WO2012063948A1 - 金型の微細パターン面清掃方法とそれを用いたインプリント装置 - Google Patents

金型の微細パターン面清掃方法とそれを用いたインプリント装置 Download PDF

Info

Publication number
WO2012063948A1
WO2012063948A1 PCT/JP2011/076111 JP2011076111W WO2012063948A1 WO 2012063948 A1 WO2012063948 A1 WO 2012063948A1 JP 2011076111 W JP2011076111 W JP 2011076111W WO 2012063948 A1 WO2012063948 A1 WO 2012063948A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
fine pattern
substrate
photocurable resin
imprint apparatus
Prior art date
Application number
PCT/JP2011/076111
Other languages
English (en)
French (fr)
Inventor
礼健 志澤
尚晃 山下
正史 青木
哲宏 鳩飼
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to JP2012542993A priority Critical patent/JPWO2012063948A1/ja
Priority to US13/883,844 priority patent/US20130224322A1/en
Publication of WO2012063948A1 publication Critical patent/WO2012063948A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/70Maintenance
    • B29C33/72Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00841Cleaning during or after manufacture
    • B81C1/00857Cleaning during or after manufacture after manufacture, e.g. back-end of the line process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0075Manufacture of substrate-free structures
    • B81C99/009Manufacturing the stamps or the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Definitions

  • the present invention relates to an imprint apparatus for transferring and forming a fine pattern on the surface of a transfer object, and in particular, a mold fine pattern surface cleaning method suitable for such an imprint apparatus and a mold by using the cleaning method.
  • the present invention relates to an imprint apparatus capable of automatically and reliably cleaning a fine pattern surface.
  • the conventional photolithographic method using an exposure process can finely process a large area at a time, but since it does not have resolution below the wavelength of light, it is fine below the wavelength of its own light (for example, 100 nm or less). Not suitable for creating structures.
  • processing techniques for fine structures below the wavelength of light an exposure technique using an electron beam, an exposure technique using an X-ray, an exposure technique using an ion beam, and the like already exist.
  • the pattern formation by the electron beam drawing apparatus is different from the batch exposure method using a light source such as i-line or excimer laser, and the more patterns to be drawn with the electron beam, the longer the drawing (exposure) time is.
  • Nanoimprint lithography technology uses a processing technology for fine structures below the wavelength of light, such as electron beam exposure technology, and presses a mold on which a predetermined fine structure pattern is formed against a resist-coated transfer substrate while pressing the mold. This is a technique for transferring a fine structure pattern to a resist layer of a transfer substrate.
  • thermoplastic resin for example, PMMA
  • Tg glass transition temperature
  • This method is called a thermal transfer method.
  • This thermal transfer system has an advantage that a general-purpose resin can be used in a wide range as long as it is a thermoplastic resin.
  • transfer is performed with a curable resin that is cured when exposed to light such as ultraviolet rays. This method is called an optical transfer method.
  • the photoimplant spore nanoimprint processing method requires the use of a special photo-curing resin, but the advantage of reducing the dimensional error of the finished product due to the thermal expansion of the transfer printing plate and printed material compared to the thermal transfer method. There is.
  • the equipment does not require a heating mechanism or additional devices such as temperature rise, temperature control, and cooling, and the nanoimprint equipment as a whole is also designed with consideration for thermal distortion countermeasures such as heat insulation. There are advantages such as no longer needed.
  • FIG. 7 is a schematic diagram showing the steps of the fine structure transfer method by the optical transfer type nanoimprint technique which is a conventional technique.
  • a transfer object having a resist 120 coated on the upper surface of the substrate 100 is prepared, and a stamper 33 having a fine pattern 34 formed on the side in contact with the resist 120 is transferred. It is made to face the substrate 100 which is a body.
  • the stamper 33 is pressed against the resist coating surface of the transfer target 100.
  • ultraviolet (UV) light is irradiated from the upper surface of the stamper 33, and the resist 120 is cured.
  • UV ultraviolet
  • the stamper 33 is peeled off from the transfer target 100. After a while, a resist pattern layer 120 is formed on the surface of the substrate 100 which is a transfer target.
  • the pattern layer 130 is a reverse image of the fine pattern 34 of the stamper 33.
  • the present invention has been made in view of the above-described problems in the prior art, and the object thereof is to remove foreign substances adhering to the fine uneven pattern of the mold without removing the mold from the support. It is another object of the present invention to provide a method for cleaning a fine pattern surface of a mold, and an imprint apparatus using the method.
  • a method for removing foreign matter adhering to the surface of a fine pattern of a mold having an uneven fine pattern on at least one surface thereof A photo-curing resin is applied to the surface of the transfer object to which the mold is pressed to form a photo-curing resin layer, and the mold is pressed against the photo-curing resin applied to the surface of the transfer object, A mold that, after curing the photocurable resin, separates the cured photocurable resin from the mold, thereby removing foreign substances adhering to the surface of the fine pattern by taking the cured photocurable resin into the mold.
  • a photo-curing resin formed on the surface of the transfer object is formed with a thickness that removes foreign matter adhering to the surface of the fine pattern, and the mold is Transcription To the photocurable resin layer formed on the surface, the mold micropattern surface cleaning method of pressing at a pressure of removing foreign matter adhered to the surface of the fine pattern.
  • the photocurable resin layer formed on the surface of the transfer object has a thickness in the range of 10 ⁇ m to 500 ⁇ m,
  • the viscosity of the photocurable resin applied to the surface of the transfer target is preferably in the range of 500 cP to 6000 cP.
  • the pressure on the photocurable resin layer of the mold is preferably in the range of 1 kPa to 10 kPa.
  • a substrate which is a transfer object, is stored inside, and the substrate supply unit that supplies the substrate and the substrate supply unit supply the substrate.
  • a photocurable resin film-forming unit that applies a photocurable resin to the surface of the substrate in a film shape, and a mold is pressed against the photocurable resin that is applied in a film shape by the photocurable resin film-forming unit.
  • the fine pattern forming unit that forms the fine pattern on the surface of the substrate by forming and curing the fine pattern, the substrate supply unit, the photocurable resin film forming unit, and the operation in the fine pattern forming unit
  • the fine pattern forming unit further presses and peels the mold and the mold against the photocurable resin film forming surface of the substrate.
  • an imprint apparatus that executes the above-described fine pattern surface cleaning method for a mold at a predetermined timing.
  • control unit includes a unit for changing a pressing force of the pressing / peeling unit, or the control unit further includes: It is preferable that a means for changing the thickness of the photocurable resin applied in the photocurable resin film forming section is provided. Or it is preferable that the said control part is further provided with the means for changing the viscosity of the said photocurable resin apply
  • the control unit performs a fine pattern surface cleaning method of the mold according to the number of operations of forming a fine pattern on the substrate surface performed by the imprint apparatus. It is preferable to execute the fine pattern surface cleaning method of the mold at a timing corresponding to the execution time of the fine pattern forming operation on the substrate surface performed by the imprint apparatus.
  • the fine pattern forming unit further includes means for detecting adhesion of foreign matter on the mold surface
  • the control unit includes It is preferable to execute the fine pattern surface cleaning method of the mold at the timing of the detection output from the foreign matter detection means, or the substrate supply means section together with the substrate inside the mold cleaning substrate And the substrate and the mold cleaning substrate are selectively supplied, and the control unit is configured to supply a fine pattern surface of the mold at a timing when the mold cleaning substrate is supplied. It is preferable to carry out the cleaning method.
  • FIG. 1 is a schematic configuration diagram illustrating an overall configuration of an imprint apparatus according to an embodiment of the present invention. It is a side view which shows the detailed structure of the transcription
  • an imprint apparatus for transferring and forming a fine pattern on the surface of a transfer object according to an embodiment of the present invention, and a method for cleaning a fine pattern surface of a mold for that purpose refer to the attached drawings. However, it explains in detail.
  • FIG. 1 is a schematic configuration diagram showing the overall configuration of an optical transfer type imprint apparatus as an example of an apparatus according to an embodiment of the present invention.
  • reference numeral 10 denotes a substrate which is a transfer target.
  • 100 shows a substrate loading section for loading 100 into the apparatus described below.
  • the substrate 100 that is the transfer target a disk-shaped substrate is shown as an example, and a large number of substrates 100 are stored in the substrate carry-in portion 10.
  • a general robot arm 11 having a vacuum suction mechanism at its tip is provided, so that substrates are sequentially carried in and supplied one by one.
  • Reference numeral 20 in the drawing is for applying and forming a photocurable resin described below on the surface of the substrate 100 carried in by the carry-in unit 10 to form a film, that is, forming a photocurable resin film. Shows the part.
  • the photo-curing resin film forming unit 20 has a liquid metering dispenser (dispenser) 21 for dropping a photo-curing resin described below on the surface of the loaded substrate 100 in this example.
  • a so-called turntable 22 is provided in which the substrate 100 is mounted on the upper surface thereof and rotated at a predetermined rotation speed by the electric motor 23 or the like.
  • reference numeral 30 in the drawing denotes a substrate 100 in which a photocurable resin film is formed on the surface of the photocurable resin film forming unit 20, and a stamper (a fine surface is formed on the surface).
  • a stamper a fine surface is formed on the surface.
  • the substrate carry-in unit 10 and the photocurable resin film forming unit 20 described above can be configured by apparatuses that are already generally known and put into practical use.
  • a general coating apparatus is used for the latter. Since it can be employed, detailed description thereof is omitted here.
  • the curable resin film-forming part 20 should just be what forms a photocurable resin in the film form on the surface of the board
  • FIG. 2 shows a detailed structure of the transfer (imprint) portion 30.
  • a pedestal 32 is disposed on the upper surface of a base 31 in the transfer unit 30, and a substrate 100 having a photocurable resin 110 coated on the surface thereof is formed on the upper surface of the pedestal 32.
  • a light-transmitting mold (stamper) 33 made of glass or the like is disposed so as to face the substrate 100 to which the photocurable resin 110 is applied.
  • a concave and convex fine structure (pattern) 34 is formed on the lower surface of the mold 33.
  • the mold 33 is held by a member (transparent holding portion) 35 made of a light transmissive material, and the holding member 35 is held by a pair of lifting arms 36.
  • a UV light source 37 for example, a light emitting diode (LED)
  • LED light emitting diode
  • FIG. 3 shows a control unit 40 for controlling and / or driving the operation of each unit constituting the above-described imprint apparatus.
  • an external interface (I / F) unit 41 for inputting signals from the above-described units, an operation processing unit (CPU that monitors the operation of each unit by predetermined calculation processing, and executes necessary control ) 42, a memory 43 which is a storage device for holding various arithmetic processing programs and data necessary for the arithmetic processing by the arithmetic processing unit, and a control signal to each unit based on the arithmetic result by the arithmetic processing unit
  • a drive unit for outputting that is, a carry-in operation drive unit 44, a resin film formation operation drive unit 45, and a transfer operation drive unit 46 are provided.
  • control unit 40 described above controls and drives the operation of each unit of the imprint apparatus in the mold cleaning operation described in detail below.
  • the carry-in operation drive unit 44 controls / drives the adsorption and movement of the substrate by the robot arm 11 in the carry-in operation drive unit 44
  • the resin film formation operation drive unit 45 performs photocurable resin film formation.
  • the operation of the liquid fixed amount dispenser (dispenser) 21 in the unit 20, for example, selection and dropping amount of liquid to be dropped, and further the rotational speed of the rotary table 22 are appropriately controlled and driven.
  • the transfer operation drive unit 46 performs each operation of the transfer (imprint) unit 30 together with an operation necessary for a general nanoprinting operation and an operation necessary for a mold cleaning operation described below. Control and drive.
  • the elevating arm 36 is lowered, and the concave / convex fine pattern 34 of the light-transmitting mold 33 is brought into contact with the photocurable resin layer 110 applied on the upper surface of the substrate 100.
  • UV light from the UV light source 37 is applied. Is irradiated to the photocurable resin layer 110 through the transparent holding portion 35 to cure the photocurable resin layer 110.
  • the lifting arm 26 is raised, and the mold 33 is peeled off from the substrate 100.
  • the foreign matter present in the concave and convex fine pattern 34 of the light-transmitting mold 33 is taken into the cured photocurable resin layer 16 and peeled off.
  • the state returns to a clean state in which no foreign matter is present in the uneven fine pattern 34.
  • FIG. 4 is a partially enlarged cross-sectional view for illustrating a specific embodiment of the mold fine pattern surface cleaning method according to the present invention.
  • fine foreign matter FMa enters the concave portion of the concave-convex fine pattern 34 formed on the lower surface of the mold 33, and on the other hand, the convex portion has a size that does not enter the concave portion.
  • the foreign substance FMb having The photocurable resin layer 110 is applied to the upper surface of the substrate 100 with a thickness exceeding the size of the above-described foreign matter, in particular, the foreign matter FMb.
  • the mold 33 is brought into contact with the photocurable resin layer 110, and the mold 33 is pressed against the photocurable resin layer 16 as necessary.
  • the minute foreign matter FMa present in the concave portion of the fine pattern 34 and the large foreign matter FMb present in the convex portion are both present. It penetrates into the photocurable resin layer 110.
  • UV light is irradiated from the upper surface of the mold 33 for a predetermined time, and the photocurable resin layer 110 is cured.
  • the photocurable resin layer 16 is cured by the irradiation of UV light, and various foreign substances FMa and FMb having different sizes are taken into the cured photocurable resin layer.
  • the mold 33 is raised and peeled off from the substrate 100. Thereby, the foreign matters FMa and FMb are removed from the fine pattern 34, and the mold cleaning operation is completed.
  • the object to be transferred on which the fine pattern is transferred / formed that is, the substrate 100 is used for the above-described mold cleaning operation.
  • a mold cleaning work substrate 100 ′ that is used exclusively for the mold cleaning method.
  • the cleaning work substrate 100 ′ can be made of, for example, silicon, plastic (for example, acrylic resin), glass, metal (for example, aluminum), or the like.
  • the mold cleaning work substrate 100 ′ has an outer shape substantially the same as that of the substrate 100, but the thickness is not particularly limited. That is, any mechanical strength that is necessary and sufficient for performing the above-described cleaning operation may be used.
  • the substrate 100 used for the cleaning operation can no longer be used as a product, but it is not always necessary to use the mold cleaning substrate 100 '.
  • the photocurable resin layer 110 used in the mold cleaning method of the present invention for example, unsaturated polyester, acrylate, or acrylic resins are used.
  • Such photocurable resins are generally commercially available from various chemical companies, and furthermore, these resins can contain a photopolymerization initiator.
  • the resin liquid is supplied from the liquid metering dispenser 21 to the substantially central portion.
  • the resin liquid is generally spread from the central portion of the substrate toward the peripheral portion by dropping and then pressing the spin or mold 33 against the substrate surface.
  • low-speed spin coating, roll coating, blade coating, and the like can also be used.
  • the thickness of the resin layer formed by spreading from the central part of the substrate 100 or 100 ′ toward the peripheral part is particularly preferably in the range of 10 ⁇ m to 500 ⁇ m.
  • the thickness of the spread resin layer is less than 10 ⁇ m, large foreign matters having a size exceeding 10 ⁇ m cannot be taken into the cured resin layer.
  • the thickness of the spread resin layer exceeds 500 ⁇ m, the resin itself flows out, which makes it difficult to maintain a uniform thickness, and also the UV of the photocurable resin layer 110. Curing takes too much time and work efficiency decreases.
  • the resist layer formed on the upper surface of the substrate 100 is applied by a high-speed spin coating method and has a thickness of about 50 nm to 100 nm.
  • the feature is that the photocurable resin layer 110 is formed with a thickness of 100 times or more.
  • the viscosity of the photocurable resin used in the mold cleaning method of the present invention is preferably in the range of 500 cP to 6000 cP. This is because when the viscosity is less than 500 cP, the fluidity of the photocurable resin is too high, and it becomes difficult to keep the photocurable resin layer 110 on the surface of the substrate 100 or the cleaning substrate 100 ′. Furthermore, the membrane pressure becomes thinner with time, and it becomes difficult to maintain a resin layer having a desired thickness. On the other hand, when the viscosity exceeds 6000 cP, the fluidity of the photocurable resin is too low, so it takes time to spread the substrate surface with the mold, and the photocurable resin layer 110 has a fine pattern of the mold. There is a possibility of not being able to enter the recess.
  • the pressing force when pressing the mold 33 against the substrate 100 or the cleaning work substrate 100 ′ is preferably in the range of 1 kPa to 10 kPa.
  • This pressing force is preferably changed according to the viscosity of the photocurable resin layer 110 used in the mold cleaning method.
  • a low pressing force is used for materials with low viscosity
  • a high pressing force is used for materials with high viscosity. This pressing force is necessary for allowing the photocurable resin layer 110 to penetrate into the fine pattern and is also important for spreading the photocurable resin layer 110.
  • the photocurable resin layer 110 may not sufficiently enter the fine pattern, and the photocurable resin layer 110 may not be sufficiently spread. It is possible to become.
  • the pressing force exceeds 10 kPa, the pressing force is too high and there is a possibility that the fine pattern of the mold is damaged.
  • the mold 33 is described as being made of a light transmissive material such as transparent resin or glass.
  • the present invention is not limited to this, for example, The UV light for curing may be irradiated from the side direction.
  • Example 1 An example in which the mold cleaning method of the present invention is implemented using the above-described imprint apparatus will be described below.
  • a fine pattern 34 having a depth of 50 nm and a convex portion having a width of 60 nm and a concave portion having a width of 60 nm is formed on the surface of the light-transmitting glass mold 33. Foreign matter was previously attached to the convex surface of the pattern 34.
  • An unsaturated polyester photocurable resin having a viscosity of 4500 cP was dropped from a liquid quantitative dispenser 21 onto the upper surface of a silicon cleaning work substrate 100 ′ having a diameter ( ⁇ ) of 4 inches and a thickness of 0.5 mm. .
  • the mold 33 having the foreign matter is pressed against the unsaturated polyester photocurable resin layer 110 at a pressure of 10 kPa, thereby pressing the unsaturated polyester photocurable resin formed on the surface of the substrate 100.
  • a resin layer having a thickness of 50 ⁇ m was formed.
  • the UV light source was irradiated with UV light for 2 seconds to cure the unsaturated polyester photocurable resin. Thereafter, the mold was peeled off from the cleaning work substrate 100 '.
  • FIGS. 5 (A) and 5 (B) The results are shown in FIGS. 5 (A) and 5 (B).
  • FIG. 5A is an optical micrograph of the mold surface before cleaning
  • FIG. 5B is an optical micrograph of the mold surface after cleaning.
  • FIG. 5 (A) foreign matter adhering in advance to the surface of the mold is observed, but in FIG. 5 (B), the foreign matter is removed from the surface of the mold cleaned by the method of the present invention. It can be confirmed that is reliably removed.
  • the mold cleaning method of the present invention was carried out using the same apparatus as described above.
  • a fine pattern 34 having a depth of 50 nm and a convex portion having a width of 60 nm and a concave portion having a width of 60 nm is formed.
  • foreign matters were previously attached.
  • An unsaturated polyester-based photocurable resin having a viscosity of 4500 cP was dropped from a liquid metering dispenser (dispenser) on the upper surface of a cleaning substrate 100 ′ made of silicon having a diameter ( ⁇ ) of 4 inches and a thickness of 0.5 mm. .
  • a liquid metering dispenser dispenser
  • the unsaturated polyester photocurable resin on the surface of the substrate is spread and a resin having a thickness of 300 ⁇ m A layer was formed.
  • UV light was irradiated from a UV light source for 2 seconds to cure the unsaturated polyester photocurable resin. Thereafter, the mold was peeled off from the cleaning work substrate 100 '.
  • the determination as to whether or not to perform the mold cleaning operation in the above-described imprint apparatus is performed in the process of the normal imprint operation on the transfer object, for example, in the inspection process, on the pattern layer of the transfer object obtained
  • It is conceivable to inspect whether or not there is a defect on the surface for example, inspect and inspect the surface of the substrate with a CCD camera (not shown)
  • the cause is that the concave / convex pattern of the mold is damaged, or that foreign matters exist in the concave / convex pattern.
  • the uneven pattern of the mold is damaged, which is the cause of the defect, the mold itself must be replaced. However, foreign matter may be attached to the uneven pattern. If it is a cause of the occurrence of a defect, the cleaning method of the present invention is applied.
  • N work number
  • Nref 1000 in this example
  • Step S63 when the number of operations (N) reaches the set value Nref (“YES” in the figure), the mold cleaning operation is performed (step S63), and then the number of operations N is reset to “0”. (Step S64), a series of processing ends. On the other hand, if the number of operations (N) has not reached the set value Nref (“NO” in the figure), a normal imprint operation is performed (step S65), and then the number of operations N is incremented (N ⁇ N + 1). Then (step S66), a series of processing is completed.
  • the above operation is executed by the arithmetic processing unit (CPU) 42 constituting the control unit 30 shown in FIG. In the above description, whether or not the mold cleaning operation is necessary may be determined based on the execution time of the fine pattern forming operation instead of the number of operations (N).
  • the above-described mold cleaning work may be performed based on an instruction from an operator such as a switch (not shown).
  • a photo-curing resin layer 110 is formed by dropping a photo-curing resin on the upper surface of the substrate 100 or the cleaning work substrate 100 ′ with a liquid dispensing device (dispenser) 21, Then, the transfer unit 30 detects the thickness of the layer formed on the substrate that has been carried in, thereby performing a normal imprint operation or performing the above-described mold cleaning operation (so-called cleaning mode). Or just judge.
  • the mold cleaning method of the present invention and the imprint apparatus employing the mold cleaning method have been described in detail with reference to preferred embodiments.
  • the present invention is limited only to the embodiments disclosed above.
  • the mold cleaning method and imprint apparatus of the present invention can be used for, for example, a double-sided imprint apparatus in addition to the above-described single-sided imprint apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

 支持具から取り外さずに金型の微細な凹凸パターン上に付着した異物を除去する金型の微細パターン面清掃方法とインプリント装置を提供する。 金型が押圧される被転写体の表面に光硬化樹脂を塗布して光硬化樹脂層を形成し、前記金型を、前記被転写体表面に塗布した前記光硬化樹脂に対して押圧し、前記光硬化樹脂を硬化させた後に、当該硬化した光硬化樹脂を前記金型から分離することにより、前記微細パターンの表面に付着した異物を前記硬化した光硬化樹脂に取り込むことによって除去する金型の微細パターン面清掃方法であって、前記被転写体の表面上に形成される光硬化樹脂を、当該微細パターンの表面に付着した異物を除去する厚さで形成すると共に、前記金型を、前記被転写体表面に形成した前記光硬化樹脂層に対し、当該微細パターンの表面に付着した異物を除去する圧力で押圧する。

Description

金型の微細パターン面清掃方法とそれを用いたインプリント装置
 本発明は、被転写体の表面に微細パターンを転写・形成するインプリント装置に関し、特に、かかるインプリント装置に好適な金型の微細パターン面清掃方法と当該清掃方法を利用することにより金型の微細パターン面の清掃を自動的かつ確実に行うことが可能なインプリント装置に関する。
 コンピュータなどの各種情報機器の目覚ましい性能向上により、使用者が扱う情報量は増大の一途を辿っており、既に、ギガからテラ単位の領域にまで達している。このような環境下において、これまでよりも一層記録密度の高い情報記録・再生装置や媒体、更にはメモリなどの半導体装置に対する需要が益々増大している。
 記録密度を増大させるには、一層微細な加工技術が必要となる。露光プロセスを用いた従来の光リソグラフィー法は、一度に大面積を微細加工することができるが、光の波長以下の分解能を持たないため、自らの光の波長以下(例えば、100nm以下)の微細構造の作成には適さない。光の波長以下の微細構造の加工技術として、電子線を用いた露光技術、X線を用いた露光技術及びイオン線を用いた露光技術などが既に存在する。しかしながら、電子線描画装置によるパターン形成は、i線、エキシマレーザ等の光源を使用した一括露光方式によるものと異なり、電子線で描画するパターンが多ければ多いほど、描画(露光)時間がかかる。従って、記録密度が増大するにつれて、微細パターンの形成に要する時間が長くなり、製造スループットが著しく低下する。一方、電線描画装置によるパターン形成の高速化を図るために、各種形状のマスクを組み合わせてそれらに一括して電子線を照射する、所謂、一括図形照射法の開発が進められているが、一括図形照射法を使用する電子線描画装置は大型化すると共に、マスクの位置を一層高精度に制御する機構が更に必要となるため、描画装置自体のコストが高くなり、結果的に、媒体製造コストが高くなる等の問題点がある。
 光の波長以下の微細構造の加工技術として、上述した従来の露光技術に代えて、プリント技術による方法が提案されている。例えば、特許文献1には「ナノインプリントリソグラフィー(NIL)技術」に関する発明が記載されている。ナノインプリントリソグラフィー技術は、前もって電子線露光技術等の光の波長以下の微細構造の加工技術を用いて、所定の微細構造パターンを形成したモールドをレジスト塗布被転写基板に加圧しながら押し当て、モールドの微細構造パターンを被転写基板のレジスト層に転写する技術である。モールドさえあれば、特別に高価な露光装置は必要がなく、通常の印刷機レベルの装置で複製物を量産できるので、上述した電子線露光技術等に比較してスループットは飛躍的に向上し、製造コストも大幅に低減される。
 ナノインプリントリソグラフィー技術においては、前記特許文献1に記載されるように、レジストとして熱可塑性樹脂(例えば、PMMA)を使用する場合、その材料のガラス転移温度(Tg)近傍又はそれ以上の温度に上げて加圧して転写する。この方式は熱転写方式と呼ばれる。この熱転写方式は、熱可塑性の樹脂であれば、汎用の樹脂を広範囲に使用することが出来る利点がある。これに対し、レジストとして感光性樹脂を使用する場合には、紫外線などの光を暴露すると硬化する硬化性樹脂により転写が行われる。この方式は光転写方式と呼ばれる。
 光転写胞子のナノインプリント加工法では、特殊な光硬化性の樹脂を用いる必要があるが、熱転写方式と比較して、転写印刷版や被印刷部材の熱膨張による完成品の寸法誤差を小さくできる利点がある。また、装置上では、加熱機構の装備や、昇温、温度制御、冷却などの付属装置が不要であること、更に、ナノインプリント装置全体としても、断熱などの熱歪み対策のための設計的な配慮が不要となるなどの利点がある。
米国特許第5,772,905号
 図7は、従来技術になる光転写方式のナノインプリント技術による微細構造転写方法の工程を示す模式図である。図7(A)に示すステップにおいて、基板100の上面にレジスト120が塗布された被転写体を準備し、レジスト120に当接される側に微細パターン34が形成されたスタンパ33を、被転写体である基板100と対峙させる。図7(B)のステップでは、スタンパ33を被転写体100のレジスト塗布面に押圧する。図7(C)のステップでは、スタンパ33の上面から紫外(UV)光を照射し、レジスト120を硬化させる。次いで、図7(D)のステップにおいて、スタンパ33を被転写体100から剥離する。暫くして、被転写体である基板100の表面にレジストのパターン層120が形成される。パターン層130はスタンパ33の微細パターン34の反転像である。
 しかしながら、上述した微細パターン34の凹凸パターン上に異物が付着する場合があり、特に、上述した反転作業を続ける場合には尚更である。微細パターン34の凹凸パターン上に異物が付着したまま転写作業を行った場合には、被転写体である基板100のパターン層130に欠陥が発生し、製品不良の原因となる。そのため、微細パターン34の凹凸パターン上に異物が付着した場合、新しい金型に交換する、又は、金型をその支持具から取り外して洗浄し、その上面に付着した異物を除去してから、再び、金型を支持具に取り付け直すことが必要であった。
 そこで、従来、微細パターンの凹凸パターン上から異物を除去するための方法としては、例えば、液体による洗浄や粘着テープによる剥離等が行われてきた。しかしながら、これらの従来の方法では、パターン凹部を除いた部分に付着した異物は容易に除去できるが、特に、パターン凹部内に入り込んだ微細な異物を確実に除去することは不可能、又は、非常に困難であった。また、特に、液体による洗浄の場合、パターン凹部の中に侵入した液体についても、これを乾燥などによって除去する必要があり、このことが金型の清掃作業を一層複雑にする原因ともなっていた。何れにせよ、従来の金型の清掃作業は、手間と時間がかかり、これが転写作業によるスループットを著しく低下させる原因となっていた。
 本発明は、上述した従来技術における問題点に鑑みて為されたものであり、その目的は、金型を支持具から取り外すことなく、金型の微細な凹凸パターン上に付着した異物を除去することが可能な金型の微細パターン面清掃方法、更には、それを用いたインプリント装置を提供することにある。
 上記の目的を達成するため、本発明によれば、まず、少なくともその一方の面に凹凸状の微細パターンを有する金型の当該微細パターンの表面に付着した異物を除去する方法であって、前記金型が押圧される被転写体の表面に光硬化樹脂を塗布して光硬化樹脂層を形成し、前記金型を、前記被転写体表面に塗布した前記光硬化樹脂に対して押圧し、前記光硬化樹脂を硬化させた後に、当該硬化した光硬化樹脂を前記金型から分離することにより、前記微細パターンの表面に付着した異物を前記硬化した光硬化樹脂に取り込むことによって除去する金型の微細パターン面清掃方法において、前記被転写体の表面上に形成される光硬化樹脂を、当該微細パターンの表面に付着した異物を除去する厚さで形成すると共に、前記金型を、前記被転写体表面に形成した前記光硬化樹脂層に対し、当該微細パターンの表面に付着した異物を除去する圧力で押圧する金型の微細パターン面清掃方法が提供される。
 また、本発明では、前記に記載した金型の微細パターン面清掃方法において、前記被転写体表面に形成する前記光硬化樹脂層を、10μm~500μmの範囲の厚さとすることが好ましく、更には、前記被転写体表面に塗布する前記光硬化樹脂の粘度は、500cP~6000cPの範囲内であることが好ましい。又は、前記金型の前記光硬化樹脂層に対する圧力を1kPa~10kPaの範囲とすることが好ましい。
 加えて、本発明によれば、やはり上記目的を達成するため、内部に被転写体である基板を格納すると共に、当該基板を供給する基板供給手段部と、前記基板供給手段部により供給される前記基板の表面に光硬化性樹脂を膜状に塗布する光硬化性樹脂成膜部と、前記光硬化性樹脂成膜部により膜状に塗布された前記光硬化性樹脂に金型を押圧して微細パターンを形成し、硬化することにより、前記基板の表面に微細パターンを形成する微細パターン形成部と、前記基板供給手段部と前記光硬化性樹脂成膜部と前記微細パターン形成部における動作を制御するための制御部とを備えたインプリント装置において、前記微細パターン形成部は、更に、前記金型と、当該金型を前記基板の光硬化性樹脂膜形成面に対して押圧・剥離するための手段と、前記基板の表面に塗布された前記光硬化性樹脂にその硬化のための光を照射する手段とを備えており、そして、前記制御部は、前記インプリント装置による前記基板表面への微細パターン形成動作において、所定のタイミングで、前記に記載した金型の微細パターン面清掃方法を実行するインプリント装置が提供される。
 また、本発明では、前記に記載したインプリント装置において、前記制御部は、前記押圧・剥離手段の押圧力を変更するための手段を備えていることが好ましく、又は、前記制御部は、更に、前記光硬化性樹脂成膜部において塗布される前記光硬化性樹脂の厚さを変更するための手段を備えていることが好ましい。又は、前記制御部は、更に、前記光硬化性樹脂成膜部において塗布される前記光硬化性樹脂の粘度を変更するための手段を備えていることが好ましい。
 更に、本発明では、前記に記載したインプリント装置において、前記制御部は、前記金型の微細パターン面清掃方法を、当該インプリント装置が行う前記基板表面への微細パターン形成動作の回数に応じたタイミングで実行することが、又は、前記金型の微細パターン面清掃方法を、当該インプリント装置が行う前記基板表面への微細パターン形成動作の実行時間に応じたタイミングで実行することが好ましい。
 また、更に、本発明では、前記に記載したインプリント装置において、前記微細パターン形成部は、更に、前記金型表面の異物の付着を検出する手段を備えており、かつ、前記前記制御部は、前記異物検出手段からの検出出力のタイミングで、前記金型の微細パターン面清掃方法を実行することが好ましく、又は、前記基板供給手段部は、その内部に前記基板と共に、金型清掃用基板を格納すると共に、当該基板と当該金型清掃用基板とを選択的に供給し、そして、前記前記制御部は、前記金型清掃用基板が供給されたタイミングで、前記金型の微細パターン面清掃方法を実行することが好ましい。
 以上に述べた本発明によれば、金型を支持具から取り外すことなく、金型の微細な凹凸パターン上に付着した異物を除去することが可能な金型の微細パターン面清掃方法、更には、それを用いたインプリント装置が提供されるという優れた効果が発揮されることとなる。
本発明の一実施の形態になるインプリント装置の全体構成を示す概略構成図である。 上記インプリント装置における転写(インプリント)部の詳細構造を示す側面図である。 上記インプリント装置における制御部の詳細構造示すブロック図である。 上記インプリント装置において実施される本発明の金型清掃方法の工程を説明するための説明図である。 本発明の金型清掃方法の効果を例証する金型表面の光学顕微鏡写真を示す図である。 上記インプリント装置における金型清掃方法の要否を判断する動作の一例を示すフローチャート図である。 従来技術における微細構造の転写方法の工程の一例を示す図である。
 以下、本発明の一実施の形態になる、被転写体の表面に微細パターンを転写・形成するインプリント装置、更には、そのための金型の微細パターン面清掃方法について、添付の図面を参照しながら詳細に説明する。
 図1は、本発明の実施例になる装置の一例として、光転写方式のインプリント装置の全体構成を示すための概略構成図であり、この図において、符号10は、被転写体である基板100を、以下に述べる装置に搬入するための基板の搬入部を示している。なお、本例では、被転写体である基板100としては、その一例として、円盤状のものが示されており、そして、基板搬入部10の内部には、多数枚の基板100を格納されると共に、例えば、その先端に真空による吸着機構を備えた、一般のロボットアーム11等を備えており、これにより、基板を一枚毎に、順次、搬入・供給する。
 図中の符号20は、上記搬入部10により搬入された基板100の表面に、以下に述べる光硬化性樹脂を塗布して膜状に塗布・形成するための、即ち、光硬化性樹脂成膜部を示している。なお、この光硬化性樹脂成膜部20は、その内部に、本例では、搬入された基板100の表面に以下に述べる光硬化性の樹脂を滴下するための液体定量吐出器(ディスペンサ)21と、そして、当該基板100をその上面に搭載し、電動モータ23等により所定の回転速度で回転する、所謂、回転テーブル22が設けられている。
 更に、図中の、符号30は、上記光硬化性樹脂成膜部20においてその表面に光硬化性樹脂の膜が形成された基板100をその内部に導入し、その表面にスタンパ(表面に微細パターンを形成した金型)を押圧すると共に、光硬化性樹脂に、例えば、紫外(UV)光を照射して硬化した後、当該金型を、基板100から取り外すことにより、当該基板の表面上に微細パターンを形成する、所謂、転写(インプリント)部を示している。
 なお、上述した基板搬入部10や光硬化性樹脂成膜部20は、既に、一般にも知られ実用にも供されている装置で構成することが出来、例えば、後者には一般のコーティング装置を採用することが出来ることから、ここでは、その詳細な説明は省略する。また、硬化性樹脂成膜部20は、例えば、スピンコート、ロールコート、ブレードコート、又は、スプレー、インクジェット等により、光硬化性樹脂を基板100の表面に膜状の形成するものであればよく、その他の構成のものであってもよいことは、当業者であれば明らかであろう。
 次に、図2は、転写(インプリント)部30の詳細構造を示している。図において、転写部30には、ベース31の上面には台座32が配設されており、当該台座32の上面には、その表面に光硬化性樹脂110が膜状に塗布された基板100が搭載される。この光硬化性樹脂110が塗布された基板100に対峙するように、例えば、ガラス等からなる、光透過性の金型(スタンパ)33が配置されている。なお、この金型33の下面には、凹凸状の微細な構造(パターン)34が形成されている。この金型33は、やはり光透過性の材料からなる部材(透明保持部)35により保持されて、更に、この保持部材35は、一対の昇降アーム36により保持されている。また、光透過性の部材35の上方には、紫外線光源であるUV光源37(例えば、発光ダイオード(LED)から構成)が設けられ、当該UV光源も、同様に、上記昇降アーム36により保持されている。
 更に、図3には、上述したインプリント装置を構成する各部の動作を制御、及び/又は、駆動するための制御部40が示されている。本例では、例えば、上記各部からの信号を入力する外部とのインターフェイス(I/F)部41、所定の演算処理により各部の動作を監視すると共に、必要な制御を実行する演算処理部(CPU)42、当該演算処理部による各種の演算処理プログラムや演算処理に必要なデータを保持するための記憶装置であるメモリ43、そして、当該演算処理部による演算結果に基づいて各部への制御信号を出力するための駆動部、即ち、搬入動作駆動部44、樹脂成膜動作駆動部45、転写動作駆動部46を備えている。
 即ち、上述した制御部40は、以下に詳細に述べる金型清掃作業におけるインプリント装置の各部における動作を制御・駆動する。より具体的には、搬入動作駆動部44は、搬入動作駆動部44におけるロボットアーム11による基板の吸着やその移動を制御・駆動し、樹脂成膜動作駆動部45は、光硬化性樹脂成膜部20における液体定量吐出器(ディスペンサ)21の動作、例えば、滴下する液体の選択や滴下量、更には、回転テーブル22の回転速度等を、適宜、制御駆動する。そして、転写動作駆動部46は、転写(インプリント)部30を構成する各部を、一般的なナノプリント作業で必要な動作と共に、以下に述べる金型の清掃作業において必要な動作を実行するように制御・駆動する。
 続いて、上述にその構成を説明したインプリント装置において本発明の金型清掃作業を行う場合の動作について、以下に説明する。
 まず、昇降アーム36を下降させ、光透過性金型33の凹凸微細パターン34を基板100の上面に塗布した光硬化性樹脂層110に当接させ、この状態で、UV光源37からのUV光を、透明保持部35を介して、光硬化性樹脂層110に照射し、当該光硬化性樹脂層110を硬化させる。このUV硬化作業の終了後、昇降アーム26を上昇させ、もって、金型33を基板100から剥離させる。この時、光透過性の金型33の凹凸状微細パターン34に存在していた異物は、硬化された光硬化性樹脂層16内に取り込まれて剥離されることから、金型33は、その凹凸状微細パターン34に異物が存在しない状態、即ち、クリーンな状態に戻る。
 図4は、本発明になる金型微細パターン面清掃方法の具体的に実施する態様を示すための一部拡大断面図である。図4(A)では、金型33の下面に形成された凹凸状の微細パターン34の凹部に微細な異物FMaが入り込んでおり、他方、その凸部には、凹部に入り込まない程度の大きさを有する異物FMbが付着している。基板100の上面には、上述した異物、特に、異物FMbの大きさを超える厚さで、光硬化性樹脂層110が塗布される。
 次いで、図4(B)では、金型33を光硬化性樹脂層110に当接させ、必要に応じ、金型33を光硬化性樹脂層16に対して押圧を加える。この時、金型33を光硬化性樹脂層110に当接又は押圧させることにより、微細パターン34の凹部に存在する微小な異物FMa、及び、その凸部に存在する大きな異物FMbは、何れも光硬化性樹脂層110内に侵入する。この状態で、金型33の上面からUV光を所定時間照射して、光硬化性樹脂層110を硬化させる。これにより、UV光の照射により光硬化性樹脂層16は硬化し、そして、大きさの異なる各種の異物FMa、FMbは、当該硬化した光硬化樹脂層の内部に取り込まれてしまう。
 その後、図4(C)に示すように、金型33を上昇させて基板100から剥離する。これにより、微細パターン34から異物FMa、FMbが取り除かれて、金型の清掃作業は完了する。
 なお、以上の説明では、その表面に微細パターンを転写・形成する被転写体、即ち、基板100を、上記金型の清掃作業に利用するものとしたが、本発明では、これに代えて、金型の清掃方法のために専用で使用される、金型清掃作業用基板100’を使用することも可能である。この清掃作業用基板100’は、例えば、シリコン、プラスチック(例えば、アクリル樹脂等)、ガラス、金属(例えば、アルミニウム)等により作成することも可能である。この金型清掃作業用基板100’は、外形を略上記基板100と同じに形成するが、その厚さは、特に限定されない。即ち、上述した清掃作業を実施するのに必要十分な機械的強度を有するものであればよい。しかしながら、通常の基板100を使用した場合には、掃作業に用いられた基板100は、その後に製品としては利用できなくなるが、必ずしも金型清掃作業用基板100’を使用する必要はない。
 また、本発明の金型清掃方法で使用される光硬化性樹脂層110の材料として、例えば、不飽和ポリエステル系、アクリレート系又はアクリル系樹脂類等が使用される。このような光硬化性樹脂類は、一般に、様々な化学会社から市販されており、更には、これらの樹脂類に光重合開始剤を含有させることもできる。
 本発明の金型清掃方法で使用される光硬化性樹脂層110の基板100又は清掃作業用基板100’への塗布方法では、液体定量吐出器(ディスペンサ)21から樹脂液をその略中央部へ滴下し、その後、スピンや金型33を基板表面に押し付けることにより、当該樹脂液を、基板の中央部から周縁部に向かって押し広げることが一般的である。しかしながら、かかる方法以外にも、例えば、低速スピンコート、ロールコート、ブレードコートなども使用することができる。また、基板100又は100’の中央部から周縁部に向かって押し広げることにより形成される樹脂層の厚さは、特に、10μm~500μmの範囲内であることが好ましい。これは、押し広げられた樹脂層の厚さが10μm未満の場合、サイズが10μmを超える大きな異物は硬化する樹脂層内に取り込めなくなることによる。他方、押し広げられた樹脂層の厚さが500μmを超える場合、樹脂自体が流れ出してしまい、これでは、均一な厚さを維持するのが困難であるばかりか、光硬化性樹脂層110のUV硬化に時間が掛かり過ぎて作業効率が低下する。一般的な光ナノプリント作業では、基板100の上面に形成されるレジスト層は、高速スピンコート法により塗布され、その厚さは50nm~100nm程度であるのに対し、本発明の金型清掃方法では、その100倍以上の厚さで、光硬化性樹脂層110を形成することが特徴である。
 また、本発明の金型清掃方法で使用される光硬化性樹脂の粘度は、500cP~6000cPの範囲内であることが好ましい。これは、粘度が500cP未満の場合、光硬化性樹脂の流動性が高か過ぎ、光硬化性樹脂層110を基板100又は清掃作業用基板100’の表面に留まらせることが困難になるばかりか、更には、時間と共に膜圧が薄くなってしまい、所望の厚さの樹脂層を維持するのが困難になることによる。一方、粘度が6000cPを超える場合、光硬化性樹脂の流動性が低すぎるため、金型で基板表面を押し広げるのに時間がかかるばかりか、光硬化性樹脂層110が金型の微細パターンの凹部に入り込めなくなる可能性がある。
 即ち、本発明の金型清掃方法においては、金型33を基板100又は清掃用作業基板100’に押圧させる際の押圧力は、1kPa~10kPaの範囲内であることが好ましい。この押圧力は、金型清掃方法で使用される光硬化性樹脂層110の粘度に応じて変化することが好ましい。粘度が低い材料の場合、低い押圧力を使用し、粘度が高い材料の場合には高い押圧力を使用する。この押圧力は、微細パターン内に光硬化性樹脂層110を侵入させるために必要であると共に、光硬化性樹脂層110を押し広げるためにも重要である。より詳細には、押圧力が1kPa未満である場合には、微細パターン内に光硬化性樹脂層110が十分に侵入できない恐れがあるばかりか、光硬化性樹脂層110の押し広げも不十分になることが考えられる。他方、押圧力が10kPaを超える場合は、押圧力が高か過ぎ、金型の微細パターンを損傷する可能性がある。
 更に、本発明の金型清掃方法では、金型33は、透明樹脂やガラス等の光透過性の材料からなるものとして説明したが、しかしながら、本発明はこれに限定されることなく、例えば、その側方向から硬化用のUV光を照射するものでもよい。
 上述したインプリント装置を用いて、本発明の金型清掃方法を実施した例について、以下に説明する。なお、この実施例1では、光透過性のガラス製金型33の表面には、幅が60nmの凸部と幅が60nmの凹部を深さ50nmで微細パターン34が形成されており、この微細パターン34の凸部表面には、異物を予め付着させた。
 径(φ)が4インチ、厚さ0.5mmのシリコン製の清掃用作業基板100’の上面に、粘度4500cPの不飽和ポリエステル系光硬化性樹脂を液体定量吐出器(ディスペンサ)21から滴下した。上述した異物を有する金型33を、不飽和ポリエステル系光硬化性樹脂の層110に対して10kPaの圧力で押圧することにより、基板100の表面に形成した不飽和ポリエステル系光硬化性樹脂を押し広げ、厚さ50μmの樹脂層を形成した。この状態のまま、UV光源からUV光を2秒間照射し、不飽和ポリエステル系光硬化性樹脂を硬化させた。その後、金型を清掃用作業基板100’から剥離させた。
 清掃の効果を例証するため、金型33の表面を電子顕微鏡により検査した。その結果を、図5(A)及び(B)に示す。図5(A)は、清掃前の金型表面の光学顕微鏡写真であり、図(B)は、清掃後の金型表面の光学顕微鏡写真である。図5(A)に見られるように、金型の表面には予め付着された異物が認められるが、図5(B)では、本発明の方法により清掃された金型の表面からは、異物が確実に除去されていることが確認できる。
 上記と同様の装置を用いて、本発明の金型清掃方法を実施した。光透過性のガラス製金型20の表面には、幅が60nmの凸部と幅が60nmの凹部を深さ50nmで微細パターン34が形成されており、この微細パターン34の凸部表面には、上記と同様に、異物を予め付着させた。
 径(φ)が4インチ、厚さ0.5mmのシリコン製の清掃用作業基板100’の上面に、粘度4500cPの不飽和ポリエステル系光硬化性樹脂を、液体定量吐出器(ディスペンサ)から滴下した。上述した異物を有する金型33を不飽和ポリエステル系光硬化性樹脂層に対して3kPaの圧力で押圧することにより、基板表面の不飽和ポリエステル系光硬化性樹脂を押し広げ、厚さ300μmの樹脂層を形成した。この状態のままUV光源からUV光を2秒間照射し、不飽和ポリエステル系光硬化性樹脂を硬化させた。その後、金型を清掃用作業基板100’から剥離させた。
 この清掃効果を例証するため、金型33の表面を電子顕微鏡により検査した。その結果は、図5(B)に示されたと同様であった。
 更に、上述したインプリント装置における金型清掃作業を行うか否かの判断は、通常の被転写体に対するインプリント作業の過程において、例えば、検査過程において、得られた被転写体のパターン層の表面に欠陥が存在するか否かを検査し(例えば、図示しないCCDカメラにより基板の表面を撮像して検査する)、その検査結果に基づいて行なうことが考えられる。即ち、被転写体のパターン層に欠陥が存在すれば、その原因は、金型の凹凸パターンが損傷しているか、又は、凹凸パターンに異物が存在するためであると推定される。そして、金型の凹凸状パターンが損傷していることが欠陥発生の原因である場合には、金型自体を交換しなければならないが、しかしながら、凹凸状パターンに異物が付着していることが欠陥の発生原因である場合には、本発明の清掃方法が適用されることとなる。
 または、通常のインプリント作業の過程において、一定の割合で、上述した金型清掃作業を行ってもよい。より具体的には、その一例として、図5にも示すように、通常のインプリント作業を所定の回数(例えば、1000回)行う度に、上述した金型清掃作業を行ってもよい。即ち、図6において、インプリント作業を開始する際、まず、その作業回数(N)(例えば、上記図3に示すメモリ43内に格納)を確認し(ステップS61)、当該回数が予め設定した値であるNref(本例では、Nref=1000)に達したか否かを判定する(ステップS62)。その結果、作業回数(N)が設定値Nrefに達した場合(図の「YES」)には、上記金型清掃作業を行い(ステップS63)、その後、作業回数Nを「0」にリセットし(ステップS64)、一連の処理を終了する。他方、作業回数(N)が設定値Nrefに達していな場合(図の「NO」)には、通常のインプリント作業を行い(ステップS65)、その後、作業回数Nをインクリメント(N→N+1)して(ステップS66)、一連の処理を終了する。なお、以上の動作は、上記図3に示した制御部30を構成する演算処理部(CPU)42により実行される。また、上記において、作業回数(N)に代えて、微細パターン形成動作の実行時間により、金型清掃作業の要否を判定してもよい。
 更には、上記に代えて、例えば、図示しないスイッチ等による作業員による指示に基づいて上記の金型清掃作業を行ってもよく、その場合には、上述した光硬化性樹脂成膜部20では、通常のレジスト材に代えて、光硬化性樹脂を液体定量吐出器(ディスペンサ)21により、基板100又は清掃用作業基板100’の上面に滴下することにより光硬化性樹脂層110を形成し、そして、転写部30では、搬入された基板上に形成された層の厚さを検知することにより、通常のインプリント作業を行うか、又は、上述した金型清掃作業を行う(所謂、クリーニングモード)か、判断すればよい。
 以上、本発明の金型清掃方法、及び、それを採用したインプリント装置について好ましい実施態様を挙げて詳細に説明したが、しかしながら、本発明は、上記に開示された実施形態だけに限定されることはなく、本発明の精神の範囲において、様々な改変や変更が可能であることは、当業者には自明であろう。例えば、本発明の金型清掃方法やインプリント装置は、上述した片面インプリント装置の他に、例えば、両面インプリント装置についても使用できる。
 10…基板搬入部、20…光硬化性樹脂成膜部、21…液体定量吐出器(ディスペンサ)、22…回転テーブル、30…転写(インプリント)部、33…金型(スタンパ)、34…凹凸状微細構造(パターン)、37…UV光源、36…昇降アーム、100…基板、100’…清掃作業用基板、110…光硬化性樹脂(層)

Claims (12)

  1.  少なくともその一方の面に凹凸状の微細パターンを有する金型の当該微細パターンの表面に付着した異物を除去する方法であって、
     前記金型が押圧される被転写体の表面に光硬化樹脂を塗布して光硬化樹脂層を形成し、
     前記金型を、前記被転写体表面に塗布した前記光硬化樹脂に対して押圧し、
     前記光硬化樹脂を硬化させた後に、当該硬化した光硬化樹脂を前記金型から分離することにより、前記微細パターンの表面に付着した異物を前記硬化した光硬化樹脂に取り込むことによって除去する金型の微細パターン面清掃方法において、
     前記被転写体の表面上に形成される光硬化樹脂を、当該微細パターンの表面に付着した異物を除去する厚さで形成すると共に、
     前記金型を、前記被転写体表面に形成した前記光硬化樹脂層に対し、当該微細パターンの表面に付着した異物を除去する圧力で押圧することを特徴とする金型の微細パターン面清掃方法。
  2.  前記請求項1に記載した金型の微細パターン面清掃方法において、前記被転写体表面に形成する前記光硬化樹脂層を、10μm~500μmの範囲の厚さとすることを特徴とする金型の微細パターン面清掃方法。
  3.  前記請求項2に記載した金型の微細パターン面清掃方法において、前記被転写体表面に塗布する前記光硬化樹脂の粘度は、500cP~6000cPの範囲内であることを特徴とする金型の微細パターン面清掃方法。
  4.  前記請求項1に記載した金型の微細パターン面清掃方法において、前記金型の前記光硬化樹脂層に対する圧力を1kPa~10kPaの範囲とすることを特徴とする金型の微細パターン面清掃方法。
  5.  内部に被転写体である基板を格納すると共に、当該基板を供給する基板供給手段部と、
     前記基板供給手段部により供給される前記基板の表面に光硬化性樹脂を膜状に塗布する光硬化性樹脂成膜部と、
     前記光硬化性樹脂成膜部により膜状に塗布された前記光硬化性樹脂に金型を押圧して微細パターンを形成し、硬化することにより、前記基板の表面に微細パターンを形成する微細パターン形成部と、
     前記基板供給手段部と前記光硬化性樹脂成膜部と前記微細パターン形成部における動作を制御するための制御部とを備えたインプリント装置において、
     前記微細パターン形成部は、更に、
     前記金型と、当該金型を前記基板の光硬化性樹脂膜形成面に対して押圧・剥離するための手段と、前記基板の表面に塗布された前記光硬化性樹脂にその硬化のための光を照射する手段とを備えており、そして、
     前記制御部は、前記インプリント装置による前記基板表面への微細パターン形成動作において、所定のタイミングで、前記請求項1~4の何れか1項に記載した金型の微細パターン面清掃方法を実行することを特徴とするインプリント装置。
  6.  前記請求項5に記載したインプリント装置において、前記制御部は、前記押圧・剥離手段の押圧力を変更するための手段を備えていることを特徴とするインプリント装置。
  7.  前記請求項5に記載したインプリント装置において、前記制御部は、更に、前記光硬化性樹脂成膜部において塗布される前記光硬化性樹脂の厚さを変更するための手段を備えていることを特徴とするインプリント装置。
  8.  前記請求項5に記載したインプリント装置において、前記制御部は、更に、前記光硬化性樹脂成膜部において塗布される前記光硬化性樹脂の粘度を変更するための手段を備えていることを特徴とするインプリント装置。
  9.  前記請求項5に記載したインプリント装置において、前記制御部は、前記金型の微細パターン面清掃方法を、当該インプリント装置が行う前記基板表面への微細パターン形成動作の回数に応じたタイミングで実行することを特徴とするインプリント装置。
  10.  前記請求項5に記載したインプリント装置において、前記制御部は、前記金型の微細パターン面清掃方法を、当該インプリント装置が行う前記基板表面への微細パターン形成動作の実行時間に応じたタイミングで実行することを特徴とするインプリント装置。
  11.  前記請求項5に記載したインプリント装置において、前記微細パターン形成部は、更に、前記金型表面の異物の付着を検出する手段を備えており、かつ、
     前記前記制御部は、前記異物検出手段からの検出出力のタイミングで、前記金型の微細パターン面清掃方法を実行することを特徴とするインプリント装置。
  12.  前記請求項4に記載したインプリント装置において、前記基板供給手段部は、その内部に前記基板と共に、金型清掃用基板を格納すると共に、当該基板と当該金型清掃用基板とを選択的に供給し、
     前記前記制御部は、前記金型清掃用基板が供給されたタイミングで、前記金型の微細パターン面清掃方法を実行することを特徴とするインプリント装置。
PCT/JP2011/076111 2010-11-12 2011-11-11 金型の微細パターン面清掃方法とそれを用いたインプリント装置 WO2012063948A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012542993A JPWO2012063948A1 (ja) 2010-11-12 2011-11-11 金型の微細パターン面清掃方法とそれを用いたインプリント装置
US13/883,844 US20130224322A1 (en) 2010-11-12 2011-11-11 Method For Cleaning Fine Pattern Surface Of Mold, And Imprinting Device Using Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010253650 2010-11-12
JP2010-253650 2010-11-12

Publications (1)

Publication Number Publication Date
WO2012063948A1 true WO2012063948A1 (ja) 2012-05-18

Family

ID=46051085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076111 WO2012063948A1 (ja) 2010-11-12 2011-11-11 金型の微細パターン面清掃方法とそれを用いたインプリント装置

Country Status (3)

Country Link
US (1) US20130224322A1 (ja)
JP (1) JPWO2012063948A1 (ja)
WO (1) WO2012063948A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200988A (ja) * 2011-03-25 2012-10-22 Fujifilm Corp モールドに付着した異物の除去方法
JP2015012163A (ja) * 2013-06-28 2015-01-19 キヤノン株式会社 インプリント方法、インプリント装置及びデバイスの製造方法
JP2015122373A (ja) * 2013-12-20 2015-07-02 キヤノン株式会社 インプリント装置、異物除去方法及び物品の製造方法
JP2016174046A (ja) * 2015-03-16 2016-09-29 芝浦メカトロニクス株式会社 塗布装置、異物除去システム、塗布方法、および異物除去方法
JP2018195852A (ja) * 2018-08-30 2018-12-06 大日本印刷株式会社 異物除去用基板

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5971561B2 (ja) * 2013-01-29 2016-08-17 株式会社東芝 パターン形成方法およびパターン形成装置
JP6333039B2 (ja) 2013-05-16 2018-05-30 キヤノン株式会社 インプリント装置、デバイス製造方法およびインプリント方法
JP6322158B2 (ja) * 2014-07-02 2018-05-09 キヤノン株式会社 インプリント方法及び装置、物品の製造方法、及びプログラム
US20180029288A1 (en) * 2015-02-16 2018-02-01 Basf Se Process for producing structured polymer surfaces
US10166700B2 (en) * 2016-06-15 2019-01-01 Toyota Motor Engineering & Manufacturing North America, Inc. Methods for determining mold replacement timing in slush mold processing
US10921706B2 (en) 2018-06-07 2021-02-16 Canon Kabushiki Kaisha Systems and methods for modifying mesa sidewalls
US10990004B2 (en) 2018-07-18 2021-04-27 Canon Kabushiki Kaisha Photodissociation frame window, systems including a photodissociation frame window, and methods of using a photodissociation frame window
US10935885B1 (en) * 2020-02-11 2021-03-02 Canon Kabushiki Kaisha System and method for cleaning mesa sidewalls
CN112606294B (zh) * 2020-12-01 2022-12-06 深圳华达精密科技有限公司 一种自适应式聚四氟乙烯蝶板模具清理装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06178957A (ja) * 1992-12-15 1994-06-28 Mochizuki Kiko Seisakusho:Kk ロールコータ
JPH118177A (ja) * 1997-06-16 1999-01-12 Mitsubishi Electric Corp レジスト供給装置およびレジスト塗布方法
JP2007137051A (ja) * 2005-10-18 2007-06-07 Canon Inc インプリント方法、インプリント装置およびチップの製造方法
JP2009093723A (ja) * 2007-10-04 2009-04-30 Shibaura Mechatronics Corp 転写装置及び転写方法
WO2009118943A1 (ja) * 2008-03-24 2009-10-01 シャープ株式会社 ナノインプリントフィルムの製造方法、表示装置及び液晶表示装置
JP2009266841A (ja) * 2008-04-21 2009-11-12 Toshiba Corp ナノインプリント方法
JP2010076152A (ja) * 2008-09-24 2010-04-08 Fuji Xerox Co Ltd 記録装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06178957A (ja) * 1992-12-15 1994-06-28 Mochizuki Kiko Seisakusho:Kk ロールコータ
JPH118177A (ja) * 1997-06-16 1999-01-12 Mitsubishi Electric Corp レジスト供給装置およびレジスト塗布方法
JP2007137051A (ja) * 2005-10-18 2007-06-07 Canon Inc インプリント方法、インプリント装置およびチップの製造方法
JP2009093723A (ja) * 2007-10-04 2009-04-30 Shibaura Mechatronics Corp 転写装置及び転写方法
WO2009118943A1 (ja) * 2008-03-24 2009-10-01 シャープ株式会社 ナノインプリントフィルムの製造方法、表示装置及び液晶表示装置
JP2009266841A (ja) * 2008-04-21 2009-11-12 Toshiba Corp ナノインプリント方法
JP2010076152A (ja) * 2008-09-24 2010-04-08 Fuji Xerox Co Ltd 記録装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200988A (ja) * 2011-03-25 2012-10-22 Fujifilm Corp モールドに付着した異物の除去方法
JP2015012163A (ja) * 2013-06-28 2015-01-19 キヤノン株式会社 インプリント方法、インプリント装置及びデバイスの製造方法
JP2015122373A (ja) * 2013-12-20 2015-07-02 キヤノン株式会社 インプリント装置、異物除去方法及び物品の製造方法
US10201927B2 (en) 2013-12-20 2019-02-12 Canon Kabushiki Kaisha Imprint apparatus, foreign particle removal method, and method of manufacturing article
JP2016174046A (ja) * 2015-03-16 2016-09-29 芝浦メカトロニクス株式会社 塗布装置、異物除去システム、塗布方法、および異物除去方法
JP2018195852A (ja) * 2018-08-30 2018-12-06 大日本印刷株式会社 異物除去用基板

Also Published As

Publication number Publication date
US20130224322A1 (en) 2013-08-29
JPWO2012063948A1 (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
WO2012063948A1 (ja) 金型の微細パターン面清掃方法とそれを用いたインプリント装置
US8016585B2 (en) Nanoimprint resin stamper
KR101229100B1 (ko) 중간 스탬프를 갖는 패턴 복제
JP6130404B2 (ja) 大面積インプリント・リソグラフィ
US7670127B2 (en) Apparatus for pattern replication with intermediate stamp
JP5232077B2 (ja) 微細構造転写装置
KR101622818B1 (ko) 나노임프린팅 방법 및 나노임프린팅 방법을 실행하기 위한 나노임프린팅 장치
TWI480924B (zh) 奈米壓印方法及利用其的基板加工方法
JP2004322641A (ja) エンボス加工装置
JP2008023868A (ja) エネルギ線硬化型樹脂の転写方法、転写装置及びディスクまたは半導体デバイス
WO2011077882A1 (ja) 両面インプリント装置
JP2013074115A (ja) ナノインプリント装置およびナノインプリント方法、並びに、歪み付与デバイスおよび歪み付与方法
JP2010258182A (ja) 微細構造転写方法及び微細構造転写装置
JPH0354569A (ja) レジストパターンの形成方法
JP5449789B2 (ja) インプリント用転写フィルムロール体の製造方法、およびインプリント用転写フィルムロール体
JP7089375B2 (ja) 平坦化装置
JP2010099848A (ja) インプリント装置
JP5211538B2 (ja) 凹凸形状を有するフィルムの製造方法、凹凸形状を有するフィルム、及び凹凸形状を有する支持体の製造方法、凹凸形状を有する支持体
JP2010225785A (ja) インプリント用の転写フィルムの製造方法、及びインプリント用の転写フィルム
JP5363165B2 (ja) 微細凹凸パターンの形成方法及び形成装置
WO2012020741A1 (ja) 光インプリント方法及び装置
JP2013022807A (ja) 微細構造転写装置及びスタンパ移送方法
JP2012099197A (ja) 光インプリント方法
CN218298763U (zh) 一种微纳结构的拼版结构
JP2012089190A (ja) 未硬化レジスト塗布ディスクの下面側スタンパ装置からの位置ズレ防止方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012542993

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13883844

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839842

Country of ref document: EP

Kind code of ref document: A1