WO2012066941A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2012066941A1
WO2012066941A1 PCT/JP2011/075434 JP2011075434W WO2012066941A1 WO 2012066941 A1 WO2012066941 A1 WO 2012066941A1 JP 2011075434 W JP2011075434 W JP 2011075434W WO 2012066941 A1 WO2012066941 A1 WO 2012066941A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
semiconductor layer
forming
layer
reaction chamber
Prior art date
Application number
PCT/JP2011/075434
Other languages
English (en)
French (fr)
Inventor
泰樹 谷村
善之 奈須野
くり代 島田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN2011800551174A priority Critical patent/CN103210500A/zh
Priority to US13/883,655 priority patent/US20130224937A1/en
Publication of WO2012066941A1 publication Critical patent/WO2012066941A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 04-266067 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2009-004702 (Patent Document 2) disclose a method for manufacturing a photoelectric conversion device.
  • This method is an example of a method for manufacturing a semiconductor device in which a conductive layer (n-type layer or p-type layer) is deposited so as to cover a semiconductor layer (i-type layer).
  • the reaction chamber is evacuated to a high vacuum so that the degree of vacuum in the reaction chamber is 10 ⁇ 6 Torr or less or about 0.001 Pa. Thereafter, a predetermined impurity gas is introduced into the reaction chamber, and a conductive type layer is deposited on the semiconductor layer.
  • Patent Document 3 discloses a method for manufacturing a thin film semiconductor device. This method is an example of a method for manufacturing a semiconductor device in which a conductive type layer (n + a-Si layer) is deposited so as to cover a semiconductor layer (amorphous silicon layer). Patent Document 3 does not specifically describe a specific method for forming an n + a-Si layer after forming an amorphous silicon layer.
  • the reaction chamber is evacuated to high vacuum after the semiconductor layer is formed, and the conductive layer is formed after the reaction chamber is replaced with gas. In this method, energy and time for temporarily evacuating the reaction chamber once are required, and productivity is reduced.
  • the present invention relates to a method for manufacturing a semiconductor device in which a conductive type layer is deposited so as to cover a semiconductor layer using a plasma CVD (Chemical Vapor Deposition) method, and the conductive type layer is formed after the semiconductor layer is formed. It is an object of the present invention to provide a method for manufacturing a semiconductor device capable of improving productivity in the period up to.
  • a plasma CVD Chemical Vapor Deposition
  • a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device in which a conductive type layer is deposited so as to cover a semiconductor layer using a plasma CVD method. Is introduced into the reaction chamber, the semiconductor layer forming gas is plasma-discharged to form the semiconductor layer on a predetermined layer, and an impurity gas is introduced into the reaction chamber in addition to the semiconductor layer forming gas. Forming a first conductivity type layer of the first conductivity type so as to cover the semiconductor layer by performing plasma discharge of the first conductivity type layer formation gas containing the semiconductor layer forming gas and the impurity gas.
  • the pressure in the reaction chamber is not reduced to the ultimate vacuum even after the plasma discharge treatment for forming the semiconductor layer is completed.
  • a method for manufacturing a semiconductor device according to a second aspect of the present invention is the method for manufacturing a semiconductor device according to the first aspect, wherein the plasma for forming the semiconductor layer is formed in the step of forming the first conductivity type layer.
  • the impurity gas is introduced into the reaction chamber in a state where the introduction of the semiconductor layer forming gas into the reaction chamber is not stopped even after the discharge treatment is completed.
  • a method for manufacturing a semiconductor device is the method for manufacturing a semiconductor device according to the first or second aspect, wherein the first conductivity type layer is a lower side of the first conductivity type.
  • Two impurity gases are introduced into the reaction chamber, and the first lower conductivity type layer forming gas including the semiconductor layer forming gas, the first impurity gas, and the second impurity gas is plasma-discharged to thereby form the lower first gas.
  • the composition set value of the gas supplied to the reaction chamber is determined from the composition of the lower first conductivity type layer forming gas in a state where the pressure in the reaction chamber is not reduced to the ultimate vacuum even after the discharge treatment is finished.
  • the composition changes to the composition of the second impurity gas.
  • a method for manufacturing a semiconductor device is the method for manufacturing a semiconductor device according to the first or second aspect, wherein the first conductivity type layer is a lower side of the first conductivity type.
  • the step of forming the first conductivity type layer includes a first conductivity type layer and an upper first conductivity type layer of the first conductivity type, wherein the impurity gas is introduced into the reaction chamber in addition to the semiconductor layer forming gas.
  • Introducing the lower first conductive type layer so as to cover the semiconductor layer by introducing a plasma discharge of the lower first conductive type layer forming gas containing the semiconductor layer forming gas and the impurity gas.
  • the introduction amount ratio of the impurity gas to the introduction amount of the semiconductor layer formation gas is changed, and the impurity gas and the semiconductor layer formation gas with the introduction amount ratio changed are changed.
  • Including upper first conductivity type layer type Forming the upper first conductivity type layer so as to cover the lower first conductivity type layer by plasma discharge of a gas, and forming the upper first conductivity type layer.
  • the composition setting value of the gas supplied to the reaction chamber is The composition of the lower first conductivity type layer forming gas is changed to the composition of the upper first conductivity type layer forming gas.
  • a method for manufacturing a semiconductor device is the method for manufacturing a semiconductor device according to any one of the first to fourth aspects, wherein the semiconductor layer includes a lower semiconductor layer and an upper semiconductor layer.
  • the semiconductor layer forming gas includes a first semiconductor layer forming gas for forming the lower semiconductor layer and a second semiconductor layer forming gas for forming the upper semiconductor layer, and the semiconductor
  • the step of forming a layer includes the step of forming the lower semiconductor layer on the predetermined layer by introducing the first semiconductor layer forming gas into the reaction chamber and causing plasma discharge of the first semiconductor layer forming gas.
  • the second semiconductor layer forming gas is introduced into the reaction chamber, and the upper semiconductor layer forming gas containing the first semiconductor layer forming gas and the second semiconductor layer forming gas is introduced.
  • Forming the upper semiconductor layer so as to cover the lower semiconductor layer by plasma discharge, and in the step of forming the upper semiconductor layer, plasma discharge for forming the lower semiconductor layer The composition set value of the gas supplied to the reaction chamber is changed from the composition of the first semiconductor layer forming gas to the upper semiconductor layer in a state where the pressure in the reaction chamber is not reduced to the ultimate vacuum even after the processing is completed. Transition to the composition of the forming gas.
  • a semiconductor device manufacturing method is the semiconductor device manufacturing method according to any one of the first to fourth aspects, wherein the semiconductor layer includes a lower semiconductor layer and an upper semiconductor layer.
  • the step of forming the semiconductor layer includes introducing the semiconductor layer forming gas into the reaction chamber for another predetermined time, and plasma-discharging the semiconductor layer forming gas to form the lower layer on the predetermined layer.
  • the composition setting value of the gas supplied to the reaction chamber is determined from the composition of the semiconductor layer forming gas forming the lower semiconductor layer. It changes to the composition of the semiconductor layer forming gas forming the upper semiconductor layer.
  • a method for manufacturing a semiconductor device is the method for manufacturing a semiconductor device according to any one of the first to fourth aspects, wherein the semiconductor layer includes a lower semiconductor layer and an upper semiconductor layer.
  • the semiconductor layer forming gas includes a semiconductor material gas and a dilution gas, and the step of forming the semiconductor layer introduces the semiconductor layer forming gas into the reaction chamber for another predetermined time, Forming the lower semiconductor layer on the predetermined layer by plasma discharge of the forming gas; and introducing the semiconductor material gas and the dilution gas of the semiconductor layer forming gas after forming the lower semiconductor layer
  • a step of forming the upper semiconductor layer so as to cover the lower semiconductor layer by plasma discharge of the semiconductor layer forming gas in which the quantitative ratio is changed and the introduced quantitative ratio is changed;
  • the pressure in the reaction chamber is not reduced to the ultimate vacuum even after the plasma discharge process for forming the lower semiconductor layer is completed.
  • the composition setting value of the gas supplied to the gas shifts from the composition of the semiconductor layer
  • a method for manufacturing a semiconductor device is the method for manufacturing a semiconductor device according to any one of the first to seventh aspects, wherein after the formation of the semiconductor layer, the semiconductor layer forming gas is added. The amount introduced into the reaction chamber is reduced to a predetermined flow rate.
  • a method for manufacturing a semiconductor device according to a ninth aspect of the present invention is the method for manufacturing a semiconductor device according to any one of the first to eighth aspects, wherein another impurity gas is supplied onto another predetermined layer.
  • the method further includes a step of forming a second conductivity type layer of the second conductivity type on the other predetermined layer.
  • a method for manufacturing a semiconductor device according to a tenth aspect of the present invention is the method for manufacturing a semiconductor device according to the ninth aspect, wherein the other impurity gas is introduced into the reaction chamber, and the second conductivity type layer is It is formed in the reaction chamber.
  • a method for manufacturing a semiconductor device according to an eleventh aspect of the present invention is the method for manufacturing a semiconductor device according to any one of the first to tenth aspects, wherein the semiconductor device is a photoelectric conversion device.
  • a semiconductor device manufacturing method is the semiconductor device manufacturing method according to any of the first to eighth aspects, wherein the semiconductor device is a switching semiconductor device having a thin film transistor.
  • the meaning of the term “semiconductor layer” in the present invention is as follows.
  • the “semiconductor layer” in the present invention includes, for example, an intrinsic semiconductor layer (so-called i-type layer) and a substantial intrinsic semiconductor layer in a photoelectric conversion device (see Embodiment 1 described later).
  • the intrinsic semiconductor layer here is an intrinsic semiconductor layer that is completely non-doped, and the substantial intrinsic semiconductor layer here is a weak p-type semiconductor layer or a weak n-type semiconductor containing a trace amount of impurities. It is a layer.
  • both the semiconductor layer and the conductive layer include an amorphous silicon-based layer and a microcrystalline silicon-based layer.
  • Examples of the amorphous silicon-based layer here include a-Si: H, a-SiC: H, a-SiGe: H, a-SiN: H, and the like. Are, for example, ⁇ c-Si: H, ⁇ c-SiGe: H, and the like.
  • the “semiconductor layer” in the present invention includes, for example, an amorphous silicon-based layer (see Embodiment 2 described later) and a substantially amorphous silicon-based layer in an inverted staggered transistor.
  • the amorphous silicon-based layer here is an amorphous silicon-based layer that is completely non-doped, and the substantially amorphous silicon-based layer here is a weak p-type non-layer containing a small amount of impurities.
  • the “semiconductor layer” in the present invention is an amorphous n-type silicon layer (so-called n + a-Si layer) in which an amorphous silicon layer is sufficiently doped with an n-type impurity or a p-type impurity, or an amorphous p-type.
  • a type silicon layer (a so-called p + a-Si layer) is not included.
  • a method of manufacturing a semiconductor device in which a conductive type layer is deposited so as to cover a semiconductor layer by using a plasma CVD method, and after the semiconductor layer is formed, the conductive type layer is formed. It is possible to obtain a method for manufacturing a semiconductor device capable of improving the productivity in between.
  • FIG. 3 is a cross-sectional view illustrating a photoelectric conversion device manufactured by the method for manufacturing a photoelectric conversion device in Embodiment 1.
  • FIG. It is a figure which shows typically the plasma CVD apparatus used for the manufacturing method of the photoelectric conversion apparatus in Embodiment 1.
  • FIG. 5 is a diagram showing each step of the method for manufacturing the photoelectric conversion device in Embodiment 1.
  • FIG. 6 is a timing chart showing the operating state of each element in a part (steps S4 to S7) of each step of the manufacturing method of the photoelectric conversion device in the first embodiment.
  • FIG. 6 is a cross-sectional view illustrating an inverted staggered thin film transistor manufactured by a method of manufacturing an inverted staggered thin film transistor in Embodiment 2.
  • 11 is a diagram illustrating each step of a manufacturing method of an inverted staggered thin film transistor in Embodiment 2.
  • Embodiment 1 This embodiment will be described based on a method for manufacturing a photoelectric conversion device having a pin junction as an example of a method for manufacturing a semiconductor device.
  • a conductive layer n-type layer
  • i-type layer a semiconductor layer
  • the present invention can also be applied to a method for manufacturing an inverted staggered thin film transistor as another example of a method for manufacturing a semiconductor device.
  • a manufacturing method of the inverted staggered thin film transistor will be described in detail in a second embodiment described later.
  • Photoelectric conversion device 100 The photoelectric conversion device 100 will be described with reference to FIG. Photoelectric conversion device 100 is manufactured by using the method for manufacturing a photoelectric conversion device in the present embodiment.
  • the photoelectric conversion device 100 includes a first photoelectric conversion layer 100A having one pin junction and a second photoelectric conversion layer 100B having another pin junction.
  • the photoelectric conversion device 100 includes a transparent substrate 1, a transparent conductive film 2, a p-type layer 3, an i-type layer 4, an n-type layer 5, a p-type layer 6, an i-type layer 7, an n-type layer 8, and a back transparent conductive film 9. , And the back surface metal electrode 10 are sequentially laminated.
  • the photoelectric conversion device 100 light is incident from the transparent substrate 1 side.
  • one pin junction (first photoelectric conversion layer 100A) is formed by the p-type layer 3, the i-type layer 4, and the n-type layer 5.
  • the p-type layer 6, the i-type layer 7, and the n-type layer 8 form another pin junction (second photoelectric conversion layer 100B).
  • the transparent substrate 1 and the transparent conductive film 2 have translucency.
  • a glass substrate having heat resistance and translucency in a plasma CVD forming process a resin substrate such as polyimide, and the like can be used.
  • the transparent conductive film 2 is, for example, SnO 2 : F (FTO) or ZnO: Al.
  • the p-type layer 3 and the p-type layer 6 are doped with p-type impurity atoms such as boron or aluminum.
  • the p-type layer 3 is, for example, a-Si: C: B: H.
  • the p-type layer 6 is, for example, ⁇ c-Si: B: H.
  • the i-type layer 4 and i-type layer 7 may be intrinsic semiconductor layers that are completely non-doped, and are substantially intrinsic, such as weak p-type semiconductor layers or weak n-type semiconductor layers containing a small amount of impurities.
  • a simple semiconductor layer may be used.
  • the i-type layer 4 in the present embodiment is configured by sequentially stacking a p-side buffer layer 4a, a bulk layer 4b, and an n-side buffer layer 4c.
  • the bulk layer 4b is, for example, a-Si: H (hydrogenated amorphous silicon layer) or a-SiGe: H (hydrogenated amorphous silicon germanium layer).
  • the i-type layer 7 in the present embodiment is configured by sequentially stacking a p-side buffer layer 7a, a bulk layer 7b, and an n-side buffer layer 7c.
  • the bulk layer 7b is, for example, ⁇ c-Si: H (hydrogenated microcrystalline silicon layer) or ⁇ c-SiGe: H (hydrogenated microcrystalline silicon germanium layer).
  • the p-side buffer layers 4a and 7a and the n-side buffer layers 4c and 7c may be formed as necessary.
  • the n-type layer 5 and the n-type layer 8 are doped with n-type impurity atoms such as phosphorus.
  • the n-type layer 5 in the present embodiment is configured by sequentially laminating a substrate-side n-type layer 5a and a back-side n-type layer 5b.
  • the substrate side n-type layer 5a is, for example, a-Si: P: H.
  • the back side n-type layer 5b is, for example, ⁇ c-Si: P: H.
  • the n-type layer 8 may be configured similarly to the n-type layer 5.
  • the plasma CVD apparatus 200 includes a reaction chamber 70, a cathode electrode 71, a matching unit 73, a high frequency power source 75, an anode electrode 81, a pressure adjustment valve 83, an exhaust valve 85, a vacuum pump 87, a gas introduction system 90, and a gas introduction unit 92. It has.
  • the reaction chamber 70 is composed of a sealable casing.
  • the transparent substrate 1 carried into the reaction chamber 70 can be formed with a p-type layer, an i-type layer, and an n-type layer in the reaction chamber 70.
  • the cathode electrode 71 and the anode electrode 81 are respectively installed in the reaction chamber 70 and have a parallel plate type electrode structure.
  • the distance between the cathode electrode 71 and the anode electrode 81 is determined according to desired processing conditions, and is, for example, 1 mm to 40 mm.
  • the matching unit 73 connected to the cathode electrode 71 and the high-frequency power source 75 connected to the matching unit 73 are installed outside the reaction chamber 70, respectively.
  • the high frequency power source 75 supplies power to the cathode electrode 71 through the matching unit 73.
  • the matching unit 73 matches the impedance between the high-frequency power source 75 and the cathode electrode 71 and the anode electrode 81.
  • the high-frequency power source 75 outputs CW (continuous waveform) AC output or pulse-modulated (on / off control) AC power (RF power).
  • the high frequency power source 75 may switch and output these AC powers.
  • the frequency of the AC power output from the high frequency power supply 75 is, for example, 13.56 MHz.
  • the frequency of the AC power output from the high-frequency power source 75 may be from several kHz to the VHF band or the microwave band.
  • the anode electrode 81 is electrically grounded.
  • the transparent substrate 1 is placed on the anode electrode 81.
  • the transparent substrate 1 may be placed on the anode electrode 81 in a state where the transparent conductive film 2 (not shown in FIG. 2) is formed.
  • the transparent substrate 1 may be placed on the anode electrode 81 in a state where the transparent conductive film 2 and the p-type layer 3 are formed.
  • the transparent substrate 1 may be placed on the cathode electrode 71, but is preferably placed on the anode electrode 81 in order to reduce film quality degradation due to ion damage in the plasma.
  • the gas introduction system 90 disposed outside the reaction chamber 70 includes a valve 11 connected in sequence, a flow control device 13 for SiH 4 gas, and a valve 15, a valve 21 connected in sequence, and a flow control device 23 for H 2 gas.
  • the valve 25 the valve 31 connected in sequence, the flow rate control device 33 for PH 3 / H 2 gas, and the valve 35, the valve 41 connected in sequence, the flow rate control device 43 for B 2 H 6 / H 2 gas.
  • a valve 45 a valve 51 connected in sequence, a CH 4 gas flow control device 53, and a valve 55, a valve 61 connected in sequence, a GeH 4 / H 2 gas flow control device 63, and a valve 65 Is included.
  • the valves 11, 21, 31, 41, 51, 61 are connected to a gas introduction part 92 that communicates with the inside of the reaction chamber 70.
  • the valve 15 is connected to a cylinder (not shown) that supplies silane gas (SiH 4 gas).
  • Silane gas SiH 4 gas
  • SiH 4 gas is introduced into the reaction chamber 70 from the cylinder through the SiH 4 gas flow control device 13 and the gas introduction unit 92 by opening the valve 11 and the valve 15.
  • the valve 25 is connected to a cylinder (not shown) that supplies hydrogen gas (H 2 gas). Hydrogen gas (H 2 gas) is introduced into the reaction chamber 70 from the cylinder through the H 2 gas flow rate control device 23 and the gas introduction unit 92 by opening the valve 21 and the valve 25.
  • H 2 gas Hydrogen gas
  • the valve 35 is connected to a cylinder (not shown) that supplies phosphine gas (PH 3 / H 2 gas).
  • the phosphine gas (PH 3 / H 2 gas) is introduced from the cylinder into the reaction chamber 70 through the PH 3 / H 2 gas flow rate control device 33 and the gas introduction unit 92 by opening the valve 31 and the valve 35. .
  • the valve 45 is connected to a cylinder (not shown) that supplies diborane gas (B 2 H 6 / H 2 gas).
  • Diborane gas (B 2 H 6 / H 2 gas) is supplied from the cylinder to the reaction chamber 70 through the B 2 H 6 / H 2 gas flow rate control device 43 and the gas introduction unit 92 by opening the valve 41 and the valve 45. be introduced.
  • the valve 55 is connected to a cylinder (not shown) that supplies methane gas (CH 4 gas). Methane gas (CH 4 gas) is introduced from the cylinder into the reaction chamber 70 through the CH 4 gas flow control device 53 and the gas introduction unit 92 by opening the valve 51 and the valve 55.
  • CH 4 gas methane gas
  • the valve 65 is connected to a cylinder (not shown) that supplies GeH 4 / H 2 gas.
  • the GeH 4 / H 2 gas is introduced from the cylinder into the reaction chamber 70 through the GeH 4 / H 2 gas flow rate control device 63 and the gas introduction unit 92 by opening the valve 61 and the valve 65.
  • the pressure adjusting valve 83, the exhaust valve 85, and the vacuum pump 87, which are connected in order, are all installed outside the reaction chamber 70, and the pressure adjusting valve 83 is connected to the reaction chamber 70.
  • a vacuum pump 87 that can evacuate the gas in the reaction chamber 70 to a pressure of 10 ⁇ 6 Torr ( ⁇ 10 ⁇ 4 Pa) or less can be applied. Even if the vacuum pump 87 has a pumping capacity that makes the ultimate vacuum in the reaction chamber 70 10 ⁇ 3 Torr ( ⁇ 0.1 Pa) from the viewpoint of simplification of the apparatus, cost reduction, and throughput improvement. Good.
