが互いに結合されている。なお、図4中の符号179は、電動モータ72の出力軸の先端を回転可能に支持する軸受を示しており、この軸受179は、カバー173に形成された穴部180に嵌着される。
 図5に示すように、モータシリンダ装置16には、当該モータシリンダ装置16をサイドフレーム等の車体1(図1参照)に取り付けるための第1マウント部181が設けられている。第1マウント部181は、中心軸CL(図3参照)方向のカバー173側から見て、左方に位置する左マウント穴182、右方に位置する右マウント穴183、及び下方に位置する下マウント穴184を有する。左右下の各マウント穴182~184は、それぞれ円柱状の凹部を呈している。また、第1マウント部181は、左マウント穴182と右マウント穴183との共通軸心に沿って形成され中心軸CL(図3参照)に直交する軸心を有する貫通孔185を有している。
 第1マウント部181は、モータシリンダ装置16の重心近傍に設けられている。具体的には、電動モータ72、駆動力伝達部73、及びシリンダ機構76のうちでモータシリンダ装置16の重心位置が存在する部分(又は重心位置に最も近い部分)、ここでは、駆動力伝達部73に、第1マウント部181が設けられている。より詳細には、第1マウント部181は、モータ取付用ねじ孔174(図4参照)が形成された駆動力伝達部73のハウジング172に設けられている。但し、第1マウント部181の設置位置は、モータシリンダ装置16の重心近傍であればよく、必ずしも駆動力伝達部73やハウジング172に限定されるものではない。このような構成によれば、モータシリンダ装置16の重心近傍を支持することができ、振動等の力を受けた場合でも振れを少なくすることができる。
 図6に示すように、モータシリンダ装置16は、第1マウント部181(図5参照)に対し、取付用ブラケット190を介して、サイドフレーム等の車体1(図1参照)に取り付けられる。また、モータシリンダ装置16は、第2マウント部(ボス83a、83b)に対し、取付用ブラケット213を介して、サイドフレーム等の車体1(図1参照)に取り付けられる。
 取付用ブラケット190は、ボルト(おねじ部材)204を用いたねじ締結によりモータシリンダ装置16を左右方向から挟んで支持するための一対の側板195、195と、一対の側板195、195の両下辺に連接されモータシリンダ装置16の中間部(中央部)を下方から支持する略水平な底板194とから構成される支持板192を備えている。また、取付用ブラケット190は、側板195、195及び底板194に連接され略鉛直方向に沿う背板191と、背板191に連接され車体側に固定するための固定板193とを備えている。背板191の中央付近には、カバー173の突出部173aが挿通される開口191aが形成されている。
 一方の側板195には、ボルト204が挿通可能な略U字形状の切欠き195aが形成されており、他方の側板195には、ボルト204が挿通される貫通孔195bが形成されている。側板195の貫通孔195bの外側には、ボルト204が螺合可能なナット195cが例えば溶接により固着されている。また、底板194の上面中央には、ピン194aが立設されている。
 モータシリンダ装置16を取付用ブラケット190に取り付ける場合、長尺の円筒形状の第1カラー198、ゴムブッシュ196、筒部197aとその端部に形成されたフランジ197bとを備えた第2カラー197、及びボルト204を使用する。ゴムブッシュ196は、振動や衝撃を吸収し得るゴム製の略円筒形状の緩衝部材である。
 まず、取付用ブラケット190の貫通孔185の内部に第1カラー198を挿入して配置する。続いて、第2カラー197の筒部197aをゴムブッシュ196の中央孔に嵌入させたものを、左マウント穴182と右マウント穴183との中にそれぞれ嵌入させて装着する。また、ゴムブッシュ196を下マウント穴184の中に嵌入させて装着する。そして、下マウント穴184に装着されたゴムブッシュ196の中央孔にピン194aが嵌入されるように、モータシリンダ装置16を、取付用ブラケット190の底板194上に設置する。こうして、下マウント穴184により、モータシリンダ装置16の中間部が下方から支持される。
 モータシリンダ装置16を底板194上に設置すると、モータシリンダ装置16の左マウント穴182及び右マウント穴183にそれぞれ装着されたゴムブッシュ196及び第2カラー197が、側板195の切欠き195a及び貫通孔195bにそれぞれ臨む。したがって、ボルト204を、切欠き195a、第2カラー197、ゴムブッシュ196、第1カラー198、ゴムブッシュ196、及び第2カラー197に順に挿通させて、ナット195cにねじ込むことができる。このときボルト204は、貫通孔185に挿通されることになる。こうして、左マウント穴182及び右マウント穴183により、モータシリンダ装置16は左右方向から一対の側板195、195に挟まれるようにして支持される。
 そして、取付用ブラケット190の固定板193が、直接又は他の図示しない連結部材を介して、サイドフレーム等の車体1(図1参照)にねじ締結、溶接等により固定される。
 以上のように、第1マウント部181を使用することにより、モータシリンダ装置16の左右下の三方を支持してモータシリンダ装置16を車体側に取り付けることが可能である。また、モータシリンダ装置16の第1マウント部181は、ゴムブッシュ196を介して車体側にフローティング支持(弾性支持)されているため、振動や衝撃を吸収することができる。
 一方、取付用ブラケット213は、鋼製の板材などで形成され、ボス83a、83bのマウント穴83a1、83b1と対応する位置に締結用のボルト206が挿通可能な貫通孔213aが形成されている。
 モータシリンダ装置16を取付用ブラケット213に取り付ける場合、ゴムブッシュ214、円筒形状のカラー215、及びボルト206を使用する。ゴムブッシュ214は、振動や衝撃を吸収し得るゴム製の略円筒形状の緩衝部材であり、マウント穴83a1、83b1に嵌入可能な形状を有している。
 まず、ゴムブッシュ214の中央孔にカラー215を嵌入し、マウント穴83a1、83b1にゴムブッシュ214を押圧して嵌入する。そして、ボルト206を取付用ブラケット213の貫通孔213、カラー215に挿通して、ボルト206をマウント穴83a1、83b1に形成されたねじ穴(不図示)にねじ込むことで、モータシリンダ装置16が取付用ブラケット213に支持される。これにより、モータシリンダ装置16は、取付用ブラケット213に対してフローティング支持される。なお、図示していないが、取付用ブラケット213は、例えば、サイドフレーム等の車体1(図1参照)まで延びて形成され、直接又は他の図示しない連結部材を介して、車体1にねじ締結、溶接等により固定される。
 図7(a)に示すように、モータシリンダ装置16は、取付用ブラケット213(図7(b)参照)を介して、白抜き矢印で示すように、例えば前後方向に延びるサイドフレーム等の車体1(図1参照)の側方に配置された状態において固定される。具体的には、取付用ブラケット213は、車体1まで延びて形成され、直接又は他の図示しない連結部材を介して、車体1にねじ締結、溶接等により固定される。
 また、モータシリンダ装置16は、ボス85a、85bに形成された出力ポート24a、24bに、ブレーキ液が流通する第2配管チューブ22b、第5配管チューブ22e(以下、配管チューブと略記する)が接続されている。配管チューブ22b、22eは、鋼管等の金属製のパイプを所定の形状に屈曲させることによって形成されている(他の配管チューブも同様)。
 ここで、シリンダ機構76は、中心軸CL(図3参照)方向に並んで形成される第1液圧室98a及び第2液圧室98b(図2参照)を備える、いわゆるタンデム型のシリンダ機構である。そして、出力ポート24aは、第1液圧室98aに連通するプライマリのポートであり、出力ポート24bは、第2液圧室98bに連通するセカンダリのポートである。
 出力ポート24a、24bから中心軸CL(図3参照)に直交する方向に延びた配管チューブ22b、22eは、シリンダ機構76の基端側に曲げられた後、モータシリンダ装置16側に寄せられるようにして、シリンダ機構76の軸方向(中心軸CL方向)に沿って配設される。その後は、ダッシュボード2に沿うように配設され、入力装置14やVSA装置18とジョイントを介して接続される。
 以上説明したように、本実施形態に係るモータシリンダ装置16の車体取付構造では、シリンダ機構76に未加工のボス83a、83b、85a、85bが予め複数方向(2方向)に形成され、一方のボス83a、83bがモータシリンダ装置16を車体1に取り付けるマウント用として形成され、他方のボス85a、85bがシリンダ機構76(第1液圧室98a、第2液圧室98b)と連通するポート用として形成されているので、新たにマウント部をシリンダ機構76に形成する必要がない。しかも、ボス83a、83b側(捨てボス側)にボルト締結用のねじ穴を有するマウント穴83a1、83b1を形成するだけで済むので、マウント部の加工が容易である。
 また、本実施形態によれば、図7(b)に示すように、マウント用のボス83a、83bが車幅方向の外側(左側)に形成され、ポート用のボス85a、85bが車幅方向の内側(右側)に形成されているので、左フロントのサイドフレーム(車体1)にモータシリンダ装置16を固定した場合、モータシリンダ装置16の右側の空間を左側に比べて大きな空間として確保することが容易であるので、配管チューブ22b、22eの付け替え等のメンテナンス、配管チューブ22b、22eの取り回しが容易になる。
 図8は変形例に係るモータシリンダ装置の車体取付構造が適用された車両用ブレーキシステムの車両における配置構成を示す図、図9は変形例に係るモータシリンダ装置の正面図である。なお、前記した実施形態と同様の構成については、同一の符号を付して重複する説明を省略する。なお、入力装置14、モータシリンダ装置16、VSA装置18の配置については、図1に示す配置と同様である。
 図8に示すように、モータシリンダ装置16A(16B)は、前記したモータシリンダ装置16とは異なり、4種類の配管チューブ22o、22p、22q、22rが接続されるものである。すなわち、モータシリンダ装置16A(16B)は、配管チューブ22o、22pを介して入力装置14の接続ポート20a、20b(図2参照)と接続されている。また、モータシリンダ装置16A(16B)は、配管チューブ22q、22rを介してVSA装置18と接続されている。
 図9に示すように、モータシリンダ装置16Aは、シリンダ機構76のシリンダ本体82Aに3方向のボス87a、87b、87cが形成されている。なお、説明の便宜上、第1液圧室98aに対応するポートと第2液圧室98bに対応するポートの一方を図示して説明する。
 ボス87aは、マウント用として形成され、車幅方向の外側(左側)に向けて突出している。ボス87bは、ポート用として形成され、車幅方向の内側(右側)に向けて突出している。ボス87cは、ポート用として形成され、鉛直方向の上方に向けて突出している。なお、ボス87aを介して取付用ブラケット213にモータシリンダ装置16Aを取り付ける方法は、図6に示した方法と同様に行うことができる。
 このようなモータシリンダ装置16Aの車体取付構造においても、シリンダ機構76に予めボス87a、87b、87cを形成しておき、一のボス87aをマウント用として、他のボス87b、87cをポート用として形成したので、新たにマウント部をシリンダ機構76に形成する必要がなく、ボス87aにボルト締結用のねじ穴を有するマウント穴を形成するだけで済むので、マウント部の加工が容易である。
 また、マウント用のボス87aが車幅方向の外側(左側)に形成され、ポート用のボス87b、87cが車幅方向の内側(右側)および鉛直方向の上側に形成されているので、左フロントのサイドフレーム(車体1)にモータシリンダ装置16Aを固定した場合、モータシリンダ装置16Aの右側および上側の空間を左側に比べて大きな空間として確保することが容易であるので、配管チューブ22o、22p、22q、22rの付け替え等のメンテナンス、配管チューブ22o~22rの取り回しが容易になる。
 なお、モータシリンダ装置16Aでは、ボス87a~87cを、車幅方向の両側と上側とした場合を例に挙げて説明したが、これに限定されるものではなく、車幅方向の両側と下側であってもよい。
 図10は別の変形例に係るモータシリンダ装置を示し、(a)は正面図、(b)はシリンダ機構をポートの位置で切断したときの断面図である。
 図10(a)に示すように、別の変形例に係るモータシリンダ装置16Bは、シリンダ機構76のシリンダ本体82Bに2方向のボス89a、89bが形成されている。ボス89aは、マウント用として、車幅方向の外側(左側)に向けて突出している。ボス89bは、ポート用として、車幅方向の内側(右側)に向けて突出している。また、モータシリンダ装置16Bは、ブレーキ液が入力される入力ポートと、ブレーキ液が出力される出力ポートとが、同一のボス89bに形成されたものである。すなわち、ボス89bは、入出力ポートとして構成されている。
 具体的には、図10(b)に示すように、シリンダ本体82Bのボス89bに、第1液圧室98a(第2液圧室98b)と連通する連通孔89b1が形成されている。そして、入力装置14と接続される配管チューブ22o(22p)の端部とVSA装置18と接続される配管チューブ22q(22r)の端部にコネクタ89sが取り付けられている。コネクタ89sは、連通孔89b1と図示しない着脱手段を介して着脱可能に構成されている。コネクタ89sには、配管チューブ22o(22p)、22q(22r)が貫通して挿入され、配管チューブ22o(22p)、22q(22r)の端部が連通孔89b1と連通するように構成されている。
 このようなモータシリンダ装置16Bの車体取付構造においても、シリンダ機構76に予めボス89a、89bを形成しておき、一方のボス89aをマウント用として、他のボス89bをポート用として形成したので、新たにマウント部をシリンダ機構76に形成する必要がなく、しかもボス89aにボルト206による締結用のねじ穴を有するマウント穴を形成するだけで済むので、マウント部の加工が容易である。
 また、マウント用のボス89aが車幅方向の外側(左側)に形成され、ポート用のボス89bが車幅方向の内側(右側)に形成されているので、左フロントのサイドフレーム(車体1)にモータシリンダ装置16Bを固定した場合、モータシリンダ装置16Bの右側の空間を左側に比べて大きな空間を確保することが容易であるので、配管チューブ22o、22p、22q、22rの付け替え等のメンテナンスが容易になる。
 図11はさらに別の変形例に係るモータシリンダ装置を示す正面図である。すなわち、モータシリンダ装置16Cは、シリンダ機構76のシリンダ本体82Cに2方向のボス85c、85dが形成されている。ボス85cは、マウント用として、鉛直方向の下方に向けて突出している。ボス85dは、ポート用として、鉛直方向の上方に向けて突出している。
 このようなモータシリンダ装置16Bの車体取付構造においても、前記と同様に、新たにマウント部をシリンダ機構76に形成する必要がなく、しかもマウント部の加工も容易である。また、ボス85dを鉛直方向の上側に設けることで、配管チューブ22b、22eの付け替え等のメンテナンスが容易になる。また、ボス85dを鉛直方向の上側に設けることで、シリンダ機構76に接続される配管チューブ22b、22eの組み付け時や交換時にエアが混入したとしても、このようなエアをシリンダ機構76から排出することが容易になる。
 なお、シリンダ機構76におけるポートの形成パターンとしては、シリンダ本体82を挟んで対向する位置において2方向に形成する構成に限定されるものではなく、シリンダ本体82に対して直交する2方向に形成する構成であってもよい。例えば、マウント用のボスが車幅方向の外側、ポート用のボスが鉛直方向の上側(または下側)であってもよい。また、シリンダ本体82に対して、上下左右の4方向にボスを形成する構成であってもよい。
 また、前記した実施形態では、入力装置14をエンジンルームR内の右側に配置した右ハンドル車に適用した場合を例に挙げて説明したが、入力装置14をエンジンルームR内の左側に配置した左ハンドル車に適用してもよい。
(別の実施形態)
 図12は、別の実施形態に係るモータシリンダ装置の車体取付構造が適用された車両用ブレーキシステムの車両における配置構成を示す図である。図12に示す車両用ブレーキシステム10は、前記したモータシリンダ装置16の車体取付構造に代えてモータシリンダ装置16Dの車体取付構造としたものである。なお、前記したモータシリンダ装置16の車体取付構造と同様の構成については、同一の符号を付して重複した説明を省略する。このモータシリンダ装置16Dは、前記したモータシリンダ装置16とは前後の向きを逆にしてサイドフレーム(車体)1に取り付けられている。
 図13はモータシリンダ装置の車体取付構造を示す分解斜視図である。このモータシリンダ装置16Dは、前記したモータシリンダ装置16のシリンダ機構76のシリンダ本体82に代えて、シリンダ機構76のシリンダ本体282を備えている。なお、シリンダ機構76の内部機構については、モータシリンダ装置16と同様に構成されている。
 シリンダ本体282は、略円筒形状を呈し、このシリンダ本体282の基端部にフランジ部282aが形成され、略円柱状のボス283a、283b、283cが側方(左側方)に突出して形成されている。
 ボス283a、283bは、本実施形態では捨てボスとして構成され、軸方向(中心軸CL)に互いに間隔を置いて形成されている。ボス283bは、シリンダ本体282の先端近傍に位置し、ボス283aは、ボス283bよりも基端側(前側)のシリンダ本体282の軸方向の略中央部に位置するように構成されている。また、基端側のボス283aは、先端側のボス283bよりも鉛直方向(上下方向)において若干上方に位置している。
 ボス283cは、後記する取付用ブラケット290のひとつのマウント部として構成される部分であり、基端側のボス283aの近傍の下方に位置している。また、ボス283cのボス径D1は、ボス283a、283bのボス径D2よりも大径となるように構成されている。また、ボス283cの中央には、後記するボルト300が螺合されるねじ穴283c1(ねじ溝の図示省略)が形成されている。
 なお、シリンダ本体282には、ボス283a、283b、283cと逆側(右側)に、ボス283a、283bに対応する位置にボス285bが形成され(基端側のボスは不図示)、ボス283cに対応する位置にボス285c(図15参照)が形成されている。例えば、ボス283a、283bに対応するボス285b(一方は不図示)がポート用として使用される。
 また、モータシリンダ装置16Dにおいて、駆動力伝達部73のハウジング172には、左側部にボルト280(図13参照)、右側部にボルト282(図15参照)、底部にボルト284(図15参照)がそれぞれ突設されている。また、ボルト280の基端部は、ゴムブッシュ280aを介してハウジング172に取り付けられている。なお、図示していないが、ボルト282、284についても、同様にゴムブッシュを介してハウジング172に取り付けられている。また、ボルト280、282、284は、軸方向(中心軸CL)に直交する面上に位置するように構成されている。また、ゴムブッシュ280aは、振動や衝撃を吸収し得るゴム製の略円筒形状の緩衝部材である(後記するゴムブッシュ298、299についても同様)。
 モータシリンダ装置16Dは、取付用ブラケット290の固定部291、292を介して、図示手前側に設けられたサイドフレーム1(図12参照)にボルト286、288を介して締結される。なお、モータシリンダ装置16Dと取付用ブラケット290との取付方法については後記する。
 図14はモータシリンダ装置を車体に取り付けるためのブラケット単体を示す斜視図を示し、(a)は斜め前方から見たとき、(b)は上方から見たとき、(c)は軸方向から見たときである。モータシリンダ装置16Dは、ひとつの取付用ブラケット290を介して、サイドフレーム1(図12参照)に取り付けられるものである。
 図14(a)に示すように、取付用ブラケット290は、鋼製の板材などで形成され、モータシリンダ装置16D(図13参照)を左右方向から挟んで支持するための側板293、294と、側板293、294の両下辺に連接されモータシリンダ装置16Dの中間部(ハウジング172の下部、図16参照)を下方から支持する略水平且つ略矩形状の底板295と、底板295に連接され略鉛直方向に沿う背板296と、側板294に連接されモータシリンダ装置16Dの先部(シリンダ本体282の左側部、図16参照)を支持する延長板297と、を備えている。
 側板293は、底板295の右縁部の後側から鉛直方向上方に向けて起立するとともに、その上端縁部にU字形状を呈する切欠き293aが形成されている。この切欠き293aの高さ位置は、ハウジング172の左側部に設けられたボルト282(図15参照)に対応するように構成されている。
 側板294は、底板295の左縁部の後側から鉛直方向上方に向けて起立するとともに、右側の板部293aよりも上方に向けて長く形成されている。また、側板294には、前記切欠き293aと左右方向において対向する位置に上下方向に延びる長孔294aが形成されている。なお、長孔294aの下端部分は、切欠き293aと対応する高さ位置に設定されている。また、側板294には、長孔294aよりも上方に肉抜き用の孔294bが形成されている。また、側板294の上端には、前記した固定部292が連接され、固定部292が、略左側方へ延びるように構成されている。
 また、側板294には、後方に延びる延長板297が溶接などで固定されている。なお、本実施形態では、延長板297が側板294などと別体で構成されているが、延長板297が側板294などと一体に構成されていてもよい。また、延長板297の先端には、長孔297aが形成されている。この長孔297aは、前側の縁部が直線状に形成され、後側の縁部が湾曲状に形成されている。
 背板296は、略円形状を呈し、底板295の前縁部から鉛直方向上方に向けて起立するように構成されている。また背板296には、その中央部に大径の開口296aが貫通して形成されている。この開口296aは、駆動力伝達部73のカバー173(図13参照)の円柱形状の突出部173aよりも大径に形成されている。また、背板296の上端には、前記した固定部291が連接され、固定部291が略前方へ延びるように構成されている。
 図14(b)に示すように、底板295には、側板293、294の間の左右方向(車幅方向)の中央部に、ボルト282(図15参照)が挿通される貫通孔295aが形成されている。また、底板295には、貫通孔295aよりも前方に、肉抜き用の孔295bが形成されている。
 延長板297は、前後方向に延びて側板294に固定される基端部297bと、基端部297bに対して右側(側板293側)に傾斜して延びる中間部297cと、前後方向に延びる先端部297dとを有し、クランク形状を呈するように構成されている。この先端部297dには、前記した長孔297aが形成されている。
 また、固定部291の先端には、締結用のボルト286(図13参照)が挿通されるボルト挿通孔291aが形成されている。固定部292の先端には、締結用のボルト288(図13参照)が挿通されるU字形状の切欠き292aが形成されている。
 図14(c)に示すように、延長板297は、基端部297bから先端部297dにかけて鉛直方向下方へ傾斜するように構成されている。また、延長板297の先端部297dは、側板294よりも内側(右側)に位置している。
 図13に戻って、前記のようにして構成された取付用ブラケット290にモータシリンダ装置16Dをマウントする際には、駆動力伝達部73のカバー173の突出部173aを背板296の開口296aに挿通し、モータシリンダ装置16Dの駆動力伝達部73の下部が、下方に底板295、左側方に側板294、右側方に側板293が位置するように載置する。このとき、モータシリンダ装置16D側のボルト280を側板294の長孔294aに挿通し、ボルト282(図15参照)を側板293の切欠き293aに挿通し、ボルト284(図15参照)を底板295の貫通孔295aに挿通する。そして、ボルト280にナット281を螺合させ、ボルト282にナット283を螺合させ、ボルト284にナット285を螺合させることで、駆動力伝達部73の左右両部および下部が取付用ブラケット290に対して弾性支持される。
 また、延長板297の先端部297dの左右両側を一対のゴムブッシュ298、299で挟んだ状態で、ボルト300を、ゴムブッシュ298の孔298a、長孔297a、ゴムブッシュ299の孔299aに挿通し、シリンダ本体282のボス283cに形成されたねじ穴283c1に螺合する。これにより、延長板297は、シリンダ本体282に弾性支持される。
 図15はモータシリンダ装置へのブラケットの組付状態を軸方向から見たときの図、図16はモータシリンダ装置へのブラケットの組付状態を示す斜視図である。
 図15に示すように、モータシリンダ装置16Dは、駆動力伝達部73の左右側部が側板293、294で挟まれるとともに、下部が底板295で弾性支持される。図16に示すように、モータシリンダ装置16Dは、シリンダ機構76のシリンダ本体282の左側部が延長板297によって弾性支持される。このように、取付用ブラケット290は、モータシリンダ装置16Dを、4点で弾性支持するように構成されている。
 以上説明した別の実施形態によれば、シリンダ機構76に未加工のボス283a、283b、283c、285b、285c(一部不図示)が予め複数方向(2方向)に形成され、一のボス283cがモータシリンダ装置16Dをサイドフレーム(車体)1に取り付けるマウント用として形成され、他のボス285b(もう一方は不図示)がシリンダ機構76(第1液圧室98a、第2液圧室98b)と連通するポート用として形成されているので、新たにマウント部をシリンダ機構76に形成する必要がない。しかも、ボス283c側(捨てボス側)にボルト締結用のねじ穴283c1を形成するだけで済むので、マウント部の加工が容易である。
 また、別の実施形態によれば、図15および図16に示すように、モータシリンダ装置16Dを取付用ブラケット290を介して4点支持とすることにより、電動モータ72が駆動したときに発生する振動、例えば、ハウジング172側の3点支持の部分を中心とした回転振動W(図16参照)を抑制することができる。その結果、振動発生によって生じる騒音を抑えることが可能になる。
 また、別の実施形態によれば、ボス283cのボス径D1を、ボス283a、283bのボス径D2よりも大径にしたことにより、電動モータ72が駆動したときに発生する振動をより効果的に抑制することができ、その結果、振動に伴って発生する騒音をより効果的に抑制することが可能になる。
 なお、別の実施形態では、駆動力伝達部73のハウジング172側の3点支持について、ボルト280、282、284およびナット281、283、285などを用いた場合を例に挙げて説明したが、図6に示すモータシリンダ装置16の場合と同様な3点支持の構成であってもよい。
 また、別の実施形態では、モータシリンダ装置16Dを取り付ける向きを前後逆にした場合を例に挙げて説明したが、図1に示すモータシリンダ装置16と同様な配置でサイドフレーム(車体)1に取り付ける構成であってもよい。この場合には、取付用ブラケット290の右側の側板293と、左側の側板294、延長部296とを左右を入れ替えるとともに、延長板297の支持部をボス285c(図15参照)とし、ボス283a、283bにポートとする構成によって対応できる。
 また、別の実施形態では、延長板297を片側に設けた場合を例に挙げて説明したが、左右両側に設ける構成であってもよい。
 1   車体
 10  車両用ブレーキシステム
 14  入力装置
 16、16A、16B、16C モータシリンダ装置(電動ブレーキアクチュエータ)
 18  VSA装置
 72  電動モータ
 73  駆動力伝達部
 74  電動アクチュエータ
 76  シリンダ機構
 83a、83b ボス(マウント用)
 85a、85b ボス(ポート用)
 88a 第1スレーブピストン(ピストン)
 88b 第2スレーブピストン(ピストン)
 V   車両

Claims (5)

  1.  操作者のブレーキ操作が入力される入力装置と、少なくとも前記ブレーキ操作に応じた電気信号に基づいてブレーキ液圧を発生させる電動ブレーキアクチュエータと、を備えた車両用ブレーキシステムにおける前記電動ブレーキアクチュエータの車体取付構造であって、
     前記電動ブレーキアクチュエータは、前記電気信号に基づいて駆動力を発生させるアクチュエータ機構と、前記アクチュエータ機構から伝達される駆動力によりピストンを軸方向に移動させることでブレーキ液に圧力を付与するシリンダ機構とを有し、
     前記シリンダ機構には、未加工のボスが予め複数形成され、
     一の前記ボスは前記電動ブレーキアクチュエータを車体に取り付けるマウント用として形成され、他の前記ボスは前記シリンダ機構と連通するポート用として形成されていることを特徴とする電動ブレーキアクチュエータの車体取付構造。
  2.  前記ポート加工用のボスは、車幅方向の両側に形成されていることを特徴とする請求の範囲第1項に記載の電動ブレーキアクチュエータの車体取付構造。
  3.  前記マウント用のボスは、車幅方向の外側に形成され、
     前記ポート用のボスは、車幅方向の内側に形成されていることを特徴とする請求の範囲第2項に記載の電動ブレーキアクチュエータの車体取付構造。
  4.  前記ポート加工用のボスは、鉛直方向の上方および下方に向けて形成されていることを特徴とする請求の範囲第1項に記載の電動ブレーキアクチュエータの車体取付構造。
  5.  前記ポート用のボスには、ブレーキ液が入力される入力ポートと、ブレーキ液が出力される出力ポートとが、同一のボスに形成されていることを特徴とする請求の範囲第1項に記載の電動ブレーキアクチュエータの車体取付構造。
PCT/JP2011/076583 2010-11-17 2011-11-17 電動ブレーキアクチュエータの車体取付構造 WO2012067207A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11842290.6A EP2641798B1 (en) 2010-11-17 2011-11-17 Vehicle-body attachment structure for electric brake actuator
JP2012544311A JP5711760B2 (ja) 2010-11-17 2011-11-17 電動ブレーキアクチュエータの車体取付構造
US13/885,067 US9551363B2 (en) 2010-11-17 2011-11-17 Vehicle-body attachment structure for electric brake actuator
CN201180054718.3A CN103209874B (zh) 2010-11-17 2011-11-17 电动制动执行器的车身安装结构

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010257358 2010-11-17
JP2010-257358 2010-11-17

Publications (1)

Publication Number Publication Date
WO2012067207A1 true WO2012067207A1 (ja) 2012-05-24

Family

ID=46084128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076583 WO2012067207A1 (ja) 2010-11-17 2011-11-17 電動ブレーキアクチュエータの車体取付構造

Country Status (5)

Country Link
US (1) US9551363B2 (ja)
EP (1) EP2641798B1 (ja)
JP (1) JP5711760B2 (ja)
CN (1) CN103209874B (ja)
WO (1) WO2012067207A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019530612A (ja) * 2016-10-11 2019-10-24 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト 電気油圧式のブレーキ設備を動作させる方法及びブレーキ設備
JP2020050176A (ja) * 2018-09-27 2020-04-02 本田技研工業株式会社 車体前部構造

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103153732B (zh) * 2010-10-04 2014-06-25 本田技研工业株式会社 从动液压缸
US9290170B2 (en) * 2010-11-17 2016-03-22 Honda Motor Co., Ltd. Vehicle-body attachment structure for electric brake actuator
JP5953635B2 (ja) * 2013-12-12 2016-07-20 日信工業株式会社 液圧発生装置
JP6345087B2 (ja) * 2014-11-14 2018-06-20 Kyb−Ys株式会社 機器取付構造
KR102519634B1 (ko) * 2016-04-01 2023-04-07 에이치엘만도 주식회사 3점 지지 마운팅 블록, 이를 이용한 차량용 브레이크 유닛 장착구조
US10479422B2 (en) * 2016-12-22 2019-11-19 Polaris Industries Inc. Side-by-side vehicle
JP7092085B2 (ja) * 2019-04-03 2022-06-28 トヨタ自動車株式会社 車両用ブレーキ装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55174065U (ja) * 1979-06-01 1980-12-13
JPS58183341A (ja) * 1982-04-22 1983-10-26 Sumitomo Electric Ind Ltd マスタシリンダと液圧調整弁の連結構造
JPS5920758A (ja) * 1982-07-28 1984-02-02 Nissin Kogyo Kk マスタシリンダ
JPS6340266U (ja) * 1986-09-03 1988-03-16
JPH06183330A (ja) * 1992-12-17 1994-07-05 Nippon Seiko Kk 電動アシスト式ブレーキ装置
JPH0654926U (ja) * 1993-01-11 1994-07-26 埼玉機器株式会社 センタバルブ形マスタシリンダ
JP2003062642A (ja) * 2001-08-24 2003-03-05 Aisin Seiki Co Ltd マスタシリンダボディ及びマスタシリンダボディの成形金型

