WO2012063483A1 - ウレタン樹脂粒子 - Google Patents
ウレタン樹脂粒子 Download PDFInfo
- Publication number
- WO2012063483A1 WO2012063483A1 PCT/JP2011/006263 JP2011006263W WO2012063483A1 WO 2012063483 A1 WO2012063483 A1 WO 2012063483A1 JP 2011006263 W JP2011006263 W JP 2011006263W WO 2012063483 A1 WO2012063483 A1 WO 2012063483A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- urethane resin
- urethane
- parts
- group
- active hydrogen
- Prior art date
Links
- ZJSHZTURUHADBM-UHFFFAOYSA-N CCC1(C)C(C)=[O]CC1 Chemical compound CCC1(C)C(C)=[O]CC1 ZJSHZTURUHADBM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C41/00—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
- B29C41/003—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/83—Chemically modified polymers
- C08G18/831—Chemically modified polymers by oxygen-containing compounds inclusive of carbonic acid halogenides, carboxylic acid halogenides and epoxy halides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C41/00—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
- B29C41/02—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
- B29C41/18—Slush casting, i.e. pouring moulding material into a hollow mould with excess material being poured off
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
- C08G18/12—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
- C08G18/2815—Monohydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
- C08G18/2815—Monohydroxy compounds
- C08G18/282—Alkanols, cycloalkanols or arylalkanols including terpenealcohols
- C08G18/2825—Alkanols, cycloalkanols or arylalkanols including terpenealcohols having at least 6 carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
- C08G18/3203—Polyhydroxy compounds
- C08G18/3215—Polyhydroxy compounds containing aromatic groups or benzoquinone groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/34—Carboxylic acids; Esters thereof with monohydroxyl compounds
- C08G18/343—Polycarboxylic acids having at least three carboxylic acid groups
- C08G18/345—Polycarboxylic acids having at least three carboxylic acid groups having three carboxylic acid groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/34—Carboxylic acids; Esters thereof with monohydroxyl compounds
- C08G18/343—Polycarboxylic acids having at least three carboxylic acid groups
- C08G18/346—Polycarboxylic acids having at least three carboxylic acid groups having four carboxylic acid groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4202—Two or more polyesters of different physical or chemical nature
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4205—Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
- C08G18/4208—Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6633—Compounds of group C08G18/42
- C08G18/6659—Compounds of group C08G18/42 with compounds of group C08G18/34
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/73—Polyisocyanates or polyisothiocyanates acyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/80—Masked polyisocyanates
- C08G18/8061—Masked polyisocyanates masked with compounds having only one group containing active hydrogen
- C08G18/8064—Masked polyisocyanates masked with compounds having only one group containing active hydrogen with monohydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
- C08K5/092—Polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/101—Esters; Ether-esters of monocarboxylic acids
- C08K5/103—Esters; Ether-esters of monocarboxylic acids with polyalcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2075/00—Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2140/00—Compositions for moulding powders
Definitions
- the present invention relates to urethane resin particles.
- thermomechanical analysis penetration method in order to improve the adhesion to the interlining, water wash resistance, and dry cleaning resistance, the difference between the softening start temperature and the softening end temperature by the thermomechanical analysis penetration method, and the softening start temperature are within a specific range.
- a hot melt adhesive comprising a thermoplastic polyurethane resin has been proposed, and it is stated that this can also be used for a slush molding material.
- Patent Document 1 In addition, regarding resin particles used in powder coatings, electrophotographic toners, and electrostatic recording toners, urethane resin particles that can be melted at low temperatures by adjusting the crystallinity, melting point, and molecular weight have been proposed. It is stated that it is also used for materials.
- Patent Documents 2 and 3 for example, see Patent Documents 2 and 3
- slush molded products have been used for instrument panels for automobile interior parts.
- low temperature molding is desired.
- a cleavage opening is provided in the instrument panel.
- a method of slitting the back surface of the slush molded product with a cutter is performed from the viewpoint of design.
- the slit may disappear and the airbag may not open normally, and a slush molding material with excellent heat resistance is required.
- slush molding materials particularly materials that can be suitably applied to automobile interiors, satisfy the conditions such as meltability during slush molding, heat resistance of slush molding, and excellent mechanical properties.
- meltability during slush molding heat resistance of slush molding
- mechanical properties excellent mechanical properties.
- the inventors of the present invention have arrived at the present invention as a result of intensive studies to solve the above problems.
- the present invention relates to a urethane resin particle (D1) containing a urethane resin or urethane urea resin (U1) having a covalent bond to a residue (j) obtained by removing a hydroxyl group from an aromatic polycarboxylic acid having a valence of 3 or more.
- R 3 represents a residue or OH group obtained by removing one active hydrogen from a monovalent or polyvalent active hydrogen-containing compound.
- the plurality of R 3 may be the same or different.
- V represents a residue obtained by removing all carboxyl groups from a trivalent or higher aromatic polycarboxylic acid. In the aromatic ring of V, a hydrogen atom is bonded to at least one ring carbon.
- C is an integer satisfying 2 ⁇ c ⁇ (the number of substituents that can be directly bonded to an aromatic ring ⁇ 2).
- W represents a residue obtained by removing m active hydrogens from an active hydrogen-containing compound having a valence of at least m.
- M represents an integer of 2 to 10.
- thermoplastic urethane resin particle composition (P) for slush molding containing the urethane resin particles (D1) or (D2) of the present invention has a melting property, a heat resistance of the molded product of (P), and a mechanical property of 3 All three have excellent performance.
- the urethane resin particle (D1) of the present invention contains a urethane resin or urethane urea resin (U1) having a covalently bonded residue (j) obtained by removing a hydroxyl group from an aromatic polycarboxylic acid having a valence of 3 or more. Furthermore, the urethane group or urea group (u) in (U1) and a residue (j) obtained by removing a hydroxyl group from an aromatic polycarboxylic acid having a valence of 3 or more are hydrogen-bonded.
- the urethane group or urea group (u) in (U1) and the residue (j) are hydrogen-bonded in the infrared absorption spectrum (hereinafter sometimes referred to as IR spectrum) in the vicinity of 1680 to 1720 cm ⁇ 1 . This can be confirmed by the appearance of absorption in.
- (U1) preferably has a structural unit (x) represented by the following general formula (2).
- R 1 represents a residue or OH group obtained by removing one active hydrogen from a monovalent or polyvalent active hydrogen-containing compound (R 1 H).
- the plurality of R 1 may be the same or different.
- R 2 represents a residue obtained by removing two active hydrogens from a divalent active hydrogen-containing compound (R 2 H).
- a plurality of R 2 may be the same or different.
- Y represents a residue obtained by removing all carboxyl groups from a trivalent or higher aromatic polycarboxylic acid.
- a and b are integers satisfying 1 ⁇ a ⁇ (number of substituents directly connectable to the aromatic ring ⁇ b), 0 ⁇ b ⁇ (number of substituents directly connectable to the aromatic ring ⁇ a), and 3 ⁇ a + b ⁇ 8.
- the active hydrogen-containing compound (R 1 H) has 1 to 30 carbon atoms, and includes a hydroxyl group-containing compound, an amino group-containing compound, a carboxyl group-containing compound, a thiol group-containing compound, and a phosphate compound; And a compound having an active hydrogen-containing functional group.
- the hydroxyl group-containing compound include monohydric alcohols, dihydric to octahydric polyhydric alcohols, phenols and polyhydric phenols.
- monohydric alcohols such as methanol, ethanol, butanol, octanol, benzyl alcohol, naphthylethanol; ethylene glycol, propylene glycol, 1,3 and 1,4-butanediol, 1,6-hexanediol, 1, Dihydric alcohols such as 10-decanediol, diethylene glycol, neopentyl glycol, cyclohexanediol, cyclohexanedimethanol, 1,4-bis (hydroxymethyl) cyclohexane and 1,4-bis (hydroxyethyl) benzene; glycerin and trimethylolpropane Trihydric alcohols such as pentaerythritol, sorbitol, mannitol, sorbitan, diglycerin, dipentaerythritol, sucrose, glucose, mannose, fructose, methyl 4- to 8-valent alcohols such as lucol
- amino group-containing compound examples include amines, polyamines and amino alcohols. Specific examples include ammonia; monoamines such as alkylamines having 1 to 20 carbon atoms (such as butylamine) and anilines; aliphatic polyamines such as ethylenediamine, hexamethylenediamine and diethylenetriamine; and heterocyclic groups such as piperazine and N-aminoethylpiperazine.
- Polyamines Polyamines; alicyclic polyamines such as dicyclohexylmethanediamine and isophoronediamine; aromatic polyamines such as phenylenediamine, tolylenediamine and diphenylmethanediamine; alkanolamines such as monoethanolamine, diethanolamine and triethanolamine; and dicarboxylic acids
- Polyamide polyamine obtained by condensation with excess polyamine; polyether polyamine; hydrazine (such as hydrazine and monoalkylhydrazine), dihydrazide ( Etc. Haq acid dihydrazide and dihydrazide terephthalate), guanidine (butyl guanidine and 1-cyanoguanidine, etc.); dicyandiamide; and the like.
- carboxyl group-containing compound examples include aliphatic monocarboxylic acids such as acetic acid and propionic acid; aromatic monocarboxylic acids such as benzoic acid; aliphatic dicarboxylic acids such as succinic acid, fumaric acid, sebacic acid and adipic acid; phthalic acid, Isophthalic acid, terephthalic acid, trimellitic acid, naphthalene-1,4 dicarboxylic acid, naphthalene-2,3,6 tricarboxylic acid, pyromellitic acid, diphenic acid, 2,3-anthracene dicarboxylic acid, 2,3,6-anthracene
- aromatic polycarboxylic acids such as tricarboxylic acid and pyrene dicarboxylic acid
- polycarboxylic acid polymers (functional group number: 2 to 100) such as (co) polymers of acrylic acid.
- Examples of the thiol group-containing compound include monofunctional phenylthiol, alkylthiol, and polythiol compounds.
- Examples of the polythiol include divalent to octavalent polyvalent thiols. Specific examples include ethylenedithiol and 1,6-hexanedithiol.
- Examples of phosphoric acid compounds include phosphoric acid, phosphorous acid, and phosphonic acid.
- Examples of the active hydrogen-containing compound (R 1 H) include compounds having two or more active hydrogen-containing functional groups (hydroxyl group, amino group, carboxyl group, thiol group, phosphate group, etc.) in the molecule.
- the active hydrogen-containing compound (R 1 H) also includes a compound obtained by adding an alkylene oxide to the active hydrogen-containing compound.
- the alkylene oxide to be added includes AO having 2 to 6 carbon atoms, such as ethylene oxide (hereinafter abbreviated as EO), 1,2-propylene oxide (hereinafter abbreviated as PO), 1, Examples include 3-propylene oxide, 1,2-butylene oxide, 1,4-butylene oxide, and the like.
- EO ethylene oxide
- PO 1,2-propylene oxide
- PO 1,2-butylene oxide
- PO 1,2-butylene oxide
- PO 1,2-butylene oxide
- 1,2-butylene oxide are preferable from the viewpoints of properties and reactivity.
- block addition or random addition may be used, or a combination thereof may be used.
- an active hydrogen-containing compound (polyester compound) obtained by a condensation reaction between a diol and a dicarboxylic acid (aliphatic dicarboxylic acid or aromatic dicarboxylic acid) can be used.
- a condensation reaction one type of active hydrogen-containing compound and polycarboxylic acid may be used, or two or more types may be used in combination.
- Aliphatic dicarboxylic acids include succinic acid, adipic acid, sebacic acid, maleic acid and fumaric acid.
- Aromatic dicarboxylic acids include phthalic acid, isophthalic acid, terephthalic acid, 2,2'-bibenzyldicarboxylic acid, hemimellitic acid, trimesic acid, and naphthalene-1,4 dicarboxylic acid, diphenic acid, 2,3-anthracene Examples thereof include aromatic polycarboxylic acids having 8 to 18 carbon atoms such as dicarboxylic acid and pyrene dicarboxylic acid.
- the anhydride and lower alkyl ester of polycarboxylic acid can also be used.
- Examples of the active hydrogen-containing compound (R 2 H) include divalent active hydrogen-containing compounds among the above (R 1 H).
- divalent hydroxyl group-containing compound examples include ethylene glycol, propylene glycol, 1,3 and 1,4-butanediol, 1,6-hexanediol, 1,10-decanediol, diethylene glycol, neopentyl glycol.
- dihydric alcohols such as cyclohexanediol, cyclohexanedimethanol, 1,4-bis (hydroxymethyl) cyclohexane and 1,4-bis (hydroxyethyl) benzene.
- divalent amino group-containing compound examples include aliphatic diamines such as ethylenediamine and hexamethylenediamine; alicyclic diamines such as dicyclohexylmethanediamine and isophoronediamine; phenylenediamine, tolylenediamine, and diphenylmethanediamine. Aromatic diamines may be mentioned.
- divalent carboxyl group-containing compound examples include aliphatic dicarboxylic acids such as succinic acid, fumaric acid, sebacic acid and adipic acid; phthalic acid, isophthalic acid, terephthalic acid, naphthalene-1,4 dicarboxylic acid, Examples include aromatic dicarboxylic acids such as 2,3-anthracene dicarboxylic acid.
- divalent thiol group-containing compound examples include ethylene dithiol and 1,6-hexanedithiol.
- the divalent active hydrogen-containing compound (R 2 H) is preferably a divalent hydroxyl group-containing compound or a divalent amino group-containing compound. More preferably, ethylene glycol, propylene glycol, diethylamine, and dibutylamine are preferable. Most preferred is ethylene glycol.
- R 2 in the general formulas (2) and (3) —O (CH 2 CH 2 O) n — (n is 1 ⁇ n ⁇ 5), —O (CH 2 CHCH 3 O) n — (n is 1 ⁇ n ⁇ 5) is also preferable. These groups can be obtained by adding each EO and PO to a carboxyl group of an aromatic polycarboxylic acid having a valence of 3 or more.
- Y represents a residue obtained by removing all carboxyl groups from a trivalent or higher aromatic polycarboxylic acid.
- the atoms constituting the aromatic ring of Y are only carbon atoms.
- the substituent of the aromatic ring may be a hydrogen atom or another substituent, but at least one substituent is a hydrogen atom. That is, the aromatic ring of Y has at least one hydrogen atom bonded to the carbon atom constituting the aromatic ring.
- substituents include alkyl groups, vinyl groups, allyl groups, cycloalkyl groups, halogen atoms, amino groups, carbonyl groups, carboxyl groups, hydroxyl groups, hydroxyamino groups, nitro groups, phosphino groups, thio groups, thiol groups.
- the other substituents are preferably an alkyl group, a vinyl group, an allyl group, an amino group, an amide group, a urethane group and a urea group.
- the arrangement of substituents on Y is preferably the following structure from the viewpoint of improving mechanical properties.
- a trivalent aromatic polycarboxylic acid a structure in which two carbonyl groups are adjacent and hydrogen is arranged as a substituent between the third carbonyl group and the first or second carbonyl group is preferable.
- an aromatic polycarboxylic acid having a valence of 4 or more a structure in which two carbonyl groups are adjacent and hydrogen is arranged as a substituent between the third and subsequent carbonyl groups and the first or second carbonyl group. preferable.
- aromatic polycarboxylic acid constituting Y
- benzene polycarboxylic acid trimesic acid, pyromellitic acid, etc.
- polycyclic aromatic polycarboxylic acid examples thereof include aromatic polycarboxylic acids having 8 to 18 carbon atoms (such as naphthalene-2,3,6 tricarboxylic acid).
- benzene polycarboxylic acid is preferred. That is, the residue (j) obtained by removing the hydroxyl group from an aromatic polycarboxylic acid having a valence of 3 or more is preferably a residue obtained by removing the hydroxyl group from benzene polycarboxylic acid.
- the carboxyl group substitution position is 1,2,4-position (trimellitic acid).
- the carboxyl group substitution position is 1, The 2,4,5-position (pyromellitic acid) or the 1,2,3,4-position is preferred.
- a and b are integers satisfying 1 ⁇ a ⁇ (number of substituents directly connectable to the aromatic ring ⁇ b), 0 ⁇ b ⁇ (number of substituents directly connectable to the aromatic ring ⁇ a), and 3 ⁇ a + b ⁇ 8.
- the number of substituents that can be directly bonded to an aromatic ring refers to the number of hydrogen atoms bonded to the ring carbon of an aromatic hydrocarbon having only an aromatic ring that forms an aromatic polycarboxylic acid, such as a compound such as benzene or naphthalene. And 6 for benzene and 8 for naphthalene.
- the active hydrogen-containing compound (C), which will be described later, has a general formula of a divalent active hydrogen-containing compound (R 2 H) or an active hydrogen-containing compound (R 1 H) to a trivalent or higher aromatic polycarboxylic acid (YH). It can be obtained by a dehydration condensation reaction at a ratio satisfying a and b defined in (3). Further, instead of subjecting (R 2 H) to a dehydration condensation reaction, it can also be obtained by subjecting AO (EO, PO, etc.) to a carboxyl group. Further, instead of using (R 1 H), it is preferable to obtain (C) by dehydrochlorinating a monochloride having an organic group having 1 to 30 carbon atoms from the viewpoint of reaction temperature. As the monochloride, a monochloride having a chloromethylene group is more preferable, and benzyl chloride is particularly preferable.
- the urethane resin or urethane urea resin (U1) is a polyurethane resin obtained by reacting an active hydrogen component (A) with an isocyanate component (B), and has a general formula (A) as a part of the active hydrogen component (A). It is obtained by using the active hydrogen-containing compound (C) represented by 3).
- R 1 , R 2 , Y, a and b are the same as in general formula (2).
- R 2 in the general formula (2) or (3) is represented by the following general formula (4) Is preferred.
- R 4 represents a divalent aliphatic hydrocarbon group having 2 to 10 carbon atoms, preferably 2 to 4 carbon atoms. More preferably, R 4 is an ethylene group.
- R 1 in the general formula (2) or (3) is represented by the following general formula (5) Is preferred.
- R 5 represents a monovalent hydrocarbon group having 1 to 29 carbon atoms, and is preferably a phenyl group.
- the structural unit (x) represented by the general formula (2) is (U1) in (U1) from the viewpoint of both the meltability of urethane resin particles and the mechanical strength and heat resistance of the molded product. ) To 0.1 to 30% by weight, more preferably 0.5 to 20% by weight, and most preferably 1.0 to 10.0% by weight.
- (U1) is preferably 1 or 2 in a in general formulas (2) and (3) in (U1) from the viewpoint of the meltability of urethane resin particles.
- (U1) is a urethane resin or urethane urea resin (U11) having a structural unit (x1) in which a is 1 in the general formulas (2) and (3) at the end of the molecule.
- the structural unit (x1) is preferably contained in an amount of 0.1 to 5% by weight, preferably 0.5 to 4% by weight, based on the weight of (U11). Is more preferable, and most preferably 1 to 3% by weight is contained.
- the structural unit (x2) is preferably contained in an amount of 0.1 to 3% by weight, more preferably 0.1 to 2% by weight, based on the weight of (U12). Most preferably, the content is 0.1 to 1% by weight.
- urethane resin or urethane urea resin (U1) as the active hydrogen component (A) other than the active hydrogen-containing compound (C) represented by the general formula (3), polyester diol (A1), polyether diol (A2) And polyether ester diol (A3).
- the polyester diol (A1) is, for example, (1) obtained by condensation polymerization of a low molecular diol and a dicarboxylic acid or an ester-forming derivative [an acid anhydride, a lower alkyl (carbon number of 1 to 4) ester, an acid halide, etc.]; 2) Ring-opening polymerization of a lactone monomer using a low-molecular diol as an initiator; and a mixture of two or more of these.
- the low molecular diol include aliphatic diols [linear diols (ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol. ) Having a branched chain (propylene glycol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,2-diethyl-1,3-propanediol, 1,2-, 1,3- or Diols having a cyclic group [for example, those described in JP-B No.
- dicarboxylic acid or ester-forming derivatives thereof include aliphatic dicarboxylic acids having 4 to 15 carbon atoms [succinic acid, adipic acid, sebacic acid, glutaric acid, azelaic acid, maleic acid, fumaric acid, etc.] C8-12 aromatic dicarboxylic acids [terephthalic acid, isophthalic acid, etc.], ester-forming derivatives thereof [acid anhydrides, lower alkyl esters (dimethyl esters, diethyl esters, etc.), acid halides (acid chlorides, etc.), etc. And mixtures of two or more thereof.
- lactone monomer examples include ⁇ -butyrolactone, ⁇ -caprolactone, ⁇ -valerolactone, and a mixture of two or more thereof.
- polyester diol (A1) examples include polyethylene adipate diol, polybutylene adipate diol, polyethylene butylene adipate diol, polyneopentylene adipate diol, poly 3-methylpentylene adipate diol, polycaprolactone diol, polyvalerolactone diol, poly Examples include hexamethylene carbonate diol.
- polyether diol (A2) examples include compounds having a structure in which an alkylene oxide is added to two hydroxyl group-containing compounds (for example, the low molecular diol, divalent phenols and the like).
- divalent phenols include bisphenols [bisphenol A, bisphenol F, bisphenol S, etc.], monocyclic phenols [catechol, hydroquinone, etc.], and the like. Of these, preferred are those obtained by adding alkylene oxide to dihydric phenols, and more preferred are those obtained by adding EO to dihydric phenols.
- the above polyether diol is used instead of the raw low molecular diol, for example, one or more of the above polyether diols and the dicarboxylic compounds exemplified as the raw materials of the polyester diol.
- examples thereof include those obtained by polycondensing an acid or one or more ester-forming derivatives thereof.
- Specific examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol and the like.
- the active hydrogen component (A) other than the diol having the structural unit represented by the general formula (3) preferably does not contain an ether bond from the viewpoint of heat resistance and light resistance.
- isocyanate component (B) constituting the urethane resin or urethane urea resin (U1) (I) 2 to 18 aliphatic diisocyanates [ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 2,2,4-trimethyl] (excluding carbon in the NCO group, the same applies hereinafter) Hexamethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethyl caproate, bis (2-isocyanatoethyl) fumarate, bis (2-isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6-diisocyanate Natohexanoate, etc.]; (Ii) C4-C15 alicyclic diisocyate [isophorone diisocyanate (IPDI), dicyclohexylme
- the urethane resin or urethane urea resin (U1) is obtained by reacting an active hydrogen component (A), an isocyanate component (B), and a low molecular diamine or low molecular diol (K).
- an active hydrogen component (A) an isocyanate component (B)
- a low molecular diamine or low molecular diol (K) constituting the urethane resin or urethane urea resin (U1) are as follows.
- aliphatic diamines examples include alicyclic diamines having 6 to 18 carbon atoms [4,4′-diamino-3,3′-dimethyldicyclohexylmethane, 4,4′-diaminodicyclohexylmethane, diaminocyclohexane, isophoronediamine, etc.]
- An aliphatic diamine having 2 to 12 carbon atoms [ethylene diamine, propylene diamine, hexamethylene diamine, etc.]; an araliphatic diamine having 8 to 15 carbon atoms [xylylenediamine, ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylyl] Range amine and the like] and mixtures of two or more thereof.
- alicyclic diamines and aliphatic diamines are preferred, and isophorone diamine and hexamethylene diamine are particularly preferred.
- Low molecular diols include aliphatic diols having 2 to 8 carbon atoms [linear diols (ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1, 6-hexanediol, etc.), branched diols (propylene glycol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,2-diethyl-1,3-propanediol, 1,2-, 1 , 3- or 2,3-butanediol, etc.]; diols having a cyclic group [C6-C15 alicyclic group-containing diol [1,4-bis (hydroxymethyl) cyclohexane, hydrogenated bisphenol A, etc.] , Aromatic ring-containing diols having 8 to 20 carbon atoms (such as m- or p-xy
- the molecular weight of the urethane resin or urethane urea resin (U1) can be adjusted by partially blocking the isocyanate group of the isocyanate group-terminated urethane prepolymer with a monofunctional alcohol.
- Examples of the monool include aliphatic monools having 1 to 8 carbon atoms [linear monool (methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol, etc.), monool having a branched chain (isopropyl alcohol, Neopentyl alcohol, 3-methyl-pentanol, 2-ethylhexanol, etc.]; monools having a cyclic group with 6 to 10 carbon atoms [alicyclic group-containing monools (cyclohexanol, etc.), aromatic ring-containing monools (Such as benzyl alcohol)] and mixtures of two or more thereof.
- linear monool methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol, etc.
- monool having a branched chain isopropyl alcohol
- aliphatic monools and aromatic ring-containing monools preferred are aliphatic monools and aromatic ring-containing monools.
- the polymer monool include polyester monool, polyether monool, polyether ester monool, and a mixture of two or more thereof.
- the isocyanate group of the isocyanate group-terminated urethane prepolymer is partially blocked, so that the molecular weight can be adjusted.
- Examples of the method for producing the urethane resin or urethane urea resin (U1) include the following methods. (1) The active hydrogen component (A) containing a mixture of the polyester diol (A1) and the active hydrogen-containing compound (C) represented by the general formula (3) in advance is reacted with the diisocyanate component (B), A method in which a urethane prepolymer (G) having an isocyanate group is produced, and then the prepolymer (G) and a low molecular diamine or low molecular diol (K) are mixed and elongated to obtain a urethane resin. (2) A method in which (A), (B) and (K) are mixed and reacted in one shot.
- the reaction temperature for producing the urethane prepolymer (G) may be the same as that usually employed for urethanization. When a solvent is used, it is usually 20 ° C to 100 ° C, and no solvent is used. In this case, the temperature is usually 20 ° C to 140 ° C, preferably 80 ° C to 130 ° C. In the prepolymerization reaction, a catalyst usually used for polyurethane can be used if necessary to accelerate the reaction.
- the catalyst examples include amine-based catalysts [triethylamine, N-ethylmorpholine, triethylenediamine, etc.], tin-based catalysts [trimethyltin laurate, dibutyltin dilaurate, dibutyltin malate, etc.].
- the 190 ° C. melt viscosity of the urethane resin or urethane urea resin (U1) is preferably 500 to 2000 Pa ⁇ s, more preferably 500 to 1000 Pa ⁇ s, from the viewpoint of good meltability of the urethane resin particles (D). It is.
- the storage elastic modulus G ′ at 130 ° C. of (U1) is preferably from 0.2 to 10 MPa, more preferably from 0.5 to 2 MPa, from the viewpoint of good heat resistance and good meltability of the urethane resin particles.
- the urethane resin particles (D2) of the present invention include a compound (E) represented by the following general formula (1) having a residue (j) obtained by removing a hydroxyl group from an aromatic polycarboxylic acid having a valence of 3 or more, A urethane resin composition (S2) having a urethane resin or a urethane urea resin (U2) is contained, and further from a urethane group or urea group (u) in (U2) and an aromatic polycarboxylic acid having a valence of 3 or more.
- the residue (j) excluding the hydroxyl group is formed by hydrogen bonding.
- excellent performance can be imparted over all three of the meltability of (S2), the heat resistance of the molded product of (S2), and the mechanical properties.
- the hydrogen bond between the urethane group or urea group (u) and the residue (j) in (U2) can be confirmed by the absorption appearing in the vicinity of 1680 to 1720 cm ⁇ 1 in the IR spectrum.
- R 3 represents a residue or OH group obtained by removing one active hydrogen from a monovalent or polyvalent active hydrogen-containing compound (R 3 H).
- the plurality of R 3 may be the same or different.
- V represents a residue obtained by removing all carboxyl groups from a trivalent or higher aromatic polycarboxylic acid. In the aromatic ring of V, a hydrogen atom is bonded to at least one ring carbon.
- C is an integer satisfying 2 ⁇ c ⁇ (the number of substituents that can be directly bonded to an aromatic ring ⁇ 2).
- W represents a residue obtained by removing m active hydrogens from an active hydrogen-containing compound (WH) having a valence of at least m; M represents an integer of 2 to 10.
- R 3 is the same as R 1 in the general formula (2).
- V is the same as Y in the general formula (2).
- W is m or more and is the same as the residue obtained by removing m active hydrogens from the active hydrogen-containing compound (R 1 H) of the general formula (2).
- the active hydrogen-containing compound represented by (WH) may be the same as or different from (R 1 H).
- m represents an integer of 2 to 10.
- (WH) includes a hydroxyl group-containing compound, an amino group-containing compound, an AO adduct thereof, and a polycarboxylic acid. A condensate with an acid is preferably used, and m is preferably 2 to 8.
- (U2) preferably contains 0.1 to 10% by weight of compound (E) with respect to the weight of (U2) from the viewpoint of improving the tensile strength and elongation of the molded article of urethane resin particles. More preferably, the content is 0.5 to 9% by weight.
- the difference in solubility parameter ( ⁇ SP value) between (E) and (U2) is preferably 0 to 1.5, more preferably 0 to 1.4, and still more preferably 0 to 1.3. If the ⁇ SP value is within the above range, an oil film is not formed (fogging) on the windshield of the vehicle and the visibility of the driver is not impaired, and it does not precipitate (bleed out) on the surface of the molded product.
- ⁇ H and V are the total heat of molar evaporation ( ⁇ H) of the atomic group described in “POLYMER ENGINEERING AND SCIENCE FEBRUARY, 1974, Vol. 14, No. 2, ROBERT F. FEDORS. (Pages 151 to 153)”. And the sum of molar volumes (V) can be used. Those having a close numerical value are easy to mix with each other (high compatibility), and those having a close numerical value are indices that indicate that they are difficult to mix.
- the SP value of the urethane resin is POLYMER ENGINEERING AND SCIENCE JUNE, 1974, Vol. 14, no. 6, ROBERT F.R. FEDORS. (Page 472).
- Polyester compounds obtained by the condensation reaction of are preferred, more preferably methanol, ethanol, butanol, ethylene glycol, propylene glycol, glycerin, pentaerythritol, sorbitol, sucrose, benzyl alcohol, phenol, methylamine, dimethylamine, ethylamine, diethylamine Butylamine, dibutylamine, phenylamine, diphenylamine, EO and / or PO adducts thereof, condensates of these active hydrogen compounds with phthalic acid and / or isophthalic acid, and monochlorides include Jirukuroraido is preferable.
- Urethane resin or urethane urea resin (U2) is obtained by reacting active hydrogen component (A) with isocyanate component (B).
- the active hydrogen component (A) include polyester diol (A1), polyether diol (A2), and polyether ester diol (A3). These specific examples are the same as (U1).
- the isocyanate component (B) is the same as that mentioned in (U1).
- the urethane resin or urethane urea resin (U2) is obtained by reacting an active hydrogen component (A), an isocyanate component (B), and a low molecular diamine or low molecular diol (K). Specific examples of the low molecular diamine or the low molecular diol (K) are the same as (U1).
- the method for adjusting the molecular weight of the urethane resin or urethane urea resin (U2) and the method for producing the urethane resin or urethane urea resin (U2) are also the same as (U1).
- the melt viscosity at 190 ° C. and the storage elastic modulus G ′ at 130 ° C. of (U2) are the same as (U1).
- the urethane resin composition (S2) contains a compound (E) represented by the general formula (1) and a urethane resin or a urethane urea resin (U2).
- the content of the compound (E) is preferably 0.1 to 10% by weight with respect to the weight of the urethane resin or urethane urea resin (U2).
- the urethane resin composition (S2) can contain an additive (F) described later.
- the compound (E) and the additive (F) may be added to the active hydrogen component (A), or during or during the production process of the urethane prepolymer (G). (G) may be added.
- the urethane resin or urethane urea resin (U1) or (U2) is preferably a thermoplastic resin.
- (U1) or (U2) as particles, in addition to slush molding powder, it can be applied to hot melt adhesives and the like.
- Urethane resin particles (D1) or (D2) [Hereinafter, it may be referred to as urethane resin particles (D). ] Includes, for example, those obtained by the following production method.
- a blocked linear aliphatic diamine (H1) (for example, a ketimine compound) can be used.
- H1 a blocked linear aliphatic diamine
- (2) Producing urethane resin particles (D) by a method in which the urethane prepolymer (G) is subjected to an extension reaction with a low molecular diamine or a low molecular diol (K) in the presence of a nonpolar organic solvent and a dispersion stabilizer. Can do.
- a lump of thermoplastic polyurethane resin is obtained by reacting the diisocyanate component (B), the high molecular diol (A), and the low molecular diol or low molecular diamine (K).
- the urethane resin particles (D) can be produced by pulverization (for example, freeze pulverization, a method of cutting through pores in a molten state).
- the volume average particle diameter of the urethane resin particles (D) of the present invention is preferably 10 to 500 ⁇ m, more preferably 70 to 300 ⁇ m.
- the urethane resin particles (D) of the present invention are obtained by adding an additive (F) in addition to the urethane resin, the urethane urea resin (U1) or (U2), and the compound (E), to obtain a thermoplastic urethane resin particle composition for slush molding. It can be a thing (P).
- the additive (F) include inorganic fillers, pigments, plasticizers, mold release agents, organic fillers, antiblocking agents, stabilizers, and dispersants.
- the addition amount (% by weight) of the additive (F) is preferably 0 to 50, more preferably based on the weight of the urethane resin or urethane urea resin (U1) or the total weight of (U2) and (E). 1-30.
- the additive (F) may be added to the active hydrogen component (A), may be added during the production process of the urethane prepolymer (G), or may be added to the obtained (G). Further, when the additive (F) is a plasticizer, a release agent, a fluidity modifier, or an anti-blocking agent, there is a method in which these additives are impregnated or mixed into a powder composed of urethane resin particles (D). preferable.
- Inorganic fillers include kaolin, talc, silica, titanium oxide, calcium carbonate, bentonite, mica, sericite, glass flake, glass fiber, graphite, magnesium hydroxide, aluminum hydroxide, antimony trioxide, barium sulfate, zinc borate , Alumina, magnesia, wollastonite, zonotlite, whisker, metal powder and the like.
- kaolin, talc, silica, titanium oxide and calcium carbonate are preferable from the viewpoint of promoting crystallization of the thermoplastic resin, and kaolin and talc are more preferable.
- the volume average particle diameter ( ⁇ m) of the inorganic filler is preferably from 0.1 to 30, more preferably from 1 to 20, particularly preferably from 5 to 10, from the viewpoint of dispersibility in the thermoplastic resin.
- the addition amount (% by weight) of the inorganic filler is preferably 0 to 40 and more preferably 1 to 20 with respect to the weight of the urethane resin or urethane urea resin (U1) or the total weight of (U2) and (E). .
- the pigment is not particularly limited, and a known organic pigment and / or inorganic pigment can be used, and is usually 10 parts by weight or less, preferably 0.01 to 5 parts by weight per 100 parts by weight of (U). .
- the organic pigment include insoluble or soluble azo pigments, copper phthalocyanine pigments, quinacridone pigments, and inorganic pigments include chromate, ferrocyan compounds, metal oxides (titanium oxide, iron oxide, Zinc oxide, aluminum oxide, etc.), metal salts [sulfates (barium sulfate, etc.), silicates (calcium silicate, magnesium silicate, etc.), carbonates (calcium carbonate, magnesium carbonate, etc.), phosphates (calcium phosphate, magnesium phosphate, etc.) Etc.], metal powder (aluminum powder, iron powder, nickel powder, copper powder, etc.), carbon black, and the like.
- the average particle size of the pigment is not particularly limited, but is usually 0.2 to 5.0 ⁇ m, preferably 0.5 to 1 ⁇ m.
- the added amount (% by weight) of the pigment is preferably 0 to 5, more preferably 1 to 3, with respect to the weight of the urethane resin or urethane urea resin (U1) or the total weight of (U2) and (E).
- Plasticizers include phthalate esters (dibutyl phthalate, dioctyl phthalate, dibutylbenzyl phthalate, diisodecyl phthalate, etc.); aliphatic dibasic acid esters (di-2-ethylhexyl adipate, 2-ethylhexyl sebacate, etc.) ); Trimellitic acid ester (tri-2-ethylhexyl trimellitic acid and trioctyl trimellitic acid); fatty acid ester (such as butyl oleate); aliphatic phosphoric acid ester (trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri- 2-ethylhexyl phosphate, tributoxy phosphate, etc.); aromatic phosphates (triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl
- the addition amount (% by weight) of the plasticizer is preferably 0 to 50, more preferably 5 to 20 with respect to the weight of the urethane resin or urethane urea resin (U1) or the total weight of (U2) and (E). .
- mold release agent known mold release agents can be used, and fluorine compound type mold release agents (triperfluoroalkyl phosphate (carbon number 8 to 20) ester such as triperfluorooctyl phosphate and triperfluorododecyl phosphate).
- fluorine compound type mold release agents triperfluoroalkyl phosphate (carbon number 8 to 20) ester such as triperfluorooctyl phosphate and triperfluorododecyl phosphate).
- Silicone compound type release agents dimethylpolysiloxane, amino-modified dimethylpolysiloxane, carboxyl-modified dimethylpolysiloxane, etc.
- fatty acid ester type release agents mono- or polyhydric alcohol esters of fatty acids having 10 to 24 carbon atoms, For example, butyl stearate, hydrogenated castor oil, ethylene glycol monostearate, etc .; aliphatic acid amide type mold release agents (mono- or bisamides of fatty acids having 8 to 24 carbon atoms, such as oleic acid amide, palmitic acid amide, stearic acid) Of amide and ethylenediamine Metal soap (such as magnesium stearate and zinc stearate); natural or synthetic wax (such as paraffin wax, microcrystalline wax, polyethylene wax and polypropylene wax); and mixtures of two or more thereof Is mentioned.
- the addition amount (% by weight) of the release agent is preferably 0 to 1, preferably 0.1 to 0 with respect to the weight of the urethane resin or urethane urea resin (U1) or the total weight of (U2) and (E). .5 is more preferred.
- Stabilizers include carbon-carbon double bonds (such as ethylene bonds that may have a substituent) in the molecule (excluding double bonds in aromatic rings), carbon-carbon triple bonds (with substituents).
- a compound having an acetylene bond which may be present can be used, and an ester (ethylene glycol di (meth) acrylate) of (meth) acrylic acid and a polyhydric alcohol (2- to 10-valent polyhydric alcohol; hereinafter the same).
- an ester of (meth) acrylic acid and a polyhydric alcohol is preferable, and trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate and more preferably Dipentaerythritol penta (meth) acrylate.
- the addition amount (% by weight) of the stabilizer is preferably 0 to 20, more preferably 1 to 15 with respect to the weight of the urethane resin or urethane urea resin (U1) or the total weight of (U2) and (E). .
- thermoplastic polyurethane resin particle composition (P) for slush molding of the present invention is a known inorganic antiblocking agent as a powder flowability improver and an antiblocking agent. Moreover, an organic type antiblocking agent etc. can be used. Examples of the inorganic blocking inhibitor include silica, talc, titanium oxide and calcium carbonate.
- Organic blocking inhibitors include thermosetting resins with a particle size of 10 ⁇ m or less (thermosetting polyurethane resins, guanamine resins, epoxy resins, etc.) and thermoplastic resins with a particle size of 10 ⁇ m or less (thermoplastic polyurethane urea resin and poly ( (Meth) acrylate resin, etc.).
- the addition amount (% by weight) of the antiblocking agent (fluidity improver) is preferably 0 to 5 based on the weight of the urethane resin or urethane urea resin (U1) or the total weight of (U2) and (E). 0.5 to 1 is more preferable.
- a known powder mixing device can be used, and a container rotating mixer, a fixed container mixer, a fluid motion mixer Either of these can be used.
- a container rotating mixer for example, as a fixed vessel type mixer, a high-speed flow type mixer, a double-shaft paddle type mixer, a high-speed shear mixing device (Hensiel mixer (registered trademark), etc.), a low-speed mixing device (planetary mixer, etc.) or a conical screw mixer
- a dry blending method using a machine (Nauta Mixer (registered trademark) or the like) is well known.
- a double-shaft paddle type mixer a low-speed mixing device (planetary mixer or the like), and a conical screw mixer (Nauta mixer (registered trademark, hereinafter omitted) or the like).
- the volume average particle size of the resin particle composition (P) is preferably in the range of 10 to 500 ⁇ m, more preferably 70 to 300 ⁇ m.
- the resin particle composition (P) can be molded by, for example, a slush molding method to produce a urethane resin molded product such as a skin.
- a slush molding method the box containing the powder composition of the present invention and a heated mold are both oscillated and rotated to melt and flow the powder in the mold, and after cooling, solidify to produce a skin.
- the mold temperature is preferably 200 to 300 ° C, more preferably 200 to 250 ° C.
- the thickness of the skin molded with the resin particle composition (P) is preferably 0.3 to 1.5 mm.
- the resin particle composition (P) can be molded in a relatively low temperature region, and the molding temperature can be 200 to 250 ° C.
- the molded skin is set so that the surface is in contact with the foaming mold, the urethane foam is poured, and a foamed layer of 5 mm to 15 mm is formed on the back surface, so that a resin molded product can be obtained.
- the resin molded product molded with the resin particle composition (P) is suitably used for automobile interior materials such as instrument panels and door trims.
- the melt viscosity at 190 ° C. of the resin particle composition (P) is preferably 100 to 500 Pa ⁇ s, more preferably 100 to 300 Pa ⁇ s. When the melt viscosity at 190 ° C. of the resin particle composition (P) is 500 Pa ⁇ s or less, the low-temperature meltability of the resin particle composition is good.
- the storage elastic modulus G ′ at 130 ° C. of the molded product molded from the resin particle composition (P) is preferably 0.1 to 5 MPa, more preferably 0.25 to 1 MPa for slush molding applications. If the storage elastic modulus G ′ at 130 ° C. of the molded product is 0.1 MPa or more, the heat resistance is good. Moreover, if it is 5 MPa or less, the low-temperature meltability of the resin particle composition (P) is good.
- Production Example 4 Production of active hydrogen-containing compound (C-3) 192 parts of trimellitic anhydride and 186 parts of ethylene glycol were placed in a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, and water produced at 140 ° C. was distilled. The reaction was allowed to proceed for 5 hours, and the active hydrogen-containing compound (C-3) was taken out. As a result of measuring the hydroxyl value of the obtained active hydrogen-containing compound (C-3) and calculating the molecular weight, it was 342.
- Production of active hydrogen-containing compound (C-4) 254 parts of pyromellitic anhydride and 248 parts of ethylene glycol were placed in a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introduction pipe, and water produced at 140 ° C was distilled. The reaction was allowed to proceed for 5 hours, and the active hydrogen-containing compound (C-4) was taken out. As a result of measuring the hydroxyl value of the obtained active hydrogen-containing compound (C-4) and calculating the molecular weight, it was 430.
- Production of active hydrogen-containing compound (C-5) 192 parts of trimellitic anhydride and 108 parts of benzyl alcohol were placed in a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introduction pipe, and water produced at 180 ° C. was distilled. The reaction was allowed to proceed for 5 hours, 1 mol of benzyl alcohol with 1 mol of 1,2,4-benzenetricarboxylic acid was taken out, charged into a pressure reactor, and 59 parts of PO at 120 ° C. for 3 hours in the pressure reactor. The active hydrogen-containing compound (C-5) was taken out by reaction. As a result of measuring the hydroxyl value of the obtained active hydrogen-containing compound (C-5) and calculating the molecular weight, it was 416.
- Production Example 7 Production of active hydrogen-containing compound (C-6) 192 parts of trimellitic anhydride and 186 parts of dodecyl alcohol were placed in a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introduction pipe, and water produced at 180 ° C. was distilled. The reaction was allowed to proceed for 5 hours, and then 124 parts of ethylene glycol was added. The reaction was allowed to proceed for 5 hours while distilling off the water produced at 140 ° C., and the active hydrogen-containing compound (C-6) was taken out. As a result of measuring the hydroxyl value of the obtained active hydrogen-containing compound (C-6) and calculating the molecular weight, it was 466.
- Production Example 8 Production of active hydrogen-containing compound (C-7) 384 parts of ethyl acetate was charged into a reaction vessel equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe, and then 192 parts of trimellitic anhydride, 62 parts of ethylene glycol, triethylamine After 202 parts were added and reacted at 80 ° C. for 2 hours, 252 parts of benzyl chloride was added and reacted at 70 ° C. for 2 hours. Thereafter, liquid separation and solvent removal were performed, and the active hydrogen-containing compound (C-7) was taken out. As a result of measuring the hydroxyl value of the obtained active hydrogen-containing compound (C-7) and calculating the molecular weight, it was 434.
- Production Example 9 Production of active hydrogen-containing compound (C-8) 192 parts of trimellitic anhydride and 60 parts of ethylenediamine were placed in a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, and reacted at 80 ° C. for 2 hours. Then, 216 parts of benzyl alcohol was added and reacted for 5 hours while distilling off water produced at 180 ° C., and the active hydrogen-containing compound (C-8) was taken out. The amine value of the obtained active hydrogen-containing compound (C-8) was measured, and the molecular weight was calculated.
- Production Example 11 Production of Compound (E-2) 384 parts of trimellitic anhydride and 62 parts of ethylene glycol were placed in a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introduction pipe and reacted at 140 ° C. for 5 hours. The compound (E-2) was taken out by reacting 432 parts of alcohol for 5 hours while distilling off the water produced at 180 ° C.
- Production Example 12 Production of Compound (E-3) 508 parts of pyromellitic anhydride and 174 parts of 1,10 decanediol were placed in a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, and reacted at 140 ° C. for 5 hours. Thereafter, 648 parts of benzyl alcohol was reacted for 5 hours while distilling off the water produced at 180 ° C., and the compound (E-3) was taken out.
- Production Example 14 Production of Compound (E-5) 576 parts of trimellitic anhydride and 92 parts of glycerin were placed in a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, reacted at 140 ° C. for 5 hours, and then benzyl alcohol. 648 parts were reacted for 5 hours while distilling off the water produced at 180 ° C., and the compound (E-5) was taken out.
- Production Example 15 Production of Compound (E-6) 768 parts of trimellitic anhydride and 136 parts of pentaerythritol were placed in a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, reacted at 140 ° C. for 5 hours, and then benzyl 864 parts of alcohol was reacted for 5 hours while distilling off the water produced at 180 ° C., and the compound (E-6) was taken out.
- Production Example 16 Compound (E-7) Production 1536 parts of trimellitic anhydride and 342 parts of sucrose were placed in a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, and reacted at 140 ° C. for 5 hours. Then, 1728 parts of benzyl alcohol was reacted for 5 hours while distilling off the water produced at 180 ° C., and the compound (E-7) was taken out.
- Production Example 17 Production of prepolymer solution (G-1) A reaction vessel equipped with a thermometer, a stirrer, and a nitrogen blowing tube was charged with polyethylene isophthalate diol (278. 278) having a molecular weight (hereinafter referred to as Mn) calculated from the hydroxyl value of 2300. 1 part), polybutylene adipate diol (417.2 parts) with Mn of 1000, active hydrogen-containing compound (C-1) (16.0 parts), benzyl alcohol (5.3 parts), and nitrogen substitution The mixture was heated to 110 ° C. with stirring and melted and cooled to 50 ° C.
- Mn molecular weight
- methyl ethyl ketone (150.0 parts) and hexamethylene diisocyanate (132.0 parts) were added and reacted at 90 ° C. for 6 hours.
- a stabilizer (11.4 parts) [Irganox 1010 manufactured by Ciba Specialty Chemicals Co., Ltd.] and carbon black (1 part) were added and mixed uniformly to prepare a prepolymer solution ( G-1) was obtained.
- the NCO content of the obtained prepolymer solution was 1.63%.
- a stabilizer (1.4 parts) [Irganox 1010 manufactured by Ciba Specialty Chemicals Co., Ltd.] and carbon black (1 part) were added and mixed uniformly to prepare a prepolymer solution ( G-2) was obtained.
- the NCO content of the obtained prepolymer solution was 1.63%.
- a stabilizer (1.4 parts) [Irganox 1010 manufactured by Ciba Specialty Chemicals Co., Ltd.] and carbon black (1 part) were added and mixed uniformly to prepare a prepolymer solution ( G-3) was obtained.
- the NCO content of the obtained prepolymer solution was 1.63%.
- a stabilizer (1.4 parts) [Irganox 1010 manufactured by Ciba Specialty Chemicals Co., Ltd.] and carbon black (1 part) were added and mixed uniformly to prepare a prepolymer solution ( G-4) was obtained.
- the NCO content of the obtained prepolymer solution was 1.63%.
- a stabilizer (1.4 parts) [Irganox 1010 manufactured by Ciba Specialty Chemicals Co., Ltd.] and carbon black (1 part) were added and mixed uniformly to prepare a prepolymer solution ( G-5) was obtained.
- the NCO content of the obtained prepolymer solution was 1.63%.
- a stabilizer (1.4 parts) [Irganox 1010 manufactured by Ciba Specialty Chemicals Co., Ltd.] and carbon black (1 part) were added and mixed uniformly to prepare a prepolymer solution ( G-6) was obtained.
- the NCO content of the obtained prepolymer solution was 1.63%.
- a stabilizer (1.4 parts) [Irganox 1010 manufactured by Ciba Specialty Chemicals Co., Ltd.] and carbon black (1 part) were added and mixed uniformly to prepare a prepolymer solution ( G-7) was obtained.
- the NCO content of the obtained prepolymer solution was 1.63%.
- a stabilizer (1.4 parts) [Irganox 1010 manufactured by Ciba Specialty Chemicals Co., Ltd.] and carbon black (1 part) were added and mixed uniformly to prepare a prepolymer solution ( G-8) was obtained.
- the NCO content of the obtained prepolymer solution was 1.63%.
- a stabilizer (1.4 parts) [Irganox 1010 manufactured by Ciba Specialty Chemicals Co., Ltd.] and carbon black (1 part) were added and mixed uniformly to prepare a prepolymer solution ( G-9) was obtained.
- the NCO content of the obtained prepolymer solution was 1.63%.
- methyl ethyl ketone 400.3 parts
- hexamethylene diisocyanate 112.9 parts
- isophorone diisocyanate 3.8 parts
- a stabilizer 2.7 parts
- carbon black 1 part
- a stabilizer (1.4 parts) [Irganox 1010 manufactured by Ciba Specialty Chemicals Co., Ltd.] and carbon black (1 part) were added and mixed uniformly to prepare a prepolymer solution ( G-13) was obtained.
- the NCO content of the obtained prepolymer solution was 1.63%.
- Comparative production example 1 Production of comparative active hydrogen-containing compound (C-1 ′) In a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, 148 parts (1 mole) of phthalic anhydride, 108 parts (1 mole) of benzyl alcohol, ethylene 62 parts (1 mol) of glycol was reacted for 5 hours while distilling off the water produced at 180 ° C., and the compound (C-1 ′) was taken out.
- the comparative active hydrogen-containing compound (C-1 ′) is monoethylene glycol monobenzyl ester of phthalic acid.
- Comparative production example 2 Production of Comparative Compound (E-1 ′) Into a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, 192 parts of trimellitic anhydride and 324 parts of benzyl alcohol were distilled off at 180 ° C. The mixture was reacted for 5 hours, and the compound (E-1 ′) was taken out. Compound (E-1 ′) is a tribenzyl ester of trimellitic acid.
- Comparative production example 3 Production of Comparative Compound (E-2 ′) 296 parts (2 mol) of phthalic anhydride and 174 parts (1 mol) of 1,10 decanediol were placed in a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube. After reacting at 140 ° C. for 5 hours, 216 parts (2 mol) of benzyl alcohol was reacted at 180 ° C. for 5 hours while distilling off the water produced, and the compound (E-2 ′) was taken out.
- Compound (E-2 ′) is a dibenzyl ester of 1,10-decanediol diphthalate.
- a stabilizer (1.4 parts) [Irganox 1010 manufactured by Ciba Specialty Chemicals Co., Ltd.] and carbon black (1 part) were added and mixed uniformly to prepare a prepolymer solution ( G-1 ′) was obtained.
- the NCO content of the obtained prepolymer solution was 2.03%.
- methyl ethyl ketone (150.0 parts) and hexamethylene diisocyanate (132.0 parts) were added and reacted at 90 ° C. for 6 hours.
- a stabilizer (11.4 parts) [Irganox 1010 manufactured by Ciba Specialty Chemicals Co., Ltd.] and carbon black (1 part) were added and mixed uniformly to prepare a prepolymer solution ( G-2 ′) was obtained.
- the NCO content of the obtained prepolymer solution was 1.63%.
- Example 1 The prepolymer solution (G-1) (100 parts) obtained in Production Example 17 and the MEK ketimine product (4.2 parts) of Production Example 1 are charged and mixed into the production reaction vessel of the resin particle composition (P-1). Then, 300 parts of an aqueous solution in which a polycarboxylic acid type anionic surfactant [Sansu Pearl PS-8 manufactured by Sanyo Chemical Industry Co., Ltd.] (30 parts) was dissolved was added, and an ultradispers manufactured by Yamato Scientific Co., Ltd. was used. And mixed for 1 minute at a rotation speed of 6000 rpm.
- a polycarboxylic acid type anionic surfactant [Sansu Pearl PS-8 manufactured by Sanyo Chemical Industry Co., Ltd.]
- thermoplastic urethane resin particles (D-1) (100 parts), radical polymerizable unsaturated group-containing compound dipentaerythritol pentaacrylate [manufactured by Sanyo Chemical Industries, Ltd .; DA600] (1 0.0 part), UV stabilizers bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidylsebacate (mixture) [ [Product name: TINUVIN 765, manufactured by Ciba] (0.3 parts) was added and impregnated at 70 ° C. for 4 hours.
- Example 2 Production of resin particle composition (P-2) Same as Example 1 except that the prepolymer solution (G-2) (100 parts) was used instead of the prepolymer solution (G-1) in Example 1. Thus, urethane resin particles (D-2) were produced. Mn of (D-2) was 20,000, and the volume average particle diameter was 140 ⁇ m. Further, a resin particle composition (P-2) was obtained in the same manner as in Example 1 except that the urethane resin particles (D-2) were used instead of the urethane resin particles (D-1). The volume average particle diameter of (P-2) was 143 ⁇ m.
- Example 3 Production of resin particle composition (P-3) Same as Example 1 except that the prepolymer solution (G-3) (100 parts) was used instead of the prepolymer solution (G-1) in Example 1. Thus, urethane resin particles (D-3) were produced. (D-3) had a Mn of 15,000 and a volume average particle size of 148 ⁇ m. Further, a resin particle composition (P-3) was obtained in the same manner as in Example 1 except that the urethane resin particles (D-3) were used instead of the urethane resin particles (D-1). The volume average particle diameter of (P-3) was 150 ⁇ m.
- Example 4 Production of resin particle composition (P-4) Same as Example 1 except that the prepolymer solution (G-4) (100 parts) was used instead of the prepolymer solution (G-1) in Example 1. Thus, urethane resin particles (D-4) were produced. Mn of (D-4) was 20,000, and the volume average particle diameter was 158 ⁇ m. Further, a resin particle composition (P-4) was obtained in the same manner as in Example 1 except that the urethane resin particles (D-4) were used instead of the urethane resin particles (D-1). The volume average particle diameter of (P-4) was 160 ⁇ m.
- Example 5 Production of resin particle composition (P-5) Same as Example 1 except that the prepolymer solution (G-5) (100 parts) was used instead of the prepolymer solution (G-1) in Example 1. Thus, urethane resin particles (D-5) were produced. Mn of (D-5) was 20,000, and the volume average particle size was 152 ⁇ m. Further, a resin particle composition (P-5) was obtained in the same manner as in Example 1 except that the urethane resin particles (D-5) were used instead of the urethane resin particles (D-1). The volume average particle diameter of (P-5) was 154 ⁇ m.
- Example 6 Production of resin particle composition (P-6) Same as Example 1 except that the prepolymer solution (G-6) (100 parts) was used instead of the prepolymer solution (G-1) in Example 1. Thus, urethane resin particles (D-6) were produced. The Mn of (D-6) was 22,000, and the volume average particle size was 154 ⁇ m. Further, a resin particle composition (P-6) was obtained in the same manner as in Example 1 except that the urethane resin particles (D-6) were used instead of the urethane resin particles (D-1). The volume average particle diameter of (P-6) was 155 ⁇ m.
- Example 7 Production of resin particle composition (P-7) Same as Example 1 except that the prepolymer solution (G-7) (100 parts) was used instead of the prepolymer solution (G-1) in Example 1. Then, urethane resin particles (D-7) were produced. Mn of (D-6) was 26,000, and the volume average particle diameter was 146 ⁇ m. Further, a resin particle composition (P-7) was obtained in the same manner as in Example 1 except that the urethane resin particles (D-7) were used instead of the urethane resin particles (D-1). The volume average particle diameter of (P-7) was 148 ⁇ m.
- Example 8 Production of resin particle composition (P-8) Same as Example 1 except that the prepolymer solution (G-8) (100 parts) was used instead of the prepolymer solution (G-1) in Example 1. Thus, urethane resin particles (D-8) were produced. Mn of (D-8) was 20,000, and the volume average particle size was 144 ⁇ m. Further, a resin particle composition (P-8) was obtained in the same manner as in Example 1 except that the urethane resin particles (D-8) were used instead of the urethane resin particles (D-1). The volume average particle diameter of (P-8) was 146 ⁇ m.
- Example 9 Production of resin particle composition (P-9) Same as Example 1 except that the prepolymer solution (G-9) (100 parts) was used instead of the prepolymer solution (G-1) in Example 1. Then, urethane resin particles (D-9) were produced. Mn of (D-9) was 20,000, and the volume average particle diameter was 145 ⁇ m. Further, a resin particle composition (P-9) was obtained in the same manner as in Example 1 except that the urethane resin particles (D-9) were used instead of the urethane resin particles (D-1). The volume average particle diameter of (P-9) was 148 ⁇ m.
- Example 10 Production of Resin Particle Composition (P-10)
- the prepolymer solution (G-10) 100 parts
- the MEK ketimine compound 3.2 parts
- the same operation as in Example 1 was carried out to produce urethane resin particles (D-10).
- the Mn of (D-10) was 20,000
- the volume average particle size was 145 ⁇ m.
- a resin particle composition (P-11) was obtained in the same manner as in Example 1 except that the urethane resin particles (D-10) were used instead of the urethane resin particles (D-1).
- the volume average particle diameter of (P-10) was 148 ⁇ m.
- Example 11 Production of Resin Particle Composition (P-11)
- the prepolymer solution (G-1) instead of the prepolymer solution (G-1), the prepolymer solution (G-11) (100 parts) and the MEK ketimine compound (3.2 parts) were used. Except for the change, the same operation as in Example 1 was performed to produce urethane resin particles (D-11). Mn of (D-11) was 20,000, and the volume average particle size was 145 ⁇ m. Further, a resin particle composition (P-11) was obtained in the same manner as in Example 1 except that the urethane resin particles (D-11) were used instead of the urethane resin particles (D-1). The volume average particle diameter of (P-11) was 148 ⁇ m.
- Example 12 Production of Resin Particle Composition (P-12)
- the prepolymer solution (G-1) instead of the prepolymer solution (G-1), the prepolymer solution (G-12) (100 parts) and the MEK ketimine compound (3.2 parts) were used. Except for the change, the same operation as in Example 1 was performed to produce urethane resin particles (D-12). Mn of (D-12) was 20,000, and the volume average particle diameter was 150 ⁇ m. Further, a resin particle composition (P-12) was obtained in the same manner as in Example 1 except that the urethane resin particles (D-12) were used instead of the urethane resin particles (D-1). The volume average particle diameter of (P-12) was 152 ⁇ m.
- Example 13 Production of resin particle composition (P-13) Same as Example 1 except that the prepolymer solution (G-13) (100 parts) was used instead of the prepolymer solution (G-1) in Example 1. Then, urethane resin particles (D-13) were produced. Mn of (D-13) was 20,000, and the volume average particle size was 145 ⁇ m. Next, in a 100 L Nauta mixer, urethane resin particles (D-13) (100 parts), radical polymerizable unsaturated group-containing compound dipentaerythritol pentaacrylate [ DA600] (4.0 parts), UV stabilizer bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6, manufactured by Sanyo Chemical Industries, Ltd.
- 6-Pentamethyl-4-piperidyl sebacate (mixture) [trade name: TINUVIN 765, manufactured by Ciba] (0.3 parts) and compound (E-1) (2 parts) were added and impregnated at 70 ° C. for 4 hours. .
- dimethylpolysiloxane manufactured by Nippon Unicar Co., Ltd .; Kei L45-1000
- carboxyl-modified silicon (manufactured by Shin-Etsu Chemical Co., Ltd .; X-22-3710] (0.05 parts) was added, mixed for 1 hour, and then cooled to room temperature.
- an antiblocking agent cross-linked polymethylmethacrylate [Ganz Kasei Co., Ltd .; Ganzpearl PM-030S] (0.5 parts) was added and mixed to obtain a resin particle composition (P-13).
- Example 14 The same operation as in Production Example 13 of resin particle composition (P-14), except that compound (E-2) (2 parts) was used instead of compound (E-1) (2 parts). And a resin particle composition (P-14) was obtained.
- the volume average particle diameter of (P-14) was 149 ⁇ m.
- Example 15 The same operation as in Production Example 13 of resin particle composition (P-15), except that compound (E-3) (2 parts) was used instead of compound (E-1) (2 parts). And a resin particle composition (P-15) was obtained.
- the volume average particle diameter of (P-15) was 149 ⁇ m.
- Example 16 The same operation as in Production Example 13 of resin particle composition (P-16), except that compound (E-4) (2 parts) was used instead of compound (E-1) (2 parts). And a resin particle composition (P-16) was obtained.
- the volume average particle diameter of (P-16) was 149 ⁇ m.
- Example 17 The same operation as in Production Example 13 of resin particle composition (P-17), except that compound (E-5) (2 parts) was used instead of compound (E-1) (2 parts). And a resin particle composition (P-17) was obtained.
- the volume average particle size of (P-17) was 149 ⁇ m.
- Example 18 The same operation as in Production Example 13 of resin particle composition (P-18), except that compound (E-6) (2 parts) was used instead of compound (E-1) (2 parts). And a resin particle composition (P-18) was obtained.
- the volume average particle diameter of (P-18) was 149 ⁇ m.
- Example 19 The same operation as in Production Example 13 of resin particle composition (P-19), except that compound (E-7) (2 parts) was used instead of compound (E-1) (2 parts). And a resin particle composition (P-19) was obtained.
- the volume average particle diameter of (P-19) was 149 ⁇ m.
- Example 20 The same operation as in Production Example 13 of resin particle composition (P-20), except that compound (E-1) (10 parts) was used instead of compound (E-1) (2 parts). And a resin particle composition (P-20) was obtained.
- the volume average particle size of (P-20) was 149 ⁇ m.
- Example 2 Production of Resin Particle Composition (P-2 ′)
- the prepolymer solution (G-1) 100 parts
- the MEK ketimine compound (4.2 parts) the prepolymer solution (G-1 ′) ) (100 parts) and MEK ketimine compound (5.2 parts)
- Mn of (D-1 ′) was 20,000
- the volume average particle diameter was 145 ⁇ m.
- the same operation was carried out except that the urethane resin particles (D-1 ′) were used instead of the urethane resin particles (D-1) to obtain a resin particle composition (P-2 ′).
- the volume average particle diameter of (P-2 ′) was 148 ⁇ m.
- Comparative Example 4 The same procedure as in Production Example 13 for resin particle composition (P-4 ′), except that compound (E-1 ′) (2 parts) was used instead of compound (E-1) (2 parts). The operation was performed to obtain a resin particle composition (P-4 ′). The volume average particle diameter of (P-4 ′) was 148 ⁇ m. In Table 3, compound (E-1 ′) is not described.
- Comparative Example 5 The same procedure as in Production Example 13 for resin particle composition (P-5 ′), except that compound (E-2 ′) (2 parts) was used instead of compound (E-1) (2 parts). Operation was performed to obtain a resin particle composition (P-5 ′).
- the volume average particle diameter of (P-5 ′) was 148 ⁇ m.
- Resin particle compositions (P-1) to (P-20) for slush molding of Examples 1 to 20 and resin particle compositions (P-1 ′) to (P-5 ′) of Comparative Examples 1 to 5 By using the following method to form a skin with a thickness of 1.0 mm and 0.3 mm at 210 ° C., the backside meltability of the skin with a thickness of 1.0 mm, 25 ° C. tensile strength, 25 ° C. elongation, The maximum load at the time of breaking at 25 ° C. of the skin having a thickness of 0.3 mm, the 25 ° C. tensile strength after the heat resistance test shown below, and the elongation were measured. The results are shown in Tables 1-3.
- a resin particle composition for slush molding (P-1) to (P-20), (P-1 ′) to (P-1) P-5 ′) was filled, and after 10 seconds, the excess resin particle composition was discharged. After 60 seconds, it was cooled with water to prepare a skin (thickness 1 mm). In addition, a skin having a thickness of 0.3 mm was prepared in the same manner as described above except that the time after filling was changed to 5 seconds.
- the storage elastic modulus G ′ at 130 ° C. was measured using a dynamic viscoelasticity measuring device “RDS-2” (manufactured by Rheometric Scientific) under the condition of a frequency of 1 Hz. After setting the measurement sample on the jig of the measurement apparatus, the temperature was raised to 200 ° C., and the mixture was allowed to stand at 200 ° C. for 1 minute to be melted, and then cooled and solidified to be brought into close contact with the jig. Thereafter, measurement was performed. The measurement temperature range is 50 to 200 ° C. By measuring the melt viscoelasticity between these temperatures, it can be obtained as temperature-G ′ and temperature-G ′′ curves. The storage elastic modulus G ′ at 130 ° C. is read from the temperature-G ′ curve.
- ⁇ Volume average particle diameter measuring method The particle diameter of 50% under the sieve measured by a laser light scattering method was measured using a Microtrac HRA particle size analyzer 9320-X100 (manufactured by Nikkiso Co., Ltd.).
- ⁇ Backside meltability> The center part of the back surface of the molded skin was visually observed for a 1 mm thick skin, and the meltability was evaluated according to the following criteria. 5: Uniform and glossy. 4: There is a partially unmelted powder, but it is glossy. 3: There are irregularities on the entire back surface and there is no gloss. There are no pinholes penetrating the surface. 2: There are irregularities in the form of powder on the entire back surface, and there are pinholes penetrating the surface. 1: The powder does not melt and does not become a molded product.
- ⁇ Abrasion resistance> A molded skin with a thickness of 1 mm is cut to a width of 30 mm and a length of 200 mm, and is attached to a flat surface wear tester (model number FR-T, Suga tester), and a white cotton cloth is placed on the friction element and fixed. The test piece was reciprocated 3000 times with a frictional load of 0.5 kgf, and an abrasion resistance test was performed. Evaluation was made according to the following criteria. A: No abnormality is recognized. ⁇ : Slight abnormality is observed but not noticeable. ⁇ : Abnormality is observed and clearly visible. X: Remarkable abnormality is recognized.
- ⁇ 25 ° C. tensile strength after heat test, elongation measurement method> A molded skin having a thickness of 1 mm was left in a circulating dryer at 130 ° C. for 600 hours. Subsequently, the treated epidermis was allowed to stand at 25 ° C. for 24 hours. Subsequently, three JIS K 6400-5 tensile test piece dumbbells No. 1 were punched out and marked at 40 mm intervals in the center. The plate thickness is the minimum of 5 points between marked lines. This was attached to an autograph in an atmosphere at 25 ° C., pulled at a speed of 200 mm / min, and the tensile strength and elongation until the test piece was broken were calculated.
- ⁇ Thermal fusion test> A 1 mm thick molded skin is cut into a size of 60 mm in length and 95 mm in width, and a depth of 0.4 to 0. 0 is formed on the back surface of the sheet at a right angle to the surface with a cold cutter (blade thickness: 0.3 mm). A cut of 6 mm and a length of 60 mm was made. Put the molding skin between the release paper and put the iron plate of weight 95-100g from the top of the release paper, the dimensions (vertical, horizontal, height) 100mm vertical x 100mm horizontal x 1.2mm thick so that the release paper is hidden in the air Then, after standing at 130 ° C. under normal pressure for 100 hours, it was visually observed whether or not the cut of the sheet was fused. Evaluation was made according to the following criteria. ⁇ : Cutter cuts are not fused at all. X: The cut of the cutter is fused.
- the resin particle compositions (P-1) to (P-20) for slush molding of Examples 1 to 20 are the resin particle compositions (P-1 ′) to (P-5 ′) of Comparative Examples 1 to 5, respectively. As compared with the above, it is excellent in wear resistance, 25 ° C. tensile strength, maximum load at break, 25 ° C. tensile strength after heat test, and 25 ° C. elongation after heat test. In addition, (P-1) to (P-20) are superior to or equivalent to (P-1 ′) to (P-5 ′) in the backside melting property, thermal fusion test, and 25 ° C. elongation. It is.
- the resin particle compositions (P-1) to (P-20) for slush molding of Examples 1 to 20 have all three properties of meltability, heat resistance of the molded product of (P), and mechanical properties. In particular, it has excellent performance as an instrument panel material.
- a molded product for example, a skin formed from the thermoplastic urethane resin particle composition of the present invention, is suitably used as a skin for automobile interior materials, for example, instrument panels and door trims.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Polyurethanes Or Polyureas (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
また、粉体塗料、電子写真トナー、静電記録トナーに用いられる樹脂粒子に関して、結晶化度と融点および分子量を調整することにより低温溶融可能なウレタン樹脂粒子が提案されており、これがスラッシュ成形用材料にも用いられる旨述べられている。(例えば特許文献2、3参照)
一方、インスツルメントパネル下に格納されたエアバックを展開させるために、インスツルメントパネルには開裂口が設置されている。開裂口用の加工は、意匠性の点から、スラッシュ成形品の裏面にカッターでスリットを入れる方法が実施されている。しかし、高温の地域で、裏面のスリットが熱で融着するとスリットが消えエアバックが正常に開かない可能性があり、耐熱性に優れたスラッシュ成形用材料が求められている。(例えば特許文献5、6参照)
また、自動車部品では燃費の向上を目的に軽量化のニーズがあり、自動車内装材を軽量化する手段の一つとして、スラッシュ成形物を薄膜化する手段が考えられる。しかし、薄膜化することで、成形物の機械物性が下がるため、より強靭な機械物性を付与する必要性がある。
本発明の課題は、溶融性、成形物の耐熱性、機械物性の全てに優れたスラッシュ成形用材料を提供することを目的とする。
本発明は、価数が3以上の芳香族ポリカルボン酸から水酸基を除いた残基(j)を共有結合して有するウレタン樹脂もしくはウレタンウレア樹脂(U1)を含有してなるウレタン樹脂粒子(D1)、または価数が3以上の芳香族ポリカルボン酸から水酸基を除いた残基(j)を有する下記一般式(1)で表される化合物(E)と、ウレタン樹脂もしくはウレタンウレア樹脂(U2)を含有するウレタン樹脂組成物(S2)を含有してなるウレタン樹脂粒子(D2)であって、(U1)または(U2)中のウレタン基またはウレア基(u)と、価数が3以上の芳香族ポリカルボン酸から水酸基を除いた残基(j)が水素結合してなるウレタン樹脂粒子(D);該ウレタン樹脂粒子(D)、および無機フィラー、顔料、可塑剤、離型剤、ブロッキング防止剤、および安定剤の群から選ばれる少なくとも1種である添加剤(F)を含有するスラッシュ成形用熱可塑性ウレタン樹脂粒子組成物(P)である。
本発明のウレタン樹脂粒子(D1)は、価数が3以上の芳香族ポリカルボン酸から水酸基を除いた残基(j)を共有結合して有するウレタン樹脂もしくはウレタンウレア樹脂(U1)を含有し、さらに(U1)中のウレタン基またはウレア基(u)と、価数が3以上の芳香族ポリカルボン酸から水酸基を除いた残基(j)が水素結合してなることを特徴とする。
(D1)を構成する(U1)に該水素結合を導入することにより、(D1)の溶融性、(D1)の成形物の耐熱性、機械物性の3つの全てにわたって優れた性能を付与することができる。
(U1)中のウレタン基またはウレア基(u)と残基(j)が水素結合しているのは、赤外線吸収スペクトル(以下IRスペクトルと記載することがある。)で1680~1720cm-1付近に吸収が現れることで確認することができる。
水酸基含有化合物としては、1価のアルコール、2~8価の多価アルコール、フェノール及び多価フェノール等が含まれる。具体的にはメタノール、エタノール、ブタノール、オクタノール、ベンジルアルコール、ナフチルエタノール等の1価のアルコール;エチレングリコール、プロピレングリコール、1,3及び1,4-ブタンジオール、1,6-ヘキサンジオール、1,10-デカンジオール、ジエチレングリコール、ネオペンチルグリコール、シクロヘキサンジオール、シクロヘキサンジメタノール、1,4-ビス(ヒドロキシメチル)シクロヘキサン及び1,4-ビス(ヒドロキシエチル)ベンゼン等の2価アルコール;グリセリン及びトリメチロールプロパン等の3価アルコール;ペンタエリスリトール、ソルビトール、マンニトール、ソルビタン、ジグリセリン、ジペンタエリスリトール等、ショ糖、グルコース、マンノース、フルクトース、メチルグルコシド及びその誘導体等の4~8価のアルコ―ル;フェノール、フロログルシン、クレゾール、ピロガロ―ル、カテコール、ヒドロキノン、ビスフェノ―ルA、ビスフェノールF、ビスフェノールS、1-ヒドロキシナフタレン、1,3,6,8-テトラヒドロキシナフタレン、アントロール、1,4,5,8-テトラヒドロキシアントラセン及び1-ヒドロキシピレン等のフェノ―ル;ポリブタジエンポリオール;ひまし油系ポリオール;ヒドロキシアルキル(メタ)アクリレートの(共)重合体及びポリビニルアルコール等の多官能(例えば官能基数2~100)ポリオール、フェノールとホルムアルデヒドとの縮合物(ノボラック)並びに米国特許3265641号明細書に記載のポリフェノール等が挙げられる。これらのうち、生産性の観点から好ましいのは、ベンジルアルコールである。
なお、(メタ)アクリレートとは、メタクリレート及び/又はアクリレートを意味し、以下において同様である。
また、一般式(2)、(3)中のR2として-O(CH2CH2O)n-(nは、1≦n≦5)、
-O(CH2CHCH3O)n-(nは1≦n≦5)も好ましい。これらの基は価数が3以上の芳香族ポリカルボン酸のカルボキシル基に各EO、POを付加させることにより得ることができる。
3価の芳香族ポリカルボン酸の場合;2個のカルボニル基が隣接し、3個目のカルボニル基と1又は2個目のカルボニル基の間に置換基として水素が配置された構造が好ましい。
4価以上の芳香族ポリカルボン酸の場合;2個のカルボニル基が隣接し、3個目以降のカルボニル基と1又は2個目のカルボニル基の間に置換基として水素が配置された構造が好ましい。
ベンゼンポリカルボン酸のカルボキシル基が3個の場合はカルボキシル基の置換位置が1,2,4-位(トリメリット酸)であり、カルボキシル基が4個の場合はカルボキシル基の置換位置が1,2,4,5-位(ピロメリット酸)又は1,2,3,4-位であることが好ましい。
芳香環に直結可能な置換基数とは、芳香族ポリカルボン酸を形成する芳香環のみを有する芳香族炭化水素、例えばベンゼン、ナフタレン等の化合物が有する環炭素に結合した水素原子の数をいうものとする。ベンゼンの場合は6、ナフタレンの場合は8である。
後述の活性水素含有化合物(C)は、3価以上の芳香族ポリカルボン酸(YH)に、2価の活性水素含有化合物(R2H)、活性水素含有化合物(R1H)を一般式(3)において規定するa、bを満たすような比率で脱水縮合反応させることで得ることが可能である。
また(R2H)を脱水縮合反応させるかわりに、AO(EO、PO等)をカルボキシル基に付加反応させることでも得ることが可能である。また、(R1H)を使用するかわりに、反応温度の観点から炭素数1~30の有機基を有するモノクロライドを脱塩化水素反応させることによって(C)を得ることが好ましい。
モノクロライドとしては、クロロメチレン基を有するモノクロライドがさらに好ましく、特にベンジルクロライドが好ましい。
これらのうち好ましいものは、2価フェノール類にアルキレンオキサイドが付加したものであり、さらに好ましいものは2価フェノール類にEOが付加したものである。
(i)炭素数(NCO基中の炭素を除く、以下同様)2~18の脂肪族ジイソシアネート[エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、ビス(2-イソシアナトエチル)フマレート、ビス(2-イソシアナトエチル)カーボネート、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート等];
(ii)炭素数4~15の脂環族ジイソシアート[イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタン-4,4’-ジイソシアネート(水添MDI)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート(水添TDI)、ビス(2-イソシアナトエチル)-4-シクロへキセン等];
(iii)炭素数8~15の芳香脂肪族ジイソシアネート[m-および/またはp-キシリレンジイソシアネート(XDI)、α,α,α’,α’-テトラメチルキシリレンジイソシアネート(TMXDI)等];芳香族ポリイソシアネートの具体例としては、1,3-及び/又は1,4-フェニレンジイソシアネート、2,4-及び/又は2,6-トリレンジイソシアネート(TDI)、粗製TDI、2,4’-及び/又は4,4’-ジフェニルメタンジイソシアネート(MDI)、4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン、粗製MDI、1,5-ナフチレンジイソシアネート、4,4’,4”-トリフェニルメタントリイソシアネート、m-及びp-イソシアナトフェニルスルホニルイソシアネート等;
(iv)これらのジイソシアネートの変性物(カーボジイミド基、ウレトジオン基、ウレトイミン基、ウレア基等を有するジイソシアネート変性物);およびこれらの2種以上の混合物が挙げられる。これらのうち好ましいものは脂肪族ジイソシアネートまたは脂環族ジイソシアネートであり、特に好ましいものはHDI、IPDI、水添MDIである。
ウレタン樹脂もしくはウレタンウレア樹脂(U1)を構成する低分子ジアミンもしくは低分子ジオール(K)の具体例は以下の通りである。
一般式(2)において、aが1のポリオールに関してもイソシアネート基末端ウレタンプレポリマーのイソシアネート基を一部ブロックするため、分子量の調整ができる。
(1)あらかじめポリエステルジオール(A1)と一般式(3)で表される活性水素含有化合物(C)の混合物を含有させた活性水素成分(A)とジイソシアネート成分(B)を反応させ、末端にイソシアネート基を有するウレタンプレポリマー(G)を製造しておき、次いで該プレポリマー(G)と低分子ジアミンもしくは低分子ジオール(K)を混合して伸長させウレタン樹脂とする方法。
(2)(A)、(B)および(K)をワンショットで混合し、反応させる方法などが挙げられる。
(U1)の130℃の貯蔵弾性率G’は、耐熱性及びウレタン樹脂粒子の溶融性が良好であるという観点から、0.2~10MPaが好ましく、さらに好ましくは0.5~2MPaである。
本発明のウレタン樹脂粒子(D2)は、価数が3以上の芳香族ポリカルボン酸から水酸基を除いた残基(j)を有する下記一般式(1)で表される化合物(E)と、ウレタン樹脂もしくはウレタンウレア樹脂(U2)を有するウレタン樹脂組成物(S2)を含有し、さらに(U2)中のウレタン基またはウレア基(u)と、価数が3以上の芳香族ポリカルボン酸から水酸基を除いた残基(j)が水素結合してなることを特徴とする。
(S2)に該水素結合を導入することにより、(S2)の溶融性、(S2)の成形物の耐熱性、機械物性の3つの全てにわたって優れた性能を付与することができる。
(U2)中のウレタン基またはウレア基(u)と残基(j)が水素結合しているのは、IRスペクトルで1680~1720cm-1付近に吸収が現れることで確認することができる。
Vは、一般式(2)の上記Yと同じである。
Wは、m価以上であって、一般式(2)の上記活性水素含有化合物(R1H)からm個の活性水素を除いた残基と同じである。
(WH)で表される活性水素含有化合物は(R1H)と同一であっても、異なっていても構わない。一般式(1)において、mは2~10の整数を表す。
化合物(E)のハンドリング及びウレタン樹脂成形物の機械物性(伸び、引張り強度)向上の観点から、(WH)には、水酸基含有化合物、アミノ基含有化合物、これらのAO付加物及びこれらとポリカルボン酸との縮合物を用いることが好ましく、mは2~8が好ましい。
溶解性パラメーター(SP値)は、Fedors法によって計算され、次式で表せる。
SP値(δ)=(ΔH/V)1/2
ただし、式中、ΔHはモル蒸発熱(cal)を、Vはモル体積(cm3)を表す。
また、ΔH及びVは、「POLYMER ENGINEERING AND SCIENCE FEBRUARY,1974,Vol.14,No.2,ROBERT F.FEDORS.(151~153頁)」に記載の原子団のモル蒸発熱の合計(ΔH)とモル体積の合計(V)を用いることができる。
この数値が近いもの同士はお互いに混ざりやすく(相溶性が高い)、この数値が離れているものは混ざりにくいことを表す指標である。ウレタン樹脂のSP値は、POLYMER ENGINEERING AND SCIENCE JUNE,1974,Vol.14,No.6,ROBERT F.FEDORS.(472頁)に記載がある。
ウレタン樹脂もしくはウレタンウレア樹脂(U2)は、活性水素成分(A)と、イソシアネート成分(B)と、さらに低分子ジアミンもしくは低分子ジオール(K)を反応させて得られる。
低分子ジアミンもしくは低分子ジオール(K)の具体例は(U1)と同じである。
(U2)の190℃の溶融粘度及び130℃の貯蔵弾性率G’は、(U1)と同じである。
化合物(E)の含有量は、ウレタン樹脂もしくはウレタンウレア樹脂(U2)の重量に対して、0.1~10重量%が好ましい。
ウレタン樹脂組成物(S2)には、後述の添加剤(F)を含有させることができる。
ウレタン樹脂組成物(S2)を作成するに際し、化合物(E)および添加剤(F)は活性水素成分(A)に添加してもよいし、ウレタンプレポリマー(G)製造工程中、又は得られた(G)に添加してもよい。
(U1)もしくは(U2)を粒子とすることで、スラッシュ成形用パウダーの他、ホットメルト型接着剤などへの応用が可能となる。ウレタン樹脂粒子(D1)もしくは(D2)[以下、ウレタン樹脂粒子(D)と記載する場合がある。]としては、例えば以下の製造方法で得られるものが挙げられる。
(1)あらかじめポリエステルジオール(A1)と一般式(3)で表される活性水素含有化合物(C)の混合物を含有させた活性水素成分(A)とジイソシアネート成分(B)を活性水素成分(A)の水酸基とジイソシアネート成分(B)のイソシアネート基のモル比が、1:1.2~1:4.0となるように反応させ、末端にイソシアネート基を有するウレタンプレポリマー(G)を、水および分散安定剤存在下で、低分子ジアミンもしくは低分子ジオール(K)で伸長反応させる方法でウレタン樹脂粒子(D)を製造することができる。
低分子ジアミンはブロックされた直鎖脂肪族ジアミン(H1)(例えばケチミン化合物)などを使用することができる。
(2)上記ウレタンプレポリマー(G)を、非極性有機溶媒および分散安定剤存在下で、低分子ジアミンもしくは低分子ジオール(K)で伸長反応させる方法でウレタン樹脂粒子(D)を製造することができる。
(3)ジイソシアネート成分(B)と高分子ジオール(A)と低分子ジオールもしくは低分子ジアミン(K)とを反応させることで熱可塑性ポリウレタン樹脂の塊状物を得る。ついで粉末化(例えば冷凍粉砕、溶融状態下に細孔を通し切断する方法)する方法でウレタン樹脂粒子(D)を製造することができる。
添加剤(F)の添加量(重量%)は、ウレタン樹脂もしくはウレタンウレア樹脂(U1)の重量、もしくは(U2)と(E)の合計重量に対して、0~50が好ましく、さらに好ましくは1~30である。
添加剤(F)は、活性水素成分(A)に添加してもよいし、ウレタンプレポリマー(G)製造工程中に添加、又は得られた(G)に添加してもよい。
また、添加剤(F)が可塑剤、離型剤、流動性改質剤、ブロッキング防止剤である場合は、ウレタン樹脂粒子(D)からなる粉末にこれら添加剤を含浸、又は混合する方法が好ましい。
無機フィラーの添加量(重量%)は、ウレタン樹脂もしくはウレタンウレア樹脂(U1)の重量、もしくは(U2)と(E)の合計重量に対して、0~40が好ましく、1~20がより好ましい。
顔料の添加量(重量%)は、ウレタン樹脂もしくはウレタンウレア樹脂(U1)の重量、もしくは(U2)と(E)の合計重量に対して、0~5が好ましく、1~3がより好ましい。
可塑剤の添加量(重量%)は、ウレタン樹脂もしくはウレタンウレア樹脂(U1)の重量、もしくは(U2)と(E)の合計重量に対して、0~50が好ましく、5~20がより好ましい。
離型剤の添加量(重量%)は、ウレタン樹脂もしくはウレタンウレア樹脂(U1)の重量、もしくは(U2)と(E)の合計重量に対して、0~1が好ましく、0.1~0.5がより好ましい。
安定剤の添加量(重量%)は、ウレタン樹脂もしくはウレタンウレア樹脂(U1)の重量、もしくは(U2)と(E)の合計重量に対して、0~20が好ましく、1~15がより好ましい。
ブロッキング防止剤(流動性向上剤)の添加量(重量%)は、ウレタン樹脂もしくはウレタンウレア樹脂(U1)の重量、もしくは(U2)と(E)の合計重量に対して、0~5が好ましく、0.5~1がより好ましい。
上記金型温度は好ましくは200~300℃、さらに好ましくは200~250℃である。
樹脂粒子組成物(P)は、比較的低温領域での成形が可能であり、成形の温度としては200~250℃が可能である。
樹脂粒子組成物(P)で成形された樹脂成形品は、自動車内装材、例えばインストルメントパネル、ドアトリム等に好適に使用される。
樹脂粒子組成物(P)の190℃の溶融粘度が500Pa・s以下であれば、樹脂粒子組成物の低温溶融性が良好である。
樹脂粒子組成物(P)で成形した成形物の130℃の貯蔵弾性率G’はスラッシュ成形用途としては0.1~5MPaが好ましく、さらに好ましくは0.25~1MPaである。
上記成形物の130℃の貯蔵弾性率G’が0.1MPa以上あれば、耐熱性が良好である。また、5MPa以下であれば、樹脂粒子組成物(P)の低温溶融性が良好である。
ジアミンのMEKケチミン化物の製造
ヘキサメチレンジアミンと過剰のMEK(メチルエチルケトン;ジアミンに対して4倍モル量)を80℃で24時間還流させながら生成水を系外に除去した。その後減圧にて未反応のMEKを除去してMEKケチミン化物を得た。
活性水素含有化合物(C-1)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、無水トリメリット酸192部、ベンジルアルコール216部を入れ、180℃で生成する水を留去しながら5時間反応させた後、エチレングリコール62部を140℃で生成する水を留去しながら5時間反応させ、活性水素含有化合物(C-1)を取り出した。得られた活性水素含有化合物(C-1)の水酸基価を測定し、分子量を計算した結果434であった。(C-1)の構造{一般式(3)におけるaとb}については表1および表2に記載した。以下(C-2)~(C-8)についても同様に表1および表2に記載した。
活性水素含有化合物(C-2)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、無水トリメリット酸192部、ベンジルアルコール108部を入れ、180℃で生成する水を留去しながら5時間反応させた後、エチレングリコール124部を入れ、140℃で生成する水を留去しながら5時間反応させ、活性水素含有化合物(C-2)を取り出した。得られた活性水素含有化合物(C-2)の水酸基価を測定し、分子量を計算した結果388であった。
活性水素含有化合物(C-3)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、無水トリメリット酸192部、エチレングリコール186部を入れ、140℃で生成する水を留去しながら5時間反応させ、活性水素含有化合物(C-3)を取り出した。得られた活性水素含有化合物(C-3)の水酸基価を測定し、分子量を計算した結果342であった。
活性水素含有化合物(C-4)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、無水ピロメリット酸254部、エチレングリコール248部を入れ、140℃で生成する水を留去しながら5時間反応させ、活性水素含有化合物(C-4)を取り出した。得られた活性水素含有化合物(C-4)の水酸基価を測定し、分子量を計算した結果430であった。
活性水素含有化合物(C-5)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、無水トリメリット酸192部、ベンジルアルコール108部を入れ、180℃で生成する水を留去しながら5時間反応させ、1,2,4-ベンゼントリカルボン酸1molのベンジルアルコール1mol反応生成物を取り出し、加圧反応装置に仕込み、加圧反応装置内で、PO59部を120℃で3時間反応させ、活性水素含有化合物(C-5)を取り出した。得られた活性水素含有化合物(C-5)の水酸基価を測定し、分子量を計算した結果416であった。
活性水素含有化合物(C-6)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、無水トリメリット酸192部、ドデシルアルコール186部を入れ、180℃で生成する水を留去しながら5時間反応させた後、エチレングリコール124部を入れ、140℃で生成する水を留去しながら5時間反応させ、活性水素含有化合物(C-6)を取り出した。得られた活性水素含有化合物(C-6)の水酸基価を測定し、分子量を計算した結果466であった。
活性水素含有化合物(C-7)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、酢酸エチル384部を仕込んだ後、無水トリメリット酸192部、エチレングリコール62部、トリエチルアミン202部を入れ、80℃で2時間反応させた後、ベンジルクロライド252部を入れ、70℃で2時間反応させた。その後、分液、脱溶剤を行い、活性水素含有化合物(C-7)を取り出した。得られた活性水素含有化合物(C-7)の水酸基価を測定し、分子量を計算した結果434であった。
活性水素含有化合物(C-8)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、無水トリメリット酸192部、エチレンジアミン60部を入れ、80℃で2時間反応させた後、ベンジルアルコール216部を入れ、180℃で生成する水を留去しながら5時間反応させ、活性水素含有化合物(C-8)を取り出した。得られた活性水素含有化合物(C-8)のアミン価を測定し、分子量を計算した結果432であった。
化合物(E-1)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、無水トリメリット酸384部、1,10デカンジオール174部を入れ、140℃で5時間反応させた後、ベンジルアルコール432部を入れ、180℃で生成する水を留去しながら5時間反応させ、化合物(E-1)を取り出した。
(E-1)の構造{一般式(1)におけるR3、V、W、c、m}については表2に記載した。以下(E-2)~(E-7)についても同様に表2に記載した。
化合物(E-2)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、無水トリメリット酸384部、エチレングリコール62部を入れ、140℃で5時間反応させた後、ベンジルアルコール432部を180℃で生成する水を留去しながら5時間反応させ、化合物(E-2)を取り出した。
化合物(E-3)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、無水ピロメリット酸508部、1,10デカンジオール174部を入れ、140℃で5時間反応させた後、ベンジルアルコール648部を180℃で生成する水を留去しながら5時間反応させ、化合物(E-3)を取り出した。
化合物(E-4)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、無水トリメリット酸384部、1,10デカンジオール174部を入れ、140℃で5時間反応させた後、ベンジルアミン428部を180℃で生成する水を留去しながら5時間反応させ、化合物(E-4)を取り出した。
化合物(E-5)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、無水トリメリット酸576部、グリセリン92部を入れ、140℃で5時間反応させた後、ベンジルアルコール648部を180℃で生成する水を留去しながら5時間反応させ、化合物(E-5)を取り出した。
化合物(E-6)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、無水トリメリット酸768部、ペンタエリスリトール136部を入れ、140℃で5時間反応させた後、ベンジルアルコール864部を180℃で生成する水を留去しながら5時間反応させ、化合物(E-6)を取り出した。
化合物(E-7)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、無水トリメリット酸1536部、ショ糖342部を入れ、いれ、140℃で5時間反応させた後、ベンジルアルコール1728部を180℃で生成する水を留去しながら5時間反応させ、化合物(E-7)を取り出した。
プレポリマー溶液(G-1)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、水酸基価から算出した分子量(以下Mnと記載。)が2300のポリエチレンイソフタレートジオール(278.1部)、Mnが1000のポリブチレンアジペートジオール(417.2部)、活性水素含有化合物(C-1)(16.0部)、ベンジルアルコール(5.3部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、50℃まで冷却した。続いて、メチルエチルケトン(150.0部)、ヘキサメチレンジイソシアネート(132.0部)を投入し、90℃で6時間反応させた。次いで、70℃に冷却した後、安定剤(1.4部)[チバスペシャリティーケミカルズ(株)社製 イルガノックス1010]、カーボンブラック(1部)を加え、均一に混合してプレポリマー溶液(G-1)を得た。得られたプレポリマー溶液のNCO含量は、1.63%であった。
プレポリマー溶液(G-2)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが2300のポリエチレンイソフタレートジオール(281.8部)、Mnが1000のポリブチレンアジペートジオール(422.7部)、活性水素含有化合物(C-1)(4.0部)、ベンジルアルコール(8.2部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、50℃まで冷却した。続いて、メチルエチルケトン(150.0部)、ヘキサメチレンジイソシアネート(131.9部)を投入し、90℃で6時間反応させた。次いで、70℃に冷却した後、安定剤(1.4部)[チバペシャリティーケミカルズ(株)社製 イルガノックス1010]、カーボンブラック(1部)を加え、均一に混合してプレポリマー溶液(G-2)を得た。得られたプレポリマー溶液のNCO含量は、1.63%であった。
プレポリマー溶液(G-3)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが2300のポリエチレンイソフタレートジオール(271.3部)、Mnが1000のポリブチレンアジペートジオール(406.9部)、活性水素含有化合物(C-1)(38.1部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、50℃まで冷却した。続いて、メチルエチルケトン(150.0部)、ヘキサメチレンジイソシアネート(132.4部)を投入し、90℃で6時間反応させた。次いで、70℃に冷却した後、安定剤(1.4部)[チバペシャリティーケミカルズ(株)社製 イルガノックス1010]、カーボンブラック(1部)を加え、均一に混合してプレポリマー溶液(G-3)を得た。得られたプレポリマー溶液のNCO含量は、1.63%であった。
プレポリマー溶液(G-4)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが2300のポリエチレンイソフタレートジオール(281.2部)、Mnが1000のポリブチレンアジペートジオール(421.8部)、活性水素含有化合物(C-2)(3.5部)、ベンジルアルコール(9.2部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、50℃まで冷却した。続いて、メチルエチルケトン(150.0部)、ヘキサメチレンジイソシアネート(132.9部)を投入し、90℃で6時間反応させた。次いで、70℃に冷却した後、安定剤(1.4部)[チバペシャリティーケミカルズ(株)社製 イルガノックス1010]、カーボンブラック(1部)を加え、均一に混合してプレポリマー溶液(G-4)を得た。得られたプレポリマー溶液のNCO含量は、1.63%であった。
プレポリマー溶液(G-5)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが2300のポリエチレンイソフタレートジオール(192.7部)、Mnが1000のポリブチレンアジペートジオール(289.0部)、活性水素含有化合物(C-2)(178.2部)、ベンジルアルコール(9.2部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、50℃まで冷却した。続いて、メチルエチルケトン(150.0部)、ヘキサメチレンジイソシアネート(179.6部)を投入し、90℃で6時間反応させた。次いで、70℃に冷却した後、安定剤(1.4部)[チバペシャリティーケミカルズ(株)社製 イルガノックス1010]、カーボンブラック(1部)を加え、均一に混合してプレポリマー溶液(G-5)を得た。得られたプレポリマー溶液のNCO含量は、1.63%であった。
プレポリマー溶液(G-6)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが2300のポリエチレンイソフタレートジオール(282.5部)、Mnが1000のポリブチレンアジペートジオール(423.7部)、活性水素含有化合物(C-3)(0.7部)、ベンジルアルコール(9.2部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、50℃まで冷却した。続いて、メチルエチルケトン(150.0部)、ヘキサメチレンジイソシアネート(132.5部)を投入し、90℃で6時間反応させた。次いで、70℃に冷却した後、安定剤(1.4部)[チバペシャリティーケミカルズ(株)社製 イルガノックス1010]、カーボンブラック(1部)を加え、均一に混合してプレポリマー溶液(G-6)を得た。得られたプレポリマー溶液のNCO含量は、1.63%であった。
プレポリマー溶液(G-7)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが2300のポリエチレンイソフタレートジオール(273.1部)、Mnが1000のポリブチレンアジペートジオール(409.7部)、活性水素含有化合物(C-4)(0.45部)、ベンジルアルコール(13.07部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、50℃まで冷却した。続いて、メチルエチルケトン(150.0部)、ヘキサメチレンジイソシアネート(140.9部)を投入し、90℃で6時間反応させた。次いで、70℃に冷却した後、安定剤(1.4部)[チバペシャリティーケミカルズ(株)社製 イルガノックス1010]、カーボンブラック(1部)を加え、均一に混合してプレポリマー溶液(G-7)を得た。得られたプレポリマー溶液のNCO含量は、1.63%であった。
プレポリマー溶液(G-8)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが2300のポリエチレンイソフタレートジオール(264.9部)、Mnが1000のポリブチレンアジペートジオール(397.3部)、活性水素含有化合物(C-5)(36.4部)、ベンジルアルコール(9.3部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、50℃まで冷却した。続いて、メチルエチルケトン(150.0部)、ヘキサメチレンジイソシアネート(140.7部)を投入し、90℃で6時間反応させた。次いで、70℃に冷却した後、安定剤(1.4部)[チバペシャリティーケミカルズ(株)社製 イルガノックス1010]、カーボンブラック(1部)を加え、均一に混合してプレポリマー溶液(G-8)を得た。得られたプレポリマー溶液のNCO含量は、1.63%であった。
プレポリマー溶液(G-9)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが2300のポリエチレンイソフタレートジオール(265.5部)、Mnが1000のポリブチレンアジペートジオール(398.2部)、活性水素含有化合物(C-6)(36.5部)、ベンジルアルコール(9.2部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、50℃まで冷却した。続いて、メチルエチルケトン(150.0部)、ヘキサメチレンジイソシアネート(139.2部)を投入し、90℃で6時間反応させた。次いで、70℃に冷却した後、安定剤(1.4部)[チバペシャリティーケミカルズ(株)社製 イルガノックス1010]、カーボンブラック(1部)を加え、均一に混合してプレポリマー溶液(G-9)を得た。得られたプレポリマー溶液のNCO含量は、1.63%であった。
プレポリマー溶液(G-10)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが2300のポリエチレンイソフタレートジオール(93.1部)、Mnが1000のポリブチレンアジペートジオール(349.6部)、活性水素含有化合物(C-7)(6.0部)、ベンジルアルコール(5.3部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、50℃まで冷却した。続いて、メチルエチルケトン(400.3部)、ヘキサメチレンジイソシアネート(112.9部)、イソホロンジイソシアネート(3.8部)を投入し、90℃で6時間反応させた。次いで、70℃に冷却した後、安定剤(2.7部)[チバペシャリティーケミカルズ(株)社製 イルガノックス1010]、カーボンブラック(1部)を加え、均一に混合してプレポリマー溶液(G-10)を得た。得られたプレポリマー溶液のNCO含量は、1.26%であった。
プレポリマー溶液(G-11)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが2300のポリエチレンイソフタレートジオール(92.1部)、Mnが1000のポリブチレンアジペートジオール(338.5部)、活性水素含有化合物(C-7)(30.7部)、ベンジルアルコール(0.45部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、50℃まで冷却した。続いて、メチルエチルケトン(396.1部)、ヘキサメチレンジイソシアネート(110.0部)、イソホロンジイソシアネート(3.7部)を投入し、90℃で6時間反応させた。次いで、70℃に冷却した後、安定剤(2.7部)[チバペシャリティーケミカルズ(株)社製 イルガノックス1010]、カーボンブラック(1部)を加え、均一に混合してプレポリマー溶液(G-11)を得た。得られたプレポリマー溶液のNCO含量は、1.26%であった。
プレポリマー溶液(G-12)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが2300のポリエチレンイソフタレートジオール(92.1部)、Mnが1000のポリブチレンアジペートジオール(338.5部)、活性水素含有化合物(C-8)(30.6部)、ベンジルアルコール(0.45部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、50℃まで冷却した。続いて、メチルエチルケトン(396.1部)、ヘキサメチレンジイソシアネート(110.0部)、イソホロンジイソシアネート(3.7部)を投入し、90℃で6時間反応させた。次いで、70℃に冷却した後、安定剤(2.7部)[チバペシャリティーケミカルズ(株)社製 イルガノックス1010]、カーボンブラック(1部)を加え、均一に混合してプレポリマー溶液(G-12)を得た。得られたプレポリマー溶液のNCO含量は、1.26%であった。
プレポリマー溶液(G-13)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが2300のポリエチレンイソフタレートジオール(282.9部)、Mnが1000のポリブチレンアジペートジオール(424.4部)、ベンジルアルコール(9.34部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、50℃まで冷却した。続いて、メチルエチルケトン(150.0部)、ヘキサメチレンジイソシアネート(132.0部)を投入し、90℃で6時間反応させた。次いで、70℃に冷却した後、安定剤(1.4部)[チバペシャリティーケミカルズ(株)社製 イルガノックス1010]、カーボンブラック(1部)を加え、均一に混合してプレポリマー溶液(G-13)を得た。得られたプレポリマー溶液のNCO含量は、1.63%であった。
比較活性水素含有化合物(C-1’)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、無水フタル酸148部(1モル)、ベンジルアルコール108部(1モル)、エチレングリコール62部(1モル)を180℃で生成する水を留去しながら5時間反応させ、化合物(C-1’)を取り出した。比較活性水素含有化合物(C-1’)はフタル酸のモノエチレングリコールモノベンジルエステルである。
比較化合物(E-1’)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、無水トリメリット酸192部、ベンジルアルコール324部を180℃で生成する水を留去しながら5時間反応させ、化合物(E-1’)を取り出した。化合物(E-1’)はトリメリット酸のトリベンジルエステルである。
比較化合物(E-2’)の製造
冷却管、撹拌機および窒素導入管の付いた反応槽中に、無水フタル酸296部(2モル)、1,10デカンジオール174部(1モル)をいれ、140℃で5時間反応させた後、ベンジルアルコール216部(2モル)を180℃で生成する水を留去しながら5時間反応させ、化合物(E-2’)を取り出した。
化合物(E-2’)は1,10-デカンジオールジフタレートのジベンジルエステルである。
プレポリマー溶液(G-1’)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、Mnが2300のポリエチレンイソフタレートジオール(280.2部)、Mnが1000のポリブチレンアジペートジオール(420.3部)、ベンジルアルコール(9.25部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、50℃まで冷却した。続いて、メチルエチルケトン(150.0部)、ヘキサメチレンジイソシアネート(138.9部)を投入し、90℃で6時間反応させた。次いで、70℃に冷却した後、安定剤(1.4部)[チバスペシャリティーケミカルズ(株)社製
イルガノックス1010]、カーボンブラック(1部)を加え、均一に混合してプレポリマー溶液(G-1’)を得た。得られたプレポリマー溶液のNCO含量は、2.03%であった。
プレポリマー溶液(G-2’)の製造
温度計、撹拌機及び窒素吹込み管を備えた反応容器に、水酸基価から算出した分子量(以下Mnと記載。)が2300のポリエチレンイソフタレートジオール(278.1部)、Mnが1000のポリブチレンアジペートジオール(417.2部)、比較活性水素含有化合物(C-1’)(16.0部)、ベンジルアルコール(3.5部)を仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させ、50℃まで冷却した。続いて、メチルエチルケトン(150.0部)、ヘキサメチレンジイソシアネート(132.0部)を投入し、90℃で6時間反応させた。次いで、70℃に冷却した後、安定剤(1.4部)[チバスペシャリティーケミカルズ(株)社製
イルガノックス1010]、カーボンブラック(1部)を加え、均一に混合してプレポリマー溶液(G-2’)を得た。得られたプレポリマー溶液のNCO含量は、1.63%であった。
樹脂粒子組成物(P-1)の製造
反応容器に、製造例17で得たプレポリマー溶液(G-1)(100部)と製造例1のMEKケチミン化物(4.2部)を投入混合し、そこにポリカルボン酸型アニオン界面活性剤[三洋化成工業(株)製サンスパールPS-8](30部)を溶解した水溶液300部を加え、ヤマト科学(株)製ウルトラディスパーサーを用いて6000rpmの回転数で1分間混合した。この混合物を温度計、撹拌機及び窒素吹込み管を備えた反応容器に移し、窒素置換した後、撹拌しながら50℃で10時間反応させた。反応終了後、濾別及び乾燥を行い、ウレタン樹脂粒子(D-1)を製造した。(D-1)の数平均分子量(以下Mnと記載する。)は2.0万、体積平均粒径は145μmであった。(D-1)の190℃の溶融粘度、および130℃の貯蔵弾性率は表1に記載した。以下の実施例、比較例についても同様である。
次いで、100Lのナウタミキサ内に、熱可塑性ウレタン樹脂粒子(D-1)(100部)、ラジカル重合性不飽和基含有化合物ジペンタエリスリトールペンタアクリレート[三洋化成工業(株)社製; DA600](1.0部)、紫外線安定剤ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート及びメチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート(混合物)[商品名:TINUVIN 765、チバ社製](0.3部)を投入し70℃で4時間含浸した。含浸4時間後、2種類の内添離型剤であるジメチルポリシロキサン[日本ユニカー(株)製;ケイL45-1000](0.06部)、カルボキシル変性シリコン[信越化学工業(株)製;X-22-3710](0.05部)、を投入し1時間混合した後室温まで冷却した。最後に、ブロッキング防止剤架橋ポリメチルメタクリレート[ガンツ化成(株);ガンツパールPM-030S](0.5部)を投入混合することで樹脂粒子組成物(P-1)を得た。(P-1)の体積平均粒径は148μmであった。(P-1)の190℃の溶融粘度および130℃の貯蔵弾性率は表1に記載した。以下の実施例、比較例についても同様である。
樹脂粒子組成物(P-2)の製造
実施例1でプレポリマー溶液(G-1)の代わりに、プレポリマー溶液(G-2)(100部)に変更した以外は、実施例1と同様の操作を行い、ウレタン樹脂粒子(D-2)を製造した。(D-2)のMnは2.0万、体積平均粒径は140μmであった。
さらに実施例1において、ウレタン樹脂粒子(D-1)の代わりにウレタン樹脂粒子(D-2)を用いた他は同様の操作を行い、樹脂粒子組成物(P-2)を得た。(P-2)の体積平均粒径は143μmであった。
樹脂粒子組成物(P-3)の製造
実施例1でプレポリマー溶液(G-1)の代わりに、プレポリマー溶液(G-3)(100部)に変更した以外は、実施例1と同様の操作を行い、ウレタン樹脂粒子(D-3)を製造した。(D-3)のMnは1.5万、体積平均粒径は148μmであった。
さらに実施例1において、ウレタン樹脂粒子(D-1)の代わりにウレタン樹脂粒子(D-3)を用いた他は同様の操作を行い、樹脂粒子組成物(P-3)を得た。(P-3)の体積平均粒径は150μmであった。
樹脂粒子組成物(P-4)の製造
実施例1でプレポリマー溶液(G-1)の代わりに、プレポリマー溶液(G-4)(100部)に変更した以外は、実施例1と同様の操作を行い、ウレタン樹脂粒子(D-4)を製造した。(D-4)のMnは2.0万、体積平均粒径は158μmであった。
さらに実施例1において、ウレタン樹脂粒子(D-1)の代わりにウレタン樹脂粒子(D-4)を用いた他は同様の操作を行い、樹脂粒子組成物(P-4)を得た。(P-4)の体積平均粒径は160μmであった。
樹脂粒子組成物(P-5)の製造
実施例1でプレポリマー溶液(G-1)の代わりに、プレポリマー溶液(G-5)(100部)に変更した以外は、実施例1と同様の操作を行い、ウレタン樹脂粒子(D-5)を製造した。(D-5)のMnは2.0万、体積平均粒径は152μmであった。
さらに実施例1において、ウレタン樹脂粒子(D-1)の代わりにウレタン樹脂粒子(D-5)を用いた他は同様の操作を行い、樹脂粒子組成物(P-5)を得た。(P-5)の体積平均粒径は154μmであった。
樹脂粒子組成物(P-6)の製造
実施例1でプレポリマー溶液(G-1)の代わりに、プレポリマー溶液(G-6)(100部)に変更した以外は、実施例1と同様の操作を行い、ウレタン樹脂粒子(D-6)を製造した。(D-6)のMnは2.2万、体積平均粒径は154μmであった。
さらに実施例1において、ウレタン樹脂粒子(D-1)の代わりにウレタン樹脂粒子(D-6)を用いた他は同様の操作を行い樹脂粒子組成物(P-6)を得た。(P-6)の体積平均粒径は155μmであった。
樹脂粒子組成物(P-7)の製造
実施例1でプレポリマー溶液(G-1)の代わりに、プレポリマー溶液(G-7)(100部)に変更した以外は、実施例1と同様の操作を行い、ウレタン樹脂粒子(D-7)を製造した。(D-6)のMnは2.6万、体積平均粒径は146μmであった。
さらに実施例1において、ウレタン樹脂粒子(D-1)の代わりにウレタン樹脂粒子(D-7)を用いた他は同様の操作を行い、樹脂粒子組成物(P-7)を得た。(P-7)の体積平均粒径は148μmであった。
樹脂粒子組成物(P-8)の製造
実施例1でプレポリマー溶液(G-1)の代わりに、プレポリマー溶液(G-8)(100部)に変更した以外は、実施例1と同様の操作を行い、ウレタン樹脂粒子(D-8)を製造した。(D-8)のMnは2.0万、体積平均粒径は144μmであった。
さらに実施例1において、ウレタン樹脂粒子(D-1)の代わりにウレタン樹脂粒子(D-8)を用いた他は同様の操作を行い、樹脂粒子組成物(P-8)を得た。(P-8)の体積平均粒径は146μmであった。
樹脂粒子組成物(P-9)の製造
実施例1でプレポリマー溶液(G-1)の代わりに、プレポリマー溶液(G-9)(100部)に変更した以外は、実施例1と同様の操作を行い、ウレタン樹脂粒子(D-9)を製造した。(D-9)のMnは2.0万、体積平均粒径は145μmであった。
さらに実施例1において、ウレタン樹脂粒子(D-1)の代わりにウレタン樹脂粒子(D-9)を用いた他は同様の操作を行い、樹脂粒子組成物(P-9)を得た。(P-9)の体積平均粒径は148μmであった。
樹脂粒子組成物(P-10)の製造
実施例1でプレポリマー溶液(G-1)の代わりに、プレポリマー溶液(G-10)(100部)、MEKケチミン化合物(3.2部)に変更した以外は、実施例1と同様の操作を行い、ウレタン樹脂粒子(D-10)を製造した。(D-10)のMnは2.0万、体積平均粒径は145μmであった。
さらに実施例1において、ウレタン樹脂粒子(D-1)の代わりにウレタン樹脂粒子(D-10)を用いた他は同様の操作を行い、樹脂粒子組成物(P-11)を得た。(P-10)の体積平均粒径は148μmであった。
樹脂粒子組成物(P-11)の製造
実施例1でプレポリマー溶液(G-1)の代わりに、プレポリマー溶液(G-11)(100部)、MEKケチミン化合物(3.2部)に変更した以外は、実施例1と同様の操作を行い、ウレタン樹脂粒子(D-11)を製造した。(D-11)のMnは2.0万、体積平均粒径は145μmであった。
さらに実施例1において、ウレタン樹脂粒子(D-1)の代わりにウレタン樹脂粒子(D-11)を用いた他は同様の操作を行い、樹脂粒子組成物(P-11)を得た。(P-11)の体積平均粒径は148μmであった。
樹脂粒子組成物(P-12)の製造
実施例1でプレポリマー溶液(G-1)の代わりに、プレポリマー溶液(G-12)(100部)、MEKケチミン化合物(3.2部)に変更した以外は、実施例1と同様の操作を行い、ウレタン樹脂粒子(D-12)を製造した。(D-12)のMnは2.0万、体積平均粒径は150μmであった。
さらに実施例1において、ウレタン樹脂粒子(D-1)の代わりにウレタン樹脂粒子(D-12)を用いた他は同様の操作を行い、樹脂粒子組成物(P-12)を得た。(P-12)の体積平均粒径は152μmであった。
樹脂粒子組成物(P-13)の製造
実施例1でプレポリマー溶液(G-1)の代わりに、プレポリマー溶液(G-13)(100部)に変更した以外は、実施例1と同様の操作を行い、ウレタン樹脂粒子(D-13)を製造した。(D-13)のMnは2.0万、体積平均粒径は145μmであった。
次いで、100Lのナウタミキサ内に、ウレタン樹脂粒子(D-13)(100部)、ラジカル重合性不飽和基含有化合物ジペンタエリスリトールペンタアクリレート[
三洋化成工業(株)社製; DA600](4.0部)、紫外線安定剤ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート及びメチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート(混合物)[商品名:TINUVIN 765、チバ社製](0.3部)、化合物(E-1)(2部)を投入し70℃で4時間含浸した。含浸4時間後、2種類の内添離型剤であるジメチルポリシロキサン[日本ユニカー(株)製;ケイL45-1000](0.06部)、カルボキシル変性シリコン[信越化学工業(株)製;X-22-3710](0.05部)、を投入し1時間混合した後室温まで冷却した。最後に、ブロッキング防止剤架橋ポリメチルメタクリレート[ガンツ化成(株);ガンツパールPM-030S](0.5部)を投入混合することで樹脂粒子組成物(P-13)を得た。(P-13)の体積平均粒径は149μmであった。
樹脂粒子組成物(P-14)の製造
実施例13で、化合物(E-1)(2部)の代わりに、化合物(E-2)(2部)に変更した以外は、同様の操作を行い、樹脂粒子組成物(P-14)を得た。(P-14)の体積平均粒径は149μmであった。
樹脂粒子組成物(P-15)の製造
実施例13で、化合物(E-1)(2部)の代わりに、化合物(E-3)(2部)に変更した以外は、同様の操作を行い、樹脂粒子組成物(P-15)を得た。(P-15)の体積平均粒径は149μmであった。
樹脂粒子組成物(P-16)の製造
実施例13で、化合物(E-1)(2部)の代わりに、化合物(E-4)(2部)に変更した以外は、同様の操作を行い、樹脂粒子組成物(P-16)を得た。(P-16)の体積平均粒径は149μmであった。
樹脂粒子組成物(P-17)の製造
実施例13で、化合物(E-1)(2部)の代わりに、化合物(E-5)(2部)に変更した以外は、同様の操作を行い、樹脂粒子組成物(P-17)を得た。(P-17)の体積平均粒径は149μmであった。
樹脂粒子組成物(P-18)の製造
実施例13で、化合物(E-1)(2部)の代わりに、化合物(E-6)(2部)に変更した以外は、同様の操作を行い、樹脂粒子組成物(P-18)を得た。(P-18)の体積平均粒径は149μmであった。
樹脂粒子組成物(P-19)の製造
実施例13で、化合物(E-1)(2部)の代わりに、化合物(E-7)(2部)に変更した以外は、同様の操作を行い、樹脂粒子組成物(P-19)を得た。(P-19)の体積平均粒径は149μmであった。
樹脂粒子組成物(P-20)の製造
実施例13で、化合物(E-1)(2部)の代わりに、化合物(E-1)(10部)に変更した以外は、同様の操作を行い、樹脂粒子組成物(P-20)を得た。(P-20)の体積平均粒径は149μmであった。
樹脂粒子組成物(P-1’)の製造
実施例1において、ウレタン樹脂粒子(D-1)の代わりにウレタン樹脂粒子(D-13)を用いた他は同様の操作を行い、樹脂粒子組成物(P-1’)を得た。(P-1’)の体積平均粒径は148μmであった。
樹脂粒子組成物(P-2’)の製造
実施例1でプレポリマー溶液(G-1)(100部)とMEKケチミン化合物(4.2部)の代わりに、プレポリマー溶液(G-1’)(100部)とMEKケチミン化合物(5.2部)に変更した以外は、実施例1と同様の操作を行い、ウレタン樹脂粒子(D-1’)を製造した。(D-1’)のMnは2.0万、体積平均粒径は145μmであった。
さらに実施例1において、ウレタン樹脂粒子(D-1)の代わりにウレタン樹脂粒子(D-1’)を用いた他は同様の操作を行い、樹脂粒子組成物(P-2’)を得た。(P-2’)の体積平均粒径は148μmであった。
樹脂粒子組成物(P-3’)の製造
実施例1でプレポリマー溶液(G-1)の代わりに、プレポリマー溶液(G-2’)(100部)に変更した以外は、実施例1と同様の操作を行い、ウレタン樹脂粒子(D-2’)を製造した。(D-2’)のMnは2.0万、体積平均粒径は145μmであった。
さらに実施例1において、ウレタン樹脂粒子(D-1)の代わりにウレタン樹脂粒子(D-2’)を用いた他は同様の操作を行い、樹脂粒子組成物(P-3’)を得た。(P-3’)の体積平均粒径は148μmであった。
樹脂粒子組成物(P-4’)の製造
実施例13で、化合物(E-1)(2部)の代わりに、化合物(E-1’)(2部)に変更した以外は、同様の操作を行い、樹脂粒子組成物(P-4’)を得た。(P-4’)の体積平均粒径は148μmであった。なお、表3には化合物(E-1’)は記載していない。
樹脂粒子組成物(P-5’)の製造
実施例13で、化合物(E-1)(2部)の代わりに、化合物(E-2’)(2部)に変更した以外は、同様の操作を行い、樹脂粒子組成物(P-5’)を得た。(P-5’)の体積平均粒径は148μmであった。
結果を表1~3に示した。
のIRスペクトルを測定した結果、図2に示したように1680~1720cm-1付近に吸収は認められなかった。
低温成形を目的に、予め210℃に加熱されたしぼ模様の入ったNi電鋳型にスラッシュ成形用の樹脂粒子組成物(P-1)~(P-20)、(P-1’)~(P-5’)を充填し、10秒後余分な樹脂粒子組成物を排出した。60秒後水冷して表皮(厚さ1mm)を作成した。また、充填後の時間を5秒にする以外は、上記と同様の方法で厚さ0.3mmの表皮をそれぞれ作成した。
島津(株)製フローテスターCFT-500を用いて、以下の条件で等速昇温し、190℃の溶融粘度を測定した。
荷重 : 5kgf
ダイ : 穴径0.5mm、長さ1.0mm
昇温速度 : 5℃/min.