  • the capacity of the reaction chamber 70 increases.
  • a high-performance vacuum pump 87 can be used. It is also possible to use a simple vacuum pump 87 for low vacuum. In this case, simplification and cost reduction of the apparatus can be realized.
  • the simple vacuum pump 87 for low vacuum include a dry pump, a rotary pump, a mechanical booster pump, and the like. These may be used alone or in combination of two or more.
  • the volume of the reaction chamber 70 of the plasma CVD apparatus used in the present embodiment is about 1 m 3 , for example.
  • a vacuum pump 87 a mechanical booster pump and a rotary pump connected in series can be used.
  • a dry pump can be used.
  • the gas pressure in the reaction chamber 70 is set to a predetermined value by the pressure adjusting valve 83, the exhaust valve 85, and the vacuum pump 87 (details will be described later).
  • predetermined power is supplied to the cathode electrode 71 by the high frequency power source 75 and the matching unit 73.
  • Plasma is generated between the cathode electrode 71 and the anode electrode 81, and the gas supplied into the reaction chamber 70 is decomposed to form a p-type layer, an i-type layer, an n-type layer, or the like on the transparent substrate 1. (Details are described below).
  • Step S1 to step S14 the manufacturing method (step S1 to step S14) of the photoelectric conversion device 100 will be described in the following order. Steps S4 to S7 to be described later will be described with reference to the timing chart shown in FIG.
  • Step S1 Transparent substrate carry-in process
  • Step S2 Transparent conductive film formation process
  • the transparent substrate 1 is carried into the reaction chamber 70 in the plasma CVD apparatus 200 (step S1).
  • the transparent conductive film 2 is formed on the transparent substrate 1 (step S2).
  • the transparent conductive film 2 is formed on the transparent substrate 1 using a method such as CVD, sputtering, or vapor deposition in another apparatus (not shown), and then the transparent conductive film 2 is formed on the transparent substrate 1. May be carried into the reaction chamber 70.
  • Step S3 Gas replacement step
  • impurities introduced in step S2 and impurities mixed from outside when the transparent substrate 1 is carried in step S1 remain.
  • this impurity is taken into the p-type layer 3 formed in step S4 described later, the quality of the p-type layer 3 is degraded.
  • the inside of the reaction chamber 70 is replaced with a replacement gas (step S3).
  • hydrogen gas (H 2 gas) is introduced into the reaction chamber 70 as a replacement gas.
  • a predetermined pressure for example, 100 Pa to 1000 Pa
  • the introduction of hydrogen gas is stopped.
  • the introduction of hydrogen gas is performed, for example, for about 1 second to about 5 seconds.
  • the pressure adjusting valve 83 and the exhaust valve 85 are opened, and the hydrogen gas or the like in the reaction chamber 70 is exhausted by the vacuum pump 87 until the pressure reaches a predetermined pressure (for example, 1 Pa to 10 Pa).
  • the evacuation by the vacuum pump 87 is performed, for example, for about 30 seconds to about 60 seconds.
  • the introduction of hydrogen gas and the exhaust by the vacuum pump 87 may be repeated a plurality of times.
  • the pressure inside the reaction chamber 70 after introducing the hydrogen gas and the pressure inside the reaction chamber 70 after exhausting the hydrogen gas are set in advance.
  • hydrogen gas is introduced, exhaust from the reaction chamber 70 is stopped.
  • the pressure inside the reaction chamber 70 becomes equal to or higher than a preset pressure
  • the introduction of hydrogen gas is stopped.
  • the introduction of the hydrogen gas is stopped.
  • the pressure inside the reaction chamber 70 becomes equal to or lower than a preset pressure the exhaust of hydrogen gas is stopped.
  • the replacement gas is not limited to hydrogen gas, and silane gas (SiH 4 gas) used for forming an i-type layer 4 (step S6) described later may be used.
  • the gas (semiconductor layer forming gas) used for forming the i-type layer 4 can be used for forming the p-type layer 3, the i-type layer 4, and the n-type layer 5.
  • impurities are not mixed into the p-type layer 3 or the n-type layer 5 due to this gas.
  • an inert gas such as argon gas (Ar gas), neon gas (Ne gas), or xenon gas (Xe gas) may be used. Since a gas having a large atomic weight tends to remain in the reaction chamber 70 when the reaction chamber 70 is exhausted, it can be suitably used as a replacement gas.
  • the replacement gas may be a mixed gas composed of one or more gases (semiconductor layer forming gas) used for forming the i-type layer 4 (step S5) and one or more inert gases. .
  • Step S4 p-type layer forming step
  • the p-type layer 3 (second conductivity type layer) is formed so as to cover the transparent conductive film 2 (step S4).
  • FIG. 4 schematically shows a timing chart of each element in steps S4 to S7 (details of step S8 are not shown).
  • p-type layer forming impurity gas is introduced into reaction chamber 70.
  • the exhaust valve 85 is open (exhaust valve On), and the inside of the reaction chamber 70 is adjusted to a predetermined pressure by the pressure adjusting valve 83.
  • the PH 3 valve is closed (PH 3 valve Off), and phosphine gas (PH 3 gas) is not introduced into the reaction chamber 70.
  • the p-type layer forming impurity gas contains silane gas (SiH 4 gas), hydrogen gas (H 2 gas), and diborane gas (B 2 H 6 gas).
  • Silane gas (SiH 4 gas) by SiH 4 valve is opened (SiH 4 valves On), a predetermined flow rate (SiH 4 in FIG. 4 (p)) is introduced.
  • Hydrogen gas (H 2 gas) is also, (H 2 Valve On) by H 2 valve is opened, a predetermined flow rate (H 2 in FIG. 4 (p)) is introduced.
  • a predetermined flow rate of diborane gas (B 2 H 6 gas) is also introduced.
  • the flow rate of hydrogen gas (H 2 gas) with respect to silane gas (SiH 4 gas) is several times to several tens of times, for example.
  • the p-type layer forming impurity gas may contain methane gas (CH 4 gas) containing carbon atoms (not shown in FIG. 4) in order to reduce the amount of light absorption.
  • the pressure in the reaction chamber 70 is kept substantially constant by the pressure adjusting valve 83 in the state where the impurity gas for forming the p-type layer is introduced (set pressure P (p) in FIG. 4).
  • AC power is input to the cathode electrode 71 by the high frequency power source 75 and the matching unit 73 (RF power On).
  • Plasma is generated between the cathode electrode 71 and the anode electrode 81.
  • the impurity gas for forming the p-type layer is decomposed (dissociated) and diffused by plasma discharge, and the p-type layer 3 is formed so as to cover the transparent conductive film 2.
  • the application of AC power by the high-frequency power source 75 is stopped (RF power Off).
  • Step S5 Gas replacement step
  • a gas replacement step is performed by the same method as in step S3 described above.
  • impurities particularly impurities that determine the conductivity type of the p-type layer 3 are prevented from entering the i-type layer 4 formed in step S6.
  • SiH 4 valve Off introduction of silane gas (SiH 4 gas) into the reaction chamber 70 is stopped.
  • H 2 valve is closed (H 2 valve Off)
  • H 2 gas introduction of hydrogen gas (H 2 gas) into the reaction chamber 70 is stopped.
  • B 2 H 6 gas introduction of diborane gas (B 2 H 6 gas) into the reaction chamber 70 is also stopped.
  • the exhaust valve 85 is opened (exhaust valve On), and the pressure in the reaction chamber 70 is set to a predetermined pressure (set pressure P (0 in FIG. 4) by the vacuum pump 87. )
  • the reaction chamber 70 is evacuated until the pressure reaches 1 Pa to 10 Pa).
  • the exhaust valve 85 is closed (exhaust valve Off), and hydrogen gas (H 2 gas) is introduced (H 2 valve On). Hydrogen gas (H 2 gas) is introduced until the pressure in the reaction chamber 70 reaches a predetermined pressure (set pressure P (F) in FIG. 4). Thereafter, the introduction of hydrogen gas (H 2 gas) is stopped (H 2 valve Off), and the exhaust valve 85 is opened again (exhaust valve On).
  • the vacuum pump 87 evacuates until the pressure in the reaction chamber 70 reaches a predetermined pressure (set pressure P (0) in FIG. 4). The introduction of the hydrogen gas and the exhaust by the vacuum pump 87 may be repeated a plurality of times. Thus, the gas replacement process is completed.
  • the i-type layer 4 is formed (step S6).
  • the i-type layer 4 may be an intrinsic semiconductor layer that is completely non-doped, and is a substantially intrinsic semiconductor layer such as a weak p-type semiconductor layer or a weak n-type semiconductor layer containing a small amount of impurities. Also good.
  • step S6 in the present embodiment first, the p-side buffer layer 4a is formed in the i-type layer 4 (step S6a).
  • silane gas (SiH 4 gas) and hydrogen gas (H 2 gas) are introduced into the reaction chamber 70 as the semiconductor layer forming gas (SiH 4 valve On, H 2 valve On).
  • Silane gas of (SiH 4 gas) (SiH 4 in FIG. 4 (i)) (H 2 (i) in FIG. 4) the flow rate of hydrogen gas (H 2 gas) for is about 50 fold to about 1-fold e.g. .
  • the semiconductor layer forming gas may contain disilane gas (Si 2 H 6 gas), germane gas (GeH 4 gas), or methane gas containing carbon atoms (CH 4 gas) in order to reduce light absorption.
  • the semiconductor layer forming gas may contain argon gas (Ar gas) or helium gas (He gas).
  • the pressure in the reaction chamber 70 is kept substantially constant by the pressure adjusting valve 83 (set pressure P (i) in FIG. 4.
  • the p-side buffer layer 4a is formed. May be different from the set pressure for forming the bulk layer 4b).
  • AC power is input to the cathode electrode 71 by the high frequency power source 75 and the matching unit 73 (RF power On). Plasma is generated between the cathode electrode 71 and the anode electrode 81.
  • the semiconductor layer forming gas is decomposed (dissociated) and diffused by plasma discharge, and a p-side buffer layer 4 a is formed so as to cover the p-type layer 3.
  • the boron atom concentration in the atmosphere in the reaction chamber 70 is lowered, and mixing of boron atoms into the bulk layer 4b formed in step S6b described below is reduced.
  • step S6b the bulk layer 4b is formed on the p-side buffer layer 4a.
  • the flow rate (introduction amount ratio) of hydrogen gas (H 2 gas) to silane gas (SiH 4 gas) is adjusted by adjusting the flow rate control device 13 for SiH 4 gas and the flow rate control device 23 for H 2 gas, for example. It is changed from about 35 times to about 70 times (details are not described in FIG. 4).
  • Changes in the flow rate (introduction amount ratio) of hydrogen gas (H 2 gas) to silane gas (SiH 4 gas) are performed while maintaining the introduction amount of the semiconductor layer forming gas as a whole, and silane gas (SiH 4 gas) and hydrogen gas. It may be realized by changing the introduction amount of each (H 2 gas). Also, silane gas as the change of the flow rate of (SiH 4 gas) hydrogen to gas (H 2 gas), silane gas (SiH 4 gas) and hydrogen gas (H 2 gas) results introduction amount of each of which is changed in the semiconductor layer The amount of formation gas introduced as a whole may be increased or decreased.
  • the pressure in the reaction chamber 70 is kept substantially constant by the pressure adjusting valve 83 with the exhaust valve 85 opened (set pressure P (i) in FIG. 4).
  • the semiconductor layer forming gas whose flow rate ratio (mixing ratio) has been changed is decomposed (dissociated) and diffused by plasma discharge, and a bulk layer 4b is formed so as to cover the p-side buffer layer 4a.
  • step S6c the n-side buffer layer 4c is formed (step S6c).
  • SiH 4 by adjusting the gas flow controller 13, and H 2 gas flow rate control device 23, silane gas, for example, about 1 times the (SiH 4 gas) hydrogen to gas (H 2 gas) To about 50 times (details are not shown in FIG. 4).
  • the pressure in the reaction chamber 70 is kept substantially constant by the pressure adjusting valve 83 with the exhaust valve 85 opened (set pressure P (i) in FIG. 4.
  • set pressure for forming 4c may be different from the set pressure for forming bulk layer 4b).
  • the semiconductor layer forming gas whose flow rate ratio (mixing ratio) has been changed is decomposed (dissociated) and diffused by plasma discharge, and an n-side buffer layer 4c is formed so as to cover the bulk layer 4b.
  • the i-type layer 4 is formed by stacking the p-side buffer layer 4a, the bulk layer 4b, and the n-side buffer layer 4c.
  • the p-side buffer layer 4a and the n-side buffer layer 4c may be formed as necessary.
  • the input of AC power by the high-frequency power source 75 is stopped (RF power Off).
  • Step S7 n-type layer forming step
  • a substrate-side n-type layer 5a lower first conductivity type layer
  • the n-type layer 5 referred to here corresponds to an n-type layer in a so-called superstrate thin film photoelectric conversion device such as the photoelectric conversion device 100.
  • the n-type layer 5 referred to here corresponds to a p-type layer in a so-called substrate-type thin film photoelectric conversion device.
  • the n-type layer 5 referred to here corresponds to an n-type layer (n + a-Si layer) in a so-called inverted staggered thin film transistor (details of the inverted staggered thin film transistor will be described later in Embodiment 2).
  • step S7a silane gas (SiH 4 gas) and hydrogen gas (H 2 gas) as semiconductor layer forming gas are supplied into the reaction chamber 70, and in addition to these, n-type impurity gas is added to the reaction chamber 70. Introduced in.
  • This n-type impurity gas contains phosphine gas (PH 3 gas). Phosphine gas (PH 3 gas), (PH 3 / H 2 Valve On) by PH 3 / H 2 valve is opened, is introduced into the reaction chamber 70.
  • the introduction conditions (flow rate, mixing ratio, etc.) of the silane gas (SiH 4 gas) and the hydrogen gas (H 2 gas) are the conditions for forming the i-type layer 4 and n
  • the conditions for forming the mold layer 5 (substrate-side n-type layer 5a) may be different.
  • the reaction chamber 70 for the semiconductor layer forming gas after the plasma discharge process for forming the i-type layer 4 is completed.
  • the n-type impurity gas may be introduced into the reaction chamber 70 in a state where introduction into the interior is not stopped.
  • the semiconductor layer forming gas is intermittently introduced into the reaction chamber 70 (with at least one introduction / stop). An n-type impurity gas may be introduced into the reaction chamber 70 while being performed.
  • the semiconductor layer forming gas and the n-type impurity gas are mixed to form an n-type layer forming gas. Even after the plasma discharge treatment for forming the i-type layer 4 (n-side buffer layer 4c) has been completed, the composition set value (atmosphere) of the reaction chamber 70 is such that the pressure in the reaction chamber 70 is not reduced to the ultimate vacuum. From the composition of the semiconductor layer forming gas (the state in which the semiconductor layer forming gas is dominant) to the composition of the n-type layer forming gas (an appropriate mixed gas of n-type impurity gas and semiconductor layer forming gas) (n-type layer formation) State where the working gas is dominant.
  • the state (atmosphere) where the semiconductor layer forming gas is dominant is an atmosphere defined by the supply composition (set value) of the semiconductor layer forming gas.
  • the state (atmosphere) in which the n-type layer forming gas is dominant is an atmosphere defined by the supply composition (set value) of the n-type layer forming gas.
  • the ultimate degree of vacuum referred to here is a state in which there is substantially no (zero) outflow of gas components from the inside of the reaction chamber 70 to the outside of the reaction chamber 70 by the vacuum pump 87. Further, the state where the pressure in the reaction chamber 70 is not reduced to the ultimate vacuum is a state where the pressure in the reaction chamber 70 is higher than the ultimate vacuum. Note that the set pressure P (0) in FIG. 4 means a state in which the pressure adjusting valve 83 is fully opened, and the pressure in the reaction chamber 70 does not necessarily reach the ultimate vacuum.
  • the pressure in the reaction chamber 70 is kept substantially constant by the pressure adjusting valve 83 (the set pressure P (n in FIG. 4). )).
  • the flow rate of hydrogen gas (H 2 gas) relative to the flow rate of silane gas (SiH 4 gas) (SiH 4 (n) in FIG. 4) (H 2 (n) in FIG. 4) ) Is set, for example, from about 5 times to about 300 times.
  • a reaction chamber for silane gas (SiH 4 gas) and hydrogen gas (H 2 gas) is used to change the state in which the semiconductor layer forming gas is dominant to the state in which the n-type layer forming gas is dominant.
  • the amount introduced into 70 may be reduced as shown in FIG.
  • the state (atmosphere) in which the semiconductor layer forming gas is dominant is the supply of the semiconductor layer forming gas immediately before the formation of the i-type layer 4 is completed.
  • the atmosphere is defined by the composition (set value).
  • the cathode electrode 71 After the state in which the semiconductor layer forming gas is dominant changes to the state in which the n-type layer forming gas is dominant, AC power is supplied to the cathode electrode 71 by the high-frequency power source 75 and the matching unit 73 (RF power On). ). Plasma is generated between the cathode electrode 71 and the anode electrode 81. The n-type layer forming gas is decomposed (dissociated) and diffused by plasma discharge, and the substrate-side n-type layer 5a is formed so as to cover the i-type layer 4 (n-side buffer layer 4c).
  • the back-side n-type layer 5b (upper first conductive type layer) is formed on the substrate-side n-type layer 5a (step S7b).
  • silane gas from about about 30 times the flow rate is, for example, hydrogen gas (H 2 gas) to the (SiH 4 gas) It is changed to 300 times (details are not shown in FIG. 4).
  • the pressure in the reaction chamber 70 is kept substantially constant by the pressure adjusting valve 83 with the exhaust valve 85 opened (set pressure P (n) in FIG. 4).
  • the introduction amount ratio (mixing ratio) of the phosphine gas (PH 3 gas) with respect to the introduction amount of the semiconductor layer forming gas is also changed.
  • the n-type layer forming gas containing the phosphine gas (PH 3 gas) and the semiconductor layer forming gas with the introduction amount ratio changed is decomposed (dissociated) and diffused by plasma discharge so as to cover the substrate-side n-type layer 5a.
  • Back side n-type layer 5b is formed. After the n-type layer 5 (the back-side n-type layer 5b) having a predetermined thickness is formed, the input of AC power by the high-frequency power source 75 is stopped (RF power Off).
  • the laminated structure of the substrate-side n-type layer 5a and the back-side n-type layer 5b in the n-type layer 5 may be adopted as necessary.
  • the n-type layer 5 includes a plurality of different impurity concentrations by adjusting the flow rate control device 13 for SiH 4 gas and / or the flow rate control device 23 for H 2 gas and / or the flow rate control device 33 for PH 3 / H 2 gas.
  • An n-type layer may be formed.
  • the n-type layer 5 may be formed by laminating an n-type amorphous layer and an n-type microcrystalline layer, or may be formed of only an n-type amorphous layer. It may be formed from only.
  • the n-type layer 5 is formed by laminating a plurality of n-type layers having different impurity concentrations, or by laminating an n-type amorphous layer and an n-type microcrystalline layer.
  • the state (atmosphere) in which the n-type layer forming gas is dominant is the n-type layer forming gas supply composition (set value) at the start of formation of the layer in contact with the i-type layer 4 (n-side buffer layer 4c).
  • the atmosphere is defined by
  • the first photoelectric conversion layer 100 ⁇ / b> A having a pin junction is formed on the transparent conductive film 2.
  • Step S8 Gas replacement step
  • a gas replacement step is performed by the same method as in step S3 described above.
  • impurities particularly, impurities that determine the conductivity type of the n-type layer 5
  • step S9 described below.
  • Step S9 p-type layer forming step
  • the p-type layer 6 is formed so as to cover the back side n-type layer 5b.
  • Step S10 Gas replacement step
  • a gas replacement step is performed by the same method as in step S5 described above.
  • impurities particularly, impurities that determine the conductivity type of the p-type layer 6
  • step S11 described below.
  • Step S11 i-type layer forming step
  • the p-side buffer layer 7a, the bulk layer 7b, and the n-side buffer layer 7c are formed by the same method as in step S6a, step S6b, and step S6c in step S6 described above.
  • Step S12 n-type layer forming step
  • the n-type layer 8 is formed by the same method as in step S7 described above.
  • the n-type layer 8 can have a stacked structure of an n-type microcrystalline layer and an n-type amorphous layer.
  • the n-type layer 8 can be only one of an n-type microcrystalline layer and an n-type amorphous layer.
  • the n-type layer 8 can be formed by stacking a plurality of n-type layers having different impurity concentrations.
  • the n-type layer 8 can be formed from a single layer having a predetermined impurity concentration.
  • n-type impurity gas contains phosphine gas (PH 3 gas).
  • the n-type impurity gas is not introduced in the reaction chamber 70 after the plasma discharge process for forming the i-type layer 7 is completed. It may be introduced into the reaction chamber 70. After the plasma discharge process for forming the i-type layer 7 is completed, the semiconductor layer forming gas is intermittently introduced into the reaction chamber 70 (with at least one introduction / stop) while the n-type impurity is being introduced. A gas may be introduced into the reaction chamber 70. The semiconductor layer forming gas and the n-type impurity gas are mixed to form an n-type layer forming gas.
  • the composition set value (atmosphere) of the reaction chamber 70 is the composition of the semiconductor layer forming gas in a state where the pressure in the reaction chamber 70 is not reduced to the ultimate vacuum.
  • the state changes from the state in which the semiconductor layer forming gas is dominant to the composition of the n-type layer forming gas (the state in which the n-type layer forming gas is dominant).
  • the cathode electrode 71 After the state in which the semiconductor layer forming gas is dominant changes to the state in which the n-type layer forming gas is dominant, AC power is supplied to the cathode electrode 71 by the high-frequency power source 75 and the matching unit 73 (RF power On). ). Plasma is generated between the cathode electrode 71 and the anode electrode 81. The n-type layer forming gas is decomposed (dissociated) and diffused by plasma discharge, and the n-type layer 8 is formed so as to cover the i-type layer 7 (n-side buffer layer 7c). Thus, the second photoelectric conversion layer 100B having a pin junction is formed on the first photoelectric conversion layer 100A.
  • Step S13 Back surface transparent conductive film forming step
  • the back transparent conductive film 9 is formed on the second photoelectric conversion layer 100B (n-type layer 8).
  • the back transparent conductive film 9 is formed from SnO 2 , ITO, ZnO, or the like by using a method such as CVD, sputtering, or vapor deposition.
  • Step S14 Back surface metal electrode forming step
  • the back metal electrode 10 is formed on the back transparent conductive film 9.
  • the back metal electrode 10 is formed from a metal such as silver or aluminum by using a method such as CVD, sputtering, or vapor deposition.
  • CVD chemical vapor deposition
  • step S7 when the transparent substrate 1 is carried into the reaction chamber 70 (step S1), impurities such as moisture may be mixed into the reaction chamber 70 together with the transparent substrate 1. It is thought that there is. Impurities such as moisture are passed through the gas replacement process (step S3), the p-type layer formation process (step S4), and the gas replacement process (step S5), thereby completing the i-type layer formation process (step S6). It is considered that they are attached to the inner wall of the reaction chamber 70 and the vicinity of the vacuum exhaust system (the pressure adjusting valve 83, the exhaust valve 85, and the vacuum pump 87).
  • the degree of vacuum in the reaction chamber 70 is 10 ⁇ 4 Pa (Japanese Patent Application Laid-Open No. 04-266067 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2009-004702 (Patent Document 2) described at the beginning).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 04-266067
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2009-004702
  • the semiconductor layer forming gas exists in the reaction chamber 70 even at the stage of forming the n-type layer 5 after the formation of the i-type layer 4. .
  • the inside of the reaction chamber 70 is not evacuated to a high vacuum, so that moisture hardly floats and hardly adheres to the transparent substrate 1 (i-type layer 4) to be processed. Absent. Even if moisture or the like adhering to the reaction chamber 70 or the vacuum exhaust system floats in the gas atmosphere in the reaction chamber 70, the moisture or the like is added to the semiconductor layer forming gas existing in the reaction chamber 70. It is considered that the collision reaches the transparent substrate 1 (i-type layer 4) to be processed.
  • the semiconductor layer forming gas exists in the reaction chamber 70 even when the n-type layer 5 is formed. Almost no impurities such as moisture are mixed in. The same applies to the formation of the n-type layer 8.
  • the SiH 4 gas flow control device 13 and / or the H 2 gas flow control device 23 The flow rate of the hydrogen gas (H 2 gas) with respect to the silane gas (SiH 4 gas) is changed by the adjustment. Since the SiH 4 valve and the H 2 valve are not opened and closed, their service life is prolonged. The same applies to the formation of the i-type layer 7.
  • the SiH 4 gas flow control device 13 and / or the H 2 gas flow control device 23 are used. and / or by adjustment of the PH 3 / H 2 gas flow rate control device 33, silane gas (SiH 4 gas), hydrogen gas (H 2 gas), and PH 3 / H 2 gas flow rate ratio is changed. Since the SiH 4 valve, the H 2 valve, and the PH 3 / H 2 gas valve are not opened and closed, their service life is increased.
  • the manufacturing method of the photoelectric conversion device 100 in the present embodiment is a so-called single chamber type in which each layer is deposited on the transparent substrate 1 in one reaction chamber 70. Compared with a so-called multi-chamber type equipped with a plurality of reaction chambers, the equipment cost and running cost are reduced. According to the method for manufacturing photoelectric conversion device 100 in the present embodiment, it is possible to obtain a photoelectric conversion device at a lower cost.
  • the first photoelectric conversion layer 100A and the second photoelectric conversion layer 100B are formed on the transparent substrate 1 (transparent conductive film 2). Only the first photoelectric conversion layer 100A may be formed on the transparent substrate 1 (transparent conductive film 2). On the transparent substrate 1 (transparent conductive film 2), the first photoelectric conversion layer 100A, the second photoelectric conversion layer 100B, and other plural photoelectric conversion layers may be formed.
  • the p-type layer 3, the i-type layer 4, and the n-type layer 5 are continuously formed in the reaction chamber 70 as the first photoelectric conversion layer 100A.
  • the p-type layer 3 is formed so as to cover the transparent conductive film 2 on the transparent substrate 1, and this is carried into the reaction chamber 70.
  • Step S6 and the n-type layer forming step may be performed.
  • the gas replacement step step S5 may be performed as necessary.
  • the i-type layer 4 is formed of the p-side buffer layer 4a, the bulk layer 4b, and the n-side buffer layer 4c.
  • the i-type layer 4 may be formed of a p-side buffer layer 4a (lower semiconductor layer) and a bulk layer 4b (upper semiconductor layer).
  • the i-type layer 4 may be formed of a bulk layer 4b (lower semiconductor layer) and an n-side buffer layer 4c (upper semiconductor layer). The same applies to the i-type layer 7.
  • silane gas SiH 4 gas
  • hydrogen gas H 2 gas
  • the semiconductor material gas disilane gas (Si 2 H 6 gas), germane gas (GeH 4 gas), methane gas (CH 4 gas), or the like
  • the dilution gas argon gas (Ar gas), helium gas (He gas), nitrogen gas (N 2 gas), or the like may be used.
  • the i-type layer 4 is adjusted by adjusting the flow control device 13 for SiH 4 gas and the flow control device 23 for H 2 gas, and the p-side buffer layer 4a, the bulk layer 4b, and The n-side buffer layer 4c is formed.
  • a p-side buffer layer 4 a is formed by introducing a semiconductor layer forming gas (first semiconductor layer forming gas), and a bulk layer is formed by introducing another semiconductor layer forming gas (second semiconductor layer forming gas). 4b may be formed, and the n-side buffer layer 4c may be formed by introducing another semiconductor layer forming gas.
  • disilane gas (Si 2 H 6 gas) or the like is employed as the other semiconductor layer forming gas. obtain.
  • disilane gas (Si 2 H 6 gas) is adopted as another semiconductor layer forming gas, high-speed film formation can be realized.
  • the p-side buffer layer 4a is formed on the p-type layer 3 by introducing the semiconductor layer forming gas into the reaction chamber 70 and causing plasma discharge of the semiconductor layer forming gas.
  • another semiconductor layer forming gas is introduced into the reaction chamber 70.
  • the bulk layer 4b is formed so as to cover the p-side buffer layer 4a by plasma discharge of a mixed gas (upper semiconductor layer forming gas) composed of a semiconductor layer forming gas and another semiconductor layer forming gas.
  • n-side buffer layer 4c is formed so as to cover the bulk layer 4b by plasma discharge of a mixed gas composed of another semiconductor layer forming gas and another semiconductor layer forming gas.
  • the introduction of the other semiconductor layer forming gas into the reaction chamber 70 is not stopped.
  • a semiconductor layer forming gas may be introduced into the reaction chamber 70.
  • another semiconductor layer forming gas is introduced into the reaction chamber 70 intermittently (with at least one introduction / stop), and yet another The semiconductor layer forming gas may be introduced into the reaction chamber 70.
  • the n-type layer 5 is formed of the SiH 4 gas flow control device 13 and / or the H 2 gas flow control device 23 and / or the PH 3 / H 2 gas flow control device.
  • the substrate side n-type layer 5a and the back side n-type layer 5b are formed.
  • the substrate-side n-type layer 5 a is formed by introducing an n-type impurity gas (first impurity gas), and the back-side n-type layer is formed by introducing another n-type impurity gas (second impurity gas). 5b may be formed.
  • an n-type impurity gas is introduced into the reaction chamber 70 (in addition to the semiconductor layer forming gas for forming the n-side buffer layer 4c).
  • the substrate-side n-type layer 5a is formed on the n-side buffer layer 4c by plasma discharge of an n-type layer forming gas (lower first conductivity type layer forming gas) composed of a semiconductor layer forming gas and an n-type impurity gas. To do.
  • the introduction of the semiconductor layer forming gas into the reaction chamber 70 is not stopped even after the plasma discharge process for forming the n-side buffer layer 4c is completed.
  • Impurity gas may be introduced into the reaction chamber 70.
  • the semiconductor layer forming gas is introduced into the reaction chamber 70 intermittently (with at least one introduction / stop), and the n-type Impurity gas may be introduced into the reaction chamber 70.
  • another n-type impurity gas is introduced into the reaction chamber 70.
  • Plasma discharge of another n-type layer forming gas (upper first conductive type layer forming gas) composed of a semiconductor layer forming gas, an n-type impurity gas, and another n-type impurity gas is performed on the substrate-side n-type layer 5a.
  • the back side n-type layer 5b is formed.
  • n-type impurity gas is, for example, phosphine gas (PH 3 gas)
  • other n-type impurity gases include nitrogen gas (N 2 gas), oxygen gas (O 2 gas), carbon dioxide gas (CO 2 ). Gas), methane gas (CH 4 gas), or the like may be employed.
  • nitrogen gas (N 2 gas), oxygen gas (O 2 gas), or carbon dioxide gas (CO 2 gas) is employed as the other n-type impurity gas
  • the other n-type impurity gas is also an n-type impurity. It can act as a wide-gap impurity.
  • methane gas (CH 4 gas) is employed as the other n-type impurity gas
  • the other n-type impurity gas can act as a wide gap impurity.
  • the introduction of the n-type impurity gas into the reaction chamber 70 is not stopped.
  • An n-type impurity gas may be introduced into the reaction chamber 70.
  • the introduction of the n-type impurity gas into the reaction chamber 70 is performed intermittently (with at least one introduction / stop). N-type impurity gas may be introduced into the reaction chamber 70.
  • the formation of the back-side n-type layer 5b is started without the inside of the reaction chamber 70 being evacuated to a high vacuum. Energy and time for once evacuating the reaction chamber 70 to a high vacuum are not required, and productivity is improved.
  • a conductive type layer (n-type layer (n + a-Si layer)) is deposited so as to cover the semiconductor layer (amorphous silicon layer).
  • n-type layer n + a-Si layer
  • Description will be made based on a manufacturing method of an inverted staggered thin film transistor.
  • the inverted staggered thin film transistor obtained by the method is an example of a switching semiconductor device having a thin film transistor.
  • an inverted staggered thin film transistor 300 includes a gate electrode 302, a gate insulating film 303, an amorphous silicon layer 304, an amorphous n-type silicon layer 305 (hereinafter “n + a”) on a substrate 301.
  • n + a amorphous n-type silicon layer 305
  • a transparent electrode 306, a drain electrode 307, a source electrode 308, and a protective film 309 are formed.
  • the substrate 301 is made of glass or the like having an insulating property.
  • the gate electrode 302 contains Cr (chrome), Mo (molybdenum) / Ta (tantalum) alloy, Al (aluminum), or the like.
  • the gate electrode 302 is electrically connected to a gate wiring (not shown).
  • the gate insulating film 303 includes SiO 2 (silicon oxide), SiN x (silicon nitride), or the like.
  • the gate insulating film 303 in this embodiment has a two-layer structure in which a lower gate insulating film 303a and an upper gate insulating film 303b having a lower formation speed than the lower gate insulating film 303a are stacked.
  • the amorphous silicon layer 304 functioning as a transistor includes a first amorphous silicon layer 304a having the slowest formation speed and a second amorphous silicon layer 304b having a formation speed faster than that of the first amorphous silicon layer 304a.
  • the third amorphous silicon layer 304c having the fastest formation speed is sequentially stacked to form a three-layer structure.
  • the n + a-Si layer 305 is an amorphous silicon layer containing an appropriate amount of n-type impurities, and is between the amorphous silicon layer 304 and the drain electrode 307 and between the amorphous silicon layer 304 and the source electrode 308. It is formed in order to obtain a good ohmic contact.
  • the drain electrode 307 and the source electrode 308 are formed of a metal material such as Ti (titanium) or Ta (tantalum), or an Al—Si alloy.
  • the transparent electrode 306 is an ITO (Indium Tin Oxide) layer, for example, and is in contact with the drain electrode 307.
  • the transparent electrode 306 forms a pixel electrode.
  • the protective film 309 includes, for example, SiN x (silicon nitride) or the like, and is provided to improve the reliability of the inverted staggered thin film transistor 300.
  • the plasma CVD apparatus 200 used for manufacturing the inverted staggered thin film transistor 300 is different from the plasma CVD apparatus 200 (see FIG. 2) in the above-described first embodiment except that the type of gas introduced from the gas introduction system is different. Since the configuration is substantially the same, detailed description thereof will not be repeated here.
  • step S101 to step S110 of the inverted staggered thin film transistor 300 will be described in the following order.
  • Step S101 Substrate carrying-in process
  • Step S102 Gate electrode forming process
  • the gate electrode 302 is formed on the substrate 301 in the reaction chamber 70.
  • a conductive film such as Cr (chrome) is formed on the surface of the substrate 301 by using a sputtering method or the like.
  • the gate electrode 302 is formed by patterning the conductive film into a predetermined shape using an etching method or the like.
  • the substrate 301 on which the gate electrode 302 is formed by another apparatus may be carried into the reaction chamber 70 in the plasma CVD apparatus 200.
  • Step S103 Gate insulating film forming step
  • the substrate 301 over which the gate electrode 302 is formed is heated in the reaction chamber 70.
  • a source gas used for depositing the gate insulating film 303 is introduced into the reaction chamber 70.
  • the source gas introduced here includes, for example, silane gas (SiH 4 gas), hydrogen gas (H 2 gas), nitrogen gas (N 2 gas), and ammonia gas (NH 3 gas). With the source gas introduced into the reaction chamber 70, the pressure in the reaction chamber 70 is kept substantially constant.
  • SiH 4 gas silane gas
  • H 2 gas hydrogen gas
  • N 2 gas nitrogen gas
  • NH 3 gas ammonia gas
  • the gate insulating film 303 of this embodiment As the gate insulating film 303 of this embodiment, as shown in FIG. 5, after the lower gate insulating film 303a is formed, the upper gate insulating film 303b is formed on the lower gate insulating film 303a.
  • the lower gate insulating film 303a and the upper gate insulating film 303b have different characteristics as the deposition rate is changed.
  • the lower gate insulating film 303a and the upper gate insulating film 303b may be made of the same material or different materials.
  • the upper gate insulating film 303b directly affects the smoothness of the amorphous silicon layer 304 (the first amorphous silicon layer 304a) laminated thereon, the upper gate insulating film 303b is preferably formed with good surface smoothness. . Since the lower gate insulating film 303a also greatly affects the smoothness of the upper gate insulating film 303b, it is preferable that the lower gate insulating film 303a has a good surface smoothness.
  • the upper gate insulating film 303b is deposited at a lower deposition rate than the lower gate insulating film 303a, so that a film with good smoothness is formed.
  • the lower gate insulating film 303a is formed at a relatively higher deposition rate than the upper gate insulating film 303b.
  • Step S104 Gas replacement step
  • the impurities introduced in steps S101 to S103 remain.
  • the inside of the reaction chamber 70 is replaced with a replacement gas (step S104).
  • the gas replacement may be performed by a method similar to step S3 in the first embodiment.
  • an amorphous silicon layer 304 is formed.
  • the amorphous silicon layer 304 may be a completely non-doped amorphous silicon layer, and is substantially amorphous like a weak p-type semiconductor layer or a weak n-type semiconductor layer containing a small amount of impurities. It may be a quality silicon layer.
  • the amorphous silicon layer 304 in this embodiment includes a first amorphous silicon layer 304a, a second amorphous silicon layer 304b, and a third amorphous silicon layer 304c.
  • step S105 the semiconductor layer forming gas is introduced into the reaction chamber 70, whereby the first amorphous silicon layer 304a of the amorphous silicon layer 304 is first formed (step S105a).
  • the semiconductor layer forming gas introduced here includes, for example, silane gas (SiH 4 gas), hydrogen gas (H 2 gas), and argon gas (Ar gas).
  • the pressure in the reaction chamber 70 is kept substantially constant while the semiconductor layer forming gas is introduced.
  • Plasma is generated when AC power is supplied to the substrate 301.
  • the semiconductor layer forming gas is decomposed (dissociated) and diffused by plasma discharge, and a first amorphous silicon layer 304a is formed so as to cover the gate insulating film 303 (upper gate insulating film 303b).
  • the second amorphous silicon layer 304b is formed so as to cover the first amorphous silicon layer 304a (step S105b).
  • step S105a by adjusting the SiH 4 gas flow rate controller 13 and H 2 gas flow rate controller 23, the flow rate of the silane gas hydrogen gas to (SiH 4 gas) (H 2 gas) is increased.
  • Deposition of the second amorphous silicon layer 304b is started so that the deposition rate of the amorphous silicon layer 304 is faster than the deposition rate of the first amorphous silicon layer 304a.
  • the pressure in the reaction chamber 70 is kept substantially constant while the exhaust valve 85 is opened.
  • the semiconductor layer forming gas whose flow rate ratio (mixing ratio) has been changed is decomposed (dissociated) and diffused by plasma discharge, and a second amorphous silicon layer 304b is formed so as to cover the first amorphous silicon layer 304a. .
  • a third amorphous silicon layer 304c is formed so as to cover the second amorphous silicon layer 304b (step S105c).
  • the flow rate is further increased silane hydrogen gas to (SiH 4 gas) (H 2 gas) .
  • Deposition of the third amorphous silicon layer 304c is started so that the deposition rate of the amorphous silicon layer 304 is faster than the deposition rate of the second amorphous silicon layer 304b.
  • the semiconductor layer forming gas whose flow rate ratio (mixing ratio) is further changed while the pressure in the reaction chamber 70 is kept substantially constant is decomposed (dissociated) and diffused by plasma discharge, and the second amorphous silicon layer A third amorphous silicon layer 304c is formed so as to cover 304b.
  • Step S106 n + a-Si layer forming step
  • an amorphous n-type silicon layer 305 (n + a-Si layer 305) is formed on the amorphous silicon layer 304 (third amorphous silicon layer 304c). Is done.
  • silane gas (SiH 4 gas) and hydrogen gas (H 2 gas) as the semiconductor layer forming gas are supplied into the reaction chamber 70
  • n-type impurity gas is added into the reaction chamber 70 in addition to the semiconductor layer forming gas. be introduced.
  • This n-type impurity gas contains phosphine gas (PH 3 gas).
  • the introduction conditions (flow rate, mixing ratio, etc.) of the silane gas (SiH 4 gas) and the hydrogen gas (H 2 gas) as the semiconductor layer forming gas are the amorphous silicon layer.
  • the conditions for forming 304 and the conditions for forming the n + a-Si layer 305 may be different.
  • the reaction chamber 70 for the semiconductor layer forming gas is also obtained after the plasma discharge treatment for forming the amorphous silicon layer 304 (third amorphous silicon layer 304 c) is completed.
  • the n-type impurity gas may be introduced into the reaction chamber 70 in a state where introduction into the interior is not stopped.
  • the semiconductor layer forming gas is introduced into the reaction chamber 70 (with at least one introduction / stop).
  • the n-type impurity gas may be introduced into the reaction chamber 70 while being intermittently performed.
  • the semiconductor layer forming gas and the n-type impurity gas are mixed to form an n-type layer forming gas. Even after the plasma discharge treatment for forming the amorphous silicon layer 304 (third amorphous silicon layer 304c) is completed, the composition of the reaction chamber 70 is set in a state where the pressure in the reaction chamber 70 is not reduced to the ultimate vacuum.
  • the value (atmosphere) varies from the composition of the semiconductor layer forming gas (the state in which the semiconductor layer forming gas is dominant) to the composition of the n-type layer forming gas (an appropriate mixed gas of n-type impurity gas and semiconductor layer forming gas). Transition to (a state in which the n-type layer forming gas is dominant).
  • the state (atmosphere) where the semiconductor layer forming gas is dominant is an atmosphere defined by the supply composition (set value) of the semiconductor layer forming gas.
  • the state (atmosphere) in which the n-type layer forming gas is dominant is an atmosphere defined by the supply composition (set value) of the n-type layer forming gas.
  • the ultimate vacuum referred to here is a state in which there is substantially no (zero) outflow of gas components from the reaction chamber 70 to the outside of the reaction chamber 70 by the vacuum pump 87. Further, the state where the pressure in the reaction chamber 70 is not reduced to the ultimate vacuum is a state where the pressure in the reaction chamber 70 is higher than the ultimate vacuum.
  • the pressure in the reaction chamber 70 is kept substantially constant.
  • a reaction chamber for silane gas (SiH 4 gas) and hydrogen gas (H 2 gas) is used to change the state in which the semiconductor layer forming gas is dominant to the state in which the n-type layer forming gas is dominant.
  • the amount introduced into 70 may be reduced.
  • the state (atmosphere) in which the semiconductor layer forming gas is dominant is that the semiconductor layer forming gas immediately before the formation of the amorphous silicon layer 304 is completed. It is the atmosphere prescribed
  • the input of AC power may be stopped until the state in which the semiconductor layer forming gas is dominant changes to the state in which the n-type layer forming gas is dominant.
  • n-type layer forming gas is decomposed (dissociated) and diffused by plasma discharge, and an n + a-Si layer 305 is formed so as to cover the amorphous silicon layer 304 (third amorphous silicon layer 304c).
  • n + a-Si layer 305 a laminated structure of two layers or two or more layers is employed as in the substrate-side n-type layer 5a and the back-side n-type layer 5b in the n-type layer 5 in the first embodiment. May be.
  • the n + a-Si layer 305 has an impurity concentration adjusted by adjusting the flow rate control device 13 for SiH 4 gas and / or the flow rate control device 23 for H 2 gas and / or the flow rate control device 33 for PH 3 / H 2 gas.
  • a plurality of different n-type layers may be formed.
  • the n + a-Si layer 305 may be formed by laminating an n-type amorphous layer and an n-type microcrystalline layer, or may be formed of only an n-type amorphous layer. You may form only from a microcrystal layer.
  • the n + a-Si layer 305 is formed by stacking a plurality of n-type layers having different impurity concentrations, or an n-type amorphous layer and an n-type microcrystalline layer are stacked.
  • the state (atmosphere) where the n-type layer forming gas is dominant means that the n-type layer at the start of the formation of the layer in contact with the amorphous silicon layer 304 (third amorphous silicon layer 304c).
  • the atmosphere is defined by the composition gas supply composition (set value).
  • Step S107 Transistor part formation process
  • the amorphous silicon layer 304 and the n + a-Si layer 305 are processed into an island shape by using a predetermined patterning method such as a photolithography method.
  • Step S108 Transparent electrode forming step
  • An ITO film having a predetermined thickness is formed by sputtering, and a transparent electrode 306 is formed by patterning.
  • Step S109 Source / drain electrode forming step
  • a conductive film is formed on the island-shaped amorphous silicon layer 304 and the n + a-Si layer 305 using a metal such as Al (aluminum) or Mo (molybdenum) by sputtering or the like.
  • a metal such as Al (aluminum) or Mo (molybdenum) by sputtering or the like.
  • a drain electrode 307 and a source electrode 308 are formed by patterning the conductive film.
  • the n + a-Si layer 305 corresponding to the upper part of the channel part (310) is removed by dry etching.
  • Step S110 protective film forming step
  • a protective film 309 having transparency and insulating properties is formed.
  • the manufacturing process of the inverted staggered thin film transistor 300 of this embodiment is completed.
  • the formation of the n + a-Si layer 305 is started without the inside of the reaction chamber 70 being evacuated to a high vacuum. Is done. According to this method, energy and time for temporarily evacuating the reaction chamber 70 once are not required before the formation of the n + a-Si layer 305, and productivity is improved.
  • the semiconductor layer is formed in the reaction chamber 70 even in the step of forming the n + a-Si layer 305 after the formation of the amorphous silicon layer 304. Gas is present.
  • the inside of the reaction chamber 70 is not evacuated to a high vacuum, so that moisture hardly floats and adheres to the substrate 301 (amorphous silicon layer 304) to be processed. There is little to do. Even if moisture or the like adhering to the reaction chamber 70 or the vacuum exhaust system floats in the gas atmosphere in the reaction chamber 70, the moisture or the like is added to the semiconductor layer forming gas existing in the reaction chamber 70. By colliding, it is considered that reaching the substrate 301 (amorphous silicon layer 304) to be processed is suppressed.
  • the semiconductor layer forming gas exists in the reaction chamber 70 even in the step of forming the n + a-Si layer 305. Impurities such as moisture are hardly mixed in the n + a-Si layer 305.
  • a flow rate control device for SiH 4 gas is used to form the first amorphous silicon layer 304a, the second amorphous silicon layer 304b, and the third amorphous silicon layer 304c.
  • the flow rate of the hydrogen gas (H 2 gas) relative to the silane gas (SiH 4 gas) is changed by adjusting the flow rate control device 13 for 13 and H 2 gas. Since the SiH 4 valve and the H 2 valve are not opened and closed, their service life is prolonged.
  • the manufacturing method of the inverted staggered thin film transistor 300 in this embodiment mode is a so-called single chamber type in which each layer is deposited on the substrate 301 in one reaction chamber 70. Compared with a so-called multi-chamber type equipped with a plurality of reaction chambers, the equipment cost and running cost are reduced. According to the manufacturing method of the inverted staggered thin film transistor 300 in this embodiment, a photoelectric conversion device can be obtained at a lower cost.
  • the amorphous silicon layer 304 is formed from the first amorphous silicon layer 304a, the second amorphous silicon layer 304b, and the third amorphous silicon layer 304c.
  • the amorphous silicon layer 304 may be formed of a first amorphous silicon layer 304a (lower semiconductor layer) and a second amorphous silicon layer 304b (upper semiconductor layer).
  • the amorphous silicon layer 304 may be formed of a second amorphous silicon layer 304b (lower semiconductor layer) and a third amorphous silicon layer 304c (upper semiconductor layer).
  • the deposition rate of the amorphous silicon layer 304 is changed by adjustment of the flow rate control device 13 for SiH 4 gas and the flow rate control device 23 for H 2 gas.
  • a crystalline silicon layer 304a, a second amorphous silicon layer 304b, and a third amorphous silicon layer 304c are formed.
  • a first amorphous silicon layer 304a is formed by introducing a semiconductor layer forming gas (first semiconductor layer forming gas), and another semiconductor layer forming gas (second semiconductor layer forming gas).
  • the second amorphous silicon layer 304b may be formed by introducing the second amorphous silicon layer 304b
  • the third amorphous silicon layer 304c may be formed by introducing another semiconductor layer forming gas.
  • the first amorphous silicon layer 304a is formed on the upper gate insulating film 303b by introducing the semiconductor layer forming gas into the reaction chamber 70 and causing plasma discharge of the semiconductor layer forming gas.
  • another semiconductor layer forming gas is introduced into the reaction chamber 70.
  • the second amorphous silicon layer 304b is formed so as to cover the first amorphous silicon layer 304a by plasma discharge of a mixed gas (upper semiconductor layer forming gas) composed of a semiconductor layer forming gas and another semiconductor layer forming gas.
  • the introduction of the semiconductor layer forming gas into the reaction chamber 70 is not stopped even after the plasma discharge process for forming the first amorphous silicon layer 304a is completed.
  • another semiconductor layer forming gas may be introduced into the reaction chamber 70.
  • the semiconductor layer forming gas is intermittently introduced into the reaction chamber 70 (with at least one introduction / stop).
  • Other semiconductor layer forming gas may be introduced into the reaction chamber 70.
  • the third amorphous silicon layer 304c is formed so as to cover the second amorphous silicon layer 304b by performing plasma discharge of a mixed gas composed of another semiconductor layer forming gas and another semiconductor layer forming gas.
  • other semiconductor layer forming gas is introduced into the reaction chamber 70 even after the plasma discharge process for forming the second amorphous silicon layer 304b is completed. Still another semiconductor layer forming gas may be introduced into the reaction chamber 70 without being stopped. After the plasma discharge process for forming the second amorphous silicon layer 304b is completed, another semiconductor layer forming gas is intermittently introduced into the reaction chamber 70 (with at least one introduction / stop). In addition, another semiconductor layer forming gas may be introduced into the reaction chamber 70.
  • the formation of the second amorphous silicon layer 304b is started without the inside of the reaction chamber 70 being evacuated to a high vacuum.
  • the formation of the third amorphous silicon layer 304c is started without the inside of the reaction chamber 70 being evacuated to a high vacuum. Energy and time for once evacuating the reaction chamber 70 to a high vacuum are not required, and productivity is improved.
  • the deposition rate of the n + a-Si layer 305 is changed by adjusting the flow control device 13 for SiH 4 gas and the flow control device 23 for H 2 gas.
  • the substrate side n + a-Si layer and the back side n + a-Si layer may be laminated.
  • a substrate-side n + a-Si layer is formed by introducing an n-type layer forming gas (first impurity gas), and another n-type layer forming gas (second impurity gas) is formed.
  • the back side n + a-Si layer may be formed by introduction.
  • an n-type impurity gas is introduced into the reaction chamber 70 (in addition to the semiconductor layer forming gas for forming the third amorphous silicon layer 304c).
  • Plasma discharge of an n-type layer forming gas (lower first conductive type layer forming gas) composed of a semiconductor layer forming gas and an n-type impurity gas causes a substrate side n + a on the third amorphous silicon layer 304c.
  • a Si layer is formed.
  • the introduction of the semiconductor layer forming gas into the reaction chamber 70 is not stopped even after the plasma discharge process for forming the third amorphous silicon layer 304c is completed.
  • an n-type impurity gas may be introduced into the reaction chamber 70.
  • the semiconductor layer forming gas is intermittently introduced into the reaction chamber 70 (with at least one introduction / stop).
  • N-type impurity gas may be introduced into the reaction chamber 70.
  • another n-type impurity gas is introduced into the reaction chamber 70.
  • Plasma discharge of another n-type layer forming gas (upper first conductive type layer forming gas) composed of a semiconductor layer forming gas, an n-type impurity gas, and another n-type impurity gas, thereby causing the substrate-side n + a-Si layer A back side n + a-Si layer is formed thereon.
  • the introduction of the n-type impurity gas into the reaction chamber 70 is not stopped even after the plasma discharge process for forming the substrate side n + a-Si layer is completed.
  • another n-type impurity gas may be introduced into the reaction chamber 70.
  • the n-type impurity gas is intermittently introduced into the reaction chamber 70 (with at least one introduction / stop).
  • Other n-type impurity gases may be introduced into the reaction chamber 70.
  • the formation of the back side n + a-Si layer is started without the inside of the reaction chamber 70 being evacuated to a high vacuum. Energy and time for once evacuating the reaction chamber 70 to a high vacuum are not required, and productivity is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Plasma & Fusion (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 半導体層形成ガスを反応室(70)内に導入し、上記半導体層形成ガスをプラズマ放電させることによって所定の層上に半導体層(4,304)を形成する。上記半導体層形成ガスに加えて不純物ガスを上記反応室内に導入し、上記半導体層形成ガスおよび上記不純物ガスを含む第1導電型層形成ガスをプラズマ放電させることによって、上記半導体層覆うように第1導電型の第1導電型層(5,305)を形成する。上記第1導電型層を形成する工程においては、上記半導体層を形成するプラズマ放電処理が終了した後も上記反応室内の圧力が到達真空度にまで減圧されない状態で、上記反応室に供給されるガスの組成設定値が、上記半導体層形成ガスの組成から上記第1導電型層形成ガスの組成に変移する。半導体装置の製造方法の生産性を向上させることが可能となる。

Description

半導体装置の製造方法
 本発明は、半導体装置の製造方法に関する。
 特開平04-266067号公報(特許文献1)および特開2009-004702号公報(特許文献2)には、光電変換装置の製造方法が開示されている。当該方法は半導体層(i型層)を覆うように導電型層(n型層またはp型層)が堆積される半導体装置の製造方法の一例である。特許文献1,2に記載の方法では、半導体層を堆積した後、反応室の中の真空度が10-6Torr以下または0.001Pa程度となるように、反応室内が高真空排気される。その後、所定の不純物ガスが反応室内に導入され、導電型層が半導体層上に堆積される。
 特開2007-059560号公報(特許文献3)には、薄膜半導体装置の製造方法が開示されている。当該方法は半導体層(非晶質シリコン層)を覆うように導電型層(na-Si層)が堆積される半導体装置の製造方法の一例である。特許文献3には、非晶質シリコン層を形成した後、na-Si層を成膜するための具体的な方法については特に記載されていない。
特開平04-266067号公報 特開2009-004702号公報 特開2007-059560号公報
 特許文献1,2における製造方法では、半導体層の形成後に反応室内が高真空排気され、反応室内がガス置換された後に導電型層が形成される。当該方法では、反応室内を一旦高真空排気するためのエネルギーおよび時間が必要となり、生産性が低下している。
 本発明は、プラズマCVD(Chemical Vapor Deposition)法を使用して半導体層を覆うように導電型層が堆積される半導体装置の製造方法であって、半導体層を形成した後、導電型層を形成するまでの間における生産性を向上させることが可能な半導体装置の製造方法を提供することを目的とする。
 本発明の第1の局面に基づく半導体装置の製造方法は、プラズマCVD法を使用して、半導体層を覆うように導電型層が堆積される半導体装置の製造方法であって、半導体層形成ガスを反応室内に導入し、上記半導体層形成ガスをプラズマ放電させることによって所定の層上に上記半導体層を形成する工程と、上記半導体層形成ガスに加えて不純物ガスを上記反応室内に導入し、上記半導体層形成ガスおよび上記不純物ガスを含む第1導電型層形成ガスをプラズマ放電させることによって、上記半導体層を覆うように第1導電型の第1導電型層を形成する工程と、を備え、上記第1導電型層を形成する工程においては、上記半導体層を形成するプラズマ放電処理が終了した後も上記反応室内の圧力が到達真空度にまで減圧されない状態で、上記反応室に供給されるガスの組成設定値が、上記半導体層形成ガスの組成から上記第1導電型層形成ガスの組成に変移する。
 本発明の第2の局面に基づく半導体装置の製造方法は、上記第1の局面に基づく半導体装置の製造方法において、上記第1導電型層を形成する工程においては、上記半導体層を形成するプラズマ放電処理が終了した後も上記半導体層形成ガスの上記反応室内への導入が停止されない状態で、上記不純物ガスが上記反応室内に導入される。
 本発明の第3の局面に基づく半導体装置の製造方法は、上記第1または上記第2の局面に基づく半導体装置の製造方法において、上記第1導電型層は、第1導電型の下側第1導電型層と第1導電型の上側第1導電型層とを含み、上記不純物ガスは、上記下側第1導電型層を形成するための第1不純物ガスと、上記上側第1導電型層を形成するための第2不純物ガスとを含み、上記第1導電型層を形成する工程は、上記半導体層形成ガスに加えて上記第1不純物ガスを上記反応室内に導入し、上記半導体層形成ガスおよび上記第1不純物ガスを含む下側第1導電型層形成ガスをプラズマ放電させることによって上記半導体層を覆うように上記下側第1導電型層を形成する工程と、上記半導体層形成ガスおよび上記第1不純物ガスに加えて上記第2不純物ガスを上記反応室内に導入し、上記半導体層形成ガス、上記第1不純物ガスおよび上記第2不純物ガスを含む上側第1導電型層形成ガスをプラズマ放電させることによって、上記下側第1導電型層を覆うように上記上側第1導電型層を形成する工程と、を有し、上記上側第1導電型層を形成する工程においては、上記下側第1導電型層を形成するプラズマ放電処理が終了した後も上記反応室内の圧力が到達真空度にまで減圧されない状態で、上記反応室に供給されるガスの組成設定値が、上記下側第1導電型層形成ガスの組成から上記第2不純物ガスの組成に変移する。
 本発明の第4の局面に基づく半導体装置の製造方法は、上記第1または上記第2の局面に基づく半導体装置の製造方法において、上記第1導電型層は、第1導電型の下側第1導電型層と第1導電型の上側第1導電型層とを含み、上記第1導電型層を形成する工程は、上記半導体層形成ガスに加えて上記不純物ガスを上記反応室内へ所定の時間導入し、上記半導体層形成ガスおよび上記不純物ガスを含む下側第1導電型層形成ガスをプラズマ放電させることによって上記半導体層を覆うように上記下側第1導電型層を形成する工程と、上記下側第1導電型層の形成後、上記不純物ガスの上記半導体層形成ガスの導入量に対する導入量比が変化され、導入量比が変化された上記不純物ガスおよび上記半導体層形成ガスを含む上側第1導電型層形成ガスをプラズマ放電させることによって、上記下側第1導電型層を覆うように上記上側第1導電型層を形成する工程と、を有し、上記上側第1導電型層を形成する工程においては、上記下側第1導電型層を形成するプラズマ放電処理が終了した後も上記反応室内の圧力が到達真空度にまで減圧されない状態で、上記反応室に供給されるガスの組成設定値が、上記下側第1導電型層形成ガスの組成から上記上側第1導電型層形成ガスの組成に変移する。
 本発明の第5の局面に基づく半導体装置の製造方法は、上記第1から上記第4のいずれかの局面に基づく半導体装置の製造方法において、上記半導体層は、下側半導体層と上側半導体層とを含み、上記半導体層形成ガスは、上記下側半導体層を形成するための第1半導体層形成ガス、および、上記上側半導体層を形成するための第2半導体層形成ガスを含み、上記半導体層を形成する工程は、上記第1半導体層形成ガスを上記反応室内に導入し、上記第1半導体層形成ガスをプラズマ放電させることによって上記所定の層上に上記下側半導体層を形成する工程と、上記第1半導体層形成ガスに加えて上記第2半導体層形成ガスを上記反応室内に導入し、上記第1半導体層形成ガスおよび上記第2半導体層形成ガスを含む上側半導体層形成ガスをプラズマ放電させることによって上記下側半導体層を覆うように上記上側半導体層を形成する工程と、を有し、上記上側半導体層を形成する工程においては、上記下側半導体層を形成するプラズマ放電処理が終了した後も上記反応室内の圧力が到達真空度にまで減圧されない状態で、上記反応室に供給されるガスの組成設定値が、上記第1半導体層形成ガスの組成から上記上側半導体層形成ガスの組成に変移する。
 本発明の第6の局面に基づく半導体装置の製造方法は、上記第1から上記第4のいずれかの局面に基づく半導体装置の製造方法において、上記半導体層は、下側半導体層と上側半導体層とを含み、上記半導体層を形成する工程は、上記半導体層形成ガスを上記反応室内へ他の所定の時間導入し、上記半導体層形成ガスをプラズマ放電させることによって上記所定の層上に上記下側半導体層を形成する工程と、上記下側半導体層の形成後、上記半導体層形成ガスの導入量が変化され、導入量が変化された上記半導体層形成ガスをプラズマ放電させることによって上記下側半導体層を覆うように上記上側半導体層を形成する工程と、を有し、上記上側半導体層を形成する工程においては、上記下側半導体層を形成するプラズマ放電処理が終了した後も上記反応室内の圧力が到達真空度にまで減圧されない状態で、上記反応室に供給されるガスの組成設定値が、上記下側半導体層を形成する上記半導体層形成ガスの組成から、上記上側半導体層を形成する上記半導体層形成ガスの組成に変移する。
 本発明の第7の局面に基づく半導体装置の製造方法は、上記第1から上記第4のいずれかの局面に基づく半導体装置の製造方法において、上記半導体層は、下側半導体層と上側半導体層とを含み、上記半導体層形成ガスは、半導体材料ガスおよび希釈ガスを含み、上記半導体層を形成する工程は、上記半導体層形成ガスを上記反応室内へ他の所定の時間導入し、上記半導体層形成ガスをプラズマ放電させることによって上記所定の層上に上記下側半導体層を形成する工程と、上記下側半導体層の形成後、上記半導体層形成ガスの上記半導体材料ガスおよび上記希釈ガスの導入量比が変化され、導入量比が変化された上記半導体層形成ガスをプラズマ放電させることによって上記下側半導体層を覆うように上記上側半導体層を形成する工程と、を有し、上記上側半導体層を形成する工程においては、上記下側半導体層を形成するプラズマ放電処理が終了した後も上記反応室内の圧力が到達真空度にまで減圧されない状態で、上記反応室に供給されるガスの組成設定値が、上記下側半導体層を形成する上記半導体層形成ガスの組成から、上記上側半導体層を形成する上記半導体層形成ガスの組成に変移する。
 本発明の第8の局面に基づく半導体装置の製造方法は、上記第1から上記第7のいずれかの局面に基づく半導体装置の製造方法において、上記半導体層の形成後、上記半導体層形成ガスの上記反応室内への導入量は所定の流量に減少する。
 本発明の第9の局面に基づく半導体装置の製造方法は、上記第1から上記第8のいずれかの局面に基づく半導体装置の製造方法において、他の不純物ガスを他の所定の層上に供給することによって、上記他の所定の層上に第2導電型の第2導電型層を形成する工程をさらに備える。
 本発明の第10の局面に基づく半導体装置の製造方法は、上記第9の局面に基づく半導体装置の製造方法において、上記他の不純物ガスは上記反応室内に導入され、上記第2導電型層は上記反応室内において形成される。
 本発明の第11の局面に基づく半導体装置の製造方法は、上記第1から上記第10のいずれかの局面に基づく半導体装置の製造方法において、上記半導体装置は光電変換装置である。
 本発明の第12の局面に基づく半導体装置の製造方法は、上記第1から上記第8のいずれかの局面に基づく半導体装置の製造方法において、上記半導体装置は薄膜トランジスタを有するスイッチング半導体装置である。
 本発明における「半導体層」の用語の意義については次の通りである。本発明における「半導体層」とは、たとえば光電変換装置における真性半導体層(いわゆるi型層)、および実質的な真性半導体層を含む(後述の実施の形態1を参照)。ここでいう真性半導体層とは、完全にノンドープである真性な半導体層のことであり、ここでいう実質的な真性半導体層とは、微量の不純物を含む弱p型半導体層または弱n型半導体層のことである。なお、半導体層および導電型層ともに、非晶質シリコン系層および微結晶シリコン系層を含む。ここでいう非晶質シリコン系層とは、たとえば、a-Si:H、a-SiC:H、a-SiGe:H、a-SiN:Hなどであり、ここでいう微結晶シリコン系層とは、たとえばμc-Si:H、μc-SiGe:Hなどである。
 また、本発明における「半導体層」とは、たとえば逆スタガ型トランジスタにおける非晶質シリコン系層(後述の実施の形態2を参照)および実質的な非晶質シリコン系層を含む。ここでいう非晶質シリコン系層とは、完全にノンドープである非晶質シリコン系層であり、ここでいう実質的な非晶質シリコン系層とは、微量の不純物を含む弱p型非晶質シリコン系層または弱n型非晶質シリコン系層のことである。
 本発明における「半導体層」には、非晶質シリコン層にn型不純物またはp型不純物が十分にドーピングされた非晶質n型シリコン層(いわゆるna-Si層)または非晶質p型シリコン層(いわゆるpa-Si層)は含まれない。
 本発明によれば、プラズマCVD法を使用して半導体層を覆うように導電型層が堆積される半導体装置の製造方法であって、半導体層を形成した後、導電型層を形成するまでの間における生産性を向上させることが可能な半導体装置の製造方法を得ることができる。
実施の形態1における光電変換装置の製造方法により製造される光電変換装置を示す断面図である。 実施の形態1における光電変換装置の製造方法に使用されるプラズマCVD装置を模式的に示す図である。 実施の形態1における光電変換装置の製造方法の各工程を示す図である。 実施の形態1における光電変換装置の製造方法の各工程の一部(ステップS4~ステップS7)における各要素の動作状態を示すタイミングチャートである。 実施の形態2における逆スタガ型薄膜トランジスタの製造方法により製造される逆スタガ型薄膜トランジスタを示す断面図である。 実施の形態2における逆スタガ型薄膜トランジスタの製造方法の各工程を示す図である。
 本発明に基づいた各実施の形態について、以下、図面を参照しながら説明する。以下の各実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。以下に説明する各実施の形態において、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。
 [実施の形態1]
 本実施の形態について、半導体装置の製造方法の一例として、pin接合を有する光電変換装置の製造方法に基づき説明する。本実施の形態における光電変換装置の製造方法においては、プラズマCVD法を使用して半導体層(i型層)を覆うように導電型層(n型層)が堆積される。なお本発明は、半導体装置の製造方法の他の例として、逆スタガ型薄膜トランジスタの製造方法等にも適用され得る。逆スタガ型薄膜トランジスタの製造方法については、後述の実施の形態2において詳述する。
 (光電変換装置100)
 図1を参照して、光電変換装置100について説明する。光電変換装置100は、本実施の形態における光電変換装置の製造方法を使用することによって製造される。光電変換装置100は、一のpin接合を有する第1光電変換層100Aと、他のpin接合を有する第2光電変換層100Bとを含んでいる。
 光電変換装置100は、透明基板1、透明導電膜2、p型層3、i型層4、n型層5、p型層6、i型層7、n型層8、裏面透明導電膜9、および裏面金属電極10が順に積層されることによって構成される。光電変換装置100においては、光が透明基板1側から入射される。光電変換装置100においては、p型層3、i型層4、およびn型層5によって一のpin接合(第1光電変換層100A)が形成されている。光電変換装置100においては、p型層6、i型層7、およびn型層8によって他のpin接合(第2光電変換層100B)が形成されている。
 透明基板1および透明導電膜2は、透光性を有している。透明基板1としては、プラズマCVD形成プロセスにおいて耐熱性および透光性を有するガラス基板、ポリイミド等の樹脂基板等が使用可能である。透明導電膜2は、たとえばSnO:F(FTO)またはZnO:Alである。
 p型層3およびp型層6は、ボロンまたはアルミニウム等のp型不純物原子がドープされている。p型層3はたとえばa-Si:C:B:Hである。p型層6はたとえばμc-Si:B:Hである。
 i型層4およびi型層7は、完全にノンドープである真性な半導体層であってもよく、微量の不純物を含む弱p型半導体層または弱n型半導体層のように、実質的に真性な半導体層であってもよい。
 本実施の形態におけるi型層4は、p側バッファー層4a、バルク層4b、およびn側バッファー層4cが順に積層されることによって構成される。バルク層4bはたとえばa-Si:H(水素化非晶質シリコン層)、またはa-SiGe:H(水素化非晶質シリコンゲルマニウム層)である。
 本実施の形態におけるi型層7は、p側バッファー層7a、バルク層7b、およびn側バッファー層7cが順に積層されることによって構成される。バルク層7bはたとえばμc-Si:H(水素化微結晶シリコン層)またはμc-SiGe:H(水素化微結晶シリコンゲルマニウム層)である。p側バッファー層4a,7aおよびn側バッファー層4c,7cは、必要に応じて形成されているとよい。
 n型層5およびn型層8は、リン等のn型不純物原子がドープされている。本実施の形態におけるn型層5は、基板側n型層5aおよび裏面側n型層5bが順に積層されることによって構成される。基板側n型層5aはたとえばa-Si:P:Hである。裏面側n型層5bはたとえばμc-Si:P:Hである。n型層8は、n型層5と同様に構成されていてもよい。
 (プラズマCVD装置200)
 図2を参照して、本実施の形態における光電変換装置の製造方法において使用されるプラズマCVD装置200について説明する。プラズマCVD装置200は、反応室70、カソード電極71、整合器73、高周波電源75、アノード電極81、圧力調整用バルブ83、排気バルブ85、真空ポンプ87、ガス導入系90、およびガス導入部92を備えている。
 反応室70は密閉可能な筐体から構成される。反応室70内に搬入された透明基板1は、反応室70内で、p型層、i型層、およびn型層を形成されることが可能となっている。カソード電極71およびアノード電極81は、反応室70内にそれぞれ設置され、平行平板型の電極構造を呈している。カソード電極71およびアノード電極81の電極間距離は、所望の処理条件に従って決定され、たとえば1mmから40mmである。
 カソード電極71に接続された整合器73と、整合器73に接続された高周波電源75とは、反応室70外にそれぞれ設置されている。高周波電源75は、整合器73を通してカソード電極71に電力を供給する。整合器73は、高周波電源75と、カソード電極71およびアノード電極81との間のインピーダンスを整合する。
 高周波電源75は、CW(連続波形)交流出力、またはパルス変調(オンオフ制御)された交流電力(RF電力)を出力する。高周波電源75は、これらの交流電力を切り換えて出力してもよい。高周波電源75から出力される交流電力の周波数は、たとえば13.56MHzである。高周波電源75から出力される交流電力の周波数は、数kHzからVHF帯、またはマイクロ波帯であってもよい。
 アノード電極81は電気的に接地されている。アノード電極81上に、透明基板1が載置される。透明基板1は、透明導電膜2(図2において図示せず)が形成された状態でアノード電極81上に載置されてもよい。透明基板1は、透明導電膜2およびp型層3が形成された状態でアノード電極81上に載置されてもよい。透明基板1は、カソード電極71上に載置されてもよいが、プラズマ中のイオンダメージによる膜質低下を低減するため、アノード電極81上に設置されるとよい。
 反応室70外に配置されたガス導入系90は、順に接続されたバルブ11、SiHガス用流量制御装置13、およびバルブ15と、順に接続されたバルブ21、Hガス用流量制御装置23、およびバルブ25と、順に接続されたバルブ31、PH/Hガス用流量制御装置33、およびバルブ35と、順に接続されたバルブ41、B/Hガス用流量制御装置43、およびバルブ45と、順に接続されたバルブ51、CHガス用流量制御装置53、およびバルブ55と、順に接続されたバルブ61、GeH/Hガス用流量制御装置63、およびバルブ65とを含んでいる。バルブ11,21,31,41,51,61は、反応室70の内部に連通するガス導入部92に接続されている。
 バルブ15はシランガス(SiHガス)を供給するボンベ(図示せず)に接続される。シランガス(SiHガス)は、バルブ11およびバルブ15が開かれることによって、このボンベからSiHガス用流量制御装置13およびガス導入部92を通して反応室70に導入される。
 バルブ25は水素ガス(Hガス)を供給するボンベ(図示せず)に接続される。水素ガス(Hガス)は、バルブ21およびバルブ25が開かれることによって、このボンベからHガス用流量制御装置23およびガス導入部92を通して反応室70に導入される。
 バルブ35はホスフィンガス(PH/Hガス)を供給するボンベ(図示せず)に接続される。ホスフィンガス(PH/Hガス)は、バルブ31およびバルブ35が開かれることによって、このボンベからPH/Hガス用流量制御装置33およびガス導入部92を通して反応室70に導入される。
 バルブ45はジボランガス(B/Hガス)を供給するボンベ(図示せず)に接続される。ジボランガス(B/Hガス)は、バルブ41およびバルブ45が開かれることによって、このボンベからB/Hガス用流量制御装置43およびガス導入部92を通して反応室70に導入される。
 バルブ55はメタンガス(CHガス)を供給するボンベ(図示せず)に接続される。メタンガス(CHガス)は、バルブ51およびバルブ55が開かれることによって、このボンベからCHガス用流量制御装置53およびガス導入部92を通して反応室70に導入される。
 バルブ65はGeH/Hガスを供給するボンベ(図示せず)に接続されている。GeH/Hガスは、バルブ61およびバルブ65が開かれることによって、このボンベからGeH/Hガス用流量制御装置63およびガス導入部92を通して反応室70に導入される。
 順に接続された圧力調整用バルブ83、排気バルブ85、および真空ポンプ87は、いずれも反応室70外に設置され、圧力調整用バルブ83が反応室70に接続されている。真空ポンプ87は、反応室70内のガス圧力を10-6Torr(≒10-4Pa)以下の圧力に高真空排気できるものを適用できる。真空ポンプ87は、装置の簡易化、低コスト化およびスループット向上の観点から、反応室70内の到達真空度を10-3Torr(≒0.1Pa)とする排気能力を有するものであってもよい。
 半導体装置の基板サイズが大きくなることに伴って、反応室70の容量が大きくなる。大容量の反応室70内を高真空排気する場合、高性能な真空ポンプ87を使用することができる。簡易な低真空用の真空ポンプ87を使用することも可能であり、この場合、装置の簡易化および低コスト化を実現できる。簡易な低真空用の真空ポンプ87としては、たとえばドライポンプ、ロータリーポンプ、メカニカルブースターポンプ等が挙げられ、これらを単独又は2以上の組合せで用いるとよい。
 本実施の形態で用いるプラズマCVD装置の反応室70の容積はたとえば約1mである。真空ポンプ87としては、メカニカルブースターポンプとロータリーポンプとを直列に接続したものを使用することができる。あるいは、ドライポンプを使用することができる。
 圧力調整用バルブ83、排気バルブ85、および真空ポンプ87によって、反応室70内のガス圧力が所定の値に設定される(詳細は後述する)。反応室70内の圧力が所定の値に設定された状態で、高周波電源75および整合器73によって、カソード電極71に所定の電力が供給される。カソード電極71とアノード電極81との間にプラズマが発生し、反応室70内に供給されたガスが分解され、透明基板1に対してp型層、i型層、またはn型層等が形成される(詳細は次述する)。
 (光電変換装置100の製造方法)
 図3を参照して、光電変換装置100の製造方法(ステップS1~ステップS14)について、以下順に説明する。後述するステップS4~ステップS7については、図4に示すタイミングチャートも参照して説明する。
 (ステップS1:透明基板搬入工程、ステップS2:透明導電膜形成工程)
 まず、透明基板1がプラズマCVD装置200における反応室70内に搬入される(ステップS1)。反応室70内において、透明基板1上に透明導電膜2が形成される(ステップS2)。他の装置(図示せず)においてCVD、スパッタ、または蒸着等の方法を使用して透明基板1上に透明導電膜2が形成され、その後、透明基板1は透明導電膜2が形成された状態で反応室70内に搬入されてもよい。
 (ステップS3:ガス置換工程)
 反応室70内には、ステップS2において導入された不純物や、ステップS1において透明基板1が搬入された時に外部から混入した不純物が残留している。この不純物が、後述するステップS4において形成されるp型層3に取り込まれると、p型層3の品質が低下する。反応室70内の不純物の濃度を低減するために、反応室70内を置換ガスにより置換する(ステップS3)。
 具体的には、反応室70内に置換ガスとしてたとえば水素ガス(Hガス)が導入される。反応室70内の圧力が所定の圧力(たとえば100Paから1000Pa)に達した後、水素ガスの導入が停止される。水素ガスの導入は、たとえば約1秒~約5秒間かけて行なわれる。所定の時間が経過した後、圧力調整用バルブ83および排気バルブ85が開かれ、真空ポンプ87によって圧力が所定の圧力(たとえば1Paから10Pa)になるまで反応室70内の水素ガス等が排気される。真空ポンプ87による排気は、たとえば約30秒~約60秒間かけて行なわれる。
 水素ガスの導入と、真空ポンプ87による排気とは、複数回繰り返されてもよい。この場合、水素ガス導入後の反応室70の内部における圧力と、水素ガス排気後の反応室70の内部における圧力とが予め設定される。水素ガスの導入時には、反応室70からの排気は停止される。反応室70の内部における圧力が予め設定された圧力以上となったとき、水素ガスの導入が停止される。水素ガスの排気時には、水素ガスの導入は停止される。反応室70の内部の圧力が予め設定された圧力以下となったとき、水素ガスの排気が停止される。
 置換ガスとしては、水素ガスに限られず、後述するi型層4の形成(ステップS6)に使用されるシランガス(SiHガス)等が使用されてもよい。i型層4の形成に用いられるガス(半導体層形成ガス)は、p型層3、i型層4およびn型層5の形成のいずれにも使用され得る。置換ガスとしてi型層4の形成に用いられるガスを使用することによって、このガスが原因となってp型層3またはn型層5に不純物が混入することがなくなる。
 置換ガスとしては、アルゴンガス(Arガス)、ネオンガス(Neガス)、またはキセノンガス(Xeガス)等の不活性ガス等が使用されてもよい。原子量の大きなガスは、反応室70内を排気した際に反応室70内に残り易いため、置換ガスとして好適に使用され得る。置換ガスとしては、i型層4の形成(ステップS5)に用いられるガス(半導体層形成ガス)のいずれか1種以上と、1種以上の不活性ガスとからなる混合ガスであってもよい。
 (ステップS4:p型層形成工程)
 ステップS3において反応室70内がガス置換された後、透明導電膜2を覆うようにp型層3(第2導電型層)が形成される(ステップS4)。ここで、図4は、ステップS4~ステップS7における各要素のタイミングチャートを模式的に示している(ステップS8の詳細については図示していない)。
 図4においては、交流電力(RF電力)のOn/Off、SiHバルブ(図2におけるバルブ11,15に対応)のOn/Off、シランガス(SiHガス)の反応室70内への流量、Hバルブ(図2におけるバルブ21,25に対応)のOn/Off、水素ガス(Hガス)の反応室70内への流量、PHガスバルブ(図2におけるバルブ31,35に対応)のOn/Off、PH/Hガスの反応室70内への流量、これらの混合されたガスの圧力調整用バルブ83と排気バルブ85と真空ポンプ87とによって調節される反応室70内における設定圧力P、および排気バルブ85のOn/Offの各状態が経時的に示されている。図4に示す交流電力(RF電力)のOn/Offについては、連続放電およびパルス放電のいずれの状態であっても、放電中の状態はOnとして示され、非放電中の状態はOffとして示されている。
 図2および図4を参照して、p型層3を形成するために、反応室70内にp型層形成用不純物ガスが導入される。このとき、排気バルブ85は開いており(排気バルブOn)、反応室70内は圧力調整用バルブ83によって所定の圧力に調整されている。p型層形成用不純物ガスが導入されている際、PHバルブは閉じられており(PHバルブOff)、ホスフィンガス(PHガス)は反応室70に導入されていない。
 p型層形成用不純物ガスは、シランガス(SiHガス)と、水素ガス(Hガス)と、ジボランガス(Bガス)とを含んでいる。シランガス(SiHガス)は、SiHバルブが開かれることによって(SiHバルブOn)、所定の流量(図4におけるSiH(p))が導入される。水素ガス(Hガス)も、Hバルブが開かれることによって(HバルブOn)、所定の流量(図4におけるH(p))が導入される。図4においては記載していないが、ジボランガス(Bガス)も所定の流量が導入される。
 シランガス(SiHガス)に対する水素ガス(Hガス)の流量は、たとえば数倍から数十倍である。p型層形成用不純物ガスは、光吸収量を低減するために炭素原子を含むメタンガス(CHガス)(図4において図示せず)を含んでいてもよい。
 上述のとおり、p型層形成用不純物ガスが導入されている状態で、圧力調整用バルブ83によって反応室70内の圧力が略一定に保たれる(図4における設定圧力P(p))。高周波電源75および整合器73によって、カソード電極71に交流電力が投入される(RF電力On)。カソード電極71とアノード電極81との間にプラズマが発生する。p型層形成用不純物ガスはプラズマ放電によって分解(解離)および拡散され、透明導電膜2を覆うようにp型層3が形成される。p型層3の形成後、高周波電源75による交流電力の投入が停止される(RF電力Off)。
 (ステップS5:ガス置換工程)
 次に、上述のステップS3と同様の方法により、ガス置換工程が行なわれる。当該ガス置換工程によって、不純物(特にp型層3の導電型を決定する不純物)が、ステップS6において形成されるi型層4に混入することが抑制される。
 具体的には、SiHバルブが閉じられることによって(SiHバルブOff)、シランガス(SiHガス)の反応室70内への導入が停止される。Hバルブが閉じられることによって(HバルブOff)、水素ガス(Hガス)の反応室70内への導入が停止される。同様に、ジボランガス(Bガス)の反応室70内への導入も停止される。これらの各ガスの導入が停止された後、排気バルブ85が開かれた状態で(排気バルブOn)、真空ポンプ87によって反応室70内の圧力が所定の圧力(図4における設定圧力P(0)、たとえば1Paから10Pa)になるまで反応室70が真空排気される。
 次に、排気バルブ85が閉じられるとともに(排気バルブOff)、水素ガス(Hガス)が導入される(HバルブOn)。水素ガス(Hガス)は、反応室70内の圧力が所定の圧力(図4における設定圧力P(F))になるまで導入される。その後、水素ガス(Hガス)の導入が停止されるとともに(HバルブOff)、排気バルブ85がふたたび開かれる(排気バルブOn)。真空ポンプ87によって、反応室70内の圧力が所定の圧力(図4における設定圧力P(0))になるまで真空排気される。これらの水素ガスの導入と、真空ポンプ87による排気とは、複数回繰り返されてもよい。以上により、ガス置換工程が完了する。
 (ステップS6:i型層形成工程)
 次に、i型層4が形成される(ステップS6)。i型層4としては、完全にノンドープである真性半導体層であってもよく、微量の不純物を含む弱p型半導体層または弱n型半導体層のように、実質的な真性半導体層であってもよい。
 本実施の形態におけるステップS6では、i型層4のうち、まずp側バッファー層4aが形成される(ステップS6a)。排気バルブ85が開かれた状態で(排気バルブOn)、半導体層形成ガスとして、シランガス(SiHガス)および水素ガス(Hガス)が反応室70内に導入される(SiHバルブOn、HバルブOn)。シランガス(SiHガス)の流量(図4におけるSiH(i))に対する水素ガス(Hガス)の流量(図4におけるH(i))は、たとえば約1倍から約50倍である。半導体層形成ガスは、ジシランガス(Siガス)、ゲルマンガス(GeHガス)、または光吸収量を低減するために炭素原子を含むメタンガス(CHガス)を含んでいてもよい。半導体層形成ガスは、アルゴンガス(Arガス)、またはヘリウムガス(Heガス)を含んでいてもよい。
 半導体層形成ガスが導入されている状態で、圧力調整用バルブ83によって反応室70内の圧力が略一定に保たれる(図4における設定圧力P(i)。なお、p側バッファー層4a形成のための設定圧力はバルク層4b形成のための設定圧力と異なっていてもよい)。高周波電源75および整合器73によって、カソード電極71に交流電力が投入される(RF電力On)。カソード電極71とアノード電極81との間にプラズマが発生する。半導体層形成ガスはプラズマ放電によって分解(解離)および拡散され、p型層3を覆うようにp側バッファー層4aが形成される。p側バッファー層4aの形成によって、反応室70内の雰囲気中のボロン原子濃度が低下し、次述するステップS6bにおいて形成されるバルク層4bへのボロン原子の混入が低減される。
 次に、i型層4のうち、バルク層4bがp側バッファー層4a上に形成される(ステップS6b)。ステップS6aの状態において、SiHガス用流量制御装置13およびHガス用流量制御装置23の調節によって、シランガス(SiHガス)に対する水素ガス(Hガス)の流量(導入量比)がたとえば約35倍から約70倍に変更される(図4において詳細は記載していない)。
 シランガス(SiHガス)に対する水素ガス(Hガス)の流量(導入量比)の変更は、半導体層形成ガスの全体としての導入量を維持した状態で、シランガス(SiHガス)および水素ガス(Hガス)の各々の導入量を変更することによって実現されるとよい。また、シランガス(SiHガス)に対する水素ガス(Hガス)の流量の変更としては、シランガス(SiHガス)および水素ガス(Hガス)の各々の導入量が変更された結果、半導体層形成ガスの全体としての導入量が増減されていてもよい。
 このときも、排気バルブ85が開かれた状態で、圧力調整用バルブ83によって反応室70内の圧力が略一定に保たれる(図4における設定圧力P(i))。流量比(混合比)が変更された半導体層形成ガスは、プラズマ放電によって分解(解離)および拡散され、p側バッファー層4aを覆うようにバルク層4bが形成される。
 次に、i型層4のうち、n側バッファー層4cが形成される(ステップS6c)。上記のステップS6bの状態において、SiHガス用流量制御装置13およびHガス用流量制御装置23の調節によって、シランガス(SiHガス)に対する水素ガス(Hガス)の流量がたとえば約1倍から約50倍に変更される(図4において詳細は記載していない)。このときも、排気バルブ85が開かれた状態で、圧力調整用バルブ83によって反応室70内の圧力が略一定に保たれる(図4における設定圧力P(i)。なお、n側バッファー層4c形成のための設定圧力はバルク層4b形成のための設定圧力と異なっていてもよい)。
 流量比(混合比)が変更された半導体層形成ガスは、プラズマ放電によって分解(解離)および拡散され、バルク層4bを覆うようにn側バッファー層4cが形成される。こうして、p側バッファー層4a、バルク層4b、およびn側バッファー層4cが積層されることによってi型層4が形成される。p側バッファー層4aおよびn側バッファー層4cは、必要に応じて形成されるとよい。所定の厚さのi型層4(n側バッファー層4c)が形成された後、高周波電源75による交流電力の投入が停止される(RF電力Off)。
 (ステップS7:n型層形成工程)
 次に、n型層5(第1導電型層)のうち、まず基板側n型層5a(下側第1導電型層)が形成される(ステップS7a)。なお、ここで言うn型層5は、光電変換装置100のようにいわゆるスーパーストレート型薄膜光電変換装置においてはn型層に相当する。ここで言うn型層5は、いわゆるサブストレート型薄膜光電変換装置においてはp型層に相当する。ここで言うn型層5は、いわゆる逆スタガ型薄膜トランジスタにおいてはn型層(na-Si層)に相当する(逆スタガ型薄膜トランジスタの詳細については実施の形態2において後述する)。
 ステップS7aにおいては、半導体層形成ガスとしてのシランガス(SiHガス)および水素ガス(Hガス)が反応室70内に供給されている状態で、これらに加えてn型不純物ガスが反応室70内に導入される。このn型不純物ガスは、ホスフィンガス(PHガス)を含む。ホスフィンガス(PHガス)は、PH/Hバルブが開かれることによって(PH/HバルブOn)、反応室70内に導入される。なお、n型不純物ガスが導入される際、シランガス(SiHガス)および水素ガス(Hガス)の導入条件(流量、混合比など)は、i型層4形成のための条件と、n型層5(基板側n型層5a)形成のための条件とで異なっていてもよい。
 ここで、n型層5(基板側n型層5a)の形成においては、i型層4(n側バッファー層4c)を形成するプラズマ放電処理が終了した後も半導体層形成ガスの反応室70内への導入が停止されない状態で、n型不純物ガスが反応室70内に導入されるとよい。i型層4(n側バッファー層4c)を形成するプラズマ放電処理が終了した後、半導体層形成ガスの反応室70内への導入が(少なくとも1回の導入/停止を伴って)断続的に行なわれつつ、n型不純物ガスが反応室70内に導入されてもよい。半導体層形成ガスとn型不純物ガスとは混合されてn型層形成用ガスとなる。i型層4(n側バッファー層4c)を形成するプラズマ放電処理が終了した後も反応室70内の圧力が到達真空度にまで減圧されない状態で、反応室70の組成設定値(雰囲気)は、半導体層形成ガスの組成(半導体層形成ガスが支配的な状態)から、n型層形成用ガス(n型不純物ガスと半導体層形成ガスとの適切な混合ガス)の組成(n型層形成用ガスが支配的な状態)に変移する。
 ここで言う半導体層形成ガスが支配的な状態(雰囲気)とは、半導体層形成ガスの供給組成(設定値)から規定される雰囲気である。ここで言うn型層形成ガスが支配的な状態(雰囲気)とは、n型層形成ガスの供給組成(設定値)から規定される雰囲気である。
 ここで言う到達真空度とは、真空ポンプ87による反応室70内から反応室70外へのガス成分の流出量が実質的に無い(ゼロ)の状態のことである。また、ここで言う反応室70内の圧力が到達真空度にまで減圧されない状態とは、反応室70内が到達真空度よりは高圧である状態のことである。なお、図4における設定圧力P(0)は、圧力調整用バルブ83が全開にされた状態を意味し、反応室70内の圧力は必ずしも到達真空度になってはいない。
 半導体層形成ガスおよびn型不純物ガスが反応室70内に導入されている状態で、圧力調整用バルブ83によって反応室70内の圧力が略一定に保たれる(図4における設定圧力P(n))。n型層5aの形成が開始されるにあたっては、シランガス(SiHガス)の流量(図4におけるSiH(n))に対する水素ガス(Hガス)の流量(図4におけるH(n))は、たとえば約5倍から約300倍に設定される。
 より短い時間で、半導体層形成ガスが支配的な状態を、n型層形成用ガスが支配的な状態に変移させるために、シランガス(SiHガス)および水素ガス(Hガス)の反応室70内への導入量を、図4に示すように少なくしてもよい。半導体層形成ガスの反応室70内への導入量が少なくなる場合、半導体層形成ガスが支配的な状態(雰囲気)とは、i型層4の形成が完了する直前における半導体層形成ガスの供給組成(設定値)から規定される雰囲気である。半導体層形成ガスが支配的な状態が、n型層形成用ガスが支配的な状態に変移するまでの間、図4に示すように交流電力の投入を停止してもよい(RF電力Off)。
 半導体層形成ガスが支配的な状態が、n型層形成用ガスが支配的な状態に変移した後、高周波電源75および整合器73によって、カソード電極71に交流電力が投入される(RF電力On)。カソード電極71とアノード電極81との間にプラズマが発生する。n型層形成用ガスはプラズマ放電によって分解(解離)および拡散され、i型層4(n側バッファー層4c)を覆うように、基板側n型層5aが形成される。
 次に、n型層5のうち、裏面側n型層5b(上側第1導電型層)が基板側n型層5a上に形成される(ステップS7b)。ステップS7aの状態において、SiHガス用流量制御装置13およびHガス用流量制御装置23の調節によって、シランガス(SiHガス)に対する水素ガス(Hガス)の流量がたとえば約30倍から約300倍に変更される(図4において詳細は記載していない)。このときも、排気バルブ85が開かれた状態で、圧力調整用バルブ83によって反応室70内の圧力が略一定に保たれる(図4における設定圧力P(n))。
 上記の調節によって、半導体層形成ガスの導入量に対するホスフィンガス(PHガス)の導入量比(混合比)も変化される。導入量比が変化されたホスフィンガス(PHガス)および半導体層形成ガスを含むn型層形成用ガスは、プラズマ放電によって分解(解離)および拡散され、基板側n型層5aを覆うように裏面側n型層5bが形成される。所定の厚さのn型層5(裏面側n型層5b)が形成された後、高周波電源75による交流電力の投入が停止される(RF電力Off)。
 n型層5における基板側n型層5aと裏面側n型層5bとの積層構造は、必要に応じて採用されるとよい。n型層5としては、SiHガス用流量制御装置13および/またはHガス用流量制御装置23および/またはPH/Hガス用流量制御装置33の調節によって、不純物濃度の異なる複数のn型の層を形成してもよい。n型層5としては、n型非晶質層およびn型微結晶層が積層されることによって形成されてもよく、n型非晶質層のみから形成されてもよく、n型微結晶層のみから形成されてもよい。
 なお、n型層5が、不純物濃度の異なる複数のn型の層が積層されることによって形成される場合、または、n型非晶質層およびn型微結晶層が積層されることによって形成される場合、n型層形成ガスが支配的な状態(雰囲気)とは、i型層4(n側バッファー層4c)と接する層の形成開始時におけるn型層形成ガス供給組成(設定値)から規定される雰囲気である。以上により、透明導電膜2上に、pin接合を有する第1光電変換層100Aが形成される。
 (ステップS8:ガス置換工程)
 次に、上述のステップS3と同様の方法により、ガス置換工程が行なわれる。当該ガス置換工程によって、不純物(特にn型層5の導電型を決定する不純物)が、次述するステップS9において形成されるp型層6に混入することが抑制される。
 (ステップS9:p型層形成工程)
 次に、第1光電変換層100Aにおけるp型層3と同様に、裏面側n型層5bを覆うようにp型層6が形成される。
 (ステップS10:ガス置換工程)
 次に、上述のステップS5と同様の方法により、ガス置換工程が行なわれる。当該ガス置換工程によって、不純物(特にp型層6の導電型を決定する不純物)が、次述するステップS11において形成されるi型層7に混入することが抑制される。
 (ステップS11:i型層形成工程)
 次に、上述のステップS6におけるステップS6a、ステップS6bおよびステップS6cと同様の方法により、p側バッファー層7a、バルク層7b、およびn側バッファー層7cがそれぞれ形成される。
 (ステップS12:n型層形成工程)
 次に、上述のステップS7と同様の方法により、n型層8を形成する。n型層8は、n型微結晶層とn型非晶質層との積層構造にすることができる。あるいは、n型層8は、n型微結晶層とn型非晶質層とのどちらか一方のみにすることができる。また、n型層8は、不純物濃度の異なる複数のn型の層が積層されることによって形成することができる。あるいは、n型層8は、所定の不純物濃度を有する単一の層から形成されることができる。
 半導体層形成ガスとしてシランガス(SiHガス)および水素ガス(Hガス)が反応室70内に供給されている状態で、これらに加えてn型不純物ガスが反応室70内に導入される。このn型不純物ガスは、ホスフィンガス(PHガス)を含む。
 ここで、n型層8の形成においては、i型層7を形成するプラズマ放電処理が終了した後も半導体層形成ガスの反応室70内への導入が停止されない状態で、n型不純物ガスが反応室70内に導入されるとよい。i型層7を形成するプラズマ放電処理が終了した後、半導体層形成ガスの反応室70内への導入が(少なくとも1回の導入/停止を伴って)断続的に行なわれつつ、n型不純物ガスが反応室70内に導入されてもよい。半導体層形成ガスとn型不純物ガスとは混合されてn型層形成用ガスとなる。i型層7を形成するプラズマ放電処理が終了した後も反応室70内の圧力が到達真空度にまで減圧されない状態で、反応室70の組成設定値(雰囲気)は、半導体層形成ガスの組成(半導体層形成ガスが支配的な状態)から、n型層形成用ガスの組成(n型層形成用ガスが支配的な状態)に変移する。
 半導体層形成ガスが支配的な状態が、n型層形成用ガスが支配的な状態に変移した後、高周波電源75および整合器73によって、カソード電極71に交流電力が投入される(RF電力On)。カソード電極71とアノード電極81との間にプラズマが発生する。n型層形成用ガスはプラズマ放電によって分解(解離)および拡散され、i型層7(n側バッファー層7c)を覆うように、n型層8が形成される。以上により、第1光電変換層100A上に、pin接合を有する第2光電変換層100Bが形成される。
 (ステップS13:裏面透明導電膜形成工程)
 次に、第2光電変換層100B(n型層8)上に裏面透明導電膜9が形成される。裏面透明導電膜9は、CVD、スパッタ、蒸着等の方法を使用することによって、SnO、ITO、またはZnOなどから形成される。
 (ステップS14:裏面金属電極形成工程)
 次に、裏面透明導電膜9上に、裏面金属電極10を形成する。裏面金属電極10は、CVD、スパッタ、蒸着等の方法を使用することによって、銀、またはアルミニウム等の金属から形成される。以上により、本実施形態の光電変換装置100の製造工程が完了する。
 (作用・効果)
 本実施の形態における光電変換装置100の製造方法によれば、i型層4の形成後に、反応室70内が高真空排気されることなくn型層5の形成が開始される。また、i型層7の形成後に、反応室70内が高真空排気されることなくn型層8の形成が開始される。当該方法によれば、n型層5およびn型層8の形成前に、反応室70を一旦高真空排気するためのエネルギーおよび時間が不要となっており、生産性が向上している。
 n型層5の形成(ステップS7)について、透明基板1が反応室70内に搬入されたときに(ステップS1)、透明基板1とともに水分などの不純物が反応室70内に混入しているおそれがあると考えられる。この水分などの不純物は、ガス置換工程(ステップS3)、p型層形成工程(ステップS4)、およびガス置換工程(ステップS5)を経ることによって、i型層形成工程(ステップS6)の終了時には、反応室70の内壁や、真空排気系(圧力調整用バルブ83、排気バルブ85、および真空ポンプ87)付近に付着していると考えられる。
 この状態で、冒頭に説明した特開平04-266067号公報(特許文献1)および特開2009-004702号公報(特許文献2)のように、反応室70内の真空度が10-4Pa(10-6Torr)以下となるように高真空排気されると、反応室70内や真空排気系に付着している水分などが離脱し、反応室70内のガス雰囲気中に一旦浮遊する。当該浮遊によって、水分などは処理対象である透明基板1(i型層4)に付着する。透明基板1(i型層4)に付着した水分などは、ガス置換によっても透明基板1(i型層4)上に残留することが懸念される。
 本実施の形態における光電変換装置100の製造方法によれば、i型層4の形成後のn型層5を形成する段階においても、反応室70内には半導体層形成ガスが存在している。n型層5が形成されるとき、反応室70内は高真空排気されないため、水分などが浮遊することがほとんどなく、処理対象である透明基板1(i型層4)に付着することもほとんどない。仮に、反応室70内や真空排気系に付着している水分などが反応室70内のガス雰囲気中に浮遊したとしても、水分などは、反応室70内に存在している半導体層形成ガスに衝突することによって、処理対象である透明基板1(i型層4)へ到達することが抑制されると考えられる。
 したがって、本実施の形態における光電変換装置100の製造方法によれば、n型層5を形成する段階においても反応室70内には半導体層形成ガスが存在していることによって、n型層5に水分などの不純物が混入することがほとんどない。これは、n型層8の形成についても同様である。
 i型層4の形成において、p側バッファー層4a、バルク層4b、およびn側バッファー層4cを形成するために、SiHガス用流量制御装置13および/またはHガス用流量制御装置23の調節によって、シランガス(SiHガス)に対する水素ガス(Hガス)の流量が変更されている。SiHバルブおよびHバルブが開閉されることが無いため、これらの耐用時間が長くなっている。これは、i型層7の形成についても同様である。
 n型層5の形成においても同様に、基板側n型層5a、および裏面側n型層5bを形成するために、SiHガス用流量制御装置13および/またはHガス用流量制御装置23および/またはPH/Hガス用流量制御装置33の調節によって、シランガス(SiHガス)、水素ガス(Hガス)、およびPH/Hガスの流量比が変更されている。SiHバルブ、Hバルブ、およびPH/Hガスバルブが開閉されることが無いため、これらの耐用時間が長くなっている。
 本実施の形態における光電変換装置100の製造方法は、1つの反応室70内で各層が透明基板1に堆積される、いわゆるシングルチャンバ式である。複数の反応室を備える、いわゆるマルチチャンバ式等に比べて、設備費用およびランニングコストが安くなっている。本実施の形態における光電変換装置100の製造方法によれば、より安価に光電変換装置を得ることが可能となる。
 [実施の形態1の他の形態]
 上述の光電変換装置100の製造方法においては、透明基板1(透明導電膜2)上に、第1光電変換層100Aおよび第2光電変換層100Bが形成される。透明基板1(透明導電膜2)上には、第1光電変換層100Aのみが形成されてもよい。透明基板1(透明導電膜2)上には、第1光電変換層100A、第2光電変換層100B、および他の複数の光電変換層が形成されてもよい。
 上述の光電変換装置100の製造方法においては、第1光電変換層100Aとして、p型層3、i型層4、およびn型層5が反応室70内にて連続的に形成されている。反応室70とは別の反応室において、透明基板1上の透明導電膜2を覆うようにp型層3を形成し、これが反応室70内に搬入された後、上述のi型層形成工程(ステップS6)およびn型層形成工程(ステップS7)が実施されてもよい。この場合、上述のi型層形成工程(ステップS6)の前に、必要に応じて上述のガス置換工程(ステップS5)も実施されるとよい。これは、第2光電変換層100Bにおけるガス置換工程(ステップS10)、i型層形成工程(ステップS11)、およびn型層形成工程(ステップS12)についても同様である。
 上述の光電変換装置100の製造方法においては、i型層4が、p側バッファー層4a、バルク層4b、およびn側バッファー層4cから形成されている。i型層4としては、p側バッファー層4a(下側半導体層)およびバルク層4b(上側半導体層)から形成されていてもよい。i型層4としては、バルク層4b(下側半導体層)およびn側バッファー層4c(上側半導体層)から形成されていてもよい。i型層7についても同様である。
 上述の光電変換装置100の製造方法においては、i型層4の形成のために、半導体材料ガスとしてシランガス(SiHガス)が用いられ、希釈ガスとして水素ガス(Hガス)が用いられる。半導体材料ガスとしては、ジシランガス(Siガス)、ゲルマンガス(GeHガス)、またはメタンガス(CHガス)などが用いられてもよい。希釈ガスとしては、アルゴンガス(Arガス)、ヘリウムガス(Heガス)、または窒素ガス(Nガス)などが用いられてもよい。
 上述の光電変換装置100の製造方法においては、i型層4が、SiHガス用流量制御装置13およびHガス用流量制御装置23の調節によって、p側バッファー層4a、バルク層4b、およびn側バッファー層4cから形成されている。i型層4としては、半導体層形成ガス(第1半導体層形成ガス)の導入によってp側バッファー層4aが形成され、他の半導体層形成ガス(第2半導体層形成ガス)の導入によってバルク層4bが形成され、さらに他の半導体層形成ガスの導入によってn側バッファー層4cが形成されてもよい。
 半導体層形成ガスとしてシランガス(SiHガス)および水素ガス(Hガス)からなる混合ガスが採用される場合、他の半導体層形成ガスとしては、ジシランガス(Siガス)などが採用され得る。他の半導体層形成ガスとしてジシランガス(Siガス)が採用される場合、高速な成膜を実現することができる。
 この場合、半導体層形成ガスを反応室70内に導入し、半導体層形成ガスをプラズマ放電させることによってp型層3上にp側バッファー層4aを形成する。次に、半導体層形成ガスに加えて、他の半導体層形成ガスを反応室70内に導入する。半導体層形成ガスと他の半導体層形成ガスとからなる混合ガス(上側半導体層形成ガス)をプラズマ放電させることによって、p側バッファー層4aを覆うようにバルク層4bを形成する。
 ここで、バルク層4bの形成においては、p側バッファー層4aを形成するプラズマ放電処理が終了した後も半導体層形成ガスの反応室70内への導入が停止されない状態で、他の半導体層形成ガスが反応室70内に導入されるとよい。p側バッファー層4aを形成するプラズマ放電処理が終了した後、半導体層形成ガスの反応室70内への導入が(少なくとも1回の導入/停止を伴って)断続的に行なわれつつ、他の半導体層形成ガスが反応室70内に導入されてもよい。
 同様に、他の半導体層形成ガスに加えて、さらに他の半導体層形成ガスを反応室70内に導入する。他の半導体層形成ガスとさらに他の半導体層形成ガスとからなる混合ガスをプラズマ放電させることによってバルク層4bを覆うようにn側バッファー層4cを形成する。
 n側バッファー層4cの形成においても上記同様に、バルク層4bを形成するプラズマ放電処理が終了した後も他の半導体層形成ガスの反応室70内への導入が停止されない状態で、さらに他の半導体層形成ガスが反応室70内に導入されるとよい。バルク層4bを形成するプラズマ放電処理が終了した後、他の半導体層形成ガスの反応室70内への導入が(少なくとも1回の導入/停止を伴って)断続的に行なわれつつ、さらに他の半導体層形成ガスが反応室70内に導入されてもよい。
 p側バッファー層4aの形成後に、反応室70内が高真空排気されることなくバルク層4bの形成が開始される。バルク層4bの形成後に、反応室70内が高真空排気されることなくn側バッファー層4cの形成が開始される。反応室70を一旦高真空排気するためのエネルギーおよび時間が不要となっており、生産性が向上する。これは、i型層7についても同様である。
 上述の光電変換装置100の製造方法においては、n型層5が、SiHガス用流量制御装置13および/またはHガス用流量制御装置23および/またはPH/Hガス用流量制御装置33の調節によって、基板側n型層5a、および裏面側n型層5bから形成されている。n型層5としては、n型不純物ガス(第1不純物ガス)の導入によって基板側n型層5aが形成され、他のn型不純物ガス(第2不純物ガス)の導入によって裏面側n型層5bが形成されてもよい。
 この場合、n型不純物ガスを(n側バッファー層4cを形成するための半導体層形成ガスに加えて)反応室70内に導入する。半導体層形成ガスとn型不純物ガスとからなるn型層形成用ガス(下側第1導電型層形成ガス)をプラズマ放電させることによってn側バッファー層4c上に基板側n型層5aを形成する。
 ここで、基板側n型層5aの形成においては、n側バッファー層4cを形成するプラズマ放電処理が終了した後も半導体層形成ガスの反応室70内への導入が停止されない状態で、n型不純物ガスが反応室70内に導入されるとよい。n側バッファー層4cを形成するプラズマ放電処理が終了した後、半導体層形成ガスの反応室70内への導入が(少なくとも1回の導入/停止を伴って)断続的に行なわれつつ、n型不純物ガスが反応室70内に導入されてもよい。
 次に、半導体層形成ガスおよびn型不純物ガスに加えて、他のn型不純物ガスを反応室70内に導入する。半導体層形成ガスとn型不純物ガスと他のn型不純物ガスからなる他のn型層形成用ガス(上側第1導電型層形成ガス)をプラズマ放電させることによって、基板側n型層5a上に裏面側n型層5bを形成する。
 n型不純物ガスがたとえばホスフィンガス(PHガス)である場合には、他のn型不純物ガスとしては、窒素ガス(Nガス)、酸素ガス(Oガス)、二酸化炭素ガス(COガス)、またはメタンガス(CHガス)などが採用され得る。他のn型不純物ガスとして、窒素ガス(Nガス)、酸素ガス(Oガス)、または二酸化炭素ガス(COガス)が採用される場合、他のn型不純物ガスはn型不純物兼ワイドギャップ化不純物として作用することができる。他のn型不純物ガスとしてメタンガス(CHガス)が採用される場合、他のn型不純物ガスはワイドギャップ化不純物として作用することができる。
 裏面側n型層5bの形成においても同様に、基板側n型層5aを形成するプラズマ放電処理が終了した後もn型不純物ガスの反応室70内への導入が停止されない状態で、他のn型不純物ガスが反応室70内に導入されるとよい。基板側n型層5aを形成するプラズマ放電処理が終了した後、n型不純物ガスの反応室70内への導入が(少なくとも1回の導入/停止を伴って)断続的に行なわれつつ、他のn型不純物ガスが反応室70内に導入されてもよい。
 基板側n型層5aの形成後に、反応室70内が高真空排気されることなく裏面側n型層5bの形成が開始される。反応室70を一旦高真空排気するためのエネルギーおよび時間が不要となっており、生産性が向上する。
 [実施の形態2]
 本実施の形態について、半導体装置の製造方法の他の例として、半導体層(非晶質シリコン層)を覆うように導電型層(n型層(na-Si層))が堆積される逆スタガ型薄膜トランジスタの製造方法に基づき説明する。当該方法によって得られる逆スタガ型薄膜トランジスタは、薄膜トランジスタを有するスイッチング半導体装置の一例である。
 (逆スタガ型薄膜トランジスタ300)
 図5を参照して、逆スタガ型薄膜トランジスタ300は、基板301上に、ゲート電極302、ゲート絶縁膜303、非晶質シリコン層304、非晶質n型シリコン層305(以下、「na-Si層305」という)、透明電極306、ドレイン電極307、ソース電極308、および保護膜309が形成されることによって構成されている。
 基板301は、絶縁性を有するたとえばガラス等である。ゲート電極302は、Cr(クローム)、Mo(モリブデン)・Ta(タンタル)合金、またはAl(アルミニウム)等を含んでいる。ゲート電極302は、ゲート配線(図示せず)に電気的に接続されている。ゲート絶縁膜303は、SiO(酸化ケイ素)、またはSiN(窒化シリコン)等を含んでいる。本実施の形態におけるゲート絶縁膜303は、下側ゲート絶縁膜303aと、下側ゲート絶縁膜303aよりも形成速度が遅い上側ゲート絶縁膜303bとが積層されて二層構造を呈している。
 トランジスタとして機能する非晶質シリコン層304は、形成速度が最も遅い第1非晶質シリコン層304aと、形成速度が第1非晶質シリコン層304aよりも速い第2非晶質シリコン層304bと、形成速度が最も速い第3非晶質シリコン層304cとが順次積層されて三層構造を呈している。na-Si層305は、n型の不純物を適量含んだ非晶質シリコン層であり、非晶質シリコン層304とドレイン電極307との間、および非晶質シリコン層304とソース電極308との間における良好なオーミックコンタクトを得るために形成されている。
 ドレイン電極307およびソース電極308は、Ti(チタン)若しくはTa(タンタル)等の金属材料、またはAl-Siの合金等により形成されている。透明電極306はたとえばITO(Indium Tin Oxide)層であり、ドレイン電極307に接触している。逆スタガ型薄膜トランジスタ300がアクティブマトリックス型液晶表示器に用いられる場合、透明電極306は画素電極を構成する。保護膜309は、たとえばSiN(窒化シリコン)等を含んでおり、逆スタガ型薄膜トランジスタ300としての信頼性を向上させるために設けられている。
 (プラズマCVD装置200)
 逆スタガ型薄膜トランジスタ300の製造に使用されるプラズマCVD装置200については、ガス導入系から導入されるガスの種類が異なる他は、上述の実施の形態1におけるプラズマCVD装置200(図2参照)と略同様に構成されるため、ここではその詳細な説明については繰り返さないものとする。
 (逆スタガ型薄膜トランジスタ300の製造方法)
 図5および図6を参照して、逆スタガ型薄膜トランジスタ300の製造方法(ステップS101~ステップS110)について、以下順に説明する。
 (ステップS101:基板搬入工程、ステップS102:ゲート電極形成工程)
 まず、基板301が反応室70(図2参照)内に搬入された後、反応室70内においてゲート電極302が基板301上に形成される。ゲート電極302の形成においては、スパッタリング法などを使用して、Cr(クローム)等の導電性膜が基板301の表面に形成される。その後、エッチング法などを使用して、導電性膜が所定の形状にパターニングされることによって、ゲート電極302が形成される。
 なお、他の装置(図示せず)によってゲート電極302が形成された基板301が、プラズマCVD装置200における反応室70内に搬入されてもよい。
 (ステップS103:ゲート絶縁膜形成工程)
 ゲート電極302が形成された基板301は、反応室70内にて加熱される。ゲート絶縁膜303の堆積に用いる原料ガスが反応室70内に導入される。ここで導入される原料ガスは、たとえば、シランガス(SiHガス)、水素ガス(Hガス)、窒素ガス(Nガス)、およびアンモニアガス(NHガス)を含んでいる。原料ガスが反応室70内に導入されている状態で、反応室70内の圧力が略一定に保たれる。基板301に交流電力が投入されることによってプラズマが発生し、原料ガスはプラズマ放電によって分解(解離)および拡散され、ゲート電極302を覆うようにゲート絶縁膜303が形成される。
 本実施の形態のゲート絶縁膜303としては、図5に示すように、下側ゲート絶縁膜303aが形成された後、下側ゲート絶縁膜303aの上に上側ゲート絶縁膜303bが形成される。下側ゲート絶縁膜303aおよび上側ゲート絶縁膜303bは、堆積速度が変えられることによって異なる特性を有している。下側ゲート絶縁膜303aと上側ゲート絶縁膜303bとは、同じ材料であってもよく、異なる材料であってもよい。
 上側ゲート絶縁膜303bは、その上に積層される非晶質シリコン層304(第1非晶質シリコン層304a)の平滑性に直接影響するために、表面平滑性が良好に形成されるとよい。下側ゲート絶縁膜303aも、上側ゲート絶縁膜303bの平滑性に大きく影響を与えるために、表面平滑性が良好に形成されるとよい。
 上側ゲート絶縁膜303bは、下側ゲート絶縁膜303aよりも堆積速度を遅くして堆積されることによって、平滑性の良好な膜が形成される。これに対し、下側ゲート絶縁膜303aは、上側ゲート絶縁膜303bよりも比較的堆積速度を速めて形成される。このように構成することで、ゲート絶縁膜303の上に形成される非晶質シリコン層304(第1非晶質シリコン層304a)の平滑性を確保すると共に、ゲート絶縁膜303全体の形成速度を短縮して、逆スタガ型薄膜トランジスタ300の製造方法としての生産性を向上させることができる。下側ゲート絶縁膜303aおよび上側ゲート絶縁膜303bの堆積速度は、原料ガスの導入量、プラズマCVDの圧力、パワー、または電極間隔などを変えることで変化させることができる。
 (ステップS104:ガス置換工程)
 反応室70内には、ステップS101~S103において導入された不純物が残留している。反応室70内の不純物の濃度を低減するために、反応室70内が置換ガスにより置換される(ステップS104)。当該ガス置換は、上述の実施の形態1におけるステップS3と同様な方法により行なわれるとよい。
 (ステップS105:非晶質シリコン層形成工程)
 次に、非晶質シリコン層304が形成される。非晶質シリコン層304としては、完全にノンドープである非晶質シリコン層であってもよく、微量の不純物を含む弱p型半導体層または弱n型半導体層のように、実質的な非晶質シリコン層であってもよい。本実施の形態における非晶質シリコン層304は、第1非晶質シリコン層304a、第2非晶質シリコン層304b、および第3非晶質シリコン層304cから構成される。
 ステップS105においては、半導体層形成ガスが反応室70に導入されることによって、まず非晶質シリコン層304のうち第1非晶質シリコン層304aが形成される(ステップS105a)。ここで導入される半導体層形成ガスは、たとえば、シランガス(SiHガス)、水素ガス(Hガス)、およびアルゴンガス(Arガス)を含んでいる。
 半導体層形成ガスが導入されている状態で、反応室70内の圧力が略一定に保たれる。基板301に交流電力が投入されることによってプラズマが発生する。半導体層形成ガスはプラズマ放電によって分解(解離)および拡散され、ゲート絶縁膜303(上側ゲート絶縁膜303b)を覆うように第1非晶質シリコン層304aが形成される。
 次に、第2非晶質シリコン層304bが、第1非晶質シリコン層304aを覆うように形成される(ステップS105b)。上記のステップS105aの状態において、SiHガス用流量制御装置13およびHガス用流量制御装置23の調節によって、シランガス(SiHガス)に対する水素ガス(Hガス)の流量が増加される。第1非晶質シリコン層304aの堆積速度に比べ、非晶質シリコン層304としての堆積速度が早くなるように、第2非晶質シリコン層304bの堆積が開始される。
 このときも、排気バルブ85が開かれた状態で、反応室70内の圧力は略一定に保たれる。流量比(混合比)が変更された半導体層形成ガスはプラズマ放電によって分解(解離)および拡散され、第1非晶質シリコン層304aを覆うように第2非晶質シリコン層304bが形成される。
 次に、第3非晶質シリコン層304cが、第2非晶質シリコン層304bを覆うように形成される(ステップS105c)。上記のステップS105bの状態において、SiHガス用流量制御装置13およびHガス用流量制御装置23の調節によって、シランガス(SiHガス)に対する水素ガス(Hガス)の流量がさらに増加される。第2非晶質シリコン層304bの堆積速度に比べ、非晶質シリコン層304としての堆積速度が早くなるように、第3非晶質シリコン層304cの堆積が開始される。
 反応室70内の圧力が略一定に保たれた状態で、流量比(混合比)がさらに変更された半導体層形成ガスはプラズマ放電によって分解(解離)および拡散され、第2非晶質シリコン層304bを覆うように第3非晶質シリコン層304cが形成される。
 (ステップS106:na-Si層形成工程)
 非晶質シリコン層304が形成された後、非晶質シリコン層304(第3非晶質シリコン層304c)の上に非晶質n型シリコン層305(na-Si層305)が形成される。半導体層形成ガスとしてのシランガス(SiHガス)および水素ガス(Hガス)が反応室70内に供給されている状態で、半導体層形成ガスに加えてn型不純物ガスが反応室70内に導入される。このn型不純物ガスは、ホスフィンガス(PHガス)を含む。なお、n型不純物ガスの導入が加えられる際、シランガス(SiHガス)および水素ガス(Hガス)の半導体層形成ガスとしての導入条件(流量、混合比など)は、非晶質シリコン層304形成のための条件と、na-Si層305形成のための条件とで異なっていてもよい。
 ここで、na-Si層305の形成においては、非晶質シリコン層304(第3非晶質シリコン層304c)を形成するプラズマ放電処理が終了した後も半導体層形成ガスの反応室70内への導入が停止されない状態で、n型不純物ガスが反応室70内に導入されるとよい。非晶質シリコン層304(第3非晶質シリコン層304c)を形成するプラズマ放電処理が終了した後、半導体層形成ガスの反応室70内への導入が(少なくとも1回の導入/停止を伴って)断続的に行なわれつつ、n型不純物ガスが反応室70内に導入されてもよい。半導体層形成ガスとn型不純物ガスとは混合されてn型層形成用ガスとなる。非晶質シリコン層304(第3非晶質シリコン層304c)を形成するプラズマ放電処理が終了した後も反応室70内の圧力が到達真空度にまで減圧されない状態で、反応室70の組成設定値(雰囲気)は、半導体層形成ガスの組成(半導体層形成ガスが支配的な状態)から、n型層形成用ガス(n型不純物ガスと半導体層形成ガスとの適切な混合ガス)の組成(n型層形成用ガスが支配的な状態)に変移する。
 ここで言う半導体層形成ガスが支配的な状態(雰囲気)とは、半導体層形成ガスの供給組成(設定値)から規定される雰囲気である。ここで言うn型層形成ガスが支配的な状態(雰囲気)とは、n型層形成ガスの供給組成(設定値)から規定される雰囲気である。ここで言う到達真空度とは、真空ポンプ87による反応室70内から反応室70外へのガス成分の流出量が実質的に無い(ゼロ)の状態のことである。また、ここで言う反応室70内の圧力が到達真空度にまで減圧されない状態とは、反応室70内が到達真空度よりは高圧である状態のことである。
 半導体層形成ガスおよびn型不純物ガスが反応室70内に導入されている状態で、反応室70内の圧力が略一定に保たれる。
 より短い時間で、半導体層形成ガスが支配的な状態を、n型層形成用ガスが支配的な状態に変移させるために、シランガス(SiHガス)および水素ガス(Hガス)の反応室70内への導入量を少なくしてもよい。半導体層形成ガスの反応室70内への導入量が少なくなる場合、半導体層形成ガスが支配的な状態(雰囲気)とは、非晶質シリコン層304の形成が完了する直前における半導体層形成ガスの供給組成(設定値)から規定される雰囲気である。半導体層形成ガスが支配的な状態が、n型層形成用ガスが支配的な状態に変移するまでの間、交流電力の投入を停止してもよい。
 半導体層形成ガスが支配的な状態が、n型層形成用ガスが支配的な状態に変移した後、基板301に交流電力が投入されることによってプラズマが発生する。n型層形成用ガスはプラズマ放電によって分解(解離)および拡散され、非晶質シリコン層304(第3非晶質シリコン層304c)を覆うようにna-Si層305が形成される。
 na-Si層305としては、上述の実施の形態1におけるn型層5における基板側n型層5aと裏面側n型層5bと同様に、2層または2層以上の積層構造が採用されてもよい。na-Si層305としては、SiHガス用流量制御装置13および/またはHガス用流量制御装置23および/またはPH/Hガス用流量制御装置33の調節によって、不純物濃度の異なる複数のn型の層を形成してもよい。na-Si層305としては、n型非晶質層およびn型微結晶層が積層されることによって形成されてもよく、n型非晶質層のみから形成されてもよく、n型微結晶層のみから形成されてもよい。
 なお、na-Si層305が、不純物濃度の異なる複数のn型の層が積層されることによって形成される場合、または、n型非晶質層およびn型微結晶層が積層されることによって形成される場合、n型層形成ガスが支配的な状態(雰囲気)とは、非晶質シリコン層304(第3非晶質シリコン層304c)と接する層の形成開始時におけるn型層形成ガス供給組成(設定値)から規定される雰囲気である。
 (ステップS107:トランジスタ部形成工程)
 次に、トランジスタ部を形成するために、フォトリソグラフィー法などの所定のパターニング法を用いて非晶質シリコン層304およびna-Si層305を島状に加工する。
 (ステップS108:透明電極形成工程)
 スパッタリング法によって所定の厚さのITO膜を形成し、パターニングによって透明電極306を形成する。
 (ステップS109:ソース/ドレイン電極形成工程)
 その後、島状に形成された非晶質シリコン層304およびna-Si層305の上側に、Al(アルミニウム)、Mo(モリブデン)等の金属を用いて、スパッタリング法等により導電性膜を成膜する。導電性膜をパターニングすることによって、ドレイン電極307、ソース電極308を形成する。チャネル部(310)の上部にあたるna-Si層305をドライエッチングにより除去する。
 (ステップS110:保護膜形成工程)
 逆スタガ型薄膜トランジスタ300を保護するために、透明性および絶縁性を有する保護膜309を形成する。以上により、本実施形態の逆スタガ型薄膜トランジスタ300の製造工程が完了する。
 (作用・効果)
 本実施の形態における逆スタガ型薄膜トランジスタ300の製造方法によれば、非晶質シリコン層304の形成後に、反応室70内が高真空排気されることなくna-Si層305の形成が開始される。当該方法によれば、na-Si層305の形成前に、反応室70を一旦高真空排気するためのエネルギーおよび時間が不要となっており、生産性が向上している。
 本実施の形態における逆スタガ型薄膜トランジスタ300の製造方法によれば、非晶質シリコン層304の形成後のna-Si層305を形成する段階においても、反応室70内には半導体層形成ガスが存在している。na-Si層305が形成されるとき、反応室70内は高真空排気されないため、水分などが浮遊することがほとんどなく、処理対象である基板301(非晶質シリコン層304)に付着することもほとんどない。仮に、反応室70内や真空排気系に付着している水分などが反応室70内のガス雰囲気中に浮遊したとしても、水分などは、反応室70内に存在している半導体層形成ガスに衝突することによって、処理対象である基板301(非晶質シリコン層304)へ到達することが抑制されると考えられる。
 したがって、本実施の形態における逆スタガ型薄膜トランジスタ300の製造方法によれば、na-Si層305を形成する段階においても反応室70内には半導体層形成ガスが存在していることによって、na-Si層305に水分などの不純物が混入することがほとんどない。
 非晶質シリコン層304の形成において、第1非晶質シリコン層304a、第2非晶質シリコン層304b、および第3非晶質シリコン層304cを形成するために、SiHガス用流量制御装置13およびHガス用流量制御装置23の調節によって、シランガス(SiHガス)に対する水素ガス(Hガス)の流量が変更されている。SiHバルブおよびHバルブが開閉されることが無いため、これらの耐用時間が長くなっている。
 本実施の形態における逆スタガ型薄膜トランジスタ300の製造方法は、1つの反応室70内で各層が基板301に堆積される、いわゆるシングルチャンバ式である。複数の反応室を備える、いわゆるマルチチャンバ式等に比べて、設備費用およびランニングコストが安くなっている。本実施の形態における逆スタガ型薄膜トランジスタ300の製造方法によれば、より安価に光電変換装置を得ることが可能となる。
 [実施の形態2の他の形態]
 上述の逆スタガ型薄膜トランジスタ300の製造方法においては、非晶質シリコン層304が、第1非晶質シリコン層304a、第2非晶質シリコン層304b、および第3非晶質シリコン層304cから形成されている。非晶質シリコン層304としては、第1非晶質シリコン層304a(下側半導体層)および第2非晶質シリコン層304b(上側半導体層)から形成されていてもよい。非晶質シリコン層304としては、第2非晶質シリコン層304b(下側半導体層)および第3非晶質シリコン層304c(上側半導体層)から形成されていてもよい。
 上述の逆スタガ型薄膜トランジスタ300の製造方法においては、非晶質シリコン層304の堆積速度が、SiHガス用流量制御装置13およびHガス用流量制御装置23の調節によって変化され、第1非晶質シリコン層304a、第2非晶質シリコン層304b、および第3非晶質シリコン層304cとして形成されている。非晶質シリコン層304としては、半導体層形成ガス(第1半導体層形成ガス)の導入によって第1非晶質シリコン層304aが形成され、他の半導体層形成ガス(第2半導体層形成ガス)の導入によって第2非晶質シリコン層304bが形成され、さらに他の半導体層形成ガスの導入によって第3非晶質シリコン層304cが形成されてもよい。
 この場合、半導体層形成ガスを反応室70内に導入し、半導体層形成ガスをプラズマ放電させることによって上側ゲート絶縁膜303b上に第1非晶質シリコン層304aを形成する。次に、半導体層形成ガスに加えて、他の半導体層形成ガスを反応室70内に導入する。半導体層形成ガスと他の半導体層形成ガスとからなる混合ガス(上側半導体層形成ガス)をプラズマ放電させることによって第1非晶質シリコン層304aを覆うように第2非晶質シリコン層304bを形成する。
 ここで、第2非晶質シリコン層304bの形成においては、第1非晶質シリコン層304aを形成するプラズマ放電処理が終了した後も半導体層形成ガスの反応室70内への導入が停止されない状態で、他の半導体層形成ガスが反応室70内に導入されるとよい。第1非晶質シリコン層304aを形成するプラズマ放電処理が終了した後、半導体層形成ガスの反応室70内への導入が(少なくとも1回の導入/停止を伴って)断続的に行なわれつつ、他の半導体層形成ガスが反応室70内に導入されてもよい。
 同様に、他の半導体層形成ガスに加えて、さらに他の半導体層形成ガスを反応室70内に導入する。他の半導体層形成ガスとさらに他の半導体層形成ガスとからなる混合ガスをプラズマ放電させることによって第2非晶質シリコン層304bを覆うように第3非晶質シリコン層304cを形成する。
 ここで、第3非晶質シリコン層304cの形成においても、第2非晶質シリコン層304bを形成するプラズマ放電処理が終了した後も他の半導体層形成ガスの反応室70内への導入が停止されない状態で、さらに他の半導体層形成ガスが反応室70内に導入されるとよい。第2非晶質シリコン層304bを形成するプラズマ放電処理が終了した後、他の半導体層形成ガスの反応室70内への導入が(少なくとも1回の導入/停止を伴って)断続的に行なわれつつ、さらに他の半導体層形成ガスが反応室70内に導入されてもよい。
 第1非晶質シリコン層304aの形成後に、反応室70内が高真空排気されることなく第2非晶質シリコン層304bの形成が開始される。第2非晶質シリコン層304bの形成後に、反応室70内が高真空排気されることなく第3非晶質シリコン層304cの形成が開始される。反応室70を一旦高真空排気するためのエネルギーおよび時間が不要となっており、生産性が向上する。
 上述の逆スタガ型薄膜トランジスタ300の製造方法においては、上述のとおり、na-Si層305の堆積速度がSiHガス用流量制御装置13およびHガス用流量制御装置23の調節によって変化され、基板側na-Si層と裏面側na-Si層として積層形成されてもよい。na-Si層305としては、n型層形成ガス(第1不純物ガス)の導入によって基板側na-Si層が形成され、他のn型層形成ガス(第2不純物ガス)の導入によって裏面側na-Si層が形成されてもよい。
 この場合、n型不純物ガスを(第3非晶質シリコン層304cを形成するための半導体層形成ガスに加えて)反応室70内に導入する。半導体層形成ガスとn型不純物ガスとからなるn型層形成用ガス(下側第1導電型層形成ガス)をプラズマ放電させることによって第3非晶質シリコン層304c上に基板側na-Si層を形成する。
 ここで、基板側na-Si層の形成においては、第3非晶質シリコン層304cを形成するプラズマ放電処理が終了した後も半導体層形成ガスの反応室70内への導入が停止されない状態で、n型不純物ガスが反応室70内に導入されるとよい。第3非晶質シリコン層304cを形成するプラズマ放電処理が終了した後、半導体層形成ガスの反応室70内への導入が(少なくとも1回の導入/停止を伴って)断続的に行なわれつつ、n型不純物ガスが反応室70内に導入されてもよい。
 次に、半導体層形成ガスおよびn型不純物ガスに加えて、他のn型不純物ガスを反応室70内に導入する。半導体層形成ガスとn型不純物ガスと他のn型不純物ガスからなる他のn型層形成用ガス(上側第1導電型層形成ガス)をプラズマ放電させることによって基板側na-Si層上に裏面側na-Si層を形成する。
 ここで、裏面側na-Si層の形成においては、基板側na-Si層を形成するプラズマ放電処理が終了した後もn型不純物ガスの反応室70内への導入が停止されない状態で、他のn型不純物ガスが反応室70内に導入されるとよい。基板側na-Si層を形成するプラズマ放電処理が終了した後、n型不純物ガスの反応室70内への導入が(少なくとも1回の導入/停止を伴って)断続的に行なわれつつ、他のn型不純物ガスが反応室70内に導入されてもよい。
 基板側na-Si層の形成後に、反応室70内が高真空排気されることなく裏面側na-Si層の形成が開始される。反応室70を一旦高真空排気するためのエネルギーおよび時間が不要となっており、生産性が向上する。
 以上、本発明の発明を実施するための形態について説明したが、今回開示された形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 透明基板、2 透明導電膜、4 i型層、4a,7a p側バッファー層、4b,7b バルク層、4c,7c n側バッファー層、5,8 n型層、5a 基板側n型層、5b 裏面側n型層層、6 p型層、7 ソース電極、8 ドレイン電極、9 裏面透明導電膜、10 裏面金属電極、11,15,21,25,31,35,41,45,51,55,61,65 バルブ、13 SiHガス用流量制御装置、23 Hガスガス用流量制御装置、33 PH/Hガス用流量制御装置、43 B/Hガス用流量制御装置、53 CHガス用流量制御装置、63 GeH/Hガス用流量制御装置、70 反応室、71 カソード電極、73 整合器、75 高周波電源、81 アノード電極、83 圧力調整用バルブ、85 排気バルブ、87 真空ポンプ、90 ガス導入系、92 ガス導入部、100 光電変換装置、100A,100B 光電変換層、200 プラズマCVD装置、300 逆スタガ型薄膜トランジスタ、301 基板、302 ゲート電極、303 ゲート絶縁膜、303b 上側ゲート絶縁膜、303a 下側ゲート絶縁膜、304 非晶質シリコン層、304a 第1非晶質シリコン層、304b 第2非晶質シリコン層、304c 第3非晶質シリコン層、305 非晶質n型シリコン層、306 透明電極、307 ドレイン電極、308 ソース電極、309 保護膜、310 チャネル部、S1~S14,S6a,S6b,S6c,S7a,S7b,S101~S110,S105a,S105b,S105c ステップ。

Claims (12)

  1.  プラズマCVD法を使用して、半導体層(4,304)を覆うように導電型層(5,305)が堆積される半導体装置の製造方法であって、
     半導体層形成ガスを反応室(70)内に導入し、前記半導体層形成ガスをプラズマ放電させることによって所定の層上に前記半導体層(4,304)を形成する工程と、
     前記半導体層形成ガスに加えて不純物ガスを前記反応室(70)内に導入し、前記半導体層形成ガスおよび前記不純物ガスを含む第1導電型層形成ガスをプラズマ放電させることによって、前記半導体層(4,304)を覆うように第1導電型の第1導電型層(5,305)を形成する工程と、を備え、
     前記第1導電型層(5,305)を形成する工程においては、前記半導体層(4,304)を形成するプラズマ放電処理が終了した後も前記反応室(70)内の圧力が到達真空度にまで減圧されない状態で、前記反応室(70)に供給されるガスの組成設定値が、前記半導体層形成ガスの組成から前記第1導電型層形成ガスの組成に変移する、
    半導体装置の製造方法。
  2.  前記第1導電型層(5,305)を形成する工程においては、前記半導体層(4,304)を形成するプラズマ放電処理が終了した後も前記半導体層形成ガスの前記反応室(70)内への導入が停止されない状態で、前記不純物ガスが前記反応室(70)内に導入される、
    請求項1に記載の半導体装置の製造方法。
  3.  前記第1導電型層(5,305)は、第1導電型の下側第1導電型層(5a)と第1導電型の上側第1導電型層(5b)とを含み、
     前記不純物ガスは、前記下側第1導電型層(5a)を形成するための第1不純物ガスと、前記上側第1導電型層(5b)を形成するための第2不純物ガスとを含み、
     前記第1導電型層(5,305)を形成する工程は、
     前記半導体層形成ガスに加えて前記第1不純物ガスを前記反応室(70)内に導入し、前記半導体層形成ガスおよび前記第1不純物ガスを含む下側第1導電型層形成ガスをプラズマ放電させることによって前記半導体層(4,304)を覆うように前記下側第1導電型層(5a)を形成する工程と、
     前記半導体層形成ガスおよび前記第1不純物ガスに加えて前記第2不純物ガスを前記反応室(70)内に導入し、前記半導体層形成ガス、前記第1不純物ガスおよび前記第2不純物ガスを含む上側第1導電型層形成ガスをプラズマ放電させることによって、前記下側第1導電型層(5a)を覆うように前記上側第1導電型層(5b)を形成する工程と、を有し、
     前記上側第1導電型層(5b)を形成する工程においては、前記下側第1導電型層(5a)を形成するプラズマ放電処理が終了した後も前記反応室(70)内の圧力が到達真空度にまで減圧されない状態で、前記反応室(70)に供給されるガスの組成設定値が、前記下側第1導電型層形成ガスの組成から前記第2不純物ガスの組成に変移する、
    請求項1または2に記載の半導体装置の製造方法。
  4.  前記第1導電型層(5,305)は、第1導電型の下側第1導電型層(5a)と第1導電型の上側第1導電型層(5b)とを含み、
     前記第1導電型層(5,305)を形成する工程は、
     前記半導体層形成ガスに加えて前記不純物ガスを前記反応室(70)内へ所定の時間導入し、前記半導体層形成ガスおよび前記不純物ガスを含む下側第1導電型層形成ガスをプラズマ放電させることによって前記半導体層(4,304)を覆うように前記下側第1導電型層(5a)を形成する工程と、
     前記下側第1導電型層(5a)の形成後、前記不純物ガスの前記半導体層形成ガスの導入量に対する導入量比が変化され、導入量比が変化された前記不純物ガスおよび前記半導体層形成ガスを含む上側第1導電型層形成ガスをプラズマ放電させることによって、前記下側第1導電型層(5a)を覆うように前記上側第1導電型層(5b)を形成する工程と、を有し、
     前記上側第1導電型層(5b)を形成する工程においては、前記下側第1導電型層(5a)を形成するプラズマ放電処理が終了した後も前記反応室(70)内の圧力が到達真空度にまで減圧されない状態で、前記反応室(70)に供給されるガスの組成設定値が、前記下側第1導電型層形成ガスの組成から前記上側第1導電型層形成ガスの組成に変移する、
    請求項1または2に記載の半導体装置の製造方法。
  5.  前記半導体層(4,304)は、下側半導体層(4a,304a)と上側半導体層(4b,304b)とを含み、
     前記半導体層形成ガスは、前記下側半導体層(4a,304a)を形成するための第1半導体層形成ガス、および、前記上側半導体層(4b,304b)を形成するための第2半導体層形成ガスを含み、
     前記半導体層(4,304)を形成する工程は、
     前記第1半導体層形成ガスを前記反応室(70)内に導入し、前記第1半導体層形成ガスをプラズマ放電させることによって前記所定の層上に前記下側半導体層(4a,304a)を形成する工程と、
     前記第1半導体層形成ガスに加えて前記第2半導体層形成ガスを前記反応室(70)内に導入し、前記第1半導体層形成ガスおよび前記第2半導体層形成ガスを含む上側半導体層形成ガスをプラズマ放電させることによって前記下側半導体層(4a,304a)を覆うように前記上側半導体層(4b,304b)を形成する工程と、を有し、
     前記上側半導体層(4b,304b)を形成する工程においては、前記下側半導体層(4a,304a)を形成するプラズマ放電処理が終了した後も前記反応室(70)内の圧力が到達真空度にまで減圧されない状態で、前記反応室(70)に供給されるガスの組成設定値が、前記第1半導体層形成ガスの組成から前記上側半導体層形成ガスの組成に変移する、
    請求項1から4のいずれかに記載の半導体装置の製造方法。
  6.  前記半導体層(4,304)は、下側半導体層(4a,304a)と上側半導体層(4b,304b)とを含み、
     前記半導体層(4,304)を形成する工程は、
     前記半導体層形成ガスを前記反応室(70)内へ他の所定の時間導入し、前記半導体層形成ガスをプラズマ放電させることによって前記所定の層上に前記下側半導体層(4a,304a)を形成する工程と、
     前記下側半導体層(4a,304a)の形成後、前記半導体層形成ガスの導入量が変化され、導入量が変化された前記半導体層形成ガスをプラズマ放電させることによって前記下側半導体層(4a,304a)を覆うように前記上側半導体層(4b,304b)を形成する工程と、を有し、
     前記上側半導体層(4b,304b)を形成する工程においては、前記下側半導体層(4a,304a)を形成するプラズマ放電処理が終了した後も前記反応室(70)内の圧力が到達真空度にまで減圧されない状態で、前記反応室(70)に供給されるガスの組成設定値が、前記下側半導体層(4a,304a)を形成する前記半導体層形成ガスの組成から、前記上側半導体層(4b,304b)を形成する前記半導体層形成ガスの組成に変移する、
    請求項1から4のいずれかに記載の半導体装置の製造方法。
  7.  前記半導体層(4,304)は、下側半導体層(4a,304a)と上側半導体層(4b,304b)とを含み、
     前記半導体層形成ガスは、半導体材料ガスおよび希釈ガスを含み、
     前記半導体層(4,304)を形成する工程は、
     前記半導体層形成ガスを前記反応室(70)内へ他の所定の時間導入し、前記半導体層形成ガスをプラズマ放電させることによって前記所定の層上に前記下側半導体層(4a,304a)を形成する工程と、
     前記下側半導体層(4a,304a)の形成後、前記半導体層形成ガスの前記半導体材料ガスおよび前記希釈ガスの導入量比が変化され、導入量比が変化された前記半導体層形成ガスをプラズマ放電させることによって前記下側半導体層(4a,304a)を覆うように前記上側半導体層(4b,304b)を形成する工程と、を有し、
     前記上側半導体層(4b,304b)を形成する工程においては、前記下側半導体層(4a,304a)を形成するプラズマ放電処理が終了した後も前記反応室(70)内の圧力が到達真空度にまで減圧されない状態で、前記反応室(70)に供給されるガスの組成設定値が、前記下側半導体層(4a,304a)を形成する前記半導体層形成ガスの組成から、前記上側半導体層(4b,304b)を形成する前記半導体層形成ガスの組成に変移する、
    請求項1から4のいずれかに記載の半導体装置の製造方法。
  8.  前記半導体層(4,304)の形成後、前記半導体層形成ガスの前記反応室(70)内への導入量は所定の流量に減少する、
    請求項1から7のいずれかに記載の半導体装置の製造方法。
  9.  他の不純物ガスを他の所定の層上に供給することによって、前記他の所定の層上に第2導電型の第2導電型層(3)を形成する工程をさらに備える、
    請求項1から8のいずれかに記載の半導体装置の製造方法。
  10.  前記他の不純物ガスは前記反応室(70)内に導入され、前記第2導電型層(3)は前記反応室(70)内において形成される、
    請求項9に記載の半導体装置の製造方法。
  11.  前記半導体装置は光電変換装置(100,100A,100B)である、
    請求項1から10のいずれかに記載の半導体装置の製造方法。
  12.  前記半導体装置は薄膜トランジスタを有するスイッチング半導体装置(300)である、
    請求項1から8のいずれかに記載の半導体装置の製造方法。
PCT/JP2011/075434 2010-11-16 2011-11-04 半導体装置の製造方法 WO2012066941A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800551174A CN103210500A (zh) 2010-11-16 2011-11-04 半导体装置的制造方法
US13/883,655 US20130224937A1 (en) 2010-11-16 2011-11-04 Method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-255844 2010-11-16
JP2010255844 2010-11-16

Publications (1)

Publication Number Publication Date
WO2012066941A1 true WO2012066941A1 (ja) 2012-05-24

Family

ID=46083877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075434 WO2012066941A1 (ja) 2010-11-16 2011-11-04 半導体装置の製造方法

Country Status (3)

Country Link
US (1) US20130224937A1 (ja)
CN (1) CN103210500A (ja)
WO (1) WO2012066941A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170478A (ja) * 1986-01-22 1987-07-27 Fujitsu Ltd アモルフアスシリコン膜の製造方法
JPH0931658A (ja) * 1995-07-12 1997-02-04 Canon Inc 高周波プラズマcvd法による堆積膜形成装置及び堆積膜形成方法
JP2007059560A (ja) * 2005-08-24 2007-03-08 Sharp Corp 薄膜半導体装置、薄膜半導体装置の製造方法、及び液晶表示装置
JP2007189266A (ja) * 2007-04-23 2007-07-26 Canon Inc 積層型光起電力素子
WO2008078471A1 (ja) * 2006-12-25 2008-07-03 Sharp Kabushiki Kaisha 光電変換装置及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2951146B2 (ja) * 1992-04-15 1999-09-20 キヤノン株式会社 光起電力デバイス
US6252158B1 (en) * 1998-06-16 2001-06-26 Canon Kabushiki Kaisha Photovoltaic element and solar cell module
JP5259189B2 (ja) * 2005-10-03 2013-08-07 シャープ株式会社 シリコン系薄膜光電変換装置の製造方法
JP4553891B2 (ja) * 2006-12-27 2010-09-29 シャープ株式会社 半導体層製造方法
US8298887B2 (en) * 2009-12-03 2012-10-30 Applied Materials, Inc. High mobility monolithic p-i-n diodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170478A (ja) * 1986-01-22 1987-07-27 Fujitsu Ltd アモルフアスシリコン膜の製造方法
JPH0931658A (ja) * 1995-07-12 1997-02-04 Canon Inc 高周波プラズマcvd法による堆積膜形成装置及び堆積膜形成方法
JP2007059560A (ja) * 2005-08-24 2007-03-08 Sharp Corp 薄膜半導体装置、薄膜半導体装置の製造方法、及び液晶表示装置
WO2008078471A1 (ja) * 2006-12-25 2008-07-03 Sharp Kabushiki Kaisha 光電変換装置及びその製造方法
JP2007189266A (ja) * 2007-04-23 2007-07-26 Canon Inc 積層型光起電力素子

Also Published As

Publication number Publication date
US20130224937A1 (en) 2013-08-29
CN103210500A (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
JP4553891B2 (ja) 半導体層製造方法
JP4484886B2 (ja) 積層型光電変換装置の製造方法
JP5259189B2 (ja) シリコン系薄膜光電変換装置の製造方法
JP3926800B2 (ja) タンデム型薄膜光電変換装置の製造方法
JP4797083B2 (ja) 薄膜太陽電池モジュール
AU2008233856B2 (en) Photovoltaic device and process for producing same.
JPH11243219A (ja) 積層型光起電力素子
WO2007148569A1 (ja) プラズマ処理装置、プラズマ処理方法、および光電変換素子
US6531654B2 (en) Semiconductor thin-film formation process, and amorphous silicon solar-cell device
JP4758496B2 (ja) 薄膜太陽電池モジュール
WO2011024867A1 (ja) 積層型光起電力素子および積層型光起電力素子の製造方法
WO2012066941A1 (ja) 半導体装置の製造方法
WO2010126080A1 (ja) 半導体膜の成膜方法および光電変換装置の製造方法
JP4282797B2 (ja) 光電変換装置
JPH06204537A (ja) 薄膜半導体太陽電池
JP4642126B2 (ja) 積層型光起電力素子および積層型光起電力素子の製造方法
JP2005259853A (ja) 薄膜形成装置、光電変換装置、及び薄膜製造方法
JP5193981B2 (ja) 積層型光電変換装置及びその製造方法
JP2004253417A (ja) 薄膜太陽電池の製造方法
JP2011049305A (ja) 積層型光起電力素子の製造方法および積層型光起電力素子
EP2579322A1 (en) Photovoltaic device
JP2011049304A (ja) 積層型光起電力素子
JP2000188413A (ja) シリコン系薄膜光電変換装置とその製造方法
Gordijn et al. New Concepts to Obtain High Efficiency Micro-crystalline Silicon Solar Cells Made at High Depo-sition Rates
WO2010064599A1 (ja) シリコン系薄膜光電変換装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840859

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13883655

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP