JP6734644B2 - 光電変換装置 - Google Patents

光電変換装置 Download PDF

Info

Publication number
JP6734644B2
JP6734644B2 JP2015248640A JP2015248640A JP6734644B2 JP 6734644 B2 JP6734644 B2 JP 6734644B2 JP 2015248640 A JP2015248640 A JP 2015248640A JP 2015248640 A JP2015248640 A JP 2015248640A JP 6734644 B2 JP6734644 B2 JP 6734644B2
Authority
JP
Japan
Prior art keywords
pixel
pixels
photoelectric conversion
quenching
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015248640A
Other languages
English (en)
Other versions
JP2017117835A (ja
Inventor
晃永 山本
晃永 山本
中村 重幸
重幸 中村
輝昌 永野
輝昌 永野
健一 里
健一 里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2015248640A priority Critical patent/JP6734644B2/ja
Priority to KR1020187020412A priority patent/KR102659875B1/ko
Priority to PCT/JP2016/086923 priority patent/WO2017110559A1/ja
Priority to EP16878450.2A priority patent/EP3396723A4/en
Priority to CN201680074846.7A priority patent/CN108431968B/zh
Priority to TW105141778A priority patent/TWI778948B/zh
Publication of JP2017117835A publication Critical patent/JP2017117835A/ja
Application granted granted Critical
Publication of JP6734644B2 publication Critical patent/JP6734644B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は、光電変換素子に関するものである。
特許文献1には、放射線画像読取装置が開示されている。この放射線画像読取装置は、放射線画像が記録された輝尽性蛍光体層に励起光を走査して得られる画像情報を読み取るための光電変換素子を備えている。光電変換素子は、フォトダイオード及びシリコン光電子増倍管を有する。そして、光電変換素子により読み取られる輝尽光の光量に応じて、画像情報を読み取る光電変換素子をフォトダイオードとシリコン光電子増倍管との間で切り換える。
特開2008−287165号公報
微弱な光を検出するための光電変換素子として、近年、アバランシェフォトダイオード(以下、APD)からなるピクセルが二次元状に配置されて成るものが知られている。このような光電変換素子では、各ピクセルに共通のバイアス電圧を供給するとともに、各ピクセルからの出力電流を一括して収集してフォトンカウンティングを行うことにより、フォトダイオードアレイへの微弱な入射光量を精度良く測定することができる。このような光電変換デバイスとしては、例えば浜松ホトニクス社製MPPC(登録商標)がある。
しかしながら、このような光電変換素子の適用範囲の拡大に従って、微弱光量から比較的大きな光量まで幅広い光量レンジに対応し得ることが望まれている。本発明は、このような課題に鑑みてなされたものであり、幅広い光量レンジに対応し得る光電変換素子を提供することを目的とする。
上述した課題を解決するために、本発明による光電変換装置は、光電変換素子と、光電変換素子から信号を読み出すための回路とを備える。光電変換素子は、共通の半導体基板に形成され、アバランシェフォトダイオードをそれぞれ含む複数のピクセルと、半導体基板上に形成されて複数のピクセルに含まれる二以上の第1のピクセルとクエンチング抵抗を介して電気的に接続され、二以上の第1のピクセルからの出力電流を一括して取り出す第1の配線と、半導体基板上に形成されて複数のピクセルに含まれる二以上の第2のピクセルとクエンチング抵抗を介して電気的に接続され、二以上の第2のピクセルからの出力電流を一括して取り出す第2の配線と、を有する。回路は、第1の配線に接続され、二以上の第1のピクセルへの入射光量に相当する第1の値を生成する第1の回路と、第2の配線に接続され、二以上の第2のピクセルへの入射光量に相当する第2の値を生成する第2の回路と、第1及び第2の値のうち一方を選択し、その値に基づいて光電変換素子への入射光量を特定する信号処理部と、を有する。第2のピクセルのクエンチング抵抗の抵抗値は、第1のピクセルのクエンチング抵抗の抵抗値よりも大きい。
この光電変換装置では、第2のピクセルのクエンチング抵抗の抵抗値が、第1のピクセルのクエンチング抵抗の抵抗値よりも大きい。クエンチング抵抗の抵抗値が比較的小さい二以上の第1のピクセルでは、入射光量が微弱な場合であっても比較的大きな電流を出力することができる。言い換えれば、入射光量に対して高いゲインで電流を出力することができるので、検出可能な入射光量の下限を小さくすることができる。一方、クエンチング抵抗の抵抗値が比較的大きい二以上の第2のピクセルでは、入射光量が比較的大きい場合であっても比較的小さな電流を出力することができる。言い換えれば、入射光量に対して低いゲインで電流を出力することができるので、出力が飽和する入射光量の上限をより大きくすることができる。従って、上記の光電変換装置によれば、入射光量に応じて第1の配線または第2の配線から選択的に出力電流を取り出すことによって、微弱光量から比較的大きな光量まで幅広い光量レンジに対応することができる。
上記の光電変換装置において、第1の回路はフォトンカウンティング回路であり、第2の回路はアナログ−デジタル変換回路であってもよい。また、上記の光電変換装置において、第1のピクセルが列方向に並んで配置されて成る第1のピクセル列と、第2のピクセルが列方向に並んで配置されて成る第2のピクセル列とが、行方向に交互に並んでもよい。
上記の光電変換装置において、第1のピクセルの受光面積と第2のピクセルの受光面積とは互いに略等しくてもよい。これにより、従来の光電変換素子に対してクエンチング抵抗の抵抗値を変更するだけで、上記の効果を容易に得ることができる。
上記の光電変換装置において、第2のピクセルのクエンチング抵抗は第1のピクセルのクエンチング抵抗よりも長くてもよい。或いは、第2のピクセルのクエンチング抵抗の延在方向と交差する方向の幅は、第1のピクセルのクエンチング抵抗の延在方向と交差する方向の幅よりも狭くてもよい。例えばこれらのうち少なくとも一方の構成を採用することにより、第2のピクセルのクエンチング抵抗の抵抗値を、第1のピクセルのクエンチング抵抗の抵抗値よりも容易に大きくすることができる。
本発明による光電変換素子は、共通の半導体基板に形成され、アバランシェフォトダイオードをそれぞれ含む複数のピクセルと、半導体基板上に形成されて複数のピクセルに含まれる二以上の第1のピクセルとクエンチング抵抗を介して電気的に接続され、二以上の第1のピクセルからの出力電流を一括して取り出す第1の配線と、半導体基板上に形成されて複数のピクセルに含まれる二以上の第2のピクセルとクエンチング抵抗を介して電気的に接続され、二以上の第2のピクセルからの出力電流を一括して取り出す第2の配線と、を備える。第2のピクセルのクエンチング抵抗の抵抗値は、第1のピクセルのクエンチング抵抗の抵抗値よりも大きい。第2のピクセルに印加されるバイアス電圧は、第1のピクセルに印加されるバイアス電圧よりも小さ。これにより、対応可能な光量レンジを更に拡大することができる。
本発明によれば、幅広い光量レンジに対応し得る光電変換素子を提供することができる。
本発明の第1実施形態に係る光電変換素子の平面図である。 受光面の一部を拡大して示す平面図である。 光電変換素子の断面構成を概略的に示す図である。 外部回路の構成例を概略的に示す図である。 第1変形例として、クエンチング抵抗の形状の例を示す図である。 第2変形例に係る光電変換素子の平面図である。 受光面の一部を拡大して示す平面図である。 光電変換素子の断面構成を概略的に示す図である。 第3変形例に係る回路構成を概略的に示す図である。
以下、添付図面を参照しながら本発明による光電変換素子の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
図1は、本発明の一実施形態に係る光電変換素子1Aの平面図である。光電変換素子1Aは、半導体基板30を備えており、半導体基板30の主面上は光を受ける受光部3Aとなっている。受光部3Aでは、複数のピクセル10が二次元状に配列されている。複数のピクセル10は、共通のバイアス電圧により動作するAPDをそれぞれ含んで構成されている。
複数のピクセル10には、二以上の第1のピクセル11と、二以上の第2のピクセル12とが含まれる。第1のピクセル11の受光面積(実効的な有感領域)と、第2のピクセル12の受光面積とは互いに略等しい。一例では、隣り合う第1のピクセル11同士のピッチ(中心間隔)は50μmであり、隣り合う第2のピクセル12同士のピッチも50μmである。本実施形態では、第1のピクセル11が列方向に並んで配置されて成る第1のピクセル列11Aと、第2のピクセル12が列方向に並んで配置されて成る第2のピクセル列12Aとが、行方向に交互に並んでいる。
光電変換素子1Aは、信号読出用の第1の配線21及び第2の配線22を更に備えている。第1の配線21は、二以上の第1のピクセル11と電気的に接続されており、これらの第1のピクセル11からの出力電流を一括して取り出す。第2の配線22は、二以上の第2のピクセル12と電気的に接続されており、これらの第2のピクセル12からの出力電流を一括して取り出す。
図2は、受光部3Aの一部を拡大して示す平面図である。図2に示されるように、第1のピクセル11のAPDと第1の配線21とは、クエンチング抵抗23を介して電気的に接続されている。言い換えると、クエンチング抵抗23の一端が第1のピクセル11のAPDと電気的に接続され、他端が第1の配線21と電気的に接続されている。同様に、第2のピクセル12のAPDと第2の配線22とは、クエンチング抵抗24を介して電気的に接続されている。言い換えると、クエンチング抵抗24の一端が第2のピクセル12のAPDと電気的に接続され、他端が第2の配線22と電気的に接続されている。
第2のピクセル12のクエンチング抵抗24の抵抗値は、前記第1のピクセル11のクエンチング抵抗23の抵抗値よりも大きい。一例では、クエンチング抵抗24の抵抗値は500kΩであり、クエンチング抵抗23の抵抗値は250kΩである。別の例では、クエンチング抵抗24の抵抗値は750kΩであり、クエンチング抵抗23の抵抗値は250kΩである。更に別の例では、クエンチング抵抗24の抵抗値は1MΩであり、クエンチング抵抗23の抵抗値は250kΩである。クエンチング抵抗23の抵抗値は、ラッチングしない(すなわちクエンチング可能な)値であればよい。
このようなクエンチング抵抗の抵抗値の相違は、例えばクエンチング抵抗の断面積を互いに異ならせること、或いはクエンチング抵抗の長さを互いに異ならせることにより好適に実現される。図2に示される例では、クエンチング抵抗23の抵抗値を小さくするためにクエンチング抵抗23を直線状に配設して短くし、またクエンチング抵抗24の抵抗値を大きくするためにクエンチング抵抗24を渦巻き状に配設して長くしている。クエンチング抵抗23,24は、例えば光透過性(半透明)の導電性材料からなる。
図3は、光電変換素子1Aの断面構成を概略的に示す図である。光電変換素子1Aは、半導体基板30を備えている。上述した複数のピクセル10は、この共通の半導体基板30に形成されている。具体的には、半導体基板30は主面30a及び裏面30bを有しており、裏面30b上の全面には下面電極(カソード)31が設けられている。また、半導体基板30は、裏面30bを含みn型Siからなる領域30cと、主面30aを含みp型Siからなる領域30dとが積層されてなる。主面30aを含む領域30dの内部には、第1のピクセル11を構成するp型半導体領域32aと、第2のピクセル12を構成するp型半導体領域32bとが、互いに間隔を空けて並んで形成されている。p型半導体領域32a,32bは例えばp型Siからなる。第1のピクセル11のAPDは、p型半導体領域32a直下の領域30dと領域30cとがpn接合を成すことによって構成されている。同様に、第2のピクセル12のAPDは、p型半導体領域32b直下の領域30dと領域30cとがpn接合を成すことによって構成されている。
主面30a上の全面には、第1の絶縁膜33が設けられている。第1の絶縁膜33は、例えばSiO2、SiNといった絶縁性シリコン化合物によって好適に構成され得る。p型半導体領域32a上かつ第1の絶縁膜33上にはコンタクト電極(アノード)34aが設けられている。コンタクト電極34aは、第1の絶縁膜33に形成された開口を介してp型半導体領域32aと接触している。同様に、p型半導体領域32b上かつ第1の絶縁膜33上にはコンタクト電極(アノード)34bが設けられている。コンタクト電極34bは、第1の絶縁膜33に形成された開口を介してp型半導体領域32bと接触している。
第1の配線21及び第2の配線22は、金属製であり、半導体基板30上に形成されている。本実施形態では、第1の配線21及び第2の配線22は、p型半導体領域32a及びp型半導体領域32bのいずれも形成されていない半導体基板30の領域上に位置する第1の絶縁膜33上に設けられている。
第1の配線21及び第2の配線22、第1の絶縁膜33、並びにコンタクト電極34a及び34bは、第2の絶縁膜35によって覆われている。第2の絶縁膜35は、半導体基板30上の全面を覆っており、例えばSiO2、SiNといった無機絶縁体によって好適に構成され得る。前述したクエンチング抵抗23,24は、第2の絶縁膜35上に設けられている。クエンチング抵抗23の一端及び他端それぞれは、第2の絶縁膜35に形成された開口を介して、コンタクト電極34a及び第1の配線21のそれぞれと電気的に接続されている。クエンチング抵抗24の一端及び他端それぞれは、第2の絶縁膜35に形成された開口を介して、コンタクト電極34b及び第2の配線22のそれぞれと電気的に接続されている。
ここで、本実施形態の光電変換素子1Aから信号を読み出すための外部回路の構成例について説明する。図4は、外部回路の構成例を概略的に示す図である。図4に示されるように、複数のピクセル10の各APDのカソードすなわち下面電極31(図3参照)には、共通のバイアス電圧HVが印加される。
第1のピクセル11のAPDのアノードは、クエンチング抵抗23及び第1の配線21を介して、光電変換素子1Aの外部に設けられた抵抗41の一端に接続される。抵抗41の他端は基準電位(GND)線51に接続される。そして、抵抗41の一端はフォトンカウンティング回路60に接続されており、抵抗41における降下電圧が、フォトンカウンティング回路60に入力される。
フォトンカウンティング回路60は、コンパレータ61と、カウンタ62とを含む。コンパレータ61は、D/Aコンバータ63によって生成された基準電圧と、抵抗41における降下電圧とを比較する。そして、抵抗41における降下電圧が基準電圧を超えたとき(すなわち閾値を超える電流パルスが第1のピクセル11から出力されたとき)に、信号をカウンタ62に送る。カウンタ62は、コンパレータ61から信号が送られた回数をカウントする。そのカウント値は、全ての第1のピクセル11への入射光量に相当する。
第2のピクセル12のAPDのアノードは、クエンチング抵抗24及び第2の配線22を介して、光電変換素子1Aの外部に設けられた抵抗42の一端に接続される。抵抗42の他端は基準電位(GND)線51に接続される。そして、抵抗42の一端は、増幅回路70及びピークホールド回路71を介して、A/Dコンバータ72に接続されている。抵抗42における降下電圧は、増幅回路70によって増幅されたのち、ピークホールド回路71によって保持される。そして、保持された電圧が、A/Dコンバータ72に入力される。A/Dコンバータ72は、入力された電圧信号(アナログ信号)をデジタル信号に変換する。そのデジタル値は、全ての第2のピクセル12への入射光量に相当する。
カウンタ62から出力されるカウント値およびA/Dコンバータ72から出力されるデジタル値は、信号処理部80へ送られる。信号処理部80は、これらのカウント値およびデジタル値のうち有意な値を有する方を採用し、その値に基づいて入射光量を特定する。
以上に説明した、本実施形態の光電変換素子1Aによって得られる効果について説明する。本実施形態の光電変換素子1Aでは、第2のピクセル12のクエンチング抵抗24の抵抗値が、第1のピクセル11のクエンチング抵抗23の抵抗値よりも大きい。クエンチング抵抗23の抵抗値が比較的小さい二以上の第1のピクセル11では、入射光量が微弱な場合であっても比較的大きな電流を出力することができる。言い換えれば、入射光量に対して高いゲインで電流を出力することができるので、検出可能な入射光量の下限を小さくすることができる。一方、クエンチング抵抗24の抵抗値が比較的大きい二以上の第2のピクセル12では、入射光量が比較的大きい場合であっても比較的小さな電流を出力することができる。言い換えれば、入射光量に対して低いゲインで電流を出力することができるので、出力が飽和する入射光量の上限をより大きくすることができる。従って、本実施形態の光電変換素子1Aによれば、入射光量に応じて第1の配線21または第2の配線22から選択的に出力電流を取り出すことによって、微弱光量から比較的大きな光量まで幅広い光量レンジに対応することができる。
また、本実施形態によれば、入射光量が微弱な場合、及び比較的大きい場合の双方に対し、各ピクセルの光検出原理を共通とする一つのデバイスで対応することが可能となる。これにより、動作電圧の共通化、同一基板上に構成することによる低コスト化、並びに、特性の均一化が期待できる。また、本実施形態によれば、多数のピクセル10を二次元状に配列することが可能であり、大面積の受光面を容易に実現できる。また、複数のピクセル10の配列の自由度が高く、受光部3Aを正方形、長方形、円形、及び多角形といった、用途や光学系に適した形状に変更することが容易である。
また、本実施形態のように、第1のピクセル11の受光面積と第2のピクセル12の受光面積とは互いに略等しくてもよい。これにより、従来の光電変換素子に対してクエンチング抵抗23,24の抵抗値を変更するだけで、上記の効果を容易に得ることができる。
また、本実施形態のように、クエンチング抵抗24はクエンチング抵抗23よりも長くてもよい。このような構成を採用することにより、クエンチング抵抗24の抵抗値を、クエンチング抵抗23の抵抗値よりも容易に大きくすることができる。
(第1変形例)
図5(a)及び図5(b)は、一変形例に係るクエンチング抵抗24,23の断面図であって、クエンチング抵抗24,23の延在方向と交差する(典型的には垂直な)断面を示している。この例では、クエンチング抵抗24の幅W1が、クエンチング抵抗23の幅W2よりも狭くなっている。上述した実施形態では、クエンチング抵抗23,24の長さを異ならせることによって抵抗値を異ならせているが、本変形例のように、クエンチング抵抗23,24の幅を異ならせることによっても、抵抗値を容易に異ならせることができる。
(第2変形例)
図6は、本発明の第2変形例に係る光電変換素子1Bの平面図である。光電変換素子1Bと上記実施形態との相違点は、受光面における第1のピクセル11及び第2のピクセル12の配置である。本変形例の受光部3Bにおいては、K1個(K1は2以上の整数、図ではK1=16の場合を例示)の第1のピクセル11をそれぞれ含む複数の第1の領域A1と、K2個(K2は2以上の整数、図ではK2=16の場合を例示)の第2のピクセル12をそれぞれ含む複数の第2の領域A2とが、受光部3Bにおいて混在して二次元状(マトリクス状)に配列されている。図6に示される例では、第1の領域A1と第2の領域A2とが市松模様のごとく配置されている。
図7(a)及び図7(b)は、第1の領域A1及び第2の領域A2をそれぞれ拡大して示す平面図である。また、図8は、光電変換素子1Bの断面構成を概略的に示す図である。一例では、第1の領域A1において第1のピクセル11はM1行N1列(M1,N1は1以上の整数。但しM1×N1=K1)の二次元状に配列されている。そして、2列おきに第1の配線21が配設されており、各第1の配線21の両側に位置する第1のピクセル11が、その第1の配線21にクエンチング抵抗23を介して電気的に接続されている。同様に、第2の領域A2において第2のピクセル12はM2行N2列(M2,N2は1以上の整数。但しM2×N2=K2)の二次元状に配列されている。そして、2列おきに第2の配線22が配設されており、各第2の配線22の両側に位置する第2のピクセル12が、その第2の配線22にクエンチング抵抗24を介して電気的に接続されている。
本発明における第1及び第2のピクセルの配置は上記実施形態に限られるものではなく、例えば本変形例の光電変換素子1Bなど、様々な形態が可能である。そして、どのようなピクセル配置であっても、上述した実施形態の光電変換素子1Aと同様の効果を好適に奏することができる。
(第3変形例)
図9は、本発明の第3変形例に係る回路構成を示す図である。上記実施形態(図4を参照)では複数のピクセル10に共通のバイアス電圧HVが印加されているが、本変形例では、第2のピクセル12に印加されるバイアス電圧が、第1のピクセル11に印加されるバイアス電圧よりも小さい。具体的には、各APDのカソードには共通のバイアス電位HVが印加されるが、第1のピクセル11のAPDのアノードは、クエンチング抵抗23、第1の配線21、及び抵抗41を介して、第1の基準電位(GND)線52に接続される。一方、第2のピクセル12のAPDのアノードは、クエンチング抵抗24、第2の配線22、及び抵抗42を介して、第2の基準電位(GND)線53に接続される。第2の基準電位(GND)線53の電位は、第1の基準電位(GND)線52の電位よりも高く設定される。これにより、第2のピクセル12に印加されるバイアス電圧は、第1のピクセル11に印加されるバイアス電圧よりも実質的に小さくなる。
本変形例によれば、第1のピクセル11では入射光量に対する感度を高め、微弱な入射光量に対して更に大きな電流を出力することができる。言い換えれば、入射光量に対して更に高いゲインで電流を出力することができるので、検出可能な入射光量の下限をより小さくすることができる。一方、第2のピクセル12では入射光量に対する感度を低くし、大きな入射光量に対して出力電流を更に小さくすることができる。言い換えれば、入射光量に対して更に低いゲインで電流を出力することができるので、出力が飽和する入射光量の上限をより大きくすることができる。従って、本変形例によれば、上記実施形態と比較して、対応可能な光量レンジを更に拡大することができる。
なお、第1のピクセル11のAPDのカソードと、第2のピクセル12のAPDのカソードとを電気的に分離し、第1のピクセル11のAPDのカソードに印加されるバイアス電圧を、第2のピクセル12のAPDのカソードに印加されるバイアス電圧よりも大きくしてもよい。このような構成であっても、本変形例の上記効果を好適に得ることができる。
また、上記実施形態において、第1のピクセル11からの出力電流を電圧信号に変換する抵抗41の抵抗値を、第2のピクセル12からの出力電流を電圧信号に変換する抵抗42の抵抗値よりも大きくしてもよい。これにより、入射光量が微弱な場合であっても、第1のピクセル11からの出力電流を比較的大きな増幅率でもって電圧信号に変換することができる。言い換えれば、入射光量に対して高いゲインで電圧信号を生成することができるので、フォトンカウンティングを精度良く行うことができる。一方、入射光量が比較的大きい場合であっても、第2のピクセル12からの出力電流を比較的小さな増幅率でもって電圧信号に変換することができる。言い換えれば、入射光量に対して低いゲインで電圧信号を生成することができるので、出力が飽和する入射光量の上限をより大きくすることができる。従って、対応可能な光量レンジを更に拡大することができる。
本発明による光電変換素子は、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上述した実施形態及び各変形例を、必要に応じて互いに組み合わせてもよい。また、上記実施形態及び第1変形例では、クエンチング抵抗23,24の抵抗値を互いに異ならせる方法としてこれらの長さや幅を異ならせることを例示したが、他の方法によってクエンチング抵抗23,24の抵抗値を互いに異ならせてもよい。例えば、クエンチング抵抗23,24に添加される抵抗成分の濃度を互いに異ならせることによっても、これらの抵抗値を好適に異ならせることができる。また、上記実施形態では半導体基板30及びp型半導体領域32a,32bの構成材料としてSiを例示したが、本発明では、半導体基板及び各p型半導体領域には種々の半導体材料を採用し得る。
1A,1B…光電変換素子、3A,3B…受光部、10…ピクセル、11…第1のピクセル、11A…第1のピクセル列、12…第2のピクセル、12A…第2のピクセル列、21…第1の配線、22…第2の配線、23,24…クエンチング抵抗、30…半導体基板、31…下面電極、32a,32b…p型半導体領域、33…第1の絶縁膜、34a,34b…コンタクト電極、35…第2の絶縁膜、41,42…抵抗、60…フォトンカウンティング回路、61…コンパレータ、62…カウンタ、63…D/Aコンバータ、70…増幅回路、71…ピークホールド回路、72…A/Dコンバータ、80…信号処理部、A1…第1の領域、A2…第2の領域。

Claims (6)

  1. 光電変換素子と、前記光電変換素子から信号を読み出すための回路とを備え、
    前記光電変換素子は、
    共通の半導体基板に形成され、アバランシェフォトダイオードをそれぞれ含む複数のピクセルと、
    前記半導体基板上に形成されて前記複数のピクセルに含まれる二以上の第1のピクセルとクエンチング抵抗を介して電気的に接続され、前記二以上の第1のピクセルからの出力電流を一括して取り出す第1の配線と、
    前記半導体基板上に形成されて前記複数のピクセルに含まれる二以上の第2のピクセルとクエンチング抵抗を介して電気的に接続され、前記二以上の第2のピクセルからの出力電流を一括して取り出す第2の配線と、を有し、
    前記回路は、
    前記第1の配線に接続され、前記二以上の第1のピクセルへの入射光量に相当する第1の値を生成する第1の回路と、
    前記第2の配線に接続され、前記二以上の第2のピクセルへの入射光量に相当する第2の値を生成する第2の回路と、
    前記第1及び第2の値のうち一方を選択し、その値に基づいて前記光電変換素子への入射光量を特定する信号処理部と、を有し、
    前記第2のピクセルの前記クエンチング抵抗の抵抗値が、前記第1のピクセルの前記クエンチング抵抗の抵抗値よりも大きい、光電変換装置。
  2. 前記第1の回路はフォトンカウンティング回路であり、前記第2の回路はアナログ−デジタル変換回路である、請求項1に記載の光電変換装置。
  3. 前記第1のピクセルが列方向に並んで配置されて成る第1のピクセル列と、前記第2のピクセルが列方向に並んで配置されて成る第2のピクセル列とが、行方向に交互に並んでいる、請求項1または2に記載の光電変換装置。
  4. 前記第1のピクセルの受光面積と前記第2のピクセルの受光面積とが互いに略等しい、請求項1〜3のいずれか一項に記載の光電変換装置。
  5. 前記第2のピクセルの前記クエンチング抵抗が、前記第1のピクセルの前記クエンチング抵抗よりも長い、請求項1〜4のいずれか一項に記載の光電変換装置。
  6. 前記第2のピクセルの前記クエンチング抵抗の延在方向と交差する方向の幅が、前記第1のピクセルの前記クエンチング抵抗の延在方向と交差する方向の幅よりも狭い、請求項1〜5のいずれか一項に記載の光電変換装置。
JP2015248640A 2015-12-21 2015-12-21 光電変換装置 Active JP6734644B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015248640A JP6734644B2 (ja) 2015-12-21 2015-12-21 光電変換装置
KR1020187020412A KR102659875B1 (ko) 2015-12-21 2016-12-12 광전 변환 소자 및 광전 변환 모듈
PCT/JP2016/086923 WO2017110559A1 (ja) 2015-12-21 2016-12-12 光電変換素子及び光電変換モジュール
EP16878450.2A EP3396723A4 (en) 2015-12-21 2016-12-12 PHOTOELECTRIC CONVERSION ELEMENT AND PHOTOELECTRIC CONVERSION MODULE
CN201680074846.7A CN108431968B (zh) 2015-12-21 2016-12-12 光电转换元件及光电转换模块
TW105141778A TWI778948B (zh) 2015-12-21 2016-12-16 光電轉換元件及光電轉換模組

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015248640A JP6734644B2 (ja) 2015-12-21 2015-12-21 光電変換装置

Publications (2)

Publication Number Publication Date
JP2017117835A JP2017117835A (ja) 2017-06-29
JP6734644B2 true JP6734644B2 (ja) 2020-08-05

Family

ID=59232176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015248640A Active JP6734644B2 (ja) 2015-12-21 2015-12-21 光電変換装置

Country Status (1)

Country Link
JP (1) JP6734644B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7174932B2 (ja) * 2018-03-23 2022-11-18 パナソニックIpマネジメント株式会社 固体撮像素子
US10833207B2 (en) 2018-04-24 2020-11-10 Canon Kabushiki Kaisha Photo-detection device, photo-detection system, and mobile apparatus
JP7271091B2 (ja) 2018-05-10 2023-05-11 浜松ホトニクス株式会社 裏面入射型半導体光検出装置
JP7328868B2 (ja) * 2019-10-30 2023-08-17 株式会社東芝 光検出器、光検出システム、ライダー装置、及び車

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136373A (en) * 1989-06-22 1992-08-04 Hamamatsu Photonics K. K. Image processing apparatus
JP4018820B2 (ja) * 1998-10-12 2007-12-05 富士フイルム株式会社 固体撮像装置および信号読出し方法
US20100316184A1 (en) * 2008-10-17 2010-12-16 Jan Iwanczyk Silicon photomultiplier detector for computed tomography
IT1392366B1 (it) * 2008-12-17 2012-02-28 St Microelectronics Rousset Fotodiodo operante in modalita' geiger con resistore di soppressione integrato e controllabile, schiera di fotodiodi e relativo procedimento di fabbricazione
US8269177B2 (en) * 2010-02-28 2012-09-18 General Electric Company Multiplexing readout scheme for a gamma ray detector
IT1402264B1 (it) * 2010-09-16 2013-08-28 St Microelectronics Srl Array fotorilevatore multi-pixel di fotodiodi a valanga geiger-mode
JP5562207B2 (ja) * 2010-10-29 2014-07-30 浜松ホトニクス株式会社 フォトダイオードアレイ
US8791514B2 (en) * 2011-07-06 2014-07-29 Siemens Medical Solutions Usa, Inc. Providing variable cell density and sizes in a radiation detector
JP2014241543A (ja) * 2013-06-12 2014-12-25 株式会社東芝 光検出装置およびct装置

Also Published As

Publication number Publication date
JP2017117835A (ja) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6650261B2 (ja) 光電変換素子
JP5791461B2 (ja) 光検出装置
JP5926921B2 (ja) 光検出装置
JP6282368B2 (ja) 光検出装置
JP6543565B2 (ja) 光電変換素子及び光電変換モジュール
KR102028224B1 (ko) 거리 센서 및 거리 화상 센서
CN107408563B (zh) 光检测装置
JP6734644B2 (ja) 光電変換装置
TWI778948B (zh) 光電轉換元件及光電轉換模組
US11876109B2 (en) Semiconductor devices with single-photon avalanche diodes and light spreading lenses
WO2015199612A1 (en) Pixel arrangement
JP5911629B2 (ja) 光検出装置
JP2008159711A (ja) 半導体光検出素子及び放射線検出装置
JP6140868B2 (ja) 半導体光検出素子
JP5927334B2 (ja) 光検出装置
JP6318190B2 (ja) 光検出装置
JP6381477B2 (ja) 光検出装置
JP6186038B2 (ja) 半導体光検出素子
JP6116728B2 (ja) 半導体光検出素子
JP6244403B2 (ja) 半導体光検出素子
JP5989872B2 (ja) 光検出装置の接続構造
JP6282307B2 (ja) 半導体光検出素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200128

AA91 Notification that invitation to amend document was cancelled

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20200407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200710

R150 Certificate of patent or registration of utility model

Ref document number: 6734644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250