WO2012064017A2 - 일정유량 토출용 증압기 - Google Patents

일정유량 토출용 증압기 Download PDF

Info

Publication number
WO2012064017A2
WO2012064017A2 PCT/KR2011/006926 KR2011006926W WO2012064017A2 WO 2012064017 A2 WO2012064017 A2 WO 2012064017A2 KR 2011006926 W KR2011006926 W KR 2011006926W WO 2012064017 A2 WO2012064017 A2 WO 2012064017A2
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
pressure
control means
flow path
control valve
Prior art date
Application number
PCT/KR2011/006926
Other languages
English (en)
French (fr)
Other versions
WO2012064017A3 (ko
Inventor
김유중
Original Assignee
대한시스텍주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한시스텍주식회사 filed Critical 대한시스텍주식회사
Priority to US13/884,133 priority Critical patent/US9169854B2/en
Priority to CN201180053551.9A priority patent/CN103370545B/zh
Priority to EP11758077.9A priority patent/EP2639461A2/en
Priority to JP2013537594A priority patent/JP5681293B2/ja
Publication of WO2012064017A2 publication Critical patent/WO2012064017A2/ko
Publication of WO2012064017A3 publication Critical patent/WO2012064017A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/18Combined units comprising both motor and pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B3/00Intensifiers or fluid-pressure converters, e.g. pressure exchangers; Conveying pressure from one fluid system to another, without contact between the fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure

Definitions

  • the present invention relates to an intensifier, and relates to a constant flow discharge intensifier capable of increasing the hydraulic pressure to a required pressure using a flow rate and pressure set in an existing facility.
  • an intensifier type is a cylinder type, is a device for generating a pressure up to about 4,000 ⁇ 6,000kg / cm2 with a small discharge flow rate, irregular and a device for increasing the pressure introduced by the hydraulic pump up to 20 times.
  • intensifiers are widely used in the forestry and machining industries, the automotive industry, the stone and tile industries, the aircraft sector, the food processing sector, and the paper industry. Briefly looking at the principle of the above-described pressure intensifier, as follows.
  • the pressure intensifier is provided with a hydraulic motor and a pump having different areas, and discharges a constant flow rate and high pressure through a hydraulic pump of a small area by flowing hydraulic pressure in a large area hydraulic motor.
  • the conventional intensifier could not discharge a flow volume continuously.
  • the intensifier can not be applied to the existing equipment for operating the hydraulic motor or hydraulic cylinder by mounting the intensifier.
  • an object of the present invention is to provide a constant flow discharge pressure intensifier capable of increasing the pressure to a set pressure in order to prevent failure and damage of the connected equipment have.
  • Another object of the present invention is to provide a constant flow rate discharge intensifier capable of continuously and continuously discharging the increased pressure and flow rate so as to be applied to an existing facility that continuously operates a hydraulic motor or a hydraulic cylinder at low pressure. .
  • the present invention for achieving the above object includes a hydraulic pump, a hydraulic motor, a supply passage, the first control means and the second control means.
  • the hydraulic pump pumps the hydraulic pressure flowing in and discharges the hydraulic pressure through the flow path.
  • the hydraulic motor is driven by the hydraulic pressure flowing in and drives the hydraulic pump to boost the hydraulic pressure discharged by the hydraulic pump.
  • the supply passage supplies hydraulic pressure to the hydraulic pump and the hydraulic motor.
  • the first control means opens and closes the supply passage, and the second control means causes the first control means to close the supply passage when the oil pressure discharged from the discharge passage is greater than a set oil pressure.
  • the first control means of the present invention includes a first control valve and a first operating flow path.
  • the first control valve is installed in the supply passage to open and close the supply passage.
  • the first operating flow passage is connected such that the hydraulic pressure of the supply passage is supplied to the first control valve so as to operate the first control valve to close the supply passage.
  • the second control means opens and closes the first operating flow path.
  • the second control means of the present invention includes a second control valve and a second operating flow path.
  • the second control valve is installed in the first operating flow path to open the first working flow path when the hydraulic pressure discharged from the discharge flow path is greater than the set hydraulic pressure.
  • the second operating flow path is preferably connected to supply the hydraulic pressure of the discharge flow path to the second control valve to operate the second control valve.
  • the second control means of the present invention may include a second control valve, a pressure sensor and a controller.
  • the second control valve is installed in the first working channel to open and close the first working channel.
  • the pressure sensor measures the oil pressure of the discharge passage.
  • the controller operates the second control valve to open the first operating flow path when the oil pressure measured from the pressure sensor is greater than the set oil pressure.
  • the constant flow rate discharge intensifier can prevent the supply passage from being blocked by the first control means and the second control means when the pressure in the discharge passage is greater than the set pressure, thereby increasing the pressure greater than the set pressure. It works. Therefore, there is an effect that can prevent failure and damage of the device connected to the booster.
  • the present invention can continuously discharge the flow rate as well as the pressure increase, it can be applied to the existing equipment for operating the hydraulic motor or the hydraulic cylinder continuously to increase the hydraulic pressure.
  • FIG. 1 is a circuit diagram showing a first embodiment of the booster according to the present invention
  • FIG. 2 is a circuit diagram showing that the first embodiment shown in FIG. 1 operates.
  • FIG. 3 is a circuit diagram showing a second embodiment of the booster according to the present invention.
  • FIG. 4 is a circuit diagram showing that the second embodiment shown in FIG. 3 is operated.
  • FIG. 1 is a circuit diagram showing a first embodiment of a constant flow rate discharge intensifier according to the present invention
  • FIG. 2 is a circuit diagram illustrating the operation of the first embodiment shown in FIG.
  • FIG. 3 is a circuit diagram showing a second embodiment of the constant flow discharge booster according to the present invention
  • FIG. 4 is a circuit diagram showing the operation of the second embodiment shown in FIG.
  • the arrows indicated by dashed lines in FIGS. 1 to 4 indicate low pressure hydraulic pressure, and the arrows indicated by solid lines indicate pressured high pressure hydraulic pressure.
  • the pressure intensifier of the first embodiment 10 includes a hydraulic pump 12, a hydraulic motor 16, a supply passage 20, a first control means 30 and a second control means 40.
  • the hydraulic pump 12 pumps the hydraulic pressure flowing in and discharges the hydraulic pressure through the discharge passage 14.
  • the hydraulic motor 16 is driven by the hydraulic pressure flowing in and drives the hydraulic pump 12 so that the hydraulic pump 12 boosts the hydraulic pressure.
  • the supply passage 20 supplies hydraulic pressure to the hydraulic pump 12 and the hydraulic motor 16 as shown in FIGS. 1 and 2.
  • the hydraulic pressure driving the hydraulic motor 16 is discharged to the hydraulic tank through the main discharge path (22).
  • the first control means 30 opens and closes the supply passage 20, and the second control means 40 supplies the first control means 30 when the hydraulic pressure discharged from the discharge passage 14 is greater than the set hydraulic pressure.
  • the first control means 30 is operated to close the flow path 20.
  • the first control means 30 includes a first control valve 32 and a first operating flow path 34.
  • the first control valve 32 is installed in the supply passage 20 to open and close the supply passage 20.
  • the hydraulic pressure of the supply passage 20 is operated by the first control valve 32 so that the first control valve 32 operates the first control valve 32 so that the first control valve 32 closes the supply passage 20. 32) to be supplied.
  • the first working flow path 34 is opened and closed by the second control means 40.
  • the second control means 40 includes a second control valve 42 and a second operating flow path 44.
  • the second control valve 42 is provided in the first working flow path 34 to open the first working flow path 34 when the hydraulic pressure discharged from the discharge flow path 14 is greater than the set hydraulic pressure.
  • the second operating flow path 44 is connected to supply the hydraulic pressure of the discharge flow path 14 to the second control valve 42 so as to operate the second control valve 42.
  • the sub discharge passage 24 is connected to the second control valve 42 and the main discharge passage 22 so that the hydraulic pressure supplied to the second control valve 42 can be discharged to the main discharge passage 22. .
  • the second control valve 42 is operated by the hydraulic pressure of the discharge passage 14 to open the first operating passage 34. Accordingly, the hydraulic pressure flowing through the supply passage 20 is supplied to the first control valve 32.
  • the first control valve 32 is operated by the supplied hydraulic pressure. That is, the first control valve 32 shuts off the supply passage 20. Accordingly, the hydraulic pressure supplied to the hydraulic pump 12 and the hydraulic motor 16 is cut off. Accordingly, the hydraulic pressure supplied to the hydraulic pump 12 and the hydraulic motor 16 is cut off so that the discharged hydraulic pressure no longer increases. That is, the boosting is controlled.
  • a second embodiment 50 of the present invention is shown.
  • the hydraulic pump, the hydraulic motor, the driving member, the supply passage, the discharge passage, the main discharge passage, the sub discharge passage, and the first control valve and the first operating passage of the first control means of the second embodiment 50 are the first embodiment.
  • the second control means 60 of the second embodiment 50 includes a second control valve 62, a pressure sensor 64 and a controller 66.
  • the second control valve 62 is installed in the first working channel 34 to open and close the first working channel 34.
  • the pressure sensor 64 measures the oil pressure of the discharge passage 14.
  • the controller 66 operates the second control valve 62 to open the first working flow path 34 when the oil pressure measured from the pressure sensor 64 is greater than the set oil pressure.
  • the pressure sensor 64 sends the measured pressure value of the discharge passage 14 to the controller 66 as an electrical signal.
  • the controller 66 sends an electrical signal to the second actuation valve 62 to actuate the second actuation valve 62 when the received pressure value is greater than the set pressure.
  • the second actuating valve 62 is actuated by an electrical signal sent out from the controller 66.
  • the second operation valve 62 As the second operation valve 62 is operated to open the first operation channel 34, the hydraulic pressure flowing from the supply channel 20 is supplied to the first control valve 32 through the first operation channel 34. .
  • the first control valve 32 is operated by the supplied hydraulic pressure to block the supply flow path 20. Accordingly, the hydraulic pressure supplied to the hydraulic pump 12 and the hydraulic motor 16 is cut off so that the hydraulic pressure discharged through the discharge passage 14 no longer increases its pressure. That is, the second embodiment 50 controls the boosting by such a series of operations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Reciprocating Pumps (AREA)

Abstract

본 발명은 일정유량 토출용 증압기를 개시한다. 본 발명은 유압펌프, 유압모터, 공급유로, 제1제어수단 및 제2제어수단을 포함한다. 유압펌프는 유입되는 유압을 펌핑하여 토출유로를 통하여 유압을 토출한다. 유압모터는 유입되는 유압에 의하여 구동되고 유압펌프에 의하여 토출되는 유압을 증압시키도록 유압펌프를 구동시킨다. 공급유로는 유압펌프와 유압모터에 유압을 공급시킨다. 제1제어수단은 공급유로를 개폐시키고, 제2제어수단은 토출유로에서 토출된 유압이 설정된 유압보다 큰 경우에 제1제어수단이 공급유로를 폐쇄시키도록 제1제어수단을 작동시키는 것이 특징이다. 본 발명에 따르면, 토출유로의 압력이 설정된 압력보다 큰 경우에 제1제어수단과 제2제어수단에 의하여 공급유로는 차단되어 설정된 압력보다 크게 증압되는 것을 방지할 수 효과가 있다. 이로 인하여, 본 발명은 증압기에 연결된 기기의 고장 및 파손을 방지할 수 있는 효과가 있다. 또한, 본 발명은 증압뿐 아니라 유량을 연속적으로 일정하게 토출할 수 있으므로, 유압모터나 유압실린더를 연속적으로 동작시키는 기존 설비에 적용할 수 있는 효과가 있다.

Description

일정유량 토출용 증압기
본 발명은 증압기에 관한 것으로, 기존 설비에 설정된 유량과 압력을 이용하여 유압을 필요한 압력으로 증압시킬 수 있는 일정유량 토출용 증압기에 관한 것이다.
일반적으로, 증압기(Intensifier)형태는 실린더 타입이고, 토출유량이 적고 비규칙적이며 유압펌프에서 유입된 압력을 최대 20배 증압시키는 장치로 약 4,000~6,000kg/㎠까지 압력을 발생시키는 장치이다. 이와 같은 증압기는 임가공 및 기계가공산업분야, 자동차산업분야, 석재 및 타일산업분야, 항공기분야, 식품가공분야, 제지산업분야 등에 널리 사용된다. 상술한 증압기의 원리를 간단하게 살펴보면, 다음과 같다. 증압기는 서로 면적이 다른 유압모터와 펌프를 구비하며, 큰 면적의 유압모터에 유압을 흘려 작은 면적의 유압펌프를 통하여 일정유량과 고압을 토출한다.
그러나, 상술한 종래의 기술은 증압기에 연결된 기기로부터 요구되는 압력보다 더 크게 증압시켜 토출되는 경우가 빈번하게 발생된다. 이에 따라, 요구된 이상의 유압으로 인하여 증압기에 연결된 기기의 고장 및 파손의 원인이 된다.
또한, 종래의 증압기는 유량을 연속적으로 토출시킬 수가 없었다. 그래서, 유압모터나 유압실린더를 연속적으로 동작시키는 기존 설비에 증압기를 장착하여 적용할 수 없다는 문제점이 있었다.
본 발명은 상술한 바와 같은 종래기술의 문제점들을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 연결된 기기의 고장 및 파손을 방지하기 위하여 설정된 압력까지 증압시킬 수 있는 일정유량 토출용 증압기를 제공함에 있다.
본 발명의 다른 목적은 유압모터나 유압실린더를 낮은 압력으로 연속적 동작시키는 기존 설비에 장착하여 적용될 수 있도록 증압된 압력과 유량을 연속적으로 일정하게 토출시킬 수 있는 일정유량 토출용 증압기를 제공함에 있다.
이와 같은 목적을 달성하기 위한 본 발명은 유압펌프, 유압모터, 공급유로, 제1제어수단 및 제2제어수단을 포함한다. 상기 유압펌프는 유입되는 유압을 펌핑하여 유로를 통하여 유압을 토출한다. 상기 유압모터는 유입되는 유압에 의하여 구동되고 상기 유압펌프에 의하여 토출되는 유압을 증압시키도록 상기 유압펌프를 구동시킨다. 상기 공급유로는 상기 유압펌프와 상기 유압모터에 유압을 공급시킨다. 상기 제1제어수단은 상기 공급유로를 개폐시키고, 제2제어수단은 상기 토출유로에서 토출된 유압이 설정된 유압보다 큰 경우에 상기 제1제어수단이 상기 공급유로를 폐쇄시키도록 상기 제1제어수단을 작동시킨다.
본 발명의 상기 제1제어수단은 제1제어밸브와 제1작동유로를 구비하는 것이 바람직하다. 제1제어밸브는 상기 공급유로를 개폐시키게 상기 공급유로에 설치된다. 또한, 상기 제1작동유로는 상기 제1제어밸브가 상기 공급유로를 폐쇄시키게 상기 제1제어밸브를 작동시키도록 상기 공급유로의 유압이 상기 제1제어밸브로 공급되도록 연결되어 있다. 그리고, 상기 제2제어수단은 상기 제1작동유로를 개폐시키는 것이 바람직하다.
본 발명의 상기 제2제어수단은 제2제어밸브와 제2작동유로를 구비하는 것이 바람직하다. 상기 제2제어밸브는 상기 토출유로에서 토출된 유압이 설정된 유압보다 큰 경우에 상기 제1작동유로를 개방시키게 상기 제1작동유로에 설치된다. 또한, 상기 제2작동유로는 상기 제2제어밸브를 작동시키도록 상기 토출유로의 유압이 상기 제2제어밸브로 공급되도록 연결되는 것이 바람직하다.
한편, 본 발명의 상기 제2제어수단은 제2제어밸브, 압력센서 및 제어기를 구비할 수도 있다. 상기 제2제어밸브는 상기 제1작동유로를 개폐시키게 상기 제1작동유로에 설치된다. 상기 압력센서는 상기 토출유로의 유압을 측정한다. 상기 제어기는 상기 압력센서로부터 측정된 유압이 설정된 유압보다 큰 경우에 상기 제1작동유로를 개방하도록 상기 제2제어밸브를 작동시킨다.
본 발명에 따른 일정유량 토출용 증압기에 의하면, 토출유로의 압력이 설정된 압력보다 큰 경우에 제1제어수단과 제2제어수단에 의하여 공급유로는 차단되어 설정된 압력보다 크게 증압되는 것을 방지할 수 효과가 있다. 이로 인하여, 증압기에 연결된 기기의 고장 및 파손을 방지할 수 있는 효과가 있다.
또한, 본 발명은 증압뿐 아니라 유량을 연속적으로 일정하게 토출할 수 있으므로, 유압모터나 유압실린더를 연속적으로 동작시키는 기존 설비에 적용하여 유압을 증압시킬 수 있다.
도 1은 본 발명에 따른 증압기의 제1실시예를 나타내는 회로도이며,
도 2는 도 1에 도시된 제1실시예가 작동되는 것을 나타내는 회로도이다.
도 3은 본 발명에 따른 증압기의 제2실시예를 나타내는 회로도이며,
도 4는 도 3에 도시된 제2실시예가 작동되는 것을 나타내는 회로도이다.
(부호의 설명)
10: 제1실시예 12: 유압펌프
14: 토출유로 16: 유압모터
20: 공급유로 22: 메인배출유로
24: 서브배출유로 30: 제1제어수단
32: 제1제어밸브 34: 제1작동유로
40: 제2제어수단 42: 제2제어밸브
44: 제2작동유로 50: 제2실시예
60: 제2제어수단 62: 제2제어밸브
64: 압력센서 66: 제어기
이하, 본 발명에 따른 일정유량 토출용 증압기에 대한 바람직한 실시예들을 첨부된 도면들에 의거하여 상세하게 설명한다. 도 1은 본 발명에 따른 일정유량 토출용 증압기의 제1실시예를 나타내는 회로도이며, 도 2는 도 1에 도시된 제1실시예가 작동되는 것을 설명하기 위하여 나타내는 회로도이다. 도 3은 본 발명에 따른 일정유량 토출용 증압기의 제2실시예를 나타내는 회로도이며, 도 4는 도 3에 도시된 제2실시예가 작동되는 것을 설명하기 위하여 나타내는 회로도이다. 도 1 내지 도 4에 점선으로 표기된 화살표는 저압의 유압을 나타내고, 실선으로 표기된 화살표는 증압된 고압의 유압을 나타낸다.
먼저, 도 1과 도 2를 참조하여 본 발명의 제1실시예(10)를 설명한다. 제1실시예(10)의 증압기는 유압펌프(12), 유압모터(16), 공급유로(20), 제1제어수단(30) 및 제2제어수단(40)을 포함한다.
유압펌프(12)는 유입되는 유압을 펌핑하여 토출유로(14)를 통하여 유압을 토출한다. 유압모터(16)는 유입되는 유압에 의하여 구동되고 유압펌프(12)가 유압을 증압시키도록 유압펌프(12)를 구동시킨다. 공급유로(20)는 도 1 및 도 2에 도시된 바와 같이 유압펌프(12)와 유압모터(16)에 유압을 공급시킨다. 한편, 유압모터(16)를 구동시킨 유압은 메인배출로(22)를 통하여 유압탱크로 배출된다.
제1제어수단(30)은 공급유로(20)를 개폐시키고, 제2제어수단(40)은 토출유로(14)에서 토출된 유압이 설정된 유압보다 큰 경우에 제1제어수단(30)이 공급유로(20)를 폐쇄시키도록 제1제어수단(30)을 작동시킨다.
제1제어수단(30)은 제1제어밸브(32)와 제1작동유로(34)를 구비한다. 제1제어밸브(32)는 공급유로(20)를 개폐시키게 공급유로(20)에 설치된다. 또한, 제1작동유로(34)는 제1제어밸브(32)가 공급유로(20)를 폐쇄시키게 제1제어밸브(32)를 작동시키도록 공급유로(20)의 유압이 제1제어밸브(32)로 공급되도록 연결되어 있다. 제1작동유로(34)는 제2제어수단(40)에 의하여 개폐된다.
제2제어수단(40)은 제2제어밸브(42)와 제2작동유로(44)를 구비한다. 제2제어밸브(42)는 토출유로(14)에서 토출된 유압이 설정된 유압보다 큰 경우에 제1작동유로(34)를 개방시키게 제1작동유로(34)에 설치된다. 또한, 제2작동유로(44)는 제2제어밸브(42)를 작동시키도록 토출유로(14)의 유압이 제2제어밸브(42)로 공급되도록 연결되어 있다. 그리고, 제2제어밸브(42)로 공급된 유압이 메인배출유로(22)로 배출할 수 있도록 서브배출유로(24)가 제2제어밸브(42)와 메인배출유로(22)에 연결되어 있다.
증압된 유압이 설정된 유압보다 큰 경우, 도 2에 도시된 바와 같이 제2제어밸브(42)는 토출유로(14)의 유압으로 작동되어 제1작동유로(34)를 개방시킨다. 이에 따라, 공급유로(20)를 통하여 유입되는 유압은 제1제어밸브(32)로 공급된다. 공급된 유압에 의하여 제1제어밸브(32)는 작동된다. 즉, 제1제어밸브(32)는 공급유로(20)를 차단시킨다. 이에 따라, 유압펌프(12)와 유압모터(16)로 공급되는 유압은 차단된다. 이에 따라서, 유압펌프(12)와 유압모터(16)로 공급되는 유압이 차단되어 토출되는 유압은 더 이상 그 압력이 증가하지 않게 된다. 즉, 증압이 제어된다.
도 3과 도 4를 참조하면, 본 발명의 제2실시예(50)가 도시되어 있다. 제2실시예(50)의 유압펌프, 유압모터, 구동부재, 공급유로, 토출유로, 메인배출유로, 서브배출유로 및 제1제어수단의 제1제어밸브와 제1작동유로는 제1실시예(10)의 유압펌프(12), 토출유로(14), 유압모터(16), 구동부재(18), 공급유로(20), 메인배출유로(22), 서브배출유로(24) 및 제1제어수단(30)의 제1제어밸브(32)와 제1작동유로(34)와 그 기본적인 구성과 작용이 동일하므로 동일한 부호를 부여하고 이에 따른 자세한 설명은 생략한다.
제2실시예(50)의 제2제어수단(60)은 제2제어밸브(62), 압력센서(64) 및 제어기(66)를 구비한다. 제2제어밸브(62)는 제1작동유로(34)를 개폐시키게 제1작동유로(34)에 설치된다. 또한, 압력센서(64)는 토출유로(14)의 유압을 측정한다. 제어기(66)는 압력센서(64)로부터 측정된 유압이 설정된 유압보다 큰 경우에 제1작동유로(34)를 개방하도록 제2제어밸브(62)를 작동시킨다.
도 4를 참조하면, 압력센서(64)는 측정된 토출유로(14)의 압력값을 전기적 신호로 제어기(66)로 송출한다. 제어기(66)는 수신된 압력값이 설정된 압력보다 큰 경우에 제2작동밸브(62)를 작동시키기 위하여 제2작동밸브(62)에 전기적 신호를 송출한다. 제2작동밸브(62)는 제어기(66)로부터 송출된 전기적 신호에 의하여 작동된다.
제2작동밸브(62)가 제1작동유로(34)가 개방되도록 작동함에 따라서 공급유로(20)부터 유입되는 유압은 제1작동유로(34)를 통하여 제1제어밸브(32)로 공급된다. 제1제어밸브(32)는 공급된 유압에 의하여 작동되어 공급유로(20)를 차단시킨다. 이에 따라서, 유압펌프(12)와 유압모터(16)로 공급되는 유압이 차단되어 토출유로(14)를 통하여 토출되는 유압은 더 이상 그 압력이 증가하지 않게 된다. 즉, 이와 같은 일련의 작동에 의하여 제2실시예(50)는 증압을 제어한다.
이상에서 설명된 실시예는 본 발명의 바람직한 실시예를 설명한 것에 불과하다. 본 발명의 권리범위는 설명된 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상과 특허청구범위 내에서 이 분야의 통상의 지식을 가진 자에 의하여 다양한 변경, 변형 또는 치환이 가능할 것이며, 그와 같은 실시예들은 본 발명의 범위에 속하는 것으로 이해되어야 할 것이다.

Claims (4)

  1. 유입되는 유압을 펌핑하여 토출유로를 통하여 유압을 토출하는 유압펌프와;
    유입되는 유압에 의하여 구동되고, 상기 유압펌프에 의하여 토출되는 유압을 증압시키도록 상기 유압펌프를 구동하는 유압모터와;
    상기 유압펌프와 상기 유압모터에 유압을 공급시키는 공급유로와;
    상기 공급유로를 개폐시키기 위한 제1제어수단과;
    상기 토출유로에서 토출된 유압이 설정된 유압보다 큰 경우에 상기 제1제어수단이 상기 공급유로를 폐쇄시키도록 상기 제1제어수단을 작동하기 위한 제2제어수단을 포함하는 것을 특징으로 하는 일정유량 토출용 증압기.
  2. 제1항에 있어서,
    상기 제1제어수단은 상기 공급유로를 개폐시키게 상기 공급유로에 설치된 제1제어밸브와; 상기 제1제어밸브가 상기 공급유로를 폐쇄시키게 상기 제1제어밸브를 작동시키도록 상기 공급유로의 유압이 상기 제1제어밸브로 공급되도록 연결된 제1작동유로;를 구비하며,
    상기 제2제어수단은 상기 제1작동유로를 개폐시키는 것을 특징으로 하는 일정유량 토출용 증압기.
  3. 제2항에 있어서, 상기 제2제어수단은,
    상기 토출유로에서 토출된 유압이 설정된 유압보다 큰 경우에 상기 제1작동유로를 개방시키게 상기 제1작동유로에 설치된 제2제어밸브와;
    상기 제2제어밸브를 작동시키도록 상기 토출유로의 유압이 상기 제2제어밸브로 공급되도록 연결된 제2작동유로;를 구비하는 것을 특징으로 하는 일정유량 토출용 증압기.
  4. 제2항에 있어서, 상기 제2제어수단은,
    상기 제1작동유로를 개폐시키게 상기 제1작동유로에 설치된 제2제어밸브와;
    상기 토출유로의 유압을 측정하기 위한 압력센서와;
    상기 압력센서로부터 측정된 유압이 설정된 유압보다 큰 경우에 상기 제1작동유로를 개방하도록 상기 제2제어밸브를 작동시키기 위한 제어기;를 포함하는 것을 특징으로 하는 일정유량 토출용 증압기.
PCT/KR2011/006926 2010-11-08 2011-09-20 일정유량 토출용 증압기 WO2012064017A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/884,133 US9169854B2 (en) 2010-11-08 2011-09-20 Pressure intensifier for discharging fluid at constant flow rate
CN201180053551.9A CN103370545B (zh) 2010-11-08 2011-09-20 恒定流量吐出用增压器
EP11758077.9A EP2639461A2 (en) 2010-11-08 2011-09-20 Intensifier for discharging a constant flow
JP2013537594A JP5681293B2 (ja) 2010-11-08 2011-09-20 一定油量吐出用増圧器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100110206A KR101012609B1 (ko) 2010-11-08 2010-11-08 일정유량 토출용 증압기
KR10-2010-0110206 2010-11-08

Publications (2)

Publication Number Publication Date
WO2012064017A2 true WO2012064017A2 (ko) 2012-05-18
WO2012064017A3 WO2012064017A3 (ko) 2012-07-05

Family

ID=43777109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006926 WO2012064017A2 (ko) 2010-11-08 2011-09-20 일정유량 토출용 증압기

Country Status (6)

Country Link
US (1) US9169854B2 (ko)
EP (1) EP2639461A2 (ko)
JP (1) JP5681293B2 (ko)
KR (1) KR101012609B1 (ko)
CN (1) CN103370545B (ko)
WO (1) WO2012064017A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103615430B (zh) * 2013-12-05 2016-03-16 上海交通大学 用于深海采样器的rov液压隔离泵站
US11261697B2 (en) * 2019-06-24 2022-03-01 Onesubsea Ip Uk Limited Modular hydraulic intensification system for downhole equipment function and chemical injection services

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785157A (en) * 1972-11-24 1974-01-15 Deere & Co Flow control dump valve
DE2517187C3 (de) * 1975-04-18 1980-11-13 Aeg-Kanis Turbinenfabrik Gmbh, 8500 Nuernberg Hydraulische Turbinendrehvorrichtung
JPS55115402U (ko) * 1979-02-09 1980-08-14
US4214445A (en) * 1979-05-14 1980-07-29 Dresser Industries, Inc. Hydraulic circuitry for raise drill apparatus
KR900007265Y1 (ko) * 1986-12-30 1990-08-11 대우중공업 주식회사 유압구동식 휠타입 중장비에 있어서 유압 구동주행장치의 제동시 엔진정지 방지장치
US6378301B2 (en) * 1996-09-25 2002-04-30 Komatsu Ltd. Pressurized fluid recovery/reutilization system
JPH10238515A (ja) * 1997-02-27 1998-09-08 Komatsu Ltd 圧力変換装置を備えた油圧回路
JPH11236901A (ja) * 1998-02-25 1999-08-31 Hitachi Zosen Corp 油圧ブースタ装置
CA2236535C (en) * 1998-05-01 2007-06-26 Cam Bodie Hydraulic system having boost pump in series with a primary pump, and a boost pump drive therefor
DE19826084A1 (de) * 1998-06-12 1999-12-16 Schloemann Siemag Ag Druckumsetzungseinrichtung
NL1010144C2 (nl) * 1998-09-21 2000-03-22 Doornes Transmissie Bv Continu variabele transmissie.
US6279317B1 (en) * 1999-06-07 2001-08-28 George H. Morgan Hydrostatic drive with regeneration circuit
US6438951B2 (en) * 1999-06-07 2002-08-27 George H. Morgan Hydraulic drive with regeneration circuit
JP4683788B2 (ja) * 2001-08-10 2011-05-18 理研精機株式会社 液圧アクチュエータ制御装置
US20030110766A1 (en) * 2001-12-13 2003-06-19 Berlinger Willibald G. Hydraulic system with improved efficiency
KR100472606B1 (ko) * 2002-08-22 2005-03-07 주식회사 휴웰브로드밴드서비스 디지털 셋탑 박스
US7000386B1 (en) * 2002-12-12 2006-02-21 Morgan George H Hydraulic intensification circuit with rotary flow devider and bypass valve
WO2005068810A1 (de) * 2004-01-14 2005-07-28 Robert Bosch Gmbh Verfahren und steuergerät zum betreiben einer brennkraftmaschine mit einem einspritzsystem
KR200417575Y1 (ko) 2005-03-08 2006-05-30 (주) 대진유압기계 유압공구용 유압공급장치
US7269944B2 (en) * 2005-09-30 2007-09-18 Caterpillar Inc. Hydraulic system for recovering potential energy
WO2007129613A1 (ja) * 2006-05-10 2007-11-15 Sumitomo (S.H.I.) Construction Machinery Manufacturing Co., Ltd. 建設機械の過負荷防止装置
EP1881222B8 (en) * 2006-07-17 2012-03-14 Hoerbiger Drivetrain Mechatronics B.V.B.A. Method of operating a dual clutch transmission hydraulic power control system as well as dual clutch transmission hydraulic power control system
JP4794468B2 (ja) * 2007-01-22 2011-10-19 日立建機株式会社 建設機械のポンプ制御装置
DE102007060262A1 (de) * 2007-12-14 2009-06-18 Robert Bosch Gmbh Pumpenanordnung und Verfahren zu deren Ansteuerung
US8186154B2 (en) * 2008-10-31 2012-05-29 Caterpillar Inc. Rotary flow control valve with energy recovery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
US20130227941A1 (en) 2013-09-05
JP2014506310A (ja) 2014-03-13
WO2012064017A3 (ko) 2012-07-05
US9169854B2 (en) 2015-10-27
EP2639461A2 (en) 2013-09-18
KR101012609B1 (ko) 2011-02-10
CN103370545A (zh) 2013-10-23
CN103370545B (zh) 2016-04-13
JP5681293B2 (ja) 2015-03-04

Similar Documents

Publication Publication Date Title
CN1886575A (zh) 用于工作面支架的液压回路
CN103671364B (zh) 用于遥控装载机的转向电液控制系统
EP2136085A2 (en) Hydraulic pressure intensifiers
KR101721097B1 (ko) 건설기계용 유압시스템
EP1939363A3 (en) Apparatus for easing impact on boom of excavator and method of controlling the same
US20230141425A1 (en) Hydraulic powering system and method of operating a hydraulic powering system
JP2008303985A (ja) 流体圧ユニット
WO2012064017A2 (ko) 일정유량 토출용 증압기
KR20100130034A (ko) 해머장치를 구비한 굴삭기용 유압시스템
CN100464079C (zh) 用于重型建造设备的选用设备的液压回路
CN103527535A (zh) 旋挖钻机及其加压油缸的控制方法和控制装置
CN104747420A (zh) 一种带外漏报警、关停装置的气动隔膜泵
CN103994120A (zh) 一种液压支架推移油缸控制装置及其控制方法
CA2837843C (en) Crust breaker aluminum bath detection system
KR20200088004A (ko) 펌핑 시스템
EP2039943A3 (en) Hydraulic circuit for heavy equipment
RU2253853C2 (ru) Гидросистема для нагружения конструкций при прочностных испытаниях
RU2449253C2 (ru) Гидросистема для нагружения конструкций при прочностных испытаниях
CN209148308U (zh) 一种转向器环境试验用泥水喷洒循环系统
KR100713863B1 (ko) 비상시 유압펌프 제어장치
CN101430252A (zh) 一种试压装置
KR960031813A (ko) 작동유 온도 및 캐비테이션 발생을 고려한 건설 중장비용 유압장치
KR100336354B1 (ko) 유압 엘리베이터의 관로공기 제거방법
KR200340506Y1 (ko) 콘크리트 펌프카의 자동 역전장치
CN102209833A (zh) 压井液的处理

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2011758077

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011758077

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11758077

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013537594

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13884133

Country of ref document: US