WO2018135688A1 - 질화 갈륨 기판의 제조 방법 - Google Patents

질화 갈륨 기판의 제조 방법 Download PDF

Info

Publication number
WO2018135688A1
WO2018135688A1 PCT/KR2017/001441 KR2017001441W WO2018135688A1 WO 2018135688 A1 WO2018135688 A1 WO 2018135688A1 KR 2017001441 W KR2017001441 W KR 2017001441W WO 2018135688 A1 WO2018135688 A1 WO 2018135688A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium nitride
polar
substrate
mask pattern
grown
Prior art date
Application number
PCT/KR2017/001441
Other languages
English (en)
French (fr)
Inventor
김진교
장동수
주미연
김화섭
김동회
Original Assignee
경희대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교산학협력단 filed Critical 경희대학교산학협력단
Publication of WO2018135688A1 publication Critical patent/WO2018135688A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]

Definitions

  • Embodiments of the present invention relate to a method of manufacturing a gallium nitride substrate using epitaxial lateral overgrowth (ELOG) and selective etching.
  • ELOG epitaxial lateral overgrowth
  • III-V nitride semiconductors such as gallium nitride (GaN) are due to their excellent physical and chemical properties such as light emitting diodes (LEDs), laser diodes (LDs), solar cells, optoelectronic devices, laser diodes, and high-frequency microelectronics. It is attracting attention as the core material of semiconductor optical devices such as devices.
  • the III-V nitride semiconductor is usually made of a semiconductor material having a compositional formula of Al x In y Ga 1-x -y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the nitride semiconductor optical device is applied as a light source of various products such as a backlight of a mobile phone, a keypad, an electronic board, an illumination device, and the like.
  • gallium nitride unlike silicon (Si), is almost impossible to manufacture ingots, and thus has a great difficulty in producing a single crystal substrate. Therefore, gallium nitride was grown by sapphire substrate, silicon carbide substrate, or silicon substrate by growing a gallium nitride thick film by heteroepitaxial, and then separating the substrate to produce gallium nitride.
  • gallium nitride at high quality is difficult to accommodate growth substrates that do not match closely to the crystal properties of gallium nitride because there is no suitable growth substrate that matches high quality bulk crystals and / or crystal properties of these materials. Defects and dislocations (for gallium nitride, in particular threading dislocations (TD) originating at the interface between the growth substrate and GaN).
  • TD threading dislocations
  • LLO laser lift off
  • CLO chemical lift off
  • the laser lift off (LLO) method is a technique of separating and dissolving an interface between a substrate and a thick film by a laser, and has a problem of high defect occurrence rate and high cost in the separation process
  • chemical lift off (CLO) method is relatively inexpensive and has a low incidence of additional defects in the separation process, but requires a chemically etchable sacrificial layer, so that the crystallinity of gallium nitride grown on the sacrificial layer is relatively low. There was this.
  • An object of embodiments of the present invention is to epitaxially lateral overgroose (ELOG) gallium nitride (GaN) to selectively grow N-polar gallium nitride and Ga-polar gallium nitride, and then selectively N-polar A process for removing gallium nitride is used to produce high quality free-standing gallium nitride substrates and high quality gallium nitride template substrates.
  • ELOG epitaxially lateral overgroose
  • GaN gallium nitride
  • An object of embodiments of the present invention is to epitaxially lateral overgroose (ELOG) gallium nitride (GaN) to selectively grow N-polar gallium nitride and Ga-polar gallium nitride, and then selectively N-polar The process for removing gallium nitride is used to reduce the defect ratio of gallium nitride substrates.
  • ELOG epitaxially lateral overgroose
  • GaN gallium nitride
  • a method of manufacturing a gallium nitride substrate includes: forming a mask pattern including at least one window region and a protrusion region on a growth substrate; Epitaxial lateral overgrowth of gallium nitride (GaN) on the growth substrate to form gallium nitride including N-polar gallium nitride and Ga-polar gallium nitride; Selectively etching the N-polar gallium nitride; And removing the mask pattern.
  • GaN gallium nitride
  • N-polar gallium nitride Only the N-polar gallium nitride is grown on the window region, and only the Ga-polar gallium nitride is grown on the protruding region, or the N-polar gallium nitride and the Ga-polar gallium nitride are mixed and grown.
  • the selectively etching the N-polar gallium nitride may include laterally growing the Ga-polar gallium nitride.
  • potassium hydroxide KOH
  • KOH potassium hydroxide
  • the growth substrate may be sapphire, gallium arsenide (GaAs; gallium arsenide), spinel, silicon (Si), indium phosphide (InP) or silicon carbide (SiC). .
  • the mask pattern may be silicon oxide (SiO 2 ), silicon nitride (SiNx) or silicon oxynitride (SiON).
  • a method of manufacturing a gallium nitride substrate including forming a mask pattern including at least one window region and a protrusion region on a growth substrate; Epitaxial lateral overgrowth of gallium nitride (GaN) on the growth substrate to form gallium nitride including N-polar gallium nitride and Ga-polar gallium nitride; Selectively etching the N-polar gallium nitride; Removing the mask pattern; Attaching a free-standing gallium nitride comprising Ga-polar gallium nitride onto a temporary substrate on which an amorphous thin film is deposited and the free-standing attached on the temporary substrate on which the amorphous thin film is deposited ( lateral growth of free-standing gallium nitride.
  • GaN gallium nitride
  • a method of manufacturing a gallium nitride template substrate includes forming a mask pattern including at least one window region and a protrusion region on a growth substrate; Epitaxial lateral overgrowth of gallium nitride (GaN) on the growth substrate to form gallium nitride including N-polar gallium nitride and Ga-polar gallium nitride; And selectively etching the N-polar gallium nitride.
  • GaN gallium nitride
  • gallium nitride In the method of manufacturing a gallium nitride substrate according to the embodiments of the present invention, gallium nitride (GaN) is epitaxially lateral overgroove (ELOG) to selectively grow N-polar gallium nitride and Ga-polar gallium nitride.
  • ELOG epitaxially lateral overgroove
  • gallium nitride In the method of manufacturing a gallium nitride substrate according to the embodiments of the present invention, gallium nitride (GaN) is epitaxially lateral overgroove (ELOG) to selectively grow N-polar gallium nitride and Ga-polar gallium nitride.
  • ELOG epitaxially lateral overgroove
  • the gallium nitride substrate manufacturing method removes the growth substrate from the gallium nitride by using a chemical etching that does not require a sacrificial layer, thereby reducing the damage of the gallium nitride substrate due to the growth substrate removal process, The properties of the gallium nitride substrate can be maintained.
  • 1 is a diagram illustrating the N-polarity and Ga-polarity of gallium nitride.
  • FIGS. 2A to 2F are cross-sectional views illustrating a method of manufacturing a gallium nitride substrate according to an embodiment of the present invention.
  • FIG 3 is a plan view illustrating Ga-polar gallium nitride formed on a growth substrate and a mask pattern in the gallium nitride substrate manufacturing method according to an embodiment of the present invention.
  • 4A to 4H are cross-sectional views illustrating a method of manufacturing a gallium nitride substrate according to another embodiment of the present invention.
  • FIG. 5 is a plan view illustrating Ga-polar gallium nitride after removing the growth substrate and the mask pattern in the gallium nitride substrate manufacturing method according to another embodiment of the present invention.
  • first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only to distinguish one component from another.
  • a part such as a film, layer, area, configuration request, etc. is said to be "on” or “on” another part, it is not only when it is directly above another part, but also in the middle of the other film, layer, watershed, or component. It also includes the case where it is interposed.
  • 1 is a diagram illustrating the N-polarity and Ga-polarity of gallium nitride.
  • Gallium nitride is used as a core material for various optical devices because of its excellent physical and chemical properties.
  • Gallium nitride is used by growing by heteroepitaxial on a growth substrate such as sapphire, silicon carbide or silicon.
  • crystal quality may be improved by utilizing epitaxial lateral overgrowth (ELOG).
  • ELOG epitaxial lateral overgrowth
  • Epitaxial lateral overgrowth can grow not only gallium nitride in the vertical direction from the substrate, but also laterally over the masking pattern.
  • gallium nitride has not only defects, but especially "crystal polarity" as an important crystalline property.
  • gallium (Ga) atoms are shown as large gray spheres, and nitrogen (N) atoms as small black spheres.
  • each gallium atom in gallium nitride (eg, wurtzite gallium nitride) is tetrahedrally coordinated to four nitrogen atoms.
  • Gallium nitride may be divided into Ga-polar (+ c; 10) and N-polar (-c; 20) depending on directions.
  • label c refers to a crystal plane that is horizontal to the plane of the epitaxy film.
  • the polarity of gallium nitride is not a surface property, but has a great influence on the bulk property of gallium nitride, and different properties may be expressed depending on the polarity. Therefore, the device may be manufactured by utilizing the polarity characteristics of the epitaxial gallium nitride growth layer.
  • Ga-polar (+ c; 10) gallium nitride and N-polar (-c; 20) gallium nitride are selectively grown, and only gallium nitride of the N-polar (-c; 20) portion is selectively grown.
  • a high quality free-standing gallium nitride substrate or a high quality gallium nitride template substrate can be produced.
  • FIGS. 2A to 2F a technique of manufacturing a gallium nitride substrate according to an embodiment of the present invention will be described with reference to FIGS. 2A to 2F.
  • FIGS. 2A to 2F are cross-sectional views illustrating a method of manufacturing a gallium nitride substrate according to an embodiment of the present invention.
  • gallium nitride In the method of manufacturing a gallium nitride substrate according to an embodiment of the present invention, gallium nitride (GaN) is epitaxially lateral overgrowth (ELOG) to form N-polar gallium nitride 131 and Ga-polar. Gallium nitride 130 including gallium nitride 132 is formed. Thereafter, by selectively removing only the N-polar gallium nitride 131 using etching, a high quality free-standing gallium nitride substrate can be manufactured.
  • GaN gallium nitride
  • ELOG epitaxially lateral overgrowth
  • selectively etching the N-polar gallium nitride 131 of the method of manufacturing a gallium nitride substrate according to an embodiment of the present invention may include laterally growing the Ga-polar gallium nitride 132. .
  • gallium nitride (hereinafter, referred to as 'N-polar gallium nitride') grown in the N-polar direction may be formed on the window region 121.
  • the gallium nitride (hereinafter, referred to as Ga-polar gallium nitride) grown in the Ga-polar direction may be grown on the protruding region 122.
  • 2A is a cross-sectional view of a mask pattern including at least one window area and a protruding area formed on a growth substrate.
  • the mask pattern 120 may be formed on the growth substrate 110 using a deposition process or a solution process, and then patterned using photolithography processes.
  • the mask pattern 120 may include a window region 121 and a protrusion region 122 by a patterning process, and later, gallium nitride may be grown through the window region 121 of the mask pattern 120.
  • the window area 121 or the protrusion area 122 formed on the mask pattern 120 may have a dot shape, a rectangular shape, an elliptical shape, or a stripe shape, but is not limited thereto.
  • the growth substrate 110 may be formed of sapphire, gallium arsenide (GaAs), spinel, silicon (Si), indium phosphide (InP), and silicon carbide (SiC). It may be at least one, and preferably sapphire may be used.
  • the mask pattern 120 may include at least one of silicon oxide (SiO 2 ), silicon nitride (SiNx) and silicon oxynitride (SiON). Can be used.
  • 2B and 2C are cross-sectional views of gallium nitride including gallium nitride and Ga-polar gallium nitride by epitaxial side overgloss (ELOG) on a growth substrate.
  • ELOG epitaxial side overgloss
  • Gallium nitride 130 including N-polar gallium nitride 131 and Ga-polar gallium nitride 132 is grown in an epitaxial lateral overgroose (ELOG) method.
  • the gallium nitride 130 may be grown not only in the vertical direction from the growth substrate 110 but also in the lateral direction above the mask pattern 120.
  • the gallium nitride 130 is vertically grown through the window region 121 of the mask pattern 120. Thereafter, in the last step of growth, the gallium nitride 130 may be grown by extending laterally of the protruding region 122 of the mask pattern 120.
  • the gallium nitride 130 grown in the lateral direction passes after a predetermined time, and the vertically grown gallium nitride 130 is merged to form the upper surface of the growth substrate 110 and the mask pattern 120 as shown in FIG. 2C.
  • the gallium nitride 130 grown as a whole may be formed.
  • the grown gallium nitride 130 is grown on the N-polar gallium nitride 131 grown on the window region 121 of the mask pattern 120 and the Ga-polar grown on the protruding region 122 of the mask pattern 120.
  • N-polar gallium nitride 131 is grown on the window region 121, and only the Ga-polar gallium nitride 132 is grown on the protruding region 122, or the N-polar gallium nitride 131 and Ga- is grown.
  • Polar gallium nitride 132 may be mixed and grown.
  • N-polar gallium nitride 131 When epitaxial lateral overgloss (ELOG) of gallium nitride 130 on a mask pattern 120 comprising a window region 121 and a protruding region 122, N-polar gallium nitride 131 in general over the entire region. Only one type of Ga-polar gallium nitride 132 is grown over the entire region.
  • ELOG epitaxial lateral overgloss
  • the gallium nitride substrate manufacturing method epitaxial side over-gross (ELOG) to the gallium nitride 130 on the mask pattern 120 including the window region 121 and the protrusion region 122
  • ELOG epitaxial side over-gross
  • Each gallium atom of gallium nitride 130 is tetrahedrally coordinated to four nitrogen atoms, and has Ga-polar gallium nitride 132 characteristics and N-polar gallium nitride 131 characteristics depending on directions.
  • the N-polar gallium nitride 131 grown on the window region 121 may be a defect region having a higher defect ratio than the Ga-polar gallium nitride 132 grown on the protruding region 122. . Therefore, it is more preferable to use Ga-polar gallium nitride 132 rather than N-polar gallium nitride 131.
  • 2D is a cross-sectional view where N-polar gallium nitride is selectively etched.
  • Gallium nitride may show a difference in etching rate depending on polarity.
  • Ga-polar gallium nitride 132 is relatively etch resistant to potassium hydroxide (KOH), whereas N-polar gallium nitride 131 is easily etched into potassium hydroxide (KOH).
  • the N-polar gallium nitride 131 may be removed by wet etching using potassium hydroxide (KOH).
  • the N-polar gallium nitride 131 may be etched by a dry etching method using an additional mask, and the dry etching method may be reactive ion etching (RIE), electron cyclotron resonance (ECR), or inductively ICP. Coupled Plasma).
  • RIE reactive ion etching
  • ECR electron cyclotron resonance
  • ICP inductively ICP. Coupled Plasma
  • the gallium nitride substrate manufacturing method can easily remove the N-polar gallium nitride 131 selectively without the use of additional masks only by chemical etching using potassium hydroxide (KOH).
  • KOH potassium hydroxide
  • the method of manufacturing a gallium nitride substrate according to an embodiment of the present invention selectively removes only the N-polar gallium nitride 131 so that only Ga-polar gallium nitride 132 having relatively few defects on the growth substrate 110 is provided. Will remain.
  • 2E is a cross-sectional side view of Ga-polar gallium nitride.
  • the Ga-polar gallium nitride 132 may be laterally grown on the mask pattern 120.
  • the gallium nitride substrate 133 is formed by laterally growing the Ga-polar gallium nitride 132 on the mask pattern 120.
  • Ga-polar gallium nitride 132 laterally grown on the mask pattern 120 does not contact the growth substrate 110. That is, when the growth is much faster in the horizontal direction than in the vertical direction, since the Ga-polar gallium nitride 132 is very slow or hardly grown in the downward direction, the Ga-polar gallium nitride 132 is the growth substrate 110. It may be formed so as not to contact (G).
  • 2F is a cross-sectional view of a gallium nitride substrate with a mask pattern removed.
  • the gallium nitride substrate 133 in the method of manufacturing the gallium nitride substrate 133 according to the exemplary embodiment of the present invention, when the Ga-polar gallium nitride 132 is not grown on the mask pattern 120, the opening region 121 is exposed.
  • the gallium nitride substrate may be manufactured, and when the Ga-polar gallium nitride 132 is laterally grown on the mask pattern 120, the gallium nitride substrate 133 in the form of a plate as shown in FIG. Can be prepared.
  • the mask pattern 120 may be removed through chemical etching, and may be removed by wet etching using any one or a combination of one or more of hydrofluoric acid (HF) and buffered oxide etchant. It may proceed, preferably hydrofluoric acid (HF) may be used.
  • HF hydrofluoric acid
  • the gallium nitride substrate 133 is removed from the substrate by using a chemical etching that does not require a sacrificial layer, so that the gallium nitride due to the growth substrate 110 removal process Damage to the substrate 133 may be reduced to maintain high quality gallium nitride substrate 133 characteristics.
  • the gallium nitride substrate 133 manufacturing method according to an embodiment of the present invention can produce a high-quality free-standing gallium nitride substrate.
  • the gallium nitride substrate 133 may include a first surface, which is a surface on which the growth substrate 110 is disposed, and a second surface opposite to the first surface.
  • the gallium nitride substrate manufacturing method according to the embodiment of the present invention is Ga-. Since the gallium nitride was grown in the polar direction, the Ga-polar gallium nitride substrate 133 can be obtained.
  • the gallium nitride substrate manufacturing method Since gallium nitride was formed by growing in the Ga-polar direction, the upper and lower sides were inverted to obtain the N-polar gallium nitride substrate 133.
  • the gallium nitride substrate manufacturing method may selectively utilize N-polarity and Ga-polarity according to the upper and lower directions of the gallium nitride substrate 133.
  • the method of manufacturing a gallium nitride substrate according to an embodiment of the present invention reduces the defect ratio of the gallium nitride substrate by manufacturing the gallium nitride substrate 133 in which gallium nitride is grown in a Ga-polar direction having relatively few defects. Can be.
  • the gallium nitride substrate manufactured by using the gallium nitride substrate manufacturing method according to an embodiment of the present invention can be used in a light emitting device and a display based on the light emitting device.
  • the process of removing the growth substrate 110 and the mask pattern 120 may not be performed.
  • a method of manufacturing a gallium nitride template substrate according to an embodiment of the present invention except that the process of removing the growth substrate 110 and the mask pattern 120 is not performed, one of the present invention shown in FIGS. 2A to 2E Since it is the same as the gallium nitride substrate manufacturing method according to the embodiment, overlapping components will be omitted.
  • the growth substrate 110, mask pattern 120 and gallium nitride substrate A gallium nitride template substrate on which 133 is sequentially formed is manufactured.
  • a gallium nitride template substrate when the Ga-polar gallium nitride 132 is not grown on the mask pattern 120, the opening region 121 is exposed.
  • a gallium nitride substrate may be manufactured, and when the Ga-polar gallium nitride 132 is laterally grown on the mask pattern 120, a plate-type gallium nitride substrate 133 having no exposed area may be manufactured. have.
  • FIG 3 is a plan view illustrating Ga-polar gallium nitride formed on a growth substrate and a mask pattern in the gallium nitride substrate manufacturing method according to an embodiment of the present invention.
  • Ga-polar gallium nitride 132 is formed on the growth substrate 110 in a region other than the window region 121 having a dot shape.
  • the growth substrate 110 is exposed to the window region 121 in which the Ga-polar gallium nitride 132 is not formed.
  • FIGS. 4A to 4H a method of manufacturing a gallium nitride substrate according to another embodiment of the present invention will be described with reference to FIGS. 4A to 4H.
  • gallium nitride substrate manufacturing method is the same as described with reference to FIGS. 2A to 2F except for using a temporary substrate, redundant components will be omitted.
  • 4A to 4H are cross-sectional views illustrating a method of manufacturing a gallium nitride substrate according to another embodiment of the present invention.
  • a method of manufacturing a gallium nitride substrate includes forming a mask pattern 220 including at least one window region 221 and a protrusion region 222 on a growth substrate 210.
  • Gallium nitride (GaN) is epitaxially lateral overgroove (ELOG) on 210 to form gallium nitride 230 including N-polar gallium nitride 231 and Ga-polar gallium nitride 232. Forming and selectively etching the N-polar gallium nitride 231.
  • removing the growth substrate 210 and the mask pattern 220, attaching the Ga-polar gallium nitride 232 on the temporary substrate 250, lateral growth of the Ga-polar gallium nitride 232 comprises the step of.
  • 4A is a cross-sectional view of a mask pattern including at least one window region and a protrusion region formed on a growth substrate.
  • the mask pattern 220 may include a window region 221 and a protruding region 222 by a patterning process, and later, gallium nitride 230 may be grown through the window region 221 of the mask pattern 220. have.
  • sapphire may be used for the growth substrate 210.
  • the mask pattern 220 may be formed of silicon oxide, and the window region 221 of the mask pattern 220 may have a dot shape, a rectangular shape, an elliptical shape, or a stripe shape, but is not limited thereto.
  • 4B and 4C are cross-sectional views illustrating gallium nitride epitaxial side overgloss (ELOG) on a growth substrate to form gallium nitride including N-polar gallium nitride and Ga-polar gallium nitride.
  • ELOG gallium nitride epitaxial side overgloss
  • Gallium nitride 230 including N-polar gallium nitride 231 and Ga-polar gallium nitride 232 may be grown by an epitaxial lateral overgloss (ELOG) method.
  • the gallium nitride 230 is vertically grown through the window region 221 of the mask pattern 220. Thereafter, in the last step of growth, the gallium nitride 230 may be grown by extending laterally of the protruding region 222 of the mask pattern 220.
  • gallium nitride 230 may be formed on the entire surface of the growth substrate 210 and the mask pattern 220.
  • the grown gallium nitride 230 is grown on the N-polar gallium nitride 231 grown on the window region 221 of the mask pattern 220 and the Ga-polar grown on the protruding region 222 of the mask pattern 220.
  • N-polar gallium nitride 231 is grown on the window region 221, and only the Ga-polar gallium nitride 232 is grown on the protruding region 222, or the N-polar gallium nitride 231 and Ga- is grown.
  • Polar gallium nitride 232 may be mixed and grown.
  • the N-polar gallium nitride 231 grown on the window region 221 may be a defect region having a higher defect ratio than the Ga-polar gallium nitride 232 grown on the protruding region 222. . Therefore, it is more preferable to use Ga-polar gallium nitride 232 than N-polar gallium nitride 231.
  • 4D is a cross-sectional view where N-polar gallium nitride is selectively etched.
  • the N-polar gallium nitride 231 may be removed by wet etching using potassium hydroxide (KOH).
  • Gallium nitride exhibits a difference in etching rate depending on polarity.
  • Ga-polar gallium nitride 232 is relatively etch resistant to potassium hydroxide (KOH), whereas N-polar gallium nitride 231 is easily etched into potassium hydroxide (KOH).
  • the gallium nitride substrate manufacturing method may easily remove the N-polar gallium nitride 231 selectively without using an additional mask by chemical etching using potassium hydroxide (KOH).
  • KOH potassium hydroxide
  • the method of manufacturing a gallium nitride substrate according to another embodiment of the present invention selectively removes only the N-polar gallium nitride 231 so that only Ga-polar gallium nitride 232 having relatively few defects on the growth substrate 210 is removed. Will remain.
  • 4E is a cross-sectional view with the mask pattern removed.
  • the mask pattern may be removed from the Ga-polar gallium nitride 232 through chemical etching and may be a mixed solution by any one or combination of one or more of hydrofluoric acid (HF) and buffered oxide etchant. It can proceed by wet etching using the same, preferably hydrofluoric acid (HF) can be used.
  • HF hydrofluoric acid
  • the gallium nitride substrate manufacturing method removes the growth substrate from the Ga-polar gallium nitride 232 using chemical etching without the need for a sacrificial layer, thereby damaging the gallium nitride substrate due to the growth substrate removal process. Can be maintained to maintain high quality gallium nitride substrate properties.
  • 4F is a cross-sectional view of Ga-polar gallium nitride deposited on a temporary substrate.
  • a free-standing gallium nitride 232 including Ga-polar gallium nitride 232 is attached on the temporary substrate 250 to laterally grow the Ga-polar gallium nitride 232.
  • the temporary substrate 250 may be formed of sapphire, gallium arsenide (GaAs), spinel, silicon (Si), indium phosphide (InP) or silicon carbide (SiC).
  • GaAs gallium arsenide
  • Si silicon
  • InP indium phosphide
  • SiC silicon carbide
  • a template may be used in which an auxiliary layer 252 of an amorphous thin film including silicon oxide (SiOx) or silicon nitride (SiNx) is deposited on the substrate 251.
  • 4G is a cross-sectional side view of free-standing gallium nitride.
  • Gallium nitride substrate 233 is formed by laterally growing a free-standing gallium nitride 232 attached onto a temporary substrate 250 on which an amorphous thin film is deposited.
  • 4H is a cross-sectional view of a gallium nitride substrate with a temporary substrate separated therefrom.
  • the gallium nitride substrate manufacturing method according to another embodiment of the present invention may further include separating the gallium nitride substrate grown on the temporary substrate.
  • the gallium nitride substrate substrate manufacturing method according to another embodiment of the present invention can produce a high quality free-standing gallium nitride substrate.
  • the gallium nitride substrate manufacturing method according to another embodiment of the present invention may selectively utilize N-polarity and Ga-polarity according to the upper and lower directions of the gallium nitride substrate 233.
  • the method of manufacturing a gallium nitride substrate according to another embodiment of the present invention may produce a gallium nitride substrate 233 by growing gallium nitride in a Ga-polar direction where defects are relatively low, thereby reducing the defect ratio of the gallium nitride substrate. Can be.
  • FIG. 5 is a plan view illustrating Ga-polar gallium nitride after removing the growth substrate and the mask pattern in the gallium nitride substrate manufacturing method according to another embodiment of the present invention.
  • the Ga-polar gallium nitride 232 includes a dot-shaped opening corresponding to the window region 221.
  • FIG. 5 does not have a growth substrate 110 in the window region 121 where the Ga-polar gallium nitride 232 is not formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