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE419178A (ja) * 1935-12-28
JPS5917724Y2 (ja) * 1980-05-16 1984-05-23 日信工業株式会社 自動車のマスタシリンダ取付装置
US4653815A (en) 1985-10-21 1987-03-31 General Motors Corporation Actuating mechanism in a vehicle wheel brake and anti-lock brake control system
US5236257A (en) 1990-03-20 1993-08-17 Toyota Jidosha Kabushiki Kaisha Brake pressure generator having means for controlling pressure independent of operation of brake operating member
DE4431250A1 (de) 1994-09-02 1996-03-07 Bosch Gmbh Robert Blockierschutzeinrichtung für eine hydraulische Fahrzeugbremsanlage
US6026643A (en) * 1997-12-16 2000-02-22 Itt Manufacturing Enterprises, Inc. Master cylinder
US6554459B2 (en) * 2001-03-28 2003-04-29 Lowel-Light Manufacturing, Inc. Support bracket for light stand
US7063393B2 (en) 2001-08-22 2006-06-20 Advics Co., Ltd. Electronic brake system without pump unit
CN100503328C (zh) 2006-05-10 2009-06-24 比亚迪股份有限公司 一种电液制动系统
JP4999416B2 (ja) * 2006-10-02 2012-08-15 本田技研工業株式会社 ブレーキ装置
JP4792416B2 (ja) 2007-03-12 2011-10-12 本田技研工業株式会社 ブレーキ装置
JP2010023594A (ja) 2008-07-16 2010-02-04 Nissan Motor Co Ltd 電動倍力装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55174065U (ja) * 1979-06-01 1980-12-13
JPS58183341A (ja) * 1982-04-22 1983-10-26 Sumitomo Electric Ind Ltd マスタシリンダと液圧調整弁の連結構造
JPS5920758A (ja) * 1982-07-28 1984-02-02 Nissin Kogyo Kk マスタシリンダ
JPS6340266U (ja) * 1986-09-03 1988-03-16
JPH06183330A (ja) * 1992-12-17 1994-07-05 Nippon Seiko Kk 電動アシスト式ブレーキ装置
JPH0654926U (ja) * 1993-01-11 1994-07-26 埼玉機器株式会社 センタバルブ形マスタシリンダ
JP2003062642A (ja) * 2001-08-24 2003-03-05 Aisin Seiki Co Ltd マスタシリンダボディ及びマスタシリンダボディの成形金型

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2641798A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019530612A (ja) * 2016-10-11 2019-10-24 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト 電気油圧式のブレーキ設備を動作させる方法及びブレーキ設備
JP7000441B2 (ja) 2016-10-11 2022-02-10 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト 電気油圧式のブレーキ設備を動作させる方法及びブレーキ設備
JP2020050176A (ja) * 2018-09-27 2020-04-02 本田技研工業株式会社 車体前部構造
JP7004630B2 (ja) 2018-09-27 2022-01-21 本田技研工業株式会社 車体前部構造

Also Published As

Publication number Publication date
US9551363B2 (en) 2017-01-24
CN103209874B (zh) 2015-08-26
CN103209874A (zh) 2013-07-17
JPWO2012067207A1 (ja) 2014-05-19
EP2641798A1 (en) 2013-09-25
EP2641798B1 (en) 2015-09-16
EP2641798A4 (en) 2014-04-30
US20130291533A1 (en) 2013-11-07
JP5711760B2 (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5711760B2 (ja) 電動ブレーキアクチュエータの車体取付構造
US9302664B2 (en) Vehicle brake system
JP5695079B2 (ja) 電動ブレーキアクチュエータ及び車両用ブレーキシステム
WO2012067004A1 (ja) 車両用ブレーキシステム
WO2012067206A1 (ja) 電動ブレーキアクチュエータの車体取付構造
JP5537482B2 (ja) 電動ブレーキ装置
JP5149953B2 (ja) 車両用ブレーキシステムの入力装置
JP5193270B2 (ja) 電動ブレーキアクチュエータの車体取付構造
JP5200092B2 (ja) 車両用ブレーキシステム及びその入力装置
JP2012214090A (ja) 電動ブレーキ装置
JP5364077B2 (ja) 車両用ブレーキシステムの入力装置
JP5726699B2 (ja) 電動ブレーキ装置
JP5337133B2 (ja) 車両用ブレーキシステム
JP5466661B2 (ja) 電動ブレーキ装置
JP5646965B2 (ja) 車両用構造物搭載室の配置構造
JP5193267B2 (ja) 電動ブレーキアクチュエータの支持構造及び電動ブレーキアクチュエータ用固定ブラケット
JP5364076B2 (ja) 車両用ブレーキシステムの入力装置
JP5193268B2 (ja) 電動ブレーキアクチュエータの車体取付構造
JP5297439B2 (ja) 電動ブレーキアクチュエータの配管支持構造
JP5193269B2 (ja) 電動ブレーキアクチュエータの変位抑制構造
JP5276646B2 (ja) 車両用ブレーキシステムの入力装置
JP5537391B2 (ja) 車両用ブレーキシステム及びその入力装置
JP5427197B2 (ja) 車両用制動力発生装置
JP2012214089A (ja) 電動ブレーキ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842290

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012544311

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011842290

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13885067

Country of ref document: US