WO2012060372A1 - ガラス基板の製造方法、および、攪拌装置 - Google Patents

ガラス基板の製造方法、および、攪拌装置 Download PDF

Info

Publication number
WO2012060372A1
WO2012060372A1 PCT/JP2011/075174 JP2011075174W WO2012060372A1 WO 2012060372 A1 WO2012060372 A1 WO 2012060372A1 JP 2011075174 W JP2011075174 W JP 2011075174W WO 2012060372 A1 WO2012060372 A1 WO 2012060372A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
molten glass
chamber
stirrer
flow
Prior art date
Application number
PCT/JP2011/075174
Other languages
English (en)
French (fr)
Inventor
山本 耕平
仁志 月向
Original Assignee
AvanStrate株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社 filed Critical AvanStrate株式会社
Priority to KR1020127012872A priority Critical patent/KR101421358B1/ko
Priority to JP2012515282A priority patent/JP5580889B2/ja
Priority to EP11838022.9A priority patent/EP2505562B1/en
Priority to CN201180004233.3A priority patent/CN102596826B/zh
Publication of WO2012060372A1 publication Critical patent/WO2012060372A1/ja
Priority to US13/610,747 priority patent/US8726696B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/07Stirrers characterised by their mounting on the shaft
    • B01F27/072Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis
    • B01F27/0722Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis perpendicular with respect to the rotating axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/07Stirrers characterised by their mounting on the shaft
    • B01F27/072Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis
    • B01F27/0724Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis directly mounted on the rotating axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/112Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades
    • B01F27/1123Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades sickle-shaped, i.e. curved in at least one direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/112Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades
    • B01F27/1125Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades with vanes or blades extending parallel or oblique to the stirrer axis
    • B01F27/11251Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades with vanes or blades extending parallel or oblique to the stirrer axis having holes in the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/19Stirrers with two or more mixing elements mounted in sequence on the same axis
    • B01F27/191Stirrers with two or more mixing elements mounted in sequence on the same axis with similar elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/50Pipe mixers, i.e. mixers wherein the materials to be mixed flow continuously through pipes, e.g. column mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/187Stirring devices; Homogenisation with moving elements

Definitions

  • the present invention relates to a method for producing a glass substrate and a stirring device.
  • the molten glass is inhomogeneous, the glass product has striae.
  • the striae are streak regions having a refractive index and specific gravity different from those of the surroundings, and in applications such as optical parts such as lenses and substrates for liquid crystal displays (LCD), it is required to be strictly excluded from glass products.
  • LCD liquid crystal displays
  • a display glass substrate represented by a liquid crystal display substrate it is necessary to suppress striae to an extremely low level over the entire surface of a large area.
  • the molten glass is stirred using a stirring device.
  • a stirrer includes a cylindrical chamber and a stirrer.
  • the stirrer has a shaft that is a rotating shaft and blades that are connected to the side surface of the shaft. Molten glass is introduced into the chamber in which the stirrer is disposed, and the molten glass is stirred by the blades to homogenize the molten glass.
  • Patent Document 1 Japanese Patent Laid-Open No. 63-8226 discloses a stirrer having a shaft as a rotating shaft and blades connected to the side surface of the shaft.
  • the blades of the stirrer disclosed in Patent Document 1 are inclined with respect to the stirrer shaft, thereby causing a flow of molten glass toward the upper or lower direction of the chamber to enhance the stirring effect.
  • Patent Document 2 Japanese Patent Laid-Open No. 58-88126 also discloses a stirrer having a shaft that is a rotating shaft and blades that are connected to the shaft and have blades inclined in the circumferential direction (rotating direction) of the shaft. It is disclosed.
  • blades are provided in a plurality of stages in the longitudinal direction of the shaft, and the blades in each adjacent stage are inclined in opposite directions. Between the blades of the adjacent stages, two glass flows are generated, namely, a glass flow generated by pushing down the molten glass and a glass flow generated by pushing up the molten glass, and they collide with each other. It is considered that a higher stirring effect can be obtained as compared with the case where the molten glass flows in only one direction.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a glass substrate manufacturing method and a stirring device capable of stirring molten glass more uniformly.
  • the method for producing a glass substrate according to the present invention includes a melting step of melting a glass raw material to obtain molten glass, a stirring step of stirring the molten glass obtained in the melting step inside the stirring tank, and a stirring step Forming a glass substrate from the molten glass.
  • the stirring tank includes a chamber for guiding the molten glass from above to below or from below to above, and a stirrer for stirring the molten glass in the chamber.
  • the stirrer has a shaft that is a rotating shaft arranged along the vertical direction, and blades arranged on a side surface of the shaft from the uppermost stage to the lowermost stage along the axial direction of the shaft.
  • the blade includes a support plate that is orthogonal to the axial direction of the shaft and an auxiliary plate that is installed on the main surface of the support plate.
  • the stirrer rotates about the shaft as a rotating shaft, so that the auxiliary plate causes the radial flow of the shaft to occur in the molten glass, and between the supporting plates of the blades arranged in two adjacent stages.
  • the auxiliary plate located at the position causes the molten glass to flow in the same direction.
  • the glass substrate manufacturing method includes a melting step of melting a glass raw material to obtain molten glass, a stirring step of stirring the molten glass obtained in the melting step inside a stirring tank, and a stirring step. Forming a glass substrate from the agitated molten glass.
  • the stirring tank includes a chamber for guiding the molten glass from above to below or from below to above, and a stirrer for stirring the molten glass in the chamber.
  • the stirrer has a shaft that is a rotating shaft arranged along the vertical direction, and blades arranged on a side surface of the shaft from the uppermost stage to the lowermost stage along the axial direction of the shaft.
  • the blade includes a support plate that is orthogonal to the axial direction of the shaft and an auxiliary plate that is installed on the main surface of the support plate.
  • the auxiliary plate installed on the upper main surface of the blade support plate located at the uppermost stage is rotated by rotating the stirrer about the shaft as the rotation axis.
  • a first flow is generated that moves the molten glass from the inner wall of the chamber toward the shaft, and a second flow that raises the molten glass moved by the first flow along the side surface of the shaft is generated.
  • this glass substrate manufacturing method when the stirrer rotates, a flow in which the molten glass rises around the shaft is formed, and a flow in which the molten glass descends along the inner wall of the chamber is formed. Therefore, molten glass is not drawn from the periphery of the shaft and does not descend in the chamber. Thereby, it can suppress that the bubble and silica rich layer which exist near the liquid level of the molten glass in a chamber during operation are drawn in into molten glass, and flow out of a chamber. Further, the upflow and downflow of the molten glass suppresses the molten glass from staying near the liquid surface of the molten glass. Therefore, in this glass substrate manufacturing method, the molten glass can be stirred more uniformly.
  • the stirring device includes a chamber for guiding the molten glass from above to below or from below to above, and a stirrer for stirring the molten glass in the chamber.
  • the stirrer includes a shaft serving as a rotation shaft, and blades arranged in a plurality of stages from the uppermost stage to the lowermost stage along the axial direction of the shaft on the side surface of the shaft.
  • the blade includes a support plate that is directly connected to the shaft and an auxiliary plate that is installed on the main surface of the support plate.
  • the auxiliary plate has one end connected to the shaft or closest to the shaft and the other end located on the opposite side of the one end.
  • the auxiliary plate When the auxiliary plate is viewed along the axial direction of the shaft, the main surface of the auxiliary plate moves away from a straight line connecting one end and the central point that is the center of rotation of the shaft as it goes from one end to the other end. It is installed to go.
  • the stirrer By rotating the stirrer about the shaft as a rotating shaft, the auxiliary plate causes the radial flow of the shaft to occur in the molten glass, and the auxiliary plate is located between the supporting plates of the blades arranged in two adjacent stages. The plate causes the same direction of flow in the molten glass.
  • the method for producing a glass substrate and the stirring device according to the present invention can stir molten glass more uniformly.
  • FIG. 1 It is a schematic diagram which shows an example of a structure of the glass manufacturing apparatus which concerns on 1st Embodiment. It is a side view which shows an example of a structure of the stirring apparatus which concerns on 1st Embodiment. It is a perspective view of the blade
  • FIG. 1 is a schematic diagram illustrating an example of the configuration of the glass manufacturing apparatus 200.
  • the glass manufacturing apparatus 200 includes a dissolution tank 40, a clarification tank 41, a stirring device 100, a molding device 42, and conduits 43a, 43b, and 43c that communicate these components.
  • the molten glass 7 generated by the melting tank 40 passes through the conduit 43a and flows into the clarification tank 41.
  • the molten glass 7 passes through the conduit 43b and flows into the stirring apparatus 100.
  • the glass ribbon 44 passes through the conduit 43c and flows into the forming apparatus 42, and the glass ribbon 44 is formed by the down draw method.
  • the melting tank 40 is provided with heating means such as a burner, and the molten glass 7 can be obtained by melting the glass raw material. What is necessary is just to adjust a glass raw material suitably so that a desired glass can be obtained.
  • the glass raw material may be prepared so as to obtain a glass having substantially the following composition, expressed in mass%.
  • Each content of Fe 2 O 3 , As 2 O 3 , Sb 2 O 3, and SnO 2 in the above composition is such that Fe, As, Sb, or Sn components having a plurality of valences are all Fe 2 O. 3 , a value converted by treating as As 2 O 3 , Sb 2 O 3 or SnO 2 .
  • the glass raw material prepared as described above is charged into the melting tank 40.
  • the glass raw material is melted at a set temperature according to its composition and the like, for example, to obtain a molten glass 7 of 1500 ° C. or higher.
  • the molten glass 7 obtained in the melting tank 40 flows from the melting tank 40 through the conduit 43a into the clarification tank 41.
  • a heating means is installed similarly to the dissolution tank 40.
  • the molten glass 7 is clarified by further raising the temperature. Specifically, in the clarification tank 41, the temperature of the molten glass 7 is raised to 1550 ° C. or higher, and further to 1600 ° C. or higher. The molten glass 7 is clarified by raising the temperature.
  • the molten glass 7 clarified in the clarification tank 41 passes through the conduit 43b from the clarification tank 41 and flows into the stirring device 100.
  • the molten glass 7 is cooled when passing through the conduit 43 b, and is stirred at a temperature lower than the temperature in the fining tank 41 in the stirring device 100.
  • the temperature of the molten glass is set within the range of 1400 ° C. to 1550 ° C., and the viscosity of the molten glass is 2500 poise to 450 poise. It is preferable to adjust within the above range and perform stirring.
  • the molten glass 7 is stirred and homogenized in the stirring device 100.
  • the molten glass 7 homogenized by the stirring device 100 passes from the stirring device 100 through the conduit 43c and flows into the molding device 42.
  • the molten glass 7 is cooled when passing through the conduit 43c, and is cooled to a temperature suitable for molding (for example, 1200 ° C.).
  • the molten glass 7 is formed by the down draw method.
  • the molten glass 7 flowing into the molding device 42 overflows from the upper part of the molding device 42 and flows downward along the side wall of the molding device 42. Thereby, the glass ribbon 44 is continuously shape
  • the glass ribbon 44 is gradually cooled as it goes downward, and is finally cut into a glass plate of a desired size.
  • FIG. 2 is a side view showing an example of the configuration of the stirring device 100.
  • the stirring device 100 includes a chamber 101 and a stirrer 102 housed in the chamber 101.
  • the chamber 101 is cylindrical and communicates with an upstream conduit 103 installed on the upper side surface and a downstream conduit 104 installed on the lower side surface.
  • the molten glass 7 flows into the chamber 101 in the horizontal direction from the upstream side conduit 103, is guided vertically from above to below in the chamber 101, and flows out from the inside of the chamber 101 to the downstream side conduit 104 in the horizontal direction.
  • the stirrer 102 includes a cylindrical shaft 105 that rotates about an axis, and blades 106 a, 106 b, 106 c, 106 d, and 106 e connected to the side surfaces of the shaft 105.
  • the shaft 105 is disposed in the chamber 101 so that the rotation axis thereof is along the vertical direction.
  • the blades 106a to 106e are arranged at equal intervals in this order from the upper side to the lower side along the axial direction (rotational axis direction) of the shaft 105. That is, in the stirrer 102, the blades 106a to 106e are installed in five stages along the axial direction of the shaft 105.
  • the blades 106a, 106c, and 106e have the same shape
  • the blades 106b and 106d have the same shape.
  • 3 and 4 are a perspective view and a plan view of the blades 106a, 106c, and 106e, respectively, when viewed along the rotation axis of the shaft 105.
  • FIG. 5 and 6 are a perspective view and a plan view of the blades 106b and 106d, respectively, when viewed along the rotation axis of the shaft 105.
  • the blades 106a to 106e are arranged so as to extend radially outward in the radial direction of the shaft 105.
  • Each blade 106a to 106e includes three support plates 108 orthogonal to the axial direction of the shaft 105, one upper auxiliary plate 119a installed on the upper main surface of each support plate 108, and each support It consists of one lower auxiliary plate 119b installed on the lower main surface of the plate.
  • the upper auxiliary plate 119a and the lower auxiliary plate 119b are collectively referred to as the auxiliary plate 109.
  • the three support plates 108 are directly connected to the side surface of the shaft 105 at positions that are three-fold symmetric with respect to the rotation axis of the shaft 105 when the blades 106a to 106e are viewed in plan.
  • Each support plate 108 is connected to the shaft 105 such that the normal line of the main surface thereof is along the axial direction of the shaft 105. That is, each support plate 108 is arranged horizontally.
  • the three support plates 108 of the blades 106a to 106e are connected to each other by a connecting portion 110 around the shaft 105, as shown in FIGS. That is, the three support plates 108 substantially constitute one part.
  • the three support plates 108 are provided radially from the shaft 105 toward the inner wall of the chamber 101, and each of the support plates 108 of the blades 106 a to 106 e arranged in two adjacent stages is connected to the chamber 101.
  • the gap between the support plate 108 and the support plate 108 is arranged to be small.
  • the support plates 108 of the two blades 106a to 106e adjacent to each other along the rotation axis of the shaft 105 are arranged so as not to overlap each other when viewed along the rotation axis of the shaft 105. Yes.
  • FIG. 7 shows the positional relationship between the blades 106 a and 106 b when the stirrer 102 is viewed from above along the rotation axis of the shaft 105.
  • the support plate 108 of the blade 106a is disposed so as to be positioned between the support plates 108 of the blade 106b. That is, the six support plates 108 of the blades 106 a and 106 b appear to be disposed at positions that are six-fold symmetric with respect to the rotation axis of the shaft 105.
  • the auxiliary plate 109 is installed on the main surface of the support plate 108 so that its main surface is perpendicular to the main surface of the support plate 108.
  • the auxiliary plate 109 is installed on the upper main surface and the lower main surface of the support plate 108.
  • the upper auxiliary plate 119a is installed on the upper main surface of the support plate 108
  • the lower auxiliary plate 119b is installed on the lower main surface of the support plate 108.
  • the lower auxiliary plate 119b is indicated by a broken line.
  • the auxiliary plate 109 is installed from the shaft 105 toward the outer peripheral edge of the support plate 108.
  • each auxiliary plate 109 has an inner end portion 109a closest to the shaft 105 and an outer end portion 109b opposite to the inner end portion 109a and closest to the outer peripheral edge of the support plate 108. And have.
  • Each auxiliary plate 109 has its main surface moving away from the straight line 111 connecting the center point 113 where the rotation axis of the shaft 105 is located and the inner end 109a as it goes from the inner end 109a to the outer end 109b. Is installed. Specifically, in the blades 106a, 106c, and 106e, when the stirrer 102 is viewed from above as shown in FIG.
  • the upper auxiliary plate 119a has its main surface separated from the straight line 111 counterclockwise.
  • the lower auxiliary plate 119b is installed such that its main surface is separated from the straight line 111 in the clockwise direction.
  • the upper auxiliary plate 119a is installed such that its main surface moves away from the straight line 111 in the clockwise direction
  • the lower auxiliary plate 119b is installed such that its main surface moves away from the straight line 111 counterclockwise. That is, in each of the blades 106a to 106e, the upper auxiliary plate 119a and the lower auxiliary plate 119b are installed so as to extend in opposite directions.
  • the pair of auxiliary plates 109 facing each other between the two blades 106a to 106e adjacent to each other along the rotation axis of the shaft 105 are installed so that their main surfaces are separated from the straight line 111 in the same direction.
  • the lower auxiliary plate 119b of the blade 106a and the upper auxiliary plate 119a of the blade 106b are both installed such that their main surfaces are separated from the straight line 111 in the clockwise direction.
  • the auxiliary plate 109 is installed so that the connecting portion between the main surface of the auxiliary plate 109 and the main surface of the support plate 108 is not located at the end of the support plate 108. That is, when the blades 106a to 106e are viewed along the rotation axis of the shaft 105, the auxiliary plate 109 is installed at a position away from the outer peripheral edge of the support plate 108 except for the inner end portion 109a and the outer end portion 109b. Has been.
  • FIG. 8 is a diagram illustrating the flow of the molten glass 7 in the stirring device 100.
  • the molten glass 7 flows into the chamber 101 from the upstream side conduit 103 in the horizontal direction.
  • the upper end of the shaft 105 of the stirrer 102 is connected to an external motor or the like, and the stirrer 102 rotates counterclockwise when viewed from above with the shaft 105 as a rotation axis.
  • the molten glass 7 is stirred by the stirrer 102 while being gradually guided downward from above.
  • the stirred molten glass 7 flows out from the chamber 101 into the downstream conduit 104 in the horizontal direction.
  • the molten glass 7 is agitated by rotating the blades 106a to 106e around the shaft 105 as a rotation axis.
  • the auxiliary plate 109 of each blade 106a to 106e scrapes the molten glass 7 from the inner wall side of the chamber 101 to the shaft 105 side, or pushes the molten glass 7 from the shaft 105 side to the inner wall side of the chamber 101.
  • one of the upper auxiliary plate 119a and the lower auxiliary plate 119b scrapes the molten glass 7 from the inner wall side of the chamber 101 to the shaft 105 side, and the other is the molten glass.
  • the flow of the molten glass 7 in the radial direction of the shaft 105 is opposite to each other above the support plate 108 and below the support plate 108 of each blade 106a to 106e.
  • the lower auxiliary plate 119b located on the upper stage and the upper auxiliary plate 119a located on the lower stage have their main surfaces. Are the same in the direction away from the straight line 111. Therefore, the flow of the molten glass 7 in the radial direction of the shaft 105 generated by the pair of auxiliary plates 109 facing each other is in the same direction.
  • the upper auxiliary plate 119 a of the blade 106 a located at the uppermost stage of the shaft 105 generates a flow of scraping the molten glass 7 from the inner wall side of the chamber 101 to the shaft 105 side. . Therefore, the lower auxiliary plate 119b of the blade 106a and the upper auxiliary plate 119a of the blade 106b positioned one step below cause a flow of pushing the molten glass 7 from the shaft 105 side to the inner wall side of the chamber 101.
  • the lower auxiliary plate 119b of the blade 106b and the upper auxiliary plate 119a of the blade 106c cause a flow of scraping the molten glass 7 from the inner wall side of the chamber 101 to the shaft 105 side.
  • the lower auxiliary plate 119b of the blade 106e located at the lowest stage generates a flow of pushing the molten glass 7 from the shaft 105 side to the inner wall side of the chamber 101. That is, in the lower space 122 between the blade 106e located at the lowest stage and the bottom surface of the chamber 101, the molten glass 7 flows in the direction of the arrow 124 shown in FIG.
  • the upper auxiliary plate 119a of the blade 106a located at the uppermost stage is moved above the support plate 108 of the blade 106a by the shaft rotation of the stirrer 102.
  • the flow which moves the molten glass 7 toward the shaft 105 side from the inner wall side is produced.
  • the upper auxiliary plate 119 a of the blade 106 a generates a flow that further raises the molten glass 7 along the side surface of the shaft 105.
  • the molten glass 7 that has risen to the vicinity of the liquid surface of the molten glass 7 flows from the shaft 105 side toward the inner wall side of the chamber 101, and further descends along the inner wall of the chamber 101.
  • the molten glass 7 forms a circulating flow 123 shown in FIG.
  • the molten glass 7 is stirred in the upper space 121 by the circulating flow 123.
  • the molten glass 7 that has flowed into the chamber 101 from the upstream conduit 103 is moved between the two adjacent blades 106a to 106e by the axial rotation of the stirrer 102. It is scraped from the side to the shaft 105 side, or pushed out from the shaft 105 side to the inner wall side of the chamber 101.
  • the flow of the molten glass 7 in the radial direction of the shaft 5 is switched in the opposite direction for each stage as it goes from the upper side to the lower side in the chamber 101. That is, the molten glass 7 is stirred by being alternately moved in the radial direction of the shaft 5 while being guided from the upper side to the lower side in the chamber 101.
  • the stirring device 100 can stir the molten glass 7 more uniformly without providing a complicated configuration. Thereby, generation
  • auxiliary plates 109 are installed on the upper main surface and the lower main surface of the support plate 108 of each blade 106a to 106e.
  • the stirrer 102 rotates axially, the molten glass 7 flowing in the chamber 101 is given a radial movement of the shaft 105 by the auxiliary plate 109.
  • the molten glass 7 in the vicinity of the support plate 108 is scraped or pushed out by the auxiliary plate 109, and moves in the radial direction along the main surface of the support plate 108.
  • the molten glass 7 is radially moved along the main surface of the support plate 108 with respect to any radial movement of being scratched and pushed out. Moving. Thereby, the molten glass 7 is sufficiently stirred by the auxiliary plate 109 of each blade 106a to 106e.
  • the stirring device 100 can stir the molten glass 7 more uniformly without providing a complicated configuration. Thereby, generation
  • the upper auxiliary plate 119 a of the blade 106 a located at the uppermost stage of the shaft 105 generates a flow of scraping the molten glass 7 from the inner wall side of the chamber 101 to the shaft 105 side.
  • a flow in which the molten glass 7 rises around the shaft 105 is formed in the upper space 121 between the blade 106 a located at the uppermost stage and the liquid level of the molten glass 7, and along the inner wall of the chamber 101.
  • a flow in which the molten glass 7 descends is formed.
  • a circulating flow 123 of the molten glass 7 is formed in the upper space 121.
  • the blade 106a positioned at the uppermost stage of the shaft 105 is not configured to scrape the molten glass 7 in the radial direction, for example, the configuration in which the auxiliary plate 109 is not provided on the support plate 108, or stirring
  • the rotating direction of the vessel 102a is opposite to that of the present embodiment and the molten glass 7 is pushed out in the radial direction
  • the molten glass 7 above the blade 106a positioned at the uppermost stage is subjected to centrifugal force received by the support plate 108.
  • the molten glass 7 is pushed out from the shaft 105 side to the inner wall side of the chamber 101 by the force or the extrusion of the molten glass 7 by the auxiliary plate 109.
  • the extruded molten glass 7 rises along the inner wall of the chamber 101 and flows into the upper space 121. That is, when the molten glass 7 pushed out in the radial direction moves along the inner wall of the chamber 101, the molten glass 7 moves upward in the chamber 101, which is a direction in which it easily flows, and then reaches the liquid level of the molten glass 7.
  • the molten glass 7 that has reached the liquid level of the molten glass 7 along the inner wall of the chamber 101 moves from the inner wall side of the chamber 101 toward the shaft 105 side along the liquid level, and finally, along the shaft 105, below the chamber 101.
  • the molten glass 7 in the upper space 121 is rapidly lowered along the side surface of the shaft 105 and is not sufficiently stirred. In this state, it is possible to prevent the downstream conduit 104 from flowing out.
  • the stirring device 100 can stir the molten glass 7 more uniformly. Thereby, generation
  • the molten glass 7 is pushed out from the shaft 105 side to the inner wall side of the chamber 101 in the lower space 122 between the blade 106 e located at the lowest stage and the bottom surface of the chamber 101. That is, the lower auxiliary plate 119b of the blade 106e causes the molten glass 7 to flow in the radially outward direction of the shaft 105 (arrow 124 in FIG. 8) to the molten glass 7 so as to promote the outflow of the molten glass 7 to the downstream conduit 104. Cause it to occur.
  • the upper auxiliary plate 119a of the blade 106e and the lower auxiliary plate 119b of the blade 106d located on one stage of the blade 106e are arranged so that the molten glass 7 is prevented from flowing out into the downstream conduit 104. A radially inward flow is caused in the molten glass 7.
  • the stirred molten glass 7 flows out from the lower space 122 to the downstream side conduit 104, it is possible to suppress the molten glass 7 from staying at the bottom in the chamber 101.
  • the molten glass 7 stays at the bottom of the chamber 101, there may be a case where the retained molten glass 7 contains a heterogeneous material whose composition component is out of balance with the molten glass 7 flowing in the chamber 101.
  • Some of the molten glass 7 staying at the bottom of the chamber 101 includes a heterogeneous material such as a zirconia rich layer having a heterogeneous composition.
  • striae may occur in the glass ribbon 44 formed by the forming device 42, which may cause quality problems.
  • the molten glass 7 containing a heterogeneous material in which zirconia is concentrated to a high concentration by the stagnation flows into the molding device 42 in the subsequent process, it may cause devitrification in the molding device 42 and not only cause quality problems. Stable operation becomes difficult, and in the worst case, it is necessary to stop the operation and perform maintenance.
  • the molten glass 7 is suppressed from flowing out of the space above the lower space 122 into the downstream conduit 104.
  • the molten glass 7 in the lower space 122 is always replaced with the upper molten glass 7
  • the molten glass 7 is suppressed from staying at the bottom in the chamber 101. That is, the molten glass 7 is reliably agitated in each stage without shortcutting each stage of the space between the adjacent support plates 108. Thereby, it can suppress that the molten glass 7 with insufficient stirring flows out from the stirring apparatus 100.
  • the upstream side conduit 103 is disposed in the vicinity of the height position of the blade 106a located at the uppermost stage.
  • the height position of the blade 106a located at the uppermost stage is set so as to be separated from the liquid surface of the molten glass 7 by a predetermined distance. If the height position of the blades 106a is close to the liquid level, if the liquid level of the molten glass 7 is vibrated by the rotation of the stirrer 102, bubbles or the like floating on the liquid level are easily drawn into the molten glass 7.
  • the height position of the blade 106a with respect to the liquid surface of the molten glass 7 is appropriately determined depending on the rotation speed of the stirrer 102 and the size of the blades 106a to 106e.
  • the flow rate of the molten glass 7 is set so that the liquid level of the molten glass 7 is located in the vicinity of the top of the upstream conduit 103, and from the center of the diameter of the upstream conduit 103, It was set so that a support plate for the blade 106a was provided on the lower side. More specifically, as shown in FIG. 8, the support plate for the blade 106 a was set at the same height with respect to the bottom of the upstream conduit 103. Accordingly, the upper auxiliary plate 119a of the blade 106a located at the uppermost stage flows in the radial direction of the shaft 105 (the circulation flow 123 of FIG. 8) so as to promote the inflow of the molten glass 7 from the upstream conduit 103. A lower arrow) is generated in the molten glass 7.
  • the stirring device 100 can stir the molten glass 7 more uniformly. Thereby, generation
  • the support plates 108 of the two blades 106a to 106e adjacent to each other along the rotation axis of the shaft 105 are arranged so as not to overlap each other when viewed along the rotation axis of the shaft 105. Yes.
  • the support plate 108 of the blade 106a is disposed so as to be positioned between the two support plates 108 of the blade 106b.
  • the molten glass 7 is temporarily in the space between the adjacent blades 106a to 106e. Stagnant. As a result, the molten glass 7 is moved in the radial direction of the shaft 105 by the auxiliary plate 109 of each blade 106a to 106e in each step of the space between the adjacent support plates 108 without causing a short path of the molten glass 7. Fully moved.
  • the molten glass 7 in the upper space 121 is rapidly lowered along the side surface of the shaft 105, and the downstream side conduit 104 is not sufficiently stirred. It can suppress flowing out from.
  • the stirring device 100 can stir the molten glass 7 more uniformly. Thereby, generation
  • the support plate 108 has an action of temporarily damaging the molten glass 7 flowing in the chamber 101 from the upper side to the lower side or from the lower side to the upper side at each stage between the adjacent blades 106a to 106e.
  • the molten glass 7 is sufficiently agitated by the auxiliary plate 109 of each blade 106a to 106e in each step of the space between the adjacent support plates 108 without causing a short path of the molten glass 7.
  • the stirring device 100 can stir the molten glass 7 more uniformly. Thereby, generation
  • the stirring device 100 can stir the molten glass 7 more uniformly. Thereby, generation
  • the shaft 105 is provided with five stages of blades 106a to 106e, but the number of stages of the blades 106a to 106e is appropriately determined in consideration of the size of the chamber 101, the length of the shaft 105, and the like. May be. Further, the interval between the two blades 106a to 106e adjacent to each other along the axial direction of the shaft 105 may be appropriately determined in consideration of the size of the chamber 101 and the like.
  • each blade 106a to 106e has three support plates 108, but may have two or four or more support plates 108.
  • each blade 106a to 106e is composed of four support plates 108, when the stirrer 102 is viewed along the axial direction of the shaft 105, as in the present embodiment.
  • the positions of the support plates 108 of the adjacent blades 106a to 106e may be different from each other.
  • the support plate 108 of each of the blades 106a to 106e in the present embodiment may have a through hole 112 formed in the main surface.
  • FIG. 9 is a plan view of the blades 106a, 106c, and 106e having the through holes 112.
  • a part of the molten glass 7 passes through the through hole 112 when the stirrer 102 rotates with the shaft 105 as a rotation axis.
  • a flow directed upward or downward is generated in the molten glass 7.
  • the bubbles contained in the molten glass 7 can pass through the through hole 112 and rise to the liquid level of the molten glass 7 in the chamber 101. That is, the bubbles contained in the molten glass 7 can be effectively removed.
  • the stirrer 102 when the stirrer 102 is inspected and repaired, or when a new stirrer 102 is used, the stirrer 102 of this modification having the through hole 112 is put into the molten glass 7 in the chamber 101. think of.
  • the air bubbles entrained by the introduction of the stirrer 102 pass not only between the blades 106a to 106e and the blades 106a to 106e of the stirrer 102 but also through the through holes 112 provided in the blades 106a to 106e. Even can surface. Therefore, it is possible to shorten the time until stable operation.
  • a through hole 112 may also be formed in the connecting portion 110 around the shaft 105 that connects the support plates 108.
  • the chamber 101 may include a mechanism for discharging the molten glass 7.
  • a discharge port for discharging the molten glass 7 including the zirconia-rich layer may be provided on the bottom surface of the chamber 101, or the molten glass 7 including a bubble or a silica-rich layer may be provided on the side surface of the chamber 101.
  • a discharge port for discharging may be provided.
  • the molten glass 7 may contain a heterogeneous fabric having a high ratio of silica or the like with respect to the average composition of the entire molten glass 7. This is considered to be due to the compositional unevenness of the molten glass 7 generated in the melting step, or due to volatilization of components that are likely to volatilize from the molten glass 7. In particular, on the liquid surface of the molten glass 7, the above heterogeneous fabric is likely to be generated due to volatilization of components that are easily volatilized from the molten glass 7.
  • the circulating flow 123 in the present embodiment is generated, even if the above-mentioned foreign material, bubbles floating on the liquid surface of the molten glass 7 or other foreign substances are present on the liquid surface,
  • the molten glass 7 flows from the shaft 105 side toward the inner wall side of the chamber 101 along the liquid surface. Therefore, as in the present modification, by providing a discharge port on the extension line of this flow, the extraneous material contained in the molten glass 7 can be discharged.
  • a part of the inner surface of the chamber 102 protrudes radially outward at a position above the uppermost blade 106 a, preferably at the liquid level of the molten glass 7 or immediately below the liquid level.
  • a formed outlet may be provided.
  • the stirring device 100 When collecting the foreign matter in the molten glass 7, it is necessary to stop the operation of the stirring device 100. However, when a circulating flow 123 is formed around the shaft 105 and a flow from the shaft 105 side to the inner wall side of the chamber 101 is formed on the liquid surface of the molten glass 7, stirring is achieved by providing the above-described discharge port. Without stopping the operation of the apparatus 100, the molten glass 7 containing a heterogeneous material or the like can be discharged from the chamber 101. For example, the molten glass 7 containing bubbles is discharged from the chamber 101 without stopping the operation even if molten glass 7 containing insufficient bubbles containing bubbles flows into the stirring process from the clarification process which is the upstream process. And the operation of the stirring device 100 can be maintained.
  • the three support plates 108 are provided radially from the shaft 105 toward the inner wall of the chamber 101, and each of the support plates 108 of the blades 106a to 106e disposed in two adjacent stages is used.
  • the gap between the support plate 108 and the support plate 108 is arranged to be small.
  • the three support plates 108 may be arranged so that the area of the portion where the support plate 108 and the support plate 108 overlap is reduced according to the area of the main surface.
  • the support plates 108 of the two blades 106a to 106e adjacent to each other along the rotation axis of the shaft 105 are arranged so as to partially overlap each other when viewed along the rotation axis of the shaft 105. Yes.
  • each condition in the stirring step is not limited to the above value.
  • the temperature of the molten glass 7 is 1300 ° C. to 1400 ° C. The temperature may be set lower within the range of ° C., and the viscosity of the molten glass 7 may be adjusted to the above range and stirred.
  • FIG. 10 is a side view showing an example of the configuration of the stirrer according to the present embodiment
  • FIG. 11 is a perspective view showing an example of the configuration of the stirrer according to the present embodiment.
  • the stirrer 100 includes a chamber 1 and a stirrer 2 housed in the chamber 1.
  • the chamber 1 has a cylindrical shape, and communicates with an upstream conduit (introduction tube) 3 and a downstream conduit (extraction tube) 4 installed on the upper side surface and the lower side surface.
  • the molten glass 7 flows into the chamber 1 from the upstream conduit 3, is guided downward from above, and flows out from the chamber 1 to the downstream conduit 4.
  • the stirrer 2 includes a cylindrical shaft 5 that is a rotating shaft, and blades 6a, 6b, 6c, 6d, and 6e connected to the side surfaces of the shaft 5.
  • the blades 6a to 6e are sequentially installed along the axial direction of the shaft 5, and are arranged in five stages. Note that the number of stages of the blades 6a to 6e is not limited to five, and may be appropriately set in consideration of the size of the chamber 1, the length of the shaft 5, and the like. What is necessary is just to adjust the space
  • the blades 6a to 6e are arranged so as to extend radially in the radial direction of the shaft 5, and two blades 6a to 6e extending in a direction symmetrical to the shaft 5 are installed in each stage. .
  • Each blade 6a to 6e in each stage is not limited to two, and may be one or three or more, for example.
  • FIGS. 12, 13, and 14 are a plan view, a side view, and a perspective view, respectively, for illustrating an example of the configuration of the blades in the stirrer according to the present embodiment.
  • FIGS. 15, 16, and 17 are a plan view, a side view, and a perspective view, respectively, illustrating an example of the configuration of another blade in the stirrer according to the present embodiment.
  • the blades 6a, 6c and 6e have the configuration shown in FIGS. 12 to 14, and the blades 6b and 6d have the configuration shown in FIGS.
  • the blades 6a, 6c and 6e have the same shape, and the blades 6b and 6d have the same shape.
  • Each blade 6 a to 6 e includes an inclined plate 8 directly connected to the shaft 5 and an auxiliary plate 9 installed on the main surface of the inclined plate 8.
  • Each of the blades 6a, 6c, 6e and the blades 6b, 6d has an inclined plate 8 and an auxiliary plate 9, and their inclination directions and arrangements are different from each other.
  • the inclined plate 8 has a mode in which the molten glass 7 is pushed up or pushed down when the stirrer 2 rotates around the shaft 5 as a rotation axis.
  • the direction along the axial direction of the shaft 5 is the vertical direction.
  • FIG. 18 is a side view showing an example of the configuration of the stirrer according to the present embodiment.
  • FIG. 18 is a view of the stirrer 2 along a direction perpendicular to the axial direction of the shaft 5 in a state where the blades 6 a to 6 e are positioned in front of the shaft 5.
  • the main surface of each inclined plate 8 is inclined with respect to a surface 10 that is perpendicular to the axial direction of the shaft 5.
  • each inclined plate 8 When the stirrer 2 rotates around the shaft 5 as a rotation axis, the molten glass 7 flows along the main surface of each inclined plate 8, and the molten glass 7 flows upward or downward.
  • the inclined plate 8 pushes the molten glass 7 upward or downwards.
  • the inclined plate 8 is not limited to the above-described configuration as long as it is a mode in which the molten glass 7 is pushed up or pushed down when the stirrer 2 rotates.
  • the main surface of each inclined plate 8 is a flat surface, and the entire main surface is inclined with respect to the surface 10 perpendicular to the axial direction of the shaft 5. Only a part of the inclined plate 8 may be inclined with respect to the surface 10, or the main surface of each inclined plate 8 may be a curved surface.
  • the blades 6a, 6c, and 6e and the blades 6b and 6d have different inclination directions of the inclined plate 8. Thereby, the directions of the flows generated in the molten glass 7 are different from each other.
  • the inclined plate 8 of the blades 6a, 6c, 6e pushes down the molten glass 7, but the inclined plate 8 of the blades 6b, 6d pushes up the molten glass 7.
  • the direction of the flow of the molten glass 7 generated by the inclined plates 8 of the blades 6 a to 6 e is alternately different along the axial direction of the shaft 5.
  • both upward and downward flows occur in the molten glass 7 between the stages adjacent to each other in the blades 6a to 6e.
  • the generation of these two types of flows makes the flow of the molten glass 7 more complicated. Furthermore, between these stages, these two types of flows collide, resulting in a more complicated flow. Thereby, a high stirring effect can be obtained and homogenization of the molten glass 7 is promoted.
  • the stirrer 2 rotates in one direction around the shaft 5 as a rotation axis, it is preferable that the lowest blade 6e pushes down the molten glass 7.
  • the lowermost blade 6e causes a downward flow in the molten glass 7 in this portion, so that the molten glass 7 collides with the bottom surface of the chamber 1 and the stirring of the molten glass 7 is promoted.
  • the distance between the lowermost blade 6e and the bottom surface of the chamber 1 is such that the molten glass 7 caused to flow downward by the lowermost blade 6e collides with the bottom surface of the chamber 1 and promotes stirring. It should just be.
  • a through hole 12 is formed in the main surface of the inclined plate 8.
  • the stirrer 2 rotates about the shaft 5 as a rotation axis, a part of the molten glass 7 passes through the through hole 12.
  • the through hole 12 is inclined with respect to the surface 10 similarly to the main surface of the inclined plate 8, a part of the molten glass 7 passes through the through hole 12, so that the molten glass 7 moves upward or downward.
  • the flow of The direction of the upward or downward flow is different from the direction of the flow caused by the inclined plate 8 pushing the molten glass 7 upward or downward. Therefore, since the through holes 12 are formed, the direction of the flow generated in the molten glass 7 is further increased. Therefore, a more complicated flow occurs in the molten glass 7, and a high stirring effect can be obtained. Further, since the through-hole 12 is formed, the resistance received from the molten glass 7 when the stirrer 2 rotates is reduced, so that a desired flow can be generated in the molten glass 7 with less power. .
  • the auxiliary plate 9 is installed on the main surface of the inclined plate 8 so that its main surface is perpendicular to the main surface of the inclined plate 8. As shown in FIGS. 12 and 15, two auxiliary plates 9 are installed on each of the upper main surface and the lower main surface of one inclined plate 8. 12 and 15, the auxiliary plate 9 installed on the lower main surface is indicated by a broken line.
  • the auxiliary plate 9 has an end portion 9a closest to the shaft 5 and an end portion 9b which is an end portion on the opposite side of the end portion 9a, and has a shape extending from the end portion 9a to the end portion 9b.
  • the auxiliary plate 9 When the auxiliary plate 9 is viewed along the axial direction of the shaft 5, the end plate 9 a and the center of rotation of the shaft 5 follow the direction from the end portion 9 a closest to the shaft 5 toward the opposite end portion 9 b.
  • the auxiliary plate 9 has a shape in which the main surface of the auxiliary plate 9 is separated from the straight line 11 connecting the center point 13. Since the auxiliary plate 9 has such a shape, when the stirrer 2 rotates about the shaft 5 as a rotation axis, the molten glass 7 flows along the main surface of each auxiliary plate 9 and the molten glass 7 has a shaft. A radial flow of 5 occurs.
  • the auxiliary plate 9 has a mode in which the molten glass 7 is driven from the inner wall side of the chamber 1 to the shaft 5 side or pushed out from the shaft 5 side to the inner wall side of the chamber 1.
  • Each auxiliary plate 9 has one of these two modes. It is preferable that the auxiliary plates 9 respectively installed on the upper main surface and the lower main surface of the inclined plate 8 have different modes.
  • one auxiliary plate 9 has a mode in which the molten glass 7 is scraped from the inner wall side of the chamber 1 to the shaft 5 side, and the other auxiliary plate 9 moves the molten glass 7 from the shaft 5 side to the inner wall side of the chamber 1. It is preferable to have an extrusion mode.
  • the auxiliary plate 9 installed on the upper main surface of the inclined plate 8 of the blades 6a, 6c, 6e stirs the molten glass 7
  • assistant board 9 installed in the lower main surface which is the back surface has the aspect which extrudes the molten glass 7.
  • the auxiliary plate 9 installed on the upper main surface of the inclined plate 8 of the blades 6b and 6d pushes out the molten glass 7.
  • assistant board 9 installed in the lower main surface which is the back surface has the aspect which stirs the molten glass 7.
  • FIG. since the aspect of the auxiliary
  • the agitation efficiency tends to decrease as the chamber 1 moves from the upstream side to the downstream side.
  • the downstream side of the auxiliary plate 9 located upstream of the chamber 1 is suppressed.
  • the height (length in the vertical direction) of the auxiliary plate 9 positioned may be increased (longer). Increasing the height of the auxiliary plate 9 increases the stirring efficiency and suppresses a decrease in the stirring efficiency on the downstream side.
  • the height of the upper main surface of the inclined plate 8 of the lower blade and the height of the auxiliary plate 9 installed on the lower main surface is the inclined plate of the blade located above the blade. What is necessary is just to be the same as that of the height of the auxiliary
  • the ratio is preferably 1: 1.3.
  • the heights of the auxiliary plates 9 installed on the inclined plates 8 of the blades 6a, 6b, 6c positioned above are equal to each other, and installed on the inclined plates 8 of the blades 6d, 6e positioned below them.
  • the heights of the auxiliary plates 9 are equal to each other, and the height of the auxiliary plates 9 of the blades 6d, 6e may be 1.3 times the height of the auxiliary plates 9 of the blades 6a, 6b, 6c.
  • the upper part of the chamber 1 is the upstream and the lower part is the downstream.
  • the blades of the upper blades are adjacent to each other.
  • the height of the auxiliary plate installed on the upper main surface and the lower main surface is equal to or higher than the height of the auxiliary plate installed on the upper main surface and the lower main surface of the inclined plate of the blade located below the blade. You can do that.
  • assistant board 9 are not necessarily limited to the said embodiment.
  • the auxiliary plate 9 may be disposed only on one main surface of the inclined plate 8.
  • the two auxiliary plates (first auxiliary plate and second auxiliary plate) 9 installed on each inclined plate 8 are separated from each other as they go from the end 9a to the end 9b. Shape.
  • a through hole 12 is formed in the inclined plate 8 between the two auxiliary plates 9.
  • the molten glass 7 introduced between the two is guided to the two auxiliary plates 9 whose intervals are gradually narrowed, and part of the molten glass 7 passes through the through holes 12 and flows to the back surface of the inclined plate 8, and the rest It flows upward or downward along the main surface of the inclined plate 8. Since the molten glass 7 that has passed through the through-hole 12 and the other molten glass 7 have different flow rates as well as flow directions, a more complicated flow occurs in the molten glass 7. Furthermore, the molten glass 7 that has passed through the through hole 12 and has flowed to the back surface of the inclined plate 8 is pushed out from the shaft 5 side to the inner wall side of the chamber 1 by the auxiliary plate 9 installed on the back surface of the inclined plate 8. become. In other words, when the molten glass 7 passes through the through-hole 12 and flows to the back surface of the inclined plate 8, the flow direction can be changed in a direction different from that in the past. Thereby, a high stirring effect is obtained.
  • the molten glass 7 is guided between two auxiliary plates 9 that push the molten glass 7 from the shaft 5 side toward the inner wall side of the chamber 1,
  • the part passes through the through-hole 12 and flows to the back surface of the inclined plate 8, and the rest flows upward or downward along the main surface of the inclined plate 8 to generate flows having different directions and different velocities.
  • the molten glass 7 that has passed through the through-hole 12 and has flowed to the back surface of the inclined plate 8 is changed in the flow direction to the direction different from the conventional one by the auxiliary plate 9 installed on the back surface of the inclined plate 8. It is done.
  • the main surface of the auxiliary plate 9 is preferably a curved surface.
  • the main surface of the auxiliary plate 9 is a curved surface, so that the resistance that the blades 6a to 6e receive from the molten glass 7 can be reduced, and the target power can be reduced with less power.
  • a flow can be generated in the molten glass 7.
  • the auxiliary plate 9 only needs to be able to cause the radial flow of the shaft 5 in the molten glass 7, and the main surface of the auxiliary plate 9 may be a flat surface or other shapes.
  • the region formed between the inclined plate 8 of the lowermost blade 6e and the bottom surface of the chamber 1 is directed to the downstream conduit 4 along the direction perpendicular to the axial direction of the shaft 5.
  • this region is a boundary between the downstream conduit 4 and the chamber 1 and passes through an opening formed on the side surface of the chamber 1. 6e and the downstream conduit 4 are preferably arranged.
  • the stirrer 2 rotates in one direction with the shaft 5 as the rotation axis, the auxiliary plate 9 installed on the lower main surface of the lowermost blade 6e has a mode of extruding the molten glass 7. preferable.
  • the flow generated in the molten glass 7 by the auxiliary plate 9 installed on the lower main surface of the lowermost blade 6e is the downstream conduit 4. It tends to affect the flow of the molten glass 7 flowing out.
  • the stirrer 2 rotates around the shaft 5 as a rotation axis
  • the auxiliary plate 9 installed on the lower main surface of the lowermost blade 6e pushes out the molten glass 7, whereby the molten glass 7 is contained in the chamber 1.
  • the molten glass 7 can be guided from the shaft 5 side to the inner wall side of the chamber 1 so as to smoothly flow out from the downstream conduit 4. Thereby, while the flow of the molten glass 7 in the lower part of the chamber 1 is smooth, homogeneous stirring is performed.
  • the upstream side conduit 3 is installed above the chamber 1
  • the downstream side conduit 4 is installed below the chamber 1
  • the molten glass 7 is guided from above the chamber 1 to below.
  • a stirring device having a configuration in which the molten glass 7 is guided from the lower side to the upper side of the chamber 1 may be used.
  • a downstream conduit (outlet tube) is installed on the upper side of the chamber
  • an upstream conduit (introducing tube) is installed on the lower side of the chamber
  • the chamber communicates with the upstream and downstream conduits. What should I do?
  • Other configurations may be the same as those of the stirring device 100 according to the embodiment.
  • FIG. 19 is a plan view illustrating an example of a configuration of still another blade in the stirrer according to the present embodiment.
  • a blade 36 shown in FIG. 19 has an inclined plate 38 connected to the side surface of the shaft 5 and an auxiliary plate 39 installed on the main surface of the inclined plate 38.
  • a through hole 32 is formed in the main surface of the inclined plate 38.
  • the end 39 a of the auxiliary plate 39 installed on the shaft 5 side is connected to the shaft 5. Since the auxiliary plate 39 and the shaft 5 are thus connected, the strength of the auxiliary plate 39 and the inclined plate 38 can be improved, so that the auxiliary plate 39 and the inclined plate 38 can be made thinner. Yes, the cost of the stirring device 100 can be reduced.
  • the temperature of the molten glass 7 stirred by the stirring device 100 is about 1400 to 1600 ° C., which is a high temperature. Therefore, it is preferable that members that contact the molten glass 7 such as the upstream conduit 3, the downstream conduit 4, the chamber 1, and the stirrer 2 are made of a material that can withstand such high temperatures.
  • these members may be made of platinum, platinum alloy, iridium, iridium alloy, or the like.
  • platinum, platinum alloy, iridium, and iridium alloy are expensive, so it is preferable to reduce the amount used. It is preferable to make the inclined plate 8 and the auxiliary plate 9 as thin as possible within a range having a strength that does not hinder the stirring of the molten glass 7.
  • the amount of expensive material such as platinum used may be reduced by forming platinum or the like only in a portion in contact with the molten glass 7. That is, a multilayer structure in which platinum or the like is formed only on these inner walls may be used.
  • FIG. 20 is a view for explaining the flow of molten glass in the stirring apparatus according to the present embodiment.
  • a molten glass 7 flows into the chamber 1 from the upstream conduit 3.
  • the upper end of the shaft 5 of the stirrer 2 is connected to a motor or the like, and the stirrer 2 rotates counterclockwise when viewed from above with the shaft 5 as a rotation axis.
  • the molten glass 7 stirred by the stirrer 2 flows out from the chamber 1 to the downstream conduit 4.
  • the stirrer 2 rotates in the chamber 1
  • the blades 6a to 6e rotate around the shaft 5 as a rotation axis, and the molten glass 7 is stirred.
  • the molten glass 7 is pushed up or pushed down by the inclined plates 8. Thereby, an upward or downward flow occurs in the molten glass 7. Further, a part of the molten glass 7 passes through the through hole 12 by rotating the blades 6a to 6e. Thereby, the molten glass 7 has a direction different from the flow generated by the inclined plate 8 and flows upward or downward. Further, by rotating the blades 6a to 6e, the molten glass 7 is driven from the inner wall side of the chamber 1 to the shaft 5 side by the auxiliary plates 9 or pushed out from the shaft 5 side to the inner wall side of the chamber 1. . Thereby, a flow in the radial direction of the shaft 5 is generated in the molten glass 7. As described above, since the plurality of flows are generated in the molten glass 7, a sufficient stirring effect can be obtained, and more uniform stirring is possible.
  • Each combination of the blade 6a and the blade 6b, the blade 6b and the blade 6c, the blade 6c and the blade 6d, the blade 6d and the blade 6e is different in the aspect of the inclined plate 8 as described above.
  • a flow is generated in the molten glass 7. Therefore, an upward flow and a downward flow are generated between the blade 6a and the blade 6b, between the blade 6b and the blade 6c, between the blade 6c and the blade 6d, and between the blade 6d and the blade 6e, respectively.
  • the upstream side conduit 3 and the downstream side conduit 4 are installed on the upper side surface and the lower side surface of the chamber 1, respectively, so that the flow direction of the molten glass 7 changes at the upper and lower sides of the chamber 1. It will be. In the portion where the flow direction of the molten glass 7 changes, the molten glass 7 tends to stay. In particular, the flow of the molten glass 7 hardly occurs above the blade 6a located at the uppermost stage and below the blade 6e located at the lowermost stage, and the molten glass 7 in the upper space 21 and the lower space 22 in the chamber 1 It is thought that sufficient stirring is difficult compared with other parts.
  • the inclined plate 8 of the blade 6a When the stirrer 2 rotates counterclockwise with the shaft 5 as a rotation axis, the inclined plate 8 of the blade 6a has a mode of pushing down the molten glass 7 downward.
  • the auxiliary plate 9 installed on the upper main surface of the inclined plate 8 of the blade 6a has the molten glass 7 It has a mode in which the inner wall side of the chamber 1 is stirred into the shaft 5 side.
  • a flow is generated in the molten glass 7 by the inclined plate 8 and the auxiliary plate 9, and these flows are combined, so that the molten glass 7 is moved upward in the upper space 21 around the shaft 5.
  • the inclined plate 8 of the blade 6e has a mode of pushing down the molten glass 7 downward.
  • the blade 6 e causes a downward flow in the molten glass 7 in the lower space 22 of the chamber 1, and the molten glass 7 is agitated by colliding with the bottom surface of the chamber 1.
  • An auxiliary plate 9 is installed on the lower main surface of the inclined plate 8 of the blade 6e so as to extend downward.
  • the molten glass 7 in the lower space 22 is sufficiently stirred, and the molten glass 7 is pushed out from the shaft 5 side to the inner wall side of the chamber 1, so that the molten glass 7 is indicated by a flow direction 24.
  • a flow to the downstream side conduit 4 occurs.
  • the molten glass 7 in the lower space 22 is sufficiently agitated and guided to the downstream side conduit 4 and is not easily retained.
  • a complicated flow is generated in the molten glass 7 in the chamber 1 of the stirring device 100.
  • the amount of the molten glass 7 flowing into the chamber 1 and the amount of the molten glass 7 flowing out of the chamber 1 are constant per unit time, but a complicated flow occurs in the molten glass 7 in the chamber 1.
  • the flow speed varies depending on the location in the chamber 1.
  • the molten glass 7 can be stirred more uniformly. Thereby, generation
  • the present inventors made a model of a stirrer according to the present embodiment and conducted a stir experiment having physical similarity conditions with the actual operation of the stirrer.
  • a transparent material was used as a high-viscosity material instead of molten glass, and a red liquid was continuously dropped from the upstream side of the high-viscosity material poured into the chamber.
  • the stirring state can be easily observed visually.
  • the high-viscosity material shows red streaks along the flow, but when the stirrer is performed, the red streaks disappear and the high-viscosity material is colored red.
  • the inventors conducted experiments using a plurality of stirrers having different shapes, and observed the stirring state in each stirrer.
  • Example 2 the stirring state was observed in the same manner as described above using a stirrer (Example 2) having the same configuration as that of the stirrer of Example 1 except that no through hole was formed in the inclined plate. Furthermore, the stirrer having the same configuration as that of the stirrer of Example 1 described above, except that the auxiliary plates installed on the upper main surface and the lower main surface of the inclined plate are both of a mode in which a high-viscosity material is scraped (implemented). Using Example 3), the stirring state was observed as above.
  • the stirring state was observed in the same manner as described above using a stirrer in which all the inclined plates had a mode of pushing down the highly viscous material downward.
  • auxiliary plates are installed on both main surfaces of the inclined plate.
  • the high-viscosity material in the chamber remained uneven in color, and the entire high-viscosity material was not colored.
  • a two-layer structure in which the upper side was red and the lower side was transparent was seen, and it took time until the entire high-viscosity material that flowed out to the downstream side conduit was colored.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Glass Compositions (AREA)

Abstract

チャンバー(101)と、チャンバー(101)内の溶融ガラス(7)を攪拌する攪拌器(102)とを備える攪拌装置(100)である。攪拌器(102)は、回転軸となるシャフト(105)と、シャフト(105)の側面に複数段配置される羽根(106a~106e)とを備える。羽根(106a~106e)は、支持板(108)と、補助板(109)とを有する。補助板(109)は、シャフト(105)の半径方向への流れを溶融ガラス(7)に生じさせる。

Description

ガラス基板の製造方法、および、攪拌装置
 本発明は、ガラス基板の製造方法、および、攪拌装置に関する。
 ガラス板等のガラス製品の量産工程においては、ガラス原料を加熱して溶融ガラスを生成し、生成した溶融ガラスを成形して、ガラス板等のガラス製品が製造される。溶融ガラスが不均質であると、ガラス製品には脈理が生じる。脈理は、周囲とは屈折率や比重が異なる筋状の領域であり、レンズ等の光学部品、液晶ディスプレイ(LCD)用基板等の用途においては、ガラス製品から厳しく排除することが求められる。特に、液晶ディスプレイ用基板に代表される、ディスプレイ用ガラス基板においては、大面積の表面全体で脈理を極めて低レベルに抑える必要がある。脈理の発生を防ぐために、攪拌装置を用いて溶融ガラスを攪拌することが行われている。一般に攪拌装置は、円筒形状のチャンバーと、攪拌器とを備えている。攪拌器は、回転軸であるシャフトと、シャフトの側面に接続された羽根とを有している。攪拌器が配置されたチャンバー内に溶融ガラスが導入され、羽根により溶融ガラスが攪拌され、溶融ガラスが均質化される。
 特許文献1(特開昭63-8226号公報)には、回転軸であるシャフトと、シャフトの側面に接続された羽根とを有する攪拌器が開示されている。特許文献1に開示された攪拌器の羽根は、攪拌器軸に対して傾斜し、それによりチャンバーの上方向または下方向に向かう溶融ガラスの流れを起こして攪拌効果が高められている。
 特許文献2(特開昭58-88126号公報)にも、回転軸であるシャフトと、シャフトに接続され、シャフトの円周方向(回転方向)に面を傾斜させた羽根とを有する攪拌器が開示されている。この攪拌器は、羽根をシャフトの長手方向について複数段設けるとともに、隣接する各段の羽根が互いに逆向きに傾斜している。隣接する各段の羽根の間においては、溶融ガラスが押し下げられることにより生じるガラス流と、溶融ガラスが押し上げられることにより生じるガラス流との二つのガラス流が生じ、それらが衝突する。溶融ガラスが一方向だけに流れる場合に比べて、より高い攪拌効果を得ることができると考えられる。
 従来から、溶融ガラスを攪拌することを目的とした攪拌装置が種々提案されている。しかし、従来の攪拌装置では、溶融ガラスを攪拌する能力が十分とはいえず、溶融ガラスをより均質化することが可能な攪拌装置が求められていた。
 本発明は、上述の事情に鑑みてなされた発明であり、その目的は、溶融ガラスをより均質に攪拌することができるガラス基板の製造方法、および、攪拌装置を提供することである。
 本発明に係るガラス基板の製造方法は、ガラス原料を溶融して溶融ガラスを得る溶融工程と、溶融工程で得られた溶融ガラスを攪拌槽の内部で攪拌する攪拌工程と、攪拌工程で攪拌された溶融ガラスからガラス基板を成形する成形工程と、を備える。攪拌槽は、溶融ガラスを上方から下方へと、または、下方から上方へと導くためのチャンバーと、チャンバー内の溶融ガラスを攪拌するための攪拌器とを備える。攪拌器は、鉛直方向に沿って配置される回転軸であるシャフトと、シャフトの側面に、シャフトの軸方向に沿って最上段から最下段まで複数段配置される羽根とを有する。羽根は、シャフトの軸方向に対して直交する支持板と、支持板の主面上に設置される補助板とを有する。攪拌工程では、シャフトを回転軸として攪拌器が回転することにより、補助板は、シャフトの半径方向への流れを溶融ガラスに生じさせ、かつ、隣接する2つの段に配置される羽根の支持板の間に位置する補助板は、同じ方向の流れを溶融ガラスに生じさせる。
 このガラス基板の製造方法では、攪拌器が回転することで、チャンバー内の溶融ガラスが補助板によってシャフト側に掻き込まれ、または、チャンバーの内壁側に押し出される。すなわち、溶融ガラスには、シャフトの半径方向への流れが生じる。これにより、溶融ガラスは、チャンバー内を上方から下方へと、または、下方から上方へと導かれながら、シャフトの半径方向(外側方向および内側方向)に移動させられる。従って、このガラス基板の製造方法では、複雑な構成を備えることなく、溶融ガラスをより均質に攪拌することができる。
 また、本発明に係るガラス基板の製造方法は、ガラス原料を溶融して溶融ガラスを得る溶融工程と、溶融工程で得られた溶融ガラスを攪拌槽の内部で攪拌する攪拌工程と、攪拌工程で攪拌された溶融ガラスからガラス基板を成形する成形工程と、を備える。攪拌槽は、溶融ガラスを上方から下方へと、または、下方から上方へと導くためのチャンバーと、チャンバー内の溶融ガラスを攪拌するための攪拌器とを備える。攪拌器は、鉛直方向に沿って配置される回転軸であるシャフトと、シャフトの側面に、シャフトの軸方向に沿って最上段から最下段まで複数段配置される羽根とを有する。羽根は、シャフトの軸方向に対して直交する支持板と、支持板の主面上に設置される補助板とを有する。攪拌工程では、シャフトを回転軸として攪拌器が回転することにより、最上段に位置する羽根の支持板の上方の主面上に設置された補助板は、最上段に位置する羽根の支持板の上方において、チャンバーの内壁からシャフトに向かって溶融ガラスを移動させる第1の流れを生じさせ、かつ、第1の流れによって移動した溶融ガラスをシャフトの側面に沿って上昇させる第2の流れを生じさせる。
 このガラス基板の製造方法では、攪拌器が回転することで、シャフトの周囲において溶融ガラスが上昇する流れが形成され、かつ、チャンバーの内壁に沿って溶融ガラスが下降する流れが形成される。そのため、シャフトの周囲から溶融ガラスが引き込まれて、チャンバー内を下降することがない。これにより、操業中にチャンバー内の溶融ガラスの液面付近に存在する泡やシリカリッチ層が、溶融ガラス中に巻き込まれてチャンバーから流出することを抑制することができる。また、溶融ガラスの上昇流および下降流によって、溶融ガラスの液面近傍において、溶融ガラスが滞留することが抑制される。従って、このガラス基板の製造方法では、溶融ガラスをより均質に攪拌することができる。
 また、本発明に係る攪拌装置は、溶融ガラスを上方から下方へと、または下方から上方へと導くためのチャンバーと、チャンバー内の溶融ガラスを攪拌するための攪拌器とを備える。攪拌器は、回転軸となるシャフトと、シャフトの側面に、シャフトの軸方向に沿って最上段から最下段まで複数段配置されている羽根とを備える。羽根は、シャフトに直接接続される支持板と、支持板の主面上に設置される補助板とを有する。補助板は、シャフトに接続した、またはシャフトに最も近い一端と、当該一端の反対側に位置する他端とを有する。補助板は、シャフトの軸方向に沿って見たときに、一端から他端に向かうにしたがって、一端と、シャフトの回転の中心となる中心点とを結ぶ直線から、補助板の主面が離れていくように設置される。シャフトを回転軸として攪拌器が回転することにより、補助板は、シャフトの半径方向への流れを溶融ガラスに生じさせ、かつ、隣接する2つの段に配置される羽根の支持板の間に位置する補助板は、同じ方向の流れを溶融ガラスに生じさせる。
 この攪拌装置では、攪拌器が回転することで、チャンバー内の溶融ガラスが補助板によってシャフト側に掻き込まれ、または、チャンバーの内壁側に押し出される。すなわち、溶融ガラスには、シャフトの半径方向への流れが生じる。これにより、溶融ガラスは、チャンバー内を上方から下方へと、または、下方から上方へと導かれながら、シャフトの半径方向(外側方向および内側方向)に移動させられる。従って、この攪拌装置は、溶融ガラスをより均質に攪拌することができる。
 本発明に係るガラス基板の製造方法、および、攪拌装置は、溶融ガラスをより均質に攪拌することができる。
第1実施形態に係るガラス製造装置の構成の一例を示す模式図である。 第1実施形態に係る攪拌装置の構成の一例を示す側面図である。 第1実施形態に係る攪拌器の羽根の斜視図である。 第1実施形態に係る攪拌器の羽根の平面図である。 第1実施形態に係る攪拌器の羽根の斜視図である。 第1実施形態に係る攪拌器の羽根の平面図である。 第1実施形態に係る攪拌器の2枚の羽根の位置関係を表す図である。 第1実施形態に係る攪拌装置における溶融ガラスの流れを表す図である。 第1実施形態の変形例Cに係る攪拌器の羽根の上面図である。 第2実施形態に係る攪拌装置の構成の一例を示す側面図である。 第2実施形態に係る攪拌器の構成の一例を示す斜視図である。 第2実施形態に係る攪拌器における羽根の構成の一例を示すための平面図である。 第2実施形態に係る攪拌器における羽根の構成の一例を示すための側面図である。 第2実施形態に係る攪拌器における羽根の構成の一例を示すための斜視図である。 第2実施形態に係る攪拌器における別の羽根の構成の一例を示すための平面図である。 第2実施形態に係る攪拌器における別の羽根の構成の一例を示すための側面図である。 第2実施形態に係る攪拌器における別の羽根の構成の一例を示すための斜視図である。 第2実施形態に係る攪拌器の構成の一例を示す側面図である。 第2実施形態に係る攪拌器におけるさらに別の羽根の構成の一例を示すための平面図である。 第2実施形態に係る攪拌装置における溶融ガラスの流れを説明するための図である。
 <第1実施形態>
 (1)ガラス製造装置の全体構成
 本発明に係るガラス基板の製造方法、および、攪拌装置を用いるガラス製造装置の第1実施形態について、図1~図9を用いて説明する。図1は、このガラス製造装置200の構成の一例を示す模式図である。ガラス製造装置200は、溶解槽40と、清澄槽41と、攪拌装置100と、成形装置42と、これらをそれぞれ連通する導管43a,43b,43cとを備えている。溶解槽40により生成された溶融ガラス7は、導管43aを通過して清澄槽41に流入し、清澄槽41により清澄された後に導管43bを通過して攪拌装置100へと流入し、攪拌装置100により均質に攪拌された後に導管43cを通過して成形装置42に流入し、ダウンドロー法によりガラスリボン44が成形される。
 図示されていないが、溶解槽40にはバーナー等の加熱手段が設置されていて、ガラス原料を溶解して溶融ガラス7を得ることができる。ガラス原料は、所望のガラスを得ることができるように適宜調整すればよい。例えば、ガラス原料は、質量%で表示して、実質的に以下の組成からなるガラスが得られるように調製されたものとすればよい。
 SiO2 57~65%
 Al23 15~19%
 B23  8~13%
 MgO 1~3%
 CaO 4~7%
 SrO 1~4%
 BaO 0~2%
 Na2O 0~1%
 K2O  0~1%
 As23 0~1%
 Sb23 0~1%
 SnO2 0~1%
 Fe23 0~1%
 ZrO2 0~1%
 ここで、「実質的に」とは、0.1質量%未満の範囲で微量成分の存在を許容する趣旨である。したがって、上記の組成を有するガラスは、0.1質量%未満の範囲でその他微量成分の混入を許容する。また、上記の組成中のFe23、As23、Sb23およびSnO2の各含有率は、複数の価数を有するFe、As、SbまたはSnの成分を全てFe23、As23、Sb23またはSnO2として扱って換算した値である。
 上記のように調製されたガラス原料が、溶解槽40に投入される。溶解槽40では、ガラス原料を、その組成等に応じた設定温度で溶解させて、例えば、1500℃以上の溶融ガラス7を得る。
 溶解槽40で得られた溶融ガラス7は、溶解槽40から導管43aを通過して清澄槽41に流入する。清澄槽41には、図示されていないが、溶解槽40と同様に加熱手段が設置されている。清澄槽41では、溶融ガラス7がさらに昇温させられることで清澄される。具体的には、清澄槽41において、溶融ガラス7の温度が1550℃以上、さらには1600℃以上に上昇させられる。溶融ガラス7は昇温されることで清澄される。
 清澄槽41において清澄された溶融ガラス7は、清澄槽41から導管43bを通過して攪拌装置100に流入する。溶融ガラス7は導管43bを通過する際に冷却され、攪拌装置100では、清澄槽41における温度よりも低い温度で攪拌される。上記したような無アルカリガラスや微アルカリガラスにおける攪拌工程の条件の一例としては、溶融ガラスの温度を1400℃~1550℃の範囲内に設定し、かつ、溶融ガラスの粘度を2500ポアズ~450ポアズの範囲内に調整して、攪拌を行うことが好ましい。溶融ガラス7は攪拌装置100において攪拌され、均質化される。
 攪拌装置100により均質化された溶融ガラス7は、攪拌装置100から導管43cを通過して成形装置42に流入する。溶融ガラス7は導管43cを通過する際に冷却され、成形に適した温度(例えば、1200℃)まで冷却される。成形装置42では、ダウンドロー法により溶融ガラス7が成形される。成形装置42に流入した溶融ガラス7は、成形装置42の上部から溢れて成形装置42の側壁に沿って下方へと流れる。これにより、ガラスリボン44が連続的に成形される。ガラスリボン44は下方へと向かうにしたがい徐冷され、最終的には所望の大きさのガラス板へと切断される。
 (2)攪拌装置の構成
 図2は、攪拌装置100の構成の一例を示す側面図である。攪拌装置100は、チャンバー101と、チャンバー101内に収納された攪拌器102とを備えている。チャンバー101は円筒状であり、上部側面に設置された上流側導管103、および、下部側面に設置された下流側導管104と連通している。溶融ガラス7は、上流側導管103から水平方向にチャンバー101内に流入し、チャンバー101内において鉛直方向に上方から下方に導かれ、チャンバー101内から水平方向に下流側導管104へ流出する。
 攪拌器102は、軸回転する円柱状のシャフト105と、シャフト105の側面に接続された羽根106a,106b,106c,106d,106eとを備えている。シャフト105は、その回転軸が鉛直方向に沿うように、チャンバー101内に配置されている。羽根106a~106eは、シャフト105の軸方向(回転軸方向)に沿って、上方から下方に向かってこの順序で等間隔に配置されている。すなわち、攪拌器102では、羽根106a~106eがシャフト105の軸方向に沿って5段設置されている。
 次に、図3~図6を参照しながら、羽根106a~106eの構成について説明する。本実施形態では、羽根106a,106c,106eは互いに同一の形状を有し、羽根106b,106dは互いに同一の形状を有している。図3および図4は、それぞれ、シャフト105の回転軸に沿って見た場合における、羽根106a,106c,106eの斜視図および平面図である。また、図5および図6は、それぞれ、シャフト105の回転軸に沿って見た場合における、羽根106b,106dの斜視図および平面図である。
 各羽根106a~106eは、シャフト105の径方向外側に向かって放射状に延びるように配置されている。各羽根106a~106eは、シャフト105の軸方向に対して直交する3枚の支持板108と、各支持板108の上側の主面上に設置された1枚の上側補助板119aと、各支持板108の下側の主面上に設置された1枚の下側補助板119bとからなる。以下、上側補助板119aおよび下側補助板119bを、まとめて、補助板109と呼ぶ。
 3枚の支持板108は、各羽根106a~106eを平面視した場合に、シャフト105の回転軸に対して3回対称となる位置において、シャフト105の側面に直接接続されている。各支持板108は、その主面の法線がシャフト105の軸方向に沿うようにシャフト105に接続されている。すなわち、各支持板108は、水平に配置されている。各羽根106a~106eの3枚の支持板108は、図3~図6に示されるように、シャフト105の周囲において、連結部110によって互いに接続されている。すなわち、3枚の支持板108は、実質的に、1つの部品を構成する。
 また、3枚の支持板108は、シャフト105からチャンバー101の内壁に向かって放射状に設けられ、かつ、隣接する2つの段に配置される羽根106a~106eの支持板108のそれぞれをチャンバー101の底面に投影した場合に、支持板108と支持板108との間隔が小さくなるように配置されている。具体的には、シャフト105の回転軸に沿って隣接している2つの羽根106a~106eの支持板108は、シャフト105の回転軸に沿って見た場合に、互いに重ならないように配置されている。例として、図7に、攪拌器102をシャフト105の回転軸に沿って上面視した場合における、羽根106aおよび羽根106bの位置関係を表す。図7に示されるように、羽根106aの支持板108は、羽根106bの支持板108の間に位置するように配置されている。すなわち、羽根106aおよび羽根106bの6枚の支持板108は、シャフト105の回転軸に対して6回対称となる位置に配置されているように見える。
 補助板109は、その主面が支持板108の主面に対して垂直となるように、支持板108の主面上に設置されている。補助板109は、支持板108の上方の主面上および下方の主面上に設置されている。上述したように、支持板108の上側の主面上には上側補助板119aが設置され、支持板108の下側の主面上には下側補助板119bが設置されている。なお、図4および図6において、下側補助板119bは破線で示されている。
 また、補助板109は、シャフト105から支持板108の外周縁に向かって設置されている。ここで、各補助板109は、シャフト105に最も近い側の内側端部109aと、内側端部109aの反対側の端部であって支持板108の外周縁に最も近い側の外側端部109bとを有している。各補助板109は、内側端部109aから外側端部109bに向かうに従って、シャフト105の回転軸が位置する中心点113と内側端部109aとを結ぶ直線111から、その主面が離れていくように設置されている。具体的には、羽根106a,106c,106eでは、図4に示されるように攪拌器102を上面視した場合に、上側補助板119aは、その主面が直線111から反時計回りに離れていくように設置され、かつ、下側補助板119bは、その主面が直線111から時計回りに離れていくように設置されている。一方、羽根106b,106dでは、図6に示されるように攪拌器102を上面視した場合に、上側補助板119aは、その主面が直線111から時計回りに離れていくように設置され、かつ、下側補助板119bは、その主面が直線111から反時計回りに離れていくように設置されている。すなわち、各羽根106a~106eにおいて、上側補助板119aおよび下側補助板119bは、互いに逆回りに延びるように設置されている。また、シャフト105の回転軸に沿って隣接している2つの羽根106a~106eの間において対向する一対の補助板109は、その主面が直線111から互いに同じ方向に離れていくように設置されている。例えば、羽根106aの下側補助板119bと、羽根106bの上側補助板119aとは、共に、それらの主面が直線111から時計回りに離れていくように設置されている。
 また、補助板109は、その主面と支持板108の主面との接続部が、支持板108の端部に位置しないように設置されている。すなわち、シャフト105の回転軸に沿って羽根106a~106eを見た場合に、補助板109は、内側端部109aおよび外側端部109bを除いて、支持板108の外周縁から離れた位置に設置されている。
 (3)攪拌装置の動作
 本実施形態に係る攪拌装置100の動作について、図8を参照しながら説明する。図8は、攪拌装置100内における溶融ガラス7の流れを表す図である。チャンバー101内には、上流側導管103から溶融ガラス7が水平方向に流入される。攪拌器102のシャフト105の上端部は外部のモータ等と連結されていて、攪拌器102は、シャフト105を回転軸として、上から見て反時計まわりに回転する。チャンバー101内において、溶融ガラス7は、上方から下方に徐々に導かれながら、攪拌器102により攪拌される。攪拌された溶融ガラス7は、チャンバー101内から下流側導管104へ水平方向に流出される。
 チャンバー101内では、羽根106a~106eがシャフト105を回転軸として回転することで、溶融ガラス7が攪拌される。具体的には、各羽根106a~106eの補助板109が、溶融ガラス7を、チャンバー101の内壁側からシャフト105側へ掻き込み、または、シャフト105側からチャンバー101の内壁側へ押し出す。本実施形態では、各羽根106a~106eにおいて、上側補助板119aおよび下側補助板119bのいずれか一方が、溶融ガラス7をチャンバー101の内壁側からシャフト105側へ掻き込み、他方が、溶融ガラス7をシャフト510側からチャンバー101の内壁側へ押し出す。すなわち、各羽根106a~106eの支持板108の上方および支持板108の下方において、シャフト105の半径方向の溶融ガラス7の流れは、互いに逆方向になっている。また、シャフト105の回転軸に沿って隣接している2つの羽根106a~106eにおいて、上段に位置する羽根の下側補助板119bと、下段に位置する上側補助板119aとは、それらの主面が直線111から離れる方向が同じである。そのため、互いに対向する一対の補助板109によって生じるシャフト105の半径方向の溶融ガラス7の流れは、共に同方向になっている。
 本実施形態では、図8に示されるように、シャフト105の最上段に位置する羽根106aの上側補助板119aは、溶融ガラス7をチャンバー101の内壁側からシャフト105側へ掻き込む流れを生じさせる。そのため、羽根106aの下側補助板119bと、一段下に位置する羽根106bの上側補助板119aとは、溶融ガラス7をシャフト105側からチャンバー101の内壁側へ押し出す流れを生じさせる。同様に、羽根106bの下側補助板119bと、羽根106cの上側補助板119aとは、溶融ガラス7をチャンバー101の内壁側からシャフト105側へ掻き込む流れを生じさせる。そして、最下段に位置する羽根106eの下側補助板119bは、溶融ガラス7をシャフト105側からチャンバー101の内壁側へ押し出す流れを生じさせる。すなわち、最下段に位置する羽根106eとチャンバー101の底面との間の下部空間122において、溶融ガラス7は、図8で示される矢印124の方向に流れる。
 また、本実施形態では、図8に示されるように、攪拌器102の軸回転によって、最上段に位置する羽根106aの上側補助板119aは、羽根106aの支持板108の上方において、チャンバー101の内壁側からシャフト105側に向かって溶融ガラス7を移動させる流れを生じさせる。そして、羽根106aの上側補助板119aは、この溶融ガラス7を、さらに、シャフト105の側面に沿って上昇させる流れを生じさせる。溶融ガラス7の液面近傍まで上昇した溶融ガラス7は、シャフト105側からチャンバー101の内壁側へ向かって流れ、さらに、チャンバー101の内壁に沿って下降する。すなわち、最上段に位置する羽根106aと溶融ガラス7の液面との間の上部空間121において、溶融ガラス7は、図8で示される循環流123を形成する。この循環流123によって、上部空間121において溶融ガラス7が攪拌される。
 (4)特徴
  (4-1)
 本実施形態に係る攪拌装置100では、上流側導管103からチャンバー101内に流入した溶融ガラス7は、攪拌器102の軸回転によって、隣接する2つの羽根106a~106eの間において、チャンバー101の内壁側からシャフト105側へ掻き込まれ、または、シャフト105側からチャンバー101の内壁側へと押し出される。シャフト5の半径方向の溶融ガラス7の流れは、チャンバー101内を上方から下方に向かうに従って、段ごとに反対方向に入れ替わる。すなわち、溶融ガラス7は、チャンバー101内を上方から下方に導かれながら、シャフト5の半径方向に交互に移動させられることで攪拌される。
 従って、本実施形態に係る攪拌装置100は、複雑な構成を備えることなく、溶融ガラス7をより均質に攪拌することができる。これにより、脈理の発生を抑制して、高品質のガラス製品を得ることができる。
  (4-2)
 本実施形態に係る攪拌装置100では、各羽根106a~106eの支持板108の上方の主面上および下方の主面上には、補助板109が設置されている。攪拌器102が軸回転すると、チャンバー101内を流れる溶融ガラス7には、補助板109によってシャフト105の半径方向の動きが与えられる。具体的には、支持板108の近傍の溶融ガラス7は、補助板109によって掻き込まれ、または、押し出されることで、支持板108の主面に沿って半径方向に移動する。支持板108上に補助板109が設けられる構成によって、掻き込まれる、および、押し出されるといういずれの半径方向の移動に対しても、溶融ガラス7は支持板108の主面に沿って半径方向に移動する。これにより、溶融ガラス7は、各羽根106a~106eの補助板109によって十分に攪拌される。
 従って、本実施形態に係る攪拌装置100は、複雑な構成を備えることなく、溶融ガラス7をより均質に攪拌することができる。これにより、脈理の発生を抑制して、高品質のガラス製品を得ることができる。
  (4-3)
 本実施形態では、シャフト105の最上段に位置する羽根106aの上側補助板119aは、溶融ガラス7をチャンバー101の内壁側からシャフト105側へ掻き込む流れを生じさせる。この場合、最上段に位置する羽根106aと溶融ガラス7の液面との間の上部空間121において、シャフト105の周囲において溶融ガラス7が上昇する流れが形成され、かつ、チャンバー101の内壁に沿って溶融ガラス7が下降する流れが形成される。これにより、図8に示されるように、上部空間121において溶融ガラス7の循環流123が形成される。
 仮に、シャフト105の最上段に位置する羽根106aが、溶融ガラス7を半径方向に掻き込む構成でない場合、例えば、支持板108上に補助板109が設けられていない構成である場合、または、攪拌器102aの回転方向が本実施形態とは逆方向であって溶融ガラス7を半径方向に押し出す構成である場合、最上段に位置する羽根106aの上方における溶融ガラス7は、支持板108によって受ける遠心力や補助板109による溶融ガラス7の半径方向の押し出しにより、シャフト105側からチャンバー101の内壁側へ押し出される。この場合、押し出された溶融ガラス7は、チャンバー101の内壁に沿って上昇して、上部空間121に流れ込む。すなわち、半径方向に押し出された溶融ガラス7は、チャンバー101の内壁に沿って移動する際に、流れ込みやすい方向であるチャンバー101の上方に向かい、その後、溶融ガラス7の液面に達する。チャンバー101の内壁に沿って溶融ガラス7の液面に達した溶融ガラス7は、液面に沿ってチャンバー101の内壁側からシャフト105側に向かい、最後に、シャフト105に沿ってチャンバー101の下方に向かう流れを形成する。すなわち、本実施形態における循環流123とは逆向きの溶融ガラス7の循環流が生じる。
 そして、溶融ガラス7の逆向きの循環流が生じた場合、シャフト105の周囲に形成される溶融ガラス7の下降流は、溶融ガラス7の表面に存在する泡や、揮発しやすい成分が揮発した結果、相対的にシリカ成分が多くなったシリカリッチ層を巻き込みつつ、液面近傍の溶融ガラス7を、チャンバー101の下方へ引き込んでしまう。その結果、製造されたガラス基板の泡品質の悪化、脈理品質の悪化を招くおそれがある。
 従って、本実施形態では、シャフト105の周囲において溶融ガラス7の上昇流を形成することで、上部空間121の溶融ガラス7がシャフト105の側面に沿って急下降して、十分に攪拌されていない状態で下流側導管104から流出してしまうことを抑制することができる。
 また、本実施形態では、上部空間121で溶融ガラス7の循環流123を形成することで、溶融ガラス7の液面近傍で溶融ガラス7が滞留することを抑制することができる。
 従って、本実施形態に係る攪拌装置100は、溶融ガラス7をより均質に攪拌することができる。これにより、脈理の発生を抑制して、高品質のガラス製品を得ることができる。
  (4-4)
 本実施形態では、最下段に位置する羽根106eとチャンバー101の底面との間の下部空間122において、溶融ガラス7は、シャフト105側からチャンバー101の内壁側へと押し出される。すなわち、羽根106eの下側補助板119bは、下流側導管104への溶融ガラス7の流出を促進するように、シャフト105の半径方向外側への流れ(図8の矢印124)を溶融ガラス7に生じさせる。一方、羽根106eの上側補助板119a、および、羽根106eの一段上に位置する羽根106dの下側補助板119bは、下流側導管104への溶融ガラス7の流出を抑制するように、シャフト105の半径方向内側への流れを溶融ガラス7に生じさせる。
 これにより、本実施形態では、攪拌された溶融ガラス7は、下部空間122から下流側導管104へと流出するので、溶融ガラス7がチャンバー101内の底部に滞留することを抑制することができる。仮に、チャンバー101内の底部に溶融ガラス7が滞留すると、チャンバー101内を流れる溶融ガラス7に対して組成成分のバランスが崩れた異質生地が、滞留した溶融ガラス7内に含まれる場合がある。このようなチャンバー101内の底部に滞留した溶融ガラス7には、組成の不均質なジルコニアリッチ層等の異質生地を含むものがある。異質生地を含む溶融ガラス7が下流側導管104から流出すると、成形装置42で成形されたガラスリボン44において脈理が発生し、品質上の問題が生じるおそれがある。また、滞留によってジルコニアが高濃度に濃縮された異質生地を含む溶融ガラス7が後工程の成形装置42に流れると、成形装置42における失透発生の原因にもなり、品質問題が生じるだけでなく、安定的な操業が困難になり、最悪の場合は操業を停止してメンテナンスを行う必要が生じる。
 また、本実施形態では、溶融ガラス7が下部空間122より上方の空間から下流側導管104に流出することが抑制される。これにより、下部空間122の溶融ガラス7は上方の溶融ガラス7と常に入れ換えられるので、溶融ガラス7が、チャンバー101内の底部に滞留することが抑制される。すなわち、溶融ガラス7は、隣接する支持板108の間の空間の各段をショートカットしてしまうことなく、各段において確実に攪拌される。これにより、攪拌の不十分な溶融ガラス7が攪拌装置100から流出してしまうことを抑制することができる。
 また、本実施形態では、図8に示されるように、最上段に位置する羽根106aの高さ位置の近傍に上流側導管103が配置されている。最上段に位置する羽根106aの高さ位置は、溶融ガラス7の液面から所定の距離だけ離間するように設定される。仮に、羽根106aの高さ位置が液面に近い場合、攪拌器102の回転によって溶融ガラス7の液面が振動すると、液面に浮かぶ泡等が溶融ガラス7中に引き込まれやすくなる。一方、羽根106aの高さ位置が液面から遠い場合、溶融ガラス7の循環流123が液面近傍に達することができず、液面近傍の溶融ガラス7が停滞し、その結果、不均質な溶融ガラス7が液面近傍に滞留することになる。そこで、攪拌器102の回転数や羽根106a~106eのサイズによって、溶融ガラス7の液面に対する羽根106aの高さ位置は、適宜決定される。
 また、本実施形態では、溶融ガラス7の液面が、上流側導管103の頂部の近傍に位置するように、溶融ガラス7の流量を設定し、かつ、上流側導管103の径の中央より、下方側に羽根106aの支持板が設けられるように設定した。より具体的には、図8に示されるように、上流側導管103の底部に対して同程度の高さ位置に、羽根106aの支持板が設けられるように設定した。これにより、最上段に位置する羽根106aの上側補助板119aは、上流側導管103からの溶融ガラス7の流入を促進するように、シャフト105の半径方向への流れ(図8の循環流123の下辺の矢印)を溶融ガラス7に生じさせる。
 従って、本実施形態に係る攪拌装置100は、溶融ガラス7をより均質に攪拌することができる。これにより、脈理の発生を抑制して、高品質のガラス製品を得ることができる。
  (4-5)
 本実施形態では、シャフト105の回転軸に沿って隣接している2つの羽根106a~106eの支持板108は、シャフト105の回転軸に沿って見た場合に、互いに重ならないように配置されている。例えば、図7に示されるように、羽根106aの支持板108は、羽根106bの2枚の支持板108の間に位置するように配置されている。これにより、チャンバー101内におけるシャフト105の軸方向(鉛直方向)の溶融ガラス7の流れが抑えられて、チャンバー101内の溶融ガラス7の滞留時間が増加する。言い換えると、チャンバー101内の溶融ガラス7の上下方向の流れが、各羽根106a~106eの支持板108によって一旦堰き止められるので、隣接する羽根106a~106eの間の空間において、溶融ガラス7は一時的に滞留する。これにより、溶融ガラス7のショートパスが発生することなく、隣接する支持板108の間の空間の各段において、溶融ガラス7は、各羽根106a~106eの補助板109によってシャフト105の半径方向に十分に移動させられる。
 また、本実施形態では、羽根106a~106eのこのような配置によって、上部空間121の溶融ガラス7がシャフト105の側面に沿って急下降して、十分に攪拌されていない状態で下流側導管104から流出してしまうことを抑制することができる。
 従って、本実施形態に係る攪拌装置100は、溶融ガラス7をより均質に攪拌することができる。これにより、脈理の発生を抑制して、高品質のガラス製品を得ることができる。
  (4-6)
 本実施形態に係る攪拌装置100では、シャフト105の回転軸に沿って攪拌器102を見た場合に、各羽根106a~106eの補助板109は、内側端部109aおよび外側端部109bを除いて、支持板108の外周縁から離れた位置に設置されている。これにより、羽根106a~106eの上側補助板109aの主面に沿って鉛直方向下向きに流れる溶融ガラス7は、支持板108の上側の主面に衝突しやすく、また、羽根106a~106eの下側補助板109bの主面に沿って鉛直方向上向きに流れる溶融ガラス7は、支持板108の下側の主面に衝突しやすいので、チャンバー101内における溶融ガラス7の上下方向の移動が抑制される。すなわち、支持板108は、チャンバー101内を上方から下方へ、または、下方から上方へ流れる溶融ガラス7を、互いに隣接する羽根106a~106eの間の各段において、一旦堰き止める作用がある。その結果、溶融ガラス7のショートパスが発生することなく、隣接する支持板108の間の空間の各段において、溶融ガラス7は、各羽根106a~106eの補助板109によって十分に攪拌される。
 従って、本実施形態に係る攪拌装置100は、溶融ガラス7をより均質に攪拌することができる。これにより、脈理の発生を抑制して、高品質のガラス製品を得ることができる。
  (4-7)
 本実施形態では、攪拌器102の各羽根106a~106eにおいて、3枚の支持板108は、シャフト105の周囲において連結部110によって互いに接続されているので、実質的に1つの部品を構成する。これにより、羽根106a~106eの強度を向上させることができる。また、シャフト105の周囲の攪拌効果は小さいので、溶融ガラス7は、シャフト105回りにおいて攪拌されずにチャンバー101内を下降しやすい。本実施形態では、各羽根106a~106eの連結部110によって、シャフト105回りの溶融ガラス7の下降流を抑制することができる。
 従って、本実施形態に係る攪拌装置100は、溶融ガラス7をより均質に攪拌することができる。これにより、脈理の発生を抑制して、高品質のガラス製品を得ることができる。
 (5)変形例
  (5-1)変形例A
 本実施形態では、シャフト105には、羽根106a~106eが5段設置されているが、羽根106a~106eの段数は、チャンバー101の大きさやシャフト105の長さ等を考慮して適宜に決定してもよい。また、シャフト105の軸方向に沿って隣接する2枚の羽根106a~106e同士の間隔も、チャンバー101の大きさ等を考慮して適宜に決定してもよい。
  (5-2)変形例B
 本実施形態では、各羽根106a~106eは、3枚の支持板108を有するが、2枚または4枚以上の支持板108を有してもよい。
 また、本変形例において、例えば、各羽根106a~106eが4枚の支持板108から構成される場合、本実施形態と同様に、シャフト105の軸方向に沿って攪拌器102を見た場合に、隣接する各羽根106a~106eの支持板108の位置が互いに異なるようにしてもよい。
  (5-3)変形例C
 本実施形態における各羽根106a~106eの支持板108は、主面に貫通孔112が形成されてもよい。図9は、貫通孔112を有する羽根106a,106c,106eの平面図である。本変形例では、シャフト105を回転軸として攪拌器102が回転した場合に、溶融ガラス7の一部が貫通孔112を通過する。溶融ガラス7の一部が貫通孔112を通過することにより、溶融ガラス7に上方または下方へ向かう流れが生じる。その結果、チャンバー101内の溶融ガラス7には、補助板109によるシャフト105の半径方向の流れに加えて、貫通孔112によるシャフト105の軸方向の流れが生じる。これにより、溶融ガラス7にはより複雑な流れが生じるので、高い攪拌効果を得ることができる。また、貫通孔112によって、攪拌器102が回転した際に溶融ガラス7から受ける抵抗が小さくなることが期待でき、より少ない動力で目的の流れを溶融ガラス7に生じさせることができる。
 また、本変形例では、溶融ガラス7に含まれる泡は、貫通孔112を通過して、チャンバー101内の溶融ガラス7の液面まで上昇することができる。すなわち、溶融ガラス7に含まれる泡を効果的に除去することができる。例えば、攪拌器102を検査および改修する際や、新たな攪拌器102を使用する際に、チャンバー101内の溶融ガラス7中に、貫通孔112を備える本変形例の攪拌器102を投入する場合を考える。この場合、攪拌器102の投入によって巻き込まれた空気の泡は、攪拌器102の羽根106a~106eと羽根106a~106eとの間だけでなく、羽根106a~106eに設けられた貫通孔112を通っても、浮上することができる。そのため、安定的な操業までの時間を短縮することが可能となる。
 また、本変形例では、図9に示されるように、支持板108同士を接続するシャフト105周りの連結部110にも、貫通孔112が形成されてもよい。
  (5-4)変形例D
 本実施形態に係る攪拌装置100では、チャンバー101は、溶融ガラス7を排出するための機構を備えてもよい。例えば、チャンバー101の底面に、ジルコニアリッチ層を含む溶融ガラス7を排出するための排出口が設けられていてもよく、または、チャンバー101の側面に、泡やシリカリッチ層を含む溶融ガラス7を排出するための排出口が設けられていてもよい。
 例えば、溶融ガラス7中には、溶融ガラス7全体の平均的な組成に対して、シリカ等の比率が高い異質生地が含まれる場合がある。これは、溶融工程において生じた溶融ガラス7の組成ムラによるものか、または、溶融ガラス7から揮発しやすい成分が揮発したことによるものと考えられる。特に、溶融ガラス7の液面には、溶融ガラス7から揮発しやすい成分が揮発したことによる上記の異質生地が生じやすい。
 本実施形態における循環流123が生じている場合、上記の異質生地や、溶融ガラス7の液面に浮遊している泡や、その他の異物が液面に存在していても、液面近傍の溶融ガラス7は、液面に沿ってシャフト105側からチャンバー101の内壁側に向かって流れる。そのため、本変形例のように、この流れの延長線上に排出口を設けることにより、溶融ガラス7に含まれる異質生地等を排出することができる。例えば、チャンバー101には、最上段の羽根106aよりも上方の位置、好ましくは、溶融ガラス7の液面または液面の直下において、チャンバー102の内面の一部が半径方向外側に向かって突出して形成された、排出口が設けられてもよい。
 通常、溶融ガラス7中の異物を回収する際には、攪拌装置100の運転を停止する必要がある。しかし、シャフト105の周囲に循環流123が形成され、溶融ガラス7の液面において、シャフト105側からチャンバー101の内壁側への流れが形成される場合、上記の排出口を設けることで、攪拌装置100の運転を停止することなく、異質生地等を含む溶融ガラス7をチャンバー101内から排出することができる。例えば、上流工程である清澄工程から、泡を含む清澄不十分な溶融ガラス7が攪拌工程に流れ込んできたとしても、操業を止めることなく、泡を含む溶融ガラス7をチャンバー101内から排出することができ、攪拌装置100の稼働を維持することができる。
  (5-5)変形例E
 本実施形態では、3枚の支持板108は、シャフト105からチャンバー101の内壁に向かって放射状に設けられ、かつ、隣接する2つの段に配置される羽根106a~106eの支持板108のそれぞれをチャンバー101の底面に投影した場合に、支持板108と支持板108との間隔が小さくなるように配置されている。しかし、3枚の支持板108は、主面の面積に応じて、支持板108と支持板108とが重なる部分の面積が小さくなるように配置されてもよい。この場合、シャフト105の回転軸に沿って隣接する2つの羽根106a~106eの支持板108は、シャフト105の回転軸に沿って見た場合に、互いに一部が重なっているように配置されている。
 本変形例においても、チャンバー101内の溶融ガラス7の上下方向の流れが、各羽根106a~106eの支持板108によって一旦堰き止められるので、隣接する羽根106a~106eの間の空間において、溶融ガラス7は一時的に滞留する。これにより、溶融ガラス7のショートパスが発生することなく、隣接する支持板108の間の空間の各段において、溶融ガラス7は、各羽根106a~106eの補助板109によってシャフト105の半径方向に十分に移動させられる。
  (5-6)変形例F
 本実施形態では、補助板109の内側端部109aは、シャフト105に対して離間しているが、攪拌器102および羽根106a~106eの強度を向上させるために、シャフト105に補助板109が直接接続されてもよい。
  (5-7)変形例G
 本発明に係るガラス基板の製造方法は、本実施形態で述べたガラス組成に限られることはなく、また、攪拌工程における溶融ガラス7の温度や粘度も上記の値に限定されるものではない。例えば、上記のガラス組成は、液晶用ガラス基板に用いられる無アルカリガラスまたは微アルカリガラス向けのガラス組成を示したが、アルカリ成分を含むガラスであっても、上記の攪拌工程は有効である。
 また、攪拌工程における各条件も、上記の値に限定されるものではなく、アルカリ成分を添加して形成された強化ガラス向けのガラス組成では、一例として、溶融ガラス7の温度を1300℃~1400℃の範囲内に低めに設定して、かつ、溶融ガラス7の粘度を上記の範囲に調整して、攪拌してもよい。
 <第2実施形態>
 本発明に係るガラス基板の製造方法、および、攪拌装置を用いるガラス製造装置の第2実施形態について、図10~図20を用いて説明する。本実施形態に係るガラス製造装置の基本的な構成、動作及び特徴は、第1実施形態に係るガラス製造装置と同一である。
 図10は本実施形態に係る攪拌装置の構成の一例を示す側面図であり、図11は本実施形態に係る攪拌器の構成の一例を示す斜視図である。攪拌装置100は、チャンバー1と、チャンバー1内に収納された攪拌器2とを備えている。チャンバー1は円筒状であり、上部側面および下部側面に設置された上流側導管(導入管)3および下流側導管(導出管)4と連通している。溶融ガラス7が、上流側導管3からチャンバー1内に流入され、上方から下方に導かれてチャンバー1から下流側導管4へ流出する。
 攪拌器2は、円柱状であり回転軸であるシャフト5と、シャフト5の側面に接続された羽根6a、6b、6c、6d、6eとを備えている。羽根6a~6eはシャフト5の軸方向に沿って順次設置され、5段配置とされる。なお、各羽根6a~6eの段数は5段に限定されるわけではなく、チャンバー1の大きさやシャフト5の長さ等を考慮して、適宜好ましい段数とすればよい。シャフト5の軸方向について隣接する羽根6a~6e同士の間隔についても、チャンバー1内の溶融ガラス7が効率よく攪拌されるように調整すればよい。各羽根6a~6eはシャフト5の半径方向に放射状に延びるように配置されていて、各段には、シャフト5に対して互いに対称である方向に延びる2つの羽根6a~6eが設置されている。各段における各羽根6a~6eは2つに限定されるわけではなく、例えば、1つまたは3つ以上でもよい。
 図12~図17を参照して、各羽根の構成について説明する。図12、図13、図14は、それぞれ、本実施形態に係る攪拌器における羽根の構成の一例を示すための平面図、側面図、斜視図である。また、図15、図16、図17は、それぞれ、本実施形態に係る攪拌器における別の羽根の構成の一例を示すための平面図、側面図、斜視図である。羽根6a、6c、6eは図12~図14に示された構成を有し、羽根6b、6dは図15~図17に示された構成を有する。
 羽根6a、6c、6eは互いに同一形状であり、羽根6b、6dは互いに同一形状である。各羽根6a~6eは、シャフト5に直接接続された傾斜板8と、傾斜板8の主面上に設置された補助板9とを備えている。羽根6a、6c、6eと、羽根6b、6dとは、いずれも傾斜板8および補助板9を有し、これらの傾き方向や配置等が互いに異なる。
 傾斜板8は、シャフト5を回転軸として攪拌器2が回転した場合に、溶融ガラス7を上方に押し上げ、または下方に押し下げる態様を有している。ただし、シャフト5の軸方向に沿った方向が上下方向である。図18は本実施形態に係る攪拌器の構成の一例を示す側面図である。図18は、各羽根6a~6eがシャフト5の手前に位置するようにした状態で、シャフト5の軸方向に対して垂直な方向に沿って攪拌器2を見た図である。図18において、各傾斜板8の主面は、シャフト5の軸方向に対して垂直である面10に対して傾斜している。シャフト5を回転軸として攪拌器2が回転した場合に、溶融ガラス7は各傾斜板8の主面に沿って流れ、溶融ガラス7には上方または下方への流れが生じる。傾斜板8は溶融ガラス7を上方に押し上げ、または下方に押し下げる。なお、傾斜板8は、攪拌器2が回転したときに、溶融ガラス7を上方に押し上げ、または下方に押し下げるような態様であればよく、上記構成には限定されない。図18では、各傾斜板8の主面が平面であり、主面の全面が、シャフト5の軸方向に対して垂直である面10に対して傾斜しているが、例えば、各傾斜板8の一部のみが面10に対して傾斜しているような構成でもよいし、各傾斜板8の主面が曲面であってもよい。
 図18に示すように、羽根6a、6c、6eと、羽根6b、6dとでは、傾斜板8の傾斜方向が異なる。それにより、溶融ガラス7に生じさせる流れの方向が互いに異なる。シャフト5が、上から見て反時計まわりに回転した場合に、羽根6a、6c、6eの傾斜板8は溶融ガラス7を押し下げるが、羽根6b、6dの傾斜板8は溶融ガラス7を押し上げる。羽根6a~6eの各傾斜板8が生じさせる溶融ガラス7の流れの方向は、シャフト5の軸方向に沿って交互に異なる。したがって、羽根6a~6eにおいて互いに隣接する各段の間において、溶融ガラス7には上方および下方の両方の流れが生じる。これら2種類の流れが生じることで、溶融ガラス7の流れがより複雑になる。さらに、各段の間において、これら2種類の流れが衝突し、より複雑な流れが生じる。それにより、高い攪拌効果を得ることができ、溶融ガラス7の均質化が促進される。
 シャフト5を回転軸として攪拌器2が一方向に回転した場合に、最下段の羽根6eが溶融ガラス7を押し下げる態様とすることが好ましい。最下段の羽根6eにより、この部分の溶融ガラス7に下方への流れを生じさせることで、溶融ガラス7がチャンバー1の底面と衝突し、溶融ガラス7の攪拌が促進される。なお、最下段の羽根6eとチャンバー1の底面との距離は、最下段の羽根6eにより下方への流れを生じた溶融ガラス7がチャンバー1の底面と衝突し攪拌が促進される程度の距離となるようにしておけばよい。
 傾斜板8の主面には貫通孔12が形成されている。シャフト5を回転軸として攪拌器2が回転した場合に、溶融ガラス7の一部が貫通孔12を通過する。貫通孔12は傾斜板8の主面と同様に面10に対して傾斜していることから、溶融ガラス7の一部が貫通孔12を通過することにより、溶融ガラス7には上方または下方への流れが生じる。この上方または下方への流れの方向は、傾斜板8が溶融ガラス7を上方に押し上げ、または下方に押し下げることにより生じる流れの方向とは異なる。したがって、貫通孔12が形成されていることで、溶融ガラス7に生じる流れの方向がさらに増加する。そのため、溶融ガラス7にはより複雑な流れが生じることになり、高い攪拌効果を得ることができる。また、貫通孔12が形成されていることで、攪拌器2が回転した際に、溶融ガラス7から受ける抵抗が小さくなるため、より少ない動力で目的の流れを溶融ガラス7に生じさせることができる。
 補助板9は、その主面が傾斜板8の主面に対して垂直となるように、傾斜板8の主面上に設置されている。図12および図15に示されているように、補助板9は、一つの傾斜板8の上方主面および下方主面にそれぞれ2枚ずつ設置されている。図12および図15において、下方主面に設置された補助板9は破線で示されている。補助板9はシャフト5に最も近い端部9aと、端部9aの反対側の端部である端部9bとを有し、端部9aから端部9bまで延びる形状を有している。補助板9は、シャフト5の軸方向に沿って見たときに、シャフト5に最も近い端部9aからその反対側の端部9bに向かうにしたがい、端部9aとシャフト5の回転の中心となる中心点13とを結ぶ直線11から、補助板9の主面が離れていく形状を有している。補助板9がこのような形状であることから、シャフト5を回転軸として攪拌器2が回転した場合に、溶融ガラス7は各補助板9の主面に沿って流れ、溶融ガラス7にはシャフト5の半径方向への流れが生じる。つまり、溶融ガラス7には、シャフト5側からチャンバー1の内壁側への流れ、またはチャンバー1の内壁側からシャフト5側への流れが生じる。補助板9は溶融ガラス7をチャンバー1の内壁側からシャフト5側へとかき込む、またはシャフト5側からチャンバー1の内壁側へと押し出す態様を有している。各補助板9は、これら2つの態様のいずれかを有している。傾斜板8の上方主面および下方主面において、それぞれ設置されている補助板9は、互いに異なる態様を有することが好ましい。
 つまり、シャフト5を回転軸として攪拌器2が一方向に回転した場合に、各傾斜板8において、上方主面上に設置された補助板9および下方主面上に設置された補助板9のうち、一方の補助板9がチャンバー1の内壁側からシャフト5側へと溶融ガラス7をかき込む態様を有し、他方の補助板9がシャフト5側からチャンバー1の内壁側へと溶融ガラス7を押し出す態様を有することが好ましい。
 シャフト5を回転軸として攪拌器2が上から見て反時計まわりに回転した場合に、羽根6a、6c、6eの傾斜板8の上方主面に設置された補助板9は溶融ガラス7をかき込む態様を有しているが、その裏面である下方主面に設置された補助板9は溶融ガラス7を押し出す態様を有している。また、シャフト5を回転軸として攪拌器2が上から見て反時計まわりに回転した場合に、羽根6b、6dの傾斜板8の上方主面に設置された補助板9は溶融ガラス7を押し出す態様を有しているが、その裏面である下方主面に設置された補助板9は溶融ガラス7をかき込む態様を有している。このように、傾斜板8の上方主面および下方主面において、補助板9の態様が異なることから、より高い攪拌効果が得られる。
 また、チャンバー1の上流側から下流側へと向かうにしたがい、攪拌効率が低下する傾向があるが、これを抑制するために、チャンバー1の上流側に位置する補助板9に比べて下流側に位置する補助板9の高さ(上下方向の長さ)を高く(長く)してもよい。補助板9の高さを高くすることで攪拌効率が高くなり、下流側における攪拌効率の低下を抑制できる。
 シャフト5の軸方向について互いに隣接する羽根において、下方の羽根の傾斜板8の上方主面および下方主面に設置された補助板9の高さは、その羽根の上方に位置する羽根の傾斜板8の上方主面および下方主面に設置された補助板9の高さと同じまたは高いこととすればよい。また、最上段の羽根6aの上方主面および下方主面に設置された補助板9の高さと、最下段の羽根6eの上方主面および下方主面に設置された補助板9の高さとの比率を、1:1.3とすることが好ましい。
 例えば、上方に位置する羽根6a、6b、6cの各傾斜板8に設置された補助板9の高さが互いに等しいこととし、それらの下方に位置する羽根6d、6eの各傾斜板8に設置された補助板9の高さが互いに等しいこととし、羽根6d、6eの補助板9の高さが、羽根6a、6b、6cの補助板9の高さの1.3倍とすればよい。
 本実施形態においては、チャンバー1の上方を上流とし、下方を下流としているが、チャンバー1の下方を上流とし、上方を下流とした場合には、互いに隣接する羽根において、上方の羽根の傾斜板の上方主面および下方主面に設置された補助板の高さは、その羽根の下方に位置する羽根の傾斜板の上方主面および下方主面に設置された補助板の高さと同じまたは高いこととすればよい。
 なお、溶融ガラス7を均質に攪拌できるのであれば、補助板9の数、態様は上記実施形態に限定されるわけではない。例えば、傾斜板8の一方の主面にのみ補助板9が配置されていてもよい。また、傾斜板8の両主面における補助板9の態様を同一にしてもよい。
 各傾斜板8上に設置された2枚の補助板(第1の補助板および第2の補助板)9は、それぞれ、端部9aから端部9bに向かうにしたがって、互いに離れていくような形状である。これら2枚の補助板9の間の傾斜板8には貫通孔12が形成されている。シャフト5を回転軸として攪拌器2が回転した場合に、これら2枚の補助板9が溶融ガラス7をチャンバー1の内壁側からシャフト5側へとかき込む態様であれば、2枚の補助板9の間に導かれた溶融ガラス7は徐々に間隔が狭くなっていく2枚の補助板9に導かれて、一部が貫通孔12を通過して傾斜板8の裏面へと流れ、残りが傾斜板8の主面に沿って上方または下方へと流れる。このような、貫通孔12を通過した溶融ガラス7とそれ以外の溶融ガラス7は、流れる方向だけでなく流れる速度も異なることから、溶融ガラス7には、より複雑な流れが生じる。さらに、貫通孔12を通過して傾斜板8の裏面へと流れた溶融ガラス7は、傾斜板8の裏面に設置された補助板9によりシャフト5側からチャンバー1の内壁側へと押し出されることになる。つまり、溶融ガラス7は、貫通孔12を通過し、傾斜板8の裏面へと流れると、今までとは異なる方向へと流れの向きを変えられることになる。これにより、高い攪拌効果が得られる。
 同様に、溶融ガラス7が、シャフト5側からチャンバー1の内壁側へと溶融ガラス7を押し出す態様である2枚の補助板9の間に導かれた場合であっても、溶融ガラス7の一部が貫通孔12を通過して傾斜板8の裏面へと流れ、残りが傾斜板8の主面に沿って上方または下方へと流れ、異なる方向および異なる速度を有する流れが生じる。さらに、貫通孔12を通過し、傾斜板8の裏面へと流れた溶融ガラス7は、傾斜板8の裏面に設置された補助板9により、今までとは異なる方向へと流れの向きを変えられる。
 補助板9の主面は曲面であることが好ましい。羽根6a~6eがシャフト5を中心に回転運動した際に、補助板9の主面が曲面であることで、羽根6a~6eが溶融ガラス7から受ける抵抗を小さくでき、より少ない動力で目的の流れを溶融ガラス7に生じさせることができる。なお、補助板9は、溶融ガラス7にシャフト5の半径方向の流れを生じさせることができればよく、補助板9の主面は平面またはその他の形状であってもよい。
 また、最下段の羽根6eの傾斜板8とチャンバー1の底面との間に形成される領域を、シャフト5の軸方向に対して垂直となる方向に沿って、下流側導管4の方向へと仮想的に移動させた場合に、この領域の少なくとも一部が、下流側導管4とチャンバー1との境界であり、チャンバー1の側面に形成された開口部分を通過するように、最下段の羽根6eと、下流側導管4とが配置されていることが好ましい。そして、シャフト5を回転軸として攪拌器2が一方向に回転した場合に、最下段の羽根6eの下方主面に設置された補助板9が溶融ガラス7を押し出す態様を有していることが好ましい。
 最下段の羽根6eと、下流側導管4とが上記配置であることから、最下段の羽根6eの下方主面に設置された補助板9が溶融ガラス7に生じさせる流れは、下流側導管4へと流出する溶融ガラス7の流れに影響を与えやすい。シャフト5を回転軸として攪拌器2が回転した場合に、最下段の羽根6eの下方主面に設置された補助板9が、溶融ガラス7を押し出す態様を有することにより、溶融ガラス7がチャンバー1から下流側導管4へ円滑に流出されるように、シャフト5側からチャンバー1の内壁側へと溶融ガラス7を導くことができる。それにより、チャンバー1の下部における溶融ガラス7の流れが円滑であるとともに、均質な攪拌がなされる。
 上記実施形態に係る攪拌装置100では、上流側導管3はチャンバー1の上方に設置され、下流側導管4はチャンバー1の下方に設置されて、チャンバー1の上方から下方へと溶融ガラス7が導かれているが、チャンバー1の下方から上方へと溶融ガラス7が導かれる構成の攪拌装置を用いてもよい。チャンバーの上部側面に下流側導管(導出管)が設置され、チャンバーの下部側面に上流側導管(導入管)が設置されていて、チャンバーと、上流側導管および下流側導管とがそれぞれ連通していることとすればよい。それ以外の構成は、上記実施形態に係る攪拌装置100と同様とすればよい。
 上述した補助板9はシャフト5と離間している構成としたが、補助板9の一端とシャフト5とが接続する構成としてもよい。それにより、補助板9の強度を向上させることができる。さらに、傾斜板8の強度も向上させることができる。図19は、本実施形態に係る攪拌器におけるさらに別の羽根の構成の一例を示すための平面図である。図19に示す羽根36は、シャフト5の側面に接続している傾斜板38と、傾斜板38の主面上に設置された補助板39とを有している。傾斜板38の主面には貫通孔32が形成されている。この羽根36において、シャフト5側に設置された補助板39の端部39aがシャフト5に接続されている。このように、補助板39とシャフト5とが接続されることで、補助板39および傾斜板38の強度を向上させることができるため、補助板39および傾斜板38をさらに薄くすることが可能であり、攪拌装置100のコストを低下させることができる。
 攪拌装置100により攪拌する溶融ガラス7の温度は1400~1600℃程度であり、高温である。そのため、上流側導管3、下流側導管4、チャンバー1および攪拌器2のように溶融ガラス7に接触する部材は、このような高温に耐えることができる材料により作製されることが好ましい。例えば、これらの部材は、白金、白金合金、イリジウム、イリジウム合金等により作製されればよい。しかし、白金、白金合金、イリジウム、イリジウム合金は高価であることから、用いる量を減らすことが好ましい。傾斜板8や補助板9は、溶融ガラス7の攪拌において支障の出ない程度の強度を有する範囲で、できるだけ薄くすることが好ましい。また、傾斜板8および補助板9は薄いほど溶融ガラス7との抵抗が小さくなり、より少ない動力で目的の流れを溶融ガラス7に生じさせることができる。チャンバー1、上流側導管3および下流側導管4においては、溶融ガラス7と接する部分にのみ白金等を形成することで白金等の高価な材料の使用量を減らしてもよい。つまり、これらの内壁にのみ白金等が形成されるような多層構造としてもよい。
 本実施形態に係る攪拌装置100の動作について図20を参照して説明する。図20は、本実施形態に係る攪拌装置における溶融ガラスの流れを説明するための図である。チャンバー1内には、上流側導管3から溶融ガラス7が流入される。図示していないが、攪拌器2のシャフト5の上端部はモータ等と連結されていて、攪拌器2がシャフト5を回転軸として、上から見て反時計まわりに回転する。チャンバー1内において、攪拌器2により攪拌された溶融ガラス7は、チャンバー1から下流側導管4へ流出される。チャンバー1内において攪拌器2が回転することで羽根6a~6eがシャフト5を回転軸として回転し、溶融ガラス7が攪拌される。
 羽根6a~6eが回転することにより、各傾斜板8によって溶融ガラス7が押し上げられ、または押し下げられる。それにより、溶融ガラス7には上方または下方への流れが生じる。また、羽根6a~6eが回転することにより、溶融ガラス7の一部が貫通孔12を通過する。それにより、溶融ガラス7には、傾斜板8により生じた流れとは異なる方向であり、かつ上方または下方への流れが生じる。さらに、羽根6a~6eが回転することで、各補助板9により溶融ガラス7が、チャンバー1の内壁側からシャフト5側へかき込まれ、またはシャフト5側からチャンバー1の内壁側へと押し出される。これにより、溶融ガラス7には、シャフト5の半径方向の流れが生じる。このように、溶融ガラス7に上記複数の流れが生じるため、十分な攪拌効果を得ることができ、より均質な攪拌が可能である。
 羽根6aおよび羽根6b、羽根6bおよび羽根6c、羽根6cおよび羽根6d、羽根6dおよび羽根6eのそれぞれの組み合わせは、上述したように傾斜板8の態様が異なり、互いに上方または下方の異なる方向への流れを溶融ガラス7に生じさせる。そのため、羽根6aおよび羽根6bの間、羽根6bおよび羽根6cの間、羽根6cおよび羽根6dの間、羽根6dおよび羽根6eの間のそれぞれにおいては、上方への流れおよび下方への流れが生じていて、これらの流れが衝突する部分が存在する。このような部分では複雑な流れが生じ、溶融ガラス7に対しての攪拌効果が高い。溶融ガラス7に複数の流れが生じていて、かつ流れが衝突する部分が存在することから、攪拌装置100は溶融ガラス7をより均質に攪拌することができる。
 なお、上記実施形態では、上方への流れおよび下方への流れの2種類の流れが生じる部分が複数存在しているが、2種類の流れが生じる部分は少なくとも一箇所あればよい。したがって、シャフト5において互いに隣接する段の組合せのうち、傾斜板8の態様が互いに異なっている組が、少なくとも1組あればよい。
 攪拌装置100において、上流側導管3および下流側導管4は、チャンバー1の上部側面および下部側面にそれぞれ設置されていることから、チャンバー1の上部および下部では溶融ガラス7の流れの方向が変化することになる。これら溶融ガラス7の流れの方向が変化する部分では、溶融ガラス7が滞留しやすい。特に、最上段に位置する羽根6aの上方および最下段に位置する羽根6eの下方においては、溶融ガラス7の流れが生じにくく、チャンバー1内の上部空間21および下部空間22の溶融ガラス7は、他の部分と比較して十分な攪拌がされにくいと考えられる。
 攪拌器2がシャフト5を回転軸として、上から見て反時計まわりに回転した場合に、羽根6aの傾斜板8は、溶融ガラス7を下方に押し下げる態様を有している。また、攪拌器2がシャフト5を回転軸として、上から見て反時計まわりに回転した場合に、羽根6aの傾斜板8の上方主面に設置されている補助板9は、溶融ガラス7がチャンバー1の内壁側からシャフト5側へとかき込む態様を有している。攪拌器2が回転した場合に、これら傾斜板8および補助板9によって溶融ガラス7に流れが生じ、それらの流れが合成されることによって、上部空間21において、シャフト5周辺では溶融ガラス7が上方に向かい、チャンバー1の内壁周辺では溶融ガラス7が下方へ向かう流れ(循環流)が生じる。この循環流の流れは、流れの方向23により示されている。循環流が生じることにより、上部空間21では溶融ガラス7が攪拌され、滞留しにくい。
 さらに、攪拌器2がシャフト5を回転軸として、上から見て反時計まわりに回転した場合に、羽根6eの傾斜板8は、溶融ガラス7を下方に押し下げる態様を有する。羽根6eにより、チャンバー1の下部空間22の溶融ガラス7には下方への流れが生じ、溶融ガラス7がチャンバー1の底面に衝突することで攪拌される。また、羽根6eの傾斜板8の下方主面には補助板9が下方に向かって延びるように設置されている。この補助板9によって、下部空間22の溶融ガラス7は十分に攪拌され、溶融ガラス7がシャフト5側からチャンバー1の内壁側へと押し出されるため、溶融ガラス7には流れの方向24により示されるように下流側導管4への流れが生じる。それにより、下部空間22の溶融ガラス7は十分に攪拌されるとともに、下流側導管4へと導かれ、滞留しにくい。
 上述したように、攪拌装置100のチャンバー1内における溶融ガラス7には、複雑な流れが生じている。チャンバー1内に流入する溶融ガラス7の量およびチャンバー1から流出する溶融ガラス7の量は、単位時間当たり一定の量としているが、チャンバー1内における溶融ガラス7には複雑な流れが生じていて、流れの速さはチャンバー1内の場所によって異なる。
 上述したように、本実施形態の攪拌装置100によれば、溶融ガラス7をより均質に攪拌することができる。それにより、脈理の発生を抑制して、高品質のガラス製品を得ることができる。
 本発明者らは、本実施形態に係る攪拌装置の模型を作製し、攪拌装置の実稼動と物理的相似条件を有する攪拌実験を行った。このとき、溶融ガラスに代わる高粘性材料としては透明のものを用い、チャンバーに流し込まれる高粘性材料の上流側から赤色の液体を連続して滴下することにした。これにより、攪拌状態を目視により容易に観測できる。赤色の液体を滴下することで高粘性材料には、その流れに沿って赤い筋が見られるようになるが、攪拌がなされることでこの赤い筋が消滅し、高粘性材料が赤色に着色されていく。本発明者らは異なる形状を有する複数の攪拌器を用いて実験を行い、各攪拌器における攪拌状態について観測した。
 上述した図11に示す攪拌器のような構成の攪拌器(実施例1)を用いて、図10に示したような攪拌装置の攪拌状態を観測した。その結果、実験開始直後には、チャンバーの上流(上方)側ではシャフトに巻きつくように赤い筋が見られるが、下流(下方)に進むほどあるいは時間が経過するほど、チャンバー内全体の高粘性材料が赤く着色されていき、赤い筋が減少していった。下流側導管に流出される高粘性材料においても色むらがなく、全体的に赤く着色された高粘性材料が下流側導管へと流出された。したがって、十分な攪拌がなされているといえる。このような攪拌装置であれば脈理の発生が抑制されて、均質な攪拌がなされるといえる。
 また、傾斜板に貫通孔が形成されていない以外は、上記実施例1の攪拌器と同様の構成を有する攪拌器(実施例2)を用いて、上記と同様に攪拌状態を観測した。さらに、傾斜板の上方主面および下方主面に設置された補助板が、いずれも高粘性材料をかき込む態様である以外は、上記実施例1の攪拌器と同様の構成を有する攪拌器(実施例3)を用いて、上記と同様に攪拌状態を観測した。その結果、実施例2および実施例3のいずれの攪拌器においても、実施例1の攪拌器と同様に、チャンバーの上流側ではシャフトに巻きつくように赤い筋が見られるが、下流に進むほどあるいは時間が経過するほど、チャンバー内全体の高粘性材料が赤く着色されていき、赤い筋が減少していった。下流側導管に流出される高粘性材料においても色むらがなく、全体的に赤く着色された高粘性材料が下流側導管へと流出された。実施例2の攪拌器および実施例3の攪拌器は、実施例1の攪拌器と比較して、チャンバー内全体の高粘性材料が赤く着色されるまでにかかる時間が若干長かった。実施例2の攪拌器および実施例3の攪拌器においても、十分な攪拌がなされているといえる。このような攪拌器を備えた攪拌装置であれば脈理の発生が抑制されて、均質な攪拌がなされているといえる。
 また、比較例として、すべての傾斜板が高粘性材料を下方へと押し下げる態様を有した攪拌器を用いて、上記と同様に攪拌状態を観測した。比較例の攪拌器においても、傾斜板の両主面には補助板が設置されている。その結果、比較例の攪拌器においても、チャンバー内の高粘性材料に色むらが生じたままであり、高粘性材料全体が着色されることがなかった。また、下流側導管に流出された高粘性材料において上側が赤く下側が透明である二層構造が見られ、下流側導管に流出された高粘性材料全体が着色されるまでに時間がかかった。
 1,101          チャンバー
 2,102          攪拌器
 3,103          上流側導管
 4,104          下流側導管
 5,105          シャフト
 7              溶融ガラス
 6a~6e,36       羽根
 106a~106e      羽根
 8,38           傾斜板(支持板)
 108            支持板
 9,39,109       補助板
 119a           上側補助板
 119b           下側補助板
 9a,9b,39a      端部
 109a           内側端部
 109b           外側端部
 10             面
 110            連結部
 11,111         直線
 12,32,112      貫通孔
 13,113         中心点
 21,121         上部空間
 22,122         下部空間
 23,24,123,124  溶融ガラスの流れ
 40             溶解槽
 41             清澄槽
 42             成形装置
 43a,43b,43c    導管
 44             ガラスリボン
 100            攪拌装置
 200            ガラス製造装置
特開昭63-8226号公報 特開昭58-88126号公報

Claims (8)

  1.  ガラス原料を溶融して溶融ガラスを得る溶融工程と、前記溶融工程で得られた前記溶融ガラスを攪拌槽の内部で攪拌する攪拌工程と、前記攪拌工程で攪拌された前記溶融ガラスからガラス基板を成形する成形工程と、を備えるガラス基板の製造方法であって、
     前記攪拌槽は、前記溶融ガラスを上方から下方へと、または、下方から上方へと導くためのチャンバーと、前記チャンバー内の前記溶融ガラスを攪拌するための攪拌器とを備え、
     前記攪拌器は、鉛直方向に沿って配置される回転軸であるシャフトと、前記シャフトの側面に、前記シャフトの軸方向に沿って最上段から最下段まで複数段配置される羽根とを有し、
     前記羽根は、前記シャフトの軸方向に対して直交する支持板と、前記支持板の主面上に設置される補助板とを有し、
     前記攪拌工程では、前記シャフトを回転軸として前記攪拌器が回転することにより、前記補助板は、前記シャフトの半径方向への流れを前記溶融ガラスに生じさせ、かつ、隣接する2つの段に配置される前記羽根の前記支持板の間に位置する前記補助板は、同じ方向の流れを前記溶融ガラスに生じさせる、
    ガラス基板の製造方法。
  2.  前記羽根は、前記支持板の上方の主面上および下方の主面上に設置される前記補助板を有し、
     前記攪拌工程では、前記シャフトを回転軸として前記攪拌器が回転することにより、それぞれの前記羽根において、前記支持板の上方の主面上に設置される前記補助板および前記支持板の下方の主面上に設置される前記補助板のうち、一方の前記補助板は、前記チャンバーの内壁から前記シャフトに向かう流れを前記溶融ガラスに生じさせ、他方の前記補助板は、前記シャフトから前記チャンバーの内壁に向かう流れを前記溶融ガラスに生じさせる、
    請求項1に記載のガラス基板の製造方法。
  3.  前記支持板は、前記シャフトから前記チャンバーの内壁に向かって放射状に設けられ、かつ、隣接する2つの段に配置される前記羽根の前記支持板のそれぞれを前記チャンバーの底面に投影した場合に、前記支持板と前記支持板との間隔が小さくなるように、または、前記支持板と前記支持板とが重なる部分の面積が小さくなるように、配置されている、
    請求項1または2に記載のガラス基板の製造方法。
  4.  前記支持板は、放射状に複数枚設けられ、
     複数枚の前記支持板は、前記シャフトの周囲においてそれぞれ連結されている、
    請求項3に記載のガラス基板の製造方法。
  5.  前記攪拌工程では、前記シャフトを回転軸として前記攪拌器が回転することにより、最上段に位置する前記羽根の前記支持板の上方の主面上に設置された前記補助板は、最上段に位置する前記羽根の前記支持板の上方において、前記チャンバーの内壁から前記シャフトに向かって前記溶融ガラスを移動させる第1の流れを生じさせ、かつ、前記第1の流れによって移動した前記溶融ガラスを前記シャフトの側面に沿って上昇させる第2の流れを生じさせる、
    請求項1から4のいずれか1項にガラス基板の製造方法。
  6.  ガラス原料を溶融して溶融ガラスを得る溶融工程と、前記溶融工程で得られた前記溶融ガラスを攪拌槽の内部で攪拌する攪拌工程と、前記攪拌工程で攪拌された前記溶融ガラスからガラス基板を成形する成形工程と、を備えるガラス基板の製造方法であって、
     前記攪拌槽は、前記溶融ガラスを上方から下方へと、または、下方から上方へと導くためのチャンバーと、前記チャンバー内の前記溶融ガラスを攪拌するための攪拌器とを備え、
     前記攪拌器は、鉛直方向に沿って配置される回転軸であるシャフトと、前記シャフトの側面に、前記シャフトの軸方向に沿って最上段から最下段まで複数段配置される羽根とを有し、
     前記羽根は、前記シャフトの軸方向に対して直交する支持板と、前記支持板の主面上に設置される補助板とを有し、
     前記攪拌工程では、前記シャフトを回転軸として前記攪拌器が回転することにより、最上段に位置する前記羽根の前記支持板の上方の主面上に設置された前記補助板は、最上段に位置する前記羽根の前記支持板の上方において、前記チャンバーの内壁から前記シャフトに向かって前記溶融ガラスを移動させる第1の流れを生じさせ、かつ、前記第1の流れによって移動した前記溶融ガラスを前記シャフトの側面に沿って上昇させる第2の流れを生じさせる、
    ガラス基板の製造方法。
  7.  前記チャンバーは、最上段に位置する前記羽根よりも上方の位置において、側面に排出口を有し、
     前記排出口は、前記溶融ガラスの液面の近傍の高さ位置において、前記チャンバー内から前記溶融ガラスを排出する、
    請求項6に記載のガラス基板の製造方法。
  8.  溶融ガラスを上方から下方へと、または下方から上方へと導くためのチャンバーと、前記チャンバー内の前記溶融ガラスを攪拌するための攪拌器とを備える攪拌装置であって、
     前記攪拌器は、回転軸となるシャフトと、前記シャフトの側面に、前記シャフトの軸方向に沿って最上段から最下段まで複数段配置される羽根とを備え、
     前記羽根は、前記シャフトに直接接続される支持板と、前記支持板の主面上に設置される補助板とを有し、
     前記補助板は、前記シャフトに接続した、または前記シャフトに最も近い一端と、前記一端の反対側に位置する他端とを有し、前記シャフトの軸方向に沿って見たときに、前記一端から前記他端に向かうにしたがって、前記一端と、前記シャフトの回転の中心となる中心点とを結ぶ直線から離れていくように設置され、
     前記シャフトを回転軸として前記攪拌器が回転することにより、前記補助板は、前記シャフトの半径方向への流れを前記溶融ガラスに生じさせ、かつ、隣接する2つの段に配置される前記羽根の前記支持板の間に位置する前記補助板は、同じ方向の流れを前記溶融ガラスに生じさせる、
    攪拌装置。
PCT/JP2011/075174 2010-11-01 2011-11-01 ガラス基板の製造方法、および、攪拌装置 WO2012060372A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127012872A KR101421358B1 (ko) 2010-11-01 2011-11-01 유리 기판의 제조 방법 및 교반 장치
JP2012515282A JP5580889B2 (ja) 2010-11-01 2011-11-01 ガラス基板の製造方法、および、攪拌装置
EP11838022.9A EP2505562B1 (en) 2010-11-01 2011-11-01 Method for manufacturing glass substrate, and stirring device
CN201180004233.3A CN102596826B (zh) 2010-11-01 2011-11-01 玻璃基板的制造方法及搅拌装置
US13/610,747 US8726696B2 (en) 2010-11-01 2012-09-11 Method of manufacturing glass substrate, and stirring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-245209 2010-11-01
JP2010245209 2010-11-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/610,747 Continuation US8726696B2 (en) 2010-11-01 2012-09-11 Method of manufacturing glass substrate, and stirring device

Publications (1)

Publication Number Publication Date
WO2012060372A1 true WO2012060372A1 (ja) 2012-05-10

Family

ID=46024486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075174 WO2012060372A1 (ja) 2010-11-01 2011-11-01 ガラス基板の製造方法、および、攪拌装置

Country Status (7)

Country Link
US (1) US8726696B2 (ja)
EP (1) EP2505562B1 (ja)
JP (2) JP2012111685A (ja)
KR (1) KR101421358B1 (ja)
CN (1) CN102596826B (ja)
TW (1) TWI480249B (ja)
WO (1) WO2012060372A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181732A1 (ja) * 2013-05-08 2014-11-13 旭硝子株式会社 溶融ガラス攪拌装置
WO2015019914A1 (ja) * 2013-08-07 2015-02-12 住友重機械プロセス機器株式会社 撹拌装置
JP2016079087A (ja) * 2014-10-14 2016-05-16 旭硝子株式会社 溶融ガラス攪拌装置、板ガラス製造装置、溶融ガラス攪拌方法、および板ガラス製造方法
US10974983B2 (en) 2016-03-29 2021-04-13 Nippon Electric Glass Co., Ltd. Molten glass stirring device and method for manufacturing glass article
US11708288B2 (en) * 2016-12-22 2023-07-25 Nippon Electric Glass Co., Ltd. Stirrer and method for manufacturing glass plate

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8256951B2 (en) * 2006-12-21 2012-09-04 Corning Incorporated Stirrers for minimizing erosion of refractory metal vessels in a glass making system
DE102008017045B9 (de) * 2008-04-03 2012-07-05 Umicore Ag & Co. Kg Rührsystem und Verfahren zum Homogenisieren von Glasschmelzen
EP2626334B1 (en) * 2011-11-18 2019-01-16 Avanstrate Inc. Method for producing glass and stirring device
US8988897B2 (en) * 2012-11-27 2015-03-24 International Business Machines Corporation Electromagnetic interference mode stirrer
JP2014136203A (ja) * 2013-01-18 2014-07-28 Chugoku Electric Power Co Inc:The 攪拌器
DE102014211346A1 (de) * 2014-06-13 2015-12-17 Schott Ag Verfahren und Vorrichtung zur Herstellung eines Glasartikels aus einer Glasschmelze
CN105621857A (zh) * 2014-11-24 2016-06-01 Lg化学株式会社 Lcd玻璃制造用搅拌机及其制造方法、lcd玻璃的制造方法
EP3059007A1 (en) * 2015-02-23 2016-08-24 Umicore AG & Co. KG Stirrer for stirring molten glass, apparatus for stirring molten glass comprising such a stirrer and use of such a stirrer
CN105080662B (zh) * 2015-09-22 2018-04-06 何征徽 一种制粉装置
US10618018B2 (en) * 2016-05-25 2020-04-14 Spx Flow, Inc. Low wear radial flow impeller device and system
CN109092143A (zh) * 2018-09-25 2018-12-28 台玻安徽玻璃有限公司 高硼硅浮法玻璃制备用原料混合搅拌装置
DE102020103328A1 (de) 2020-02-10 2021-08-12 Schott Ag Verfahren und Vorrichtung zum Homogenisieren von viskosen Flüssigkeiten
CN219546867U (zh) * 2020-06-25 2023-08-18 康宁公司 玻璃条件测量设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888126A (ja) 1981-11-16 1983-05-26 Nippon Sheet Glass Co Ltd 溶融ガラスの撹拌装置
JPS638226A (ja) 1986-06-24 1988-01-14 Hoya Corp 溶融ガラスの攪拌装置
JP2009029704A (ja) * 2007-07-25 2009-02-12 Schott Ag ガラスメルト均質化方法及び装置
WO2009121684A1 (en) * 2008-04-03 2009-10-08 Umicore Ag & Co. Kg Stirring system and method for homogenizing glass melts
JP2010100462A (ja) * 2008-10-22 2010-05-06 Avanstrate Inc 溶融ガラス用の撹拌翼および撹拌装置
JP2011178656A (ja) * 2010-02-25 2011-09-15 Schott Ag 溶融ガラスを均質にする装置及びその使用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2569459A (en) * 1945-08-09 1951-10-02 Corning Glass Works Method and apparatus for stirring glass
US2569549A (en) 1949-03-21 1951-10-02 Du Pont Imidohalides and process of preparing them and their hydrolysis products
US2570079A (en) * 1950-02-09 1951-10-02 Corning Glass Works Glass stirrer and feeder
US2570078A (en) * 1950-02-09 1951-10-02 Corning Glass Works Stirrer and feeder
US2746729A (en) * 1952-08-05 1956-05-22 Pittsburgh Plate Glass Co Method for homogenizing glass
US2762167A (en) * 1953-03-23 1956-09-11 Corning Glass Works Glass blending
US2831664A (en) * 1953-10-30 1958-04-22 Corning Glass Works Glass stirring
US3419373A (en) 1967-10-25 1968-12-31 Owens Illinois Inc Pumping vane type glass feeder
US5120342A (en) * 1991-03-07 1992-06-09 Glasstech, Inc. High shear mixer and glass melting apparatus
US5340372A (en) * 1991-08-07 1994-08-23 Pedro Buarque de Macedo Process for vitrifying asbestos containing waste, infectious waste, toxic materials and radioactive waste
CN100341806C (zh) * 2001-11-30 2007-10-10 康宁股份有限公司 通过搅拌使玻璃熔体均化的方法及设备
CN102173561A (zh) * 2006-01-05 2011-09-07 日本电气硝子株式会社 熔融玻璃供给装置及玻璃成形品的制造方法
US8256951B2 (en) * 2006-12-21 2012-09-04 Corning Incorporated Stirrers for minimizing erosion of refractory metal vessels in a glass making system
EP2467337A1 (en) * 2009-08-21 2012-06-27 Umicore AG & Co. KG Mixing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888126A (ja) 1981-11-16 1983-05-26 Nippon Sheet Glass Co Ltd 溶融ガラスの撹拌装置
JPS638226A (ja) 1986-06-24 1988-01-14 Hoya Corp 溶融ガラスの攪拌装置
JP2009029704A (ja) * 2007-07-25 2009-02-12 Schott Ag ガラスメルト均質化方法及び装置
WO2009121684A1 (en) * 2008-04-03 2009-10-08 Umicore Ag & Co. Kg Stirring system and method for homogenizing glass melts
JP2010100462A (ja) * 2008-10-22 2010-05-06 Avanstrate Inc 溶融ガラス用の撹拌翼および撹拌装置
JP2011178656A (ja) * 2010-02-25 2011-09-15 Schott Ag 溶融ガラスを均質にする装置及びその使用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2505562A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181732A1 (ja) * 2013-05-08 2014-11-13 旭硝子株式会社 溶融ガラス攪拌装置
JPWO2014181732A1 (ja) * 2013-05-08 2017-02-23 旭硝子株式会社 溶融ガラス攪拌装置
WO2015019914A1 (ja) * 2013-08-07 2015-02-12 住友重機械プロセス機器株式会社 撹拌装置
JP2015033658A (ja) * 2013-08-07 2015-02-19 住友重機械プロセス機器株式会社 撹拌装置
EP3031519A4 (en) * 2013-08-07 2017-07-05 Sumitomo Heavy Industries Process Equipment Co., Ltd. Stirrer
JP2016079087A (ja) * 2014-10-14 2016-05-16 旭硝子株式会社 溶融ガラス攪拌装置、板ガラス製造装置、溶融ガラス攪拌方法、および板ガラス製造方法
US10974983B2 (en) 2016-03-29 2021-04-13 Nippon Electric Glass Co., Ltd. Molten glass stirring device and method for manufacturing glass article
US11708288B2 (en) * 2016-12-22 2023-07-25 Nippon Electric Glass Co., Ltd. Stirrer and method for manufacturing glass plate

Also Published As

Publication number Publication date
TW201223903A (en) 2012-06-16
CN102596826B (zh) 2015-01-07
JPWO2012060372A1 (ja) 2014-05-12
CN102596826A (zh) 2012-07-18
JP5580889B2 (ja) 2014-08-27
JP2012111685A (ja) 2012-06-14
EP2505562A4 (en) 2014-03-26
TWI480249B (zh) 2015-04-11
US8726696B2 (en) 2014-05-20
KR20120086713A (ko) 2012-08-03
EP2505562A1 (en) 2012-10-03
KR101421358B1 (ko) 2014-07-18
US20130000358A1 (en) 2013-01-03
EP2505562B1 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP5580889B2 (ja) ガラス基板の製造方法、および、攪拌装置
JP5246568B1 (ja) ガラスの製造方法、および、攪拌装置
JP2010100462A (ja) 溶融ガラス用の撹拌翼および撹拌装置
JP5768084B2 (ja) ガラス板の製造方法、及びガラス板製造装置
KR101778377B1 (ko) 유리 기판의 제조 방법 및 유리 기판의 제조 장치
JP5530907B2 (ja) ガラス基板製造装置、ガラス基板の製造方法及び攪拌装置
JP2011121863A (ja) 溶融ガラス供給装置及びガラス成形品の製造方法
KR101494517B1 (ko) 글래스 기판의 제조 방법, 글래스 기판의 제조 장치 및 교반 장치
JPS5888126A (ja) 溶融ガラスの撹拌装置
JP6449606B2 (ja) ガラス基板の製造方法、および、ガラス基板の製造装置
JP4793581B2 (ja) 溶融ガラス供給装置及びガラス成形品の製造方法
JP4811791B2 (ja) 溶融ガラス供給装置及びガラス成形品の製造方法
JP2016033099A (ja) ガラス板の製造方法、及び、攪拌装置
JP2016069235A (ja) ガラス基板の製造方法、および、ガラス基板の製造装置
JP2002326822A (ja) フォアハースおよびゴブ製造装置並びにゴブ製造方法
JP2010235446A (ja) ガラス成形品の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004233.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012515282

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127012872

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011838022

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11838022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE