WO2012057338A1 - 磁気記録媒体用ガラス基板、磁気記録媒体、および磁気記録媒体用ガラス基板ブランク - Google Patents

磁気記録媒体用ガラス基板、磁気記録媒体、および磁気記録媒体用ガラス基板ブランク Download PDF

Info

Publication number
WO2012057338A1
WO2012057338A1 PCT/JP2011/074986 JP2011074986W WO2012057338A1 WO 2012057338 A1 WO2012057338 A1 WO 2012057338A1 JP 2011074986 W JP2011074986 W JP 2011074986W WO 2012057338 A1 WO2012057338 A1 WO 2012057338A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic recording
glass
glass substrate
total content
recording medium
Prior art date
Application number
PCT/JP2011/074986
Other languages
English (en)
French (fr)
Inventor
奈緒美 松本
基延 越坂部
蜂谷 洋一
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201180052195.9A priority Critical patent/CN103189917B/zh
Priority to JP2012540984A priority patent/JP5542953B2/ja
Priority to SG2013031828A priority patent/SG190011A1/en
Publication of WO2012057338A1 publication Critical patent/WO2012057338A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73913Composites or coated substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates

Definitions

  • the present invention relates to a glass substrate used as a substrate for a magnetic recording medium such as a hard disk, a glass substrate blank for a magnetic recording medium that can be used to obtain the substrate, and a magnetic recording medium including the substrate.
  • a magnetic storage device such as a computer
  • a magnetic recording medium a flexible disk and a hard disk are known.
  • substrate materials for hard disks there are, for example, aluminum substrates, glass substrates, ceramic substrates, carbon substrates and the like. Practically, depending on the size and application, mainly aluminum substrates and glass are used. A substrate is used.
  • demands for higher surface smoothness and thinner substrates are increasing as magnetic recording media become denser and thinner.
  • high Ku magnetic materials such as Fe—Pt and Co—Pt are used for the purpose of achieving higher density recording of magnetic recording media.
  • high Ku magnetic materials such as Fe—Pt and Co—Pt are used for the purpose of achieving higher density recording of magnetic recording media.
  • In order to increase the recording density it is necessary to reduce the particle size of the magnetic particles.
  • the particle size is decreased, there is a problem of deterioration of magnetic characteristics due to thermal fluctuation.
  • High Ku magnetic materials are less susceptible to thermal fluctuations and are expected to contribute to high density recording.
  • the high Ku magnetic material needs to obtain a specific crystal orientation state in order to realize high Ku, and therefore, it is necessary to perform film formation at a high temperature or heat treatment at a high temperature after film formation. Therefore, in order to form a magnetic recording layer made of these high Ku magnetic materials, the glass substrate is required to have high heat resistance that can withstand the above-described high temperature processing, that is, high glass transition temperature. This is because if the heat resistance of the glass substrate is insufficient, the substrate is distorted during high temperature processing, which causes a collision with the magnetic head.
  • the gap between the magnetic head element and the medium surface is extremely small, for example, 2 nm or less, the magnetic head easily collides with the medium surface even with a slight impact. Become prominent. Therefore, especially during high-speed rotation, it is necessary to prevent the occurrence of substrate deflection and fluttering at the outer periphery of the disk, which causes a collision between the magnetic head and the medium surface.
  • the glass substrate for a magnetic recording medium is also required to have high rigidity (Young's modulus) that does not cause large deformation during high-speed rotation.
  • An HDD (hard disk drive) incorporating a magnetic recording medium has a structure in which the magnetic recording medium itself is rotated by pressing the center portion with a spindle of a spindle motor. For this reason, if there is a large difference in the thermal expansion coefficient between the magnetic recording medium substrate and the spindle material constituting the spindle portion, the thermal expansion / contraction of the spindle and the magnetic recording medium substrate Deviation occurs in expansion and contraction, resulting in a phenomenon that the magnetic recording medium is deformed.
  • the glass substrate is required to have a high thermal expansion coefficient comparable to that of a spindle material (for example, stainless steel).
  • a desirable characteristic required for a glass substrate for a magnetic recording medium is high chemical strengthening performance (the formation of an ion exchange layer by chemical strengthening treatment is easy). This is because an ion exchange layer (compressive stress layer) is often formed on the surface of a glass substrate for a magnetic recording medium by a chemical strengthening process in order to increase the fracture resistance in order to increase the reliability.
  • the chemical strengthening treatment also has an effect of reducing the amount of alkali elution from the glass substrate surface.
  • an object of the present invention is to provide a glass substrate for a magnetic recording medium that has high heat resistance, high rigidity, a high thermal expansion coefficient, and preferably high chemical strengthening performance.
  • the inventors of the present invention have repeated trial manufacture and evaluation of a considerable number of glass compositions in order to achieve the above object, and thus have a conventional trade-off relationship of high heat resistance, high rigidity, and high thermal expansion coefficient.
  • the present inventors have found a glass that has characteristics that were difficult to realize at the same time, and that has high chemical strengthening performance, and has completed the present invention.
  • One embodiment of the present invention provides: In mol% display, 56 to 75% of SiO 2 Al 2 O 3 1-11%, Li 2 O exceeds 0% and 4% or less, Na 2 O 1% or more and less than 15%, K 2 O of 0% or more and less than 3%, Containing and substantially free of BaO,
  • the total content of alkali metal oxides selected from the group consisting of Li 2 O, Na 2 O and K 2 O is in the range of 6 to 15%;
  • the molar ratio of Li 2 O content to Na 2 O content (Li 2 O / Na 2 O) is less than 0.50,
  • the molar ratio ⁇ K 2 O / (Li 2 O + Na 2 O + K 2 O) ⁇ of the K 2 O content to the total content of the alkali metal oxides is 0.13 or less
  • the total content of alkaline earth metal oxides selected from the group consisting of MgO, CaO and SrO is in the range of 10-30%;
  • the total content of oxides selected from the group consisting of ZrO 2 , TiO 2 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Nb 2 O 5 and Ta 2 O 5 is more than 0% and not more than 10%
  • Molar ratio of the total content of the oxides to the Al 2 O 3 content ⁇ (ZrO 2 + TiO 2 + Y 2 O 3 + La 2 O 3 + Gd 2 O 3 + Nb 2 O 5 + Ta 2 O 5 ) / Al 2 O 3 ⁇ Is 0.40 or more
  • a glass substrate for a magnetic recording medium comprising a glass having a glass transition temperature of 600 ° C. or higher, an average linear expansion coefficient of 70 ⁇ 10 ⁇ 7 / ° C. or higher at 100 to 300 ° C., and a Young's modulus of 80 GPa or higher; About.
  • the glass substrate can be used as a substrate of a magnetic recording medium containing Fe and Pt or having a magnetic recording layer containing Co and Pt on the substrate.
  • the glass substrate can be used as a substrate for a magnetic recording medium for energy-assisted recording.
  • the glass substrate can be used as a substrate for a magnetic recording medium for heat-assisted recording.
  • the glass substrate may have an ion exchange layer on part or all of the surface.
  • the ion exchange layer may be formed by ion exchange with at least one alkali metal ion selected from the group consisting of Na, K, Rb and Cs.
  • the glass substrate can have a specific elastic modulus of 30.0 MNm / kg or more.
  • the glass substrate can have a specific gravity of 2.90 or less.
  • a further aspect of the present invention relates to a magnetic recording medium having a magnetic recording layer on the glass substrate.
  • the magnetic recording layer may contain Fe and Pt, or Co and Pt.
  • the magnetic recording medium may be a magnetic recording medium for energy assist recording.
  • the magnetic recording medium may be a heat-assisted recording magnetic recording medium.
  • the glass substrate may have an ion exchange layer on part or all of the surface.
  • the ion exchange layer may be formed by ion exchange with at least one alkali metal ion selected from the group consisting of Na, K, Rb and Cs.
  • a further aspect of the invention provides: In mol% display, 56 to 75% of SiO 2 Al 2 O 3 1-11%, Li 2 O exceeds 0% and 4% or less, Na 2 O 1% or more and less than 15%, K 2 O of 0% or more and less than 3%, Containing and substantially free of BaO,
  • the total content of alkali metal oxides selected from the group consisting of Li 2 O, Na 2 O and K 2 O is in the range of 6 to 15%;
  • the molar ratio of Li 2 O content to Na 2 O content (Li 2 O / Na 2 O) is less than 0.50,
  • the molar ratio ⁇ K 2 O / (Li 2 O + Na 2 O + K 2 O) ⁇ of the K 2 O content to the total content of the alkali metal oxides is 0.13 or less
  • the total content of alkaline earth metal oxides selected from the group consisting of MgO, CaO and SrO is in the range of 10-30%;
  • the total content of oxides selected from the group consisting of ZrO 2 , TiO 2 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Nb 2 O 5 and Ta 2 O 5 is more than 0% and not more than 10%
  • Molar ratio of the total content of the oxides to the Al 2 O 3 content ⁇ (ZrO 2 + TiO 2 + Y 2 O 3 + La 2 O 3 + Gd 2 O 3 + Nb 2 O 5 + Ta 2 O 5 ) / Al 2 O 3 ⁇ Is 0.40 or more
  • a glass substrate blank for a magnetic recording medium comprising a glass having a glass transition temperature of 600 ° C. or higher, an average linear expansion coefficient of 70 ⁇ 10 ⁇ 7 / ° C. or higher at 100 to 300 ° C., and a Young's modulus of 80 GPa or higher; About.
  • the glass substrate for magnetic recording medium can be obtained by subjecting the glass substrate blank to processing such as grinding and polishing.
  • the support member has high heat resistance that can withstand high-temperature heat treatment when forming a magnetic recording layer made of a high Ku magnetic material, and can easily form an ion exchange layer by chemical strengthening treatment. It is possible to provide a magnetic recording medium including a glass substrate having a high thermal expansion coefficient comparable to that of the above and a high rigidity capable of withstanding high-speed rotation.
  • FIG. 1 is an explanatory diagram of a method for measuring the bending strength.
  • One embodiment of the present invention is expressed in mol%, In mol% display, 56 to 75% of SiO 2 Al 2 O 3 1-11%, Li 2 O exceeds 0% and 4% or less, Na 2 O 1% or more and less than 15%, K 2 O of 0% or more and less than 3%, Containing and substantially free of BaO,
  • the total content of alkali metal oxides selected from the group consisting of Li 2 O, Na 2 O and K 2 O is in the range of 6 to 15%;
  • the molar ratio of Li 2 O content to Na 2 O content (Li 2 O / Na 2 O) is less than 0.50,
  • the molar ratio ⁇ K 2 O / (Li 2 O + Na 2 O + K 2 O) ⁇ of the K 2 O content to the total content of the alkali metal oxides is 0.13 or less,
  • the total content of alkaline earth metal oxides selected from the group consisting of MgO, CaO and SrO is in the range of 10-30%;
  • the total content of oxides selected from the group consisting of ZrO 2 , TiO 2 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Nb 2 O 5 and Ta 2 O 5 is more than 0% and not more than 10%
  • Molar ratio of the total content of the oxides to the Al 2 O 3 content ⁇ (ZrO 2 + TiO 2 + Y 2 O 3 + La 2 O 3 + Gd 2 O 3 + Nb 2 O 5 + Ta 2 O 5 ) / Al 2 O 3 ⁇ Is 0.40 or more
  • a glass substrate for a magnetic recording medium comprising a glass having a glass transition temperature of 600 ° C. or higher, an average linear expansion coefficient of 70 ⁇ 10 ⁇ 7 / ° C.
  • the present invention further relates to a glass substrate blank for a magnetic recording medium that can provide the glass substrate of the present invention.
  • the glass substrate of the present invention has high heat resistance that can withstand high-temperature heat treatment when forming a magnetic recording layer made of a high Ku magnetic material, has a high thermal expansion coefficient comparable to a support member (spindle), and It has high rigidity that can withstand high-speed rotation, and can also have good chemical strengthening performance.
  • a further aspect of the present invention relates to a magnetic recording medium having a magnetic recording layer on the glass substrate of the present invention.
  • the present invention will be described in more detail.
  • a heat sink layer made of a material having high thermal conductivity can be formed between the glass substrate and the soft magnetic layer, details of which will be described later.
  • these magnetic materials are usually subjected to high-temperature heat treatment (annealing) at a temperature exceeding the film formation temperature in order to align the crystal orientation after film formation. Therefore, when the magnetic recording layer is formed using the Fe—Pt magnetic material or the Co—Pt magnetic material, the substrate is exposed to the high temperature. If the glass constituting the substrate is poor in heat resistance, the glass is deformed at a high temperature and flatness is impaired. In contrast, since the substrate included in the magnetic recording medium of the present invention exhibits excellent heat resistance (glass transition temperature of 600 ° C. or higher), an Fe—Pt magnetic material or a Co—Pt magnetic material is used. Even after the magnetic recording layer is formed, high flatness can be maintained.
  • annealing high-temperature heat treatment
  • the magnetic recording layer is formed, for example, by depositing a Fe—Pt magnetic material or a Co—Pt magnetic material in an Ar atmosphere by a DC magnetron sputtering method and then performing a heat treatment at a higher temperature in a heating furnace. Can be formed.
  • a recording system that assists the magnetization reversal of a high Ku magnetic material by momentarily applying energy from the head to the data writing area when the information is written by the recording head to reduce the coercive force has attracted attention in recent years.
  • Such a recording method is called an energy-assisted recording method.
  • a recording method that assists magnetization reversal by laser light irradiation is called a heat-assisted recording method
  • a recording method that assists by microwaves is called a microwave-assisted recording method.
  • a magnetic recording layer can be formed of a high Ku magnetic material.
  • the surface recording density exceeds 1 terabyte / inch 2 by combining the high Ku magnetic material and energy assist recording.
  • the magnetic recording medium glass substrate for example, magnetic disk glass substrate
  • magnetic recording medium for example, magnetic disk
  • It can be downsized.
  • it is suitable as a magnetic disk substrate or magnetic disk having a smaller diameter (for example, 1 inch) as well as a nominal diameter of 2.5 inches.
  • the glass substrate of the present invention will be described.
  • the content, total content, and ratio of each component are displayed on a molar basis.
  • the glass substrate of the present invention is composed of oxide glass, and the glass composition is displayed on the basis of oxide.
  • the oxide-based glass composition is a glass composition obtained by converting all glass raw materials to be decomposed during melting and existing as oxides in the glass.
  • the glass substrate of the present invention is made of amorphous (amorphous) glass. Therefore, unlike crystallized glass, it consists of a homogeneous phase, so that excellent smoothness of the substrate surface can be realized.
  • SiO 2 is a glass network-forming component and has an effect of improving glass stability, chemical durability, particularly acid resistance.
  • Al 2 O 3 is also a component that contributes to the formation of a glass network and functions to improve rigidity and heat resistance.
  • the content of Al 2 O 3 exceeds 11%, the devitrification resistance (stability) of the glass decreases, so the amount introduced is 11% or less.
  • the content of Al 2 O 3 is less than 1%, the stability, chemical durability, and heat resistance of the glass decrease, so the amount introduced is 1% or more. Therefore, the content of Al 2 O 3 in the glass substrate of the present invention is in the range of 1 to 11%.
  • the Al 2 O 3 content is preferably 1 to 10%, more preferably 2 to 9%, and still more preferably 3 to 8%. is there.
  • Li 2 O is an essential component in the glass substrate of the present invention because it is a component that increases the rigidity of the glass. Moreover, since the ease of movement in the glass in the alkali metal is in the order of Li>Na> K, introduction of Li is advantageous from the viewpoint of chemical strengthening performance. However, if the introduction amount is excessive, the heat resistance is lowered, so the introduction amount is 4% or less. That is, in the glass substrate of the present invention, the content of Li 2 O is more than 0% and 4% or less. From the viewpoint of high rigidity, high heat resistance, and chemical strengthening performance, the preferable range of the content of Li 2 O is 0.1 to 3.5%, more preferably 0.5 to 3%, and still more preferably 1%.
  • Li 2 O More than 3% and not more than 3%, and a more preferable range is more than 1% and not more than 2.5%.
  • Li 2 O As Li 2 O The above leads to a decrease in heat resistance by the introduction of an excess amount, but because it causes a decrease also in heat resistance amount introduced is excessive relative to Na 2 O, Li 2 for the content of Na 2 O
  • the amount of introduction is adjusted with respect to the amount of Na 2 O introduced so that the molar ratio of O content (Li 2 O / Na 2 O) is in the range of less than 0.50.
  • the molar ratio (Li 2 O / Na 2 O) is preferably in the range of 0.01 or more and less than 0.50.
  • the range is more preferably 0.02 to 0.40, still more preferably 0.03 to 0.40, still more preferably 0.04 to 0.30.
  • the range of 05 to 0.30 is even more preferable.
  • the amount of Li 2 O introduced is excessive with respect to the total content of alkali metal oxides (Li 2 O + Na 2 O + K 2 O), the heat resistance is lowered, and if it is too small, the chemical strengthening performance is lowered.
  • Li 2 O molar ratio of alkali metal oxides ⁇ Li 2 O / (Li 2 O + Na 2 O + K 2 O) ⁇ is in the range of less than 1/3
  • the preferable lower limit of the molar ratio ⁇ Li 2 O / (Li 2 O + Na 2 O + K 2 O) ⁇ is 0.01, the more preferable lower limit is 0.02, and the more preferable lower limit is 0.00.
  • a more preferred lower limit is 0.04, and a still more preferred lower limit is 0.05.
  • Na 2 O is an effective component for improving the thermal expansion characteristics, it is an essential component in the glass substrate of the present invention and is introduced in an amount of 1% or more. Further, since Na 2 O is a component that contributes to the chemical strengthening performance, the introduction of 1% or more is advantageous from the viewpoint of the chemical strengthening performance. However, if the amount introduced is 15% or more, the heat resistance is lowered. Therefore, the content of Na 2 O in the glass substrate of the present invention is 1% or more and less than 15%. From the viewpoint of thermal expansion characteristics, heat resistance and chemical strengthening performance, the preferable range of the content of Na 2 O is 4 to 13%, and a more preferable range is 5 to 11%.
  • K 2 O is an effective component for improving the thermal expansion characteristics
  • it is an optional component that can be introduced into the glass substrate of the present invention.
  • introduction of an excessive amount causes a decrease in heat resistance and thermal conductivity, resulting in chemical strengthening. Since the performance also deteriorates, the amount introduced is less than 3%. That is, in the glass substrate of the present invention, the content of K 2 O is 0% or more and less than 3%.
  • the preferable range of the content of K 2 O is 0 to 2%, more preferably 0 to 1%, and still more preferably 0 to 0.5%, An even more preferable range is 0 to 0.1%, and from the viewpoint of heat resistance and chemical strengthening performance, it is preferable not to introduce substantially.
  • substantially does not contain and “does not substantially introduce” means that a specific component is not intentionally added to the glass raw material, and excludes even mixing as impurities. is not.
  • the description of 0% regarding the glass composition is also synonymous.
  • the total content of alkali metal oxides selected from the group consisting of Li 2 O, Na 2 O and K 2 O of the glass substrate of the present invention is less than 6%, the meltability and thermal expansion characteristics of the glass are reduced, If it exceeds 15%, the heat resistance decreases. Therefore, the total content of alkali metal oxides selected from the group consisting of Li 2 O, Na 2 O and K 2 O of the glass substrate of the present invention is 6 from the viewpoint of glass meltability, thermal expansion characteristics and heat resistance. -15%, preferably 7-15%, more preferably 8-13%, still more preferably 8-12%.
  • the glass substrate does not substantially contain BaO is desirable as a magnetic recording medium used in the heat-assisted recording method.
  • the reason will be described below.
  • the bit size is reduced as the recording density is increased.
  • the target value of the bit size for realizing high-density recording exceeding 1 terabyte / inch 2 is set to a diameter of several tens of nm.
  • it is necessary to make the heating area as small as the bit size in heat-assisted recording.
  • the time that can be spent for recording one bit is extremely short, and thus it is necessary to instantaneously complete heating and cooling by heat assist.
  • a heat sink layer eg, a Cu film
  • the heat sink layer suppresses the spread of heat in the in-plane direction and accelerates the flow of heat in the vertical direction (depth direction), so that the heat applied to the recording layer is not in the in-plane direction but in the vertical direction ( It is a layer that plays a role of releasing in the thickness direction).
  • the thicker the heat sink layer the shorter the heating and cooling can be performed locally.
  • it is necessary to increase the film formation time resulting in lower productivity.
  • increasing the thickness of the heat sink layer also increases heat accumulation during film formation, resulting in disorder of the crystallinity and crystal orientation of the magnetic layer formed thereover, improving the recording density. May be difficult.
  • the thicker the heat sink layer the more the corrosion occurs in the heat sink layer, and the possibility that the whole film is raised and a convex defect is generated becomes high, which hinders the reduction of the flying height. In particular, when an iron material is used for the heat sink layer, the above phenomenon is likely to occur.
  • the glass substrate of the present invention does not contain BaO, there is no decrease in thermal conductivity due to BaO. Therefore, even if the heat sink layer is made thinner, heating and cooling can be performed in a short time and locally. It is.
  • the glass substrate of the present invention has a molar content of the total content of MgO and CaO with respect to the total content of MgO, CaO and SrO, which are alkaline earth metal oxides.
  • the ratio ⁇ (MgO + CaO) / (MgO + CaO + SrO) ⁇ is set to 0.86 or more.
  • the decrease in the glass transition temperature due to the BaO-free formation is suppressed by setting the molar ratio to 0.86 or more.
  • one of the characteristics required for the glass substrate is high rigidity (high Young's modulus).
  • a specific gravity is small as described later. In order to increase the Young's modulus and decrease the specific gravity, it is advantageous to prioritize the introduction of MgO and CaO among the alkaline earth metal oxides. There is also an effect of realizing high Young's modulus and low specific gravity of the glass substrate.
  • the molar ratio is preferably 0.88 or more, more preferably 0.90 or more, still more preferably 0.93 or more, still more preferably 0.95 or more, and even more preferably 0.97. More preferably, it is 0.98 or more, particularly preferably 0.99 or more, and most preferably 1.
  • the total content of the alkaline earth metal oxide selected from the group consisting of MgO, CaO and SrO is 10 to 30%, preferably 10 to 25%. More preferably, the range is 11 to 22%, still more preferably 12 to 22%, still more preferably 13 to 21%, and still more preferably 15 to 20%.
  • MgO and CaO are preferentially introduced components, and are introduced so that the total amount is 10 to 30%.
  • the preferable range of the total content of MgO and CaO is 10 to 25%, more preferably 10 to 22%, and still more preferably 11 to 20%, and a more preferable range is 12 to 20%.
  • the total content of the alkali metal oxide and alkaline earth metal oxide (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO) in the glass substrate of the present invention is 20 to 40%. This is because if it is less than 20%, the meltability, thermal expansion coefficient and rigidity of the glass are lowered, and if it exceeds 40%, chemical durability and heat resistance are lowered. From the viewpoint of maintaining the above-mentioned various characteristics well, a preferable range of the total content of the alkali metal oxide and the alkaline earth metal oxide is 20 to 35%, a more preferable range is 21 to 33%, and a further preferable range is 23. ⁇ 33%.
  • MgO, CaO and Li 2 O are effective components for increasing the rigidity (high Young's modulus) of glass, and the total of these three components is the above alkali metal oxide and alkaline earth metal oxidation. When it becomes too small with respect to the total of things, it becomes difficult to raise Young's modulus.
  • the molar ratio of the total content of MgO, CaO and Li 2 O to the total content of the alkali metal oxide and alkaline earth metal oxide ⁇ (MgO + CaO + Li 2 O) / (Li 2 O + Na as 2 O + K 2 O + MgO + CaO + SrO) is 0.50 or higher, adjusting MgO, the introduction amount of CaO and Li 2 O with respect to the total of the alkali metal oxides and alkaline earth metal oxides.
  • the molar ratio is preferably 0.51 or more, and more preferably 0.52 or more. From the viewpoint of glass stability, the molar ratio is preferably 0.80 or less, more preferably 0.75 or less, and even more preferably 0.70 or less.
  • MgO has a preferable content of 0 to 14%, more preferably 0 to 10%, still more preferably 0 to 8%, and still more preferably, from the viewpoint of improving Young's modulus, lowering the specific gravity, and further improving the specific elastic modulus. Is in the range of 0-6%, more preferably 1-6%.
  • the specific elastic modulus will be described later.
  • CaO is preferably introduced in an amount of 3 to 20%, more preferably 4 to 20%, still more preferably 10 to 20% from the viewpoints of improving thermal expansion characteristics and Young's modulus, and reducing the specific gravity.
  • SrO is a component that improves the thermal expansion characteristics, but it is a component that increases the specific gravity as compared with MgO and CaO. Therefore, its introduction amount is preferably 4% or less, and preferably 3% or less. It is more preferably 5% or less, preferably 2% or less, more preferably 1% or less, and it may not be substantially introduced.
  • the contents and proportions of SiO 2 , Al 2 O 3 , alkali metal oxide and alkaline earth metal oxide in the glass substrate of the present invention are as described above, but the glass substrate of the present invention is oxidized as shown below. It also includes physical components. Details thereof will be described below.
  • An oxide selected from the group consisting of ZrO 2 , TiO 2 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Nb 2 O 5 and Ta 2 O 5 is a component that increases rigidity and heat resistance. Although at least one kind is introduced, the melting property and the thermal expansion characteristic of the glass are lowered by introducing an excessive amount. Therefore, the total content of the oxides in the glass substrate of the present invention is more than 0% and not more than 10%, preferably 1 to 10%, more preferably 2 to 10%, still more preferably 2 to 9%, and much more. The range is preferably 2 to 7%, and more preferably 2 to 6%.
  • Al 2 O 3 is also a component that increases rigidity and heat resistance, but the oxide is more effective in increasing the Young's modulus.
  • the oxide in a molar ratio of 0.4 or more with respect to Al 2 O 3 , that is, the molar ratio of the total content of the oxide to the Al 2 O 3 content ⁇ (ZrO 2 + TiO 2 + Y
  • 2 O 3 + La 2 O 3 + Gd 2 O 3 + Nb 2 O 5 + Ta 2 O 5 ) / Al 2 O 3 ⁇ to 0.40 or more, it is possible to improve rigidity and heat resistance.
  • the molar ratio is preferably 0.50 or more, more preferably 0.60 or more, and even more preferably 0.70 or more. From the viewpoint of glass stability, the molar ratio is preferably 4.00 or less, more preferably 3.00 or less, still more preferably 2.00 or less, and 1.00. It is even more preferable to set it as follows, still more preferably 0.90 or less, and even more preferably 0.85 or less.
  • B 2 O 3 is a component that improves the brittleness of the glass substrate and improves the meltability of the glass.
  • the amount of introduction is 0 to 3%. It is preferably 0 to 2%, more preferably 0% to less than 1%, preferably 0 to 0.5%, and may not be introduced substantially. .
  • Cs 2 O is a component that can be introduced in a small amount within a range that does not impair the desired properties and properties. However, since it is a component that increases the specific gravity compared to other alkali metal oxides, it does not have to be introduced substantially. .
  • ZnO is a component that improves the meltability, moldability, and stability of glass, increases rigidity, and improves thermal expansion characteristics. However, heat resistance and chemical durability are reduced by the introduction of an excessive amount.
  • the introduction amount is preferably 0 to 3%, more preferably 0 to 2%, still more preferably 0 to 1%, and it may not be substantially introduced.
  • ZrO 2 is a component that enhances rigidity and heat resistance as described above, and is also a component that enhances chemical durability. However, since the meltability of glass is reduced by introducing an excessive amount, ZrO 2 is introduced in an amount of 1 to 8%. Preferably, it is 1 to 6%, more preferably 2 to 6%.
  • TiO 2 has a function of suppressing an increase in the specific gravity of the glass and improving the rigidity, and is a component capable of increasing the specific elastic modulus.
  • the introduced amount is preferably 0 to 6%. 0 to 5%, more preferably 0 to 3%, still more preferably 0 to 2%, still more preferably 0% to less than 1%, Need not be introduced.
  • Y 2 O 3 , Yb 2 O 3 , La 2 O 3 , Gd 2 O 3 , Nb 2 O 5 and Ta 2 O 5 are advantageous in terms of improving chemical durability, heat resistance, rigidity and fracture toughness. Although it is a component, melting becomes worse and the specific gravity becomes heavier when an excessive amount is introduced. Moreover, since an expensive raw material will be used, it is preferable to reduce content. Accordingly, the total amount of the above components is preferably 0 to 3%, more preferably 0 to 2%, still more preferably 0 to 1%, and 0 to 0.5%. More preferably, it is more preferably 0 to 0.1%, and it is preferable not to introduce substantially when emphasizing improvement in meltability, reduction in specific gravity and cost reduction.
  • HfO 2 is also an advantageous component in terms of chemical durability, heat resistance improvement, rigidity and fracture toughness improvement, but the introduction of an excessive amount deteriorates the meltability and increases the specific gravity. Moreover, since an expensive raw material will be used, it is preferable to reduce content, and it is preferable not to introduce
  • Pb, As, Cd, Te, Cr, Tl, U, and Th are not substantially introduced in consideration of the influence on the environment.
  • SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 , Y 2 O 3 , La 2 O 3 , Gd with respect to the total content of the alkali metal oxides (Li 2 O, Na 2 O and K 2 O).
  • Molar ratio of the total content of 2 O 3 , Nb 2 O 5 and Ta 2 O 5 ⁇ (SiO 2 + Al 2 O 3 + ZrO 2 + TiO 2 + Y 2 O 3 + La 2 O 3 + Gd 2 O 3 + Nb 2 O 5 + Ta 2 O 5 ) / (Li 2 O + Na 2 O + K 2 O) ⁇ is preferably from 3 to 15, more preferably from 3 to 12, and even more preferably from 4 to 12 from the viewpoints of improving heat resistance and improving meltability. More preferably, it is in the range of 5 to 12, still more preferably 5 to 11, and still more preferably 5 to 10.
  • the magnetic recording medium is affected by the temperature change during the operation of the HDD. Deformation will result in a decrease in reliability such as recording / playback troubles.
  • a magnetic recording medium having a magnetic recording layer made of a high Ku magnetic material has a very high recording density, so that the above-described trouble is likely to occur even if the magnetic recording medium is slightly deformed.
  • a spindle material of HDD has an average linear expansion coefficient (thermal expansion coefficient) of 70 ⁇ 10 ⁇ 7 / ° C.
  • the glass substrate of the present invention has 100 to 300 Since the average linear expansion coefficient in the temperature range of 70 ° C. is 70 ⁇ 10 ⁇ 7 / ° C. or more, the reliability can be improved, and the substrate is suitable for a magnetic recording medium having a magnetic recording layer made of a high Ku magnetic material. Can be provided.
  • the average linear expansion coefficient can be controlled by adjusting the content and ratio of the glass component described above as affecting the thermal expansion characteristics.
  • a preferable range of the average linear expansion coefficient is 71 ⁇ 10 ⁇ 7 / ° C. or higher, a more preferable range is 72 ⁇ 10 ⁇ 7 / ° C.
  • a further preferable range is 73 ⁇ 10 ⁇ 7 / ° C. or higher, and a more preferable range is 74 ⁇ . 10 ⁇ 7 / ° C. or higher, more preferably 75 ⁇ 10 ⁇ 7 / ° C. or higher.
  • the upper limit of the average linear expansion coefficient is, for example, preferably about 120 ⁇ 10 ⁇ 7 / ° C., more preferably 100 ⁇ 10 ⁇ 7 / ° C., considering the thermal expansion characteristics of the spindle material, and 88 ⁇ More preferably, it is 10 ⁇ 7 / ° C.
  • the glass substrate for the magnetic recording medium is exposed to a high temperature in a high temperature treatment of the magnetic material. . At that time, the glass substrate for a magnetic recording medium is required to have excellent heat resistance so that the extremely high flatness of the substrate is not impaired.
  • a glass transition temperature is used as an index of heat resistance, and the glass substrate of the present invention has a glass transition temperature of 600 ° C. or higher, so that excellent flatness can be maintained even after high temperature treatment. Therefore, the glass substrate of the present invention is suitable for production of a magnetic recording medium provided with a high Ku magnetic material.
  • the glass transition temperature can be controlled by adjusting the content and ratio of the glass component described above as affecting the heat resistance.
  • a preferable range of the glass transition temperature is 610 ° C. or more, a more preferable range is 620 ° C. or more, and a further preferable range is 630 ° C. or more.
  • the upper limit of the glass transition temperature is, for example, about 750 ° C., but the glass transition temperature is preferably not particularly limited as the glass transition temperature is higher.
  • Young's modulus As the deformation of the magnetic recording medium, there are deformation due to high-speed rotation in addition to deformation due to temperature change of the HDD. In order to suppress deformation during high-speed rotation, it is required to increase the Young's modulus of the magnetic recording medium substrate as described above. Since the glass substrate of the present invention has a Young's modulus of 80 GPa or more, the substrate deformation during high-speed rotation is suppressed, and data can be read and written even on a high recording density magnetic recording medium equipped with a high Ku magnetic material. Can be done accurately. The Young's modulus can be controlled by adjusting the content and ratio of the glass component described above as affecting the rigidity.
  • a preferable range of Young's modulus is 81 GPa or more, a more preferable range is 82 GPa or more, further preferably 83 GPa or more, still more preferably 84 GPa or more, still more preferably 85 GPa or more, and still more preferably 86 GPa or more. It is.
  • the upper limit of the Young's modulus is, for example, about 95 GPa, but is preferably not particularly limited as it is higher.
  • the specific elastic modulus of the glass substrate of the present invention is preferably 30.0 MNm / kg or more. More preferably, it is more than 0 MNm / kg, more preferably 30.5 MNm / kg or more.
  • the upper limit is, for example, about 40.0 MNm / kg, but is not particularly limited.
  • the specific modulus is obtained by dividing the Young's modulus of glass by the density. Here, the density may be considered as an amount obtained by adding a unit of g / cm 3 to the specific gravity of glass.
  • the specific elastic modulus can be increased, and the weight of the substrate can be reduced.
  • the weight of the magnetic recording medium can be reduced, the power required for rotating the magnetic recording medium can be reduced, and the power consumption of the HDD can be suppressed.
  • the preferred range of the specific gravity of the glass substrate of the present invention is 2.90 or less, the more preferred range is 2.80 or less, and the more preferred range is less than 2.70.
  • the specific gravity of the glass substrate can be controlled by adjusting the content and ratio of the glass component described above as affecting the specific gravity.
  • a glass substrate for a magnetic recording medium When producing a glass substrate for a magnetic recording medium, the glass is processed into a disk shape, and the main surface is processed to be extremely flat and smooth. And after the said process process, the organic substance which is the stain
  • the glass substrate if the glass substrate is inferior in acid resistance, surface roughening occurs during the acid cleaning, flatness and smoothness are impaired, and it becomes difficult to use the glass substrate for a magnetic recording medium.
  • a glass substrate for a magnetic recording medium having a high recording density and having a magnetic recording layer made of a high Ku magnetic material that requires high flatness and smoothness on the surface of the glass substrate desirably has excellent acid resistance.
  • the glass substrate is excellent in alkali resistance in order to prevent the flatness and smoothness of the substrate surface from being deteriorated due to surface roughness even during alkali cleaning.
  • High acidity and alkali resistance and high flatness and smoothness of the substrate surface are advantageous from the viewpoint of reducing the flying height.
  • excellent acid resistance and alkali resistance can be realized by adjusting the glass composition described above, particularly by adjusting the composition advantageous for chemical durability.
  • the glass forming temperature must be equal to or higher than the liquidus temperature.
  • the forming temperature exceeds 1300 ° C., for example, the press forming mold used for press forming molten glass reacts with the high temperature glass and is damaged. It becomes easy. Similarly, when the molten glass is cast in a mold, the mold is easily damaged.
  • the liquid phase temperature of the glass constituting the glass substrate of the present invention is preferably 1300 ° C. or lower.
  • a more preferable range of the liquidus temperature is 1280 ° C. or less, and a more preferable range is 1250 ° C. or less.
  • the liquid phase temperature in the above preferred range can be realized by adjusting the glass composition described above. Although a minimum is not specifically limited, What is necessary is just to consider 800 degreeC or more as a standard.
  • Glass containing SiO 2 and Al 2 O 3 has an absorption peak in a region including a wavelength of 2750 to 3700 nm. Further, by adding an infrared absorber described later or introducing it as a glass component, it is possible to further increase the absorption of short-wave radiation, and to provide absorption in the wavelength region of wavelengths from 700 nm to 3700 nm. In order to efficiently heat the glass substrate by radiation, that is, infrared irradiation, it is desirable to use infrared rays having a spectrum maximum in the above wavelength range. In order to increase the heating rate, it is conceivable to match the infrared spectral maximum wavelength with the absorption peak wavelength of the substrate and increase the infrared power.
  • an oxide of at least one metal selected from iron, copper, cobalt, ytterbium, manganese, neodymium, praseodymium, niobium, cerium, vanadium, chromium, nickel, molybdenum, holmium, and erbium is used as an infrared absorber.
  • an infrared absorber can work.
  • moisture or OH groups contained in moisture have strong absorption in the 3 ⁇ m band, moisture can also act as an infrared absorber.
  • the amount of the oxide that can act as the infrared absorber is preferably 500 ppm to 5%, more preferably 2000 ppm to 5%, and more preferably 2000 ppm to 2% on a mass basis as the oxide. More preferably, the range of 4000 ppm to 2% is even more preferable.
  • the water content is preferably more than 200 ppm, more preferably 220 ppm or more, on a weight basis in terms of H 2 O.
  • the Sn oxide is excellent in the function of promoting clarification by releasing oxygen gas at a high temperature during glass melting and taking in the fine bubbles contained in the glass to make it easy to float.
  • Ce oxide has an excellent function of eliminating bubbles by incorporating oxygen present as a gas in glass at a low temperature as a glass component.
  • Sn oxide has a strong function of removing relatively large bubbles and extremely small bubbles.
  • the glass refining effect can be enhanced over a wide temperature range from a high temperature range to a low temperature range, so that Sn oxide and Ce oxide can be added. preferable. If the total amount of Sn oxide and Ce oxide added is 0.02% by mass or more, a sufficient clarification effect can be expected.
  • a substrate is made using glass containing unmelted material even if it is minute and small, when unmelted material appears on the surface of the glass substrate due to polishing, protrusions are generated on the surface of the glass substrate or unmelted material is missing Becomes a depression, the smoothness of the glass substrate surface is impaired, and it cannot be used as a substrate for a magnetic recording medium.
  • the total amount of Sn oxide and Ce oxide added is 3.5% by mass or less, it can be sufficiently melted in the glass, so that undissolved substances can be prevented from being mixed.
  • Sn and Ce serve to generate crystal nuclei when making crystallized glass. Since the glass substrate of the present invention is made of amorphous glass, it is desirable not to precipitate crystals by heating. When the amount of Sn and Ce is excessive, such crystals are likely to precipitate. Therefore, excessive addition of Sn oxide and Ce oxide should be avoided. From the above viewpoint, it is preferable that the total amount of Sn oxide and Ce oxide added is 0.02 to 3.5% by mass.
  • a preferable range of the total amount of Sn oxide and Ce oxide added is 0.1 to 2.5% by mass, a more preferable range is 0.1 to 1.5% by mass, and a further preferable range is 0.5 to 2.5% by mass. 1.5% by mass.
  • Sn oxide it is preferable to use SnO 2 from the viewpoint of effectively releasing oxygen gas at a high temperature during glass melting.
  • the produced molten glass is formed into a plate shape by any one of the press forming method, the down draw method, and the float method, and the obtained plate-like glass is processed, whereby a substrate-shaped glass is obtained.
  • a molded article that is, a glass substrate blank for a magnetic recording medium of the present invention can be obtained.
  • the molten glass flowing out is cut to obtain a required molten glass lump, which is press-molded with a press mold to produce a thin disk-shaped substrate blank.
  • molten glass is guided using a bowl-shaped molded body, the molten glass overflows to both sides of the molded body, and two molten glass streams flowing down along the molded body are joined below the molded body. Then, pull it downward to form a sheet.
  • This method is also called a fusion method, and a sheet glass having no contact mark can be obtained by pasting together the glass surfaces in contact with the surface of the molded body. Thereafter, a thin disc-shaped substrate blank is cut out from the obtained sheet material.
  • molten glass is poured out onto a float bath in which molten tin or the like is stored, and is formed into a sheet glass while being pulled. Thereafter, a thin disc-shaped substrate blank is cut out from the obtained sheet material.
  • the substrate blank thus obtained is provided with a center hole, inner and outer peripheral processing, lapping and polishing on both main surfaces.
  • a disk-shaped substrate can be obtained through a cleaning process including acid cleaning and alkali cleaning.
  • the “main surface” is a surface on which a magnetic recording layer of a substrate is provided or a surface provided. This surface is called the main surface because it is the widest surface of the surface of the magnetic recording medium substrate.
  • the circular surface of the disk (when there is a central hole) Corresponds to (except the center hole).
  • the glass substrate of the present invention has been imparted with good chemical strengthening performance by the above-described composition adjustment, an ion exchange layer can be easily formed on the surface by chemical strengthening treatment. That is, the glass substrate of the present invention can have an ion exchange layer on part or all of the surface.
  • the ion exchange layer can be formed by bringing an alkali salt into contact with the substrate surface at a high temperature and exchanging alkali metal ions in the alkali salt with alkali metal ions in the substrate. Normal ion exchange is performed by heating alkali nitrate to form a molten salt and immersing the substrate in the molten salt.
  • the substrate has an ion exchange layer is a method of observing and confirming the cross section of the glass (surface cut through the ion exchange layer) by the Babinet method, a method of measuring the concentration distribution of alkali metal ions in the depth direction from the glass surface, etc. Can be confirmed.
  • the ion exchange is at least one selected from the group consisting of Na, K, Rb and Cs having a larger ion radius than Li. It is preferable to perform ion exchange with alkali metal ions.
  • bending strength is generally used as an index of impact resistance of a glass substrate for a magnetic recording medium.
  • the bending strength can be obtained as a load value when the glass substrate is broken by placing a steel ball on the center hole of the glass substrate arranged on the holder as shown in FIG.
  • the measurement can be performed using, for example, a bending strength measurement tester (Shimadzu Autograph DDS-2000).
  • the glass substrate of the present invention preferably has a bending strength of, for example, 10 kg or more, preferably 15 kg or more, and more preferably 20 kg or more. A range of bending strength can be achieved.
  • the glass substrate of the present invention has, for example, a thickness of 1.5 mm or less, preferably 1.2 mm or less, more preferably 1 mm or less, and a lower limit of preferably 0.3 mm.
  • the main surface on which the magnetic recording layer is formed preferably has the following surface properties (1) to (3).
  • the arithmetic average Ra of the surface roughness measured in the range of 1 ⁇ m ⁇ 1 ⁇ m using an atomic force microscope is 0.25 nm or less;
  • the arithmetic average Ra of the surface roughness measured in the range of 5 ⁇ m ⁇ 5 ⁇ m is 0.15 nm or less;
  • the arithmetic average Wa of the surface waviness at a wavelength of 100 ⁇ m to 950 ⁇ m is 0.5 nm or less.
  • the grain size of the magnetic recording layer formed on the substrate is, for example, less than 10 nm in the perpendicular recording method. Even if the bit size is miniaturized for high recording density, if the surface roughness of the substrate surface is large, the improvement of the magnetic characteristics cannot be expected.
  • the magnetic recording medium of the present invention is called a magnetic disk, hard disk, etc., and records and reproduces internal storage devices (such as fixed disks) such as desktop personal computers, server computers, notebook personal computers, and mobile personal computers, and images and / or sounds. It is suitable for an internal storage device of a portable recording / reproducing apparatus, an in-vehicle audio recording / reproducing apparatus, and the like, and is particularly suitable for a heat-assisted recording method as described above.
  • a disk-shaped substrate blank was produced by the following method A or B.
  • Method A The clarified and homogenized molten glass flows out of the pipe at a constant flow rate and is received by a lower mold for press molding, and the molten glass that has flowed out is cut with a cutting blade so that a predetermined amount of molten glass lump is obtained on the lower mold. .
  • the lower mold on which the molten glass block was placed was immediately taken out from below the pipe, and was pressed into a thin disk shape having a diameter of 66 mm and a thickness of 2 mm using the upper mold and the barrel mold facing the lower mold.
  • Method B The clarified and homogenized molten glass was continuously cast from above into a through hole of a heat resistant mold provided with a cylindrical through hole, formed into a columnar shape, and taken out from below the through hole.
  • the annealed glass was annealed, and then the glass was sliced at regular intervals in a direction perpendicular to the cylinder axis using a multi-wire saw to produce a disk-shaped substrate blank.
  • Method C The molten glass is poured onto a float bath, formed into a sheet-like glass (formation by a float method), and then annealed, and then a disc-like glass is cut out from the sheet glass to obtain a substrate blank.
  • Method D The molten glass can be formed into a sheet-like glass by the overflow down draw method (fusion method) and annealed, and then the disc-like glass is cut out from the sheet glass to obtain a substrate blank.
  • the disk-shaped glass substrate produced by the above method was used for production of a magnetic disk as it was.
  • a disk-shaped glass substrate produced by the same method as described above was immersed in a mixed molten salt of sodium nitrate and potassium nitrate, and a glass substrate having an ion exchange layer on the surface was obtained by ion exchange. Applying the ion exchange treatment in this way is effective for increasing the bending strength. From a plurality of glass substrates subjected to ion exchange treatment, the sample glass substrate was observed by a Babinet method for the cross section of the sampled glass substrate (the surface to cut the ion exchange layer), and it was confirmed that the ion exchange layer was formed.
  • an adhesion layer, an underlayer, a magnetic layer, a protective layer, and a lubricating layer are formed in this order on the main surface of the glass substrate obtained from the glass of the example.
  • an adhesion layer, an underlayer, and a magnetic layer were sequentially formed in an Ar atmosphere by a DC magnetron sputtering method using a film forming apparatus that was evacuated.
  • a protective layer made of hydrogenated carbon was formed by a CVD method using ethylene as a material gas.
  • a lubricating layer using PFPE perfluoropolyether
  • the thickness of the lubricating layer was 1 nm.
  • a magnetic disk was obtained by the above manufacturing process.
  • Substrate evaluation surface roughness, surface waviness
  • a rectangular area of 5 ⁇ m ⁇ 5 ⁇ m on the main surface (surface on which the magnetic recording layer etc. is laminated) of each substrate of the example is observed with an atomic force microscope (AFM), and the surface roughness measured in the range of 1 ⁇ m ⁇ 1 ⁇ m
  • Arithmetic average Ra The arithmetic average Ra of the surface roughness measured in the range of 5 ⁇ m ⁇ 5 ⁇ m and the arithmetic average Wa of the surface waviness at wavelengths of 100 ⁇ m to 950 ⁇ m were measured.
  • the arithmetic average Ra of the surface roughness measured in the range of 1 ⁇ m ⁇ 1 ⁇ m is in the range of 0.15 to 0.25 nm, and the surface roughness is measured in the range of 5 ⁇ m ⁇ 5 ⁇ m.
  • the arithmetic average Ra is in the range of 0.12 to 0.15 nm
  • the arithmetic average Wa of the surface waviness at the wavelength of 100 ⁇ m to 950 ⁇ m is 0.4 to 0.5 nm, and there is no problem as a substrate used in the magnetic recording medium. It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Magnetic Record Carriers (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本発明は、モル%表示にて、SiO2を56~75%、Al23を1~11%、Li2Oを0%超4%以下、Na2Oを1%以上15%未満、K2Oを0%以上3%未満、含み、かつBaOを実質的に含まず、Li2O、Na2OおよびK2Oの合計含有量が6~15%、モル比(Li2O/Na2O)が0.50未満、モル比{K2O/(Li2O+Na2O+K2O)}が0.13以下、MgO、CaOおよびSrOの合計含有量が10~30%の範囲、MgOおよびCaOの合計含有量が10~30%の範囲、モル比{(MgO+CaO)/(MgO+CaO+SrO)}が0.86以上、上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量が20~40%、モル比{(MgO+CaO+Li2O)/(Li2O+Na2O+K2O+MgO+CaO+SrO)が0.50以上、ZrO2、TiO2、Y23、La23、Gd23、Nb25およびTa25の合計含有量が0%超かつ10%以下、モル比{(ZrO2+TiO2+Y23+La23+Gd23+Nb25+Ta25)/Al23}が0.40以上、ガラス転移温度が600℃以上、100~300℃における平均線膨張係数が70×10-7/℃以上、かつヤング率が80GPa以上であるガラスからなる磁気記録媒体用ガラス基板に関する。

Description

磁気記録媒体用ガラス基板、磁気記録媒体、および磁気記録媒体用ガラス基板ブランク
 本発明は、ハードディスク等の磁気記録媒体の基板として使用されるガラス基板、この基板を得るために使用可能な磁気記録媒体用ガラス基板ブランク、およびこの基板を備える磁気記録媒体に関する。
 インターネットなど、情報関連インフラ技術の進展に伴い、磁気ディスク、光ディスクなどの情報記録媒体の需要は急速に伸びている。コンピュータなどの磁気記憶装置の主要構成要素は、磁気記録媒体と磁気記録再生用の磁気ヘッドである。磁気記録媒体としてはフレキシブルディスクとハードディスクとが知られている。このうちハードディスク(磁気ディスク)用の基板材料としては、例えば、アルミニウム基板、ガラス基板、セラミック基板、カーボン基板等があり、実用的には、サイズや用途に応じて、主に、アルミニウム基板とガラス基板とが使用されている。ノートパソコン用ハードディスクドライブにおいては、耐衝撃性に加えて、磁気記録媒体の高密度記録化と薄型化に伴いディスク基板の表面平滑性の向上と基板の薄型化への要求はますます厳しくなっているため、表面硬度、剛性に劣るアルミニウム基板で対応するには限界がある。そこでガラス基板の開発が、現在主流となっている(例えば特表平9-507206号公報、特開2007-51064号公報、特開2001-294441号公報、特開2001-134925号公報、特開2001-348246号公報、特開2001-58843号公報、特開2006-327935号公報、特開2005-272212号公報、特開2004-43295号公報、および特開2005-314159号公報参照)。
 また近年、磁気記録媒体のより一層の高密度記録化を図ることを目的として、Fe-Pt系、Co-Pt系等の磁気異方性エネルギーが高い磁性材料(高Ku磁性材料)を使用することが検討されている(例えば特開2004-362746号公報参照)。高記録密度化のためには磁性粒子の粒径を小さくする必要があるが、一方で、粒径が小さくなると、熱揺らぎによる磁気特性の劣化が問題となる。高Ku磁性材料は熱揺らぎの影響を受けにくいため、高密度記録化に寄与すると期待されている。
 しかし上記高Ku磁性材料は、高Kuを実現するために特定の結晶配向状態を得る必要があり、そのため、高温での成膜、あるいは成膜後に高温で熱処理を行う必要がある。したがって、これらの高Ku磁性材料からなる磁気記録層を形成するためには、ガラス基板には上記高温処理に耐え得る高い耐熱性、即ち高いガラス転移温度を有することが求められる。ガラス基板の耐熱性が不十分であると、高温処理の際に基板に歪み等が生じてしまい、これが磁気ヘッドとの衝突を引き起こしてしまうからである。
 ところでディスク状の磁気記録媒体では、媒体を中心軸の周りに高速回転させつつ、磁気ヘッドを半径方向に移動させながら、回転方向に沿ってデータの書き込み、読み出しを行う。近年、この書き込み速度および読み出し速度を上げるため回転数は5400rpmから7200rpm、更には10000rpmと高速化する方向で進んでいるが、ディスク状の磁気記録媒体では、予め、中心軸からの距離に応じてデータを記録するポジションが割り当てられるため、ディスクが回転中に変形を起こすと磁気ヘッドの位置ズレが起こり、正確な読み取りが困難となる。
 また近年、磁気ヘッドへDFH(Dynamic Flying Height)機構を搭載させることで、磁気ヘッドの記録再生素子部と磁気記録媒体表面との間隙の大幅な狭小化(低浮上量化)を達成し更なる高記録密度化を図ることが行われている。DFH機構とは、磁気ヘッドの記録再生素子部の近傍に極小のヒーター等の加熱部を設けて、素子部周辺のみを媒体表面方向に向けて突き出す機能である。こうすることで、磁気ヘッドと媒体の磁性層との距離が近づくため、より小さい磁性粒子の信号も拾うことができるようになり、高記録密度化を達成することが可能となる。しかしその他方、磁気ヘッドの素子部と媒体表面との間隙が、例えば2nm以下と極めて小さくなるため、僅かな衝撃によっても磁気ヘッドが媒体表面に衝突しやすくなり、高速回転化するほどその傾向は顕著となる。したがって、特に高速回転時には、磁気ヘッドと媒体表面との衝突の原因となるディスク外周部における基板のたわみやバタツキ(フラッタリング)の発生は防ぐべきである。
 以上の理由から、磁気記録媒体用ガラス基板には高速回転時に大きな変形を起こさない高い剛性(ヤング率)を有することも求められる。
 更に、高い熱膨張係数を有するガラス基板を使用することにより、磁気記録媒体の記録再生の信頼性を高めることができる。これは以下の理由による。
 磁気記録媒体を組み込んだHDD(ハードディスクドライブ)は、中央部分をスピンドルモーターのスピンドルで押さえて磁気記録媒体そのものを回転させる構造となっている。そのため、磁気記録媒体基板とスピンドル部分を構成するスピンドル材料の各々の熱膨張係数に大きな差があると、使用時に周囲の温度変化に対してスピンドルの熱膨張・熱収縮と磁気記録媒体基板の熱膨張・熱収縮にずれが生じてしまい、結果として磁気記録媒体が変形してしまう現象が起きる。このような現象が生じると書き込んだ情報をヘッドが読み出せなくなってしまい、記録再生の信頼性を損なう原因となる。したがって磁気記録媒体の信頼性を高めるには、ガラス基板には、スピンドル材料(例えばステンレスなど)と同程度の高い熱膨張係数を有することが求められる。
 以上説明したように、更なる高密度記録化に対応可能な磁気記録媒体を提供するためには、高耐熱性、高剛性、高熱膨張係数という特性を兼ね備えたガラス基板が求められる。しかし本願発明者らの検討によれば、上記文献に記載のガラス基板をはじめとする従来のガラス基板には、これら特性を同時に満たすものはなかった。これは、これら特性がトレードオフの関係にあり、すべてを満たすガラス基板を実現することが困難であったからである。
 加えて、磁気記録媒体用のガラス基板に求められる望ましい特性として、化学強化性能が高い(化学強化処理によるイオン交換層の形成が容易である)ことも挙げられる。磁気記録媒体用ガラス基板には、信頼性を高めるべく破壊耐性を増すために、化学強化処理によって基板表面にイオン交換層(圧縮応力層)を形成することが行われることが多いからである。また、化学強化処理は、ガラス基板表面からのアルカリ溶出量を低減する効果もある。
 そこで本発明の目的は、高い耐熱性、高剛性、高熱膨張係数、および好ましくは高い化学強化性能をも兼ね備えた、磁気記録媒体用ガラス基板を提供することにある。
 本願発明者らは、上記目的を達成するために相当数のガラス組成の試作と評価を繰り返し試行錯誤を重ねた結果、高い耐熱性、高剛性、高熱膨張係数という、従来トレードオフの関係にあり同時に実現することが困難であった特性を兼ね備え、更には高い化学強化性能をも有するガラスを見出し、本発明を完成するに至った。
 本発明の一態様は、
モル%表示にて、
SiO2を56~75%、
Al23を1~11%、
Li2Oを0%超かつ4%以下、
Na2Oを1%以上かつ15%未満、
2Oを0%以上かつ3%未満、
含み、かつBaOを実質的に含まず、
Li2O、Na2OおよびK2Oからなる群から選ばれるアルカリ金属酸化物の合計含有量が6~15%の範囲であり、
Na2O含有量に対するLi2O含有量のモル比(Li2O/Na2O)が0.50未満であり、
上記アルカリ金属酸化物の合計含有量に対するK2O含有量のモル比{K2O/(Li2O+Na2O+K2O)}が0.13以下であり、
MgO、CaOおよびSrOからなる群から選ばれるアルカリ土類金属酸化物の合計含有量が10~30%の範囲であり、
MgOおよびCaOの合計含有量が10~30%の範囲であり、
上記アルカリ土類金属酸化物の合計含有量に対するMgOおよびCaOの合計含有量のモル比{(MgO+CaO)/(MgO+CaO+SrO)}が0.86以上であり、
上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量が20~40%の範囲であり、
上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量に対するMgO、CaOおよびLi2Oの合計含有量のモル比{(MgO+CaO+Li2O)/(Li2O+Na2O+K2O+MgO+CaO+SrO)が0.50以上であり、
ZrO2、TiO2、Y23、La23、Gd23、Nb25およびTa25からなる群から選ばれる酸化物の合計含有量が0%超かつ10%以下であり、
Al23含有量に対する上記酸化物の合計含有量のモル比{(ZrO2+TiO2+Y23+La23+Gd23+Nb25+Ta25)/Al23}が0.40以上であり、
ガラス転移温度が600℃以上、100~300℃における平均線膨張係数が70×10-7/℃以上、かつヤング率が80GPa以上であるガラスからなる磁気記録媒体用ガラス基板、
に関する。
 上記ガラス基板は、FeおよびPtを含むか、またはCoおよびPtを含む磁気記録層を基板上に有する磁気記録媒体の該基板として使用され得る。
 上記ガラス基板は、エネルギーアシスト記録用磁気記録媒体の基板として使用され得る。
 上記ガラス基板は、熱アシスト記録用磁気記録媒体の基板として使用され得る。
 上記ガラス基板は、表面の一部または全部にイオン交換層を有し得る。
 上記イオン交換層は、Na、K、RbおよびCsからなる群から選ばれる少なくとも1種のアルカリ金属イオンによるイオン交換により形成されたものであり得る。
 上記ガラス基板は、30.0MNm/kg以上の比弾性率を有することができる。
 上記ガラス基板は、2.90以下の比重を有することができる。
 本発明の更なる態様は、上記ガラス基板上に磁気記録層を有することを特徴とする磁気記録媒体に関する。
 上記磁気記録層は、FeおよびPt、またはCoおよびPtを含み得る。
 上記磁気記録媒体は、エネルギーアシスト記録用磁気記録媒体であり得る。
 上記磁気記録媒体は、熱アシスト記録用磁気記録媒体であり得る。
 上記磁気記録媒体において、上記ガラス基板は表面の一部または全部にイオン交換層を有し得る。
 上記イオン交換層は、Na、K、RbおよびCsからなる群から選ばれる少なくとも1種のアルカリ金属イオンによるイオン交換により形成されたものであり得る。
 本発明の更なる態様は、
モル%表示にて、
SiO2を56~75%、
Al23を1~11%、
Li2Oを0%超かつ4%以下、
Na2Oを1%以上かつ15%未満、
2Oを0%以上かつ3%未満、
含み、かつBaOを実質的に含まず、
Li2O、Na2OおよびK2Oからなる群から選ばれるアルカリ金属酸化物の合計含有量が6~15%の範囲であり、
Na2O含有量に対するLi2O含有量のモル比(Li2O/Na2O)が0.50未満であり、
上記アルカリ金属酸化物の合計含有量に対するK2O含有量のモル比{K2O/(Li2O+Na2O+K2O)}が0.13以下であり、
MgO、CaOおよびSrOからなる群から選ばれるアルカリ土類金属酸化物の合計含有量が10~30%の範囲であり、
MgOおよびCaOの合計含有量が10~30%の範囲であり、
上記アルカリ土類金属酸化物の合計含有量に対するMgOおよびCaOの合計含有量のモル比{(MgO+CaO)/(MgO+CaO+SrO)}が0.86以上であり、
上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量が20~40%の範囲であり、
上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量に対するMgO、CaOおよびLi2Oの合計含有量のモル比{(MgO+CaO+Li2O)/(Li2O+Na2O+K2O+MgO+CaO+SrO)が0.50以上であり、
ZrO2、TiO2、Y23、La23、Gd23、Nb25およびTa25からなる群から選ばれる酸化物の合計含有量が0%超かつ10%以下であり、
Al23含有量に対する上記酸化物の合計含有量のモル比{(ZrO2+TiO2+Y23+La23+Gd23+Nb25+Ta25)/Al23}が0.40以上であり、
ガラス転移温度が600℃以上、100~300℃における平均線膨張係数が70×10-7/℃以上、かつヤング率が80GPa以上であるガラスからなる磁気記録媒体用ガラス基板ブランク、
に関する。上記ガラス基板ブランクに研削、研磨等の加工を施すことで、前記磁気記録媒体用ガラス基板を得ることができる。
 本発明によれば、高Ku磁性材料からなる磁気記録層を形成する際の高温熱処理に耐え得る高い耐熱性を有し、化学強化処理によるイオン交換層の形成が容易であり、支持部材(スピンドル)に匹敵する高い熱膨張係数を有し、かつ高速回転に耐え得る高い剛性を有するガラス基板を備えた磁気記録媒体を提供することができる。
図1は、抗折強度の測定方法の説明図である。
 本発明の一態様は、モル%表示にて、
モル%表示にて、
SiO2を56~75%、
Al23を1~11%、
Li2Oを0%超かつ4%以下、
Na2Oを1%以上かつ15%未満、
2Oを0%以上かつ3%未満、
含み、かつBaOを実質的に含まず、
Li2O、Na2OおよびK2Oからなる群から選ばれるアルカリ金属酸化物の合計含有量が6~15%の範囲であり、
Na2O含有量に対するLi2O含有量のモル比(Li2O/Na2O)が0.50未満であり、
上記アルカリ金属酸化物の合計含有量に対するK2O含有量のモル比{K2O/(Li2O+Na2O+K2O)}が0.13以下であり、
MgO、CaOおよびSrOからなる群から選ばれるアルカリ土類金属酸化物の合計含有量が10~30%の範囲であり、
MgOおよびCaOの合計含有量が10~30%の範囲であり、
上記アルカリ土類金属酸化物の合計含有量に対するMgOおよびCaOの合計含有量のモル比{(MgO+CaO)/(MgO+CaO+SrO)}が0.86以上であり、
上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量が20~40%の範囲であり、
上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量に対するMgO、CaOおよびLi2Oの合計含有量のモル比{(MgO+CaO+Li2O)/(Li2O+Na2O+K2O+MgO+CaO+SrO)が0.50以上であり、
ZrO2、TiO2、Y23、La23、Gd23、Nb25およびTa25からなる群から選ばれる酸化物の合計含有量が0%超かつ10%以下であり、
Al23含有量に対する上記酸化物の合計含有量のモル比{(ZrO2+TiO2+Y23+La23+Gd23+Nb25+Ta25)/Al23}が0.40以上であり、
ガラス転移温度が600℃以上、100~300℃における平均線膨張係数が70×10-7/℃以上、かつヤング率が80GPa以上であるガラスからなる磁気記録媒体用ガラス基板、
に関するものである。
 更に本発明は、前記した本発明のガラス基板を提供可能な磁気記録媒体用ガラス基板ブランクにも関する。
 本発明のガラス基板は、高Ku磁性材料からなる磁気記録層を形成する際の高温熱処理に耐え得る高い耐熱性を有し、支持部材(スピンドル)に匹敵する高い熱膨張係数を有し、かつ高速回転に耐え得る高い剛性を有するものであって、更には良好な化学強化性能をも有し得るものである。
 本発明の更なる態様は、本発明のガラス基板上に磁気記録層を有する磁気記録媒体に関する。
 以下、本発明について、更に詳細に説明する。
 本発明の磁気記録媒体は、例えば、ガラス基板の主表面上に、該主表面に近いほうから順に、少なくとも付着層、下地層、磁性層(磁気記録層)、保護層、潤滑層が積層された構成を有する、ディスク状磁気記録媒体(磁気ディスク、ハードディスクなどと呼ばれる)であることができる。
 例えばガラス基板を真空引きを行った成膜装置内に導入し、DCマグネトロンスパッタリング法にてAr雰囲気中で、ガラス基板主表面上に付着層から磁性層まで順次成膜する。付着層としては例えばCrTi、下地層としては例えばCrRuを用いることができる。上記成膜後、例えばCVD法によりC24を用いて保護層を成膜し、同一チャンバ内で、表面に窒素を導入する窒化処理を行うことにより、磁気記録媒体を形成することができる。その後、例えばPFPE(ポリフルオロポリエーテル)をディップコート法により保護層上に塗布することにより、潤滑層を形成することができる。
 また、下地層と磁性層との間には、軟磁性層、シード層、中間層などを、スパッタ法(DCマグネトロンスパッタ法、RFマグネトロンスパッタ法などを含む)、真空蒸着法などの公知の成膜方法を用いて形成してもよい。
 上記各層の詳細については、例えば特開2009-110626号公報段落[0027]~[0032]を参照できる。また、ガラス基板と軟磁性層との間には、熱伝導性の高い材料からなるヒートシンク層を形成することもできるが、その詳細は後述する。
 先に説明したように、磁気記録媒体のより一層の高密度記録化のためには、高Ku磁性材料から磁気記録層を形成することが好ましい。この点から好ましい磁性材料としては、Fe-Pt系磁性材料またはCo-Pt系磁性材料を挙げることができる。なおここで「系」とは、含有することを意味する。即ち、本発明の磁気記録媒体は、磁気記録層としてFeおよびPt、またはCoおよびPtを含む磁気記録層を有することが好ましい。例えばCo-Cr系等の従来汎用されていた磁性材料の成膜温度が250~300℃程度であるのに対し、Fe-Pt系磁性材料、Co-Pt系磁性材料の成膜温度は通常500℃超の高温である。更にこれら磁性材料は、通常、成膜後に結晶配向性を揃えるため、成膜温度を超える温度で高温の熱処理(アニール)が施される。したがって、Fe-Pt系磁性材料またはCo-Pt系磁性材料を用いて磁気記録層を形成する際には基板が上記高温に晒されることとなる。ここで基板を構成するガラスが耐熱性に乏しいものであると、高温下で変形し平坦性が損なわれる。これに対し本発明の磁気記録媒体に含まれる基板は、優れた耐熱性(ガラス転移温度として600℃以上)を示すものであるため、Fe-Pt系磁性材料またはCo-Pt系磁性材料を用いて磁気記録層を形成した後も、高い平坦性を維持することができる。上記磁気記録層は、例えば、Ar雰囲気中、Fe-Pt系磁性材料またはCo-Pt系磁性材料をDCマグネトロンスパッタリング法にて成膜し、次いで加熱炉内でより高温での熱処理を施すことにより形成することができる。
 ところで、Ku(結晶磁気異方性エネルギー定数)は保磁力Hcに比例する。保磁力Hcとは、磁化の反転する磁界の強さを表す。先に説明したように、高Ku磁性材料は熱揺らぎに対して耐性を有するため、磁性粒子を微粒子化しても熱揺らぎによる磁化領域の劣化が起こりにくく高密度記録化に好適な材料として知られている。しかし上記の通りKuとHcは比例関係にあるため、Kuを高めるほどHcも高まり、即ち磁気ヘッドによる磁化の反転が起こりにくくなり情報の書き込みが困難となる。そこで、記録ヘッドによる情報の書き込み時にヘッドからデータ書き込み領域に瞬間的にエネルギーを加え、保磁力を低下させることで高Ku磁性材料の磁化反転をアシストする記録方式が近年注目を集めている。このような記録方式は、エネルギーアシスト記録方式と呼ばれ、中でもレーザー光の照射により磁化反転をアシストする記録方式は熱アシスト記録方式、マイクロ波によりアシストする記録方式はマイクロ波アシスト記録方式と呼ばれる。前述のように、本発明によれば高Ku磁性材料による磁気記録層の形成が可能となるため、高Ku磁性材料とエネルギーアシスト記録の組み合わせにより、例えば面記録密度が1テラバイト/inch2を超える高密度記録を実現することができる。即ち、本発明の磁気記録媒体は、エネルギーアシスト記録方式に使用されることが好ましい。なお、熱アシスト記録方式については、例えばIEEE TRANSACTIONS ON MAGNETICS, VOL. 44, No. 1, JANUARY 2008 119に、マイクロ波アシスト記録方式については、例えばIEEE TRANSACTIONS ON MAGNETICS, VOL. 44, No. 1, JANUARY 2008 125に、それぞれ詳細に記載されており、本発明においてもこれら文献記載の方法により、エネルギーアシスト記録を行うことができる。
 本発明の磁気記録媒体用ガラス基板(例えば磁気ディスク用ガラス基板)、磁気記録媒体(例えば磁気ディスク)とも、その寸法に特に制限はないが、高記録密度化が可能であるため媒体および基板を小型化することができる。例えば、公称直径2.5インチは勿論、更に小径(例えば1インチ)の磁気ディスク基板または磁気ディスクとして好適である。
 次に、本発明のガラス基板について説明する。以下において、特記しない限り、各成分の含有量、合計含有量、比率はモル基準で表示するものとする。
 本発明のガラス基板は酸化物ガラスにより構成されるものであり、そのガラス組成は酸化物基準で表示するものとする。酸化物基準のガラス組成とは、ガラス原料が熔融時にすべて分解されてガラス中で酸化物として存在するものとして換算することにより得られるガラス組成である。なお、本発明のガラス基板は、非晶質性(アモルファス)のガラスからなる。したがって、結晶化ガラスとは異なり均質相からなるため、優れた基板表面の平滑性を実現することができる。
 SiO2は、ガラスのネットワーク形成成分であり、ガラス安定性、化学的耐久性、特に耐酸性を向上させる効果がある。磁気記録媒体用ガラス基板上に磁気記録層等を成膜する工程や前記工程により形成した膜を熱処理するため、輻射によって基板を加熱する際、基板の熱拡散を低下させ、加熱効率を高める働きをする成分でもある。SiO2の含有量が56%未満では化学的耐久性が低下し、75%を超えると高い剛性を有するガラスを得ることが困難となる。また、SiO2の含有量が75%を超えるとSiO2が完全に熔けずにガラス中に未熔解物が生じたり、清澄時のガラスの粘性が高くなりすぎて泡切れが不十分になる。未熔解物を含むガラスから基板を作製すると、研磨によって基板表面に未熔解物による突起が生じ、極めて高い表面平滑性が求められる磁気記録媒体基板としては使用できなくなる。また、泡を含むガラスから基板を作製すると、研磨によって基板表面に泡の一部が現れ、その部分が窪みとなって基板の主表面の平滑性が損なわれるため、やはり磁気記録媒体基板として使用できなくなる。以上より、SiO2の含有量は56~75%とする。SiO2の含有量の好ましい範囲は58~70%、より好ましい範囲は60~70%である。
 Al23もガラスのネットワーク形成に寄与し、剛性および耐熱性を向上させる働きをする成分である。ただしAl23の含有量が11%を超えるとガラスの耐失透性(安定性)が低下するため、その導入量は11%以下とする。他方、Al23の含有量が1%未満では、ガラスの安定性、化学的耐久性、および耐熱性が低下するため、その導入量は1%以上とする。したがって、本発明のガラス基板においてAl23の含有量は、1~11%の範囲である。ガラスの安定性、化学的耐久性および耐熱性の観点から、Al23の含有量の好ましい範囲は1~10%、より好ましい範囲は2~9%、更に好ましい範囲は3~8%である。
 Li2Oは、ガラスの剛性を高める成分であることから、本発明のガラス基板における必須成分である。また、アルカリ金属の中でガラス中の移動のしやすさはLi>Na>Kの順であるため、化学強化性能の観点からもLiの導入は有利である。ただし、導入量が過剰であると耐熱性の低下を招くため、その導入量は4%以下とする。即ち、本発明のガラス基板においてLi2Oの含有量は0%超かつ4%以下である。高剛性、高耐熱性および化学強化性能の観点から、Li2Oの含有量の好ましい範囲は0.1~3.5%、より好ましい範囲は0.5~3%、更に好ましい範囲は1%超かつ3%以下、より一層好ましい範囲は1%超かつ2.5%以下である。
 また、上記の通りLi2Oは過剰量の導入により耐熱性の低下を招くが、Na2Oに対する導入量が過剰になっても耐熱性の低下を招くため、Na2O含有量に対するLi2O含有量のモル比(Li2O/Na2O)が0.50未満の範囲となるように、その導入量をNa2O導入量に対して調整する。Li2Oの導入による効果を得つつ耐熱性の低下を抑制する観点から、上記モル比(Li2O/Na2O)は0.01以上0.50未満の範囲とすることが好ましく、0.02~0.40の範囲とすることがより好ましく、0.03~0.40の範囲とすることが更に好ましく、0.04~0.30の範囲とすることがより一層好ましく、0.05~0.30の範囲とすることがなお一層好ましい。
 加えて、Li2Oの導入量がアルカリ金属酸化物の合計含有量(Li2O+Na2O+K2O)に対して過剰であっても耐熱性の低下を招き、過少になると化学強化性能の低下を招くため、アルカリ金属酸化物の合計含有量に対するLi2O含有量のモル比{Li2O/(Li2O+Na2O+K2O)}が1/3未満の範囲となるように、Li2Oの導入量をアルカリ金属酸化物の合計に対して調整することが好ましい。Li2Oの導入による効果を得つつ耐熱性の低下を抑制する観点から、モル比{Li2O/(Li2O+Na2O+K2O)}のより好ましい上限は0.28、更に好ましい上限は0.23である。化学強化性能の低下を抑制する観点から、モル比{Li2O/(Li2O+Na2O+K2O)}の好ましい下限は0.01、より好ましい下限は0.02、更に好ましい下限は0.03、一層好ましい下限は0.04、より一層好ましい下限は0.05である。
 Na2Oは熱膨張特性改善に有効な成分であることから、本発明のガラス基板における必須成分であって1%以上導入する。また、Na2Oは化学強化性能にも寄与する成分であるため、1%以上導入することは化学強化性能の観点からも有利である。ただしその導入量が15%以上になると耐熱性の低下を招く。したがって本発明のガラス基板におけるNa2Oの含有量は1%以上かつ15%未満とする。熱膨張特性、耐熱性および化学強化性能の観点から、Na2Oの含有量の好ましい範囲は4~13%、より好ましい範囲は5~11%である。
 K2Oは熱膨張特性改善に有効な成分であることから、本発明のガラス基板に導入し得る任意成分であるが、過剰量の導入により耐熱性、熱伝導率の低下を招き、化学強化性能も悪化することから、その導入量は3%未満とする。即ち、本発明のガラス基板において、K2Oの含有量は0%以上かつ3%未満である。耐熱性を維持しつつ熱膨張特性を改善する観点から、K2Oの含有量の好ましい範囲は0~2%、より好ましい範囲は0~1%、更に好ましい範囲は0~0.5%、より一層好ましい範囲は0~0.1%であり、耐熱性および化学強化性能の観点からは、実質的に導入しないことが好ましい。なお本発明において、「実質的に含まない」、「実質的に導入しない」とは、ガラス原料中に意図して特定の成分を加えないことを意味し、不純物として混入することまで排除するものではない。ガラス組成に関する0%との記載も同義である。
 また、本発明のガラス基板のLi2O、Na2OおよびK2Oからなる群から選ばれるアルカリ金属酸化物の合計含有量が6%未満ではガラスの熔融性および熱膨張特性が低下し、15%を超えると耐熱性が低下する。したがって、ガラスの熔融性、熱膨張特性および耐熱性の観点から、本発明のガラス基板のLi2O、Na2OおよびK2Oからなる群から選ばれるアルカリ金属酸化物の合計含有量は6~15%とし、好ましくは7~15%、より好ましくは8~13%、更に好ましくは8~12%の範囲とする。
 本発明のガラス基板はBaOを実質的に含まないものである。BaOの導入を排除する理由は、以下の通りである。
 記録密度を高めるためには磁気ヘッドと磁気記録媒体表面との距離を近づけ、書き込み・読み込み分解能を挙げる必要がある。そのため近年、ヘッドの低浮上量化(磁気ヘッドと磁気記録媒体表面との間のスペーシングの低減)が進められており、これに伴い磁気記録媒体表面にはわずかな突起の存在も許容されなくなってきている。低浮上量化された記録再生システムでは、微小突起であってもヘッドと衝突しヘッド素子の損傷等の原因となるからである。一方、BaOは大気中の炭酸ガスとの反応によりガラス基板表面の付着物となるBaCO3を生成する。したがって付着物低減の観点からBaOを含有させない。加えてBaOはガラス表面の変質(ヤケと呼ばれる)の発生原因となり、基板表面に微小突起を形成するおそれのある成分であるため、ガラス表面のヤケの防止のためにもBaOを排除する。なお、Baフリー化は環境への負担を軽減するうえからも好ましい。
 加えて、ガラス基板がBaOを実質的に含まないことは、熱アシスト記録方式に使用される磁気記録媒体として望ましい。以下、その理由を説明する。
 記録密度を高めるほどビットサイズは小さくなり、例えば1テラバイト/inch2を超える高密度記録を実現するためのビットサイズの目標値は数十nm径とされている。このような微小ビットサイズで記録する場合、熱アシスト記録では加熱領域をビットサイズと同程度に小さくする必要がある。また、微小ビットサイズで高速記録するためには、1つのビットの記録に費やすことのできる時間は極短時間となるため、熱アシストによる加熱と冷却を瞬間的に完了する必要がある。即ち、熱アシスト記録用磁気記録媒体では、加熱と冷却は可能な限り速やかに、かつ局所的に行われることが求められる。
 そこで熱アシスト記録用磁気記録媒体の基板と磁気記録層との間に、高い熱伝導率を有する材料からなるヒートシンク層(例えばCu膜)を設けることが提案されている(例えば特開2008-52869号公報参照)。ヒートシンク層は、面内方向への熱の広がりを抑え、かつ垂直方向(深さ方向)への熱の流れを加速することで、記録層に与えられた熱を面内方向ではなく垂直方向(厚さ方向)に逃がす役割を果たす層である。ヒートシンク層を厚くするほど、加熱と冷却を短時間かつ局所的に行うことができるが、ヒートシンク層を厚くするためには、成膜時間を長くする必要があるため、生産性が低下してしまう。また、ヒートシンク層の厚みが増すことにより、層成膜時の熱の蓄積も多くなることから、結果的にその上層に形成される磁性層の結晶性や結晶配向性が乱れ、記録密度の改善が困難になる場合がある。更に、ヒートシンク層が厚くなるほど、ヒートシンク層にコロージョンが発生し、膜全体が隆起して凸欠陥が発生する可能性が高くなり、低浮上量化の妨げとなる。特にヒートシンク層に鉄材料が用いられている場合、上記現象を発生する可能性が高い。
 以上説明したように、厚膜のヒートシンク層を設けることは、加熱と冷却を短時間かつ局所的に行ううえでは有利であるが、生産性、記録密度の改善、低浮上量化の観点からは望ましくない。この対策として、ヒートシンク層が担う役割を補うべくガラス基板の熱伝導率を高めることが考えられる。
 ここで本発明のガラス基板は、SiO2、Al23、アルカリ金属酸化物、アルカリ土類金属酸化物などを構成成分とする。この中で、アルカリ金属酸化物、アルカリ土類金属酸化物は修飾成分としてガラスの熔融性を改善したり、熱膨張係数を増加させる働きを有する。したがって、一定量をガラスに導入する必要があるが、この中で最も原子番号が大きいBaはガラスの熱伝導率を低下させる働きが大きい。本発明のガラス基板は、BaOを含まないためBaOによる熱伝導率低下がなく、したがってヒートシンク層の薄膜化を進めたとしても、加熱と冷却を短時間かつ局所的に行うことを可能とするものである。
 なお、アルカリ土類金属酸化物の中でBaOが最もガラス転移温度を高く維持する働きを有する。このBaOをフリー化することによりガラス転移温度が低下しないよう、本発明のガラス基板では、アルカリ土類金属酸化物であるMgO、CaOおよびSrOの合計含有量に対するMgOおよびCaOの合計含有量のモル比{(MgO+CaO)/(MgO+CaO+SrO)}を0.86以上とする。アルカリ土類金属酸化物の総量を一定とした場合、この総量を多種のアルカリ土類金属酸化物に配分するよりも1種または2種のアルカリ土類金属酸化物に集中して配分することで、ガラス転移温度を高く維持することができるからである。即ち、本発明のガラス基板では、BaOフリー化によるガラス転移温度の低下を、上記モル比を0.86以上とすることで抑制しているのである。また、ガラス基板に求められる特性の1つが高剛性(高ヤング率)であることは前述の通りであるが、ガラス基板に求められる望ましい特性としては後述するように比重が小さいことも挙げられる。高ヤング率化および低比重化のためには、アルカリ土類金属酸化物の中でMgOとCaOの導入を優先することが有利であり、したがって上記モル比を0.86以上とすることは、ガラス基板の高ヤング率化および低比重化を実現する効果もある。上記説明した観点から、前記モル比は、好ましくは0.88以上、より好ましくは0.90以上、更に好ましくは0.93以上、より一層好ましくは0.95以上、なお一層好ましくは0.97以上、更に一層好ましくは0.98以上、特に好ましくは0.99以上、最も好ましくは1である。
 MgO、CaOおよびSrOからなる群から選ばれるアルカリ土類金属酸化物の合計含有量は過少ではガラスの剛性および熱膨張特性が低下し、過剰では化学的耐久性が低下する。本発明のガラス基板では、高剛性、高熱膨張特性および良好な化学的耐久性を実現するために、上記アルカリ土類金属酸化物の合計含有量を10~30%とし、好ましくは10~25%、より好ましくは11~22%、更に好ましくは12~22%、より一層好ましくは13~21%、更に一層好ましくは15~20%の範囲とする。
 また、上記のとおりMgOおよびCaOは優先して導入される成分であり、合計で10~30%の量となるように導入される。MgOとCaOの合計含有量が10%未満では、剛性および熱膨張特性が低下し、30%を超えると化学的耐久性が低下するからである。MgOとCaOを優先して導入することによる効果を良好に得る観点から、MgOとCaOの合計含有量の好ましい範囲は10~25%、より好ましい範囲は10~22%、更に好ましい範囲は11~20%、より一層好ましい範囲は12~20%である。
 また、アルカリ金属酸化物の中ではK2Oが原子番号が大きく熱伝導率を低下させる働きが大きいこと、化学強化性能の点では不利であることから、K2Oの含有量はアルカリ金属酸化物の総量に対して制限される。本発明のガラス基板では、アルカリ金属酸化物の合計含有量に対するK2O含有量のモル比{K2O/(Li2O+Na2O+K2O)}を0.13以下とする。化学強化性能および熱伝導率の観点から、上記モル比は好ましくは0.10以下、より好ましくは0.08以下、更に好ましくは0.06以下、より一層好ましくは0.05以下、なお一層好ましくは0.03、更に一層好ましくは0.02以下、特に好ましくは0.01以下、最も好ましくは実質的にゼロ、即ちK2Oを導入しないことが最も好ましい。
 本発明のガラス基板における上記アルカリ金属酸化物とアルカリ土類金属酸化物の合計含有量(Li2O+Na2O+K2O+MgO+CaO+SrO)は、20~40%である。20%未満ではガラスの熔融性、熱膨張係数および剛性が低下し、40%を超えると化学的耐久性および耐熱性が低下するからである。上記諸特性を良好に維持する観点から、上記アルカリ金属酸化物とアルカリ土類金属酸化物の合計含有量の好ましい範囲は20~35%、より好ましい範囲は21~33%、更に好ましい範囲は23~33%である。
 前述のとおりMgO、CaOおよびLi2Oはガラスの剛性を高める(高ヤング率化)を実現するために有効な成分であり、これら3成分の合計が上記アルカリ金属酸化物とアルカリ土類金属酸化物の合計に対して過少になると、ヤング率を高めることが困難となる。そこで本発明のガラス基板では、上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量に対するMgO、CaOおよびLi2Oの合計含有量のモル比{(MgO+CaO+Li2O)/(Li2O+Na2O+K2O+MgO+CaO+SrO)が0.50以上となるように、MgO、CaOおよびLi2Oの導入量を上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計に対して調整する。ガラス基板のヤング率をより一層高めるためには、上記モル比は0.51以上とすることが好ましく、0.52以上とすることが好ましい。また、ガラスの安定性の観点からは、上記モル比は0.80以下とすることが好ましく、0.75以下とすることがより好ましく、0.70以下とすることがより一層好ましい。
 また、各アルカリ土類金属酸化物の導入量については、上記のとおりBaOは実質的に導入しない。
 MgOはヤング率向上と低比重化、更にはこれによる比弾性率向上の観点から、好ましい含有量は0~14%、より好ましくは0~10%、更に好ましくは0~8%、より一層好ましくは0~6%、更に一層好ましくは1~6%の範囲である。なお比弾性率については後述する。
 CaOは熱膨張特性およびヤング率の向上、ならびに低比重化の観点から、好ましい導入量は3~20%、より好ましくは4~20%、更に好ましくは10~20%の範囲である。
 SrOは熱膨張特性を向上する成分であるがMgO、CaOと比べて比重を高める成分であるため、その導入量は4%以下とすることが好ましく、3%以下とすることが好ましく、2.5%以下とすることがより好ましく、2%以下とすることが好ましく、1%以下とすることがより好ましく、実質的に導入しなくてもよい。
 本発明のガラス基板におけるSiO2、Al23、アルカリ金属酸化物およびアルカリ土類金属酸化物の含有量および割合については、前述の通りであるが、本発明のガラス基板は以下に示す酸化物成分も含むものである。以下、それらの詳細について説明する。
 ZrO2、TiO2、Y23、La23、Gd23、Nb25およびTa25からなる群から選ばれる酸化物は、剛性および耐熱性を高める成分であるため少なくとも一種を導入するが、過剰量の導入によりガラスの熔融性および熱膨張特性が低下する。したがって、本発明のガラス基板において上記酸化物の合計含有量は0%超かつ10%以下とし、好ましくは1~10%、より好ましくは2~10%、更に好ましくは2~9%、より一層好ましくは2~7%、なお一層好ましくは2~6%の範囲とする。
 また、上記のとおりAl23も剛性および耐熱性を高める成分であるが、ヤング率を高める働きは上記酸化物の方が大きい。上記酸化物をAl23に対して0.4以上のモル比で導入することにより、即ち、Al23含有量に対する上記酸化物の合計含有量のモル比{(ZrO2+TiO2+Y23+La23+Gd23+Nb25+Ta25)/Al23}を0.40以上とすることにより、剛性および耐熱性の向上を実現することができる。剛性および耐熱性をより一層向上する観点から、上記モル比は、0.50以上とすることが好ましく、0,60以上とすることが好ましく、0.70以上とすることがより好ましい。また、ガラスの安定性の観点からは、上記モル比は4.00以下とすることが好ましく、3.00以下とすることがより好ましく、2.00以下とすることが更に好ましく、1.00以下とすることがより一層好ましく、0.90以下とすることがなお一層好ましく、0.85以下とすることが更に一層好ましい。
 また、B23は、ガラス基板の脆さを改善し、ガラスの熔融性を向上する成分であるが、過剰量の導入により耐熱性が低下するため、その導入量は0~3%とすることが好ましく、0~2%とすることがより好ましく、0%以上1%未満とすることがより好ましく、0~0.5%とすることが好ましく、実質的に導入しなくてもよい。
 Cs2Oは所望の特性、性質を損なわない範囲で少量導入し得る成分であるが、他のアルカリ金属酸化物と比べて比重を増加させる成分であるため、実質的に導入しなくてもよい。
 ZnOは、ガラスの熔融性、成形性および安定性を良化し、剛性を高め、熱膨張特性を向上する成分であるが、過剰量の導入で耐熱性および化学的耐久性が低下するため、その導入量は0~3%とすることが好ましく、0~2%とすることがより好ましく、0~1%とすることが更に好ましく、実質的に導入しなくてもよい。
 ZrO2は上記のとおり剛性および耐熱性を高める成分であり、かつ化学的耐久性を高める成分でもあるが、過剰量の導入でガラスの熔融性が低下するため、その導入量は1~8%とすることが好ましく、1~6%とすることがより好ましく、2~6%とすることが更に好ましい。
 TiO2はガラスの比重の増加を抑え、かつ剛性を向上する作用があり、これにより比弾性率を高めることができる成分である。ただし過剰量導入するとガラス基板が水と接触した際に基板表面に水との反応生成物が生じ付着物発生の原因となる場合があるため、その導入量は0~6%とすることが好ましく、0~5%とすることがより好ましく、0~3%とすることが更に好ましく、0~2%とすることがより一層好ましく、0%以上1%未満とすることがなお一層好ましく、実質的に導入しなくてもよい。
 Y23、Yb23、La23、Gd23、Nb25およびTa25は、化学的耐久性、耐熱性向上、剛性や破壊靱性向上の点で有利な成分であるが、過剰量の導入で熔融が悪化し、比重も重くなる。また高価な原料を使用することになるので、含有量を少なくすることが好ましい。したがって上記成分の導入量は合計量として、0~3%とすることが好ましく、0~2%とすることがより好ましく、0~1%とすることが更に好ましく、0~0.5%とすることがより一層好ましく、0~0.1%とすることがなお一層好ましく、熔融性向上、低比重化およびコスト低減を重視する際には実質的に導入しないことが好ましい。
 HfO2も、化学的耐久性、耐熱性向上、剛性や破壊靱性向上の点で有利な成分であるが、過剰量の導入で熔融性が悪化し、比重も重くなる。また高価な原料を使用することになるので、含有量を少なくすることが好ましく、実質的に導入しないことが好ましい。
 Pb、As、Cd、Te、Cr、Tl、UおよびThは、環境への影響を考慮し、実質的に導入しないことが好ましい。
 また、前記アルカリ金属酸化物(Li2O、Na2OおよびK2O)の合計含有量に対するSiO2、Al23、ZrO2、TiO2、Y23、La23、Gd23、Nb25およびTa25の合計含有量のモル比{(SiO2+Al23+ZrO2+TiO2+Y23+La23+Gd23+Nb25+Ta25)/(Li2O+Na2O+K2O)}は、耐熱性を高めるとともに熔融性を高める観点から、好ましい範囲は3~15であり、より好ましくは3~12、更に好ましくは4~12、一層好ましくは5~12、より一層好ましくは5~11、なお一層好ましくは5~10の範囲である。
 次に、本発明のガラス基板の諸特性について説明する。
1.熱膨張係数
 前述のとおり、磁気記録媒体用ガラス基板を構成するガラスとHDDのスピンドル材料(例えば、ステンレスなど)の熱膨張係数の差が大きいと、HDDの動作時における温度変化によって磁気記録媒体が変形し、記録再生トラブルが起こるなど信頼性が低下することになってしまう。特に、高Ku磁性材料からなる磁気記録層を有する磁気記録媒体は、記録密度が極めて高いため、磁気記録媒体の僅かな変形によっても前記トラブルが起こりやすくなる。一般にHDDのスピンドル材料は、100~300℃の温度範囲において70×10-7/℃以上の平均線膨張係数(熱膨張係数)を有するものであるところ、本発明のガラス基板は、100~300℃の温度範囲における平均線膨張係数が70×10-7/℃以上であるため、上記信頼性を向上することができ、高Ku磁性材料からなる磁気記録層を有する磁気記録媒体に好適な基板を提供することができる。平均線膨張係数は、熱膨張特性に影響を及ぼすものとして前記したガラス成分の含有量および割合を調整することにより制御することができる。前記平均線膨張係数の好ましい範囲は71×10-7/℃以上、より好ましい範囲は72×10-7/℃以上、さらに好ましい範囲は73×10-7/℃以上、一層好ましい範囲は74×10-7/℃以上、より一層好ましい範囲は75×10-7/℃以上である。前記平均線膨張係数の上限は、スピンドル材料の熱膨張特性を考慮すると、例えば120×10-7/℃程度であることが好ましく、100×10-7/℃であることがより好ましく、88×10-7/℃であることがさらに好ましい。
2.ガラス転移温度
 前述のとおり、高Ku磁性材料の導入などによって磁気記録媒体の高記録密度化を図る場合、磁性材料の高温処理などにおいて、磁気記録媒体用ガラス基板は高温下に晒されることになる。その際、基板の極めて高い平坦性が損なわれないようにするため、磁気記録媒体用ガラス基板には優れた耐熱性を有することが求められる。耐熱性の指標としてはガラス転移温度が用いられ、本発明のガラス基板は、600℃以上のガラス転移温度を有することで、高温処理後にも優れた平坦性を維持することができる。したがって、本発明のガラス基板は、高Ku磁性材料を備えた磁気記録媒体の作製に好適である。ガラス転移温度は、耐熱性に影響を及ぼすものとして前記したガラス成分の含有量および割合を調整することにより制御することができる。ガラス転移温度の好ましい範囲は610℃以上、より好ましい範囲は620℃以上、さらに好ましい範囲は630℃以上である。ガラス転移温度の上限は、例えば750℃程度であるがガラス転移温度は高いほど好ましく特に限定されるものではない。
3.ヤング率
 磁気記録媒体の変形としては、HDDの温度変化による変形の他、高速回転による変形がある。高速回転時の変形を抑制する上から、上記のように磁気記録媒体基板のヤング率を高めることが求められる。本発明のガラス基板は、80GPa以上のヤング率を有するため、高速回転時の基板変形を抑制し、高Ku磁性材料を備えた高記録密度化された磁気記録媒体においても、データの読み取り、書き込みを正確に行うことができる。ヤング率は、剛性に影響を及ぼすものとして前記したガラス成分の含有量および割合を調整することにより制御することができる。ヤング率の好ましい範囲は81GPa以上、より好ましい範囲は82GPa以上であり、更に好ましくは83GPa以上であり、より一層好ましくは84GPa以上であり、更に一層好ましくは85GPa以上であり、なお一層好ましくは86GPa以上である。ヤング率の上限は、例えば95GPa程度であるが、高いほど好ましく特に限定されるものではない。
4.比弾性率・比重
 磁気記録媒体を高速回転させたときの変形(基板のたわみ)を抑制する観点から、本発明のガラス基板の比弾性率は30.0MNm/kg以上であることが好ましく、30.0MNm/kg超であることがより好ましく、30.5MNm/kg以上であることが更に好ましい。その上限は、例えば40.0MNm/kg程度であるが特に限定されるものではない。比弾性率はガラスのヤング率を密度で除したものである。ここで密度とはガラスの比重に、g/cm3という単位を付けた量と考えればよい。ガラスの低比重化によって、比弾性率を大きくすることができることに加え、基板を軽量化することができる。基板の軽量化により、磁気記録媒体の軽量化がなされ、磁気記録媒体の回転に要する電力を減少させ、HDDの消費電力を抑えることができる。本発明のガラス基板の比重の好ましい範囲は2.90以下、より好ましい範囲は2.80以下、さらに好ましい範囲は2.70未満である。ガラス基板の比重は、比重に影響を及ぼすものとして前記したガラス成分の含有量および割合を調整することにより制御することができる。
5.耐酸性
 磁気記録媒体用ガラス基板を生産する際には、ガラスをディスク形状に加工し、主表面を極めて平坦かつ平滑に加工する。そして、前記加工工程の後、通常、ガラス基板を酸洗浄して表面に付着した汚れである有機物を除去する。ここでガラス基板が耐酸性に劣るものであると、上記酸洗浄時に面荒れを起こし、平坦性、平滑性が損なわれ磁気記録媒体用ガラス基板として使用することが困難となる。特にガラス基板表面の高い平坦性、平滑性が求められる高Ku磁性材料からなる磁気記録層を有する、高記録密度化された磁気記録媒体用ガラス基板は、優れた耐酸性を有することが望ましい。
 また、酸洗浄に続いて、アルカリ洗浄して表面に付着した研磨剤などの異物を除去して一層清浄な状態の基板を得ることができる。アルカリ洗浄時にも面荒れによる基板表面の平坦性、平滑性の低下を防ぐ上からガラス基板は耐アルカリ性に優れたものであることが好ましい。優れた耐酸性および耐アルカリ性を有し基板表面の平坦性、平滑性が高いことは、前述の低浮上量化の観点からも有利である。本発明では前記したガラス組成の調整、特に化学的耐久性に有利な組成調整を行うことにより、優れた耐酸性および耐アルカリ性を実現することができる。
6.液相温度
 ガラスを熔融し、得られた熔融ガラスを成形する際、成形温度が液相温度を下回るとガラスが結晶化し、均質なガラスが生産できない。そのためガラス成形温度は液相温度以上にする必要があるが、成形温度が1300℃を超えると、例えば熔融ガラスをプレス成形する際に用いるプレス成形型が高温のガラスと反応して、ダメージを受けやすくなる。熔融ガラスを鋳型に鋳込んで成形する場合も同様に鋳型がダメージを受けやすくなる。こうした点に配慮し、本発明のガラス基板を構成するガラスの液相温度は1300℃以下であることが好ましい。液相温度のより好ましい範囲は1280℃以下、さらに好ましい範囲は1250℃以下である。本発明では前記したガラス組成調整を行うことにより、上記好ましい範囲の液相温度を実現することができる。下限は特に限定されないが、800℃以上を目安に考えればよい。
7.分光透過率
 磁気記録媒体は、ガラス基板上に磁気記録層を含む多層膜を成膜する工程を経て生産される。現在、主流になっている枚葉式の成膜方式で基板上に多層膜を形成する際、例えばまずガラス基板を成膜装置の基板加熱領域に導入しスパッタリングリングなどによる成膜が可能な温度にまでガラス基板を加熱昇温する。ガラス基板の温度が十分昇温した後、ガラス基板を第1の成膜領域に移送し、ガラス基板上に多層膜の最下層に相当する膜を成膜する。次にガラス基板を第2の成膜領域に移送し、最下層の上に成膜を行う。このようにガラス基板を後段の成膜領域に順次移送して成膜することにより、多層膜を形成する。上記加熱と成膜は真空ポンプにより排気された低圧下で行うため、ガラス基板の加熱は非接触方式を取らざるを得ない。そのため、ガラス基板の加熱には輻射による加熱が適している。この成膜はガラス基板が成膜に好適な温度を下回らないうちに行う必要がある。各層の成膜に要する時間が長すぎると加熱したガラス基板の温度が低下し、後段の成膜領域では十分なガラス基板温度を得ることができないという問題が生じる。ガラス基板を長時間にわたって成膜可能な温度を保つためには、ガラス基板をより高温に加熱することが考えられるが、ガラス基板の加熱速度が小さいと加熱時間をより長くしなければならず、加熱領域にガラス基板が滞在する時間も長くしなければならない。そのため各成膜領域におけるガラス基板の滞在時間も長くなり、後段の成膜領域では十分なガラス基板温度を保てなくなってしまう。さらにスループットを向上することも困難となる。特に高Ku磁性材料からなる磁気記録層を備えた磁気記録媒体を生産する場合、所定時間内にガラス基板を高温に加熱するために、ガラス基板の輻射による加熱効率を一層高めるべきである。
 SiO2、Al23を含むガラスには、波長2750~3700nmを含む領域に吸収ピークが存在する。また、後述する赤外線吸収剤を添加するか、ガラス成分として導入することにより、さらに短波長の輻射の吸収を高めることができ、波長700nm~3700nmの波長領域に吸収を持たせることができる。ガラス基板を輻射、すなわち、赤外線照射により効率よく加熱するには、上記波長域にスペクトルの極大が存在する赤外線を用いることが望まれる。加熱速度を上げるには、赤外線のスペクトル極大波長と基板の吸収ピーク波長をマッチさせるとともに赤外線パワーを増やすことが考えられる。赤外線源として高温状態のカーボンヒータを例にとると、赤外線のパワーを増加するにはカーボンヒータの入力を増加すればよい。しかし、カーボンヒータからの輻射を黒体輻射と考えると、入力増加によってヒータ温度が上昇するため、赤外線のスペクトルの極大波長が短波長側にシフトし、ガラスの上記吸収波長域から外れてしまう。そのため、基板の加熱速度を上げるためにはヒータの消費電力を過大にしなければならず、ヒータの寿命が短くなってしまうなどの問題が発生する。
 このような点に鑑み、上記波長領域(波長700~3700nm)におけるガラスの吸収をより大きくすることにより、赤外線のスペクトル極大波長と基板の吸収ピーク波長を近づけた状態で赤外線の照射を行い、ヒータ入力を過剰にしないことが望ましい。そこで赤外線照射過熱効率を高めるため、ガラス基板としては、700~3700nmの波長域に、厚さ2mmに換算した分光透過率が50%以下となる領域が存在するか、または、前記波長域にわたり、厚さ2mmに換算した分光透過率が70%以下となる透過率特性を備えるものが好ましい。例えば、鉄、銅、コバルト、イッテルビウム、マンガン、ネオジム、プラセオジム、ニオブ、セリウム、バナジウム、クロム、ニッケル、モリブデン、ホルミウムおよびエルビウムの中から選ばれる少なくとも1種の金属の酸化物は、赤外線吸収剤として作用し得る。また、水分または水分に含まれるOH基は、3μm帯に強い吸収を有するため、水分も赤外線吸収剤として作用し得る。ガラス組成に上記赤外線吸収剤として作用し得る成分を適量導入することにより、ガラス基板に上記好ましい吸収特性を付与することができる。上記赤外線吸収剤として作用し得る酸化物の添加量は、酸化物として質量基準で500ppm~5%であることが好ましく、2000ppm~5%であることがより好ましく、2000ppm~2%であることがさらに好ましく、4000ppm~2%の範囲がより一層好ましい。また、水分については、H2O換算の重量基準で200ppm超含まれることが好ましく、220ppm以上含まれることがより好ましい。
 なお、Yb23、Nb25をガラス成分として導入する場合や清澄剤としてCe酸化物を添加する場合は、これら成分による赤外線吸収を基板加熱効率の向上に利用することができる。
 次に、ガラス基板の製造方法について説明する。
 まず、所定のガラス組成が得られるように酸化物、炭酸塩、硝酸塩、硫酸塩、水酸化物などのガラス原料を秤量、調合し、十分混合して、熔融容器内で、例えば1400~1600℃の範囲で加熱、熔融し、清澄、攪拌して十分泡切れがなされた均質化した熔融ガラスを作製する。なお、必要に応じてガラス原料に清澄剤を外割で添加してもよい。清澄剤としては、Sn酸化物およびCe酸化物を使用することが好ましい。これは以下の理由による。
 Sn酸化物は、ガラス熔融時、高温で酸素ガスを放出し、ガラス中に含まれる微小な泡を取り込んで大きな泡にすることで浮上しやすくすることにより清澄を促す働きに優れている。一方、Ce酸化物は、低温でガラス中にガスとして存在する酸素をガラス成分として取り込むことにより泡を消す働きに優れている。泡の大きさ(固化したガラス中に残留する泡(空洞)の大きさ)が0.3mm以下の範囲で、Sn酸化物は比較的大きな泡も極小の泡も除く働きが強い。Sn酸化物とともにCe酸化物を添加すると、50μm~0.3mm程度の大きな泡の密度が数十分の一程度にまで激減する。このように、Sn酸化物とCe酸化物を共存させることにより、高温域から低温域にわたり広い温度範囲でガラスの清澄効果を高めることができるため、Sn酸化物およびCe酸化物を添加することが好ましい。
 Sn酸化物およびCe酸化物の外割り添加量の合計が0.02質量%以上であれば、十分な清澄効果を期待することができる。微小かつ少量であっても未熔解物を含むガラスを用いて基板を作製すると、研磨によってガラス基板表面に未熔解物が現れると、ガラス基板表面に突起が生じたり、未熔解物が欠落した部分が窪みとなって、ガラス基板表面の平滑性が損なわれ、磁気記録媒体用の基板としては使用できなくなる。これに対しSn酸化物およびCe酸化物の外割り添加量の合計が3.5質量%以下であれば、ガラス中に十分に熔解し得るため未熔解物の混入を防ぐことができる。
 また、SnやCeは結晶化ガラスを作る場合には結晶核を生成する働きをする。本発明のガラス基板は非晶質性ガラスからなるので、加熱によって結晶を析出しないことが望ましい。Sn、Ceの量が過剰になると、こうした結晶の析出がおこりやすくなる。そのため、Sn酸化物、Ce酸化物とも過剰の添加は避けるべきである。
 以上の観点から、Sn酸化物およびCe酸化物の外割り添加量の合計を0.02~3.5質量%とすることが好ましい。Sn酸化物とCe酸化物の外割り添加量の合計の好ましい範囲は0.1~2.5質量%、より好ましい範囲は0.1~1.5質量%、さらに好ましい範囲は0.5~1.5質量%である。
 Sn酸化物としては、SnO2を用いることがガラス熔融中、高温で酸素ガスを効果的に放出する上から好ましい。
 なお、清澄剤として硫酸塩を外割りで0~1質量%の範囲で添加することもできるが、ガラス熔融中に熔融物が吹きこぼれるおそれがあり、ガラス中の異物が激増することから、上記吹きこぼれが懸念される場合は、硫酸塩を導入しないことが好ましい。なお、本発明の目的を損なわないものであって清澄効果が得られるものであれば、上記清澄剤以外のものを使用してもよい。ただし、前述のように環境負荷が大きいAsの添加は避けるべきである。またSbも環境への負荷を考慮すると使用しないことが好ましい。
 次に、作製した熔融ガラスをプレス成形法、ダウンドロー法またはフロート法のいずれかの方法により板状に成形し、得られた板状のガラスを加工する工程を経ることで、基板形状のガラス成形品、即ち本発明の磁気記録媒体用ガラス基板ブランク、を得ることができる。
 プレス成形法では、流出する熔融ガラスを切断し、所要の熔融ガラス塊を得て、これをプレス成形型でプレス成形して薄肉円盤状の基板ブランクを作製する。
 ダウンドロー法では、樋状の成形体を用いて熔融ガラスを導き、成形体の両側へと熔融ガラスをオーバーフローさせ、成形体の下方で成形体に沿って流下する2つの熔融ガラス流を合流させてから、下方に引っ張ってシート状に成形する。この方法はフュージョン法とも呼ばれ、成形体表面に接触したガラスの面を互いに張り合わせことにより、接触痕のないシートガラスを得ることができる。その後、得られたシート材から薄肉円盤状の基板ブランクがくり抜かれる。
 フロート法では、溶融錫などを蓄えたフロートバス上に熔融ガラスを流し出し、引っ張りながらシート状ガラスに成形する。その後、得られたシート材から薄肉円盤状の基板ブランクがくり抜かれる。
 このようにして得た基板ブランクに中心孔を設けたり、内外周加工、両主表面にラッピング、ポリッシングを施す。次いで、酸洗浄およびアルカリ洗浄を含む洗浄工程を経てディスク状の基板を得ることができる。
 なお、本発明において「主表面」とは、基板の磁気記録層が設けられる面または設けられている面である。こうした面は、磁気記録媒体基板の表面のうち、最も面積の広い面であることから、主表面と呼ばれ、ディスク状の磁気記録媒体の場合、ディスクの円形状の表面(中心穴がある場合は中心穴を除く。)に相当する。
 本発明のガラス基板は、前述の組成調整により良好な化学強化性能を付与されているため、化学強化処理によって表面にイオン交換層を容易に形成することができるものである。即ち、本発明のガラス基板は、表面の一部または全部にイオン交換層を有することができる。イオン交換層は、高温下、基板表面にアルカリ塩を接触させ、該アルカリ塩中のアルカリ金属イオンと基板中のアルカリ金属イオンを交換させることにより形成することができる。通常のイオン交換は、アルカリ硝酸塩を加熱して熔融塩とし、この熔融塩に基板を浸漬して行う。基板中のイオン半径の小さいアルカリ金属イオンに換えてイオン半径の大きいアルカリ金属イオンを導入すると、基板表面に圧縮応力層が形成される。これにより基板の破壊耐性を向上し、その信頼性を高めることができる。例えば、硝酸カリウムの熔融塩中にガラス基板を浸漬することにより、基板中のLiイオンおよびNaイオンと溶融塩中のKイオンが交換し、基板表面にイオン交換層が形成される。イオン交換により、基板表面からのアルカリ溶出量を低減することもできる。なお、化学強化する場合は、イオン交換を、基板を構成するガラスの歪点より高温かつガラス転移温度より低温で、アルカリ溶融塩が熱分解しない温度範囲で行うことが好ましい。基板がイオン交換層を有することは、ガラスの断面(イオン交換層を切る面)をバビネ法により観察して確認する方法、ガラス表面からアルカリ金属イオンの深さ方向の濃度分布を測定する方法等によって確認することができる。
 本発明のガラス基板は、前述のようにLi2Oを必須成分として含むものであるため、イオン交換は、Liよりもイオン半径の大きなNa、K、RbおよびCsからなる群から選ばれる少なくとも1種のアルカリ金属イオンによるイオン交換に付すことが好ましい。
 磁気記録媒体用ガラス基板の耐衝撃性の指標としては、一般に抗折強度が用いられている。抗折強度は、図1に示すようにホルダー上に配置したガラス基板の中心孔に鋼球を載せ、ロードセルによって荷重を加えていき、ガラス基板が破壊したときの荷重値として求めることができる。測定は、例えば抗折強度測定試験機(島津オートグラフDDS-2000)を用いて行うことができる。本発明のガラス基板は、例えば10kg以上、好ましくは15kg以上、さらに好ましくは20kg以上の抗折強度を有することが好ましく、前述の組成調整を行い、および任意に化学強化処理を施すことにより、上記範囲の抗折強度を実現することができる。
 本発明のガラス基板は、例えば厚みが1.5mm以下、好ましくは1.2mm以下、より好ましくは1mm以下であり、下限は好ましくは0.3mmである。磁気記録層が形成される主表面は、下記(1)~(3)の表面性を有することが好ましい。
(1)原子間力顕微鏡を用いて1μm×1μmの範囲で測定される表面粗さの算術平均Raが0.25nm以下;
(2)5μm×5μmの範囲で測定される表面粗さの算術平均Raが0.15nm以下;
(3)波長100μm~950μmにおける表面うねりの算術平均Waが0.5nm以下。
 基板上に成膜する磁気記録層のグレインサイズは、例えば垂直記録方式では、10nm未満となっている。高記録密度化のため、ビットサイズが微細化されても、基板表面の表面粗さが大きいと、磁気特性の向上は見込めない。これに対し上記(1)、(2)の2種の表面粗さの算術平均Raが上記範囲の基板であれば、高記録密度化のためにビットサイズが微細化されても磁気特性の改善が可能である。また、上記(3)の表面うねりの算術平均Waを上記範囲にすることにより、HDDにおける磁気ヘッドの浮上安定性を向上させることができる。上記(1)~(3)の表面性を兼ね備えた基板を実現する上で、ガラスの耐酸性、耐アルカリ性を高めることは有効である。
 本発明の磁気記録媒体は、磁気ディスク、ハードディスクなどと呼ばれ、デスクトップパソコン、サーバ用コンピュータ、ノート型パソコン、モバイル型パソコンなどの内部記憶装置(固定ディスクなど)、画像および/または音声を記録再生する携帯記録再生装置の内部記憶装置、車載オーディオの記録再生装置などに好適であり、前述のように熱アシスト記録方式に特に適したものである。
 以下に、本発明を実施例により更に詳細に説明する。但し、本発明は実施例に示す態様に限定されるものではない。
(1)熔融ガラスの作製
 表1に示す組成のガラスが得られるように酸化物、炭酸塩、硝酸塩、水酸化物などの原料を秤量し、混合して調合原料とした。この原料を熔融容器に投入して1400~1600℃の範囲で3~6時間、加熱、熔融し、清澄、攪拌して泡、未熔解物を含まない均質な熔融ガラスを作製した。得られたガラス中には泡や未熔解物、結晶の析出、熔融容器を構成する耐火物や白金の混入物は認められなかった。
(2)基板ブランクの作製
 次に、下記方法AまたはBにより、円盤状の基板ブランクを作製した。
(方法A)
 清澄、均質化した上記熔融ガラスをパイプから一定流量で流出するとともにプレス成形用の下型で受け、下型上に所定量の熔融ガラス塊が得られるよう流出した熔融ガラスを切断刃で切断した。そして熔融ガラス塊を載せた下型をパイプ下方から直ちに搬出し、下型と対向する上型および胴型を用いて、直径66mm、厚さ2mmの薄肉円盤状にプレス成形した。プレス成形品を変形しない温度にまで冷却した後、型から取り出してアニールし、基板ブランクを得た。なお、上記成形では複数の下型を用いて流出する熔融ガラスを次々に円盤形状の基板ブランクに成形した。
(方法B)
 清澄、均質化した上記熔融ガラスを円筒状の貫通孔が設けられた耐熱性鋳型の貫通孔に上部から連続的に鋳込み、円柱状に成形して貫通孔の下側から取り出した。取り出したガラスをアニールした後、マルチワイヤーソーを用いて円柱軸に垂直な方向に一定間隔でガラスをスライス加工し、円盤状の基板ブランクを作製した。
 なお、本実施例では上記方法A、Bを採用したが、円盤状の基板ブランクの製造方法としては、下記方法C、Dも好適である。
(方法C)
 上記熔融ガラスをフロートバス上に流し出し、シート状のガラスに成形(フロート法による成形)し、次いでアニールした後にシートガラスから円盤状のガラスをくり貫いて基板ブランクを得ることもできる。
(方法D)
 上記熔融ガラスをオーバーフローダウンドロー法(フュージョン法)によりシート状のガラスに成形、アニールし、次いでシートガラスから円盤状のガラスをくり貫いて基板ブランクを得ることもできる。
(3)ガラス基板の作製
 上記各方法で得られた基板ブランクの中心に貫通孔をあけて、外周、内周の研削加工を行い、円盤の主表面をラッピング、ポリッシング(鏡面研磨加工)して直径65mm、厚さ0.7mmの磁気ディスク用ガラス基板に仕上げた。得られたガラス基板は、1.7質量%の珪弗酸(H2SiF)水溶液次いで、1質量%の水酸化カリウム水溶液を用いて洗浄し、次いで純水ですすいだ後に乾燥させた。実施例のガラスから作製した基板の表面を拡大観察したところ、表面荒れなどは認められず、平滑な表面であった。
 下記(4)では、上記の方法で作製したディスク状のガラス基板をそのまま磁気ディスクの作製に使用した。これとは別に、上記と同様の方法で作製したディスク状のガラス基板を硝酸ナトリウムと硝酸カリウムの混合溶融塩に浸漬し、イオン交換によって表面にイオン交換層を有するガラス基板を得た。このようにイオン交換処理を施すことは、抗折強度を高めるために有効である。イオン交換処理を施した複数枚のガラス基板から、サンプリングしたガラス基板の断面(イオン交換層を切る面)をバビネ法により観察し、イオン交換層が形成されていることを確認した。イオン交換処理後の各ガラス基板の抗折強度を前述の方法で測定したところ、20kg以上の値を示した。このようにイオン交換処理を施したディスク状ガラス基板を用いて磁気ディスクを作製することもできる。
 以上の例では、硝酸ナトリウムと硝酸カリウムの混合溶融塩にガラス基板を浸漬してイオン交換層を有するガラス基板を作製したが、硝酸ナトリウムと硝酸カリウムの混合溶融塩に代えて、
 (A)カリウム化合物とルビジウム化合物の混合溶融塩、
 (B)カリウム化合物とセシウム化合物の混合溶融塩、
 (C)ルビジウム化合物とセシウム化合物の混合溶融塩、
 (D)カリウム化合物、ルビジウム化合物およびセシウム化合物の混合熔融塩、
 (E)ルビジウム化合物の溶融塩、
 (F)セシウム化合物の溶融塩、
等のいずれかにガラス基板を浸漬してイオン交換処理を行いイオン交換層を形成することもできる。上記溶融塩としては、例えば硝酸塩を用いることができる。また、イオン交換層はガラス基板表面の全域に形成してもよいし、外周面のみに形成してもよいし、外周面と内周面のみに形成してもよい。
(4)磁気ディスクの作製
 以下の方法により、実施例のガラスから得られたガラス基板の主表面上に、付着層、下地層、磁性層、保護層、潤滑層をこの順に形成し、磁気ディスクを得た。
 まず、真空引きを行った成膜装置を用いて、DCマグネトロンスパッタリング法にて、Ar雰囲気中で、付着層、下地層および磁性層を順次成膜した。
 このとき、付着層は、厚さ20nmのアモルファスCrTi層となるように、CrTiターゲットを用いて成膜した。続いて枚葉・静止対向型成膜装置を用いて、Ar雰囲気中で、DCマグネトロンスパッタリング法にて下地層としてアモルファスCrRuからなる10nm厚の層を形成した。また、磁性層は、厚さ200nmのアモルファスFePtまたはCoPt層となるように、FePtまたはCoPtターゲットを用いて成膜温度400℃にて成膜した。
 磁性層までの成膜を終えた磁気ディスクを成膜装置から加熱炉内に移し、650~700℃の温度で磁性層の結晶構造がL10構造となるようにアニールした。
 続いて、エチレンを材料ガスとしたCVD法により水素化カーボンからなる保護層を形成した。この後、PFPE(パーフロロポリエーテル)を用いてなる潤滑層をディップコート法により形成した。潤滑層の膜厚は1nmであった。
 以上の製造工程により、磁気ディスクを得た。
1.ガラスの評価
(1)ガラス転移温度Tg、熱膨張係数
 各ガラスのガラス転移温度Tgおよび100~300℃における平均線膨張係数αを、リガク社製の熱機械分析装置(Thermo plus TMA8310)を用いて測定した。
(2)ヤング率
 各ガラスのヤング率を超音波法にて測定した。
(3)比重
 各ガラスの比重をアルキメデス法にて測定した。
(4)比弾性率
 上記(2)で得られたヤング率および(3)で得られた比重から、比弾性率を算出した。
2.基板の評価(表面粗さ、表面うねり)
 実施例の各基板の主表面(磁気記録層等を積層する面)の5μm×5μmの矩形領域を原子間力顕微鏡(AFM)により観察し、1μm×1μmの範囲で測定される表面粗さの算術平均Ra、5μm×5μmの範囲で測定される表面粗さの算術平均Ra、波長100μm~950μmにおける表面うねりの算術平均Waを測定した。
 いずれの実施例のガラス基板についても、1μm×1μmの範囲で測定される表面粗さの算術平均Raが0.15~0.25nmの範囲、5μm×5μmの範囲で測定される表面粗さの算術平均Raが0.12~0.15nmの範囲、波長100μm~950μmにおける表面うねりの算術平均Waが0.4~0.5nmであり、磁気記録媒体に用いられる基板として問題のない範囲であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
 表1に示すように、実施例のガラスは、高い耐熱性(高いガラス転移温度)、高剛性(高いヤング率)、高熱膨張係数という、磁気記録媒体基板に求められる3つの特性を兼ね備えたものであった。更に表1の結果から、実施例のガラスは、高速回転に耐え得る高い比弾性率を有し、かつ低比重であり基板の軽量化も可能であることも確認できる。加えて実施例のガラスが、化学強化処理によりイオン交換層を容易に形成できるものであることも確認された。
 以上の結果から、本発明によれば、磁気記録媒体基板に求められる特性を兼ね備えたガラスが得られることが確認された。
3.磁気ディスクの評価
(1)平坦性
 一般に、平坦度が5μm以下であれば信頼性の高い記録再生を行うことができる。上記方法で実施例のガラス基板を用いて形成した各磁気ディスク表面の平坦度(ディスク表面の最も高い部分と、最も低い部分との上下方向(表面に垂直な方向)の距離(高低差))を、平坦度測定装置で測定したところ、いずれの磁気ディスクも平坦度は5μm以下であった。この結果から、実施例のガラス基板は、FePt層またはCoPt層形成時の高温処理においても大きな変形を起こさなかったことが確認できる。
(2)ロードアンロード試験
 上記方法で実施例のガラス基板を用いて形成した各磁気ディスクを、回転数5400rpmの高速で回転する2.5インチ型ハードディスクドライブに搭載し、ロードアンロード(Load Unload、以下、LUL)耐久性試験を行った。上記ハードディスクドライブにおいて、スピンドルモーターのスピンドルはステンレス製であり、磁気ヘッド素子部と磁気ディスク表面との距離は約9nmであった。いずれの磁気ディスクもLULの耐久回数は60万回を超えた。また、LUL試験中にスピンドル材料との熱膨張係数の違いによる変形や高速回転によるたわみが生じると試験中にクラッシュ障害やサーマルアスペリティ障害が生じるが、いずれの磁気ディスクも試験中にこれら障害は発生しなかった。
 さらに、同様のLUL耐久性試験を、DFH機構を搭載した磁気ヘッドを用い、記録再生素子部を突き出して磁気ヘッド素子部と磁気ディスク表面との距離を2nm以下とした状態で行ったところ、LULの耐久回数は60万回を超え、DFH機構を搭載したハードディスクドライブにおいても、良好な記録再生が可能であることが確認された。
 以上の結果から、本発明によれば信頼性の高い記録再生が可能であることが確認できる。
 上記方法で実施例のガラス基板を用いて作製した磁気ディスクをレーザー光の照射により磁化反転をアシストする記録方式(熱アシスト記録方式)の磁気ヘッドとともにハードディスクドライブに搭載し、熱アシスト記録方式の情報記録装置を作製した。これとは別に、作製した磁気ディスクをマイクロ波によりアシストする記録方式(マイクロ波アシスト記録方式)の磁気ヘッドとともにハードディスクドライブに搭載し、マイクロ波アシスト記録方式の情報記録装置を作製した。このように高Ku磁性材料とエネルギーアシスト記録の組み合わせた情報記録装置によれば、先に説明したように高密度記録を実現することができる。これらのエネルギーアシスト記録方式のハードディスクドライブにおいて上記と同様のLUL耐久性試験を行ったところ、LULの耐久回数は60万回を超えた。さらに、これらのハードディスクにおいて、DFH機構によって磁気ヘッドの記録再生素子部を突き出して磁気ディスク表面と磁気ヘッド素子部との距離を2nm以下としても、LUL耐久性試験において上記と同様に良好な結果を示した。
 また、厚さを0.8mmに変更した他は上記と同様にして磁気ディスク用ガラス基板を得た。いずれのガラス基板も、1μm×1μmの範囲で測定される表面粗さの算術平均Raは0.15~0.25nmの範囲、5μm×5μmの範囲で測定される表面粗さの算術平均Raは0.12~0.15nmの範囲、波長100μm~950μmにおける表面うねりの算術平均Waは0.4~0.5nmであり、磁気記録媒体に用いられる基板として問題のない範囲であった。
 さらに、付着層と下地層の間に軟磁性層としてFeTaCを100nm成膜し、磁性層としてFePtまたはCoPtを10nm成膜した後、550~650℃の温度で磁性層がL10構造となるようにアニールした他は上記と同様にして、得られたガラス基板を用いて磁気ディスクを作製した。作製された磁気ディスクは、上記と同様に高い平坦性と良好な耐久性を有するものであった。
 本発明によれば、高密度記録化に最適な磁気記録媒体を提供することができる。

Claims (15)

  1. モル%表示にて、
    SiO2を56~75%、
    Al23を1~11%、
    Li2Oを0%超かつ4%以下、
    Na2Oを1%以上かつ15%未満、
    2Oを0%以上かつ3%未満、
    含み、かつBaOを実質的に含まず、
    Li2O、Na2OおよびK2Oからなる群から選ばれるアルカリ金属酸化物の合計含有量が6~15%の範囲であり、
    Na2O含有量に対するLi2O含有量のモル比(Li2O/Na2O)が0.50未満であり、
    上記アルカリ金属酸化物の合計含有量に対するK2O含有量のモル比{K2O/(Li2O+Na2O+K2O)}が0.13以下であり、
    MgO、CaOおよびSrOからなる群から選ばれるアルカリ土類金属酸化物の合計含有量が10~30%の範囲であり、
    MgOおよびCaOの合計含有量が10~30%の範囲であり、
    上記アルカリ土類金属酸化物の合計含有量に対するMgOおよびCaOの合計含有量のモル比{(MgO+CaO)/(MgO+CaO+SrO)}が0.86以上であり、
    上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量が20~40%の範囲であり、
    上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量に対するMgO、CaOおよびLi2Oの合計含有量のモル比{(MgO+CaO+Li2O)/(Li2O+Na2O+K2O+MgO+CaO+SrO)が0.50以上であり、
    ZrO2、TiO2、Y23、La23、Gd23、Nb25およびTa25からなる群から選ばれる酸化物の合計含有量が0%超かつ10%以下であり、
    Al23含有量に対する上記酸化物の合計含有量のモル比{(ZrO2+TiO2+Y23+La23+Gd23+Nb25+Ta25)/Al23}が0.40以上であり、
    ガラス転移温度が600℃以上、100~300℃における平均線膨張係数が70×10-7/℃以上、かつヤング率が80GPa以上であるガラスからなる磁気記録媒体用ガラス基板。
  2. FeおよびPtを含むか、またはCoおよびPtを含む磁気記録層を基板上に有する磁気記録媒体の該基板として使用される、請求項1に記載の磁気記録媒体用ガラス基板。
  3. エネルギーアシスト記録用磁気記録媒体の基板として使用される、請求項1または2に記載の磁気記録媒体用ガラス基板。
  4. 熱アシスト記録用磁気記録媒体の基板として使用される、請求項3に記載の磁気記録媒体用ガラス基板。
  5. 表面の一部または全部にイオン交換層を有する請求項1~4のいずれか1項に記載の磁気記録媒体用ガラス基板。
  6. 前記イオン交換層は、Na、K、RbおよびCsからなる群から選ばれる少なくとも1種のアルカリ金属イオンによるイオン交換により形成されたものである請求項5に記載の磁気記録媒体用ガラス基板。
  7. 比弾性率が30.0MNm/kg以上である請求項1~6のいずれか1項に記載の磁気記録媒体用ガラス基板。
  8. 比重が2.90以下である請求項1~7のいずれか1項に記載の磁気記録媒体用ガラス基板。
  9. 請求項1~8のいずれか1項に記載のガラス基板上に磁気記録層を有する磁気記録媒体。
  10. 前記磁気記録層は、FeおよびPtを含むか、またはCoおよびPtを含む、請求項9に記載の磁気記録媒体。
  11. エネルギーアシスト記録用磁気記録媒体である、請求項9または10に記載の磁気記録媒体。
  12. 熱アシスト記録用磁気記録媒体である、請求項11に記載の磁気記録媒体。
  13. 前記ガラス基板は表面の一部または全部にイオン交換層を有する請求項9~12のいずれか1項に記載の磁気記録媒体。
  14. 前記イオン交換層は、Na、K、RbおよびCsからなる群から選ばれる少なくとも1種のアルカリ金属イオンによるイオン交換により形成されたものである請求項13に記載の磁気記録媒体。
  15. モル%表示にて、
    SiO2を56~75%、
    Al23を1~11%、
    Li2Oを0%超かつ4%以下、
    Na2Oを1%以上かつ15%未満、
    2Oを0%以上かつ3%未満、
    含み、かつBaOを実質的に含まず、
    Li2O、Na2OおよびK2Oからなる群から選ばれるアルカリ金属酸化物の合計含有量が6~15%の範囲であり、
    Na2O含有量に対するLi2O含有量のモル比(Li2O/Na2O)が0.50未満であり、
    上記アルカリ金属酸化物の合計含有量に対するK2O含有量のモル比{K2O/(Li2O+Na2O+K2O)}が0.13以下であり、
    MgO、CaOおよびSrOからなる群から選ばれるアルカリ土類金属酸化物の合計含有量が10~30%の範囲であり、
    MgOおよびCaOの合計含有量が10~30%の範囲であり、
    上記アルカリ土類金属酸化物の合計含有量に対するMgOおよびCaOの合計含有量のモル比{(MgO+CaO)/(MgO+CaO+SrO)}が0.86以上であり、
    上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量が20~40%の範囲であり、
    上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量に対するMgO、CaOおよびLi2Oの合計含有量のモル比{(MgO+CaO+Li2O)/(Li2O+Na2O+K2O+MgO+CaO+SrO)が0.50以上であり、
    ZrO2、TiO2、Y23、La23、Gd23、Nb25およびTa25からなる群から選ばれる酸化物の合計含有量が0%超かつ10%以下であり、
    Al23含有量に対する上記酸化物の合計含有量のモル比{(ZrO2+TiO2+Y23+La23+Gd23+Nb25+Ta25)/Al23}が0.40以上であり、
    ガラス転移温度が600℃以上、100~300℃における平均線膨張係数が70×10-7/℃以上、かつヤング率が80GPa以上であるガラスからなる磁気記録媒体用ガラス基板ブランク。
PCT/JP2011/074986 2010-10-29 2011-10-28 磁気記録媒体用ガラス基板、磁気記録媒体、および磁気記録媒体用ガラス基板ブランク WO2012057338A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180052195.9A CN103189917B (zh) 2010-10-29 2011-10-28 磁记录介质用玻璃基板、磁记录介质、以及磁记录介质用玻璃基板毛坯
JP2012540984A JP5542953B2 (ja) 2010-10-29 2011-10-28 磁気記録媒体用ガラス基板、磁気記録媒体、および磁気記録媒体用ガラス基板ブランク
SG2013031828A SG190011A1 (en) 2010-10-29 2011-10-28 Glass substrate for magnetic recording medium, magnetic recording medium, and glass substrate blank for magnetic recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010243069 2010-10-29
JP2010-243069 2010-10-29

Publications (1)

Publication Number Publication Date
WO2012057338A1 true WO2012057338A1 (ja) 2012-05-03

Family

ID=45994040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074986 WO2012057338A1 (ja) 2010-10-29 2011-10-28 磁気記録媒体用ガラス基板、磁気記録媒体、および磁気記録媒体用ガラス基板ブランク

Country Status (6)

Country Link
US (1) US8394516B2 (ja)
JP (1) JP5542953B2 (ja)
CN (1) CN103189917B (ja)
MY (1) MY158507A (ja)
SG (1) SG190011A1 (ja)
WO (1) WO2012057338A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172247A1 (ja) * 2012-05-16 2013-11-21 Hoya株式会社 磁気記録媒体基板用ガラスおよびその利用
WO2014136751A1 (ja) * 2013-03-05 2014-09-12 Hoya株式会社 情報記録媒体用ガラス基板および情報記録媒体
WO2014203481A1 (ja) * 2013-06-20 2014-12-24 日本板硝子株式会社 ガラス組成物、化学強化ガラス、及び情報記録媒体用ガラス基板
WO2015029902A1 (ja) * 2013-08-30 2015-03-05 Hoya株式会社 情報記録媒体用ガラス基板
CN104936911A (zh) * 2012-11-21 2015-09-23 康宁股份有限公司 具有高硬度和高模量的可离子交换玻璃
JP2016501176A (ja) * 2012-11-28 2016-01-18 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. 高歪点ガラス
WO2017002835A1 (ja) * 2015-06-30 2017-01-05 Hoya株式会社 磁気記録媒体基板用ガラス、磁気記録媒体基板および磁気記録媒体

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102757180B (zh) * 2008-03-19 2016-03-02 Hoya株式会社 磁记录介质基板用玻璃、磁记录介质基板、磁记录介质和它们的制造方法
MY169296A (en) * 2011-09-09 2019-03-21 Hoya Corp Method of manufacturing an ion-exchanged glass article
MY182802A (en) * 2013-09-09 2021-02-05 Hoya Corp Glass substrate
CN107785034B (zh) 2013-12-26 2020-03-27 Hoya株式会社 磁盘用基板、磁盘和磁盘驱动装置
JP6517074B2 (ja) * 2015-04-27 2019-05-22 日本板硝子株式会社 ガラス組成物、ガラス繊維、鱗片状ガラスおよび被覆鱗片状ガラス
CN115072991A (zh) * 2016-11-14 2022-09-20 Hoya株式会社 磁记录介质基板用玻璃、磁记录介质基板、磁记录介质和磁记录再生装置用玻璃间隔物
WO2019009069A1 (ja) * 2017-07-04 2019-01-10 Agc株式会社 ガラスボール
JP2020534238A (ja) * 2017-09-21 2020-11-26 コーニング インコーポレイテッド 高い破壊靭性を有する透明でイオン交換可能なケイ酸塩ガラス
CN111517656B (zh) * 2017-12-01 2022-04-22 成都光明光电股份有限公司 微晶玻璃及其基板
CN108376439B (zh) * 2018-01-11 2020-06-23 全南群英达电子有限公司 一种用于验钞机磁头外壳底板的镍-铬软磁合金
JP6999806B2 (ja) * 2018-05-16 2022-01-19 Hoya株式会社 磁気記録媒体基板、磁気記録媒体、磁気記録再生装置用ガラススペーサおよび磁気記録再生装置
CN109796130B (zh) * 2019-03-05 2021-12-03 宜昌南玻光电玻璃有限公司 高透、提升离子交换深度的中铝玻璃
TW202130594A (zh) * 2019-11-27 2021-08-16 美商康寧公司 含yo的玻璃組成、基板、及製品
US11999652B2 (en) * 2019-12-13 2024-06-04 Hoya Corporation Glass for magnetic recording medium substrate or for glass spacer to be used in magnetic recording/reproducing device, magnetic recording medium substrate, magnetic recording medium, glass spacer to be used in magnetic recording/reproducing device, and magnetic recording/reproducing device
US11951713B2 (en) 2020-12-10 2024-04-09 Corning Incorporated Glass with unique fracture behavior for vehicle windshield

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015328A (ja) * 2003-06-06 2005-01-20 Nippon Sheet Glass Co Ltd ジルコニウムを含むガラス組成物、化学強化ガラス物品、磁気記録媒体用ガラス基板、およびガラス板の製造方法
JP2005314159A (ja) * 2004-04-28 2005-11-10 Hoya Corp 情報記録媒体用ガラス基板およびその製造方法並びに情報記録媒体およびその製造方法
WO2008062847A1 (fr) * 2006-11-22 2008-05-29 Asahi Glass Company, Limited Verre pour substrat support d'enregistrement d'informations

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302032A (ja) * 1998-04-17 1999-11-02 Nippon Sheet Glass Co Ltd ガラス組成物およびそれを用いた情報記録媒体用基板
JP4161509B2 (ja) * 1999-04-13 2008-10-08 旭硝子株式会社 情報記録媒体基板用ガラスおよび情報記録媒体用ガラス基板
SG97155A1 (en) * 1999-07-07 2003-07-18 Hoya Corp Substrate for information recording medium and magnetic recording medium composed of crystallized glass
JP2001172043A (ja) * 1999-12-20 2001-06-26 Asahi Glass Co Ltd 情報記録媒体基板用ガラスおよび情報記録媒体用ガラス基板
JP3995902B2 (ja) * 2001-05-31 2007-10-24 Hoya株式会社 情報記録媒体用ガラス基板及びそれを用いた磁気情報記録媒体
JP4530618B2 (ja) * 2002-09-27 2010-08-25 コニカミノルタオプト株式会社 ガラス組成物及びガラス基板
WO2004039738A1 (ja) * 2002-10-29 2004-05-13 Hoya Corporation 化学強化用ガラス、情報記録媒体用基板、情報記録媒体及び情報記録媒体の製造方法
US7273668B2 (en) 2003-06-06 2007-09-25 Hoya Corporation Glass composition including zirconium, chemically strengthened glass article, glass substrate for magnetic recording media, and method of producing glass sheet
JP4039381B2 (ja) * 2004-03-25 2008-01-30 コニカミノルタオプト株式会社 ガラス組成物を用いた情報記録媒体用ガラス基板及びこれを用いた情報記録媒体
JP2009155148A (ja) * 2007-12-26 2009-07-16 Central Glass Co Ltd ガラス組成物
JP5375608B2 (ja) * 2008-01-28 2013-12-25 旭硝子株式会社 データ記憶媒体基板用ガラス、データ記憶媒体用ガラス基板および磁気ディスク
JP5699434B2 (ja) * 2009-04-02 2015-04-08 旭硝子株式会社 情報記録媒体基板用ガラス、情報記録媒体用ガラス基板および磁気ディスク

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015328A (ja) * 2003-06-06 2005-01-20 Nippon Sheet Glass Co Ltd ジルコニウムを含むガラス組成物、化学強化ガラス物品、磁気記録媒体用ガラス基板、およびガラス板の製造方法
JP2005314159A (ja) * 2004-04-28 2005-11-10 Hoya Corp 情報記録媒体用ガラス基板およびその製造方法並びに情報記録媒体およびその製造方法
WO2008062847A1 (fr) * 2006-11-22 2008-05-29 Asahi Glass Company, Limited Verre pour substrat support d'enregistrement d'informations

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8824248B2 (en) 2012-05-16 2014-09-02 Hoya Corporation Glass for magnetic recording medium substrate and usage thereof
CN104303231A (zh) * 2012-05-16 2015-01-21 Hoya株式会社 磁记录介质基板用玻璃及其利用
WO2013172247A1 (ja) * 2012-05-16 2013-11-21 Hoya株式会社 磁気記録媒体基板用ガラスおよびその利用
US9007878B2 (en) 2012-05-16 2015-04-14 Hoya Corporation Glass for magnetic recording medium substrate and usage thereof
JPWO2013172247A1 (ja) * 2012-05-16 2016-01-12 Hoya株式会社 磁気記録媒体基板用ガラスおよびその利用
CN104936911A (zh) * 2012-11-21 2015-09-23 康宁股份有限公司 具有高硬度和高模量的可离子交换玻璃
JP2015535521A (ja) * 2012-11-21 2015-12-14 コーニング インコーポレイテッド 高硬度および高弾性率を有するイオン交換可能ガラス
US11352287B2 (en) 2012-11-28 2022-06-07 Vitro Flat Glass Llc High strain point glass
KR101934154B1 (ko) * 2012-11-28 2018-12-31 비트로, 에스.에이.비. 데 씨.브이. 높은 스트레인점 유리
JP2016501176A (ja) * 2012-11-28 2016-01-18 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. 高歪点ガラス
JP6029740B2 (ja) * 2013-03-05 2016-11-24 Hoya株式会社 情報記録媒体用ガラス基板および情報記録媒体
WO2014136751A1 (ja) * 2013-03-05 2014-09-12 Hoya株式会社 情報記録媒体用ガラス基板および情報記録媒体
JP5680809B1 (ja) * 2013-06-20 2015-03-04 日本板硝子株式会社 ガラス組成物、化学強化ガラス、及び情報記録媒体用ガラス基板
US9688573B2 (en) 2013-06-20 2017-06-27 Nippon Sheet Glass Company, Limited Glass composition, chemically strengthened glass, and glass substrate for information recording medium
WO2014203481A1 (ja) * 2013-06-20 2014-12-24 日本板硝子株式会社 ガラス組成物、化学強化ガラス、及び情報記録媒体用ガラス基板
JP6052936B2 (ja) * 2013-08-30 2016-12-27 Hoya株式会社 情報記録媒体用ガラス基板、情報記録媒体および情報記録装置
WO2015029902A1 (ja) * 2013-08-30 2015-03-05 Hoya株式会社 情報記録媒体用ガラス基板
WO2017002835A1 (ja) * 2015-06-30 2017-01-05 Hoya株式会社 磁気記録媒体基板用ガラス、磁気記録媒体基板および磁気記録媒体
CN107709256A (zh) * 2015-06-30 2018-02-16 Hoya株式会社 磁记录介质基板用玻璃、磁记录介质基板和磁记录介质
JPWO2017002835A1 (ja) * 2015-06-30 2018-04-12 Hoya株式会社 磁気記録媒体基板用ガラス、磁気記録媒体基板および磁気記録媒体
CN107709256B (zh) * 2015-06-30 2021-09-14 Hoya株式会社 磁记录介质基板用玻璃、磁记录介质基板和磁记录介质

Also Published As

Publication number Publication date
US20120107647A1 (en) 2012-05-03
US8394516B2 (en) 2013-03-12
JPWO2012057338A1 (ja) 2014-05-12
JP5542953B2 (ja) 2014-07-09
CN103189917B (zh) 2016-03-02
MY158507A (en) 2016-10-14
SG190011A1 (en) 2013-06-28
CN103189917A (zh) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5542953B2 (ja) 磁気記録媒体用ガラス基板、磁気記録媒体、および磁気記録媒体用ガラス基板ブランク
JP5964921B2 (ja) 磁気記録媒体基板用ガラス、磁気記録媒体基板およびその製造方法、ならびに磁気記録媒体
JP6147735B2 (ja) 磁気記録媒体基板用ガラスおよびその利用
JP5993306B2 (ja) 磁気記録媒体用ガラス基板およびその利用
JP6131154B2 (ja) 磁気記録媒体基板用ガラスおよび磁気記録媒体基板
JP7135024B2 (ja) 磁気記録媒体基板用ガラス、磁気記録媒体基板、磁気記録媒体および磁気記録再生装置用ガラススペーサ
JP5662423B2 (ja) 磁気記録媒体ガラス基板用ガラスブランクの製造方法、磁気記録媒体ガラス基板の製造方法および磁気記録媒体の製造方法
JPWO2007142324A1 (ja) 情報記録媒体用基板に供するためのガラス、情報記録媒体用基板および情報記録媒体とそれらの製造方法
JP2023166439A (ja) 磁気記録媒体基板用または磁気記録再生装置用ガラススペーサ用のガラス、磁気記録媒体基板、磁気記録媒体、磁気記録再生装置用ガラススペーサおよび磁気記録再生装置
JP6042875B2 (ja) 磁気記録媒体基板用ガラス、磁気記録媒体用ガラス基板およびその利用
JP7165655B2 (ja) 情報記録媒体基板用ガラス、情報記録媒体基板、情報記録媒体および記録再生装置用ガラススペーサ
WO2017002835A1 (ja) 磁気記録媒体基板用ガラス、磁気記録媒体基板および磁気記録媒体
JP7488416B2 (ja) 磁気記録媒体基板用または磁気記録再生装置用ガラススペーサ用のガラス、磁気記録媒体基板、磁気記録媒体、磁気記録再生装置用ガラススペーサおよび磁気記録再生装置
JP7389545B2 (ja) 磁気記録媒体基板用ガラス、磁気記録媒体基板、磁気記録媒体
WO2024053740A1 (ja) 磁気記録媒体基板用または磁気記録再生装置用ガラススペーサ用のガラス、磁気記録媒体基板、磁気記録媒体、磁気記録再生装置用ガラススペーサおよび磁気記録再生装置
CN116964013A (zh) 磁记录介质基板用玻璃或磁记录再生装置用玻璃间隔物用的玻璃、磁记录介质基板、磁记录介质、磁记录再生装置用玻璃间隔物和磁记录再生装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012540984

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836471

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12013500842

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836471

Country of ref document: EP

Kind code of ref document: A1