WO2012057082A1 - フォトダイオードアレイ - Google Patents

フォトダイオードアレイ Download PDF

Info

Publication number
WO2012057082A1
WO2012057082A1 PCT/JP2011/074437 JP2011074437W WO2012057082A1 WO 2012057082 A1 WO2012057082 A1 WO 2012057082A1 JP 2011074437 W JP2011074437 W JP 2011074437W WO 2012057082 A1 WO2012057082 A1 WO 2012057082A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
photodiode array
outer peripheral
relay
electrically connected
Prior art date
Application number
PCT/JP2011/074437
Other languages
English (en)
French (fr)
Inventor
健一 里
山村 和久
慎二 大須賀
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN201180052213.3A priority Critical patent/CN103190000B/zh
Priority to US13/881,949 priority patent/US9184190B2/en
Priority to KR1020137011542A priority patent/KR101830464B1/ko
Priority to EP11836216.9A priority patent/EP2634821B1/en
Publication of WO2012057082A1 publication Critical patent/WO2012057082A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02027Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for devices working in avalanche mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Definitions

  • the present invention relates to a photodiode array.
  • Multi-Pixel Photon Counter (MPPC: registered trademark) is known as a photodiode array composed of a plurality of avalanche photodiodes (APD) operating in Geiger mode. A plurality of APDs are connected in parallel, and a reverse bias voltage higher than the breakdown voltage is applied to these APDs and operates in Geiger mode.
  • the MPPC includes a quenching resistor connected in series with an avalanche photodiode. When the current from the avalanche photodiode flows through this quenching resistor, the bias voltage to the avalanche photodiode drops to the breakdown voltage, and then the reverse bias voltage returns to the voltage in Geiger mode by recharging. .
  • MPPC has better time characteristics than other detectors, it uses the Time-Of-Flight (TOF) measurement method PET (Positron Emission Tomography) is expected to be used as a detector for devices.
  • TOF Time-Of-Flight
  • PET Pulsitron Emission Tomography
  • higher time resolution is required.
  • Non-Patent Document 1 below shows that adding a parallel capacitance (Cq) to the quenching resistor sharpens the output pulse and improves the time resolution.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a photodiode array capable of significantly improving time resolution as compared with the prior art.
  • a first photodiode array includes a plurality of avalanche photodiodes formed in a semiconductor substrate and each avalanche photodiode in the photodiode array.
  • a quenching resistor connected in series, an outer peripheral wiring that surrounds a region where the plurality of avalanche photodiodes are formed, and an electrical connection to the outer peripheral wiring, each connecting at least two locations of the outer peripheral wiring
  • a resistance value per unit length of the outer peripheral wiring is smaller than a resistance value per unit length of the relay wiring, and one of the anode and the cathode of each of the avalanche photodiodes Electrically connected to any of the relay wires via the quenching resistor
  • the anode and cathode of the other individual said avalanche photodiode characterized in that it is electrically connected to another electrode disposed on the semiconductor substrate.
  • the current from the relay wiring flows out in a larger amount in one of at least two of the outer peripheral wirings having a low resistance value (the one with the lower resistance in the signal transmission path) and is taken out to the outside. Since the resistance value in the signal readout path can be reduced, the time constant is reduced, and therefore the time resolution is improved.
  • the second photodiode array according to an aspect of the present invention is electrically connected to the outer peripheral wiring, connects between at least two locations of the outer peripheral wiring, and has a resistance value per unit length of the relay wiring.
  • the relay wiring further includes a transverse wiring having a small resistance value per unit length, and one end of each relay wiring is electrically connected to the transverse wiring instead of the outer peripheral wiring. .
  • the third photodiode array according to an aspect of the present invention is further characterized by further including capacitors respectively connected in parallel to the quenching resistors.
  • the time resolution is further improved.
  • one of the anode and the cathode of each of the avalanche photodiodes is electrically connected to a ring electrode, and the relay wiring includes the ring electrode.
  • the relay wiring includes the ring electrode.
  • a conductive outer peripheral region that extends away from the ring-shaped electrode and surrounds the ring-shaped electrode, and the capacitor includes the outer peripheral region extended from the relay wiring and the ring-shaped electrode. It is characterized by that.
  • the capacitor can be configured in a planar manner, and the time resolution is improved.
  • the fifth photodiode array according to one aspect of the present invention further includes an intermediate wiring extending in parallel between the relay wirings in the fourth photodiode array, and the intermediate wiring has at least two locations on the outer peripheral wiring. They are connected to each other, and the outer peripheral region is continuous with the intermediate wiring.
  • the capacitor can be configured in a plane and the time resolution is improved.
  • each of the relay wirings has the outer peripheral region connected to both sides thereof, and the relay wirings adjacent to each other.
  • the outer peripheral regions adjacent to each other are separated from each other.
  • the capacitor can be configured in a plane and the time resolution is improved.
  • each of the relay wirings has an opening along a center line thereof.
  • the capacitor can be configured in a plane and the time resolution is improved.
  • the wiring capacity of the relay wiring is reduced.
  • the capacitor in any one of the photodiode arrays described above, includes a covered wiring formed on the quenching resistor via an insulating layer. One end of the covered wiring is electrically connected to one end of the quenching resistor. In this case, it was confirmed that since the capacitor can be three-dimensionally formed by stacking, the element density can be improved and the time resolution can be improved.
  • one of the anode and the cathode of each of the avalanche photodiodes is electrically connected to a ring electrode, and the aspect ratio of the ring electrode is It is characterized by being 2 or more.
  • the capacitor is configured between the relay wiring and the ring-shaped electrodes that are spaced apart and run in parallel, but since the aspect ratio is large, the capacitance of the capacitor can be increased. Therefore, the ratio of the capacitor to the aperture ratio of the ring electrode is increased, and the element density of the capacitor is increased. Therefore, it was possible to increase the spatial resolution by reducing the ring-shaped electrode, and it was confirmed that the temporal resolution was improved.
  • the photodiode array according to one embodiment of the present invention can significantly improve the time resolution.
  • FIG. 1 is a plan view of a photodiode array.
  • FIG. 2 is an enlarged plan view of the photodiode array.
  • 3 is a cross-sectional view of the photodiode array shown in FIG. 2 taken along line III-III.
  • FIG. 4 is a cross-sectional view of the photodiode array shown in FIG. 2 taken along the line IV-IV.
  • FIG. 5 is an enlarged plan view of the photodiode array. 6 is a cross-sectional view taken along the line VI-VI of the photodiode array shown in FIG. 7 is a cross-sectional view of the photodiode array shown in FIG. 5 taken along the line VII-VII.
  • FIG. 8 is a plan view of the wiring.
  • FIG. 8 is a plan view of the wiring.
  • FIG. 9 is an enlarged plan view of the photodiode array.
  • 10 is a cross-sectional view of the photodiode array shown in FIG. 9 taken along the line XX.
  • 11 is a cross-sectional view taken along the line XI-XI of the photodiode array shown in FIG.
  • FIG. 12 is an enlarged plan view of the photodiode array.
  • 13 is a cross-sectional view of the photodiode array shown in FIG. 12 taken along the line XIII-XIII.
  • 14 is a cross-sectional view taken along the line XIV-XIV of the photodiode array shown in FIG.
  • FIG. 15 is an enlarged plan view of the photodiode array.
  • FIG. 16 is a cross-sectional view of the photodiode array shown in FIG. 15 taken along the line XVI-XVI.
  • 17 is a cross-sectional view of the photodiode array shown in FIG. 15 taken along the line XVII-XVII.
  • FIG. 18 is an enlarged plan view of the photodiode array.
  • 19 is a cross-sectional view of the photodiode array shown in FIG. 18 taken along the line XIX-XIX.
  • 20 is a cross-sectional view taken along the line XX-XX of the photodiode array shown in FIG.
  • FIG. 21 is an enlarged plan view of the photodiode array.
  • 22 is a cross-sectional view of the photodiode array shown in FIG.
  • FIG. 21 taken along the line XXII-XXII.
  • FIG. 23 is a cross-sectional view of the photodiode array shown in FIG. 21 taken along the line XXIII-XXIII.
  • FIG. 24 is a plan view of the photodiode array.
  • 25 is a diagram showing a photomicrograph of the photodiode array shown in FIG. 26 is a diagram showing a photomicrograph of the photodiode array shown in FIG. 27 is a view showing a micrograph of the photodiode array shown in FIG.
  • FIG. 28 is a view showing a photomicrograph of the photodiode array shown in FIG.
  • FIG. 29 is a diagram showing a photomicrograph of the photodiode array shown in FIG. FIG.
  • FIG. 30 is a view showing a photomicrograph of the photodiode array shown in FIG.
  • FIG. 31 is a view showing a photomicrograph of the photodiode array shown in FIG.
  • FIG. 32 is a view showing a photomicrograph of the photodiode array shown in FIG.
  • FIG. 33 is a circuit diagram of the photodiode array.
  • FIG. 34 is a diagram illustrating an equivalent circuit of a detection unit including an avalanche photodiode and a quenching resistor.
  • FIG. 35 is a diagram showing a radiation detector provided with a photodiode array.
  • FIG. 1 is a plan view of the photodiode array 10.
  • the thickness direction of the photodiode array 10 coincides with the Z axis, and the light incident surface of the photodiode array 10 coincides with the XY plane.
  • the photodiode array 10 includes a semiconductor substrate 20, the shape of the semiconductor substrate 20 is a rectangle, and each side is parallel to the X axis or the Y axis.
  • the photodiode array 10 includes a plurality of avalanche photodiodes APD formed in the semiconductor substrate 20.
  • a quenching resistor 7 is connected in series to each avalanche photodiode APD.
  • the region where the plurality of avalanche photodiodes APD are formed is surrounded by the outer peripheral wiring WL.
  • a light shielding layer SL made of metal or the like can be provided outside the outer peripheral wiring WL.
  • the outer periphery of the outer peripheral wiring WL is a rectangular ring, and each side extends along the X axis or the Y axis, and is connected to the electrode pad P extending along the X axis.
  • a plurality of relay wirings 8 are electrically connected to the outer peripheral wiring WL. Each of the plurality of relay wirings 8 extends along the Y axis, and connects between at least two locations (portions located at both ends along the Y axis) of the outer peripheral wiring WL.
  • the resistance value per unit length of the outer peripheral wiring WL is smaller than the resistance value per unit length of the relay wiring 8. That is, when the outer peripheral wiring WL and the relay wiring 8 are made of the same conductive material (for example, aluminum) and the outer peripheral wiring WL extends along the Y axis, the area of the XZ cross section is the XZ cross section of the relay wiring 8. Greater than area. In addition, when the outer peripheral wiring WL extends along the X axis, the area of the YZ cross section is larger than the area of the XZ cross section of the relay wiring 8.
  • FIG. 8 is a plan view of wiring. When the outer peripheral wiring WL and the relay wiring 8 have the same thickness, the width W1 of the outer peripheral wiring WL is wider than the width W2 of the relay wiring 8.
  • One of the anode and the cathode of each avalanche photodiode APD is electrically connected to one of the relay wirings 8 via the quenching resistor 7, and the other of the anode and the cathode of each avalanche photodiode APD is a semiconductor. It is electrically connected to another electrode 6 provided on the substrate 20 (see FIG. 3: back electrode in this example). The other electrode 6 may be provided on the surface side of the semiconductor substrate 20 as long as it can be electrically connected to the other of the anode and the cathode.
  • the photodiode array 10 includes the outer peripheral wiring WL
  • the current from the avalanche photodiode APD is connected to the relay wiring 8 and the connection points between the relay wiring 8 and the outer peripheral wiring WL (two in this example). So that the larger one of them (the one with the lower resistance in the signal transmission path to the electrode pad P) flows through the outer peripheral wiring WL to the electrode pad P and is taken out to the outside.
  • the outer peripheral wiring WL is provided, the resistance value in the signal readout path can be reduced, so that the time constant is reduced, and therefore the time resolution of the photodiode array can be improved.
  • the current from the avalanche photodiode APD located at the lower left in FIG. 1 flows in the negative direction of the Y axis in the relay wiring 8, it flows into the connection point Q1 with the outer peripheral wiring WL as a bypass path, and then After traveling in the negative direction of the X-axis in the outer peripheral wiring WL, it proceeds along the positive direction of the Y-axis, and further travels along the positive direction of the X-axis and flows in many paths to the electrode pad P. It will be.
  • the current from the avalanche photodiode APD located at the upper left in FIG. 1 flows in the positive direction of the Y axis in the relay wiring 8, and then flows into the connection point Q2 with the outer peripheral wiring WL as a bypass path, and thereafter In the outer peripheral wiring WL, it travels along the positive direction of the X axis and flows in a large amount along the path to the electrode pad P.
  • the relay wiring 8 is connected in two places of the outer periphery wiring WL, this may have three or more connection points.
  • the shape of the relay wiring 8 is a cruciform shape, it can be connected to the outer peripheral wiring WL at four locations. If the relay wiring 8 extends radially, bends, or branches, the connection location Can be 3 or more.
  • a plurality of avalanche photodiodes APD are arranged on both sides of one relay wiring 8, and each of the avalanche photodiodes APD is connected to the relay wiring 8 via the quenching resistor 7. It is connected.
  • the peripheral structure of the avalanche photodiode APD will be described in detail.
  • FIG. 2 is an enlarged plan view of the first type photodiode array
  • FIG. 3 is a cross-sectional view taken along the line III-III of the photodiode array shown in FIG. 2
  • FIG. 4 is the photodiode array shown in FIG. FIG. 4 is a cross-sectional view taken along line IV-IV.
  • the semiconductor substrate 20 includes a first semiconductor layer 1, a second semiconductor layer 2 formed on the first semiconductor layer 1, and a third semiconductor layer 3 formed in the second semiconductor layer 2. And.
  • the conductivity types of the first semiconductor layer 1, the second semiconductor layer 2, and the third semiconductor layer 3 are the first conductivity type (N type), the second conductivity type (P type), and the second conductivity type (P type), respectively. ).
  • a PN junction is formed between the first semiconductor layer 1 and the second semiconductor layer 2, and carriers generated in the depletion layer extending from the PN junction immediately below each ring electrode 5 are generated by the third semiconductor layer 3. And collected at each ring electrode 5.
  • a reverse bias is applied to the avalanche photodiode APD composed of this PN junction.
  • the second semiconductor layer 2 is preferably formed by epitaxial growth on the surface of the first semiconductor layer (substrate) 1 from the viewpoint of obtaining a good crystallinity.
  • the third semiconductor layer 3 can be formed by ion implantation or diffusion of impurities into the second semiconductor layer 2.
  • the semiconductor substrate 20 is preferably made of Si, and pentavalent antimony or phosphorus can be used as the N-type impurity, and trivalent boron can be used as the P-type impurity.
  • the dimension (preferable range) of the ring-shaped electrode 5 is as follows. ⁇ Line width: 3 ⁇ m (2-5 ⁇ m) ⁇ X-axis dimension: 50 ⁇ m (10-100 ⁇ m) ⁇ Y-axis dimension: 50 ⁇ m (10-100 ⁇ m) Opening area: 2500 ⁇ m 2 (100 ⁇ m 2 to 10000 ⁇ m 2 )
  • the conductivity types of the first semiconductor layer 1, the second semiconductor layer 2, and the third semiconductor layer 3 are the first conductivity type (N-type) and the first conductivity type, respectively. It is also possible to use a conductivity type (N type) or a second conductivity type (P type). In this case, a PN junction is formed between the second semiconductor layer 2 and the third semiconductor layer 3, and carriers generated in the depletion layer extending from the PN junction immediately below each ring electrode 5 are generated by the third semiconductor. Collected at each ring electrode 5 via layer 3. A reverse bias is applied to the avalanche photodiode APD composed of this PN junction.
  • the first conductivity type may be P type and the second conductivity type may be N type.
  • the bias application direction is opposite to the above. become.
  • An insulating layer 4 made of SiO 2 is formed on the third semiconductor layer 3, and a ring electrode 5 is formed on the insulating layer 4.
  • the ring electrode 5 is connected to the third semiconductor layer 3 through an opening provided in the insulating layer 4.
  • the planar shape of the ring-shaped electrode 5 is a rectangular ring shape, and one end of the ring-shaped electrode 5 is connected to one end of a quenching resistor (layer) 7 through an appropriate conductive layer as necessary.
  • the quenching resistor 7 extending along the X axis is made of polysilicon, and the ring electrode 5, the relay wiring 8 and the outer peripheral wiring are made of aluminum.
  • the volume resistivity of polysilicon is higher than the volume resistivity of aluminum.
  • the quenching resistor 7 is formed on the insulating layer 4, and the other end of the quenching resistor 7 is electrically connected to the relay wiring 8 extending along the Y axis.
  • Another electrode 6 is provided on the back surface of the semiconductor substrate 20, but when the first semiconductor layer 1 is N-type, this electrode 6 becomes a cathode electrode, the ring electrode 5 becomes an anode electrode, Each region sandwiched between these electrodes constitutes an avalanche photodiode APD.
  • a reverse bias voltage Vop is applied between the cathode electrode and the anode electrode.
  • FIG. 33 is a circuit diagram of the photodiode array.
  • Each avalanche photodiode APD constituting the photodiode array is connected in parallel with each other in series with the quenching resistor 7, and a reverse bias voltage Vop is applied from the power source.
  • An output current from the avalanche photodiode is detected by a detector A including an amplifier.
  • FIG. 34 is a diagram showing an equivalent circuit of a detection unit including an avalanche photodiode and a quenching resistor.
  • the avalanche photodiode APD is shown as a current source I and a capacitor Cd providing a diode capacitance connected in parallel
  • the quenching resistance is shown as a resistance having a resistance value Rq
  • a capacitor Cq is connected in parallel thereto,
  • a capacitor Cg indicating a wiring capacity is connected in parallel with the power source.
  • the presence of the capacitor Cq improves the time resolution of the photodiode array.
  • a photodiode array including the capacitor Cq in various forms will be described. That is, the photodiode array of the following form further includes a quenching resistor Rq connected in series to each avalanche photodiode APD and a capacitor Cq connected in parallel to the quenching resistor Rq.
  • FIG. 25 is a diagram showing a photomicrograph when the photodiode array shown in FIG. 2 is produced.
  • FIG. 5 is an enlarged plan view of the photodiode array including the capacitor Cq
  • FIG. 6 is a sectional view taken along the line VI-VI of the photodiode array shown in FIG. 5
  • FIG. 7 is the photodiode array shown in FIG. FIG. 7 is a cross-sectional view taken along line VII-VII.
  • a difference between the photodiode array of this example and the photodiode array shown in FIGS. 2 to 4 is that an outer peripheral region 9 is provided around the relay wiring 8 so as to surround the ring electrode 5. A part of is continuous to the intermediate wiring 11 and the width W2 of the relay wiring 8 is increased, and the other structure is the same. That is, in this photodiode array, one of the anode and the cathode of each avalanche photodiode APD is electrically connected to the ring electrode 5, but the relay wiring 8 is separated from the ring electrode 5, A conductive outer peripheral region 9 extending so as to surround the electrode 5 is provided.
  • the outer peripheral region 9 is also made of aluminum.
  • the capacitor Cq described above has the outer peripheral region 9 extending from the relay wiring 8 and the ring electrode 5, and a capacitance is formed between them.
  • the capacitor can be configured in a planar manner, and the time resolution is improved.
  • the width W2 of the relay wiring 8 is 9 ⁇ m, and preferably 2 to 10 ⁇ m. In this case, it is possible to sufficiently reduce the resistance value and suppress the output difference between the pixels. .
  • intermediate wirings 11 extending in parallel to these are provided between the adjacent relay wirings 8. Both ends of the intermediate wiring 11 are connected to two locations of the outer peripheral wiring WL. Of course, the intermediate wiring 11 may be connected to three or more locations of the outer peripheral wiring WL. In addition, when using the below-mentioned crossing wiring, the end of the relay wiring 8 and the intermediate wiring 11 is connected to a crossing wiring. In the region outside the opening of the ring electrode 5, incident light is blocked by the relay wiring 8, the intermediate wiring 11, and the outer peripheral wiring WL. Can be returned. A part of the outer peripheral region 9 extending from the relay wiring 8 is continuous with the intermediate wiring 11, and the other part of the outer peripheral region 9 extends so as to be positioned between the quenching resistor 7 and the ring-shaped electrode 5. ing.
  • FIG. 26 is a view showing a photomicrograph of the photodiode array shown in FIG. In this case, it was confirmed that the capacitor can be configured in a planar manner and the time resolution is improved.
  • FIG. 9 is an enlarged plan view of another photodiode array including a capacitor Cq
  • FIG. 10 is a cross-sectional view of the photodiode array shown in FIG. 9, taken along line XX
  • FIG. 11 is a photo of the photodiode array shown in FIG. It is XI-XI arrow sectional drawing of a diode array.
  • each relay wiring 8 is connected to an outer peripheral region 9 on both sides, but there is no intermediate wiring 11.
  • the adjacent outer peripheral regions 9 are separated from each other, and the other structures are the same. That is, the outer peripheral region 9 surrounds the ring-shaped electrode 5, but there is no intermediate wiring 11, and the distal end portion of the outer peripheral region 9 is separated from the adjacent outer peripheral region 9.
  • the capacitor Cq is formed between the outer peripheral region 9 and the ring electrode 5.
  • FIG. 27 is a view showing a photomicrograph of the photodiode array shown in FIG. Also in this case, it was confirmed that the capacitor can be configured in a planar manner and the time resolution is improved.
  • FIG. 12 is an enlarged plan view of still another photodiode array including the capacitor Cq.
  • FIG. 13 is a cross-sectional view of the photodiode array shown in FIG. 12 taken along the line XIII-XIII, and
  • FIG. 4 is a cross-sectional view of the illustrated photodiode array taken along line XIV-XIV.
  • each relay wiring 8 has an opening OP in a region along its center line (Y axis).
  • the other structures are the same.
  • the wiring capacity of the relay wiring 8 can be reduced, and the time resolution can be further improved.
  • the width of the opening OP in the X-axis direction is 5 ⁇ m, and is preferably 2 to 5 ⁇ m from the viewpoint of further improving the time resolution.
  • This opening structure can be applied to a structure including another relay wiring 8.
  • FIG. 28 shows a photomicrograph of the photodiode array shown in FIG. Also in this case, it was confirmed that the capacitor can be configured in a planar manner and the time resolution is improved.
  • FIG. 15 is an enlarged plan view of still another photodiode array including the capacitor Cq
  • FIG. 16 is a cross-sectional view of the photodiode array shown in FIG. 15 taken along the line XVI-XVI
  • FIG. 7 is a cross-sectional view of the illustrated photodiode array taken along line XVII-XVII.
  • the difference between the photodiode array of this example and the photodiode array shown in FIGS. 2 to 5 is that a capacitor Cq is formed on the quenching resistor 7 via an insulating layer K such as SiN or SiO 2.
  • the coated wiring K1 is provided, and one end of the coated wiring K1 is electrically connected to one end of the quenching resistor 7, and the other structure is the same.
  • the covered wiring K1 extends from the relay wiring 8 and covers the insulating layer K. A capacitance is formed between the covered wiring K1 and the quenching resistor 7.
  • FIG. 29 is a view showing a photomicrograph of the photodiode array shown in FIG. Even in this case, since the capacitor can be three-dimensionally formed by stacking, it was confirmed that the element density can be improved and the time resolution is improved.
  • FIG. 18 is an enlarged plan view of still another photodiode array including the capacitor Cq
  • FIG. 19 is a cross-sectional view of the photodiode array shown in FIG. 18, taken along the line XIX-XIX
  • FIG. 19 is a cross-sectional view of the photodiode array shown in FIG. 18 taken along line XX-XX.
  • the difference between the photodiode array of this example and the photodiode array shown in FIGS. 15 to 17 is that the covered wiring K1 extends from the ring electrode 5 and covers the insulating layer K. Other configurations are the same. In this case as well, a capacitance is formed between the covered wiring K1 and the quenching resistor 7 to configure the capacitor Cq.
  • FIG. 30 is a view showing a micrograph of the photodiode array shown in FIG. Even in this case, since the capacitor can be three-dimensionally formed by stacking, it was confirmed that the element density can be improved and the time resolution is improved.
  • FIG. 21 is an enlarged plan view of still another photodiode array including the capacitor Cq
  • FIG. 22 is a cross-sectional view of the photodiode array shown in FIG. 21, taken along line XXII-XXII
  • FIG. 22 is a cross-sectional view of the photodiode array shown in FIG. 21 taken along line XXIII-XXIII.
  • FIG. 31 is a view showing a photomicrograph of the photodiode array shown in FIG.
  • FIG. 24 is a plan view of the photodiode array.
  • This photodiode array 10 is obtained by adding a transverse wiring WL2 to the one shown in FIG. 1 and inverting the top and bottom of the avalanche photodiode group located above the transverse wiring WL2 in the drawing. This is the same as that shown in FIG.
  • the transverse wiring WL2 is electrically connected to the outer peripheral wiring WL, and connects at least two locations of the outer peripheral wiring WL.
  • the transverse wiring WL2 extends along the X axis, and the width thereof is larger than the width of the relay wiring 8.
  • the resistance value per unit length of the transverse wiring WL2 is smaller than the resistance value per unit length of the relay wiring 8.
  • one end of each relay wiring 8 shown in FIG. 1 is electrically connected to the transverse wiring WL2 instead of the outer peripheral wiring WL.
  • the width of the transverse wiring WL2 is 20 ⁇ m, and is preferably 10 to 30 ⁇ m from the viewpoint of improving time resolution.
  • FIG. 32 is a view showing a photomicrograph of the photodiode array shown in FIG.
  • FIGS. 3 to 23 the structure including the transverse wiring WL2 shown in FIG. 24 is also shown in FIGS. Applicable to structure.
  • jitter at 10 mV of the output waveform was measured.
  • the jitter is 146 ps (type 1).
  • the outer peripheral wiring WL is as thick as the relay wiring 8 (as a comparative example)
  • the jitter is 160 ps.
  • the jitter was 148 ps (type 2). It has been found that jitter is reduced and time resolution is significantly improved as compared with the comparative example.
  • the jitter is 142 ps (type 3).
  • the jitter is 138 ps (type 4).
  • the jitter was 130 ps (type 5).
  • the jitter was 125 ps (type 6).
  • the jitter is 127 ps (type 7).
  • the jitter was 146 ps (type 8).
  • type 2 transverse wiring can be used in type 3 to type 8 structures. It is also possible to combine any structure of types 3 to 5 and any structure of types 6 to 8, and the structure of type 8 can be combined with any type of structure. In particular, when Type 5 (opening structure) or Type 8 (vertically long structure) is combined with Type 6 or 7 structure (laminated structure), the above-mentioned effects are synergistic and it is possible to further reduce jitter. It is done.
  • FIG. 35 is a view showing a radiation detector provided with a photodiode array.
  • a scintillator panel is fixed on the light incident surface of the photodiode array 10.
  • the scintillator panel includes a scintillator 11 such as CsI and a coating layer 12 such as polyparaxylylene that covers the scintillator. 13 is interposed.
  • the scintillator 11 emits light, and this light enters the photodiode array 10.
  • a reverse bias voltage exceeding the breakdown voltage is applied to the photodiode array 10 between the electrode P and the electrode 6, and the output can be detected via the detector A.
  • a radiation detector excellent in time resolution can be applied to an X-ray CT, a PET apparatus, or the like, and can measure an image having a resolution that could not be measured so far.
  • SYMBOLS 10 ... Photodiode array, 1 ... 1st semiconductor layer, 2 ... 2nd semiconductor layer, 3 ... 3rd semiconductor layer, 4 ... Insulating layer, 5 ... Ring-shaped electrode, 6 ... Another electrode, 7 ... Quenching resistance, 8 ... Relay wiring, PD ... Photodiode, WL ... Outer peripheral wiring, 9 ... Outer peripheral area, 11 ... Intermediate wiring , WL2 ... transverse wiring.

Abstract

 このフォトダイオードアレイ10は、それぞれのアバランシェフォトダイオードAPDに対して直列に接続されたクエンチング抵抗7と、複数のアバランシェフォトダイオードAPDが形成された領域を囲む外周配線WLと、外周配線WLに電気的に接続され、外周配線WLの少なくとも2箇所間をそれぞれが接続する複数の中継配線8とを備えている。個々のアバランシェフォトダイオードAPDのアノード及びカソードの一方は、クエンチング抵抗7を介して、中継配線8のいずれかに電気的に接続され、個々のアバランシェフォトダイオードAPDのアノード及びカソードの他方は、半導体基板に設けられた別の電極6に電気的に接続されている。

Description

フォトダイオードアレイ
 本発明は、フォトダイオードアレイに関する。
 Multi-Pixel Photon Counter(MPPC:登録商標)は、ガイガーモードで動作する複数のアバランシェ・フォトダイオード(APD)からなるフォトダイオードアレイとして知られている。複数のAPDは並列に接続されており、これらには降伏電圧以上の逆バイアス電圧が印加され、ガイガーモードで動作する。MPPCは、アバランシェフォトダイオードに直列に接続されたクエンチング抵抗を備えている。このクエンチング抵抗にアバランシェフォトダイオードからの電流が流れることで、アバランシェフォトダイオードへのバイアス電圧は降伏電圧まで降下し、しかる後、再充電によって、逆バイアス電圧が、ガイガーモード時の電圧にまで戻る。
 MPPCは、他の検出器に比べて時間特性がよいため、Time-Of-Flight(TOF)計測方式のPET(Positron
Emission Tomography)装置等の検出器として用いることが有望視されている。PET装置における光子の計測においては、更に高い時間分解能が要求されている。時間分解能を向上させるには、MPPCから出力波形の形状を鋭くする必要がある。下記非特許文献1には、クエンチング抵抗に対して、並列な容量(Cq)を付加することで、出力パルスが鋭くなり、時間分解能が向上することが示されている。
H.Otono, etal.,「On the basic mechanism ofPixelized PhotonDetectors」Nucl. Instr. and Meth.A610(2009)397.
 しかしながら、実際のデバイスにおいて、如何に並列容量を付加するかは重要な問題であり、単純に容量を追加した場合には、キャパシタと抵抗による時定数が増加し、時間分解能が低下する可能性もある。本発明は、このような課題に鑑みてなされたものであり、従来よりも、著しく時間分解能を向上可能なフォトダイオードアレイを提供することを目的とする。
 上述の課題を解決するため、本発明の一態様に係る第1のフォトダイオードアレイは、フォトダイオードアレイにおいて、半導体基板内に形成された複数のアバランシェフォトダイオードと、それぞれのアバランシェフォトダイオードに対して直列に接続されたクエンチング抵抗と、複数の前記アバランシェフォトダイオードが形成された領域を囲む外周配線と、前記外周配線に電気的に接続され、前記外周配線の少なくとも2箇所間をそれぞれが接続する複数の中継配線と、を備え、前記外周配線の単位長さ当たりの抵抗値は、前記中継配線の単位長さ当たりの抵抗値よりも小さく、個々の前記アバランシェフォトダイオードのアノード及びカソードの一方は、前記クエンチング抵抗を介して、前記中継配線のいずれかに電気的に接続され、個々の前記アバランシェフォトダイオードのアノード及びカソードの他方は、前記半導体基板に設けられた別の電極に電気的に接続されていることを特徴とする。
 この場合、中継配線からの電流は、抵抗値の低い外周配線の少なくとも2箇所のうちの何れか近い方(信号伝達経路での抵抗の低い方)を多く流れて外部に取り出されることになるため、信号読出し経路における抵抗値を低減することができるので、時定数が小さくなり、したがって、時間分解能が向上する。
 本発明の一態様に係る第2のフォトダイオードアレイは、前記外周配線に電気的に接続され、前記外周配線の少なくとも2箇所間を接続し、前記中継配線の単位長さ当たりの抵抗値よりも、自身の単位長さ当たりの抵抗値が小さい横断配線を更に備え、それぞれの前記中継配線の一端は、前記外周配線に代えて、前記横断配線に電気的に接続されていることを特徴とする。
 この場合、中継配線からの電流は抵抗値の低い外周配線との接続箇所か、横断配線との接続箇所のうちの何れか近い方(信号伝達経路での抵抗の低い方)を多く流れて外部に取り出されることになるため、信号読出し経路における抵抗値を更に低減することができるので、時定数が小さくなり、したがって、時間分解能が向上する。
 本発明の一態様に係る第3のフォトダイオードアレイは、それぞれの前記クエンチング抵抗にそれぞれ並列に接続されたキャパシタを更に備えていることを特徴とする。
 この場合、時間分解能が更に向上する。
 本発明の一態様に係る第4のフォトダイオードアレイでは、それぞれの前記アバランシェフォトダイオードのアノード及びカソードの一方は、リング状電極に電気的に接続されており、前記中継配線は、前記リング状電極から離間し、前記リング状電極を囲むように延びた導電性の外周領域を備えており、前記キャパシタは、前記中継配線から延びた前記外周領域と、前記リング状電極と、を有していることを特徴とする。
 この場合、キャパシタを平面的に構成することができ、時間分解能が向上する。
 本発明の一態様に係る第5のフォトダイオードアレイは、第4のフォトダイオードアレイにおいて、前記中継配線間に平行に延びた中間配線を更に備え、前記中間配線は、前記外周配線の少なくとも2箇所間をそれぞれが接続しており、前記外周領域は、前記中間配線に連続していることを特徴とする。
 この場合、キャパシタを平面的に構成することができ、時間分解能が向上することが確認された。
 本発明の一態様に係る第6のフォトダイオードアレイでは、第4のフォトダイオードアレイにおいて、それぞれの前記中継配線には、その両側に前記外周領域が接続されており、互いに隣接する前記中継配線に関して、互いに隣接する前記外周領域は離間していることを特徴とする。
 この場合、キャパシタを平面的に構成することができ、時間分解能が向上することが確認された。
 本発明の一態様に係る第7のフォトダイオードアレイでは、それぞれの前記中継配線は、その中心線に沿った領域が開口していることを特徴とする。
 この場合、キャパシタを平面的に構成することができ、時間分解能が向上することが確認された。また、中継配線の配線容量が低減される。
 本発明の一態様に係る第8のフォトダイオードアレイでは、上述のいずれかのフォトダイオードアレイにおいて、前記キャパシタは、前記クエンチング抵抗上に、絶縁層を介して、形成された被覆配線を有しており、この被覆配線の一端は、前記クエンチング抵抗の一端に電気的に接続されていることを特徴とする。この場合、キャパシタを積層により立体的に構成することができるため、素子密度を向上させることができ、また、時間分解能が向上することが確認された。
 本発明の一態様に係る第8のフォトダイオードアレイでは、それぞれの前記アバランシェフォトダイオードのアノード及びカソードの一方は、リング状電極に電気的に接続されており、前記リング状電極のアスペクト比は、2以上であることを特徴とする。この場合、中継配線と、離間して並走するリング状電極との間でキャパシタが構成されているが、アスペクト比が大きいために、キャパシタの容量を大きくすることができる。したがって、リング状電極の開口率に対するキャパシタの比率が大きくなり、キャパシタの素子密度が高くなる。したがって、リング状電極を小さくして空間分解能を高めることも可能であり、また、時間分解能が向上することが確認された。
 本発明の一態様によるフォトダイオードアレイによれば、著しく時間分解能を向上させることが可能である。
図1は、フォトダイオードアレイの平面図である。 図2は、フォトダイオードアレイの拡大平面図である。 図3は、図2に示したフォトダイオードアレイのIII-III矢印線断面図である。 図4は、図2に示したフォトダイオードアレイのIV-IV矢印線断面図である。 図5は、フォトダイオードアレイの拡大平面図である。 図6は、図5に示したフォトダイオードアレイのVI-VI矢印線断面図である。 図7は、図5に示したフォトダイオードアレイのVII-VII矢印線断面図である。 図8は、配線の平面図である。 図9は、フォトダイオードアレイの拡大平面図である。 図10は、図9に示したフォトダイオードアレイのX-X矢印線断面図である。 図11は、図9に示したフォトダイオードアレイのXI-XI矢印線断面図である。 図12は、フォトダイオードアレイの拡大平面図である。 図13は、図12に示したフォトダイオードアレイのXIII-XIII矢印線断面図である。 図14は、図12に示したフォトダイオードアレイのXIV-XIV矢印線断面図である。 図15は、フォトダイオードアレイの拡大平面図である。 図16は、図15に示したフォトダイオードアレイのXVI-XVI矢印線断面図である。 図17は、図15に示したフォトダイオードアレイのXVII-XVII矢印線断面図である。 図18は、フォトダイオードアレイの拡大平面図である。 図19は、図18に示したフォトダイオードアレイのXIX-XIX矢印線断面図である。 図20は、図18に示したフォトダイオードアレイのXX-XX矢印線断面図である。 図21は、フォトダイオードアレイの拡大平面図である。 図22は、図21に示したフォトダイオードアレイのXXII-XXII矢印線断面図である。 図23は、図21に示したフォトダイオードアレイのXXIII-XXIII矢印線断面図である。 図24は、フォトダイオードアレイの平面図である。 図25は、図2に示したフォトダイオードアレイの顕微鏡写真を示す図である。 図26は、図5に示したフォトダイオードアレイの顕微鏡写真を示す図である。 図27は、図9に示したフォトダイオードアレイの顕微鏡写真を示す図である。 図28は、図12に示したフォトダイオードアレイの顕微鏡写真を示す図である。 図29は、図15に示したフォトダイオードアレイの顕微鏡写真を示す図である。 図30は、図18に示したフォトダイオードアレイの顕微鏡写真を示す図である。 図31は、図21に示したフォトダイオードアレイの顕微鏡写真を示す図である。 図32は、図24に示したフォトダイオードアレイの顕微鏡写真を示す図である。 図33は、フォトダイオードアレイの回路図である。 図34は、アバランシェフォトダイオードとクエンチング抵抗を含む検出部の等価回路を示す図である。 図35は、フォトダイオードアレイを備えた放射線検出器を示す図である。
 以下、実施の形態に係るフォトダイオードアレイについて説明する。なお、同一要素には同一符号を用いることとし、重複する説明は省略する。
 図1は、フォトダイオードアレイ10の平面図である。
 図示の如く、XYZ直交座標系を設定すると、フォトダイオードアレイ10の厚み方向はZ軸に一致し、フォトダイオードアレイ10の光入射面はXY平面に一致する。フォトダイオードアレイ10は、半導体基板20を備えているが、半導体基板20の形状は長方形であり、各辺はX軸又はY軸に平行である。
 フォトダイオードアレイ10は、半導体基板20内に形成された複数のアバランシェフォトダイオードAPDを備えている。それぞれのアバランシェフォトダイオードAPDに対しては、クエンチング抵抗7が直列に接続されている。複数のアバランシェフォトダイオードAPDが形成された領域は、外周配線WLによって囲まれている。外周配線WLの外側には金属等からなる遮光層SL等を設けることができる。外周配線WLの外形は、矩形環状であって、各辺がX軸又はY軸に沿って延びており、X軸に沿って延びた電極パッドPに接続されている。外周配線WLには、複数の中継配線8が電気的に接続されている。複数の中継配線8は、それぞれがY軸に沿って延びており、外周配線WLの少なくとも2箇所(Y軸に沿った両端に位置する部位)間をそれぞれが接続している。
 外周配線WLの単位長さ当たりの抵抗値は、中継配線8の単位長さ当たりの抵抗値よりも小さい。すなわち、外周配線WL及び中継配線8が同一の導電材料(例:アルミニウム)からなり、外周配線WLがY軸に沿って延びている場合、そのXZ断面の面積は、中継配線8のXZ断面の面積よりも大きい。また、外周配線WLがX軸に沿って延びている場合、そのYZ断面の面積は、中継配線8のXZ断面の面積よりも大きい。なお、図8は、配線の平面図である。外周配線WLと中継配線8の厚みが同じ場合には、外周配線WLの幅W1は、中継配線8の幅W2よりも広くなる。
 個々のアバランシェフォトダイオードAPDのアノード及びカソードの一方は、クエンチング抵抗7を介して、中継配線8のいずれかに電気的に接続され、個々のアバランシェフォトダイオードAPDのアノード及びカソードの他方は、半導体基板20に設けられた別の電極6(図3参照:本例では裏面電極)に電気的に接続されている。なお、別の電極6は、アノード及びカソードの他方に電気的に接続できる構成であれば、半導体基板20の表面側に設けることとしてもよい。
 上述のように、フォトダイオードアレイ10が外周配線WLを備える場合、アバランシェフォトダイオードAPDからの電流は、中継配線8、及び、中継配線8と外周配線WLとの接続箇所(本例では2箇所)のうちの何れか近い方(電極パッドPまでの信号伝達経路での抵抗の低い方)を多く流れるように、外周配線WL内を通って、電極パッドPに流れ、外部に取り出されることになる。このように、外周配線WLを備える場合、信号読出し経路における抵抗値を低減することができるので、時定数が小さくなり、したがって、フォトダイオードアレイの時間分解能を向上させることができる。
 例えば、図1における左下に位置するアバランシェフォトダイオードAPDからの電流は、中継配線8においては、Y軸の負方向に流れた後、バイパス経路としての外周配線WLとの接続点Q1に流れ込み、その後、外周配線WL内をX軸の負方向に進行した後、Y軸の正方向に沿って進行し、更に、X軸の正方向に沿って進行して、電極パッドPに至る経路に多く流れることになる。
 また、図1における左上に位置するアバランシェフォトダイオードAPDからの電流は、中継配線8においては、Y軸の正方向に流れた後、バイパス経路としての外周配線WLとの接続点Q2に流れ込み、その後、外周配線WL内をX軸の正方向に沿って進行して、電極パッドPに至る経路に多く流れることになる。なお、中継配線8は、外周配線WLの2箇所において接続されているが、これは3箇所以上の接続点を有していてもよい。例えば、中継配線8の形状が十字架形状である場合には、外周配線WLと4箇所で接続することが可能であり、放射状に延びたり、屈曲したり、或いは、分岐していれば、接続箇所を3以上とすることができる。
 上述のフォトダイオードアレイ10では、1つの中継配線8に対して、その両側に複数のアバランシェフォトダイオードAPDが配置され、アバランシェフォトダイオードAPDのそれぞれは、クエンチング抵抗7を介して、中継配線8に接続されている。以下、アバランシェフォトダイオードAPDの周辺構造について詳説する。
 図2は、第1のタイプのフォトダイオードアレイの拡大平面図、図3は、図2に示したフォトダイオードアレイのIII-III矢印線断面図、図4は、図2に示したフォトダイオードアレイのIV-IV矢印線断面図である。
 このフォトダイオードアレイでは、半導体基板20は、第1半導体層1と、第1半導体層1上に形成された第2半導体層2と、第2半導体層2内に形成された第3半導体層3とを備えている。第1半導体層1、第2半導体層2、及び第3半導体層3の導電型は、それぞれ、第1導電型(N型)、第2導電型(P型)、第2導電型(P型)である。この場合、第1半導体層1と第2半導体層2との間にPN接合が形成され、各リング状電極5の直下のPN接合から広がる空乏層内で発生したキャリアが、第3半導体層3を介して、各リング状電極5において収集される。このPN接合からなるアバランシェフォトダイオードAPDには、逆バイアスが印加される。なお、空乏層内では、光Lの入射に応じてキャリアが発生する。第2半導体層2は、良好な結晶性のものを得るという観点から、第1半導体層(基板)1の表面へのエピタキシャル成長によって形成することが好ましい。第3半導体層3は、第2半導体層2への不純物のイオン注入又は拡散により形成することができる。
 なお、第3半導体層3の不純物濃度は、第2半導体層2の不純物濃度よりも高い。半導体基板20は、好適にはSiから構成されており、N型の不純物としては5価のアンチモンやリン、P型の不純物としては3価のボロンを用いることができる。
 また、リング状電極5の寸法(好適範囲)は、以下の通りである。
・線幅:3μm(2~5μm)
・X軸方向寸法:50μm(10~100μm)
・Y軸方向寸法:50μm(10~100μm)
・開口面積:2500μm(100μm~10000μm
 また、詳細な説明における各タイプのフォトダイオードアレイにおいて、第1半導体層1、第2半導体層2、及び第3半導体層3の導電型は、それぞれ、第1導電型(N型)、第1導電型(N型)、第2導電型(P型)とすることも可能である。この場合には、第2半導体層2と第3半導体層3との間にPN接合が形成され、各リング状電極5の直下のPN接合から広がる空乏層内で発生したキャリアが、第3半導体層3を介して、各リング状電極5において収集される。このPN接合からなるアバランシェフォトダイオードAPDには、逆バイアスが印加される。
 もちろん、説明において、上記とは逆に、第1導電型をP型とし、第2導電型をN型とすることも可能であり、この場合には、バイアスの印加方向が、上記とは逆になる。
 第3半導体層3上には、SiOからなる絶縁層4が形成されており、絶縁層4にはリング状電極5が形成されている。リング状電極5は、絶縁層4に設けられた開口を介して、第3半導体層3に接続されている。リング状電極5の平面形状は、矩形環状であり、リング状電極5の一端は、必要に応じて適当な導電層を介して、クエンチング抵抗(層)7の一端に接続されている。X軸に沿って延びたクエンチング抵抗7は、ポリシリコンから形成され、リング状電極5、中継配線8及び外周配線はアルミニウムから形成される。ポリシリコンの体積抵抗率は、アルミニウムの体積抵抗率よりも高い。クエンチング抵抗7は、絶縁層4上に形成されており、クエンチング抵抗7の他端は、Y軸に沿って延びる中継配線8に電気的に接続されている。
 半導体基板20の裏面には、別の電極6が設けられているが、第1半導体層1がN型である場合には、この電極6はカソード電極となり、リング状電極5はアノード電極となり、これらの電極に挟まれた領域が、それぞれアバランシェフォトダイオードAPDを構成している。これらのカソード電極とアノード電極との間には逆バイアス電圧Vopが印加される。
 図33は、フォトダイオードアレイの回路図である。フォトダイオードアレイを構成する各アバランシェフォトダイオードAPDは、それぞれクエンチング抵抗7と直列に接続された形で、全て並列に接続されており、電源から逆バイアス電圧Vopが印加される。アバランシェフォトダイオードからの出力電流は、アンプなどを含む検出器Aによって検出される。
 図34は、アバランシェフォトダイオードとクエンチング抵抗を含む検出部の等価回路を示す図である。アバランシェフォトダイオードAPDは、電流源Iとダイオード容量を提供するキャパシタCdを並列に接続したものとして示され、クエンチング抵抗は抵抗値Rqの抵抗として示され、これに並列にキャパシタCqが接続され、全体としては、電源に並列に配線容量を示すキャパシタCgが接続されているものとする。ここで、キャパシタCqが存在することにより、フォトダイオオードアレイの時間分解能が向上する。以下では、キャパシタCqを様々な形態で具備したフォトダイオードアレイを説明する。すなわち、以下の形態のフォトダイオードアレイは、それぞれのアバランシェフォトダイオードAPDに直列に接続するクエンチング抵抗Rq、クエンチング抵抗Rqにそれぞれ並列に接続されたキャパシタCqを更に備えている。
 抵抗値Rq(好適範囲)とキャパシタCgの容量(好適範囲)は、以下の通りである。
・抵抗値Rq:150kΩ(50~300kΩ)
・キャパシタCgの容量:5pF(配線容量であり0が好ましく、小さい程よい)
 上記の場合、時間分解能が更に向上する。図25は、図2に示したフォトダイオードアレイを作製した場合の顕微鏡写真を示す図である。
 図5は、キャパシタCqを備えたフォトダイオードアレイの拡大平面図、図6は、図5に示したフォトダイオードアレイのVI-VI矢印線断面図、図7は、図5に示したフォトダイオードアレイのVII-VII矢印線断面図である。
 本例のフォトダイオードアレイと、図2~図4に示したフォトダイオードアレイの相違点は、中継配線8の周囲に、リング状電極5を囲むように延びた外周領域9を備え、外周領域9の一部が、中間配線11に連続し、中継配線8の幅W2を太くした点であり、その他の構造は、同一である。すなわち、このフォトダイオードアレイでは、それぞれのアバランシェフォトダイオードAPDのアノード及びカソードの一方は、リング状電極5に電気的に接続されているが、中継配線8は、リング状電極5から離間し、リング状電極5を囲むように延びた導電性の外周領域9を備えている。外周領域9もアルミニウムからなる。この場合、上述のキャパシタCqは、中継配線8から延びた外周領域9と、リング状電極5とを有していることになり、これらの間に容量が形成されている。この構造のキャパシタの場合、キャパシタを平面的に構成することができ、時間分解能が向上する。なお、中継配線8の幅W2は、9μmであり、好適には、2~10μmであり、この場合には、十分に抵抗値を減少させ、画素間の出力差を抑制することが可能である。
 なお、隣接する中継配線8間には、これらに平行に延びた中間配線11が設けられている。中間配線11の両端は、外周配線WLの2箇所に接続されている。もちろん、中間配線11は、外周配線WLの3箇所以上に接続する構成としてもよい。なお、後述の横断配線を用いる場合には、中継配線8及び中間配線11の一端は、横断配線に接続される。リング状電極5の開口内よりも外側の領域では、中継配線8、中間配線11及び外周配線WLによって、入射光が遮られるが、アルミニウムは反射率が高いため、後述のシンチレータに対して、光を戻すことができる。なお、中継配線8から延びた外周領域9の一部分は、中間配線11に連続しており、外周領域9の他の部分はクエンチング抵抗7とリング状電極5との間に位置するように延びている。
 図26は、図5に示したフォトダイオードアレイの顕微鏡写真を示す図である。この場合、キャパシタを平面的に構成することができ、時間分解能が向上することが確認された。
 図9は、キャパシタCqを備えた別のフォトダイオードアレイの拡大平面図、図10は、図9に示したフォトダイオードアレイのX-X矢印線断面図、図11は、図9に示したフォトダイオードアレイのXI-XI矢印線断面図である。
 本例のフォトダイオードアレイと、図5~図7に示したフォトダイオードアレイの相違点は、それぞれの中継配線8には、その両側に外周領域9が接続されているが、中間配線11はなく、互いに隣接する中継配線8に関しては、互いに隣接する外周領域9は離間している点であり、その他の構造は、同一である。すなわち外周領域9は、リング状電極5の周囲を囲んでいるが、中間配線11はなく、外周領域9の先端部は隣接する外周領域9からは離間している。これにより、図5~図7に示したフォトダイオードアレイよりも、配線容量を低下させることが可能である。キャパシタCqは、外周領域9とリング状電極5との間に形成されている。
 図27は、図9に示したフォトダイオードアレイの顕微鏡写真を示す図である。この場合においても、キャパシタを平面的に構成することができ、時間分解能が向上することが確認された。
 図12は、キャパシタCqを備えた更に別のフォトダイオードアレイの拡大平面図であり、図13は、図12に示したフォトダイオードアレイのXIII-XIII矢印線断面図、図14は、図12に示したフォトダイオードアレイのXIV-XIV矢印線断面図である。
 本例のフォトダイオードアレイと、図9~図11に示したフォトダイオードアレイの相違点は、それぞれの中継配線8は、その中心線(Y軸)に沿った領域が開口OPしている点であり、その他の構造は同一である。この場合、上記効果に加えて、中継配線8による配線容量を低減させて、時間分解能を更に向上させることができる。開口OPのX軸方向の幅は、5μmであり、時間分解能を更に向上させる観点からは、好適には、2~5μmである。この開口構造は、他の中継配線8を備える構造に適用することができる。
 図28は、図12に示したフォトダイオードアレイの顕微鏡写真を示す図である。この場合においても、キャパシタを平面的に構成することができ、時間分解能が向上することが確認された。
 図15は、キャパシタCqを備えた更に別のフォトダイオードアレイの拡大平面図であり、図16は、図15に示したフォトダイオードアレイのXVI-XVI矢印線断面図、図17は、図15に示したフォトダイオードアレイのXVII-XVII矢印線断面図である。
 本例のフォトダイオードアレイと、図2~図5に示したフォトダイオードアレイの相違点は、キャパシタCqが、クエンチング抵抗7上に、SiNやSiOなどの絶縁層Kを介して、形成された被覆配線K1を有しており、この被覆配線K1の一端は、クエンチング抵抗7の一端に電気的に接続されている点であり、その他の構造は同一である。本例では、被覆配線K1は、中継配線8から延びており、絶縁層Kを被覆している。被覆配線K1とクエンチング抵抗7との間に容量が形成されている。
 図29は、図15に示したフォトダイオードアレイの顕微鏡写真を示す図である。この場合においても、キャパシタを積層により立体的に構成することができるため、素子密度を向上させることができ、また、時間分解能が向上することが確認された。
 図18は、キャパシタCqを備えた更に別のフォトダイオードアレイの拡大平面図であり、図19は、図18に示したフォトダイオードアレイのXIX-XIX矢印線断面図であり、図20は、図18に示したフォトダイオードアレイのXX-XX矢印線断面図である。
 本例のフォトダイオードアレイと、図15~図17に示したフォトダイオードアレイの相違点は、被覆配線K1は、リング状電極5から延びており、絶縁層Kを被覆している点であり、その他の構成は同一である。この場合も、被覆配線K1とクエンチング抵抗7との間に容量が形成され、キャパシタCqを構成している。
 図30は、図18に示したフォトダイオードアレイの顕微鏡写真を示す図である。この場合においても、キャパシタを積層により立体的に構成することができるため、素子密度を向上させることができ、また、時間分解能が向上することが確認された。
 図21は、キャパシタCqを備えた更に別のフォトダイオードアレイの拡大平面図であり、図22は、図21に示したフォトダイオードアレイのXXII-XXII矢印線断面図であり、図23は、図21に示したフォトダイオードアレイのXXIII-XXIII矢印線断面図である。
 本例のフォトダイオードアレイと、図2~図5に示したフォトダイオードアレイの相違点は、それぞれのアバランシェフォトダイオードAPDのアノード及びカソードの一方は、リング状電極5に電気的に接続されているが、リング状電極5のアスペクト比(=Y軸方向の寸法/X軸方向の寸法)は、2以上である点である。この場合、中継配線8と、離間して並走するリンク状電極5との間でキャパシタCqが構成されているが、アスペクト比が大きいために、キャパシタCqの容量を大きくすることができる。したがって、リング状電極5の開口率に対するキャパシタの比率が大きくなり、キャパシタの素子密度が高くなる。したがって、リング状電極5を小さくして空間分解能を高めることも可能であり、また、時間分解能が向上することが確認された。図31は、図21に示したフォトダイオードアレイの顕微鏡写真を示す図である。
 なお、本例のアスペクト比を向上させる構造は、他のタイプの構造にも適用することができる。
 図24は、フォトダイオードアレイの平面図である。
 このフォトダイオードアレイ10は、図1に示したものに横断配線WL2を追加し、横断配線WL2よりも図面の上側に位置するアバランシェフォトダイオード群の天地を反転させたものであり、その他の構造は、図1に示したものと同一である。横断配線WL2は、外周配線WLに電気的に接続されており、外周配線WLの少なくとも2箇所間を接続するものである。本例では、横断配線WL2は、X軸に沿って延びており、その幅は、中継配線8の幅よりも大きい。横断配線WL2の単位長さ当たりの抵抗値は、中継配線8の単位長さ当たりの抵抗値よりも小さい。この構造の場合、図1に示したそれぞれの中継配線8の一端は、外周配線WLに代えて、横断配線WL2に電気的に接続されている。横断配線WL2の幅は、20μmであり、時間分解能を向上させる観点からは、好適には10~30μmである。
 この場合、中継配線8からの電流は、外周配線WLとの接続箇所か、横断配線WL2との接続箇所のうちの何れか近い方(信号伝達経路での抵抗の低い方)を多く流れて、外部に取り出されるようになるため、信号読出し経路における抵抗値を更に低減することができる。したがって、時定数が小さくなり、時間分解能が向上する。図32は、図24に示したフォトダイオードアレイの顕微鏡写真を示す図である。
 なお、図1に示した外周配線WLを備える構造は、図3~図23に示した構造に適用できるが、図24に示した横断配線WL2を備える構造も、図3~図23に示した構造に適用できる。
 上記構造において出力波形の10mVにおけるジッタを計測した。図1に示した中継配線8よりも太い外周配線を備えるフォトダイオードアレイにおいて、図2から図4に示す構造を採用した場合、ジッタが146psとなった(タイプ1とする)。一方、外周配線WLを中継配線8と同程度の太さとした場合(比較例とする)には、ジッタは160psであり、外周配線を太くして抵抗値を低減することにより、ジッタが低減し、時間分解能が著しく向上することが判明した。
 図24に示した外周配線を備えるフォトダイオードアレイにおいて、図2から図4に示す構造を採用した場合、ジッタが148psとなった(タイプ2とする)。比較例よりもジッタが低減し、時間分解能が著しく向上することが判明した。
 図1に示した外周配線を備えるフォトダイオードアレイにおいて、図5から図7に示す構造を採用した場合、ジッタが142psとなった(タイプ3とする)。
 図1に示した外周配線を備えるフォトダイオードアレイにおいて、図9から図11に示す構造を採用した場合、ジッタが138psとなった(タイプ4とする)。
 図1に示した外周配線を備えるフォトダイオードアレイにおいて、図12から図14に示す構造を採用した場合、ジッタが130psとなった(タイプ5とする)。
 図1に示した外周配線を備えるフォトダイオードアレイにおいて、図15から図17に示す構造を採用した場合、ジッタが125psとなった(タイプ6とする)。
 図1に示した外周配線を備えるフォトダイオードアレイにおいて、図18から図20に示す構造を採用した場合、ジッタが127psとなった(タイプ7とする)。
 図1に示した外周配線を備えるフォトダイオードアレイにおいて、図21から図23に示す構造を採用した場合、ジッタが146psとなった(タイプ8とする)。
 もちろん、タイプ3~タイプ8の構造において、タイプ2の横断配線を採用することはできる。また、タイプ3~5のいずれかの構造と、タイプ6~8のいずれかの構造を組み合わせることも可能である、また、タイプ8の構造は、いずれのタイプの構造とも組み合わせることができる。特に、タイプ6又は7の構造(積層構造)に、タイプ5(開口構造)又はタイプ8(縦長構造)を組み合わせた場合、上述の効果が相乗され、さらに、ジッタを低減することが可能と考えられる。
 図35は、フォトダイオードアレイを備えた放射線検出器を示す図である。
 フォトダイオードアレイ10の光入射面上には、シンチレータパネルが固定されている。シンチレータパネルは、CsIなどのシンチレータ11と、これを被覆するポリパラキシリレンなどの被覆層12からなり、必要に応じて、シンチレータパネルとフォトダイオードアレイ10の光入射面との間に、マッチングオイル13が介在させられる。放射線が、シンチレータパネルに入射すると、シンチレータ11が発光し、この光がフォトダイオードアレイ10に入射する。フォトダイオードアレイ10には、電極Pと電極6との間に、降伏電圧を超える逆バイアス電圧が印加されており、その出力は、検出器Aを介して検出することができる。時間分解能に優れた放射線検出器は、X線CTやPET装置などに適用することができ、これまで計測できなかった分解能の画像を測定することができるようになる。
 10・・・フォトダイオードアレイ、1・・・第1半導体層、2・・・第2半導体層、3・・・第3半導体層、4・・・絶縁層、5・・・リング状電極、6・・・別の電極、7・・・クエンチング抵抗、8・・・中継配線、PD・・・フォトダイオード、WL・・・外周配線、9・・・外周領域、11・・・中間配線、WL2・・・横断配線。

Claims (9)

  1.  フォトダイオードアレイにおいて、
     半導体基板内に形成された複数のアバランシェフォトダイオードと、
     それぞれのアバランシェフォトダイオードに対して直列に接続されたクエンチング抵抗と、
     複数の前記アバランシェフォトダイオードが形成された領域を囲む外周配線と、
     前記外周配線に電気的に接続され、前記外周配線の少なくとも2箇所間をそれぞれが接続する複数の中継配線と、
    を備え、
     前記外周配線の単位長さ当たりの抵抗値は、前記中継配線の単位長さ当たりの抵抗値よりも小さく、
     個々の前記アバランシェフォトダイオードのアノード及びカソードの一方は、前記クエンチング抵抗を介して、前記中継配線のいずれかに電気的に接続され、
     個々の前記アバランシェフォトダイオードのアノード及びカソードの他方は、前記半導体基板に設けられた別の電極に電気的に接続されている、
    ことを特徴とするフォトダイオードアレイ。
  2.  前記外周配線に電気的に接続され、前記外周配線の少なくとも2箇所間を接続し、前記中継配線の単位長さ当たりの抵抗値よりも、自身の単位長さ当たりの抵抗値が小さい横断配線を更に備え、
     それぞれの前記中継配線の一端は、前記外周配線に代えて、前記横断配線に電気的に接続されていることを特徴とする請求項1に記載のフォトダイオードアレイ。
  3.  それぞれの前記クエンチング抵抗にそれぞれ並列に接続されたキャパシタを更に備えていることを特徴とする請求項1又は2に記載のフォトダイオードアレイ。
  4.  それぞれの前記アバランシェフォトダイオードのアノード及びカソードの一方は、リング状電極に電気的に接続されており、
     前記中継配線は、前記リング状電極から離間し、前記リング状電極を囲むように延びた導電性の外周領域を備えており、
     前記キャパシタは、
     前記中継配線から延びた前記外周領域と、
     前記リング状電極と、を有していることを特徴とする請求項3に記載のフォトダイオードアレイ。
  5.  前記中継配線間に平行に延びた中間配線を更に備え、
     前記中間配線は、前記外周配線の少なくとも2箇所間をそれぞれが接続しており、
     前記外周領域は、前記中間配線に連続していることを特徴とする請求項4に記載のフォトダイオードアレイ。
  6.  それぞれの前記中継配線には、その両側に前記外周領域が接続されており、
     互いに隣接する前記中継配線に関して、互いに隣接する前記外周領域は離間していることを特徴とする請求項4に記載のフォトダイオードアレイ。
  7.  それぞれの前記中継配線は、その中心線に沿った領域が開口していることを特徴とする請求項3に記載のフォトダイオードアレイ。
  8.  前記キャパシタは、前記クエンチング抵抗上に、絶縁層を介して、形成された被覆配線を有しており、この被覆配線の一端は、前記クエンチング抵抗の一端に電気的に接続されていることを特徴とする請求項3乃至7のいずれか1項に記載のフォトダイオードアレイ。
  9.  それぞれの前記アバランシェフォトダイオードのアノード及びカソードの一方は、リング状電極に電気的に接続されており、
     前記リング状電極のアスペクト比は、2以上であることを特徴とする請求項3に記載のフォトダイオードアレイ。
PCT/JP2011/074437 2010-10-29 2011-10-24 フォトダイオードアレイ WO2012057082A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180052213.3A CN103190000B (zh) 2010-10-29 2011-10-24 光电二极管阵列
US13/881,949 US9184190B2 (en) 2010-10-29 2011-10-24 Photodiode array
KR1020137011542A KR101830464B1 (ko) 2010-10-29 2011-10-24 포토 다이오드 어레이
EP11836216.9A EP2634821B1 (en) 2010-10-29 2011-10-24 Photodiode array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010244686A JP5562207B2 (ja) 2010-10-29 2010-10-29 フォトダイオードアレイ
JP2010-244686 2010-10-29

Publications (1)

Publication Number Publication Date
WO2012057082A1 true WO2012057082A1 (ja) 2012-05-03

Family

ID=45993790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074437 WO2012057082A1 (ja) 2010-10-29 2011-10-24 フォトダイオードアレイ

Country Status (7)

Country Link
US (1) US9184190B2 (ja)
EP (1) EP2634821B1 (ja)
JP (1) JP5562207B2 (ja)
KR (1) KR101830464B1 (ja)
CN (1) CN103190000B (ja)
TW (1) TWI518933B (ja)
WO (1) WO2012057082A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014090034A (ja) * 2012-10-29 2014-05-15 Hamamatsu Photonics Kk フォトダイオードアレイ
JP2014160042A (ja) * 2013-02-20 2014-09-04 Hamamatsu Photonics Kk 検出器、pet装置及びx線ct装置
JP2015119093A (ja) * 2013-12-19 2015-06-25 浜松ホトニクス株式会社 光検出器
WO2015022580A3 (en) * 2013-08-13 2015-08-06 Zecotek Photonics Inc. Multi-pixel avalanche photodiode
JP2016192551A (ja) * 2016-04-20 2016-11-10 浜松ホトニクス株式会社 検出器、pet装置及びx線ct装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5731344B2 (ja) * 2011-09-28 2015-06-10 浜松ホトニクス株式会社 放射線検出器
JP5832852B2 (ja) 2011-10-21 2015-12-16 浜松ホトニクス株式会社 光検出装置
JP5791461B2 (ja) * 2011-10-21 2015-10-07 浜松ホトニクス株式会社 光検出装置
JP5926921B2 (ja) * 2011-10-21 2016-05-25 浜松ホトニクス株式会社 光検出装置
JP5995508B2 (ja) * 2012-04-27 2016-09-21 キヤノン株式会社 半導体装置および半導体装置の製造方法
US8937285B2 (en) * 2012-06-18 2015-01-20 General Electric Company Methods and systems for signal communication in gamma ray detectors
JP5984617B2 (ja) 2012-10-18 2016-09-06 浜松ホトニクス株式会社 フォトダイオードアレイ
JP6383516B2 (ja) * 2013-04-19 2018-08-29 ライトスピン テクノロジーズ、インク. 集積アバランシェ・フォトダイオード・アレイ
WO2015152297A1 (ja) * 2014-03-31 2015-10-08 株式会社ニコン 検出素子、ロックイン検出装置、基板、および検出素子の製造方法
KR102419715B1 (ko) * 2014-06-09 2022-07-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 촬상 장치
JP2016122716A (ja) * 2014-12-24 2016-07-07 株式会社東芝 光検出装置およびこの光検出装置を備えたct装置
JP6543565B2 (ja) * 2015-12-21 2019-07-10 浜松ホトニクス株式会社 光電変換素子及び光電変換モジュール
JP6734644B2 (ja) * 2015-12-21 2020-08-05 浜松ホトニクス株式会社 光電変換装置
JP6650261B2 (ja) 2015-12-21 2020-02-19 浜松ホトニクス株式会社 光電変換素子
WO2017110559A1 (ja) * 2015-12-21 2017-06-29 浜松ホトニクス株式会社 光電変換素子及び光電変換モジュール
EP3258228B1 (de) * 2016-06-17 2018-05-09 Sick Ag Lichtempfänger mit lawinenphotodioden im geiger-modus und verfahren zum auslesen
CN106298816A (zh) * 2016-10-11 2017-01-04 天津大学 集成淬灭电阻的单光子雪崩二极管及其制造方法
JP6884948B2 (ja) * 2017-03-17 2021-06-09 国立研究開発法人情報通信研究機構 高速フォトディテクターアレー
KR101777657B1 (ko) 2017-03-22 2017-09-14 홍익대학교 산학협력단 ??칭 회로
CN107275433B (zh) * 2017-03-29 2018-12-04 湖北京邦科技有限公司 一种新型半导体光电倍增器件
JPWO2019146725A1 (ja) * 2018-01-26 2021-03-04 浜松ホトニクス株式会社 光検出装置
JP7366558B2 (ja) * 2019-03-13 2023-10-23 株式会社東芝 センサ及び距離計測装置
TWI819073B (zh) * 2019-08-22 2023-10-21 晶元光電股份有限公司 發光裝置、其製造方法及顯示模組
DE102020120788B3 (de) * 2020-08-06 2021-12-09 Helmholtz-Zentrum Dresden - Rossendorf E. V. Multipixel-photodetektor mit avalanche-photodioden, strahlungsdetektor und positronen-emissions-tomograph
KR102610700B1 (ko) * 2021-05-25 2023-12-06 주식회사 우리로 광자를 검출할 수 있는 최적의 위치로 아발란치 포토 다이오드를 정렬시키는 방법
JP2023112469A (ja) * 2022-02-01 2023-08-14 浜松ホトニクス株式会社 光検出器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033965A (ja) * 2000-07-13 2002-01-31 Fuji Film Microdevices Co Ltd 固体撮像素子用駆動回路およびそれを備えた固体撮像素子
JP2005045125A (ja) * 2003-07-24 2005-02-17 Hamamatsu Photonics Kk 光検出素子の製造方法
WO2008004547A1 (fr) * 2006-07-03 2008-01-10 Hamamatsu Photonics K.K. Ensemble photodiode
JP2008103614A (ja) * 2006-10-20 2008-05-01 Mitsui Eng & Shipbuild Co Ltd 光電変換デバイス

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841834B2 (ja) 2004-12-24 2011-12-21 浜松ホトニクス株式会社 ホトダイオードアレイ
JP2007071823A (ja) 2005-09-09 2007-03-22 Sharp Corp 受光素子ならびにそれを備えたセンサおよび電子機器
US7652257B2 (en) * 2007-06-15 2010-01-26 General Electric Company Structure of a solid state photomultiplier
US8110806B2 (en) 2008-10-31 2012-02-07 General Electric Company Solid-state photomultiplier having improved timing resolution
IT1392366B1 (it) 2008-12-17 2012-02-28 St Microelectronics Rousset Fotodiodo operante in modalita' geiger con resistore di soppressione integrato e controllabile, schiera di fotodiodi e relativo procedimento di fabbricazione
JP5185205B2 (ja) * 2009-02-24 2013-04-17 浜松ホトニクス株式会社 半導体光検出素子
JP2010278045A (ja) * 2009-05-26 2010-12-09 Panasonic Corp 光半導体装置
CN101789040B (zh) 2010-01-27 2011-09-14 中国科学院上海技术物理研究所 盖革模式apd被动淬火与恢复集成电路的设计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033965A (ja) * 2000-07-13 2002-01-31 Fuji Film Microdevices Co Ltd 固体撮像素子用駆動回路およびそれを備えた固体撮像素子
JP2005045125A (ja) * 2003-07-24 2005-02-17 Hamamatsu Photonics Kk 光検出素子の製造方法
WO2008004547A1 (fr) * 2006-07-03 2008-01-10 Hamamatsu Photonics K.K. Ensemble photodiode
JP2008103614A (ja) * 2006-10-20 2008-05-01 Mitsui Eng & Shipbuild Co Ltd 光電変換デバイス

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. OTONO ET AL.: "On the basic mechanism of Pixelized Photon Detectors", NUCL. INSTR. AND METH., vol. A610, 2009, pages 397
PIEMONTE ET AL.: "Characterization of the First Prototypes of Silicon Photomultiplier Fabricated at ITC-irst", IEEE TRANS. NUCL. SCI., vol. 54, no. 1, February 2007 (2007-02-01), pages 236 - 244, XP011163938 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014090034A (ja) * 2012-10-29 2014-05-15 Hamamatsu Photonics Kk フォトダイオードアレイ
JP2014160042A (ja) * 2013-02-20 2014-09-04 Hamamatsu Photonics Kk 検出器、pet装置及びx線ct装置
US10879303B2 (en) 2013-02-20 2020-12-29 Hamamatsu Photonics K.K. Detector, PET system and X-ray CT system
US11101315B2 (en) 2013-02-20 2021-08-24 Hamamatsu Photonics K.K. Detector, PET system and X-ray CT system
WO2015022580A3 (en) * 2013-08-13 2015-08-06 Zecotek Photonics Inc. Multi-pixel avalanche photodiode
US9252317B2 (en) 2013-08-13 2016-02-02 Zecotek Photonics Inc. Multi-pixel avalanche transistor
JP2016530722A (ja) * 2013-08-13 2016-09-29 ゼコテック フォトニクス インコーポレイテッドZecotek Photonics Inc. マルチピクセル型アバランシェ光ダイオード
JP2015119093A (ja) * 2013-12-19 2015-06-25 浜松ホトニクス株式会社 光検出器
WO2015093482A1 (ja) * 2013-12-19 2015-06-25 浜松ホトニクス株式会社 光検出器
US9825083B2 (en) 2013-12-19 2017-11-21 Hamamatsu Photonics K.K. Optical detector with photodiode array having avalanche photodiodes connected to quenching resistors
JP2016192551A (ja) * 2016-04-20 2016-11-10 浜松ホトニクス株式会社 検出器、pet装置及びx線ct装置

Also Published As

Publication number Publication date
US20130270666A1 (en) 2013-10-17
EP2634821A4 (en) 2017-12-27
KR101830464B1 (ko) 2018-02-20
EP2634821B1 (en) 2018-11-21
JP2012099580A (ja) 2012-05-24
EP2634821A1 (en) 2013-09-04
JP5562207B2 (ja) 2014-07-30
TWI518933B (zh) 2016-01-21
TW201232800A (en) 2012-08-01
CN103190000B (zh) 2015-09-09
KR20140001889A (ko) 2014-01-07
CN103190000A (zh) 2013-07-03
US9184190B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
JP5562207B2 (ja) フォトダイオードアレイ
US11101315B2 (en) Detector, PET system and X-ray CT system
JP5832852B2 (ja) 光検出装置
JP6839712B2 (ja) 光検出装置
US8860166B2 (en) Photo detector array of geiger mode avalanche photodiodes for computed tomography systems
JP6839713B2 (ja) 光検出装置
JP2015084392A (ja) 光検出器
JP2009186475A (ja) 画像化検出器
CN109313072B (zh) 光检测单元、光检测装置及光检测单元的制造方法
US9054260B2 (en) Radiation detecting element and radiation detecting device
TWI586990B (zh) Photodetector
JP2016192551A (ja) 検出器、pet装置及びx線ct装置
TWI675219B (zh) 檢測器
JPH07122776A (ja) 光・放射線電気変換半導体装置およびその応用
JP2020096157A (ja) 光検出装置
JP5823813B2 (ja) 放射線検出器
JP6948668B2 (ja) 中性子半導体検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137011542

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011836216

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13881949

Country of ref document: US