130℃の貯蔵弾性率G’は、動的粘弾性測定装置「RDS-2」(Rheometric Scientific社製)を用い周波数1Hz条件下で測定した。
測定試料を測定装置の冶具にセットした後、200℃まで昇温して、200℃で1分間冶具間で静置させることで溶融させた後、冷却し固化させることで冶具に密着させた。
その後、測定を行った。測定温度範囲は50~200℃であり、この温度間の溶融粘弾性を測定することによって、温度-G’、温度-G”の曲線として得ることができる。
130℃の貯蔵弾性率G’は、温度-G’の曲線から読み取る。
冶具の直径:8mm
樹脂の数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて以下の条件で測定した。
装置:「HLC-8120」[東ソー(株)製]
カラム:「TSK GEL GMH6」2本[東ソー(株)製]
測定温度:40℃
試料溶液:0.25重量%のTHF(テトラヒドロフラン)溶液
溶液注入量:100μl
検出装置:屈折率検出器
基準物質:標準ポリスチレン(TSKstandard POLYSTYRENE)12点(分子量 500、1,050、2,800、5,970、9,100、18,100、37,900、96,400、190,000、355,000、1,090,000、2,890,000)[東ソー(株)製]
なお、分子量の測定には、試料をTHFに溶解し、不溶解分をグラスフィルターでろ別したものを試料溶液とし用いた。
レーザー式光散乱法で測定した篩い下50%の粒子径を、マイクロトラックHRA粒度分析計9320-X100(日機装株式会社製)を用いて測定した。
厚さ1mmの表皮について成形表皮裏面中央部を目視で観察し、以下の判定基準で溶融性を評価した。
5:均一で光沢がある。
4:一部未溶融のパウダーが有るが、光沢がある。
3:裏面全面に凹凸があり、光沢はない。表面に貫通するピンホールはない。
2:裏面全面にパウダーの形状の凹凸があり、かつ表面に貫通するピンホールがある。
1:パウダーが溶融せず、成形品にならない。
板厚1mmの成形表皮を幅30mm、長さ200mmに切り取り、平面摩耗試験機(型番 FR-T、スガ試験機)に取り付け、白綿布を摩擦子にかぶせて固定する。摩擦子の荷重0.5kgfとして試験片を3000回往復し、耐摩耗試験を行った。
以下の基準で評価した。
◎:全く異常が認められない。
○:わずかに異常が認められるが目立たない。
△:異常が認められ、はっきりと見える。
×:著しく異常が認められる。
厚さ1mmの成形表皮からJIS K 6400-5の引張試験片ダンベル1号形を3枚打ち抜き、その中心に40mm間隔で標線をした。板厚は標線間5カ所の最小値を採用した。これを25℃雰囲気下にてオートグラフに取り付け、200mm/minの速さで引っ張り、試験片が破断にいたるまでの引張強度、伸びを算出した。
また、0.3mmの表皮で同様の測定を行い、上記試験時の試験片が破断にいたるまでの破断時の最大荷重を算出した。
厚さ1mmの成形表皮を、循風乾燥機中に、130℃、600時間静置した。続いて、処理後の表皮を25℃24時間静置した。続いて、これからJIS K 6400-5の引張試験片ダンベル1号形を3枚打ち抜き、その中心に40mm間隔で標線をした。板厚は標線間5カ所の最小値を採用した。これを25℃雰囲気下にてオートグラフに取り付け、200mm/minの速さで引っ張り、試験片が破断にいたるまでの引張強度、伸びを算出した。
厚さ1mmの成形表皮を、縦60mm、横95mmの大きさに切り、シートの裏面に、コールドカッター(刃の厚み0.3mm)で表面に対しておよそ直角に深さ0.4~0.6mm、長さ60mmの切り目を入れた。成形表皮を離型紙に挟み離型紙の上から重量95~100g、寸法(縦、横、高さ)が縦100mm×横100mm×厚み1.2mmの鉄板を離型紙が隠れるように乗せ、空気中、常圧下130℃で100時間静置した後、上記シートの切り目が融着していないかどうかを目視で観察した。
以下の基準で評価した。
○:カッターの切り目が全く融着していない。
×:カッターの切り目が融着している。
また、(P-1)~(P-20)は、(P-1’)~(P-5’)と比べて、裏面溶融性、熱融着試験、25℃伸びにおいて優れているかまたは同等である。
また、(P-1)~(P-20)の0.3mmの破断時の最大荷重が、(P-1’)~(P-5’)と比べて、優れていることから、成形表皮の薄膜化も可能である。
このことより、実施例1~20のスラッシュ成形用の樹脂粒子組成物(P-1)~(P-20)は、溶融性、(P)の成形物の耐熱性、機械物性の3つの全てに優れた性能を有することから、特にインストルメントパネル用材料として優れている。
Claims (18)
- 価数が3以上の芳香族ポリカルボン酸から水酸基を除いた残基(j)を共有結合して有するウレタン樹脂もしくはウレタンウレア樹脂(U1)を含有してなるウレタン樹脂粒子(D1)、
または価数が3以上の芳香族ポリカルボン酸から水酸基を除いた残基(j)を有する下記一般式(1)で表される化合物(E)と、ウレタン樹脂もしくはウレタンウレア樹脂(U2)を含有するウレタン樹脂組成物(S2)を含有してなるウレタン樹脂粒子(D2)であって、
(U1)または(U2)中のウレタン基またはウレア基(u)と、価数が3以上の芳香族ポリカルボン酸から水酸基を除いた残基(j)が水素結合してなるウレタン樹脂粒子(D)。
- ウレタン樹脂もしくはウレタンウレア樹脂(U1)、ならびにウレタン樹脂もしくはウレタンウレア樹脂(U2)が熱可塑性樹脂である請求項1に記載のウレタン樹脂粒子(D)。
- ウレタン樹脂もしくはウレタンウレア樹脂(U1)が、一般式(2)で表される構造単位(x)を有する請求項1または2に記載のウレタン樹脂粒子(D)。
- ウレタン樹脂もしくはウレタンウレア樹脂(U1)において、芳香族ポリカルボン酸から水酸基を除いた残基(j)がベンゼンポリカルボン酸から水酸基を除いた残基であって、カルボキシル基が3個の場合はカルボキシル基の置換位置が1,2,4-位であり、カルボキシル基が4個の場合はカルボキシル基の置換位置が1,2,4,5-位又は1,2,3,4-位である請求項1~3のいずれか1項に記載のウレタン樹脂粒子(D)。
- 一般式(4)において、R4がエチレン基である請求項6に記載のウレタン樹脂粒子(D)。
- 一般式(5)において、R5がフェニル基である請求項8に記載のウレタン樹脂粒子(D)。
- ウレタン樹脂もしくはウレタンウレア樹脂(U1)中において、一般式(2)で表される構造単位(x)が(U1)の重量に対して、0.1~30重量%含有される請求項3~9のいずれか1項に記載のウレタン樹脂粒子(D)。
- 一般式(2)および(3)において、aが1または2である請求項5~10のいずれか1項に記載のウレタン樹脂粒子(D)。
- 一般式(2)および(3)においてaが1である構造単位(x1)を分子の末端に有するウレタン樹脂もしくはウレタンウレア樹脂(U11)であって、構造単位(x1)が(U11)の重量に対して0.1~5重量%含有される請求項11に記載のウレタン樹脂粒子(D)。
- 一般式(2)および(3)においてaが3又は4である構造単位(x2)を有するウレタン樹脂もしくはウレタンウレア樹脂(U12)であって、構造単位(x2)が(U12)の重量に対して0.1~3重量%含有される請求項5~10のいずれか1項に記載のウレタン樹脂粒子(D)。
- 化合物(E)において、芳香族ポリカルボン酸から水酸基を除いた残基(j)がベンゼンポリカルボン酸から水酸基を除いた残基であって、カルボキシル基が3個の場合はカルボキシル基の置換位置が1,2,4-位であり、カルボキシル基が4個の場合はカルボキシル基の置換位置が1,2,4,5-位又は1,2,3,4-位である請求項1または2に記載のウレタン樹脂粒子(D)。
- ウレタン樹脂もしくはウレタンウレア樹脂(U2)の重量に対して、化合物(E)が0.1~10重量%含有される請求項1、2または14に記載のウレタン樹脂粒子(D)。
- 化合物(E)とウレタン樹脂もしくはウレタンウレア樹脂(U2)の溶解性パラメーターの差(ΔSP値)が0~1.5である請求項1、2、14または15に記載のウレタン樹脂粒子(D)。
- スラッシュ成形用である請求項1~16のいずれか1項に記載のウレタン樹脂粒子(D)。
- 請求項17に記載のウレタン樹脂粒子(D)、および無機フィラー、顔料、可塑剤、離型剤、ブロッキング防止剤、および安定剤の群から選ばれる少なくとも1種である添加剤(F)を含有するスラッシュ成形用熱可塑性ウレタン樹脂粒子組成物(P)。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11839928.6A EP2639250B1 (en) | 2010-11-12 | 2011-11-09 | Urethane resin particles |
US13/884,771 US9023941B2 (en) | 2010-11-12 | 2011-11-09 | Urethane resin particles |
KR1020137014456A KR101971742B1 (ko) | 2010-11-12 | 2011-11-09 | 우레탄 수지 입자 |
CN201180048316.2A CN103154067B (zh) | 2010-11-12 | 2011-11-09 | 聚氨酯树脂粒子 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-253674 | 2010-11-12 | ||
JP2010253674 | 2010-11-12 | ||
JP2011-088028 | 2011-04-12 | ||
JP2011088028 | 2011-04-12 | ||
JP2011-107339 | 2011-05-12 | ||
JP2011107339 | 2011-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012063483A1 true WO2012063483A1 (ja) | 2012-05-18 |
Family
ID=46050648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/006263 WO2012063483A1 (ja) | 2010-11-12 | 2011-11-09 | ウレタン樹脂粒子 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9023941B2 (ja) |
EP (1) | EP2639250B1 (ja) |
KR (1) | KR101971742B1 (ja) |
CN (1) | CN103154067B (ja) |
WO (1) | WO2012063483A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017008292A (ja) * | 2015-06-19 | 2017-01-12 | 三洋化成工業株式会社 | ポリウレタン樹脂水性分散体 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013113320B4 (de) * | 2013-12-02 | 2019-11-14 | Timur Ünlü | Verwendung einer pulverförmigen Zusammensetzung aus thermoplastischem Polyurethan und Verfahren zur Herstellung eines Formkörpers |
JP6026460B2 (ja) * | 2014-04-25 | 2016-11-16 | 三洋化成工業株式会社 | 自動車内装材用樹脂成形品 |
CN114409864B (zh) * | 2020-10-28 | 2023-12-19 | 万华化学集团股份有限公司 | 聚氨酯或聚氨酯-脲的水分散体及其制备方法和用途 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005263877A (ja) * | 2004-03-16 | 2005-09-29 | Sanyo Chem Ind Ltd | 樹脂分散体の製造方法及び樹脂粒子 |
JP2007246673A (ja) * | 2006-03-15 | 2007-09-27 | Sanyo Chem Ind Ltd | 着色樹脂粒子の製造方法及び着色樹脂粒子 |
JP2007246676A (ja) * | 2006-03-15 | 2007-09-27 | Sanyo Chem Ind Ltd | 樹脂粒子の製造方法及び樹脂粒子 |
JP2008101204A (ja) * | 2006-09-20 | 2008-05-01 | Sanyo Chem Ind Ltd | 樹脂分散体の製造方法及び樹脂粒子 |
JP2010254896A (ja) * | 2009-04-28 | 2010-11-11 | Sanyo Chem Ind Ltd | 樹脂粒子およびその水性分散体、並びにその製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3116164B2 (ja) * | 1990-08-22 | 2000-12-11 | サカタインクス株式会社 | ポリエステル樹脂を含む金属用印刷インキ組成物 |
JPH08311183A (ja) * | 1995-05-17 | 1996-11-26 | Mitsui Toatsu Chem Inc | エステルポリオールおよびその製造方法 |
JP2984921B2 (ja) | 1997-01-20 | 1999-11-29 | 三洋化成工業株式会社 | ホットメルト接着剤 |
JP3895129B2 (ja) | 2001-04-27 | 2007-03-22 | 関東自動車工業株式会社 | インストルメントパネル表皮の加工方法及び装置 |
CN100504628C (zh) * | 2003-12-10 | 2009-06-24 | 三洋化成工业株式会社 | 调色剂用聚酯树脂和调色剂组合物 |
EP1710271A4 (en) * | 2004-01-30 | 2012-08-22 | Sanyo Chemical Ind Ltd | RESIN DISPERSION AND RESIN PARTICLES |
JP2007283865A (ja) | 2006-04-14 | 2007-11-01 | Toyota Motor Corp | 車両のパネル部材、該パネル部材を用いた車両のインストルメントパネル、およびエアバックドアの製造方法 |
JP5442407B2 (ja) | 2008-11-26 | 2014-03-12 | 三洋化成工業株式会社 | 樹脂粒子の製造方法 |
JP2010189633A (ja) | 2009-01-21 | 2010-09-02 | Sanyo Chem Ind Ltd | 樹脂分散体の製造方法及び樹脂粒子 |
JP5189018B2 (ja) | 2009-03-24 | 2013-04-24 | 三洋化成工業株式会社 | スラッシュ成形用樹脂粉末組成物及び成形品 |
-
2011
- 2011-11-09 CN CN201180048316.2A patent/CN103154067B/zh active Active
- 2011-11-09 KR KR1020137014456A patent/KR101971742B1/ko active IP Right Grant
- 2011-11-09 WO PCT/JP2011/006263 patent/WO2012063483A1/ja active Application Filing
- 2011-11-09 EP EP11839928.6A patent/EP2639250B1/en active Active
- 2011-11-09 US US13/884,771 patent/US9023941B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005263877A (ja) * | 2004-03-16 | 2005-09-29 | Sanyo Chem Ind Ltd | 樹脂分散体の製造方法及び樹脂粒子 |
JP2007246673A (ja) * | 2006-03-15 | 2007-09-27 | Sanyo Chem Ind Ltd | 着色樹脂粒子の製造方法及び着色樹脂粒子 |
JP2007246676A (ja) * | 2006-03-15 | 2007-09-27 | Sanyo Chem Ind Ltd | 樹脂粒子の製造方法及び樹脂粒子 |
JP2008101204A (ja) * | 2006-09-20 | 2008-05-01 | Sanyo Chem Ind Ltd | 樹脂分散体の製造方法及び樹脂粒子 |
JP2010254896A (ja) * | 2009-04-28 | 2010-11-11 | Sanyo Chem Ind Ltd | 樹脂粒子およびその水性分散体、並びにその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2639250A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017008292A (ja) * | 2015-06-19 | 2017-01-12 | 三洋化成工業株式会社 | ポリウレタン樹脂水性分散体 |
Also Published As
Publication number | Publication date |
---|---|
CN103154067B (zh) | 2015-05-13 |
US9023941B2 (en) | 2015-05-05 |
KR20130132839A (ko) | 2013-12-05 |
EP2639250A4 (en) | 2016-02-17 |
EP2639250B1 (en) | 2021-01-06 |
US20130237664A1 (en) | 2013-09-12 |
KR101971742B1 (ko) | 2019-04-23 |
EP2639250A1 (en) | 2013-09-18 |
CN103154067A (zh) | 2013-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5449399B2 (ja) | 熱可塑性ウレタン樹脂 | |
WO2012063483A1 (ja) | ウレタン樹脂粒子 | |
KR101661824B1 (ko) | 슬러시 성형용 분말상 폴리우레탄우레아 수지 조성물 및 그 제조 방법 | |
JP3059707B2 (ja) | ポリウレタン樹脂系スラッシュ成形用材料 | |
JP2011256228A (ja) | ホットメルト接着剤 | |
JP5596659B2 (ja) | ウレタン樹脂粒子 | |
JP5583653B2 (ja) | ウレタン樹脂粒子 | |
JP2004002786A (ja) | ポリウレタン樹脂系スラッシュ成形用材料 | |
JP2013241574A (ja) | ウレタン(ウレア)樹脂粒子組成物 | |
JP6091947B2 (ja) | スラッシュ成形用熱可塑性ウレタン(ウレア)樹脂粒子組成物 | |
JP6153958B2 (ja) | スラッシュ成形用粉末状樹脂組成物 | |
JP2014005449A (ja) | スラッシュ成形用熱可塑性樹脂粒子組成物 | |
JP2004204242A (ja) | ポリウレタン樹脂系スラッシュ成形用材料 | |
JP6026460B2 (ja) | 自動車内装材用樹脂成形品 | |
JP3942574B2 (ja) | ポリウレタン樹脂系スラッシュ成形用材料 | |
JP5791921B2 (ja) | 熱可塑性ポリウレタン樹脂粉体の製造方法 | |
JP4733010B2 (ja) | ポリカルボジイミド及びポリエステル系ウレタン樹脂組成物 | |
JP2000017032A (ja) | ポリウレタン樹脂系スラッシュ成形用材料 | |
JP5661520B2 (ja) | 熱可塑性ポリウレタン樹脂粉体の製造方法 | |
JP6276641B2 (ja) | スラッシュ成形用粉末状熱可塑性ウレタンウレア樹脂組成物 | |
JP2013241573A (ja) | ウレタン(ウレア)樹脂粒子組成物 | |
JP2010201844A (ja) | スラッシュ成形用樹脂粉末組成物及び成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180048316.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11839928 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13884771 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137014456 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011839928 Country of ref document: EP |