WO2012064050A2 - 화학적 리프트 오프 방법을 이용한 iii족 질화물 기판의 제조방법 - Google Patents

화학적 리프트 오프 방법을 이용한 iii족 질화물 기판의 제조방법 Download PDF

Info

Publication number
WO2012064050A2
WO2012064050A2 PCT/KR2011/008370 KR2011008370W WO2012064050A2 WO 2012064050 A2 WO2012064050 A2 WO 2012064050A2 KR 2011008370 W KR2011008370 W KR 2011008370W WO 2012064050 A2 WO2012064050 A2 WO 2012064050A2
Authority
WO
WIPO (PCT)
Prior art keywords
group iii
iii nitride
layer
nitride layer
substrate
Prior art date
Application number
PCT/KR2011/008370
Other languages
English (en)
French (fr)
Other versions
WO2012064050A3 (ko
Inventor
주진우
백종협
이승재
이상헌
정탁
전대우
Original Assignee
한국광기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광기술원 filed Critical 한국광기술원
Priority to CN201180047509.6A priority Critical patent/CN103262211B/zh
Priority to JP2013531517A priority patent/JP5730399B2/ja
Priority to US13/877,082 priority patent/US9171717B2/en
Publication of WO2012064050A2 publication Critical patent/WO2012064050A2/ko
Publication of WO2012064050A3 publication Critical patent/WO2012064050A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Definitions

  • the present invention relates to a method of manufacturing a group III nitride substrate. More specifically, the present invention relates to a method of manufacturing a non-polar or semi-polar group III nitride substrate using a chemical lift off (CLO) method.
  • CLO chemical lift off
  • LEDs applied to backlight light sources, display light sources, general light sources and full color displays, etc. are widely used by using the characteristics of compound semiconductors.
  • group III-V nitride semiconductors such as GaN (Gallium Nitride), AlN (Aluminum Nitride), and InN (Indium Nitride) are known, and the material is a large energy band gap of direct transition type.
  • the optoelectronic device such as having a gap () to obtain light in the near-wavelength region according to the composition of the nitride, the light emitting device using the same is applied in various fields such as flat panel display device, optical communication.
  • Such devices are typically grown in a thin film form on a substrate by growth methods such as molecular beam epitaxy (MBE), metalorganic chemical vapor deposition (MOCVD), and hydride vapor phase epitaxy (HVPE).
  • MBE molecular beam epitaxy
  • MOCVD metalorganic chemical vapor deposition
  • HVPE hydride vapor phase epitaxy
  • semiconductors based on group III nitrides represented by GaN typically fabricate device structures on (0001) planes using c-plane substrates (eg, sapphire substrates). Spontaneous polarization is formed in the growth direction (0001).
  • an LED having a typical InGaN / GaN quantum well structure generates internal strain due to lattice mismatch in the quantum well structure when the structure is grown on the (0001) plane, and thus, due to piezoelectric fields. Since the quantum-confined Stark effect (QCSE) is caused, there is a limit to increasing the internal quantum efficiency.
  • QCSE quantum-confined Stark effect
  • group III nitrides particularly GaN and alloys thereof (eg, alloys with InN and / or AlN), are most stable in hexagonal Wrtzite structures, which The crystal structure is represented by two or three equal basal plane axes in which the crystals are rotated 120 ° relative to each other and are all perpendicular to the c-axis.
  • any plane lying perpendicular to the c-axis by the group III element and nitrogen atom position in the urchite crystal structure will contain only one type of atom. Proceeding to the c-axis, each face may contain only one type of atom (group III element or nitrogen).
  • group III element or nitrogen the GaN crystal has an N-face containing only nitrogen atoms and a Ga-face containing only Ga atoms at each end. Located in As a result, group III nitride crystals are polar along the c-axis. Such spontaneous polarization depends on the structure and composition of the crystal as a bulk property.
  • the conventional c-plane quantum well structure in group III nitride-based optoelectronic and electronic devices is characterized in that the electrostatic field caused by piezoelectric and spontaneous polarization changes the energy band structure of the quantum well structure, Since the distribution of electrons and holes by the electric field is distorted, the spatial separation of electrons and holes by such an electric field is called a quantum constrained stark effect, which lowers the internal quantum efficiency and causes a red shift of the emission spectrum.
  • non-polar or semi-polar group III nitrides have been proposed.
  • the nonpolar or semipolar planes thus obtained contain the same number of group III atoms and nitrogen atoms and thus exhibit charge neutrality, with the result that the entire crystal is not polarized in the growth direction.
  • nonpolar Group III nitride crystals growing on heterogeneous substrates exhibit high defect densities resulting in a problem of reducing quantum efficiency.
  • a thick film group III nitride layer is grown on a heterogeneous substrate, such as a sapphire substrate, and then laser lifted off.
  • a group III nitride layer grown from a heterogeneous substrate is separated by a laser lift off (LLO) method and used as a substrate.
  • LLO laser lift off
  • the reason why the laser lift-off method is used in this way is that the conventional nitride layer grown in the c-axis direction is difficult to achieve substantially wet etching because the surface shows Ga-polarity.
  • the laser lift off method may be more preferable because of the high cost and complexity.
  • group III nitride layers for nonpolar or semipolar substrates can be prepared, it is not easy to separate them by chemical lift-off, which would cause damage to the group III nitride layers to be used as substrates in the chemical etching process. Because it can. In particular, this problem may be more prominent in the process of applying to the separation of the substrate having a diameter of 2 inches or more suitable for commercialization.
  • the present invention seeks to provide a method of manufacturing high quality nonpolar or semipolar III-nitride substrates which can alleviate the problems resulting from the use of polar nitrides as well as reduce defects.
  • the present invention seeks to provide a method for producing a nonpolar or semipolar III-nitride substrate by a chemical lift off method.
  • a method for producing a group III nitride substrate is provided, wherein at least one region of the inner surface of the cavity exhibits N-polarity.
  • step d) separating the group III nitride layer formed in step c) by performing a chemical etch on at least some thickness of the group III nitride layer grown in step b);
  • the growth surface of the non-polar or semi-polar epitaxy layer has a (111) facet, and at least one region of the inner surface of the cavity exhibits N-polarity, thereby providing a method of manufacturing a group III nitride substrate. do.
  • the electronic device may include a light emitting device (LED), a laser diode (LD), a transistor, and the like.
  • Group III nitride substrates prepared in accordance with embodiments of the present invention are nonpolar or semipolar substrates, which can alleviate the technical limitations of polar nitrides, and in particular can be manufactured by chemical lift-off methods.
  • 1 (a) is a diagram showing nonpolar planes (a-plane and m-plane) of the crystal structure of GaN;
  • Fig. 1 (b) is a diagram showing a semi-polar plane in the crystal structure of GaN;
  • FIG. 2 is a cross-sectional view showing the formation of a group III nitride layer (template) on a substrate in one embodiment according to the present invention
  • FIG. 3 is a cross-sectional view showing a process of forming a mask pattern (stripe pattern) on the first group III nitride layer in one embodiment according to the present invention
  • FIG. 4 is a cross-sectional view showing, in one embodiment according to the present invention, a second III-nitride layer regrown by side growth (or overgrowth) on a first III-nitride layer;
  • FIG. 5 is a cross-sectional view showing a cross section in which a third III-nitride layer is formed on the second III-nitride layer in one embodiment according to the present invention
  • FIG. 6 is a cross-sectional view schematically illustrating a process of chemically etching a Group II III nitride layer located below to separate a Group III III nitride layer (substrate use) in one embodiment of the present invention
  • FIG. 7 illustrates a nonpolar or semipolar III-nitride layer as a cavity is formed on a silicon substrate, and a nonpolar or semipolar III-nitride layer of a thick film is formed on the silicon substrate according to another embodiment of the present invention.
  • FIG. 8 is a view showing an example in which the Group III-nitride layer obtained in accordance with one embodiment of the present invention is separated and applied to the substrate of the LED device;
  • FIG. 9 is a SEM photograph showing a cross section of the laterally grown second GaN layer (sample 1) in Example 1 of the present invention.
  • FIG. 10 is a SEM photograph showing a cross section of a side-grown second GaN layer (sample 2) in Example 1 of the present invention.
  • FIG. 11 is a SEM photograph showing a cross section of a second GaN layer (sample 3) regrown without a mask pattern on the first GaN layer in Example 1 of the present invention
  • Example 12 is a SEM photograph showing a cross section of a side-grown second GaN layer (sample 4) in Example 1 of the present invention.
  • FIG. 13 is a SEM photograph showing a cross section of a third GaN layer thickly formed by HVPE on Sample 2 in Example 1 of the present invention.
  • the expressions “on” and “on” are used to refer to the concept of relative location, where other components or layers are directly present in the layers mentioned, as well as other layers in between. It can be understood that (intermediate layer) or components may be interposed or present. Similarly, the expressions “below”, “below”, “below” and “between” may also be understood as a relative concept of position.
  • Group III nitride may refer to a semiconductor compound formed of a group III element on the periodic table and nitrogen.
  • a group III element aluminum (Al), gallium (Ga), indium (In), or the like can be exemplified, and these can be included alone or in combination of two or more. Therefore, it can be understood as a concept including GaN, AlN, InN, AlGaN, AlInN, GaInN, AlInGaN and the like.
  • the group III nitride can be represented by the following general formula (1).
  • side growth or “side overgrowth” is a concept that includes lateral epitaxy overgrowth (LEO, ELO or ELOG), PENDEO epitaxy, and the like, and is easier to lateral growth than vertical growth. By doing so, it is possible to suppress propagation of defects or dislocations in a direction perpendicular to the layer surface.
  • Such processes are commonly known in the art for the purpose of reducing defects or dislocations during c-plane GaN growth by MOCVD or the like.
  • nonpolar means to have crystallographic directions (e.g., a-plane and m-plane) perpendicular to the c-axis.
  • the nonpolar plane of the group III nitride crystal structure is shown in FIG. as in a).
  • the term "semipolar” means having a crystal orientation between 0 and 90 ° with respect to (0001) or (000-1).
  • the “semipolar plane” then extends across the hexagonal unit cell diagonally and forms an angle other than 90 ° with the c-axis. In particular, compared to the polar layer, the influence of polarity is reduced because the polar vector is inclined with respect to the growth direction.
  • Semipolar planes commonly found in group III nitrides are (11-22), (1-101), (10-11), (10-13), (10-12), (20-21). ), (10-14) and the like, but the present invention is not limited to the above specific values.
  • Such a semipolar plane may be represented as shown in FIG. 1 (b). For example, in the case of semipolar GaN in the (11-22) direction, the semipolar plane is inclined about 58 ° with the (0002) plane.
  • FIG. 2 is a view showing that a group III nitride layer (mold) is formed on a substrate in one embodiment according to the present invention.
  • the first, second and third group III nitrides may refer to nonpolar or semipolar layers, preferably semipolar layers, respectively.
  • an epitaxial layer 102 of group III-nitride is grown on the substrate 101.
  • any substrate suitable for growth of the nonpolar or semipolar III-nitride layer as the substrate 101 may be used without particular limitation.
  • Such substrates can broadly include symmetry-equivalent planes such as a-plane, r-plane or m-plane. have.
  • an r-plane substrate is prepared for the production of a nonpolar group III nitride layer, and a semipolar m-plane substrate (for example, (1-100) orientation for the production of a group III nitride layer. With silver).
  • the material of the substrate sapphire, silicon carbide (SiC), lithium aluminate, spinel, and the like may be exemplified, and in some cases, a group III nitride or alloy material thereof (for example, gallium nitride) (GaN), aluminum nitride (AlN) or the like) may be used.
  • a group III nitride or alloy material thereof for example, gallium nitride) (GaN), aluminum nitride (AlN) or the like
  • GaN gallium nitride
  • AlN aluminum nitride
  • an m-plane sapphire substrate to implement semipolarity as the substrate.
  • removal of residual oxygen in the reaction zone, annealing or heat treatment of the reaction zone using hydrogen and / or nitrogen (high temperature, eg, to a growth temperature) Step can be performed.
  • an intermediate layer or a buffer layer may be formed on the substrate 101 before the first group III nitride layer 102 is grown.
  • This intermediate layer is selectively introduced to obtain better physical properties of the group III nitride layer 102, an exemplary material being the growth of non-polar, in particular semi-polar, group III nitride layers as well as group III-V compounds such as AlN and AlGaN. It may be another material suitable for promoting the process.
  • deposition or epitaxial growth techniques known in the art, such as MOCVD, HVPE, etc. may be utilized.
  • the dimension of the intermediate layer thus selectively introduced is not particularly limited but may be in the range of at least about 10 to 50 nm.
  • the process conditions can be adjusted to, for example, about 550 to 750 ° C. at atmospheric pressure for the formation of the intermediate layer, which should be understood as an exemplary meaning and the present invention is not limited to the above numerical range.
  • nonpolar or semipolar III-nitride layers can be formed on the substrate (or intermediate layer on the substrate) using conventional layer growth techniques such as MOCVD, HVPE, MBE, etc. It may be desirable to use MOCVD to ensure a better quality template.
  • the first group III nitride layer 102 may be formed to a thickness, specifically about 1 to 10 ⁇ m, more specifically about 2 to 5 ⁇ m.
  • a growth reaction may be performed for about 60 to 300 minutes under a temperature of about 800 to 1100 ° C. and a pressure of about 200 to 500 torr.
  • the specific growth conditions are described for illustrative purposes, and may be changed according to the size of the substrate and the like, but the present invention is not necessarily limited thereto.
  • the first group III nitride layer 102 has a semi-polar direction characteristic, and specifically, substrate characteristics and growth conditions may be adjusted to have a (11-22) direction. .
  • 3 and 4 illustrate a specific pattern of a cavity 105 below the interior of the Group III nitride layer 104 regrown on the Group III nitride layer 102 by lateral growth or overgrowth. It is a figure which shows the process of forming a kind of tunnel by being formed continuously along the mask of (a stripe pattern in drawing).
  • the lateral growth method can be carried out, for example, under ammonothermal growth conditions, and the ELOG method can be used as an example of the various lateral growth methods mentioned above.
  • a conventional growth method for example, MOCVD, HVPE, etc. may be used, it may be preferable to use MOCVD to facilitate the formation of a cavity as described below. The reason for this is that it may be easy to implement a cavity, particularly a triangular cavity, by showing a tendency to grow into an inverted leg shape in the lateral growth process, as described below.
  • the ELOG method is a modification of the selective crystal growth technique, and is used to prevent vertical propagation of dislocations occurring in the initial growth stage by partially patterning the insulating layer of the thin film on the already grown group III nitride layer. The following description will focus on the ELOG method.
  • a patterned mask layer 103 ' is formed on the first semipolar group III nitride layer 102 in the form of a stripe.
  • the mask of the stripe pattern may typically be a dielectric material, and may typically represent SiO 2 , SiN x (eg, Si 3 N 4 ), and the like.
  • the insulating layer 103 is first formed by, for example, plasma enhanced chemical vapor deposition (PECVD). Then, one set on the group III nitride layer 102 using conventional photolithography method (in the above method, for etching, a conventional manner such as, for example, ICP-RIE, etc. may be adopted).
  • PECVD plasma enhanced chemical vapor deposition
  • the parallel stripe pattern 103 'remains. In this case, an area between the masks of the stripe pattern may be referred to as a "window area".
  • the width of the mask may be set in a range of about 2 to 50 ⁇ m (specifically, about 2 to 10 ⁇ m), and the width of the window is about 2 to 20 ⁇ m (more specifically, about 2 to 10 ⁇ m). have.
  • the mask may also be suitable if it is in the range of about 500-2,000 mm 3 thickness.
  • the mask may be formed by setting in all the directions that can be placed on the plane, preferably in the (1-100) direction. The reason for considering the orientation of the mask pattern is because it affects the characteristics such as the facet formation of the over-grown group III nitride layer.
  • group III nitrides are characterized by a much faster growth rate in the c-plane direction than other planes.
  • a mask for example, SiO 2 material
  • the quality of the overall growth layer is improved as well as flat and smooth.
  • a surface can be obtained.
  • the mask pattern is formed in the (1-100) direction
  • a smoother surface can be formed.
  • the mask is patterned in the (-1-123) direction
  • the uneven surface of the micro unit may be formed. Therefore, although the present embodiment is not necessarily limited to the mask pattern in a specific direction, it may be more preferable to set the mask pattern in the (1-100) direction.
  • a group III nitride regrowth process is performed, which begins in the window region, where the microstructure of the underlying group III nitride layer 102 is reproduced, while the growth is over the mask region. It won't happen. Over time, crystals growing in the window region gradually grow (overgrowth) over the mask. As such, the growth layer of group III nitride extends vertically and laterally, wherein the laterally grown regions are referred to as " wing regions " whereby high quality crystals can be obtained with significantly reduced defects. It is.
  • the rate of extension between vertical and side depends on growth conditions, such that a nitride overgrown layer extending from the window to the side (e.g., the right direction) over time will have a side ( For example, it may meet and merge with the nitride overgrowth layer extending in the left direction.
  • a cavity 105 is formed below the joining boundary, which is formed continuously along the mask pattern to form a kind of tunnel structure.
  • the cavity 105 may exhibit various shapes such as a triangle, a square, a rectangle, a circle, and the like, depending on process conditions, but may have a triangular shape as shown.
  • semi-polar III-nitride may be suitable for forming a kind of tunnel by continuously connecting the cavity in the II-III nitride layer, but the present invention is not limited thereto.
  • Non-polar group III nitrides are also possible if one cavity is available.
  • the thickness of the group III-nitride layer 104 may be, for example, in the range of about 3 to 10 ⁇ m, and the size (diameter or height) of the cavity is about 2 to 50 ⁇ m, more specifically about 2 to May be in the range of 10 ⁇ m. These numerical ranges are exemplary and can be adjusted according to changes in process conditions.
  • the triangular cavity size may be formed differently according to the size of the pattern mask.
  • the diameter of the triangular cavity will have a width of about 6 ⁇ m. . If the width of the mask increases, the diameter of the triangular cavity also increases in proportion to this, and the growth time will also increase as the width of the mask increases.
  • the second group III nitride layer 104 may be formed (grown) by various parameter combinations, for example, the growth temperature is about 700 to 1,100 ° C. (more specifically about 800 to 1,000). ° C), and the pressure may range from about 200 to 400 mTorr.
  • the mask pattern when the mask pattern is in the (1-100) direction, the mask pattern may be performed at about 800 to 1100 ° C. for about 240 to 600 minutes.
  • the flow rate of the Ga source eg, trimethylgallium, triethylgallium, etc.
  • supplied may range from about 10 to 30 sccm.
  • the second III-nitride layer 104 grows in an inverted trapezoidal shape from the window and gradually forms a triangular-shaped cavity 105.
  • the lateral growth layer obtained as described above can be characterized by x-ray diffraction (XRD) analysis, and in the case of nonpolar and semipolar layers, it is usually anisotropic according to the angle (direction angle).
  • XRD x-ray diffraction
  • the semipolar group III nitrides obtainable by lateral growth in this embodiment for example, the range of about 300 to 500 arc sec (the FWHM value in arcsec (degree ⁇ 3600)) It is preferable to indicate.
  • FIG. 5 shows a cross section in which a Group III-nitride layer 106 is formed on the Group II-nitride layer 104 in an embodiment of the invention.
  • the third III-nitride layer 106 is separated from the lower substrate through a subsequent lift-off process, and thus a substrate (eg, homoepitac) for manufacturing electronic (or optoelectronic) devices such as LEDs, LDs, and transistors in the future. Can be used as a substrate for growing).
  • a substrate eg, homoepitac
  • HVPE has a relatively low growth cost and is particularly suitable for manufacturing thick growth layers because of its high growth rate.
  • Ga is typically placed in a temperature range of about 700 to 900 ° C. in a horizontal reactor having a two-step temperature gradient, and the target obtained previously (a structure in which first and second group III-nitride layers are formed on a substrate) is grown in a growth region ( For example, about 900 to 1100 ° C.).
  • Ga and HCl gas placed in a quartz container are reacted to supply GaCl synthesized with a carrier gas to a target, and ammonia gas is supplied to a region where the target is located through a separate quartz plate.
  • Group III nitride is grown on the target by the reaction formula of GaCl + NH 3 ⁇ GaN + HCl + H 2 (for GaN growth).
  • the thickness of the Group III-nitride layer 106 may be at least about 200 ⁇ m, more typically in the range of about 300 to 500 ⁇ m, to be suitable for growth substrate applications.
  • the group III-nitride layer 106 may exhibit the same crystal properties as the lower semi-polar or nonpolar group III-nitride layer corresponding to the template, that is, the semi-polar or non-polar property.
  • FIG. 6 illustrates a process of separating the Group III-nitride layer to be applied as an independent substrate by performing chemical etching on the Group II-nitride layer 104 in one embodiment of the present invention. It is a figure which shows schematically. As shown, the etching is carried out in a horizontal direction or in a vertical / horizontal direction, particularly around the tunnel shaped cavity.
  • Representative Group III nitride GaN crystals have two different faces, a Ga-face and an N-face. At this time, the Ga-plane is terminated at the end by a gallium atom, while the N-plane is terminated by the nitrogen atom at the end. Ga-plane is chemically stable, whereas N-plane is chemically unstable and highly reactive.
  • an N-polar surface will be present in the cavity inner surface (eg, at least one region of the cavity inner surface).
  • the -c plane and the (n- or r-) plane exist on both sides of the triangular cavity, respectively, while the bottom surface of the cavity is formed of SiO 2 .
  • the chemical etching may also proceed on the surfaces of the first and second III-nitride layers having nonpolar or semipolar properties.
  • the first and second III-nitride layers are removed such that the III-III nitride layer can be separated from the underlying structure.
  • a large area (eg, at least two inches) of Group III-nitride layer can be effectively separated.
  • the outer surface of the Group III-nitride layer during the etching process if a cavity tunnel across the Group II-nitride layer is not formed even if chemical (wet) etching is possible for the nonpolar or semipolar Group III nitride. Again, the phenomenon of etching to some extent is inevitable.
  • the cavity tunnels exist at intervals of several tens of micrometers, only the gap between the cavity tunnels can be etched to separate the group III-nitride layer.
  • etching conditions may be set to be performed for about 0.5 to 20 minutes under temperature conditions of at least about 300 ° C, more typically about 400 to 600 ° C.
  • the present invention is not necessarily limited to the above conditions, and can be changed depending on the crystal properties in the object to be etched, the diameter size of the cavity according to the pattern mask size, and the like. For example, if the cavity diameter is large, the etching rate may be faster.
  • a method of manufacturing a nonpolar or semipolar group III nitride substrate using a silicon (Si) substrate is provided.
  • non-polar or semi-polar group III nitride layer is formed while forming a cavity on a silicon substrate according to another embodiment of the present invention, the non-polar or semi-polar group III nitride layer of a thick film on the upper side (for example)
  • the non-polar or semi-polar group III nitride layer of a thick film on the upper side for example, it is a cross section which shows schematically the state in which at least about 200 micrometers thickness) was formed.
  • a (111) facet is formed on the upper surface of the silicon substrate 111.
  • the silicon substrate may be, for example, a (311) or (001) silicon substrate.
  • a patterning step specifically, a patterning process through an anisotropic etching, may be performed to form the (111) facet.
  • the (111) facets formed on the silicon substrate may selectively grow (form) group III nitride (ie, selective growth). That is, the group III nitride layer 114 may be grown (formed) by forming, for example, a triangular cavity 115 by a (111) facet formed on a silicon substrate.
  • the group III nitride layer 114 grown while the cavity 115 is formed is semipolar (eg, (1-101) or (11-22)) or nonpolar (eg, ( 11-20)). Accordingly, the group III nitride layer 114 serves as a kind of template, and the group III nitride layer 116 formed thereon may also exhibit semipolar or nonpolar characteristics.
  • the group III nitride layer 116 is formed (grown), for example, to a thickness of at least about 200 ⁇ m, and is chemically etched and separated from the group III nitride layer 114 having a cavity formed thereon as described above. freestanding) can be used as a III-nitride substrate.
  • a pattern mask layer (for example, SiO 2 mask) can also be used.
  • a SiO 2 mask (eg, about 70 nm thick, about 1 ⁇ m or less mask width, about 1 to 3 ⁇ m pattern spacing) on a (311) silicon substrate is subjected to photolithography techniques and the like.
  • a pattern e.g., stripe pattern
  • etch at about 30 to 50 [deg.] C with an etchant (e.g., KOH solution), and then, for example, HF (e.g., diluted HF), buffered oxide etchant (HF + NH4F mixture; BOE) and the like can be used to remove the mask layer.
  • HF e.g., diluted HF
  • BOE buffered oxide etchant
  • the (111) facets are formed on the silicon substrate by the etching process.
  • a III-nitride layer 114 having a predetermined thickness is formed on the silicon substrate through (re) growth such as MOCVD.
  • MOCVD metal-organic chemical vapor deposition
  • the intermediate layer or the buffer layer (not shown) described above may be selectively formed.
  • the growth of the above-mentioned group III nitride may be performed at, for example, about 900 to 1,100 ° C.
  • the growth and growth of the Group III nitride layer 116 of the thick film that is subsequently formed, and the chemical etching principles and detailed processes are the same as described above and will be omitted.
  • the group III nitride substrate prepared according to the above-described embodiment suppresses the mismatch due to hetero epitaxy caused by using a heterologous substrate (for example, sapphire) which is widely used now. It can be applied to the substrate of the electronic (or optoelectronic) device by the time growth.
  • a light emitting diode (LED), a laser diode (LD), a transistor (for example, HEMT), and the like can be exemplified.
  • FIG. 8 is a diagram showing an example in which the Group III-nitride layers 106 and 116 obtained according to the above-described embodiments are separated and applied to the substrate of the LED element.
  • the LED element is a group III nitride substrate 201, an n-type (or p-type) semiconductor layer 202, an active layer 203 and a p-type (or n-type) semiconductor layer (from below) 204).
  • a p-electrode 205 is formed on the p-type semiconductor layer 204
  • an n-electrode 206 is formed on an exposed surface of the n-type semiconductor layer 202.
  • the illustrated layer structure is provided for illustrative purposes, and various modified configurations are possible.
  • the materials of the semiconductor layers 202 and 204 and the active layer 203 formed on the substrate 201 are not particularly limited, and various semiconductor materials (III-V and II-VI known in the art for manufacturing LEDs).
  • Etc. GaN, InN, AlN, InP, InS, GaAs, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, Al x Ga 1-x N, In x Ga 1-x N, In x Ga 1-x As, Zn x Cd 1-x S, or the like can be used, and these can be used alone or in combination (0 ⁇ x ⁇ 1).
  • the active layer 203 may be formed of at least two materials selected from, for example, GaN, AlN, InN, InGaN, AlGaN, InAlGaN, or the like. Among them, a material having a small energy band gap may be used as a quantum well, and a material having a large energy band gap may be configured as a quantum barrier, and both single and multi quantum well structures may be used.
  • electrodes 205 and 206 for electrical application for example, platinum (Pt), palladium (Pd), aluminum (Al), gold (Au), nickel / gold (Ni / Au) alone Or in combination.
  • platinum (Pt), palladium (Pd), aluminum (Al), gold (Au), nickel / gold (Ni / Au) alone Or in combination for this electrode pattern formation, conventional methods such as photoresist patterning-etching, which are known in the art, may be performed.
  • a planar semipolar GaN layer was formed on an m-sapphire substrate (Crystal-On Company: M-plane 2 "sapphire wafer, thickness 430 ⁇ m) using the MOCVD equipment (Veeco) under the conditions of Table 1 below. At this time, tremethylgallium and ammonia were used as the gallium source and the nitrogen source, respectively.
  • ELOG was performed on the first GaN layer using masks of stripe patterns arranged at regular intervals (samples 1 and 2).
  • a SiO 2 layer was first deposited to a thickness of 100 nm by PECVD, and then the width (mask area) and stripe spacing (window area) of the stripe were respectively determined by ICP-RIE etching using standard photolithography. It adjusted to 7 micrometers and 4 micrometers.
  • the mask pattern was formed in the (1-100) direction.
  • the GaN layer was then regrown at 880 ° C. and 300 mTorr using MOCVD (ELOG). At this time, the thickness of sample 1 was about 2 ⁇ m, and the thickness of sample 2 was about 4 ⁇ m.
  • Sample 3 was regrown without a mask pattern (thickness: about 1.2 mu m), and Sample 4 had a mask pattern direction of (-1-123) (thickness: about 2 mu m).
  • the GaN layer regrown from the window region gradually grew laterally overgrown over the mask region over time, and laterally grown from the left and right over the wing region as the lateral growth continued.
  • the triangular cavities are continuously connected along the mask pattern to form a tunnel.
  • a planar regrowth layer was formed as shown in FIG.
  • a second GaN layer having a triangular cylinder shape is formed along the mask pattern on the first GaN layer.
  • FWHM full width at half maximum; unit: arcsec
  • XRD analyzer PANalytical, product name: High-resolution X-Ray diffraction
  • a third GaN layer was grown by HVPE on a sample 2 having a cavity tunnel (thickness: 300 mu m).
  • the HVPE process conditions are shown in Table 3 below.
  • the third GaN layer (ie, (11-22) GaN layer) of the thick film is formed in the same manner as the lower second GaN layer (ie, (11-22) GaN layer). .
  • a molten KOH was placed in a beaker at a height sufficient to contain the structure obtained as described above (first, second and third GaN layers formed on the substrate), which was then hot plated. Put on the table. After heating up to 550 ° C. to sufficiently melt the KOH to maintain the liquid phase, the structure was added thereto.
  • the SEM image confirmed the change of the second GaN layer due to etching. Changes in the second GaN layer after 20, 40, and 60 seconds have been shown in FIGS. 14A to 14C, respectively.
  • a 70 nm thick SiO 2 mask layer was sputter deposited on the (311) substrate, and a stripe pattern was formed using a photolithography method (mask width of 1 ⁇ m, pattern spacing of 2 ⁇ m).
  • the silicon substrate was then etched at 40 ° C. with KOH solution (25%).
  • KOH solution 25%
  • (111) facets formed on the silicon substrate surface, which were removed using diluted HF solution.
  • GaN was grown using trimethyl gallium (TMG) and ammonia as sources in the MOCVD apparatus.
  • TMG trimethyl gallium
  • the flow rates of TMG and ammonia were 15.0 ⁇ mol / min, and 0.5 slm, respectively
  • the growth temperature was 1,050 ° C.
  • the growth time was 60 minutes.
  • the GaN layer of the thick film was formed on the III-nitride layer thus formed as in Example 1, and then subjected to chemical etching, the possibility of fabrication of a self-supporting GaN substrate by separation of the GaN layer of the thick film was confirmed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Weting (AREA)

Abstract

본 발명의 구체예에서 개시된 무극성 또는 반극성 III족 질화물 층은 각종 전자 소자의 기판 용도로 사용될 수 있는 바, 종래의 극성 III족 질화물 기판의 문제점을 완화 또는 해소할 수 있을 뿐만 아니라, 화학적 리프트 오프 방식에 의하여 제조될 수 있다.

Description

화학적 리프트 오프 방법을 이용한 III족 질화물 기판의 제조방법
본 발명은 III족 질화물 기판을 제조하는 방법에 관한 것이다. 보다 구체적으로, 본 발명은 화학적 리프트 오프(chemimal lift off: CLO) 방법을 이용하여 무극성(non-polar) 또는 반극성(semi-polar) III족 질화물 기판을 제조하는 방법에 관한 것이다.
반도체 발광 소자로서 화합물 반도체의 특성을 이용하여 백라이트 광원, 표시 광원, 일반광원과 풀 칼라 디스플레이 등에 응용되는 LED가 널리 각광받고 있다. 이러한 LED의 재료로서 대표적으로 GaN(Gallium Nitride), AlN(Aluminum Nitride), InN(Indium Nitride) 등와 같은 III-V족 질화물 반도체가 알려져 있는 바, 상기 재료는 직접 천이형의 큰 에너지 밴드 갭(band gap)을 가지고 있어 질화물의 조성에 따라 거의 전파장 영역의 빛을 얻을 수 있는 등 광전자 디바이스에 적합한 특성을 보유하고 있어 이를 이용한 발광 소자는 평판디스플레이 장치, 광통신 등의 다양한 분야에서 응용되고 있다.
이러한 디바이스는 통상적으로 상에 기판 상에 분자빔 에피탁시(MBE), MOCVD(metalorganic chemical vapor deposition), HVPE(hydride vapor phase epitaxy) 등의 성장 방식에 의하여 박막 형태로 성장된다.
그러나, GaN로 대표되는 III족 질화물을 기반으로 하는 반도체는 통상적으로 c-면(c-plane) 기판(예를 들면, 사파이어 기판)을 사용하여 (0001) 면 위에 소자 구조를 제작하게 되는데, 이 경우 성장 방향 (0001)으로 자발 분극(spontaneous polarization)이 형성된다. 특히, 대표적인 InGaN/GaN의 양자우물 구조를 갖는 LED는 (0001)면에 구조를 성장할 경우 양자우물구조에 격자 부정합 등에 기인하는 내부 스트레인(strain)이 발생하고 이에 따른 압전기장(piezoelectric fields)에 의하여 양자 구속 스타크 효과(quantum-confined Stark effect; QCSE)가 야기되므로 내부 양자 효율을 높이는데 한계가 존재한다.
이러한 현상을 구체적으로 설명하면, III족 질화물, 특히 GaN 및 이의 합금(예를 들면, InN 및/또는 AlN과의 합금)은 육각형 우르차이트 구조(hexagonal Wㆌrtzite structure)에서 가장 안정한데, 상기 결정 구조는 결정이 서로에 대하여 120° 회전되며, c-축에 대하여 모두 수직인 2 또는 3 개의 균등한 기저면 축(basal plane axes)으로 표시된다.
상기 우르차이트 결정 구조 내의 III족 원소 및 질소 원자 위치에 의하여 c-축과 수직으로 놓여있는 임의의 면은 오직 한 가지 타입의 원자만을 함유하게 된다. c-축으로 진행함에 따라, 각각의 면은 한 가지 타입의 원자(III족 원소 또는 질소)만을 함유할 수 있다. 이때, 전하 중성을 유지하기 위하여, 예를 들면, GaN 결정은 오직 질소 원자만을 함유하는 N-면(N-face), 그리고 오직 Ga 원자만을 함유하는 Ga-면(Ga-face)이 각각의 말단에 위치한다. 그 결과, III족 질화물 결정은 c-축을 따라 극성을 나타낸다. 이와 같은 자발적 분극은 벌크 물성으로서 결정의 구조 및 조성에 의존한다. 상술한 특성으로 인하여, 대부분의 GaN계 디바이스는 극성 c-축에 평행한 방향으로 성장하게 된다. 또한, 이종접합 구조를 형성할 때 III족 질화물 간의 큰 격자상수의 차이, 같은 c축 배향성을 갖는 특성으로 인한 응력이 발생하여 압전분극(piezoelectric polarization) 현상 역시 함께 야기된다.
이처럼, III족 질화물계 광전자 및 전자 소자들 내의 통상적인 c-면 양자우물 구조는 압전 분극 및 자발적 분극 현상으로 유발된 정전기장(electrostatic field)은 양자우물 구조의 에너지 밴드 구조를 변화시켜 이에 따른 전자와 정공의 분포를 왜곡시키는 바, 이러한 전계에 의한 전자와 정공의 공간적 분리를 양자 구속 스타크 효과라 하며, 내부양자효율을 저하시키고 발광 스펙트럼의 적색 전이(red shift) 현상 등을 유발하게 된다.
상술한 문제점을 완화하기 위하여. 예를 들면 무극성(non-polar) 또는 반극성(semi-polar) III족 질화물을 성장시키는 방안이 제시되고 있다. 이와 같이 얻어진 무극성 또는 반극성 면은 동일한 수의 III족 원자 및 질소 원자를 함유하므로 전하 중성을 나타내는데, 그 결과 전체 결정은 성장방향으로 분극되지 않는다. 그러나, 이종 기판 상에서 성장하는 비극성 III족 질화물 결정은 높은 결함밀도를 나타내어 양자효율을 감소시키는 문제점을 초래한다.
한편, 최근에는 호모에피탁시 특성을 구현하기 위하여, III족 질화물 기판을 제작하고자 하는 시도가 이루어지고 있는데, 사파이어 기판과 같은 이종의 기판에 후막의 III족 질화물 충을 성장시킨 다음, 레이저 리프트 오프(laser lift off; LLO) 방법을 통해 이종 기판으로부터 성장된 III족 질화물 층을 분리하여 기판으로 사용한다.
이와 같이 레이저 리프트 오프 방식이 사용되는 이유는 c-축 방향으로 성장된 통상의 질화물 층은 표면이 Ga-극성을 나타내기 때문에 실질적으로 습식 에칭을 달성하기 곤란하기 때문이다. 그러나, 레이저 리프트 오프 방식은 고가의 비용이 소요되고 복잡하기 때문에 화학적 리프트 오프 방식이 보다 바람직할 수 있다.
더욱이, 무극성 또는 반극성 기판용 III족 질화물 층을 제조할 수 있다 해도 이를 화학적 리프트 오프 방식에 의하여 분리하기는 용이하지 않은 바, 이는 화학적 에칭 과정에서 기판으로 사용될 III족 질화물 층에도 손상을 야기할 수 있기 때문이다. 특히, 상용화에 적합한 2인치 이상의 직경을 갖는 기판의 분리에 적용하는 과정에서 이러한 문제점은 더욱 부각될 수 있다.
따라서, 화학적 리프트 오프 방법을 이용하면서도 극성에 의한 문제점이 완화할 수 있는 무극성 또는 반극성 III족 질화물 기판, 특히 반극성의 III족 질화물 기판을 제조하는 기술에 대한 필요성이 존재한다.
따라서, 본 발명은 극성 질화물의 사용으로부터 야기되는 문제점을 완화시킬 수 있을 뿐만 아니라 결함이 감소된 고품질의 무극성 또는 반극성 III족 질화물 기판을 제조하는 방법을 제공하고자 한다.
특히, 본 발명은 화학적 리프트 오프 방식에 의하여 무극성 또는 반극성 III족 질화물 기판을 제조하는 방법을 제공하고자 한다.
본 발명의 일 면(aspect)에 따르면,
a) 무극성 또는 반극성 에피탁시층의 성장 표면을 제공하는 기판 상에 제1 III족 질화물 층을 형성하는 단계;
b) 1 또는 2 이상의 캐비티가 내부에 형성된 제2 III족 질화물 층을 측면 성장(lateral growth) 방식에 의하여 상기 제1 III족 질화물 층 상에 형성하는 단계;
c) 상기 제2 III족 질화물 층 상에 제3 III족 질화물 층을 형성하는 단계; 및
d) 상기 제2 III족 질화물 층의 적어도 일부 두께에 대한 화학적 에칭을 수행하여 분리된 제3 III족 질화물 층을 얻는 단계;
를 포함하며,
상기 캐비티 내면의 적어도 일 영역이 N-극성을 나타내는 것을 특징으로 하는 III족 질화물 기판의 제조방법이 제공된다.
본 발명의 제2 면에 따르면,
a) 실리콘(Si) 기판 상에 무극성 또는 반극성 에피탁시층의 성장 표면을 제공하도록 이방성 에칭(anisotropic etching)을 수행하는 단계;
b) 상기 에칭된 실리콘 기판 상에 1 또는 2 이상의 캐비티를 형성하면서 III족 질화물 층을 성장시키는 단계;
c) 상기 단계 b)에서 성장된 III족 질화물 층 상에 III족 질화물 층을 형성하는 단계; 및
d) 상기 단계 b)에서 성장된 III족 질화물 층의 적어도 일부 두께에 대한 화학적 에칭을 수행함으로써 상기 단계 c)에서 형성된 III족 질화물 층을 분리하는 단계;
를 포함하며,
상기 무극성 또는 반극성 에피탁시층의 성장 표면은 (111) 파셋(facet)을 갖고, 그리고 상기 캐비티 내면의 적어도 일 영역이 N-극성을 나타내는 것을 특징으로 하는 III족 질화물 기판의 제조방법이 제공된다.
또한, 본 발명의 제3 면에 따르면,
상술한 2가지 방법 중 어느 한 방법에 따라 제조된 기판 및 이를 이용한 전자(또는 광전자) 소자가 제공된다. 이때, 상기 전자 소자는 발광소자(LED), 레이저 다이오드(LD), 트랜지스터 등을 예시할 수 있다.
본 발명의 구체예에 따라 제조되는 III족 질화물 기판은 무극성 또는 반극성 기판으로서, 극성 질화물이 갖는 기술적 한계를 완화할 수 있으며, 특히 화학적 리프트 오프 방식으로 제조될 수 있는 장점을 갖는다.
도 1(a)는 GaN의 결정 구조의 무극성 면(a-plane 및 m-plane)을 도시하는 도면이고;
도 1(b)는 GaN의 결정 구조에 있어서, 반극성 면(semi-polar plane)을 도시하는 도면이고;
도 2는 본 발명에 따른 일 구체예에 있어서 기판 상에 제1 III족 질화물 층(주형)이 형성된 것을 도시하는 단면이고;
도 3은 본 발명에 따른 일 구체예에 있어서 제1 III족 질화물 층 상에 마스크 패턴(스트라이프 패턴)을 형성하는 과정을 도시하는 단면이고;
도 4는 본 발명에 따른 일 구체예에 있어서, 제1 III족 질화물 층 상에 측면 성장(또는 과성장) 방식에 의하여 재성장된 제2 III족 질화물 층이 형성된 것을 도시하는 단면이고;
도 5는 본 발명에 따른 일 구체예에 있어서, 제2 III족 질화물 층 상에 제3 III족 질화물 층이 형성된 단면을 도시하는 단면이고;
도 6은 본 발명의 일 구체예에 있어서 하측에 위치하는 제2 III족 질화물 층을 화학적으로 에칭하여 제3 III족 질화물 층(기판 용도)을 분리하는 과정을 개략적으로 도시하는 단면이고;
도 7은 본 발명의 다른 구체예에 따라, 실리콘 기판 상에 캐비티가 형성되면서 무극성 또는 반극성 III족 질화물 층이 형성되고, 이를 주형으로 하여 상측에 후막의 무극성 또는 반극성 III족 질화물 층이 형성된 상태를 개략적으로 도시하는 단면이고;
도 8은 본 발명의 일 구체예에 따라 얻어진 제3 III족 질화물 층을 분리하여 LED 소자의 기판으로 적용한 예를 도시하는 도면이고;
도 9는 본 발명의 실시예 1에 있어서, 측면 성장된 제2 GaN 층(샘플 1)의 단면을 나타내는 SEM 사진이고;
도 10은 본 발명의 실시예 1에 있어서, 측면 성장된 제2 GaN 층(샘플 2)의 단면을 나타내는 SEM 사진이고;
도 11은 본 발명의 실시예 1에 있어서, 제1 GaN 층 상에 마스크 패턴없이 재성장된 제2 GaN 층(샘플 3)의 단면을 나타내는 SEM 사진이고;
도 12는 본 발명의 실시예 1에 있어서, 측면 성장된 제2 GaN 층(샘플 4)의 단면을 나타내는 SEM 사진이고;
도 13은 본 발명의 실시예 1에 있어서, 샘플 2 상에 HVPE에 의하여 후막 형성된 제3 GaN 층의 단면을 나타내는 SEM 사진이고; 그리고
도 14(a) 내지 도 14(c)는 각각 본 발명의 실시예 1에 있어서, 에칭액인 용융 KOH의 온도를 550℃로 유지하면서 60초에 걸친 화학적 에칭 수행시 시간에 따른 제2 GaN 층의 변화를 보여주는 SEM 사진이다.
[부호의 설명]
101: 기판
102: 제1 III족 질화물 층
103: 마스크용 절연체층
103': 마스크 패턴층
104: 제2 III족 질화물 층
105, 115: 캐비티
106: 제3 III족 질화물 층
111: (111) 파셋이 형성된 실리콘 기판
114, 116: III족 질화물 층
200: LED 소자
210: 무극성 또는 반극성 III족 질화물 기판
202: n-형(또는 p-형) 반도체 층
203: 활성층
204: p-형(또는 n-형) 반도체 층
205: p-전극
206: n-전극
본 발명은 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아니다.
또한, 첨부된 도면은 이해를 돕기 위하여 실제 층의 두께(또는 높이) 또는 다른 층과의 비율에 비하여 다소 과장되게 표현된 것일 수 있으며, 그 의미는 후술하는 관련 기재의 구체적 취지에 의하여 적절히 이해될 수 있다.
본 명세서에 있어서, "상에" 및 "위에"라는 표현은 상대적인 위치 개념을 언급하기 위하여 사용되는 것으로서, 언급된 층에 다른 구성 요소 또는 층이 직접적으로 존재하는 경우뿐만 아니라, 그 사이에 다른 층(중간층) 또는 구성 요소가 개재되거나 존재할 수 있는 것으로 이해될 수 있다. 이와 유사하게, "하측에", "하부에", "아래에" 및 "사이에"라는 표현 역시 위치에 대한 상대적 개념으로 파악될 수 있을 것이다.
본 명세서에 있어서, "III족 질화물"은 주기율표 상의 III족 원소와 질소에 의하여 형성된 반도체 화합물을 의미할 수 있다. 이러한 III족 원소의 예로서, 알루미늄(Al), 갈륨(Ga), 인듐(In) 등을 예시할 수 있고, 이들의 단독 또는 2 이상의 조합을 포함할 수 있다. 따라서, GaN, AlN, InN, AlGaN, AlInN, GaInN, AlInGaN 등을 포함하는 개념으로 이해할 수 있다. 이를 일반화하면, 상기 III족 질화물은 예시적으로 하기 일반식 1로 표시 가능하다.
[일반식 1]
AlxInyGa1-x-yN
상기에서 0≤x≤1, 0≤y≤1, 및 0≤x+y≤1임.
본 명세서에서, "측면 성장" 또는 "측면 과성장"이라는 용어는 측면 에피탁시 과성장(LEO, ELO 또는 ELOG), PENDEO 에피탁시 등을 포함하는 개념이며, 수직 성장보다는 측면 성장을 보다 용이하게 함으로써 결함 또는 전위(dislocation)가 층 표면에 수직인 방향으로 전파되는 것을 억제할 수 있도록 하는 공정이다. 이러한 공정은 통상 MOCVD 등에 의한 c-면 GaN 성장시 결함 또는 전위를 감소시키기 위한 목적으로 당업계에서 알려져 있다.
"무극성"이라는 용어는 c-축에 대하여 수직인 결정 방향(예를 들면, a-면 및 m-면)을 갖는 것을 의미하는 바, III족 질화물 결정 구조의 무극성 면(plane)은 도 1(a)에서와 같이 도시할 수 있다.
"반극성"이라는 용어는 (0001) 또는 (000-1)에 대하여 0 내지 90° 사이의 결정 방향을 갖는 것을 의미한다. 이때, "반극성 면"은 육방 단위(hexagonal unit) 셀을 대각선 방향으로(diagonally) 가로질러 연장되고, c-축과는 90° 이외의 각을 형성한다. 특히, 극성(0001) 층과 비교하면, 극성 벡터가 성장 방향에 대하여 기울어져 있기 때문에 극성에 의한 영향이 감소하게 된다. III족 질화물 내에서 일반적으로 관찰되는 반극성 면(plane)으로 (11-22), (1-101), (10-11), (10-13), (10-12), (20-21), (10-14) 등을 예시할 수 있으며, 다만 본 발명이 상기 구체적인 값으로 한정되는 것은 아니다. 이러한 반극성 면은 도 1(b)와 같이 나타낼 수 있는 바, 예를 들면 (11-22) 방향의 반극성 GaN의 경우, (0002) 면과 약 58° 기울어져 존재한다.
도 2는 본 발명에 따른 일 구체예에 있어서 기판 상에 제1 III족 질화물 층(주형)이 형성된 것을 도시하는 도면이다.
상기 구체예에 있어서, 제1, 제2 및 제3 III족 질화물은 각각 무극성 또는 반극성 층, 바람직하게는 반극성 층을 의미할 수 있다.
상기 도면에 따르면, 먼저 기판(101) 상에 제1 III족 질화물의 에피탁시 층(102)을 성장시킨다. 이때, 기판(101)으로서 무극성 또는 반극성 III족 질화물 층의 성장에 적합한 기판이라면 특별한 제한 없이 사용할 수 있다. 이러한 기판은, 광의로는 a-면(a-plane), r-면(r-plane) 또는 m-면(m-plane)과 같은 대칭적으로 등등한(symmetry-equivalent) 면을 포함할 수 있다.
또한, 무극성 III족 질화물 층의 제조를 위하여는 r-면 기판을, 그리고 III족 질화물 층의 제조를 위하여는 반극성 m-면 기판(예를 들면, (1-100)의 면 방향(orientation)은 가짐)을 사용하는 것이 바람직할 수 있다.
이와 관련하여, 기판의 재질로서, 사파이어, 실리콘 카바이드(SiC), 리튬 알루미네이트, 스피넬 등을 예시할 수 있으며, 경우에 따라서는 III족 질화물 또는 이의 합금(alloy) 재질(예를 들면, 질화갈륨(GaN), 질화알루미늄(AlN) 등)을 사용할 수도 있다.
본 발명의 예시적인 구체예에 따르면, 기판으로서 반극성을 구현하기 위하여 m-면 사파이어 기판을 사용하는 것이 바람직할 수 있다. 이러한 기판(101) 상에 질화물 층을 형성하기에 앞서, 선택적으로 반응 영역 내 잔여 산소의 제거, 수소, 및/또는 질소를 이용하여 반응 영역을 어닐링 또는 열처리(고온, 예를 들면, 성장 온도까지)하는 단계 등을 수행할 수 있다. 또한, 예를 들면 사파이어 기판 등의 경우, 무수 암모니아 등을 이용하여 기판 표면을 질화(nitridation)하는 단계도 포함할 수 있다.
본 발명의 변형예에 있어서, 상기 기판(101) 상에 제1 III족 질화물 층(102)을 성장시키기에 앞서 중간층 또는 버퍼층(도시되지 않음)을 형성할 수 있다. 이러한 중간층은 보다 양호한 III족 질화물 층(102)의 물성을 얻기 위하여 선택적으로 도입되는 것으로, 예시적인 재질은 AlN, AlGaN 등의 III-V족 화합물뿐만 아니라 비극성, 특히 반극성 III족 질화물 층의 성장을 촉진하는데 적합한 다른 재질일 수도 있다. 이때, MOCVD, HVPE 등과 같이 당업계에서 알려진 증착(deposition) 또는 층 성장(epitaxial growth) 기술이 활용 가능하다.
이와 같이 선택적으로 도입되는 중간층의 치수는 특별히 한정되는 것은 아니지만, 적어도 약 10 내지 50 nm 범위일 수 있다. 또한, 상기 중간층 형성을 위하여 예를 들면 상압 조건에서 약 550 내지 750 ℃ 로 공정 조건을 조절할 수 있는 바, 이는 예시적인 의미로 이해되어야 하며 본 발명이 상기 수치범위로 한정되는 것이 아님은 명백하다.
상기 구체예에 있어서, 통상의 층 성장 기술, 예를 들면 MOCVD, HVPE, MBE 등을 이용하여 기판(또는 기판 상의 중간층)에 무극성 또는 반극성 III족 질화물 층을 형성할 수 있는 바, 일 예에서는 보다 양호한 품질의 주형(template)을 확보하기 위하여 MOCVD를 이용하는 것이 바람직할 수 있다.
본 발명의 특정 구체예에 있어서, 상기 제1 III족 질화물 층(102)은, 구체적으로 약 1 내지 10 ㎛, 보다 구체적으로 약 2 내지 5 ㎛ 범위의 두께로 형성될 수 있다. 이와 같이 제1 III족 질화물 층(102)을 형성하기 위하여, 예를 들면 약 800 내지 1100 ℃의 온도 및 약 200 내지 500 torr의 압력 조건 하에서 약 60 내지 300 분 동안 성장 반응을 수행할 수 있다. 상기 구체적인 성장 조건은 예시적 목적으로 기재된 것이며, 기판 등의 사이즈 등에 따라 변경될 수 있는 바, 본 발명이 반드시 이에 한정되는 것은 아니다.
또한, 본 구체예에 있어서, 상기 제1 III족 질화물 층(102)은 반극성 방향 특성을 갖는 것이 바람직할 수 있으며, 구체적으로 (11-22) 방향을 갖도록 기판 특성 및 성장 조건을 조절할 수 있다.
도 3 및 도 4는 제1 III족 질화물 층(102) 상에 측면 성장 또는 과성장 방식에 의하여 재성장된 제2 III족 질화물 층(104)의 내부에 캐비티(cavity; 105)가 하부의 특정 패턴(도면에서는 스트라이프 패턴)의 마스크를 따라 연속적으로 형성되어 일종의 터널을 구성하는 과정을 도시하는 도면이다.
도시된 구체예에 있어서, 측면 성장 방식은 예를 들면 암열 성장(ammonothermal growth) 조건 하에서 수행될 수 있으며, 앞서 언급된 다양한 측면 성장법 중 예시적으로 ELOG 방식을 이용할 수 있다. 이때, 통상의 성장 방법, 예를 들면 MOCVD, HVPE 등이 이용될 수 있는 바, 후술하는 바와 같이 캐비티 형성이 용이하도록 MOCVD를 이용하는 것이 바람직할 수 있다. 그 이유는 후술하는 바와 같이 측면 성장 과정에서 역사다리 형상으로 성장하는 경향을 나타내어 캐비티, 특히 삼각 형상의 캐비티를 구현하기 용이할 수 있기 때문이다.
상기 ELOG 방식은 선택적 결정 성장 기술을 변형한 것으로, 이미 성장된 III족 질화물 층 상에 부분적으로 박막의 절연층을 패터닝하여 초기 성장 단계에서 발생하는 전위의 수직 전파를 방지하기 위하여 이용되고 있다. 이하에서는 ELOG 방식을 중심으로 기술한다.
상기 도면을 참고로 하면, 먼저 제1 반극성 III족 질화물 층(102) 상에 스트라이프 형태로 패턴화된 마스크 층(103')을 형성한다. 이때, 스트라이프 패턴의 마스크는 전형적으로 절연성(dielectric) 재질일 수 있는 바, 대표적으로는 SiO2, SiNx(예를 들면, Si3N4) 등을 예시할 수 있다.
상기 마스크 패턴을 형성하기 위하여, 먼저 예를 들면 PECVD(plasma enhanced chemical vapor deposition)에 의하여 절연성 층(103)을 형성한다. 그 다음, 통상의 포토리소그래피법(상기 방법에서, 에칭을 위하여, 예를 들면 ICP-RIE 등과 같은 통상의 방식을 채택할 수 있음)을 이용하여 제1 III족 질화물 층(102) 상에 한 세트의 평행한 스트라이프 패턴(103')이 남도록 한다. 이때, 스트라이프 패턴의 마스크 사이의 영역을 "원도우(window) 영역"으로 일컬을 수 있다.
상기 마스크의 폭은 예를 들면 약 2 내지 50 ㎛(구체적으로는 약 2 내지 10㎛), 그리고 상기 윈도우의 폭은 약 2 내지 20 ㎛(보다 구체적으로는 약 2 내지 10㎛) 범위로 설정할 수 있다.
또한, 상기 마스크는 약 500 내지 2,000 Å 두께 범위이면 적당할 수 있다. 또한, 본 구체예에 따르면, 상기 마스크는 평면상에 놓일 수 있는 방향 모두로 설정하여 패턴이 형성될 수 있는데, 바람직하게는 (1-100) 방향일 수 있다. 이와 같이 마스크 패턴의 방향을 고려하는 이유는 (과)성장되는 III족 질화물 층의 파셋(facet) 형성 등의 특성에 영향을 미치기 때문이다.
통상적으로, III족 질화물, 특히 GaN의 경우, c-면(plane) 방향으로의 성장 속도가 다른 면들에 비하여 월등히 빠르다는 특징을 갖는다. 상술한 바와 같이 마스크(예를 들면 SiO2 재질) 패턴을 이용하여 c-면 방향으로의 성장 속도를 감소시켜 균일한 속도로 성장을 시킬 경우, 전체적인 성장층의 품질도 향상되는 것은 물론 평평하고 매끄러운 표면을 얻을 수 있다. 특히, 마스크 패턴을 (1-100) 방향으로 패턴을 형성할 경우, 보다 매끄러운 표면을 형성할 수 있다. 다만, 마스크를 (-1-123) 방향으로 패턴 형성할 경우, 마이크로 단위의 요철 표면이 형성될 수 있다. 따라서, 본 구체예가 특정 방향의 마스크 패턴으로 반드시 한정되는 것은 아님에도 불구하고, 마스크 패턴을 (1-100) 방향으로 설정하는 것이 보다 바람직할 수 있을 것이다.
그 다음, III족 질화물의 재성장 과정을 수행하는데, 이러한 재성장 과정은 윈도우 영역에서 시작되며, 이때, 하부의 제1 III족 질화물 층(102)의 미세구조가 재현되는 반면, 마스크 영역 위로는 성장이 일어나지 않게 된다. 시간이 경과함에 따라 윈도우 영역에서 성장되는 결정은 점차 마스크 위로 측면 성장(과성장)한다. 이처럼, III족 질화물의 성장 층은 수직 및 측면으로 연장되는데, 이때, 측면 방향으로 성장되는 영역을 "윙(wing) 영역"이라 하는데, 상기 영역은 결함이 현저히 감소된 고품질의 결정이 얻어질 수 있는 것이다.
또한, 수직 및 측면(수평) 간 연장되는 비율은 성장 조건에 의존하는 바, 시간의 경과에 따라 윈도우로부터 측면(예를 들면, 오른쪽 방향)으로 연장된 질화물 과성장 층은 인접하는 윈도우로부터 측면(예를 들면, 왼쪽 방향)으로 연장된 질화물 과성장 층과 만나 합쳐질 수 있다. 그 결과, 합쳐지는 경계(boundary)의 하측에 캐비티(105)가 형성되는데, 이러한 캐비티는 마스크 패턴을 따라 연속적으로 형성되어 일종의 터널 구조를 형성한다. 상기 캐비티(105)는 공정 조건 등에 따라서는 삼각형, 정사각형, 직사각형, 원형 등의 다양한 형상을 나타낼 수 있으나, 도시된 바와 같이 삼각형 형상이 바람직할 수 있다.
상기 구체예에서는 캐비티가 연속적으로 연결되어 터널로 형성되는 경우를 도시하고 있으나, 이는 바람직한 취지로 제시된 것으로서 일부 구간에서 의도적 또는 비의도적으로 폐쇄되는 경우도 본 발명의 범위에 포함될 수 있다.
본 구체예에서는 제2 III족 질화물 층 내에 캐비티가 연속적으로 연결되어 일종의 터널을 형성함에 있어서 주로 반극성 III족 질화물이 적합할 수 있으나, 본 발명이 이에 한정되는 것은 아니고, 적절한 공정 조건을 통하여 상술한 캐비티 형성이 가능하다면 무극성 III족 질화물도 가능하다.
제2 III족 질화물 층(104)의 두께는, 예를 들면 약 3 내지 10 ㎛ 범위일 수 있으며, 또한 상기 캐비티의 사이즈(직경 또는 높이)는 약 2 내지 50 ㎛, 보다 구체적으로는 약 2 내지 10 ㎛ 범위일 수 있다. 이러한 수치 범위는 예시적인 것으로서, 공정 조건 등의 변경에 따라 조절 가능하다.
예를 들면, 삼각 형상의 캐비티 사이즈는 패턴 마스크의 사이즈에 따라 다르게 형성될 수 있는 바, 패턴의 마스크 폭이 약 7 ㎛인 경우, 삼각 형상 캐비티의 직경은 약 6 ㎛ 정도의 폭을 갖게 될 것이다. 만약, 마스크의 폭이 커진다면 삼각 형상 캐비티의 직경 역시 이에 비례하여 커지고, 성장시간 역시 마스크 폭이 커짐에 따라 증가하게 될 것이다.
도시된 구체예에 따른 제2 III족 질화물 층(104)은 다양한 파라미터 조합에 의하여 형성(성장)될 수 있는 바, 예를 들면 성장 온도는 약 700 내지 1,100℃(보다 구체적으로는 약 800 내지 1,000℃), 그리고 압력은 약 200 내지 400 mTorr 범위일 수 있다. 예를 들면, 마스크 패턴이 (1-100) 방향인 경우, 약 800 내지 1100 ℃에서 약 240 내지 600 분에 걸쳐 수행할 수 있다. 이때, 공급되는 Ga 소스(예를 들면, 트리메틸갈륨, 트리에틸갈륨 등)의 유속은 약 10 내지 30 sccm 범위일 수 있다.
상기 제2 III족 질화물 층(104)은 윈도우로부터 역 사다리꼴 형상으로 성장하면서 점차 삼각 형상의 캐비티(105)를 형성하게 된다.
상술한 바와 같이 얻어진 측면 성장 층은 x-선 회절(XRD) 분석에 의하여 그 특성을 나타낼 수 있는 바, 무극성 및 반극성 층의 경우 통상적으로 각도(방향각)에 따라 이방성(anisotropy)을 나타낸다. 이와 관련하여, 본 구체예에서 측면 성장에 의하여 얻어질 수 있는 반극성 III족 질화물의 경우, 예를 들면 약 300 내지 500 arc sec(FWHM 값을 arcsec로 나타낸 값(degree×3600)임) 범위를 나타내는 것이 바람직하다.
도 5는 본 발명의 구체예에서 제2 III족 질화물 층(104) 상에 제3 III족 질화물 층(106)이 형성된 단면을 도시하는 도면이다.
상기 제3 III족 질화물 층(106)은 후속 리프트 오프 공정을 통하여 하측의 기판과 분리되어 향후 LED, LD, 트랜지스터 등의 전자(또는 광전자) 소자의 제조를 위한 기판(예를 들면, 호모에피탁시 성장용 기판)으로 사용될 수 있다.
이때, 당업계에서 알려진 통상의 성장 기술이 이용될 수 있는 바, MOCVD 또는 MBE는 고품질의 에피탁시 층을 성장시키는데 유리하기는 하나, 상대적으로 고비용이 소요될 뿐만 아니라 성장 속도가 낮다. 반면, HVPE는 상대적으로 성장 비용이 상대적으로 저렴하고, 특히 성장 속도가 높기 때문에 후막의 성장층을 제조하는데 적합하다. 본 구체예가 특정 성장 기술로 한정되는 것은 아니지만, 상술한 점을 감안하면 HVPE를 이용하는 것이 바람직할 수 있다. HVPE 방식을 구현하는 일 예는 다음과 같이 설명할 수 있다:
통상적으로 2단 온도구배를 갖는 수평형 반응기 내에서 약 700 내지 900 ℃의 온도 영역에 Ga을 놓고, 앞서 얻어진 타겟(기판 상에 제1 및 제2 III족 질화물 층이 형성된 구조물)을 성장 영역(예를 들면, 약 900 내지 1100℃) 내에 위치시킨다. 석영용기에 놓인 Ga 및 HCl 가스를 반응시켜 합성된 GaCl을 캐리어 가스와 함께 타겟에 공급하고 별도의 석영판을 거쳐 암모니아 가스를 상기 타겟이 위치하는 영역에 공급한다. 그 결과, GaCl+NH3→GaN+HCl+H2(GaN 성장의 경우)의 반응식에 의하여 III족 질화물이 타겟 위에 성장하게 된다.
이때, 성장용 기판 용도에 적합하도록, 상기 제3 III족 질화물 층(106)의 두께는 적어도 약 200㎛일 수 있으며, 보다 전형적으로는 약 300 내지 500 ㎛ 범위일 수 있다. 상기 제3 III족 질화물 층(106)은 주형에 해당하는 하측의 반극성 또는 무극성의 제2 III족 질화물 층과 동일한 결정 특성, 즉 반극성 또는 무극성을 나타낼 수 있는 것이다.
추후 기판으로 사용 가능한 제3 III족 질화물 층(106)이 형성된 다음에는 하부의 제2 III족 질화물 층의 적어도 일부 두께 부위를 제거하는 화학적 에칭 단계를 수행할 수 있다. 이와 관련하여, 도 6은 본 발명의 일 구체예에 있어서 제2 III족 질화물 층(104)에 대하여 화학적 에칭을 수행하여 제3 III족 질화물 층을 독립적인 기판으로 적용할 수 있도록 분리하는 과정을 개략적으로 도시하는 도면이다. 도시된 바와 같이, 특히 터널 형태의 캐비티를 중심으로 수평 방향 또는 수직/수평 방향으로 에칭이 수행된다.
상기 구체예에서 화학적 에칭이 가능한 이유를 하기와 같이 설명할 수 있으나, 본 발명이 이에 구속되는 것은 아니다:
대표적인 III족 질화물인 GaN 결정은 2가지 상이한 면, 즉 Ga-면(Ga-face) 및 N-면(N-face)을 갖는다. 이때, Ga-면은 말단이 갈륨 원자로 종결되는 반면, N-면은 말단이 질소 원자로 종료된다. Ga-면의 경우, 화학적으로 안정한 반면, N-면의 경우에는 화학적으로 불안정하여 반응성이 높다(chemically active).
통상, c-면 기판 상에서 성장된 극성 질화물 층((0001) 면)의 경우, 표면의 말단이 Ga-면이기 때문에 화학적으로 대단히 안정하여 화학적 에칭이 곤란하다. 그러나, 피에칭물, 특히 제2 III족 질화물 층(104)의 경우, N-극성을 가진 면이 캐비티 내면(예를 들면, 캐비티 내면의 적어도 일 영역)에 존재하게 된다. 구체적으로 설명하면, -c 면, 및 (n- or r-) 면이 각각 삼각 형상 캐비티의 양면으로 존재하는 한편, 캐비티의 바닥면은 SiO2로 형성된다. 도시된 구체예에 있어서, 터널 내의 바닥면을 제외한 상측의 2개 면에 N-극성을 나타내는 -c 면이 존재하고, 또한 N-극성을 부분적으로 나타내는 (n- or r-) 면이 존재하게 된다.
통상적으로 N-극성 면에 대하여 화학적 에칭이 가능하다고 할 때, N-극성을 나타내는 면만 에칭이 되는 것이 아니라, GaN 하나의 입자에서 Ga과 N의 결합 에너지가 더 크기 때문에 GaN 입자 하나가 에칭이 된다. 따라서, N-극성이 노출되면 노출된 면부터 시작하여 전부 에칭이 가능하다.
상술한 바와 같이, 터널 내면으로부터의 화학적 에칭이 진행됨과 동시에, 무극성 또는 반극성을 갖는 제1 및 제2 III족 질화물 층의 표면에서도 화학적 에칭이 진행될 수 있다.
이처럼, 제1 및 제2 III족 질화물 층, 특히 제2 III족 질화물 층의 적어도 일부 두께 부위가 제거됨으로써 제3 III족 질화물 층은 하부의 구조물로부터 분리될 수 있는 것이다.
본 구체예에 따르면, 대면적(예를 들면, 2인치 이상)의 제3 III족 질화물 층을 효과적으로 분리할 수 있다. 전술한 바와 같이, 무극성 또는 반극성 III족 질화물에 대하여 화학적(습식) 에칭이 가능하더라도 제2 III족 질화물 층을 가로지르는 캐비티 터널이 형성되지 않는 경우에는 에칭 과정 중 제3 III족 질화물 층의 외면 역시 일정 정도 에칭되는 현상을 피할 수 없다. 그러나, 상기 구체예에서는 캐비티 터널이 수 내지 수십 ㎛ 간격을 두고 존재하기 때문에 캐비티 터널 사이의 간격만 에칭되면 제3 III족 질화물 층을 분리할 수 있다.
화학적 리프트 오프를 구현하기 위하여, 다양한 습식 에칭 방식을 이용할 수 있는 바, 이때 강산(예를 들면, H3PO4) 또는 가열된(용융된) 강염기(예를 들면, NaOH, KOH 등의 알칼리 염 또는 이의 혼합물)를 이용하여 가급적 신속하게 제3 III족 질화물(106)을 분리하는 것이 에칭에 의한 손상을 최대한 억제할 수 있기 때문에 바람직할 수 있다. 이때, 용융 알칼리 염을 사용하는 경우, 전형적으로 적어도 약 300℃, 보다 전형적으로 약 400 내지 600 ℃의 온도 조건 하에서 약 0.5 내지 20 분 동안 수행되도록 에칭 조건을 설정할 수 있다. 본 발명이 상기 조건으로 반드시 한정되는 것은 아니고 피에칭물 내 결정 특성, 패턴 마스크 사이즈에 따른 캐비티의 직경 사이즈 등에 따라 변경가능하다. 예를 들면, 캐비티 직경이 크면, 에칭 속도는 더욱 빨라질 수 있을 것이다.
한편, 본 발명의 다른 구체예에 따르면, 실리콘(Si) 기판을 사용하여 무극성 또는 반극성의 III족 질화물 기판을 제조하는 방법이 제공된다.
도 7은 본 발명의 다른 구체예에 따라, 실리콘 기판 상에 캐비티가 형성되면서 무극성 또는 반극성 III족 질화물 층이 형성되고, 이를 주형으로 하여 상측에 후막의 무극성 또는 반극성 III족 질화물 층(예를 들면, 적어도 약 200㎛ 두께)이 형성된 상태를 개략적으로 도시하는 단면이다.
상기 도시된 구체예에 있어서, 실리콘 기판(111)의 상면에 예를 들면 (111) 파셋(facet)이 형성되어 있다. 이때, 실리콘 기판은 예를 들면 (311) 또는 (001) 실리콘 기판일 수 있다. 도시된 바와 같이, (111) 파셋을 형성하기 위하여 패턴화 단계, 구체적으로 이방성(anisotropic) 에칭을 통한 패턴화 과정이 수행될 수 있다. 이와 같이 실리콘 기판 상에 형성된 (111) 파셋으로 인하여 III족 질화물을 선택적으로 성장(형성)시킬 수 있다(즉, selective growth). 즉, 상기 III족 질화물 층(114)은 실리콘 기판 상에 형성된 (111) 파셋에 의하여, 예를 들면 삼각 형상의 캐비티(115)를 형성하면서 성장(형성)될 수 있다.
상기 구체예에 있어서, 캐비티(115)가 형성되면서 성장된 III족 질화물 층(114)은 반극성(예를 들면, (1-101) 또는 (11-22)) 또는 무극성(예를 들면, (11-20))을 나타낼 수 있다. 따라서, 상기 III족 질화물 층(114)은 일종의 주형으로 작용하며, 그 위에 형성되는 III족 질화물 층(116) 역시 동일하게 반극성 또는 무극성 특성을 나타낼 수 있는 것이다.
상기 III족 질화물 층(116)을, 예를 들면 적어도 약 200㎛ 두께로 형성(성장)시켜, 전술한 바와 같이 하측으로 캐비티가 형성된 III족 질화물 층(114)을 화학적으로 에칭하여 분리시킴으로써 자립형(freestanding) III족 질화물 기판으로 사용할 수 있다.
한편, 본 구체예에 따르면, 패턴 마스크 층(예를 들면, SiO2 마스크)을 이용할 수도 있다.
예시적인 구체예에 따르면, 먼저 (311) 실리콘 기판 상에 SiO2 마스크(예를 들면, 약 70nm 두께, 약 1㎛ 이하의 마스크 폭, 약 1 내지 3㎛의 패턴 간격)를 포토리소그래피 테크닉 등을 이용하여 실리콘 기판 상에 패턴(예를 들면, 스트라이프 패턴) 형성하고, 에칭액(예를 들면, KOH 용액)으로 약 30 내지 50℃에서 에칭한 다음, 예를 들면, HF(예를 들면, 희석된 HF), 버퍼 산화에칭(Buffered Oxide Etchant, HF+NH4F 혼합물; BOE) 등을 사용하여 상기 마스크 층을 제거할 수 있다. 상기 에칭 처리에 의하여 실리콘 기판 상에 (111) 파셋이 형성된다.
이후, MOCVD 등의 (재)성장을 통하여 실리콘 기판 상에 일정 두께의 III족 질화물 층(114)을 형성한다. 상기 성장 과정에 있어서, 앞에서 설명된 중간층 또는 버퍼층(도시되지 않음)이 선택적으로 형성될 수도 있다.
상술한 III족 질화물의 성장은, 예를 들면 약 900 내지 1,100℃서 수행될 수 있다. 후속적으로 형성되는 후막의 III족 질화물 층(116)의 성장, 그리고 화학적 에칭의 원리 및 세부 공정은 이미 기술한 바와 동일하므로 생략한다.
전술한 구체예에 따라 제조된 III족 질화물 기판은 현재 널리 사용되고 있는 이종기판(예를 들면, 사파이어)을 사용하는 경우에 야기되는 헤테로 에피탁시에 의한 불일치(mismatch) 현상을 억제하여 호모에피탁시 성장에 의한 전자(또는 광전자) 소자의 기판으로 적용할 수 있다. 이러한 전자 소자로의 적용 예로서 대표적으로 LED(light emitting diode), LD(laser diode), 트랜지스터(예를 들면, HEMT) 등을 예시할 수 있다.
도 8은 전술한 구체예에 따라 얻어진 제3 III족 질화물 층(106, 116)을 분리하여 LED 소자의 기판으로 적용한 예를 도시하는 도면이다.
상기 도면에 따르면, LED 소자는 아래로부터 III족 질화물 기판(201), n-형(또는 p-형) 반도체 층(202), 활성층(203) 및 p-형(또는 n-형) 반도체 층(204)의 순으로 구성된다. 또한, 상기 p-형 반도체 층(204)의 상부에는 p-전극(205)이 형성되는 한편, n-형 반도체 층(202)의 노출 면 상에 n-전극(206)이 형성되어 있다. 도시된 층 구성은 예시 목적으로 제공되는 것으로서 다양하게 변형된 구성이 가능하다.
이와 관련하여, 상기 기판(201) 상에 형성되는 반도체층(202, 204) 및 활성층(203)의 재질은 특별히 한정됨이 없이 당업계에서 LED 제조용으로 알려진 다양한 반도체 물질(III-V, II-VI 등), 예를 들면 GaN, InN, AlN, InP, InS, GaAs, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, AlxGa1-xN, InxGa1-xN, InxGa1-xAs, ZnxCd1-xS 등을 사용할 수 있고, 이들을 단독 또는 조합하여 사용할 수 있다(상기에서, 0<x<1). 다만, 호모에피탁시 특성을 효과적으로 구현하기 위하여 III족 질화물을 사용하는 것이 바람직할 수 있다.
또한, 활성층(203)은 예시적으로 GaN, AlN, InN, InGaN, AlGaN, InAlGaN 등으로부터 선택되는 적어도 2가지 재질로 이루어질 수 있다. 이 중 에너지 밴드 갭이 작은 물질을 양자우물(quantum well)로 하고, 에너지 밴드 갭이 큰 물질을 양자 배리어(quantum barrier)로 구성할 수 있으며, 단일 또는 다중양자우물구조 모두 가능하다.
이외에도, 전기적 인가를 위한 전극(205, 206)의 경우, 예를 들면 백금(Pt), 팔라듐(Pd), 알루미늄(Al), 금(Au), 니켈/금(Ni/Au) 등을 단독으로 또는 조합하여 사용할 수 있다. 이와 같은 전극 패턴 형성을 위하여 당업계에 알려진 방식, 예를 들면 포토레지스트 패턴화-에칭과 같은 통상의 방식이 수행될 수 있다.
본 발명은 하기의 실시예에 의하여 보다 명확히 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적에 불과하며 발명의 영역을 제한하고자 하는 것은 아니다.
실시예 1
제1 GaN층의 성장
m-사파이어 기판(크리스탈-온 사: M-면 2" 사파이어 웨이퍼, 두께 430㎛) 상에 MOCVD 장비(Veeco 사)를 이용하여 하기 표 1의 조건 하에서 평면(planar) 반극성 GaN 층을 형성하였다. 이때, 갈륨 소스 및 질소 소스로서 각각 트레메틸갈륨 및 암모니아를 사용하였다.
표 1
온도(℃) 시간(min) Pg(Torr)
질화반응(nitridation) 1080 0.75 500
저온 성장(중간층) 700 4 200
재결정 1060 5 200
고온 성장 880 180 300
HR-XRD로 분석한 결과, 약 2㎛의 두께 및 (11-22)의 방향을 갖는 반극성 GaN 층이 형성되었음을 확인하였다.
제2 GaN 층의 성장
일정 간격을 두고 배열된 스트라이프 패턴의 마스크를 이용하여 상기 제1 GaN 층 상에 ELOG를 수행하였다(샘플 1 및 2). 이때, 마스크로서, 먼저 PECVD에 의하여 SiO2 층을 100 nm 두께로 증착하였고, 그 다음 표준 포토리소그래피법을 이용한 ICP-RIE 에칭에 의하여 스트라이프의 폭(마스크 영역) 및 스트라이프 간격(윈도우 영역)을 각각 7㎛ 및 4㎛으로 조절하였다. 이때, 마스크 패턴은 (1-100) 방향으로 형성하였다.
그 다음, GaN층을 MOCVD를 이용하여 880℃ 및 300 mTorr에서 재성장시켰다(ELOG). 이때, 샘플 1의 두께는 약 2 ㎛이었고, 샘플 2의 두께는 약 4 ㎛이었다.
이와 별개로, 공정 조건을 변화시켜 제1 GaN 층 상에 제2 GaN 층을 재성장시켜 샘플 3 및 샘플 4를 얻었다. 이중, 샘플 3은 마스크 패턴 없이 재성장시킨 것이었고(두께: 약 1.2㎛), 샘플 4는 마스크 패턴의 방향이 (-1-123)이었다(두께: 약 2 ㎛).
샘플 1 내지 4에 대한 공정 조건을 하기 표 2에 나타내었다.
표 2
샘플번호 1 2 3 4
마스크 패턴 방향 (1-100) (1-100) - (-1-123)
성장 시간(분) 180 360 180 180
갈륨 소스의 유속(sccm) 20 20 20 20
상기 샘플 1 및 2 각각에 대한 측면 성장된 제2 GaN 층의 단면에 대한 SEM 사진을 도 9 및 도 10에 나타내었다.
상기 도면에 도시된 바와 같이, 윈도우 영역으로부터 재성장한 GaN 층은 시간 경과에 따라 점차 마스크 영역 위로 과성장되면서 점차 측면으로 연장되었고, 측면 성장이 계속 진행됨에 따라 윙 영역 위에서 좌우로부터 연장된 측면 성장 층이 서로 합쳐진 결과, 삼각형의 캐비티가 마스크 패턴을 따라 연속적으로 연결되어 터널을 형성하고 있음을 확인할 수 있다.
또한, 마스크 패턴 형성없이 재성장한 경우(샘플 3) 및 (-1-123) 방향의 마스크 패턴을 사용하여 재성장한 경우(샘플 4) 각각에 있어서, 얻어진 제2 GaN 층의 단면에 대한 SEM 사진을 도 11 및 도 12에 나타내었다.
샘플 3의 경우, 도 11에 나타난 바와 같이 평면의 재성장층이 형성되었다. 또한, 샘플 4의 경우, 제1 GaN 층 상에 마스크 패턴을 따라 삼각 실리더 형상의 제2 GaN 층이 도출 형성되어 있음을 알 수 있다.
한편, XRD 분석 장치(PANalytical 사, 제품명: High-resolution X-Ray diffraction)를 이용하여, 샘플 1 내지 4 각각에 대하여 방위각(azimuthal angle)에 따른 FWHM(full width at half maximum; 단위: arcsec) 값의 변화를 측정하였다. 그 결과, 샘플 1 내지 4의 FWHM 값은 각각 733, 468, 517 및 840 arcsec이었다. 상기 결과로부터, 샘플 2가 다른 샘플에 비하여 다른 샘플에 비하여 반극성 특성이 상대적으로 우수하고, 이방성도 낮음을 확인할 수 있다.
제3 GaN 층의 성장
상기 실시예에서 캐비티 터널이 형성되어 있는 샘플 2 상에 HVPE에 의하여 제3 GaN 층을 성장시켰다(두께: 300 ㎛).
상기 HVPE 공정 조건을 하기 표 3에 나타내었다.
표 3
소스(Ga) 온도 800℃
성장 온도 1000℃
소스 HCl 가스 유속 500 sccm
암모니아(NH3) 가스 유속 1000 sccm
N2 캐리어 가스 유속 2000/3500(HCl/NH3) sccm
전체 유속(total flow) 40 slm
성장 시간 600 min
홀더 회전(holder rotation) 30 RPM
상기 조건 하에서 성장된 제3 GaN 층의 SEM 사진을 도 13에 나타내었다.
상기 도면에 따르면, 하측의 제2 GaN 층(즉, (11-22) GaN 층)과 동일하게 후막의 제3 GaN 층(즉, (11-22) GaN 층)이 형성되어 있음을 알 수 있다.
제3 GaN 층의 분리
비커 내에 전술한 바에 따라 얻어진 구조(기판 상에 제1, 제2 및 제3 GaN 층이 형성됨)가 충분히 담길 수 있을 정도의 높이로 용융(molten) KOH를 넣었으며, 이를 핫 플레이트(hot plate) 상에 올려놓았다. 550℃로 승온시켜 KOH가 충분히 용융되어 액상을 유지하도록 한 다음, 상기 구조를 투입하였다. SEM 사진을 통하여 에칭에 따른 제2 GaN 층의 변화를 확인하였다. 20초, 40초 및 60초 경과 후의 제2 GaN 층의 변화를 도 14a 내지 도 14c에 각각 나타내었다.
도시된 바와 같이, 20초 경과 후에 캐비티 내면으로부터 에칭이 시작되었음을 확인할 수 있었고, 40초 경과 후에는 에칭이 진행됨에 따라 캐비티와 인접하는 캐비티가 연결되었다. 60초 경과 후에는 제2 GaN 층이 거의 전부 에칭되어 하측의 제1 GaN 층과 상측의 제3 GaN 층이 상호 분리되었음을 확인하였다.
실시예 2
(311) 기판 상에 70 nm 두께의 SiO2 마스크 층을 스퍼터링 증착하였으며, 포토리소그래피 방법을 이용하여 스트라이프 패턴을 형성하였다(1㎛의 마스크 폭, 2㎛의 패턴 간격). 그 다음, 상기 실리콘 기판을 KOH 용액(25%)로 40℃에서 에칭시켰다. 그 결과, 실리콘 기판 표면에 (111) 파셋이 형성되었으며, 이는 희석된 HF 용액을 사용하여 제거되었다.
이후, MOCVD 장치 내에서 트리메틸 갈륨(trimethyl gallium; TMG) 및 암모니아를 소스로 사용하여 GaN를 성장시켰다. 이때, TMG 및 암모니아의 유속은 각각 15.0 μmol/min, 및 0.5 slm이었으며, 성장 온도는 1,050℃, 그리고 성장 시간은 60분이었다. SEM으로 관찰한 결과, 실리콘 기판 상에 III족 질화물 층이 형성되면서 캐비티 터널이 형성되어 있음을 확인하였다. 이와 같이 형성된 III족 질화물 층에 실시예 1에서와 같이 후막의 GaN 층의 형성한 다음, 화학적 에칭을 수행할 경우, 상기 후막의 GaN 층의 분리에 의한 자립형 GaN 기판의 제작 가능성을 확인하였다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 이용될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (15)

  1. a) 무극성 또는 반극성 에피탁시층의 성장 표면을 제공하는 기판 상에 제1 III족 질화물 층을 형성하는 단계;
    b) 1 또는 2 이상의 캐비티가 내부에 형성된 제2 III족 질화물 층을 측면 성장(lateral growth) 방식에 의하여 상기 제1 III족 질화물 층 상에 형성하는 단계;
    c) 상기 제2 III족 질화물 층 상에 제3 III족 질화물 층을 형성하는 단계; 및
    d) 상기 제2 III족 질화물 층의 적어도 일부 두께에 대한 화학적 에칭을 수행하여 분리된 제3 III족 질화물 층을 얻는 단계;
    를 포함하며,
    상기 캐비티 내면의 적어도 일 영역이 N-극성을 나타내는 것을 특징으로 하는 III족 질화물 기판의 제조방법.
  2. 제1항에 있어서,
    상기 무극성 또는 반극성 에피탁시층의 성장 표면을 제공하는 기판은 m-면 사파이어 기판인 것을 특징으로 하는 III족 질화물 기판의 제조방법.
  3. 제1항에 있어서,
    상기 제1 III족 질화물 층은 (11-22) 방향의 반극성 층인 것을 특징으로 하는 III족 질화물 기판의 제조방법.
  4. 제1항에 있어서,
    상기 측면 성장 방식은 ELOG(epitaxial lateral overgrowth) 방식인 것을 특징으로 하는 III족 질화물 기판의 제조방법.
  5. 제1항에 있어서,
    상기 단계 b)는,
    (i) 상기 제1 III족 질화물 층 상에 패턴화된 마스크 층을 형성하는 단계; 및
    (ii) 상기 패턴화된 마스크 층이 형성된 제1 III족 질화물 층 상에 III족 질화물 층을 측면 성장시키는 단계;
    를 포함하는 것을 특징으로 하는 III족 질화물 기판의 제조방법.
  6. 제5항에 있어서,
    상기 마스크 층은 (1-100) 방향으로 패턴화된 것을 특징으로 하는 III족 질화물 기판의 제조방법.
  7. 제5항에 있어서,
    상기 마스크 층은 SiO2 또는 SiNx 재질인 것을 특징으로 하는 III족 질화물 기판의 제조방법.
  8. 제5항에 있어서,
    상기 마스크 층은 스트라이프 패턴으로 형성되고,
    상기 스트라이프의 폭 및 스트라이프 간격은 각각 2 내지 50 ㎛ 및 2 내지 20 ㎛ 범위인 것을 특징으로 하는 III족 질화물 기판의 제조방법.
  9. 제1항에 있어서,
    상기 제3 III족 질화물 층은 HVPE에 의하여 형성되는 것을 특징으로 하는 III족 질화물 기판의 제조방법.
  10. 제1항에 있어서,
    상기 제3 III족 질화물 층의 두께는 적어도 200 ㎛인 것을 특징으로 하는 III족 질화물 기판의 제조방법.
  11. 제1항에 있어서,
    상기 화학적 에칭은 용융 알칼리 염 내에서 이루어지는 것을 특징으로 하는 III족 질화물 기판의 제조방법.
  12. 제11항에 있어서,
    상기 화학적 에칭은 400 내지 600 ℃의 온도 조건 하에서 0.5 내지 20 분 동안 수행되는 것을 특징으로 하는 III족 질화물 기판의 제조방법.
  13. a) 실리콘(Si) 기판 상에 무극성 또는 반극성 에피탁시층의 성장 표면을 제공하도록 이방성 에칭(anisotropic etching)을 수행하는 단계;
    b) 상기 에칭된 실리콘 기판 상에 1 또는 2 이상의 캐비티를 형성하면서 III족 질화물 층을 성장시키는 단계;
    c) 상기 단계 b)에서 성장된 III족 질화물 층 상에 III족 질화물 층을 형성하는 단계; 및
    d) 상기 단계 b)에서 성장된 III족 질화물 층의 적어도 일부 두께에 대한 화학적 에칭을 수행함으로써 상기 단계 c)에서 형성된 III족 질화물 층을 분리하는 단계;
    를 포함하며,
    상기 무극성 또는 반극성 에피탁시층의 성장 표면은 (111) 파셋(facet)을 갖고, 그리고 상기 캐비티 내면의 적어도 일 영역이 N-극성을 나타내는 것을 특징으로 하는 III족 질화물 기판의 제조방법.
  14. 제1항 내지 제13항 중 어느 한 항에 따라 제조된 III족 질화물 기판.
  15. 제14항에 따른 III족 질화물 기판을 포함하는 전자 소자.
PCT/KR2011/008370 2010-11-08 2011-11-04 화학적 리프트 오프 방법을 이용한 iii족 질화물 기판의 제조방법 WO2012064050A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180047509.6A CN103262211B (zh) 2010-11-08 2011-11-04 使用化学剥离方法的iii族氮化物基板的制备方法
JP2013531517A JP5730399B2 (ja) 2010-11-08 2011-11-04 化学リフトオフ方法を用いたiii族窒化物基板の製造方法
US13/877,082 US9171717B2 (en) 2010-11-08 2011-11-04 Method for manufacturing a group III nitride substrate using a chemical lift-off process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100110517A KR101105868B1 (ko) 2010-11-08 2010-11-08 화학적 리프트 오프 방법을 이용한 ⅰⅰⅰ족 질화물 기판의 제조방법
KR10-2010-0110517 2010-11-08

Publications (2)

Publication Number Publication Date
WO2012064050A2 true WO2012064050A2 (ko) 2012-05-18
WO2012064050A3 WO2012064050A3 (ko) 2012-07-19

Family

ID=45614299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008370 WO2012064050A2 (ko) 2010-11-08 2011-11-04 화학적 리프트 오프 방법을 이용한 iii족 질화물 기판의 제조방법

Country Status (5)

Country Link
US (1) US9171717B2 (ko)
JP (1) JP5730399B2 (ko)
KR (1) KR101105868B1 (ko)
CN (2) CN105702562B (ko)
WO (1) WO2012064050A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150069322A1 (en) * 2013-04-12 2015-03-12 Justin PAYNE Semipolar emitter
US20150102358A1 (en) * 2013-10-11 2015-04-16 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor multilayer structure, semiconductor light-emitting device, and method for manufacturing nitride semiconductor multilayer structure
US20160013275A1 (en) * 2012-11-30 2016-01-14 Soft-Epi Inc. Iii-nitride semiconductor stacked structure

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101393624B1 (ko) * 2012-01-27 2014-05-12 한국광기술원 적층결함이 제거된 반분극 질화물 소자의 제조방법
JP5319810B2 (ja) * 2012-03-08 2013-10-16 株式会社東芝 窒化物半導体層の製造方法
EP2743966B1 (en) * 2012-12-14 2020-11-25 Seoul Viosys Co., Ltd. Epitaxial layer wafer having void for separating growth substrate therefrom and semiconductor device fabricated using the same
EP3134913A4 (en) * 2014-04-25 2017-11-01 Texas State University - San Marcos Material selective regrowth structure and method
CN105734674A (zh) * 2014-12-08 2016-07-06 郑克勇 磊晶生成结构及其生成方法
JP6743709B2 (ja) 2015-02-06 2020-08-19 三菱ケミカル株式会社 GaN単結晶およびGaN単結晶製造方法
WO2018030312A1 (ja) * 2016-08-08 2018-02-15 三菱ケミカル株式会社 GaN結晶成長方法およびC面GaN基板
JP6266742B1 (ja) * 2016-12-20 2018-01-24 古河機械金属株式会社 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
KR101933778B1 (ko) * 2017-01-23 2018-12-28 경희대학교 산학협력단 질화 갈륨 기판의 제조 방법
KR101873568B1 (ko) * 2017-03-21 2018-07-03 한국광기술원 GaN계 반도체층 성장용 기판 및 그 제조방법
KR102502608B1 (ko) 2018-06-11 2023-02-22 삼성디스플레이 주식회사 발광 소자, 그 제조방법 및 발광 소자를 포함하는 표시 장치
KR102126186B1 (ko) * 2018-06-27 2020-06-24 경희대학교 산학협력단 질화 갈륨 기판의 제조 방법
KR102557754B1 (ko) 2018-08-03 2023-07-20 삼성디스플레이 주식회사 발광 소자, 이의 제조방법 및 발광 소자를 포함하는 표시 장치
KR102652501B1 (ko) 2018-09-13 2024-03-29 삼성디스플레이 주식회사 발광 소자의 제조방법 및 발광 소자를 포함하는 표시 장치
CN109560172B (zh) * 2018-10-26 2020-01-10 复旦大学 一种半极性镓氮外延片及其制备方法
CN109378369A (zh) * 2018-12-04 2019-02-22 西安赛富乐斯半导体科技有限公司 具有(20-2-1)面的半极性氮化镓的外延层及其制造方法
CN111243954A (zh) * 2020-01-19 2020-06-05 中国科学院半导体研究所 GaN基常关型高电子迁移率晶体管及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261032A (ja) * 2000-06-19 2002-09-13 Nichia Chem Ind Ltd 窒化物半導体基板及びその製造方法、並びにその窒化物半導体基板を用いた窒化物半導体素子
KR100877774B1 (ko) * 2007-09-10 2009-01-16 서울옵토디바이스주식회사 개선된 구조의 발광다이오드
KR20090063781A (ko) * 2007-12-14 2009-06-18 삼성전기주식회사 반극성 질화물 단결정 박막의 성장 방법 및 이를 이용한질화물 반도체 발광소자의 제조 방법
US20100261300A1 (en) * 2009-04-08 2010-10-14 Advanced Optoelectronic Technology Inc. Method for separating substrate from semiconductor layer

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE550461T1 (de) * 1997-04-11 2012-04-15 Nichia Corp Wachstumsmethode für einen nitrid-halbleiter
US6627974B2 (en) 2000-06-19 2003-09-30 Nichia Corporation Nitride semiconductor substrate and method for manufacturing the same, and nitride semiconductor device using nitride semiconductor substrate
JP4932121B2 (ja) * 2002-03-26 2012-05-16 日本電気株式会社 Iii−v族窒化物系半導体基板の製造方法
JP4117156B2 (ja) * 2002-07-02 2008-07-16 日本電気株式会社 Iii族窒化物半導体基板の製造方法
US7524691B2 (en) * 2003-01-20 2009-04-28 Panasonic Corporation Method of manufacturing group III nitride substrate
KR101145753B1 (ko) * 2005-03-10 2012-05-16 재팬 사이언스 앤드 테크놀로지 에이젼시 평면의 반극성 갈륨 질화물의 성장을 위한 기술
TW200703463A (en) 2005-05-31 2007-01-16 Univ California Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO)
TWI390633B (zh) * 2005-07-13 2013-03-21 Japan Science & Tech Agency 半極性氮化物膜缺陷減少之側向成長方法
JP2009130364A (ja) * 2007-11-23 2009-06-11 Samsung Electro-Mechanics Co Ltd 窒化物半導体発光素子及びその製造方法
JP2009286652A (ja) * 2008-05-28 2009-12-10 Sumitomo Electric Ind Ltd Iii族窒化物結晶、iii族窒化物結晶基板および半導体デバイスの製造方法
US8673074B2 (en) * 2008-07-16 2014-03-18 Ostendo Technologies, Inc. Growth of planar non-polar {1 -1 0 0} M-plane and semi-polar {1 1 -2 2} gallium nitride with hydride vapor phase epitaxy (HVPE)
JP5313651B2 (ja) 2008-12-17 2013-10-09 スタンレー電気株式会社 半導体素子の製造方法
US20110297956A1 (en) * 2009-03-03 2011-12-08 Panasonic Corporation Method for manufacturing gallium nitride compound semiconductor, and semiconductor light emitting element
CN101866880B (zh) * 2009-04-16 2012-11-21 展晶科技(深圳)有限公司 分离基板与半导体层的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261032A (ja) * 2000-06-19 2002-09-13 Nichia Chem Ind Ltd 窒化物半導体基板及びその製造方法、並びにその窒化物半導体基板を用いた窒化物半導体素子
KR100877774B1 (ko) * 2007-09-10 2009-01-16 서울옵토디바이스주식회사 개선된 구조의 발광다이오드
KR20090063781A (ko) * 2007-12-14 2009-06-18 삼성전기주식회사 반극성 질화물 단결정 박막의 성장 방법 및 이를 이용한질화물 반도체 발광소자의 제조 방법
US20100261300A1 (en) * 2009-04-08 2010-10-14 Advanced Optoelectronic Technology Inc. Method for separating substrate from semiconductor layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160013275A1 (en) * 2012-11-30 2016-01-14 Soft-Epi Inc. Iii-nitride semiconductor stacked structure
US20150069322A1 (en) * 2013-04-12 2015-03-12 Justin PAYNE Semipolar emitter
US20150102358A1 (en) * 2013-10-11 2015-04-16 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor multilayer structure, semiconductor light-emitting device, and method for manufacturing nitride semiconductor multilayer structure

Also Published As

Publication number Publication date
CN105702562A (zh) 2016-06-22
US20130193558A1 (en) 2013-08-01
US9171717B2 (en) 2015-10-27
CN103262211B (zh) 2016-06-01
KR101105868B1 (ko) 2012-01-16
CN103262211A (zh) 2013-08-21
JP5730399B2 (ja) 2015-06-10
JP2013544739A (ja) 2013-12-19
CN105702562B (zh) 2020-05-19
WO2012064050A3 (ko) 2012-07-19

Similar Documents

Publication Publication Date Title
WO2012064050A2 (ko) 화학적 리프트 오프 방법을 이용한 iii족 질화물 기판의 제조방법
US7566580B2 (en) Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AIN and their alloys by metal organic chemical vapor deposition
KR101246832B1 (ko) 무극성 또는 반극성 iii족 질화물 기반 발광 다이오드 및 이의 제조방법
KR100901822B1 (ko) 질화갈륨 성장용 기판 및 질화갈륨 기판 제조 방법
WO2013048179A1 (en) Substrate having concave-convex pattern, light-emitting diode including the substrate, and method for fabricating the diode
JP2007070154A (ja) Iii−v族窒化物系半導体基板及びその製造方法
US20240234141A9 (en) Semiconductor substrate, method for manufacturing the same, apparatus for manufacturing the same, and template substrate
WO2014133267A1 (en) Method of fabricating nitride substrate
WO2013089417A1 (en) Semiconductor device and method of fabricating the same
WO2008060531A9 (en) Light emitting diode and laser diode using n-face gan, inn, and ain and their alloys
WO2009093846A2 (ko) 발광소자의 제조방법
KR101233328B1 (ko) 무극성 또는 반극성 ⅲ족 질화물 기반 수직형 발광 다이오드 및 그 제조방법
WO2018135688A1 (ko) 질화 갈륨 기판의 제조 방법
JP2012004486A (ja) 窒化物半導体装置及び窒化物半導体装置の製造方法
WO2022220124A1 (ja) 半導体基板並びにその製造方法および製造装置、GaN系結晶体、半導体デバイス、電子機器
EP4328956A1 (en) Semiconductor substrate and production method and production device for same, semiconductor device and production method and production device for same, electronic apparatus
KR101271723B1 (ko) 적층결함이 제거된 ⅲ족 질화물 기판의 제조방법
WO2012036472A2 (ko) 결정성 막대를 이용한 수직형 발광 다이오드의 제조방법
WO2018135689A1 (ko) 발광 소자의 제조 방법
KR101393624B1 (ko) 적층결함이 제거된 반분극 질화물 소자의 제조방법
US20080171133A1 (en) Method For the Production of C-Plane Oriented Gan Substrates or AlxGa1-xN Substrates
US20240313151A1 (en) Semiconductor device manufacturing method and manufacturing apparatus, semiconductor device and electronic device
JP4369782B2 (ja) 半導体基板の製造方法
CN117769613A (zh) 模板基板和其制造方法以及制造装置、半导体基板和其制造方法以及制造装置、半导体器件、电子设备
WO2014084667A1 (ko) 3족 질화물 반도체 적층체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840078

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013531517

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13877082

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840078

Country of ref document: EP

Kind code of ref document: A2