본 발명은 질화 갈륨 기판 제조 방법을 개시한다. 본 발명의 실시예에 따른 질화 갈륨 기판 제조 방법은 성장 기판 상에 적어도 하나의 윈도우 영역 및 돌출 영역을 포함하는 마스크 패턴을 형성하는 단계; 상기 성장 기판 상에 질화 갈륨(GaN; gallium nitride)을 에피택셜 측면 오버그로스(ELOG; epitaxial lateral overgrowth)시켜, N-극성 질화 갈륨 및 Ga-극성 질화 갈륨을 포함하는 질화 갈륨을 형성하는 단계; 상기 N-극성 질화 갈륨을 선택적으로 식각하는 단계; 및 상기 마스크 패턴을 제거하는 단계를 포함하는 것을 특징으로 한다.

Description

질화 갈륨 기판의 제조 방법
본 발명의 실시예들은 에피택셜 측면 오버그로스(ELOG; epitaxial lateral overgrowth) 및 선택적 식각을 이용한 질화 갈륨 기판의 제조 방법에 관한 것이다.
최근, 질화 갈륨(GaN)과 같은 Ⅲ-Ⅴ족 질화물 반도체는, 우수한 물리적, 화학적 특성으로 인해 발광 다이오드(LED), 레이저 다이오드(LD), 태양 전지, 광전자장치, 레이저 다이오드, 고-주파수 마이크로 전자장치와 같은 반도체 광소자의 핵심 소재로 각광을 받고 있다. Ⅲ-Ⅴ족 질화물 반도체는 통상 AlxInyGa1-x-yN(0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질로 이루어져있다. 이러한 질화물 반도체 광소자는 핸드폰의 백라이트(backlight)나 키패드, 전광판, 조명 장치와 같은 각종 제품의 광원으로 응용되고 있다.
그러나, 질화 갈륨(GaN)은 실리콘(Si)과 달리 잉곳 제작이 거의 불가능하기 때문에 단결정 기판 제작에 큰 어려움이 있다. 따라서, 질화 갈륨은 사파이어 기판, 실리콘 카바이드 기판 또는 실리콘 기판에 질화 갈륨 후막을 이종 에피텍시얼에 의해 성장시킨 후, 기판을 분리하여 질화 갈륨을 제조하였다.
그러나, 상기와 같이 질화 갈륨을 형성하는 방법은 층들 사이에 격자 짝을 잘못 짓기 때문에 팽팽하게 되거나 완화되고, 이로 인해 탈구의 가능성이 매우 높게 되어 디바이스의 수명 단축과 함께 실행의 한계를 가져오게 되는 문제점이 있었다.
또한, 질화 갈륨을 고품질로 제조하는 것은 고품질의 벌크 결정 및/또는 이들 물질들의 결정 성질에 정합되는 적합한 성장 기판이 없기 때문에 질화 갈륨의 결정 성질들과 근접하게 정합되지 않는 성장 기판은 수용하기 어려운 밀도의 결함들과 전위들로 이어질 수 있다(질화 갈륨에 있어서, 특히 성장 기판과 GaN 사이의 계면에서 비롯되는 관통 전위(TD: threading dislocation)).
또한, 질화 갈륨을 분리하는 기술로 주로 레이저 리프트 오프(LLO; Laser Lift Off) 방식 또는 화학적 리프트 오프(CLO; Chemical Lift Off) 방식을 사용하였다.
그러나, 레이저 리프트 오프(LLO; Laser Lift Off) 방식은 레이저로 기판과 후막 사이 계면을 녹여서 분리하는 기술로 분리 과정에서 결함 발생율이 높고, 비용이 많이 발생하는 문제점이 있고, 화학적 리프트 오프(CLO; Chemical Lift Off) 방식은 비교적 저렴하고 분리 과정에서 추가적인 결함 발생률이 낮으나, 화학적으로 식각 가능한 희생층(sacrificial layer)이 필요하기 때문에, 희생층 상에 성장된 질화 갈륨의 결정성이 상대적으로 낮다는 문제점이 있었다.
본 발명의 실시예들의 목적은 질화 갈륨(GaN;gallium nitride)을 에피택셜 측면 오버그로스(ELOG)시켜, N-극성 질화 갈륨과 Ga-극성 질화 갈륨을 선택적으로 성장시킨 후, 선택적으로 N-극성 질화 갈륨을 제거하는 공정을 이용하여 고품질의 프리-스탠딩(free-standing) 질화 갈륨 기판 및 고품질의 질화 갈륨 템플릿(template) 기판을 제조하기 위한 것이다.
본 발명의 실시예들의 목적은 질화 갈륨(GaN;gallium nitride)을 에피택셜 측면 오버그로스(ELOG)시켜, N-극성 질화 갈륨과 Ga-극성 질화 갈륨을 선택적으로 성장시킨 후, 선택적으로 N-극성 질화 갈륨을 제거하는 공정을 이용하여, 질화 갈륨 기판의 결함 비율을 감소시키기 위한 것이다.
본 발명의 실시예들의 목적은 희생층이 필요 없는 화학적 식각을 이용하여 질화 갈륨으로부터 성장 기판을 제거하여, 성장 기판 제거 공정으로 인한 질화 갈륨 기판의 손상을 감소시켜, 고품질의 질화 갈륨 기판의 특성을 유지시키기 위한 것이다.
본 발명의 일 실시예에 따른 질화 갈륨 기판 제조 방법은 성장 기판 상에 적어도 하나의 윈도우 영역 및 돌출 영역을 포함하는 마스크 패턴을 형성하는 단계; 상기 성장 기판 상에 질화 갈륨(GaN;gallium nitride)을 에피택셜 측면 오버그로스(ELOG; epitaxial lateral overgrowth)시켜, N-극성 질화 갈륨 및 Ga-극성 질화 갈륨을 포함하는 질화 갈륨을 형성하는 단계; 상기 N-극성 질화 갈륨을 선택적으로 식각하는 단계; 및 상기 마스크 패턴을 제거하는 단계를 포함한다.
상기 윈도우 영역 상에서는 상기 N-극성 질화 갈륨만 성장되도록 하고, 상기 돌출 영역 상에서는 상기 Ga-극성 질화 갈륨만 성장되거나, 상기 N-극성 질화 갈륨 및 상기 Ga-극성 질화 갈륨이 혼재되어 성장될 수 있다.
상기 N-극성 질화 갈륨을 선택적으로 식각하는 상기 단계는, 상기 Ga-극성 질화 갈륨을 측면 성장시키는 단계를 포함할 수 있다.
상기 N-극성 질화 갈륨을 선택적으로 식각하는 단계는, 수산화 칼륨(KOH; potassium hydroxide)을 사용할 수 있다.
상기 성장 기판은 사파이어(sapphire), 갈륨 비소(GaAs; gallium arsenide), 스피넬(spinel), 실리콘(Si; silicon), 인화 인듐(InP; indium phosphide) 또는 실리콘 카바이드(SiC; silicon carbide)일 수 있다.
상기 마스크 패턴은 실리콘 산화물(SiO2; silicon oxide), 실리콘 질화물(SiNx; silicon nitride) 또는 실리콘 산질화물(SiON; silicon oxynitride)일 수 있다.
본 발명의 다른 실시예에 따른 질화 갈륨 기판 제조 방법은 성장 기판 상에 적어도 하나의 윈도우 영역 및 돌출 영역을 포함하는 마스크 패턴을 형성하는 단계; 상기 성장 기판 상에 질화 갈륨(GaN;gallium nitride)을 에피택셜 측면 오버그로스(ELOG; epitaxial lateral overgrowth)시켜, N-극성 질화 갈륨 및 Ga-극성 질화 갈륨을 포함하는 질화 갈륨을 형성하는 단계; 상기 N-극성 질화 갈륨을 선택적으로 식각하는 단계; 상기 마스크 패턴을 제거하는 단계; 상기 Ga-극성 질화 갈륨을 포함하는 프리-스탠딩(free-standing) 질화 갈륨을 비정질 박막이 증착된 임시 기판 상에 부착시키는 단계 및 상기 비정질 박막이 증착된 임시 기판 상에 부착된 상기 프리-스탠딩(free-standing) 질화 갈륨을 측면 성장시키는 단계를 포함한다.
본 발명의 일 실시예에 따른 질화 갈륨 템플릿(template) 기판 제조 방법은 성장 기판 상에 적어도 하나의 윈도우 영역 및 돌출 영역을 포함하는 마스크 패턴을 형성하는 단계; 상기 성장 기판 상에 질화 갈륨(GaN;gallium nitride)을 에피택셜 측면 오버그로스(ELOG; epitaxial lateral overgrowth)시켜, N-극성 질화 갈륨 및 Ga-극성 질화 갈륨을 포함하는 질화 갈륨을 형성하는 단계; 및 상기 N-극성 질화 갈륨을 선택적으로 식각하는 단계를 포함한다.
본 발명의 실시예들에 따른 질화 갈륨 기판 제조 방법은 질화 갈륨(GaN;gallium nitride)을 에피택셜 측면 오버그로스(ELOG)시켜, N-극성 질화 갈륨과 Ga-극성 질화 갈륨을 선택적으로 성장시킨 후, 선택적으로 N-극성 질화 갈륨을 제거하는 공정을 이용하여 질화 갈륨 기판을 제조함으로써, 고품질의 프리-스탠딩(free-standing) 질화 갈륨 기판을 제조할 수 있다.
본 발명의 실시예들에 따른 질화 갈륨 기판 제조 방법은 질화 갈륨(GaN;gallium nitride)을 에피택셜 측면 오버그로스(ELOG)시켜, N-극성 질화 갈륨과 Ga-극성 질화 갈륨을 선택적으로 성장시킨 후, 선택적으로 N-극성 질화 갈륨을 제거하는 공정을 이용함으로써, 질화 갈륨 기판의 결함 비율을 감소시킬 수 있다.
본 발명의 실시예들에 따른 질화 갈륨 기판 제조 방법은 희생층이 필요 없는 화학적 식각을 이용하여 질화 갈륨으로부터 성장 기판을 제거함으로써, 성장 기판 제거 공정으로 인한 질화 갈륨 기판의 손상을 감소시켜, 고품질의 질화 갈륨 기판의 특성을 유지시킬 수 있다.
도 1은 질화 갈륨의 N-극성 및 Ga-극성을 도시한 도면이다.
도 2a 내지 도 2f는 본 발명의 일 실시예에 따른 질화 갈륨 기판의 제조 방법을 도시한 단면도이다.
도 3은 본 발명의 일 실시예에 따른 질화 갈륨 기판 제조 방법에서, 성장 기판 및 마스크 패턴 상에 형성된 Ga-극성 질화 갈륨을 도시한 평면도이다.
도 4a 내지 도 4h는 본 발명의 다른 실시예에 따른 질화 갈륨 기판 제조 방법을 도시한 단면도 이다.
도 5는 본 발명의 다른 실시예에 따른 질화 갈륨 기판 제조 방법에서, 성장 기판 및 마스크 패턴을 제거한 후의 Ga-극성 질화 갈륨을 도시한 평면도이다.
이하에서, 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다. 그러나, 이러한 실시예들에 의해 권리범위가 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
아래 설명에서 사용되는 용어는, 연관되는 기술 분야에서 일반적이고 보편적인 것으로 선택되었으나, 기술의 발달 및/또는 변화, 관례, 기술자의 선호 등에 따라 다른 용어가 있을 수 있다. 따라서, 아래 설명에서 사용되는 용어는 기술적 사상을 한정하는 것으로 이해되어서는 안 되며, 실시예들을 설명하기 위한 예시적 용어로 이해되어야 한다.
또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 설명 부분에서 상세한 그 의미를 기재할 것이다. 따라서 아래 설명에서 사용되는 용어는 단순한 용어의 명칭이 아닌 그 용어가 가지는 의미와 명세서 전반에 걸친 내용을 토대로 이해되어야 한다.
한편, 제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 구성 요소들은 용어들에 의하여 한정되지 않는다. 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.
또한, 막, 층, 영역, 구성 요청 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 막, 층, 양역, 구성 요소 등이 개재되어 있는 경우도 포함한다.
도 1은 질화 갈륨의 N-극성 및 Ga-극성을 도시한 도면이다.
질화 갈륨은 우수한 물리적, 화학적 특성으로 인해 다양한 광소자의 핵심 소재로 사용되고 있다. 질화 갈륨은 사파이어, 실리콘 카바이드 또는 실리콘 같은 성장 기판 상에 이종 에피텍시얼에 의해 성장시켜 사용된다.
질화 갈륨을 성장시키기 위해서는 결정 품질에 유의하여야 한다. 특히, 결정 품질은 에피택셜 측면 오버그로스(ELOG; epitaxial lateral overgrowth)를 활용함으로써 개선될 수도 있다.
에피택셜 측면 오버그로스(ELOG; epitaxial lateral overgrowth)는 기판으로부터 수직 방향으로 질화 갈륨이 성장될뿐만 아니라 마스킹 패턴 위로도 측면 방향으로 성장될 수 있다.
또한, 질화 갈륨은 결함뿐만 아니라, 특히, 중요한 결정 성질로 "결정 극성(crystal polarity)"이 있다.
도 1을 참조하면, 갈륨(Ga) 원자들은 큰 회색 구로 도시되고, 질소(N) 원자들은 작은 흑색 구로 도시된다.
도 1에 도시된 바와 같이, 질화 갈륨에서(예; 우르짜이트(wurtzite) 질화 갈륨) 각 갈륨 원자는 네 개의 질소 원자들에 사면체적으로 배위된다.
질화 갈륨은 방향에 따라, Ga-극성(+c; 10) 및 N-극성(-c; 20)으로 구분될 수 있다. 여기서 레이블 c는 에피택시 막의 평면에 대하여 수평한 결정 평면을 가리킨다.
질화 갈륨의 극성은 표면 성질은 아니나, 질화 갈륨의 벌크 성질에 지대한 영향을 미치는 점에 유의하는 것이 중요하고, 극성에 따라 상이한 성질이 발현될 수 있다. 따라서, 에피택시 질화 갈륨 성장층의 극성 특성을 활용하여 소자를 제작할 수 있다.
본 발명에서는 Ga-극성(+c; 10) 질화 갈륨 및 N-극성(-c; 20) 질화 갈륨을 선택적으로 성장시키고, 그 중 N-극성(-c; 20) 부분의 질화 갈륨만을 선택적으로 제거함으로써, 고품질의 프리-스탠딩(free-standing) 질화 갈륨 기판 혹은 고품질의 질화갈륨 템플릿(template) 기판을 제조할 수 있다.
이하에서는, 도 2a 내지 도 2f를 참조하여 본 발명의 일 실시예에 따른 질화 갈륨 기판을 제조하는 기술에 대해 설명하기로 한다.
도 2a 내지 도 2f는 본 발명의 일 실시예에 따른 질화 갈륨 기판의 제조 방법을 도시한 단면도이다.
본 발명의 일 실시예에 따른 질화 갈륨 기판의 제조 방법은 질화 갈륨(GaN;gallium nitride)을 에피택셜 측면 오버그로스(ELOG; epitaxial lateral overgrowth)시켜, N-극성 질화 갈륨(131) 및 Ga-극성 질화 갈륨(132)을 포함하는 질화 갈륨(130)을 형성시킨다. 이후, 식각을 이용하여 N-극성 질화 갈륨(131)만 선택적으로 제거함으로써, 고품질의 프리-스탠딩(free-standing) 질화 갈륨 기판을 제조할 수 있다.
또한, 본 발명의 일 실시예에 따른 질화 갈륨 기판의 제조 방법의 N-극성 질화 갈륨(131)을 선택적으로 식각하는 단계는 Ga-극성 질화 갈륨(132)을 측면 성장시키는 단계를 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 질화 갈륨 기판의 제조 방법은 윈도우 영역(121) 상에는 N-극성 방향으로 성장된 질화 갈륨(이하, 'N-극성 질화 갈륨'라고 함)이 형성될 수 있고, 돌출 영역(122) 상에는 Ga-극성 방향으로 성장된 질화 갈륨(이하, 'Ga-극성 질화 갈륨'라고 함)이 성장될 수 있다.
도 2a는 성장 기판 상에 적어도 하나의 윈도우 영역 및 돌출 영역을 포함하는 마스크 패턴이 형성된 단면도이다.
마스크 패턴(120)은 성장 기판(110) 상에 증착 공정 또는 용액 공정을 이용하여 마스크층을 형성한 다음, 포토리소그래피 공정들을 이용하여 패터닝될 수 있다.
마스크 패턴(120)은 패터닝 공정에 의해 윈도우 영역(121) 및 돌출 영역(122)을 포함할 수 있고, 후에 질화 갈륨은 마스크 패턴(120)의 윈도우 영역(121)을 통하여 성장될 수 있다.
마스크 패턴(120)에 형성된 윈도우 영역(121) 또는 돌출 영역(122)은 도트 형상, 직사각형 형상, 타원형 형상 또는 스트라이프 형상을 가질 수 있으나, 이에 한정되는 것은 아니다.
성장 기판(110)은 사파이어(sapphire), 갈륨 비소(GaAs; gallium arsenide), 스피넬(spinel), 실리콘(Si; silicon), 인화 인듐(InP; indium phosphide) 및 실리콘 카바이드(SiC; silicon carbide) 중 적어도 어느 하나일 수 있고, 바람직하게는 사파이어가 사용될 수 있다.
마스크 패턴(120)은 실리콘 산화물(SiO2; silicon oxide), 실리콘 질화물(SiNx; silicon nitride) 및 실리콘 산질화물(SiON; silicon oxynitride) 중 적어도 어느 하나를 포함할 수 있고, 바람직하게는 실리콘 산화물이 사용될 수 있다.
도 2b 및 도 2c는 성장 기판 상에 질화 갈륨을 에피택셜 측면 오버그로스(ELOG)시켜, N-극성 질화 갈륨 및 Ga-극성 질화 갈륨을 포함하는 질화 갈륨이 형성된 단면도이다.
N-극성 질화 갈륨(131) 및 Ga-극성 질화 갈륨(132)을 포함하는 질화 갈륨(130)은 에피택셜 측면 오버그로스(ELOG) 방법으로 성장된다.
에피택셜 측면 오버그로스(ELOG)는 성장 기판(110)으로부터 수직 방향으로뿐만 아니라 마스크 패턴(120) 상부의 측면 방향으로도 질화 갈륨(130)이 성장될 수 있다.
먼저, 도 2b에서와 같이, 질화 갈륨(130)이 마스크 패턴(120)의 윈도우 영역(121)을 통하여 수직 성장된다. 이후, 성장의 마지막 단계에서, 마스크 패턴(120)의 돌출 영역(122)의 측방향으로 연장되어 질화 갈륨(130)이 성장될 수 있다.
이로 인해, 측방향으로 성장되는 질화 갈륨(130)은 일정 시간이 지난 후, 수직 성장된 질화 갈륨(130)이 병합되어 도 2c에서와 같이, 성장 기판(110) 및 마스크 패턴(120) 상부 표면에 전체적으로 성장된 질화 갈륨(130)이 형성될 수 있다.
성장된 질화 갈륨(130)은 마스크 패턴(120)의 윈도우 영역(121) 상에 성장된 N-극성 질화 갈륨(131) 및 마스크 패턴(120)의 돌출 영역(122) 상에 성장된 Ga-극성 질화 갈륨(132)을 포함할 수 있다.
또한, 윈도우 영역(121) 상에서는 N-극성 질화 갈륨(131)만 성장되도록 하고, 돌출 영역(122) 상에서는 Ga-극성 질화 갈륨(132)만 성장되거나, N-극성 질화 갈륨(131) 및 Ga-극성 질화 갈륨(132)이 혼재되어 성장될 수 있다.
윈도우 영역(121) 및 돌출 영역(122)을 포함하는 마스크 패턴(120) 상에 질화 갈륨(130)을 에피택셜 측면 오버그로스(ELOG)시킬 때, 일반적으로 전 영역에서 N-극성 질화 갈륨(131) 혹은 Ga-극성 질화 갈륨(132) 한 종류만이 전 영역에 걸쳐 성장되게 된다.
그러나, 본 발명의 실시예에 따른 질화 갈륨 기판 제조 방법은 윈도우 영역(121) 및 돌출 영역(122)을 포함하는 마스크 패턴(120) 상에 질화 갈륨(130)을 에피택셜 측면 오버그로스(ELOG)시킬 때, 특정 조건을 사용함으로써, 윈도우 영역(121) 상부에는 N-극성 질화 갈륨(131)만 성장되고, 돌출 영역(122) 상부에는 Ga-극성 질화 갈륨(132)만 성장되는 극성 반전(polarity inversion) 특성을 가질 수 있다.
질화 갈륨(130)의 각 갈륨 원자는 네 개의 질소 원자들에 사면체적으로 배위되고, 방향에 따라 Ga-극성 질화 갈륨(132) 특성 및 N-극성 질화 갈륨(131) 특성을 가진다.
또한, 윈도우 영역(121) 상에 성장된 N-극성 질화 갈륨(131)은 돌출 영역(122) 상에 성장된 Ga-극성 질화 갈륨(132)보다 결함(defect) 비율이 높은 결함 영역일 수 있다. 따라서, N-극성 질화 갈륨(131)보다 Ga-극성 질화 갈륨(132)를 사용하는 것이 더욱 바람직하다.
도 2d는 N-극성 질화 갈륨이 선택적으로 식각된 단면도이다.
질화 갈륨은 극성에 따라 식각 속도에서 차이를 나타낼 수 있다. Ga-극성 질화 갈륨(132)은 상대적으로 수산화 칼륨(KOH)에 대해 식각 내성을 갖는 반면, N-극성 질화 갈륨(131)은 수산화 칼륨(KOH)에 쉽게 식각되는 특성을 갖는다.
N-극성 질화 갈륨(131)은 수산화 칼륨(KOH; potassium hydroxide)을 이용한 습식 식각으로 제거될 수 있다.
실시예에 따라서는, N-극성 질화 갈륨(131)은 추가적인 마스크를 사용하는 건식 식각 방법으로 식각될 수 있고, 건식 식각 방법은 RIE(Reactive Ion Etching), ECR(Electron Cyclotron Resonance) 또는 ICP(Inductively Coupled Plasma)일 수 있다.
따라서, 본 발명의 일 실시예에 따른 질화 갈륨 기판 제조 방법은 수산화 칼륨(KOH)을 이용한 화학적 식각만으로 추가적인 마스크 사용 없이도 선택적으로 N-극성 질화 갈륨(131)을 용이하게 제거할 수 있다.
따라서, 본 발명의 일 실시예에 따른 질화 갈륨 기판 제조 방법은 N-극성 질화 갈륨(131)만 선택적으로 제거하여 성장 기판(110) 상에 상대적으로 결함이 적은 Ga-극성 질화 갈륨(132)만 남게 된다.
도 2e는 Ga-극성 질화 갈륨을 측면 성장된 단면도이다.
본 발명의 일 실시예에 따른 질화 갈륨 기판 제조 방법은 실시예에 따라, 마스크 패턴(120) 상에 Ga-극성 질화 갈륨(132)을 측면 성장시키는 단계를 진행할 수 도 있다.
마스크 패턴(120) 상에 Ga-극성 질화 갈륨(132)을 측면 성장시킴으로써, 질화 갈륨 기판(133)이 형성된다.
마스크 패턴(120) 상에 측면 성장되는 Ga-극성 질화 갈륨(132)은 성장 기판(110)에 접촉되지 않는다. 즉, 수직방향보다 수평방향으로 성장이 훨씬 빠르게 되도록하면 Ga-극성 질화 갈륨(132)은 하부 방향으로는 매우 느리거나 거의 성장되지 않기 때문에, Ga-극성 질화 갈륨(132)은 성장 기판(110)과 닿지 않도록(G) 형성될 수 있다.
도 2f는 마스크 패턴이 제거된 질화 갈륨 기판 단면도이다.
본 발명의 일 실시예에 따른 질화 갈륨 기판(133) 제조 방법은 마스크 패턴(120) 상에 Ga-극성 질화 갈륨(132)을 측면 성장시키는 단계를 진행하지 않으면, 오프닝 영역(121)이 노출된 질화 갈륨 기판이 제조될 수 있고, 마스크 패턴(120) 상에 Ga-극성 질화 갈륨(132)을 측면 성장시키는 단계를 진행하면, 노출 영역이 없는 도 2f와 같은 판 형태의 질화 갈륨 기판(133)이 제조될 수 있다.
마스크 패턴(120)은 화학적 식각을 통하여 제거될 수 있고, 플루오르화 수소산(HF) 및 버퍼 옥사이드 에천트(Buffered Oxide Etchant) 중 어느 하나 또는 이들 하나 이상의 조합에 의한 혼합 용액인 것을 이용한 습식 식각에 의해 진행될 수 있으며, 바람직하게는 플루오르화 수소산(HF)이 사용될 수 있다.
본 발명의 일 실시예에 따른 질화 갈륨 기판(133) 제조 방법은 희생층이 필요 없는 화학적 식각을 이용하여 질화 갈륨 기판(133)을 기판으로부터 제거함으로써, 성장 기판(110) 제거 공정으로 인한 질화 갈륨 기판(133)의 손상을 감소시켜, 고품질의 질화 갈륨 기판(133) 특성을 유지시킬 수 있다.
따라서, 본 발명의 일 실시예에 따른 질화 갈륨 기판(133) 제조 방법은 고품질의 프리-스탠딩(free-standing) 질화 갈륨 기판을 제조할 수 있다.
질화 갈륨 기판(133)은 성장 기판(110)이 배치되었던 면인 제1 면 및 제1 면과 대향되는 제2 면을 포함할 수 있다.
질화 갈륨 기판(133) 수득 시, 상부에 제2 면이 위치하고 하부에 제1 면이 위치하도록 질화 갈륨 기판(133)을 수득한다면, 본 발명의 일 실시예에 따른 질화 갈륨 기판 제조 방법은 Ga-극성 방향으로 질화 갈륨을 성장시켰기 때문에, Ga-극성 질화 갈륨 기판(133)을 수득할 수 있다.
그러나, 질화 갈륨 기판(133) 수득 시, 상부에 제1 면이 위치하고 하부에 제2 면이 위치하도록 질화 갈륨 기판(133)을 수득한다면, 본 발명의 일 실시예에 따른 질화 갈륨 기판 제조 방법은 Ga-극성 방향으로 질화 갈륨을 성장시켜 형성하였기 때문에, 상하가 반전되어 N-극성 질화 갈륨 기판(133)을 수득할 수 있다.
따라서, 본 발명의 일 실시예에 따른 질화 갈륨 기판 제조 방법은 질화 갈륨 기판(133)의 상하부 방향에 따라, N-극성 및 Ga-극성을 선택적으로 활용할 수 있다.
또한, 본 발명의 일 실시예에 따른 질화 갈륨 기판 제조 방법은 결함이 상대적으로 적은 Ga-극성 방향으로 질화 갈륨을 성장시킨 질화 갈륨 기판(133)을 제조함으로써, 질화 갈륨 기판의 결함 비율을 감소시킬 수 있다.
또한, 본 발명의 일 실시예에 따른 질화 갈륨 기판 제조 방법을 이용하여 제조된 질화 갈륨 기판은 발광 소자 및 발광 소자를 기반으로 하는 디스플레이에 사용할 수 있다.
또한, 본 발명의 일 실시예에 따른 질화 갈륨 기판 제조 방법을 이용하여 제조된 질화 갈륨 기판을 활용하여 발광 소자를 제조함으로써, 발광 램프(luminescent lamp)를 대체할 수 있는 전반 조명(general lighting)에 활용될 수 있다.
또한, 본 발명의 일 실시예에 따른 질화 갈륨 템플릿 기판을 제조하기 위해, 성장 기판(110) 및 마스크 패턴(120)을 제거하는 공정을 진행하지 않을 수 있다.
본 발명의 일 실시예에 따른 질화 갈륨 템플릿 기판 제조 방법은 성장 기판(110) 및 마스크 패턴(120)을 제거하는 공정을 진행하지 않는 것을 제외하면, 도 2a 내지 도 2e에서 도시된 본 발명의 일 실시예에 따른 질화 갈륨 기판 제조 방법과 동일하므로, 중복되는 구성요소에 대해서는 생략하기로 한다.
즉, 도 2a 내지 도 2e에 도시된 본 발명의 일 실시예에 따른 질화 갈륨 기판 제조 방법과 동일하게 제조한 다음, 공정을 완료하면, 성장 기판(110), 마스크 패턴(120) 및 질화 갈륨 기판(133)이 순차적으로 형성된 질화 갈륨 템플릿 기판이 제조된다.
또한, 본 발명의 일 실시예에 따른 질화 갈륨 템플릿 기판 제조 방법은 마스크 패턴(120) 상에 Ga-극성 질화 갈륨(132)을 측면 성장시키는 단계를 진행하지 않으면, 오프닝 영역(121)이 노출된 질화 갈륨 기판이 제조될 수 있고, 마스크 패턴(120) 상에 Ga-극성 질화 갈륨(132)을 측면 성장시키는 단계를 진행하면, 노출 영역이 없는 판 형태의 질화 갈륨 기판(133)이 제조될 수 있다.
도 3은 본 발명의 일 실시예에 따른 질화 갈륨 기판 제조 방법에서, 성장 기판 및 마스크 패턴 상에 형성된 Ga-극성 질화 갈륨을 도시한 평면도이다.
성장 기판(110) 상에는 도트 형상을 갖는 윈도우 영역(121)을 제외한 영역에 Ga-극성 질화 갈륨(132)이 형성되어 있다.
따라서, Ga-극성 질화 갈륨(132)이 형성되지 않은 윈도우 영역(121)에는 성장 기판(110)이 노출된다.
이하에서는, 도 4a 내지 도 4h를 참조하여, 본 발명의 다른 실시예에 따른 질화 갈륨 기판 제조 방법에 대해 설명하기로 한다.
본 발명의 다른 실시예에 따른 질화 갈륨 기판 제조 방법은 임시 기판을 사용하는 것을 제외하면 도 2a 내지 도 2f에서 설명한 바와 동일하므로, 중복되는 구성요소에 대해서는 생략하기로 한다.
도 4a 내지 도 4h는 본 발명의 다른 실시예에 따른 질화 갈륨 기판 제조 방법을 도시한 단면도 이다.
본 발명의 다른 실시예에 따른 질화 갈륨 기판 제조 방법은 성장 기판(210) 상에 적어도 하나의 윈도우 영역(221) 및 돌출 영역(222)을 포함하는 마스크 패턴(220)을 형성하는 단계, 성장 기판(210) 상에 질화 갈륨(GaN;gallium nitride)을 에피택셜 측면 오버그로스(ELOG)시켜, N-극성 질화 갈륨(231) 및 Ga-극성 질화 갈륨(232)을 포함하는 질화 갈륨(230)을 형성하는 단계 및 N-극성 질화 갈륨(231)을 선택적으로 식각하는 단계를 포함한다.
또한, 성장 기판(210) 및 상기 마스크 패턴(220)을 제거하는 단계, Ga-극성 질화 갈륨(232)을 임시 기판(250) 상에 부착시키는 단계, Ga-극성 질화 갈륨(232)을 측면 성장시키는 단계를 포함한다.
도 4a는 성장 기판 상에 적어도 하나의 윈도우 영역 및 돌출 영역을 포함하는 마스크 패턴이 형성된 단면도이다.
마스크 패턴(220)은 패터닝 공정에 의해 윈도우 영역(221) 및 돌출 영역(222)을 포함할 수 있고, 후에 질화 갈륨(230)은 마스크 패턴(220)의 윈도우 영역(221)을 통하여 성장될 수 있다.
바람직하게는, 성장 기판(210)은 사파이어가 사용될 수 있다.
바람직하게는 마스크 패턴(220)은 실리콘 산화물이 사용될 수 있고, 마스크 패턴(220)의 윈도우 영역(221)은 도트 형상, 직사각형 형상, 타원형 형상 또는 스트라이프 형상을 가질 수 있으나, 이에 한정되는 것은 아니다.
도 4b 및 도 4c는 성장 기판 상에 질화 갈륨을 에피택셜 측면 오버그로스(ELOG)시켜, N-극성 질화 갈륨 및 Ga-극성 질화 갈륨을 포함하는 질화 갈륨을 형성하는 단계를 도시한 단면도이다.
N-극성 질화 갈륨(231) 및 Ga-극성 질화 갈륨(232)을 포함하는 질화 갈륨(230)은 에피택셜 측면 오버그로스(ELOG) 방법으로 성장될 수 있다.
먼저, 도 4b에서와 같이, 질화 갈륨(230)은 마스크 패턴(220)의 윈도우 영역(221)을 통하여 수직 성장된다. 이후, 성장의 마지막 단계에서, 마스크 패턴(220)의 돌출 영역(222)의 측방향으로 연장되어 질화 갈륨(230)이 성장될 수 있다.
이로 인해, 도 4c에서와 같이, 성장 기판(210) 및 마스크 패턴(220) 상부 표면에 전체적으로 질화 갈륨(230)이 형성될 수 있다.
성장된 질화 갈륨(230)은 마스크 패턴(220)의 윈도우 영역(221) 상에 성장된 N-극성 질화 갈륨(231) 및 마스크 패턴(220)의 돌출 영역(222) 상에 성장된 Ga-극성 질화 갈륨(132)을 포함할 수 있다.
또한, 윈도우 영역(221) 상에서는 N-극성 질화 갈륨(231)만 성장되도록 하고, 돌출 영역(222) 상에서는 Ga-극성 질화 갈륨(232)만 성장되거나, N-극성 질화 갈륨(231) 및 Ga-극성 질화 갈륨(232)이 혼재되어 성장될 수 있다.
또한, 윈도우 영역(221) 상에 성장된 N-극성 질화 갈륨(231)은 돌출 영역(222) 상에 성장된 Ga-극성 질화 갈륨(232)보다 결함(defect) 비율이 높은 결함 영역일 수 있다. 따라서, N-극성 질화 갈륨(231)보다 Ga-극성 질화 갈륨(232)를 사용하는 것이 더욱 바람직하다.
도 4d는 N-극성 질화 갈륨이 선택적으로 식각된 단면도이다.
N-극성 질화 갈륨(231)은 수산화 칼륨(KOH; potassium hydroxide)을 이용한 습식 식각으로 제거될 수 있다.
질화 갈륨은 극성에 따라 식각 속도에서 차이를 나타낸다. Ga-극성 질화 갈륨(232)은 상대적으로 수산화 칼륨(KOH)에 대해 식각 내성을 갖는 반면, N-극성 질화 갈륨(231)은 수산화 칼륨(KOH)에 쉽게 식각되는 특성을 갖는다.
따라서, 본 발명의 다른 실시예에 따른 질화 갈륨 기판 제조 방법은 수산화 칼륨(KOH)을 이용한 화학적 식각만으로 추가적인 마스크 사용 없이도 선택적으로 N-극성 질화 갈륨(231)을 용이하게 제거할 수 있다.
따라서, 본 발명의 다른 실시예에 따른 질화 갈륨 기판 제조 방법은 N-극성 질화 갈륨(231)만 선택적으로 제거하여 성장 기판(210) 상에 상대적으로 결함이 적은 Ga-극성 질화 갈륨(232)만 남게 된다.
도 4e는 마스크 패턴이 제거된 단면도이다.
마스크 패턴은 화학적 식각을 통하여 Ga-극성 질화 갈륨(232)로부터 제거될 수 있고, 플루오르화 수소산(HF) 및 버퍼 옥사이드 에천트(Buffered Oxide Etchant) 중 어느 하나 또는 이들 하나 이상의 조합에 의한 혼합 용액인 것을 이용한 습식 식각에 의해 진행될 수 있으며, 바람직하게는 플루오르화 수소산(HF)이 사용될 수 있다.
본 발명의 다른 실시예에 따른 질화 갈륨 기판 제조 방법은 희생층이 필요 없는 화학적 식각을 이용하여 Ga-극성 질화 갈륨(232)으로부터 성장 기판을 제거함으로써, 성장 기판 제거 공정으로 인한 질화 갈륨 기판의 손상을 감소시켜, 고품질의 질화 갈륨 기판 특성을 유지시킬 수 있다.
도 4f는 Ga-극성 질화 갈륨이 임시 기판 상에 부착된 단면도이다.
Ga-극성 질화 갈륨(232)를 측면 성장시키기 위해서 Ga-극성 질화 갈륨(232)을 포함하는 프리-스탠딩(free-standing) 질화 갈륨(232)을 임시 기판(250) 상에 부착시킨다.
임시 기판(250)은 사파이어(sapphire), 갈륨 비소(GaAs; gallium arsenide), 스피넬(spinel), 실리콘(Si; silicon), 인화 인듐(InP; indium phosphide) 또는 실리콘 카바이드(SiC; silicon carbide)의 기재(251) 상부에 실리콘 산화물(SiOx; silicon oxide) 또는 실리콘 질화물(SiNx; silicon nitride)을 포함하는 비정질 박막의 보조층(252)이 증착된 템플릿이 사용될 수 있다.
도 4g는 프리-스탠딩(free-standing) 질화 갈륨이 측면 성장된 단면도이다.
비정질 박막이 증착된 임시 기판(250) 상에 부착된 프리-스탠딩(free-standing) 질화 갈륨(232)을 측면 성장시킴으로써 질화 갈륨 기판(233)이 형성된다.
도 4h는 임시 기판이 분리된 질화 갈륨 기판의 단면도이다.
본 발명의 다른 실시예에 따른 질화 갈륨 기판 제조 방법은 임시 기판 상에 성장된 질화 갈륨 기판을 분리시키는 단계를 더 포함할 수 있다.
따라서, 본 발명의 다른 실시예에 따른 질화 갈륨 기판 기판 제조 방법은 고품질의 프리-스탠딩(free-standing) 질화 갈륨 기판을 제조할 수 있다.
본 발명의 다른 실시예에 따른 질화 갈륨 기판 제조 방법은 질화 갈륨 기판(233)의 상하부 방향에 따라, N-극성 및 Ga-극성을 선택적으로 활용 가능하다.
또한, 본 발명의 다른 실시예에 따른 질화 갈륨 기판 제조 방법은 결함이 상대적으로 적은 Ga-극성 방향으로 질화 갈륨을 성장시켜 질화 갈륨 기판(233)을 제조함으로써, 질화 갈륨 기판의 결함 비율을 감소시킬 수 있다.
도 5는 본 발명의 다른 실시예에 따른 질화 갈륨 기판 제조 방법에서, 성장 기판 및 마스크 패턴을 제거한 후의 Ga-극성 질화 갈륨을 도시한 평면도이다.
Ga-극성 질화 갈륨(232)은 윈도우 영역(221)과 대응되는 도트 형상의 오프닝부를 포함한다.
그러나, 도 5는 도 3에서와는 다르게, Ga-극성 질화 갈륨(232)이 형성되지 않은 윈도우 영역(121)에 성장 기판(110)이 없다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (8)

  1. 성장 기판 상에 적어도 하나의 윈도우 영역 및 돌출 영역을 포함하는 마스크 패턴을 형성하는 단계;
    상기 성장 기판 상에 질화 갈륨(GaN;gallium nitride)을 에피택셜 측면 오버그로스(ELOG; epitaxial lateral overgrowth)시켜, N-극성 질화 갈륨 및 Ga-극성 질화 갈륨을 포함하는 질화 갈륨을 형성하는 단계;
    상기 N-극성 질화 갈륨을 선택적으로 식각하는 단계; 및
    상기 마스크 패턴을 제거하는 단계
    를 포함하는 것을 특징으로 하는 질화 갈륨 기판 제조 방법.
  2. 제1항에 있어서,
    상기 윈도우 영역 상에서는 상기 N-극성 질화 갈륨만 성장되도록 하고, 상기 돌출 영역 상에서는 상기 Ga-극성 질화 갈륨만 성장되거나, 상기 N-극성 질화 갈륨 및 상기 Ga-극성 질화 갈륨이 혼재되어 성장되는 것을 특징으로 하는 질화 갈륨 기판 제조 방법.
  3. 제1항에 있어서,
    상기 N-극성 질화 갈륨을 선택적으로 식각하는 상기 단계는,
    상기 Ga-극성 질화 갈륨을 측면 성장시키는 단계
    를 포함하는 것을 특징으로 하는 질화 갈륨 기판 제조 방법.
  4. 제1항에 있어서,
    상기 N-극성 질화 갈륨을 선택적으로 식각하는 단계는,
    수산화 칼륨(KOH; potassium hydroxide)을 사용하는 것을 특징으로 하는 질화 갈륨 기판 제조 방법.
  5. 제1항에 있어서,
    상기 성장 기판은 사파이어(sapphire), 갈륨 비소(GaAs; gallium arsenide), 스피넬(spinel), 실리콘(Si; silicon), 인화 인듐(InP; indium phosphide) 및 실리콘 카바이드(SiC; silicon carbide) 중 적어도 어느 하나인 것을 특징으로 하는 질화 갈륨 기판 제조 방법.
  6. 제1항에 있어서,
    상기 마스크 패턴은 실리콘 산화물(SiO2; silicon oxide), 실리콘 질화물(SiNx; silicon nitride) 및 실리콘 산질화물(SiON; silicon oxynitride) 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 질화 갈륨 기판 제조 방법.
  7. 성장 기판 상에 적어도 하나의 윈도우 영역 및 돌출 영역을 포함하는 마스크 패턴을 형성하는 단계;
    상기 성장 기판 상에 질화 갈륨(GaN;gallium nitride)을 에피택셜 측면 오버그로스(ELOG; epitaxial lateral overgrowth)시켜, N-극성 질화 갈륨 및 Ga-극성 질화 갈륨을 포함하는 질화 갈륨을 형성하는 단계;
    상기 N-극성 질화 갈륨을 선택적으로 식각하는 단계;
    상기 마스크 패턴을 제거하는 단계;
    상기 Ga-극성 질화 갈륨을 포함하는 프리-스탠딩(free-standing) 질화 갈륨을 비정질 박막이 증착된 임시 기판 상에 부착시키는 단계; 및
    상기 비정질 박막이 증착된 임시 기판 상에 부착된 상기 프리-스탠딩(free-standing) 질화 갈륨을 측면 성장시키는 단계
    를 포함하는 것을 특징으로 하는 질화 갈륨 기판 제조 방법.
  8. 성장 기판 상에 적어도 하나의 윈도우 영역 및 돌출 영역을 포함하는 마스크 패턴을 형성하는 단계;
    상기 성장 기판 상에 질화 갈륨(GaN;gallium nitride)을 에피택셜 측면 오버그로스(ELOG; epitaxial lateral overgrowth)시켜, N-극성 질화 갈륨 및 Ga-극성 질화 갈륨을 포함하는 질화 갈륨을 형성하는 단계; 및
    상기 N-극성 질화 갈륨을 선택적으로 식각하는 단계
    를 포함하는 것을 특징으로 하는 질화 갈륨 템플릿(template) 기판 제조 방법.
PCT/KR2017/001441 2017-01-23 2017-02-10 질화 갈륨 기판의 제조 방법 WO2018135688A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0010707 2017-01-23
KR1020170010707A KR101933778B1 (ko) 2017-01-23 2017-01-23 질화 갈륨 기판의 제조 방법

Publications (1)

Publication Number Publication Date
WO2018135688A1 true WO2018135688A1 (ko) 2018-07-26

Family

ID=62908839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001441 WO2018135688A1 (ko) 2017-01-23 2017-02-10 질화 갈륨 기판의 제조 방법

Country Status (2)

Country Link
KR (1) KR101933778B1 (ko)
WO (1) WO2018135688A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531070A (zh) * 2020-11-25 2021-03-19 厦门大学 一种基于核-壳纳米柱阵列的深紫外探测器及其制备方法
KR20230014913A (ko) 2021-07-21 2023-01-31 전남대학교산학협력단 전력반도체용 기판 및 이의 제조방법
KR102538943B1 (ko) * 2021-11-10 2023-06-01 경희대학교 산학협력단 관통홀 에피택시 방법 및 이를 이용한 발광소자의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030067965A (ko) * 2002-02-09 2003-08-19 주식회사 엘지이아이 질화물 반도체 기판 및 그의 제조 방법
US20070015345A1 (en) * 2005-07-13 2007-01-18 Baker Troy J Lateral growth method for defect reduction of semipolar nitride films
US20090098343A1 (en) * 2007-07-26 2009-04-16 Chantal Arena Epitaxial methods and templates grown by the methods
US20100276665A1 (en) * 2007-02-09 2010-11-04 Wang Nang Wang Production of semiconductor devices
KR101105868B1 (ko) * 2010-11-08 2012-01-16 한국광기술원 화학적 리프트 오프 방법을 이용한 ⅰⅰⅰ족 질화물 기판의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3595829B2 (ja) * 2003-03-19 2004-12-02 株式会社東北テクノアーチ GaN基板作製方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030067965A (ko) * 2002-02-09 2003-08-19 주식회사 엘지이아이 질화물 반도체 기판 및 그의 제조 방법
US20070015345A1 (en) * 2005-07-13 2007-01-18 Baker Troy J Lateral growth method for defect reduction of semipolar nitride films
US20100276665A1 (en) * 2007-02-09 2010-11-04 Wang Nang Wang Production of semiconductor devices
US20090098343A1 (en) * 2007-07-26 2009-04-16 Chantal Arena Epitaxial methods and templates grown by the methods
KR101105868B1 (ko) * 2010-11-08 2012-01-16 한국광기술원 화학적 리프트 오프 방법을 이용한 ⅰⅰⅰ족 질화물 기판의 제조방법

Also Published As

Publication number Publication date
KR20180086806A (ko) 2018-08-01
KR101933778B1 (ko) 2018-12-28

Similar Documents

Publication Publication Date Title
WO2012064050A2 (ko) 화학적 리프트 오프 방법을 이용한 iii족 질화물 기판의 제조방법
WO2013048179A1 (en) Substrate having concave-convex pattern, light-emitting diode including the substrate, and method for fabricating the diode
WO2016010323A1 (ko) 반도체 적층 구조, 이를 이용한 질화물 반도체층 분리방법 및 장치
WO2018135688A1 (ko) 질화 갈륨 기판의 제조 방법
WO2014061906A1 (ko) 성장 기판 분리 방법, 발광 다이오드 제조 방법 및 그것에 의해 제조된 발광 다이오드
WO2014163323A1 (en) Ultraviolet light emitting device separated from growth substrate and method of fabricating the same
WO2017150848A1 (ko) 나노 로드 제조방법 및 이에 의해 제조된 나노 로드
WO2014133267A1 (en) Method of fabricating nitride substrate
US20100035416A1 (en) Forming III-Nitride Semiconductor Wafers Using Nano-Structures
WO2013032268A1 (ko) 전자 소자 및 그 제조 방법
EP2532022A2 (en) Method for manufacturing galium naitride wafer
WO2012118250A1 (ko) 패턴화된 격자 완충층을 이용한 질화물계 발광소자 및 그 제조 방법
WO2010147357A2 (ko) 이종 기판, 그를 이용한 질화물계 반도체 소자 및 그의 제조 방법
WO2009093846A2 (ko) 발광소자의 제조방법
EP4328956A1 (en) Semiconductor substrate and production method and production device for same, semiconductor device and production method and production device for same, electronic apparatus
WO2012148039A1 (en) Semiconductor substrate and method of fabricating the same
EP2507818A2 (en) Method of manufacturing nitride semiconductor device
WO2018135689A1 (ko) 발광 소자의 제조 방법
KR100323710B1 (ko) 질화갈륨 반도체 레이저 기판의 제조방법
KR102126186B1 (ko) 질화 갈륨 기판의 제조 방법
KR100454907B1 (ko) 질화물 반도체 기판 및 그의 제조 방법
KR100359739B1 (ko) 이종 단결정박막의 접합 및 덧성장방법
KR100425680B1 (ko) 질화물 반도체 박막 형성방법
WO2018135690A1 (ko) 발광 소자의 제조 방법
WO2022220124A1 (ja) 半導体基板並びにその製造方法および製造装置、GaN系結晶体、半導体デバイス、電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892167

Country of ref document: EP

Kind code of ref document: A1