WO2012062228A2 - Polipéptidos derivados de la il-2 con actividad agonista para la terapia del cáncer e infecciones crónicas. - Google Patents

Polipéptidos derivados de la il-2 con actividad agonista para la terapia del cáncer e infecciones crónicas. Download PDF

Info

Publication number
WO2012062228A2
WO2012062228A2 PCT/CU2011/000007 CU2011000007W WO2012062228A2 WO 2012062228 A2 WO2012062228 A2 WO 2012062228A2 CU 2011000007 W CU2011000007 W CU 2011000007W WO 2012062228 A2 WO2012062228 A2 WO 2012062228A2
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
therapy
cancer
polypeptides
cells
Prior art date
Application number
PCT/CU2011/000007
Other languages
English (en)
French (fr)
Other versions
WO2012062228A3 (es
Inventor
Kalet LEÓN MONZÓN
Tania Carmenate Portilla
Saumel PÉREZ RODRÍGUEZ
Neris Michel Enamorado Escalona
Agustín Bienvenido LAGE DAVILA
Original Assignee
Centro De Inmunologia Molecular
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45350376&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012062228(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to MX2013005250A priority Critical patent/MX346222B/es
Priority to US13/885,021 priority patent/US9206243B2/en
Priority to MYPI2013700752A priority patent/MY171356A/en
Priority to BR112013010127-0A priority patent/BR112013010127B1/pt
Priority to ES11797102.8T priority patent/ES2543915T3/es
Priority to KR1020137012452A priority patent/KR101559330B1/ko
Priority to AU2011328688A priority patent/AU2011328688B2/en
Application filed by Centro De Inmunologia Molecular filed Critical Centro De Inmunologia Molecular
Priority to UAA201307450A priority patent/UA106318C2/ru
Priority to JP2013538062A priority patent/JP5761831B2/ja
Priority to CN201180054156.2A priority patent/CN103201284B/zh
Priority to EP11797102.8A priority patent/EP2639241B1/en
Priority to CA2814814A priority patent/CA2814814C/en
Priority to EA201390681A priority patent/EA026022B1/ru
Publication of WO2012062228A2 publication Critical patent/WO2012062228A2/es
Publication of WO2012062228A3 publication Critical patent/WO2012062228A3/es
Priority to TNP2013000151A priority patent/TN2013000151A1/fr
Priority to CL2013001107A priority patent/CL2013001107A1/es
Priority to IL226221A priority patent/IL226221B/en
Priority to HK13109794.4A priority patent/HK1182403A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/55IL-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • A61K38/2013IL-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • A61K47/6813Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin the drug being a peptidic cytokine, e.g. an interleukin or interferon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • A61K2039/55527Interleukins
    • A61K2039/55533IL-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies

Definitions

  • the present invention relates to immunology. Particularly it is related to the therapeutic application of the modulation of the immune system by means of analogs of natural molecules that have agonist action of the original molecule, and yet surprisingly they demonstrated superior therapeutic efficacy.
  • Interleukin 2 was the first growth factor described for T cells. Since its discovery, its ability to promote proliferation and survival of T cells in vitro was observed (Smith, KA (1988) Science. 240 , 1169-76), as well as its ability to enhance the T immune response in the context of viral infections (Blattman, JN, et al. (2003) Nat Med. 9, 540-7) or vaccines (Fishman,, et al . (2008) J Immunother. 31, 72-80; Kudo-Saito, C, et al. (2007) Immunol Immunother Cancer. 56, 1897-910; Lin, CT, et al. (2007) Immunol Lett. 114, 86-93).
  • Interleukin 2 has also been proposed as a relevant actor in the mechanism by which regulatory T cells suppress the activity and expansion of other effector cells such as helper CD4 T, cytotoxic CD8 T and natural NK killer cells.
  • regulatory T cells suppress other T cells, inducing local decrease in IL-2 levels (Pandiyan, P., et al. (2007) Nat Immunol. 8, 1353-62).
  • This suppressive effect is based on: a) In its ability to directly inhibit the production of new IL-2 by the effector T cells it suppresses (Almeida, AR, et al. (2002) J Immunol. 169, 4850-60; Takahashi, T., et al. (1998) Int Immunol.
  • IL-2 is a cytosine with highly pleiotropic properties, being very relevant in the biological activity of different cell populations. This property makes IL-2 an important node in the regulation of the immune response, making it an attractive and complex target for immuno modulation therapies.
  • IL-2 has been used for several years in cancer therapy. In particular, its use in high doses is an approved therapy in several countries for the treatment of melanoma and metastatic renal carcinoma.
  • the direct use of IL-2 in patients is severely limited by the toxic effects and the low efficacy of it. So much so that only 20% of eligible patients receive therapy and more so only 17% of those treated show relevant objective response.
  • the present invention relates to obtaining mutated variants of IL-2, which show greater therapeutic efficacy than native IL-2 in transplantable murine tumor models.
  • These muteins are characterized by partial agonists of IL-2 activity and are selected for their especially low ability to stimulate natural regulatory T cells (CD4 + CD25 + FoxP3 + T) in vitro and / or in vivo.
  • the therapeutic efficacy of these muteins in vivo proposes a practical solution to improve therapies with IL-2 in malignant tumors.
  • these muteins will overcome the limitations observed in therapy with native IL-2 that derive from their proven ability to expand in vivo to natural regulatory T cells.
  • the present invention relates to polypeptides that share primary sequence with human IL-2, except that several amino acids have been mutated.
  • the mutations introduced substantially reduce the ability of these polypeptides to stimulate in vitro and in vivo regulatory T cells (CD4 + CD25 + FoxP3 +) and confer greater efficacy in the therapy of murine transplantable tumors.
  • the present invention further includes the therapeutic applications of these mutated variants, alone or in combination with vaccines, for the therapy of diseases such as cancer or infections where the activity of regulatory T cells (Tregs) is relevant.
  • the present invention will allow a substantial improvement of current immunomodulation strategies based on IL-2, both in direct cancer therapy, and in combination with different vaccines.
  • substitution of native IL-2 with the mutated variants described in this invention will prevent the expansion of regulatory T cells that markedly reduce the desired therapeutic effects.
  • the present invention relates to polypeptides of size between 100 and 500 amino acids, preferably of size 140 whose apparent molecular weight is at least 15 kD. These polypeptides maintain a high sequence identity with native IL-2, more than 90% identity, in an area of their sequence, include 3 to 6 mutations with respect to native IL-2. In these positions, these polypeptides are mutated by introducing amino acid residues different from those that exist in the same position in the native IL-2. The residues that replace the original residues are selected to possess physicochemical properties that are very different from the original amino acid, change of polar residue to apolar, loaded by not loaded, large by small, acidic by basic, among others.
  • polypeptides of this invention can be obtained by different routes, among others, by protein synthesis. They could also be obtained by genetic engineering techniques, for example by expressing them in bacteria such as, among others E. coli, in mammalian cells such as, among others, NSO cells. Point mutations at specific positions could also be obtained by directed mutagenesis techniques by polymerase chain reaction.
  • polypeptides of the present invention are selected by the following properties:
  • Agonist action of native IL-2 This property can be directly assessed in in vitro proliferation assays with IL-2 dependent cell lines such as CTLL2 or Kitt225, or with assays with mixtures of mouse and / or human T lymphocytes. These muteins must possess a specific stimulatory activity that is 5 to 50 times lower than that of native IL-2 in these assays.
  • the present invention is particularly related to the muteins detailed in Table 1. These muteins include multiple amino acid substitutions that together confer on them the aforementioned properties.
  • Table 1 Muteins constructed that possess the three basic properties described in this patent. Mutations are referred to according to the numbering of human IL-2.
  • the present invention also comprises additional modifications of the aforementioned class of muteins of IL-2 and especially those described in Table 1. Either to increase their affinity for specific components of the IL-2 receptor, but without affecting or even improving its agonist character that does not stimulate regulatory T cells; or to improve its pharmacodynamics in vivo: increase the life time or reduce its internalization by T cells. These additional mutations could be obtained by rational design with bioinformatics tools, or by using combinatorial molecular libraries of different nature (phage libraries, libraries of gene expression in yeast or bacteria).
  • the present invention relates to a fusion protein comprising any of the immunomodulatory polypeptides described above, coupled to a transporter protein.
  • the transporter protein can be Albumin or the Fe region of human immunoglobulins.
  • This invention also includes pharmaceutical compositions comprising as active ingredient the IL-2 muteins and their analogs, disclosed by the present invention, as well as their possible therapeutic applications with the aim of enhancing the natural or vaccine-induced immune response in diseases such as cancer or chronic infections where regulatory T cells are particularly relevant.
  • the polypeptide of the present invention should be administered to a subject carrying the disease independently or in combination with other polypeptides or with other substances that facilitate or enhance its therapeutic action.
  • the route of administration may be any of the routes of administration described by the prior art for parenteral drug administration. It may preferably be administered intravenously, intramuscularly, subcutaneously or intratumorally.
  • polypeptides described in the present invention can also be administered as part of a pharmaceutical composition useful in the therapy of cancer and chronic infectious diseases or to enhance the cellular and / or humoral response to vaccines in substitution of native IL2.
  • the polypeptides of the present invention can be used in combination with therapeutic vaccines for cancer or with prophylactic vaccines in infectious disease where regulatory T cells are relevant.
  • the polypeptide of the present invention must be administered at doses high enough to guarantee a concentration thereof in the lymph node or peripheral site relevant to the disease under study, which is in the range of concentrations for the which mutein shows an immune-stimulatory effect.
  • the dose in question should therefore be adjusted for the type of disease and route of administration under study.
  • the dose in the case of tumor therapy, the dose must be adjusted to achieve concentrations of the mutein inside the tumor and / or in the loco-regional lymph node that guarantee the stimulation of an antitumor immune response.
  • the dose ranges to explore can vary from hundreds of micrograms to hundreds of milligrams per dose.
  • the dose of mutein to be used must be less or equivalent in activity (determined using a CTLL2 line test) to that traditionally used for native IL-2.
  • the number of administrations to be applied must also adjust to the biodistribution of the mutein in question.
  • the aforementioned effective concentrations must be sustained for a time ranging from 2 days to 30 consecutive days.
  • the frequency of administrations thereof must be adjusted accordingly.
  • the mutein administration schedule may be similar to that applied in traditional therapy.
  • Therapeutic action should be understood as the total or partial remission of the symptoms of the disease. In cancer, the decrease in tumor volume or the increase in relapse time will be, among others, the criteria for disease remission.
  • polypeptides of the invention are particularly useful in the therapy of tumors such as among other melanomas and renal tumors.
  • Figure 1 Obtaining the mutein.
  • FIG. 3 Mutein does not induce proliferation of regulatory T cells in vitro.
  • a) Flow cytometry graph showing the purity of the population CD3 + CD4 + CD25 + purified from the ganglia of a C57BL6 mouse.
  • Treg cells were stimulated in vitro with an anti-CD3 AcM and were given native IL-2 in a concentration of 0.5 ng / mL or mutein in a concentration of 32 ng / mL for 72 hours, the graph shows No. of Live cells recovered after each treatment compared to the control where no cytokine was added. The selected concentrations correspond to the concentration at which each molecule induces the same proliferation of the CTLL2 line.
  • Figure 4 Evaluation of the effect of mutein treatment on the proliferation of lymphocyte populations.
  • a) Quantification of the relative weights of the spleens of the mice treated with the mutein for five days. The weights of the spleens of the treated mice were statistically higher than those of the control group. The Kruskal-Wallis non-parametric test and the Dunn multiple comparisons test were used.
  • FIG. 6 The administration of mutein in combination with the OVA / VSSP vaccine enhances the antitumor effect of this vaccine.
  • Mice carrying the EG7 tumor were treated with the OVA / VSSP vaccine alone or in combination with the mutein.
  • the graph shows tumor growth, the group treated with the combination of the vaccine and the mutein showed a statistically different tumor size reduction from the control group.
  • the muteins were computationally designed, based on bioinformatics techniques, using as a basis the reported structure of human IL-2 in the PDB database (Protein Data Bank) and amino acid sequences of IL-2 in various species that are available in the Swissprot database.
  • Several muteins were designed including 3 to 6 mutations (introducing non-conservative amino acid substitutions) in solvents exposed to the solvent and strongly conserved in evolution. These muteins were expressed in E.coli from a genetic construct in the pET28a vector including a sequence of 6 histidines in the terminal amino.
  • the muteins were purified by reverse phase (Figure 1) obtained with high purity (> 95%).
  • the obtained muteins were selected from their properties in experimental tests in vitro and in vivo to show the 3 basic properties described in the body of this invention.
  • Table 1 a set of specific mutations are described that have the desired property of being agonists of IL-2 activity without significantly stimulating regulatory T cells and showing greater therapeutic efficacy than IL- 2 native in the treatment of transplant murine tumors.
  • Table 2 refers to other muteins constructed but which did not show the desired properties.
  • Figure 2 exemplifies how muteins of those referred to in Table 1 bind to components of the IL-2 receptor on the surface of the CTLL2 cell line ( Figure 2a).
  • the constructed muteins bind to CTLL2 cells, of which it is known to possess both high affinity and intermediate affinity receptors for IL-2.
  • the binding detected in our assays turns out to be similar to that obtained with native IL-2.
  • Figure 2b then illustrates the ability of the muteins given in Table 1 to stimulate the growth of the CTLL2 cell line ( Figure. 2b).
  • These muteins turn out to be partial agonists of the activity of IL-2 in this assay. Their specific activity is between 5 and 50 times less than that of native IL-2.
  • the muteins described in Table 1 show a very reduced ability to stimulate regulatory T cells in vitro (Figure 3). As seen in this Figure, although native IL-2 is capable of significantly proliferating regulatory T cells (CD4 + CD25 + FoxP3 + T) by stimulating them with an anti-CD3 antibody attached to the bottom of the culture plate. The muteins described in Table 1 at significantly higher concentrations in mass than that of native IL-2 do not stimulate regulatory T cells. It should be noted that the results described above are valid even by increasing the amount of mutein to be used so that that amount capable of showing an activity equivalent to native IL-2 is used in the proliferation assay with the CTLL2 line. The muteins described in Table 1 typically exhibit an ability to stimulate regulatory T cells at least 1000 times less than native IL-2. Example 4. Characterization of the immunostimulatory activity in vivo of the designed muteins.
  • FIGS. 4a, b show how the muteins induce a splenomegaly greater than that of native IL2 in naive mice after treatment for five days with two daily intraperitoneal doses of 20 ⁇ g of the mutein.
  • This stimulation correlates with a clear increase in effector populations, such as CD8 + T lymphocytes.
  • this treatment with muteins does not stimulate the expansion of regulatory T cells (TCD4 + CD25 + FoxP3 +), unlike those observed for native IL2 ( Figures 4c, d).
  • Example 5 Measurement of the therapeutic efficacy of muteins in a murine model of transplanted tumors.
  • the ability of the designed mutein to enhance the antitumor effect of a vaccine was demonstrated.
  • the primary tumor model of the EG7 line was used, which is a modified tumor line to express the OVA antigen. Mice carrying the tumor were immunized with the OVA antigen adjuvant in VSSP alone or in combination with the mutein.
  • Figure 6 shows that the decrease in tumor growth was greater in the group of mice treated with the combination of the vaccine and the mutein than in the group treated with the vaccine alone.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Toxicology (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La presente invención se refiere a polipéptidos que comparten secuencia primaria con la IL-2 humana, excepto porque varios aminoácidos han sido mutados. Las mutaciones introducidas reducen sustancialmente la capacidad de estos polipéptidos para estimular in vitro e in vivo a las células T reguladoras (T CD4+CD25+FoxP3+) y le confieren una mayor eficacia en la terapia de tumores trasplantables murinos. Además incluye, las aplicaciones terapéuticas de estas variantes, solas o en combinación con vacunas, para la terapia de enfermedades como el cáncer o infecciones donde la actividad de las células T reguladoras (Tregs) es relevante. En otro aspecto la presente invención se relaciona con las composiciones farmacéuticas que comprenden como principio activo los polipéptidos divulgados. Por último, la presente invención se relaciona con el uso terapéutico de los polipéptidos y composiciones farmacéuticas divulgados dado su efecto modulador del sistema inmune sobre patologías como cáncer y enfermedades infecciosas crónicas.

Description

POLIPEPTIDOS DERIVADOS DE LA IL-2 CON ACTIVIDAD AGONISTA PARA LA TERAPIA DEL CÁNCER E INFECCIONES CRÓNICAS.
Campo de la Invención.
La presente Invención se relaciona con la inmunología. Particularmente se relaciona con la aplicación terapéutica de la modulación del sistema inmune mediante análogos de moléculas naturales que tienen acción agonista de la molécula original, y sin embargo de manera sorprendente demostraron una eficacia terapéutica superior. Antecedentes de la Invención:
La interleucina 2 (IL-2) fue el primer factor de crecimiento descrito para las células T. Desde su descubrimiento se observó su capacidad de promover la proliferación y la supervivencia de las células T in vitro (Smith, K.A. (1988) Science. 240, 1169-76), así como su capacidad de potenciar la respuesta inmune T en el contexto de infecciones virales (Blattman, J.N., et al. (2003) Nat Med. 9, 540-7) o vacunas (Fishman, , et al. (2008) J Immunother. 31 , 72-80; Kudo-Saito, C, et al. (2007) Cáncer Immunol Immunother. 56, 1897-910; Lin, C.T., et al. (2007) Immunol Lett. 114, 86-93). Sin embargo, este papel clásico de la IL-2 como promotor de la respuesta inmune T ha sido cuestionado recientemente, por múltiples datos experimentales (Almeida, A.R., et al. (2002) J Immunol. 169, 4850-60; de la Rosa, M., et al. (2004) Eur J Immunol. 34, 2480-8; Malek, T.R., et al. (2004) Nat Rev Immunol. 4, 665-74) que muestran a esta citocina como un factor de crecimiento homeostático para las células T reguladoras naturales T CD4+CD25+ FoxP3+ (Tregs).
La interleucina 2 ha sido además propuesta como un actor relevante en el mecanismo por el cual las células T reguladoras suprimen la actividad y expansión de otras células efectoras como las T CD4 auxiliadoras, las T CD8 citotóxicas y las células asesinas naturales NK. En particular ha sido propuesto recientemente que las células T reguladoras suprimen a otras células T, induciendo la disminución local de los niveles de IL-2 (Pandiyan, P., et al. (2007) Nat Immunol. 8, 1353-62). Este efecto supresor se sustenta: a) En su capacidad de inhibir directamente la producción de nueva IL-2 por las células T efectoras que suprime (Almeida, A.R., et al. (2002) J Immunol. 169, 4850- 60; Takahashi, T., et al. (1998) Int Immunol. 10, 1969-80; Thornton, A.M., et al. (1998) J Exp Med. 188, 287-96; Wolf, M., et al. (2001) Eur J Immunol. 31 , 1637-45); b) La capacidad de secuestrar, internalizar y degradar de forma rápida la IL-2 presente en su microambiente (Pandiyan, P.( et al. (2007) Nat Immunol. 8, 1353-62); y c) Su capacidad de sobre-expresar la cadena alfa del receptor de IL-2 (Kuniyasu, Y., et al. (2000) Int Immunol. 12, 1145-55), lo que le permite usar más eficientemente la IL-2 cuando hay bajas concentraciones de la misma.
Resumiendo, la IL-2 es una citosina con propiedades altamente pleiotrópicas, siendo muy relevante en la actividad biológica de diferentes poblaciones celulares. Esta propiedad hace de la IL-2 un nodo importante en la regulación de la respuesta inmune, convirtiéndola en un blanco atractivo y complejo para terapias de inmuno modulación. La IL-2 ha sido utilizada por varios años en la terapia del cáncer. En particular su uso en altas dosis es una terapia aprobada en varios países para el tratamiento del melanoma y carcinoma renal metastásico. Sin embargo, el uso directo de la IL-2 en pacientes está severamente limitado por los efectos tóxicos y la baja eficacia de la misma. Tanto es así que apenas el 20% de los pacientes elegibles reciben la terapia y más aún solo el 17% de los tratados muestra respuesta objetiva relevante. Una explicación probable para este dramático fallo en la clínica es que la terapia con IL-2 nativa estimula también poblaciones de células T reguladoras (Ahmadzadeh, M., et al. (2006) Blood. 107, 2409-14) que actúan en contra de la inmuno-estimulación perseguida con la misma. Numerosas evidencias preclínicas apoyan hoy esta idea. En particular experimentos en modelos murinos muestran que la actividad primaria de la IL-2 inyectada in vivo es la expansión homeostática de las células T reguladoras naturales.
Varias estrategias se han desarrollado con el objetivo de mitigar los efectos tóxicos de la terapia con IL-2. Algunas de estas estrategias se basan en el empleo de variantes mutadas de IL-2, diseñadas para aumentar la capacidad de esta molécula de señalizar mayormente por el receptor de alta afinidad (cadenas alfa, beta y gamma) y no por el de afinidad intermedia (cadenas beta y gamma). La idea básica es promover la señalización en células T versus la señalización en células NK que son las células que se consideran responsables por los efectos tóxicos observados. En esta línea de trabajo se encuentran las invenciones siguientes: U.S. Pat. 7,186,804, U.S. Pat. 7,105,653, U.S. Pat. 6,955,807, U.S. Pat. No. 5,229,109, U.S. Patent aplication 20050142106. Es importante notar en cualquier caso que ninguna de estas invenciones se relaciona con muteínas de la IL-2 que posean mayor eficacia terapéutica que la IL-2 nativa in vivo, en base a su capacidad disminuida para estimular a las células T reguladoras naturales.
Otras variantes mutadas de la IL-2 han sido creadas con el objetivo de incrementar su actividad farmacológica. Por ejemplo mejorando su plegamiento o incrementando su tiempo de vida en sangre. Entre otras las siguientes invenciones van en esta línea de trabajo: U.S. Pat. No. 4,959,314, U.S. Pat. No. 5,116,943, U.S. Pat. No. 4,853,332. Nuevamente ninguna de estas muteínas posee una capacidad disminuida para activar las células T reguladoras ni muestra una mayor eficacia terapéutica.
Finalmente, se debe referir que existen en la literatura numerosas propuestas de agentes terapéuticos (Kreitman, R.J. (2009) Curr Pharm Des. 15, 2652-64; Litzinger, M.T., Fernando, R., Curiel, T.J., Grosenbach, D.W., Schlom, J. and Palena, C. (2007) Blood. 110, 3192-201 ; Morse, M.A., Hobeika, A.C., Osada, T., Serra, D., Niedzwiecki, D., Lyerly, H.K. and Clay, T.M. (2008) Blood. 112, 610-8; Onizuka, S., Tawara, I., Shimizu, J., Sakaguchi, S., Fujita, T. and Nakayama, E. (1999) Cáncer Res. 59, 3128- 33; Quezada, S.A., Peggs, K.S., Curran, M.A. and Allison, J.P. (2006) J Clin Invest. 116, 1935-45) que proponen modular o reducir la actividad de las células T reguladoras in vivo. Estos agentes terapéuticos han sido probados en modelos animales o incluso en pacientes para la terapia directa de cáncer o para potenciar el efecto de vacunas. También hay algunos reportes que proponen modular la actividad de la IL-2, en particular con anticuerpos monoclonales (Boyman, O., Kovar, M., Rubinstein, M.P., Surh, C.D. and Sprent, J. (2006) Science. 311, 1924-1927; Boyman, O., et al. (2006) Expert Opin Biol Ther. 6, 1323-31; Kamimura, D., et al. (2006) J Immunol. 177, 306-14; Murakami, M., Sakamoto, A., Bender, J., Kappler, J. and Marrack, P. (2002) Proc Nati Acad Sci USA. 99, 8832-7; Tómala, J., Chmelova, H., Mrkvan, T., Rihova, B. and Kovar, M. (2009) J Immunol. 183, 4904-4912), para promover mejores o más efectivas respuestas inmunes. Sin embargo, para nuestro conocimiento no existe ningún reporte en la literatura, basado en variantes mutadas de la IL-2, que muestre la posibilidad de obtener una mayor eficacia terapéutica en base a su capacidad disminuida para estimular a las células T reguladores naturales. Breve Descripción de la Invención
La presente invención se relaciona con la obtención de variantes mutadas de la IL-2, que muestran una mayor eficacia terapéutica que la IL-2 nativa en modelos de tumores murinos transplantables. Estas muteínas se caracterizan por ser agonistas parciales de la actividad de la IL-2 y se seleccionan por su capacidad especialmente baja de estimular a las células T reguladores naturales (T CD4+CD25+FoxP3+) in vitro y/o in vivo. La eficacia terapéutica de estas muteínas in vivo, propone una solución práctica para mejorar las terapias con IL-2 en tumores malignos. En particular, estas muteínas permitirán superar las limitaciones observadas en la terapia con IL-2 nativa que derivan de su probada capacidad para expandir in vivo a las células T reguladoras naturales. La presente invención se refiere a polipéptidos que comparten secuencia primaria con la IL-2 humana, excepto porque varios aminoácidos han sido mutados. Las mutaciones introducidas reducen sustancialmente la capacidad de estos polipéptidos para estimular in vitro e in vivo a las células T reguladoras (T CD4+CD25+FoxP3+) y le confieren una mayor eficacia en la terapia de tumores trasplantables murinos. La presente invención incluye además las aplicaciones terapéuticas de estas variantes mutadas, solas o en combinación con vacunas, para la terapia de enfermedades como el cáncer o infecciones donde la actividad de las células T reguladoras (Tregs) es relevante.
La presente invención permitirá un mejoramiento sustancial de las estrategias actuales de inmunomodulacion basadas en la IL-2, tanto en la terapia directa del cáncer, como en su combinación con diferentes vacunas. En particular la sustitución de la IL-2 nativa por las variantes mutadas descritas en esta invención, permitirá evitar la expansión de células T reguladoras que reducen marcadamente los efectos terapéuticos deseados.
Descripción Detallada de la Invención.
Obtención de los polipéptidos análogos de la IL-2.
La presente invención se relaciona con polipéptidos de tamaño entre 100 y 500 aminoácidos, preferiblemente de tamaño 140 cuyo peso molecular aparente es de al menos 15 kD. Estos polipéptidos mantienen una alta identidad de secuencia con la IL- 2 nativa, más de un 90% de identidad, en una zona de su secuencia, incluyen de 3 a 6 mutaciones respecto a la IL-2 nativa. En dichas posiciones, estos polipéptidos son mutados introduciendo residuos de aminoácidos diferentes a los que existen en la misma posición en la IL-2 nativa. Los residuos que sustituyen a los residuos originales se seleccionan para poseer propiedades fisicoquímicas bien distintas al aminoácido original, cambio de residuo polar por apolar, cargado por no cargado, grande por pequeño, acido por básico, entre otros.
Los polipéptidos de la presente invención pueden denominarse indistintamente como polipéptidos inmunomoduladores, análogos de la IL-2 o muteínas de la IL-2, entre otros. Estos polipéptidos se diseñan a partir de la estructura 3D del complejo IL-2- receptor (depositada en la base de datos publica PDB), introduciendo mutaciones preferentemente en las posiciones de la IL-2 que corresponden a aminoácidos significativamente expuestos al solvente y que son altamente conservados en las IL-2 de diferentes especies (secuencias obtenidas de la base de datos Swissprot). Los aminoácidos expuestos al solvente del tipo antes mencionados se identifican usando programas bioinformáticos para la visualización de estructuras de proteínas como el RASMOL, SwissPDBviewer u otros. Las posiciones conservadas en la secuencia de la IL-2 se identifican usando programas bioinformáticos para el alineamiento múltiple de secuencias por ejemplo Fasta, ClusterW u otros.
Los polipéptidos de esta invención se pueden obtener por diferentes vías, entre otras, por síntesis de proteínas. También podrían obtenerse por técnicas de ingeniería genética, por ejemplo expresándolos en bacterias tales como, entre otras E. coli, en células de mamíferos tales como, entre otras, células NSO. Las mutaciones puntuales en las posiciones específicas podrían obtenerse además por técnicas de mutagénesis dirigida mediante la reacción en cadena de la polimerasa.
Sorprendentemente, los inventores encontraron una ventaja sustancial para estas muteínas con respecto al tradicional uso de la IL-2 nativa. Esta ventaja radica en el aumento de su eficacia en la terapia antitumoral, derivada de su capacidad de evitar la expansión de las células T reguladoras. Selección de los polipéptidos análogos de la IL-2 por su actividad biológica;
Los polipéptidos de la presente invención son seleccionados por las siguientes propiedades:
1) Acción agonista de la IL-2 nativa. Esta propiedad puede evaluarse directamente en ensayos de proliferación in-vitro con líneas celulares dependientes de IL-2 como la CTLL2 o la Kitt225, o con ensayos con mezclas de linfocitos T de ratón y/o humanas. Estas muteínas deben poseer una actividad estimulatoria específica que sea de 5 a 50 veces inferior a la de la IL-2 nativa en estos ensayos.
2) Pérdida de la capacidad, en relación con la IL-2 nativa, de estimular in vitro y/o in vivo las poblaciones de células T reguladoras. Esta propiedad puede evaluarse, por ejemplo, estudiando la capacidad de las muteínas de la presente invención en comparación con la IL-2 nativa para inducir directamente la expansión de células T CD4+CD25+, purificadas de ratones vírgenes y estimuladas con un anticuerpo anti-CD3 in vitro. También puede evaluarse el efecto de la inyección en ratones por cinco días, intraperitonial o subcutánea, de estas muteínas o la IL-2 nativa en la expansión o aumento de la tasa de proliferación de poblaciones de células T reguladoras (TCD4+CD25+FoxP3+). La actividad de la IL-2 mutadas sobre las células T reguladoras debe ser al menos 1000 veces menor que la de la IL-2 nativa en estos ensayos. 3) Efecto terapéutico incrementado con respecto a la IL2 nativa en modelos animales. Esta propiedad puede evaluarse, por ejemplo, comparando el efecto antitumoral o anti-metastásico de las muteínas y la IL-2 nativa por si solas en modelos de tumores trasplantares (Ej Melanoma B16). También puede evaluarse a través del efecto potenciador de la respuesta celular y/o humoral a una vacuna de interés. Las muteínas deben mostrar una mayor eficacia terapéutica que la IL-2 nativa en dosis que contengan igual masa total de proteínas de la IL-2 y la muteína.
La presente invención se relaciona particularmente con las muteínas detalladas en la Tabla 1. Estas muteínas incluyen múltiples sustituciones de aminoácidos que de conjunto les confieren las propiedades antes mencionadas. Tabla 1: Muteínas construidas que poseen las tres propiedades básicas descritas en esta patente. Las mutaciones se refieren según la numeración de la IL-2 humana.
Figure imgf000007_0001
La presente invención también comprende modificaciones adicionales de la clase de muteínas de IL-2 antes referida y en especial las descritas en la Tabla 1. Ya sea para aumentar la afinidad de las mismas por componentes específicos del receptor de IL-2, pero sin afectar o incluso mejorando su carácter de agonista que no estimula a las células T reguladoras; o para mejorar su farmacodinámica in vivo: aumentar el tiempo de vida o reducir su internalización por las células T. Estas mutaciones adicionales pudieran ser obtenidas por diseño racional con herramientas bioinformáticas, o utilizando bibliotecas moleculares combinatorias de diferente naturaleza (bibliotecas de fagos, bibliotecas de expresión génica en levadura o en bacterias). En otro aspecto la presente invención se relaciona con una proteína de fusión que comprende cualquiera de los polipéptido inmunomoduladores antes descritos, acoplado a una proteína transportadora. La proteína transportadora puedes ser la Albúmina o la región Fe de las inmunoglobulinas humanas.
Aplicación terapéutica de los polipéptidos análogos de la IL-2;
Esta invención incluye además las composiciones farmacéuticas que comprenden como principio activo las muteínas de IL-2 y sus análogos, divulgadas por la presente invención, así como sus posibles aplicaciones terapéuticas con el objetivo de potenciar la respuesta inmune natural o inducida por vacunas en enfermedades como el cáncer o infecciones crónicas donde las células T reguladoras sean particularmente relevantes.
Para su uso terapéutico, el polipéptido de la presente invención deberá ser administrado a un sujeto portador de la enfermedad de forma independiente o combinado con otros polipéptidos o con otras sustancias que faciliten o potencien su acción terapéutica. La ruta de administración podrá ser cualquiera de las rutas de administración descritas por el arte previo para la administración parenteral de fármacos. Podrá administrarse preferiblemente por vía intravenosa, intramuscular, subcutánea o intratumoral.
Los polipéptidos descritos en la presente invención también pueden administrarse formando parte de una composición farmacéutica útil en la terapia de cáncer y de enfermedades infecciosas crónicas o para potenciar la respuesta celular y/o humoral a vacunas en sustitución de la IL2 nativa. Los polipéptidos de la presente invención pueden ser usados en combinación con vacunas terapéuticas para cáncer o con vacunas profilácticas en enfermedad infecciosa donde las células T reguladoras son relevantes.
Para obtener el efecto terapéutico deseado, el polipéptido de la presente invención deberá ser administrado a dosis suficientemente altas como para garantizar una concentración del mismo en el nodo linfático o sitio periférico relevante para la enfermedad en estudio, que esté en el rango de concentraciones para el cual la muteína muestra un efecto immune-estimulador. La dosis en cuestión deberá por tanto ser ajustada para el tipo de enfermedad y via de administración en estudio. Por ejemplo en el caso de terapia de tumores, la dosis debe ajustarse para lograr concentraciones de la muteína en el interior del tumor y/o en el nodo linfático loco- regional que garanticen la estimulación de una respuesta inmune antitumoral. Los rangos de dosis a explorar pueden variar desde cientos de microgramos hasta cientos de miligramos por dosis. Para aquellas aplicaciones en que la muteína sustituya una terapia tradicional con IL-2 nativa, la dosis de muteína a utilizar debe ser menor o equivalente en actividad (determinada usando ensayo con línea CTLL2) a la usada tradicionalmente para la IL-2 nativa.
El número de administraciones a aplicar deberá también ajustarse a la biodistribución de la muteína en cuestión. En general se deberá lograr sostener las concentraciones efectivas antes referidas por un tiempo que va desde 2 días hasta 30 días consecutivos. Note por ejemplo que si la muteína es acoplada a una proteína transportadora, la frecuencia de administraciones de la misma deberá ser ajustada en consecuencia. Para aplicaciones donde se sustituya a la IL-2 nativa, el esquema de administración de la muteína podrá ser similar al aplicado en la terapia tradicional. Debe entenderse por acción terapéutica la remisión total o parcial de los síntomas de la enfermedad. En cáncer, la disminución del volumen tumoral o el incremento del tiempo de recaída será, entre otros, el criterio de remisión de la enfermedad.
Los polipéptidos de la invención son particularmente útiles en la terapia de tumores tales como entre otros melanomas y tumores renales.
BREVE DESCRIPCION DE LAS FIGURAS
Figura 1. Obtención de la muteína. a) Expresión de la muteína en la cepa de E. col¡ BL21DE3 evaluada por electroforesis en gel de poliacrilamida con SDS (SDS-PAGE), carril 1 : Proteínas totales de la cepa BL21 DE3 control negativo de la expresión, carriles 2 y 3: Dos ejemplos de los niveles de expresión alcanzados en esta cepa, la flecha señala la banda correspondiente a la muteína. b) Cromatograma de fase reversa que muestra el paso fundamental de purificación final de la proteína, la flecha señala el pico correspondiente a la proteína de interés, c) Purificación de la muteína evaluada por SDS-PAGE 1: Resultados del proceso de semi-purificación por lavados del precipitado celular, 2: muteína obtenida después de la purificación por fase reversa. Figura 2. Evaluación del carácter agonista de la muteína de la IL-2. a) Medición por citometría de flujo, de la capacidad de unión de la muteína a la superficie de la línea celular CTLL2. Tanto la IL-2 como la muteína fueron detectadas usando un AcM específico por la secuencia de 6His presente en las proteínas recombinantes. b) El gráfico muestra la capacidad de la muteína de inducir la proliferación de la línea celular CTLL2, dependiente de IL-2, en comparación con la IL-2 nativa. La proliferación fue medida por incorporación de MTT.
Figura 3. La muteína no induce la proliferación de las células T reguladoras in vitro. a) Gráfico de citometría de flujo que muestra la pureza de la población CD3+CD4+CD25+ purificada a partir de los ganglios de un ratón C57BL6. b) Las células Treg fueron estimuladas in vitro con un AcM anti CD3 y se les administró IL-2 nativa en concentración de 0,5 ng/mL o muteína en concentración de 32 ng/mL durante 72 horas, el gráfico muestra el No de células vivas recuperadas después de cada tratamiento en comparación con el control donde no se adicionó ninguna citocina. Las concentraciones seleccionadas corresponden, a la concentración a la cual cada molécula induce igual proliferación de la línea CTLL2.
Figura 4. Evaluación del efecto del tratamiento con la muteína sobre la proliferación de las poblaciones de linfocitos. a) Cuantificación de los pesos relativos de los bazos de los ratones tratados con la muteína durante cinco días. Los pesos de los bazos de los ratones tratados fueron estadísticamente superiores a los del grupo control. Se usó la prueba no paramétrica de Kruskal-Wallis y la prueba de comparaciones múltiples de Dunn. b) Medición de la población de linfocitos T CD8+, el gráfico muestra los porcentajes de esta población.
Figura 5. La muteína es más eficiente que la IL-2 nativa en la disminución de metástasis en el modelo de metástasis experimental de la línea de melanoma MB16F0. a) Fotos representativas de los pulmones correspondientes a cada tratamiento, b) Cuantificación de las metástasis pulmonares en cada grupo.
Figura 6. La administración de la muteína en combinación con la vacuna OVA/VSSP potencia el efecto antitumoral de esta vacuna. Los ratones portadores del tumor EG7 fueron tratados con la vacuna OVA/VSSP sola o en combinación con la muteína. El gráfico muestra el crecimiento tumoral, el grupo tratado con la combinación de la vacuna y la muteína mostró una reducción del tamaño tumoral estadísticamente diferente del grupo control.
EJEMPLOS
Ejemplo 1. Diseño de las muteínas de IL-2
Las muteínas fueron diseñadas computacionalmente, a partir de técnicas bioinformáticas, usando como base la estructura reportada de la IL-2 humana en la base de datos PDB (Protein Data Bank) y las secuencias aminoacídicas de la IL-2 en diversas especies que están disponibles en la base de datos Swissprot. Varias muteínas fueron diseñadas incluyendo de 3 a 6 mutaciones (introduciendo sustituciones no conservativas de aminoácidos) en residuos expuestos al solvente y fuertemente conservados en la evolución. Estas muteínas fueron expresadas en E.coli a partir de una construcción genética en el vector pET28a incluyéndoles una secuencia identificadora de 6 histidinas en el amino terminal. Las muteínas fueron purificadas por fase reversa (Figura 1) obteniéndose con una elevada pureza (>95%). Las muteínas obtenidas fueron seleccionadas a partir de sus propiedades en ensayos experimentales in vitro e in vivo para mostrar las 3 propiedades básicas descritas en el cuerpo de esta invención. De todas la muteínas construidas en la Tabla 1 se describe un conjunto de mutaciones específicas que tienen la propiedad deseada de ser agonistas de la actividad de la IL-2 sin estimular sensiblemente a las células T reguladoras y mostrando una mayor eficacia terapéutica que la IL-2 nativa en el tratamiento de tumores murinos trasplantares. La Tabla 2 refiere otras de las muteínas construidas pero que no mostraron las propiedades deseadas.
Tabla 2: Muteínas construidas que no poseen las propiedades básicas descritas en esta patente. Las mutaciones se refieren según la numeración de la IL-2 humana.
Figure imgf000011_0001
Ejemplo 2. Demostración del carácter agonista de las muteínas de IL-2 diseñadas.
La Figura 2 ejemplifica cómo muteínas de las referidas en las Tabla 1 se unen a componentes del receptor de IL-2 sobre la superficie de la línea celular CTLL2 (Figura.2a). Las muteínas construidas se unen a la células CTLL2, de la cual se conoce posee en su superficie tanto receptores de alta afinidad como de afinidad intermedia para la IL-2. La unión detectada en nuestros ensayos resulta ser similar a lo obtenida con la IL-2 nativa. La Figura 2b ilustra entonces la capacidad de las muteínas dadas en la Tabla 1 de estimular el crecimiento de la línea celular CTLL2 (Figura. 2b). Estas muteínas resultan ser agonistas parciales de la actividad de la IL-2 en este ensayo. La actividad específica de las mismas es entre 5 y 50 veces menor que la de la IL-2 nativa. Ejemplo 3. Efecto de las muteínas de IL-2 sobre las células T reguladoras.
Las muteínas descritas en la Tabla 1 muestran una capacidad muy reducida de estimular células T reguladoras in vitro (Figura 3). Como se observa en esta Figura si bien la IL-2 nativa es capaz de hacer proliferar significativamente a las células T reguladoras (T CD4+CD25+FoxP3+) al estimularlas con un anticuerpo anti-CD3 pegado al fondo de la placa de cultivo. Las muteínas descritas en la Tabla 1 en concentraciones significativamente superiores en masa a la de la IL-2 nativa no estimulan a las células T reguladoras. Debe acotarse que los resultados antes descritos son validos incluso aumentando la cantidad de muteína a usar de modo que se utilice aquella cantidad capaz de mostrar una actividad equivalente a la IL-2 nativa en el ensayo de proliferación con la línea CTLL2. Las muteínas descritas en la Tabla 1 exhiben típicamente una capacidad de estimular las células T reguladoras al menos 1000 veces menor que la IL-2 nativa. Ejemplo 4. Caracterización de la actividad inmunoestimuladora in vivo de la muteínas diseñas.
Las muteínas descritas en la Tabla 1 muestran una capacidad immunoestimulatoria aumentada in vivo. Las Figuras 4a, b muestran como las muteínas inducen una esplenomegalia mayor a la de la IL2 nativa en ratones naive después del tratamiento por cinco días con dos dosis diarias intraperitoneales de 20 μg de la muteína. Esta estimulación correlaciona con un claro incremento de poblaciones efectoras, como los linfocitos T CD8+. Como observación relevante este tratamiento con muteínas no estimula la expansión de las células T reguladoras (TCD4+CD25+FoxP3+) a diferencia de los observado para la IL2 nativa (Figuras 4c,d).
Ejemplo 5. Medición de la eficacia terapéutica de las muteínas en un modelo murino de tumores trasplantabas.
Se demostró el incremento en la eficacia terapéutica de las muteínas diseñadas en un modelo murino de tumores trasplantares. Las muteínas descritas en la Tabla 1 muestran una eficacia aumentada para el tratamiento de metástasis pulmonares inducidas en un modelo de melanoma murino MB16. La Figura 5 muestra como el tratamiento por 5 días con dos dosis diarias intraperitoneales de 20 g de una de las muteínas de la Tabla 1 muestra un fuerte efecto antimetastásico, que no se observa en los grupos tratados de igual forma y con igual dosis de IL-2 nativa. Ejemplo 6. Medición de la capacidad de las muteínas de potenciar el efecto de una vacuna antitumoral.
Se demostró la capacidad de la muteína diseñada de potenciar el efecto antitumoral de una vacuna. Se utilizó el modelo de tumor primario de la línea EG7, que es una línea tumoral modificada para expresar el antígeno OVA. A los ratones portadores del tumor se les inmunizó con el antígeno OVA adyuvado en VSSP solamente o en combinación con la muteína. La figura 6 muestra que la disminución del crecimiento tumoral fue mayor en el grupo de ratones tratados con la combinación de la vacuna y la muteína que en el grupo tratado con la vacuna solamente.

Claims

REIVINDICACIONES
1. Un poli-péptido agonista de la IL-2, caracterizado porque tiene hasta un 95 % de homología con la secuencia de la IL-2 nativa y donde dicho polipéptido es al menos 1000 veces menos efectivo para estimular in vitro y/o in vivo a las células T reguladoras y muestra una mayor eficacia terapéutica in vivo.
2. El polipéptido de la reivindicación 1 caracterizado porque comprende las mutaciones R38K, F42I, Y45N, E62L, E68V.
3. El polipéptido de la reivindicación 1 caracterizado porque comprende las mutaciones R38K, F42Q, Y45E, E68V.
4. El polipéptido de la reivindicación 1 caracterizado porque comprende las mutaciones R38A, F42I, Y45N, E62L, E68V.
5. El polipéptido de la reivindicación 1 caracterizado porque comprende las mutaciones R38K, F42k, Y45R, E62L, E68V.
6. El polipéptido de la reivindicación 1 caracterizado porque comprende las mutaciones R38K, F42Q, Y45E, E68V.
7. El polipéptido de la reivindicación 1 caracterizado porque comprende las mutaciones R38A, F42A, Y45A, E62A.
8. Una proteína de fusión que comprende el polipéptido inmunomodulador de cualquiera de las reivindicaciones de la 1 a la 7, acoplado a una proteína transportadora.
9. La proteína de fusión de la reivindicación 8 caracterizada porque la proteína transportadora es la Albúmina.
10. La proteína de fusión reivindicación 8 caracterizada porque la proteína transportadora es la región Fe de las inmunoglobulinas humanas.
11. Una composición farmacéutica útil en la terapia de cáncer y enfermedades infecciosas crónicas, caracterizada porque comprende como principio activo el polipéptido de cualquiera de las reivindicaciones de la 1 a la 7.
12. La composición farmacéutica de la reivindicación 11 , caracterizada porque comprende como principio activo uno o varios polipéptidos descritos en las reivindicaciones de la 1 a la 7.
13. Una composición farmacéutica útil en la terapia de cáncer y enfermedades infecciosas crónicas, caracterizada porque comprende como principio activo la proteína de fusión descritas en cualquiera de las reivindicaciones de la 8 a la 10.
14. Uso de cualquiera de los polipéptidos de las reivindicaciones de la 1 a la 7 para el tratamiento directo de tumores malignos en sustitución de la IL-2 nativa.
15. Uso de cualquiera de los polipéptidos de las reivindicaciones de la 1 a la 7 para potenciar la respuesta celular y/o humoral a vacunas en sustitución de la IL2 nativa.
16. Uso según reivindicación 15 cuando la vacuna a potenciar es una vacuna terapéutica para cáncer.
17. Uso según reivindicación 15 cuando la vacuna a potenciar es una vacuna para enfermedades infecciosas donde las células T reguladoras son relevantes.
18. El polipéptido de cualquiera de las reivindicaciones de la 1 a la 7 para la manufactura de un medicamento útil en la terapia de enfermedades crónicas.
19. El polipéptido de cualquiera de las reivindicaciones de la 1 a la 7 para la manufactura de un medicamento útil en la terapia del cáncer.
20. El polipéptido de cualquiera de las reivindicaciones de la 1 a la 7 para la manufactura de un medicamento útil en la terapia de enfermedades infecciosas crónicas.
21. Uso del polipéptido de cualquiera de las reivindicaciones de la 1 a la 11 para la terapia de enfermedades crónicas.
22. Uso del polipéptido de cualquiera de las reivindicaciones de la 1 a la 11 para la terapia de cáncer.
23. Uso del polipéptido de cualquiera de las reivindicaciones de la 1 a la 1 para la terapia de enfermedades infecciosas crónicas.
24. Uso de la proteína de fusión de cualquiera de las reivindicaciones de la 8 a la 10 para la terapia de enfermedades crónicas.
25. Uso de la proteína de fusión de cualquiera de las reivindicaciones de la 8 a la 10 para la terapia de cáncer.
26. Uso de la proteína de fusión de cualquiera de las reivindicaciones de la 8 a la 10 para la terapia de enfermedades crónicas.
27. El polipéptido de cualquiera de las reivindicaciones de la 1 a la 7 para la manufactura de un medicamento que modula el sistema inmune.
28. El polipéptido de cualquiera de las reivindicaciones de la 1 a la 7 y sus aplicaciones cuando se introducen nuevas mutaciones que incrementan su afinidad de unión a los diferentes componentes del receptor de IL-2.
PCT/CU2011/000007 2010-11-12 2011-11-10 Polipéptidos derivados de la il-2 con actividad agonista para la terapia del cáncer e infecciones crónicas. WO2012062228A2 (es)

Priority Applications (17)

Application Number Priority Date Filing Date Title
UAA201307450A UA106318C2 (ru) 2010-11-12 2011-11-10 Производный полипептид il-2 с агонистической активностью для лечения рака и хронических инфекций
JP2013538062A JP5761831B2 (ja) 2010-11-12 2011-11-10 癌及び慢性感染の治療のための作動薬活性を有するil−2由来のポリペプチド
MYPI2013700752A MY171356A (en) 2010-11-12 2011-11-10 Polypeptides derived from il-2 having agonist activity for the therapy of cancer and chronic infections
BR112013010127-0A BR112013010127B1 (pt) 2010-11-12 2011-11-10 Polipeptídeo agonista da interleucina 2, proteína de fusão, composição farmacêutica útil na terapia do câncer e enfermidades infecciosas crônicas, e, uso do polipeptídeo
ES11797102.8T ES2543915T3 (es) 2010-11-12 2011-11-10 Polipéptidos derivados de la IL-2 con actividad agonista para la terapia del cáncer e infecciones crónicas
KR1020137012452A KR101559330B1 (ko) 2010-11-12 2011-11-10 암 및 만성 감염 치료를 위한, 효능제 활성을 갖는 인터루킨 2로부터 유도된 폴리펩티드
AU2011328688A AU2011328688B2 (en) 2010-11-12 2011-11-10 Polypeptides derived from IL-2 having agonist activity, for the therapy of cancer and chronic infections
CN201180054156.2A CN103201284B (zh) 2010-11-12 2011-11-10 用于癌症和慢性感染的治疗的具有激动剂活性的衍生自il-2的多肽
EA201390681A EA026022B1 (ru) 2010-11-12 2011-11-10 Производные полипептиды il-2 с агонистической активностью для лечения рака
MX2013005250A MX346222B (es) 2010-11-12 2011-11-10 Polipeptidos derivados de la il-2 con actividad agonista para la terapia del cancer e infecciones cronicas.
US13/885,021 US9206243B2 (en) 2010-11-12 2011-11-10 IL-2 derivative polypeptides
EP11797102.8A EP2639241B1 (en) 2010-11-12 2011-11-10 Polypeptides derived from il-2 having agonist activity, for the therapy of cancer and chronic infections
CA2814814A CA2814814C (en) 2010-11-12 2011-11-10 Polypeptides derived from il-2 having agonist activity, for the therapy of cancer and chronic infections
TNP2013000151A TN2013000151A1 (en) 2011-11-10 2013-04-04 Polypeptides derived from il-2 having agonist activity for the therapy of cancer and chronic infections
CL2013001107A CL2013001107A1 (es) 2010-11-12 2013-04-23 Polipeptido derivado de la il-2 con actividad agonista; proteina de fusion que lo comprende; composicion farmaceutica que lo comprende; y su uso para tratar cancer y enfermedades infecciosas cronicas.
IL226221A IL226221B (en) 2010-11-12 2013-05-07 Polypeptides derived from 2-il have agonistic activity, for the cure of cancer and chronic inflammations
HK13109794.4A HK1182403A1 (en) 2010-11-12 2013-08-21 Polypeptides derived from il-2 having agonist activity, for the therapy of cancer and chronic infections il-2

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CUP/2010/216 2010-11-12
CU2010000216A CU23923B1 (es) 2010-11-12 2010-11-12 Polipéptidos derivados de la il-2 con actividad agonista

Publications (2)

Publication Number Publication Date
WO2012062228A2 true WO2012062228A2 (es) 2012-05-18
WO2012062228A3 WO2012062228A3 (es) 2012-07-05

Family

ID=45350376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2011/000007 WO2012062228A2 (es) 2010-11-12 2011-11-10 Polipéptidos derivados de la il-2 con actividad agonista para la terapia del cáncer e infecciones crónicas.

Country Status (22)

Country Link
US (1) US9206243B2 (es)
EP (1) EP2639241B1 (es)
JP (1) JP5761831B2 (es)
KR (1) KR101559330B1 (es)
CN (1) CN103201284B (es)
AR (1) AR083858A1 (es)
AU (1) AU2011328688B2 (es)
BR (1) BR112013010127B1 (es)
CA (1) CA2814814C (es)
CL (1) CL2013001107A1 (es)
CO (1) CO6700862A2 (es)
CU (1) CU23923B1 (es)
EA (1) EA026022B1 (es)
ES (1) ES2543915T3 (es)
HK (1) HK1182403A1 (es)
IL (1) IL226221B (es)
MX (1) MX346222B (es)
MY (1) MY171356A (es)
PE (1) PE20140382A1 (es)
TW (1) TWI488864B (es)
UA (1) UA106318C2 (es)
WO (1) WO2012062228A2 (es)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017220990A1 (en) 2016-06-20 2017-12-28 Kymab Limited Anti-pd-l1 antibodies
WO2018089669A3 (en) * 2016-11-10 2018-06-28 Nektar Therapeutics Immunotherapeutic tumor treatment method
US10202464B2 (en) 2011-04-29 2019-02-12 Roche Glycart Ag Immunoconjugates
US10562949B2 (en) 2012-08-10 2020-02-18 Roche Glycart Ag Interleukin-2 fusion proteins and uses thereof
US10604576B2 (en) 2016-06-20 2020-03-31 Kymab Limited Antibodies and immunocytokines
WO2020125743A1 (zh) 2018-12-21 2020-06-25 江苏恒瑞医药股份有限公司 一种人白细胞介素2变体或其衍生物
US20210238246A1 (en) * 2018-05-07 2021-08-05 Centro De Inmunologia Molecular Fusion Proteins Composed of an Interleukin-2 Mutein and Type I Interferon
US11098099B2 (en) 2014-02-06 2021-08-24 Hoffmann-La Roche Inc. Interleukin-2 fusion proteins and uses thereof
US11319355B2 (en) 2017-12-19 2022-05-03 Xencor, Inc. Engineered IL-2 Fc fusion proteins
WO2022100684A1 (zh) 2020-11-13 2022-05-19 江苏恒瑞医药股份有限公司 一种包含人白细胞介素2变体或其衍生物的药物组合物及其用途
CN114651004A (zh) * 2019-06-14 2022-06-21 科优基因公司 用于癌症治疗的新型白介素-2变体
US11492384B2 (en) 2018-09-17 2022-11-08 Gi Innovation, Inc. Fusion protein comprising IL-2 protein and CD80 protein, and use thereof
WO2023281481A1 (en) 2021-07-09 2023-01-12 Bright Peak Therapeutics Antibody conjugates and manufacture thereof
WO2023281479A1 (en) 2021-07-09 2023-01-12 Bright Peak Therapeutics Ag Checkpoint inhibitors conjugated to il-2, and uses thereof
WO2023281482A1 (en) 2021-07-09 2023-01-12 Bright Peak Therapeutics Ag Cd20-targeted il-2 and its uses
WO2023281480A1 (en) 2021-07-09 2023-01-12 Bright Peak Therapeutics Ag Conjugates of checkpoint inhibitors with il-2, and uses thereof
WO2023005680A1 (zh) 2021-07-30 2023-02-02 西安龙腾景云生物科技有限公司 一种人白细胞介素2变体及其用途
WO2023133595A2 (en) 2022-01-10 2023-07-13 Sana Biotechnology, Inc. Methods of ex vivo dosing and administration of lipid particles or viral vectors and related systems and uses
WO2023161857A1 (en) 2022-02-23 2023-08-31 Bright Peak Therapeutics Ag Bifunctional cytokine compositions
US11753479B2 (en) 2014-03-04 2023-09-12 Kymab Limited Nucleic acids encoding anti-OX40L antibodies
WO2023180527A1 (en) 2022-03-25 2023-09-28 Universität Zürich Adenoviral mediated targeting of activated immune cells
WO2023193015A1 (en) 2022-04-01 2023-10-05 Sana Biotechnology, Inc. Cytokine receptor agonist and viral vector combination therapies
US11779604B2 (en) 2016-11-03 2023-10-10 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses and methods
US12006354B2 (en) 2018-05-22 2024-06-11 Novartis Ag Antibody-IL2 engrafted proteins and methods of use in the treatment of cancer

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105440123B (zh) 2011-02-10 2020-10-09 罗切格利卡特公司 突变体白介素-2多肽
SI3134127T1 (sl) * 2014-04-25 2020-06-30 Rinat Neuroscience Corp. Konjugati zdravil s protitelesi z visoko stopnjo zdravila
HUE051414T2 (hu) 2014-08-11 2021-03-01 Delinia Inc Módosított IL-2 változatok, amelyek szelektíven aktiválnak regulátor T sejteket, autoimmun betegségek kezelésére
US20170204154A1 (en) 2016-01-20 2017-07-20 Delinia, Inc. Molecules that selectively activate regulatory t cells for the treatment of autoimmune diseases
US11077172B2 (en) 2016-11-08 2021-08-03 Delinia, Inc. IL-2 variants for the treatment of psoriasis
CU24483B1 (es) * 2016-11-15 2020-04-02 Ct Inmunologia Molecular Método para incrementar los niveles de secreción de la interleucina-2
AU2018234810B2 (en) 2017-03-15 2023-05-11 Pandion Operations, Inc. Targeted immunotolerance
SG11201909949XA (en) 2017-05-24 2019-11-28 Pandion Therapeutics Inc Targeted immunotolerance
US11542312B2 (en) * 2017-06-19 2023-01-03 Medicenna Therapeutics, Inc. IL-2 superagonists in combination with anti-PD-1 antibodies
US10174092B1 (en) 2017-12-06 2019-01-08 Pandion Therapeutics, Inc. IL-2 muteins
US10946068B2 (en) 2017-12-06 2021-03-16 Pandion Operations, Inc. IL-2 muteins and uses thereof
US20210260163A1 (en) * 2018-03-09 2021-08-26 AskGene Pharma, Inc. Novel cytokine prodrugs
BR112020023167A2 (pt) 2018-05-14 2021-02-09 Werewolf Therapeutics, Inc. polipeptídeos de citocina ativáveis e métodos de uso destes
EP3794024B1 (en) 2018-05-14 2023-05-10 Werewolf Therapeutics, Inc. Activatable interleukin-2 polypeptides and methods of use thereof
US20220403001A1 (en) 2018-06-12 2022-12-22 Obsidian Therapeutics, Inc. Pde5 derived regulatory constructs and methods of use in immunotherapy
JP7479383B2 (ja) 2018-09-27 2024-05-08 エクシリオ デベロップメント, インコーポレイテッド マスクされたサイトカインポリペプチド
CA3117853A1 (en) * 2018-10-29 2020-05-07 1Globe Biomedical Co., Ltd. Novel rationally designed protein compositions
CU20190021A7 (es) * 2019-03-15 2020-10-20 Centre Hospitalier Univ Vaudois Método para la expansión y diferenciación de linfocitos t y células nk en terapias de transferencia adoptiva
CN114450022A (zh) 2019-05-14 2022-05-06 狼人治疗公司 分离部分及其使用方法
TW202110885A (zh) 2019-05-20 2021-03-16 美商潘迪恩治療公司 靶向MAdCAM之免疫耐受性
US20220305124A1 (en) * 2019-06-05 2022-09-29 Emory University Photolysis to Unlock Caged Protein Therapeutics
KR20220020879A (ko) 2019-06-12 2022-02-21 에스크진 파마, 아이엔씨. 새로운 il-15 프로드럭 및 이를 사용하는 방법
US20220356221A1 (en) 2019-09-28 2022-11-10 AskGene Pharma, Inc. Cytokine prodrugs and dual-prodrugs
US20210187027A1 (en) 2019-12-20 2021-06-24 Regeneron Pharmaceuticals, Inc. Novel il2 agonists and methods of use thereof
AU2021206449A1 (en) 2020-01-10 2022-07-21 Bright Peak Therapeutics Ag Modified IL-2 polypeptides and uses thereof
KR102653906B1 (ko) 2020-01-14 2024-04-03 신테카인, 인크. 편향된 il2 뮤테인 방법 및 조성물
EP4107187A1 (en) 2020-02-21 2022-12-28 Pandion Operations, Inc. Tissue targeted immunotolerance with a cd39 effector
AU2021259426B2 (en) 2020-04-22 2024-05-16 Merck Sharp & Dohme Corp. Human interleukin-2 conjugates biased for the interleukin-2 receptor beta gammac dimer and conjugated to a nonpeptidic, water-soluble polymer
JPWO2022059794A1 (es) * 2020-09-18 2022-03-24
TW202406932A (zh) 2020-10-22 2024-02-16 美商基利科學股份有限公司 介白素2-Fc融合蛋白及使用方法
CU20210104A7 (es) 2021-12-21 2023-07-12 Ct Inmunologia Molecular Proteínas de fusión compuestas por un anticuerpo y una muteína agonista de interleucina 2

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853332A (en) 1982-10-19 1989-08-01 Cetus Corporation Structural genes, plasmids and transformed cells for producing cysteine depleted muteins of biologically active proteins
US4959314A (en) 1984-11-09 1990-09-25 Cetus Corporation Cysteine-depleted muteins of biologically active proteins
US5116943A (en) 1985-01-18 1992-05-26 Cetus Corporation Oxidation-resistant muteins of Il-2 and other protein
US5229109A (en) 1992-04-14 1993-07-20 Board Of Regents, The University Of Texas System Low toxicity interleukin-2 analogues for use in immunotherapy
US20050142106A1 (en) 2003-07-18 2005-06-30 Wittrup K. D. Mutant interleukin-2 (IL-2) polypeptides
US6955807B1 (en) 1998-05-15 2005-10-18 Bayer Pharmaceuticals Corporation IL-2 selective agonists and antagonists
US7186804B2 (en) 2001-12-04 2007-03-06 Emd Lexigen Research Center Corp. IL-2 fusion proteins with modulated selectivity

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2624741B1 (fr) * 1987-12-21 1991-06-28 Pasteur Institut Compositions a base d'une combinaison de liposomes et de lymphokine presentant des proprietes immunostimulantes et leurs applications en medecine humaine et veterinaire
ATE147633T1 (de) * 1988-10-27 1997-02-15 Univ Minnesota Immunhilfsmittel aus liposome enthaltend lymphokin il -2
DZ2788A1 (fr) * 1998-05-15 2003-12-01 Bayer Ag Agonistes et antagonistes selectifs à IL-2.
CN1609227A (zh) * 2003-10-24 2005-04-27 中国科学院沈阳应用生态研究所 一种白介素-4突变基因il-4-13及其制备和应用
JP5022216B2 (ja) * 2004-06-04 2012-09-12 リジェネロン・ファーマシューティカルズ・インコーポレイテッド 自己炎症性疾患を処置するためのil−1アンタゴニストを使用する方法
CA2656700A1 (en) * 2006-07-06 2008-01-10 Merck Patent Gesellschaft Mit Beschraenkter Haftung Compositions and methods for enhancing the efficacy of il-2 mediated immune responses
US8906356B2 (en) * 2007-11-05 2014-12-09 Massachusetts Institute Of Technology Mutant interleukin-2 (IL-2) polypeptides
DE102008023820A1 (de) * 2008-05-08 2009-11-12 Aicuris Gmbh & Co. Kg Mittel zur Behandlung und/oder Prophylaxe einer Autoimmunerkrankung und zur Bildung von Regulatorischen T-Zellen
JP5766124B2 (ja) * 2009-01-21 2015-08-19 アムジェン インコーポレイテッド 炎症性疾患および自己免疫疾患の処置の組成物および方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853332A (en) 1982-10-19 1989-08-01 Cetus Corporation Structural genes, plasmids and transformed cells for producing cysteine depleted muteins of biologically active proteins
US4959314A (en) 1984-11-09 1990-09-25 Cetus Corporation Cysteine-depleted muteins of biologically active proteins
US5116943A (en) 1985-01-18 1992-05-26 Cetus Corporation Oxidation-resistant muteins of Il-2 and other protein
US5229109A (en) 1992-04-14 1993-07-20 Board Of Regents, The University Of Texas System Low toxicity interleukin-2 analogues for use in immunotherapy
US6955807B1 (en) 1998-05-15 2005-10-18 Bayer Pharmaceuticals Corporation IL-2 selective agonists and antagonists
US7105653B2 (en) 1998-05-15 2006-09-12 Shanafelt Armen B IL-2 selective agonists and antagonists
US7186804B2 (en) 2001-12-04 2007-03-06 Emd Lexigen Research Center Corp. IL-2 fusion proteins with modulated selectivity
US20050142106A1 (en) 2003-07-18 2005-06-30 Wittrup K. D. Mutant interleukin-2 (IL-2) polypeptides

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
AHMADZADEH, M. ET AL., BLOOD, vol. 107, 2006, pages 2409 - 14
ALMEIDA, AR ET AL., J IMMUNOL., vol. 169, 2002, pages 4850 - 60
ALMEIDA, AR. ET AL., J IMMUNOL., vol. 169, 2002, pages 4850 - 60
BLATTMAN, JN ET AL., NAT MED, vol. 9, 2003, pages 540 - 7
BOYMAN, O. ET AL., EXPERT OPIN BIOL THER., vol. 6, 2006, pages 1323 - 31
BOYMAN, O.; KOVAR, M.; RUBINSTEIN, M.P.; SURH, C.D.; SPRENT, J., SCIENCE, vol. 311, 2006, pages 1924 - 1927
DE LA ROSA, M. ET AL., EUR J IMMUNOL., vol. 34, 2004, pages 2480 - 8
FISHMAN, M. ET AL., J IMMUNOTHER., vol. 31, 2008, pages 72 - 80
KAMIMURA, D. ET AL., J IMMUNOL., vol. 177, 2006, pages 306 - 14
KREITMAN, R.J., CURR PHARM DES., vol. 15, 2009, pages 2652 - 64
KUDO-SAITO, C . ET AL., CANCER IMMUNOL IMMUNOTHER., vol. 56, 2007, pages 1897 - 910
KUNIYASU, Y. ET AL., INT IMMUNOL., vol. 12, 2000, pages 1145 - 1155
LIN, CT ET AL., IMMUNOL LETT., vol. 114, 2007, pages 86 - 93
LITZINGER, M.T.; FERNANDO, R.; CURIEL, T.J.; GROSENBACH, D.W.; SCHLOM, J.; PALENA, C., BLOOD, vol. 110, 2007, pages 3192 - 201
MALEK; TR ET AL., NAT REV IMMUNOL., vol. 4, 2004, pages 665 - 74
MORSE, M.A.; HOBEIKA, A.C.; OSADA, T.; SERRA, D.; NIEDZWIECKI, D.; LYERLY, H.K.; CLAY, T.M., BLOOD, vol. 112, 2008, pages 610 - 8
MURAKAMI, M.; SAKAMOTO, A.; BENDER, J.; KAPPLER, J.; MARRACK, P., PROC NATL ACAD SCI USA., vol. 99, 2002, pages 8832 - 7
ONIZUKA, S.; TAWARA, I.; SHIMIZU, J.; SAKAGUCHI, S.; FUJITA, T.; NAKAYAMA, E., CANCER RES., vol. 59, 1999, pages 3128 - 3133
PANDIYAN, P. ET AL., NAT IMMUNOL., vol. 8, 2007, pages 1353 - 1362
PANDIYAN, P. ET AL., NAT IMMUNOL., vol. 8, 2007, pages 1353 - 62
QUEZADA, S.A.; PEGGS, K.S.; CURRAN, M.A.; ALLISON, J.P., J CLIN INVEST., vol. 116, 2006, pages 1935 - 45
SMITH, KA, SCIENCE, vol. 240, 1988, pages 1169 - 76
TAKAHASHI, T. ET AL., INT IMMUNOL., vol. 10, 1998, pages 1969 - 80
THORNTON, AM ET AL., J EXP MED, vol. 188, 1998, pages 287 - 96
TOMALA, J.; CHMELOVA, H.; MRKVAN, T.; RIHOVA, B.; KOVAR, M., J IMMUNOL., vol. 183, 2009, pages 4904 - 4912
WOLF, M. ET AL., EUR J IMMUNOL., vol. 31, 2001, pages 1637 - 45

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10202464B2 (en) 2011-04-29 2019-02-12 Roche Glycart Ag Immunoconjugates
US11365232B2 (en) 2012-08-10 2022-06-21 Roche Glycart Ag Interleukin-2 fusion proteins and uses thereof
US10562949B2 (en) 2012-08-10 2020-02-18 Roche Glycart Ag Interleukin-2 fusion proteins and uses thereof
US11098099B2 (en) 2014-02-06 2021-08-24 Hoffmann-La Roche Inc. Interleukin-2 fusion proteins and uses thereof
US11753479B2 (en) 2014-03-04 2023-09-12 Kymab Limited Nucleic acids encoding anti-OX40L antibodies
US11773175B2 (en) 2014-03-04 2023-10-03 Kymab Limited Antibodies, uses and methods
WO2017220989A1 (en) 2016-06-20 2017-12-28 Kymab Limited Anti-pd-l1 and il-2 cytokines
US10604576B2 (en) 2016-06-20 2020-03-31 Kymab Limited Antibodies and immunocytokines
WO2017220990A1 (en) 2016-06-20 2017-12-28 Kymab Limited Anti-pd-l1 antibodies
US11779604B2 (en) 2016-11-03 2023-10-10 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses and methods
WO2018089669A3 (en) * 2016-11-10 2018-06-28 Nektar Therapeutics Immunotherapeutic tumor treatment method
US11981717B2 (en) 2017-12-19 2024-05-14 Xencor, Inc. Engineered IL-2 Fc fusion proteins
US11319355B2 (en) 2017-12-19 2022-05-03 Xencor, Inc. Engineered IL-2 Fc fusion proteins
US20210238246A1 (en) * 2018-05-07 2021-08-05 Centro De Inmunologia Molecular Fusion Proteins Composed of an Interleukin-2 Mutein and Type I Interferon
US11926654B2 (en) * 2018-05-07 2024-03-12 Centro De Inmunologia Molecular Fusion proteins composed of an interleukin-2 mutein and type I interferon
US12006354B2 (en) 2018-05-22 2024-06-11 Novartis Ag Antibody-IL2 engrafted proteins and methods of use in the treatment of cancer
US11492384B2 (en) 2018-09-17 2022-11-08 Gi Innovation, Inc. Fusion protein comprising IL-2 protein and CD80 protein, and use thereof
WO2020125743A1 (zh) 2018-12-21 2020-06-25 江苏恒瑞医药股份有限公司 一种人白细胞介素2变体或其衍生物
CN114651004A (zh) * 2019-06-14 2022-06-21 科优基因公司 用于癌症治疗的新型白介素-2变体
WO2022100684A1 (zh) 2020-11-13 2022-05-19 江苏恒瑞医药股份有限公司 一种包含人白细胞介素2变体或其衍生物的药物组合物及其用途
WO2023281480A1 (en) 2021-07-09 2023-01-12 Bright Peak Therapeutics Ag Conjugates of checkpoint inhibitors with il-2, and uses thereof
WO2023281481A1 (en) 2021-07-09 2023-01-12 Bright Peak Therapeutics Antibody conjugates and manufacture thereof
WO2023281482A1 (en) 2021-07-09 2023-01-12 Bright Peak Therapeutics Ag Cd20-targeted il-2 and its uses
WO2023281479A1 (en) 2021-07-09 2023-01-12 Bright Peak Therapeutics Ag Checkpoint inhibitors conjugated to il-2, and uses thereof
WO2023005680A1 (zh) 2021-07-30 2023-02-02 西安龙腾景云生物科技有限公司 一种人白细胞介素2变体及其用途
WO2023133595A2 (en) 2022-01-10 2023-07-13 Sana Biotechnology, Inc. Methods of ex vivo dosing and administration of lipid particles or viral vectors and related systems and uses
WO2023161857A1 (en) 2022-02-23 2023-08-31 Bright Peak Therapeutics Ag Bifunctional cytokine compositions
WO2023180527A1 (en) 2022-03-25 2023-09-28 Universität Zürich Adenoviral mediated targeting of activated immune cells
WO2023193015A1 (en) 2022-04-01 2023-10-05 Sana Biotechnology, Inc. Cytokine receptor agonist and viral vector combination therapies

Also Published As

Publication number Publication date
EP2639241A2 (en) 2013-09-18
AU2011328688B2 (en) 2015-05-14
ES2543915T3 (es) 2015-08-25
KR20130091346A (ko) 2013-08-16
EP2639241B1 (en) 2015-07-08
PE20140382A1 (es) 2014-03-24
BR112013010127A2 (pt) 2016-08-30
CA2814814A1 (en) 2012-05-18
AR083858A1 (es) 2013-03-27
MX346222B (es) 2017-03-09
CN103201284B (zh) 2015-07-01
JP2014500868A (ja) 2014-01-16
AU2011328688A1 (en) 2013-05-02
MY171356A (en) 2019-10-10
US20140314709A1 (en) 2014-10-23
MX2013005250A (es) 2013-08-29
TW201300409A (zh) 2013-01-01
EA026022B1 (ru) 2017-02-28
EA201390681A1 (ru) 2013-08-30
CU23923B1 (es) 2013-07-31
US9206243B2 (en) 2015-12-08
CL2013001107A1 (es) 2014-01-10
BR112013010127B1 (pt) 2021-12-14
CN103201284A (zh) 2013-07-10
CA2814814C (en) 2015-12-22
IL226221A0 (en) 2013-07-31
KR101559330B1 (ko) 2015-10-12
JP5761831B2 (ja) 2015-08-12
UA106318C2 (ru) 2014-08-11
TWI488864B (zh) 2015-06-21
CO6700862A2 (es) 2013-06-28
IL226221B (en) 2018-10-31
WO2012062228A3 (es) 2012-07-05
HK1182403A1 (en) 2013-11-29
CU20100216A7 (es) 2012-06-21

Similar Documents

Publication Publication Date Title
ES2543915T3 (es) Polipéptidos derivados de la IL-2 con actividad agonista para la terapia del cáncer e infecciones crónicas
ES2643465T3 (es) Polipéptidos inmunomoduladores derivados de IL-2 y su uso terapéutico contra el cáncer e infecciones crónicas
ES2906615T3 (es) Tratamiento derivado de citocinas con síndrome de fuga vascular reducido
RU2711979C2 (ru) Белковый комплекс интерлейкина 15 и его применение
ES2682038T3 (es) Una mezcla de péptidos
WO2019214757A1 (es) Proteínas de fusión compuestas por una muteina de interleucina-2 e interferon tipo 1
KR20200108031A (ko) 변형된 단백질
KR20220012938A (ko) 펩타이드
KR20180038553A (ko) 질환 및 장애를 치료하기 위한 인터류킨-10을 사용하는 방법
Shen et al. Generation of a novel long-acting thymosin alpha1-Fc fusion protein and its efficacy for the inhibition of breast cancer in vivo
ES2857176T3 (es) Polipéptidos derivados de TGF y usos de los mismos
TW202413398A (zh) 介白素-2變異體及其於治療癌症的用途
WO2021129898A2 (es) Polipéptidos que comprenden mutantes del vegf-a humano con re-arreglos de puentes disulfuro y composiciones que los contienen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797102

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2814814

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013001107

Country of ref document: CL

Ref document number: 13103448

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 2011328688

Country of ref document: AU

Date of ref document: 20111110

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 226221

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 12013500937

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/005250

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2013538062

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 001054-2013

Country of ref document: PE

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137012452

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13885021

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011797102

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201390681

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: A201307450

Country of ref document: UA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013010127

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013010127

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130425