WO2015093482A1 - 光検出器 - Google Patents

光検出器 Download PDF

Info

Publication number
WO2015093482A1
WO2015093482A1 PCT/JP2014/083269 JP2014083269W WO2015093482A1 WO 2015093482 A1 WO2015093482 A1 WO 2015093482A1 JP 2014083269 W JP2014083269 W JP 2014083269W WO 2015093482 A1 WO2015093482 A1 WO 2015093482A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor region
semiconductor
signal readout
readout wiring
photodetector
Prior art date
Application number
PCT/JP2014/083269
Other languages
English (en)
French (fr)
Inventor
輝昌 永野
健一 里
龍太郎 土屋
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to EP14871693.9A priority Critical patent/EP3086375B1/en
Priority to CN201480068840.XA priority patent/CN105830232B/zh
Priority to EP21159894.1A priority patent/EP3848980A1/en
Priority to US15/104,359 priority patent/US9825083B2/en
Publication of WO2015093482A1 publication Critical patent/WO2015093482A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14676X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation

Definitions

  • the present invention relates to a photodetector that can be used for medical equipment such as a positron CT apparatus (Positron Emission Tomography: PET apparatus) and a CT apparatus.
  • medical equipment such as a positron CT apparatus (Positron Emission Tomography: PET apparatus) and a CT apparatus.
  • a PET device is a device that introduces a drug labeled with an isotope that emits positrons (positrons) into a living body and detects ⁇ -rays resulting from the drug with a plurality of detectors.
  • the PET apparatus includes a ring-shaped gantry (cradle), a cradle (sleeper), and a computer for operation, and a plurality of detectors arranged around the living body are built in the gantry.
  • an efficient detector of X-rays or ⁇ -rays can be configured by combining a scintillator and a photodetector.
  • CT / PET apparatus in which an X-ray CT apparatus and a PET apparatus are combined, and a combined diagnostic apparatus in which an MRI (magnetic resonance imaging) apparatus is combined with these are also considered.
  • a photodetector (photodiode array) applied to the above-described diagnostic apparatus is described in Patent Document 1, for example.
  • a photodiode array such as SiPM (Silicon Photo Multiplier) or PPD (Pixelated Photon Detector)
  • APDs (avalanche photodiodes) are arranged in a matrix, multiple APDs are connected in parallel, and the sum of APD outputs is read. Have.
  • weak light can be detected.
  • the peak of the output signal from the photodetector (photon incidence timing) and the detected photon amount (sensitivity) are used, and it is preferable that the value is larger.
  • the periphery of each photodetection channel constituting the photodiode array is covered with a metal film such as Al for stabilizing the potential, and the quenching resistor covers the periphery of the photodetection channel Therefore, there is a limit to improve the aperture ratio and sensitivity of the photodiode array by reducing the area between adjacent photodetecting channels.
  • a metal film such as Al for stabilizing the potential
  • the quenching resistor covers the periphery of the photodetection channel Therefore, there is a limit to improve the aperture ratio and sensitivity of the photodiode array by reducing the area between adjacent photodetecting channels.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a photodetector that realizes a high aperture ratio and high sensitivity while improving the time resolution by increasing the peak of the output signal. To do.
  • a photodetector includes a semiconductor substrate, a first semiconductor region formed on the semiconductor substrate, and a two-dimensional shape in the first semiconductor region.
  • a plurality of second semiconductor regions having a higher impurity concentration than the first semiconductor region, a plurality of quenching resistors electrically connected to each of the second semiconductor regions, and a plurality of the quenching resistors An electrically connected signal readout wiring, and at the interface between the semiconductor substrate and the first semiconductor region or at the interface between the first semiconductor region and the second semiconductor region.
  • the periphery of each of said second semiconductor region surrounds the ring, characterized in that it covers the boundary between said second semiconductor region and said first semiconductor region.
  • the signal readout wiring surrounds the second semiconductor region in a ring shape so as to cover the boundary line, the gap between the second semiconductor region and the signal readout wiring is very large. A capacitor is formed between them. The high frequency component (peak component) of the carrier generated in the second semiconductor region in response to the incidence of the photon is quickly extracted to the outside through the capacitor. Further, since the signal readout wiring covers the boundary line, the potential near the boundary line in the semiconductor is stabilized, and the output signal is stabilized.
  • the quenching resistor is formed on the second semiconductor region, the signal read-out wiring can be arranged as described above, and it is obstructed by the wiring and the quenching resistor. Since the aperture ratio does not have to be reduced, the amount of light (sensitivity) detected per pixel can be increased.
  • the peak of the output signal can be increased, a high aperture ratio and high sensitivity can be realized, and the output signal can be further stabilized.
  • the signal readout wiring covers all the boundary line between the second semiconductor region and the first semiconductor region in plan view.
  • the capacitance of the capacitor formed between the signal readout wiring and the second semiconductor region can be increased to increase the peak of the output signal via the signal readout wiring.
  • the signal readout wiring covers only a part of the boundary line between the second semiconductor region and the first semiconductor region in a plan view.
  • the width of the signal readout wiring in the signal readout wiring in the width direction of the signal readout wiring is larger than the size in the width direction of the portion adjacent to this portion.
  • the signal readout wiring covers only a part of the boundary line, but since the dimension in the width direction is large, the capacitance of the capacitor is increased to increase the peak of the output signal via the signal readout wiring. be able to.
  • a photodetector includes a semiconductor substrate, a first semiconductor region formed on the semiconductor substrate, and a plurality of two-dimensionally formed in the first semiconductor region.
  • a second semiconductor region having an impurity concentration higher than that of one semiconductor region, a plurality of quenching resistors electrically connected to each of the second semiconductor regions, and a plurality of quenching resistors electrically connected
  • An APD that operates in Geiger mode at an interface between the semiconductor substrate and the first semiconductor region or an interface between the first semiconductor region and the second semiconductor region.
  • the quenching resistor is located on the second semiconductor region, and the signal read-out wiring is each of the second second electrodes in plan view. semiconductor The region is surrounded by a ring, and each quenching resistor extends linearly without bending.
  • the signal readout wiring surrounds the second semiconductor region in a ring shape, the second semiconductor region and the signal readout wiring are close to each other, and a capacitor is interposed between them. It is configured.
  • the high frequency component (peak component) of the carrier generated in the second semiconductor region in response to the incidence of the photon is quickly extracted to the outside through the capacitor.
  • the quenching resistor is formed on the second semiconductor region, the signal readout wiring can be arranged as described above, and the opening of the second semiconductor region is obstructed by the wiring and the quenching resistor. Since it is not necessary to reduce the rate, the amount of light (sensitivity) detected per pixel can be increased. Further, since the quenching resistance extends linearly without bending, there is an advantage that the portion covering the second semiconductor region is reduced and the aperture ratio is increased.
  • the photodetector of the present invention it is possible to increase the peak of the output signal and realize high aperture ratio and high sensitivity.
  • FIG. 1 is a diagram illustrating a configuration of a subject diagnostic apparatus such as a PET apparatus.
  • FIG. 2 is a diagram illustrating a structure of a detector D including a scintillator SC and a photodetector D1.
  • FIG. 3 is a circuit diagram of the photodiode array PDA constituting the photodetector D1.
  • FIG. 4 is a circuit diagram (A) of one photodiode and a quenching resistor, and a diagram (B) showing a unit structure in a semiconductor chip for realizing this configuration.
  • FIG. 5 is a plan view of the unit structure shown in FIG.
  • FIG. 6 is a plan view of a photodiode array comprising a plurality of unit structures shown in FIG. FIG.
  • FIG. 7 is a diagram showing a vertical cross-sectional configuration of the photodiode array of FIG. 6 or FIG.
  • FIG. 8 is a plan view of the improved unit structure.
  • FIG. 9 is a plan view of a photodiode array including a plurality of unit structures shown in FIG.
  • FIG. 10 is a diagram showing a vertical cross-sectional configuration of the photodiode array of FIG. 9 along arrows AA.
  • FIG. 11 is a plan view of a photodiode array with another improvement.
  • 12 is a graph showing the time (ns) and the intensity (au) of the output signal of the photodiode array, (A) shows the data of the comparative example and (B) shows the data of the example.
  • FIG. 1 is a schematic diagram of a subject diagnostic apparatus such as a PET apparatus or a CT apparatus.
  • This subject diagnostic apparatus is a general one, and the photodetector according to the embodiment can be applied to such a type of subject diagnostic apparatus.
  • the subject diagnosis apparatus includes a cradle 101, a gantry 102 having an opening in which the cradle 101 is located, and a control device 103.
  • the control device 103 controls the drive motor 104 that moves the cradle 101 by a drive motor control signal, and changes the relative position of the cradle 101 with respect to the gantry 102.
  • a subject 105 to be diagnosed is arranged on the cradle 101.
  • the subject 105 is transported into the opening of the gantry 102 by the drive of the drive motor 104.
  • the drive motor 104 may move the cradle 101, but may move the gantry 102.
  • a plurality of detection devices 106 are arranged so as to surround the opening of the gantry 102.
  • Each of the detection devices 106 includes a plurality of detectors D (see FIG. 2).
  • FIG. 2 is a diagram showing the structure of the detector D.
  • a plurality of detection chips D0 are arranged on the substrate SB.
  • One detection chip D0 includes a photodetector D1 and a scintillator SC fixed on the photodetector D1.
  • energy rays (radiation) such as X-rays or ⁇ -rays enter the scintillator SC, fluorescence is generated, and the fluorescence is detected by the photodetector D1.
  • a control signal for controlling the detection device 106 is output from the control device 103 to the gantry 102, and a detection signal from the detection device 106 is input to the control device 103 from the gantry 102.
  • the subject diagnosis apparatus is a PET apparatus.
  • a plurality of detectors D are arranged in a ring shape so as to surround the opening of the gantry.
  • the photodetector D1 included in each detector D has a plurality of photodiode arrays PDA (see FIG. 3) arranged two-dimensionally.
  • the subject 105 is injected with a radioactive isotope (RI) (positron emitting nuclide) that emits positrons (positrons).
  • RI radioactive isotope
  • the RI used in the PET apparatus is an element existing in the living body, such as carbon, oxygen, fluorine, and nitrogen.
  • Positrons combine with negative electrons in the body to generate annihilation radiation ( ⁇ rays). That is, ⁇ rays are emitted from the subject 105.
  • the detector D detects the emitted ⁇ rays and outputs a detection signal to the signal processing circuit 50 in the control device 103.
  • Detector D is an aggregate of a plurality of photodiode arrays PDA (see FIG. 3).
  • the signal processing circuit 50 processes the detection signal from the detector D to (1) the total energy E output from each detector D, and (2) the incidence of ⁇ rays in the plurality of photodiode arrays PDA. (3) The timing of the waveform peak of the detection signal output from the photodetector at the initial stage when the fluorescence emitted from the scintillator enters the photodetector in response to the incidence of ⁇ rays. T is output.
  • the energy E, position P, and timing T which are output information according to the ⁇ rays emitted from the subject 105, are converted into digital signals by an AD conversion circuit (not shown) and then input to the computer 51.
  • the computer 51 includes a display 52, a storage device 53, a central processing unit (CPU) 54, an input device 55, and an image processing circuit 56 including software.
  • CPU central processing unit
  • the computer 51 includes a display 52, a storage device 53, a central processing unit (CPU) 54, an input device 55, and an image processing circuit 56 including software.
  • the image processing circuit 56 performs image processing on the detection signals (energy E, position P, timing T) output from each detector D, and creates an image related to internal information of the subject 105, that is, a tomographic image. Since a plurality of image processing algorithms are conventionally known, they may be applied.
  • the created image is stored in the storage device 53 and can be displayed on the display 52.
  • the storage device 53 stores a program for performing image processing and the like, and the program operates according to a command from the CPU 54.
  • a series of operations necessary for inspection output of control signal (ON / OFF of detector) to detector D, control of drive motor, capture of detection signal from detector D, image processing, storage of created image Storage and display on the display
  • ⁇ rays are emitted in one direction and in the opposite direction.
  • the plurality of detectors D are arranged in a ring shape, and ⁇ -rays are incident on a specific detector D (n) and a detector D (k) facing the RI position across the RI position.
  • n, k, and N are natural numbers.
  • the PET device When the PET device is of the TOF type (Time Of Flight), a substance containing RI is administered to the human body, animals, plants, etc., and radiation pairs ( ⁇ rays) generated by annihilation of electron / positron pairs in the measurement target to obtain information on the distribution of the administered substance in the measurement target. That is, if the timing T output from each signal processing circuit 50 of each of the detectors D arranged at the opposing positions is found, the timing difference is determined by the position of the center of gravity of the ring on the diagonal line between the opposing detectors D. In order to correspond to the displacement distance of the RI position P from the position, the position can be detected.
  • TOF type Time Of Flight
  • the computer 51 determines whether this is caused by the annihilation of electrons and positrons. This determination is made based on whether or not ⁇ rays have been detected by the other detector D (k) during a certain time before and after the detection time at which ⁇ rays have been detected by one detector D (n). . If it is detected under this condition, it can be determined that the pair of ⁇ -rays generated as a result of annihilation of the same electron / positron pair can be adopted as an effective value for image processing in the image processing circuit 56.
  • the threshold value SH is set, for example, in the vicinity of 511 keV, which is the photon energy of a pair of ⁇ -rays that are generated with the annihilation of an electron / positron pair.
  • the intensity of the incident fluorescence that is, the energy E can be obtained by obtaining the integrated value of the amount of fluorescence incident light.
  • the fluorescence incident position P in each detector D can be calculated by obtaining the two-dimensional barycentric position of the signal intensity from each photodiode array in the signal processing circuit 50. This position P can be used when more precise image analysis is performed as necessary.
  • the TOF-PET apparatus has a radiation detector array (detection apparatus 106) composed of a plurality of detectors D, a signal processing circuit 50, and a computer 51 that performs image processing based on the output of the signal processing circuit 50. Yes. These configurations are employed in all detectors D arranged in a ring shape, but for clarity of explanation, only one signal processing circuit 50 is shown as a representative in FIG.
  • the subject diagnosis apparatus is an X-ray CT apparatus.
  • the X-ray CT apparatus also includes the cradle 101 and the gantry 102 having the above-described structure.
  • the gantry 102 includes an X-ray source (not shown) that emits X-rays.
  • a plurality of detectors D are arranged at positions where X-rays from the X-ray source are incident, and a detection device 106 is configured.
  • a subject 105 is placed on the cradle 101 located in the opening of the gantry 102 in FIG. 1, and the subject 105 is irradiated with X-rays from an X-ray source.
  • X-rays transmitted through the subject 105 are detected by a plurality of detectors D, and this detection signal is input to a computer 51 via a signal processing circuit 50 incorporating an amplifier and the like, and image processing is performed.
  • An image relating to internal information of the subject 105 that is, a computer tomographic image can be obtained.
  • the detector D may be configured to rotate around the opening axis of the gantry 102.
  • the control apparatus 103 can superimpose the image obtained by the PET apparatus and the image obtained by the X-ray CT apparatus. Since the X-ray CT apparatus uses the detector D according to the embodiment, it is possible to acquire a high-quality image.
  • the subject 105 is arranged at the center of the detection device 106 arranged in a ring shape.
  • the detection device 106 rotates around the rotation axis AX.
  • An X-ray source (not shown) irradiates the subject 105 with X-rays, and the X-rays transmitted therethrough are incident on a plurality of detectors D (n).
  • the output of each detector is input to the computer 51 through the signal processing circuit 50.
  • the control device 103 of the X-ray CT apparatus includes a display 52, a CPU 54, a storage device 53, an input device 55, and an image processing circuit 56 that function in the same manner as the PET apparatus.
  • the program stored in the storage device 53 When the start of imaging is instructed by the input device 55, the program stored in the storage device 53 is activated, the X-ray source drive circuit is controlled, a drive signal is output from this drive circuit to the X-ray source, and X X-rays are emitted from the radiation source.
  • the program stored in the storage device 53 is activated, the gantry drive motor is driven, the detection device 106 rotates around the gantry opening axis, and a control signal (ON / OFF of the detector) is sent to the detector D.
  • the detector D is turned on, and the detection signal is input to the image processing circuit 56 of the computer 51 via the signal processing circuit 50.
  • the image processing circuit 56 creates a computer tomographic image in accordance with the tomographic image creation program input to the storage device 53.
  • the created image is stored in the storage device 53 and can be displayed on the display 52.
  • the storage device 53 stores a program for performing image processing and the like, and the program operates according to a command from the central processing unit (CPU) 54.
  • a series of operations necessary for inspection output of control signals (ON / OFF of detector) to detector D, control of various drive motors, capture of detection signals from detector D, image processing of detection signals, created image Storage in the storage device and display on the display) can be performed by the input device 55.
  • FIG. 3 is a circuit diagram of the photodiode array PDA.
  • the photodetector D1 includes a semiconductor chip, and a photodiode array PDA is formed in the photosensitive region of the semiconductor chip.
  • the photodiode array PDA includes a plurality of photodiodes PD and a quenching resistor R1 connected in series to each photodiode PD.
  • the cathodes of the photodiodes PD are commonly connected, and the anodes are commonly connected via a quenching resistor R1.
  • the plurality of photodiodes PD are two-dimensionally arranged.
  • the quenching resistors R1 are connected to the electrode pads PAD via the electrodes or the wiring E3.
  • the potential (+) on the cathode side of the photodiode PD is set relatively higher than the potential ( ⁇ ) on the anode side.
  • a signal is extracted from the electrode pad PAD serving as the anode.
  • the cathode and anode in the photodiode can be used interchangeably, and there are N-type and P-type conductivity types in the semiconductor chip, but they can perform the same function even if they are replaced with each other. it can.
  • the photodiode PD is an avalanche photodiode (APD) that operates in Geiger mode.
  • APD avalanche photodiode
  • a reverse voltage (reverse bias voltage) larger than the breakdown voltage of the APD is applied between the anode / cathode of the APD. That is, a ( ⁇ ) potential lower than the reference value is applied to the anode, and a (+) potential higher than the reference value is applied to the cathode.
  • the polarities of these potentials are relative, and one of the potentials can be a ground potential.
  • FIG. 4 is a circuit diagram (A) of one photodiode PD and quenching resistor R1, and a diagram (B) showing a unit structure in a semiconductor chip for realizing this configuration. Since a photodiode array is formed in the semiconductor chip, a plurality of unit structures shown in the figure are two-dimensionally formed.
  • the semiconductor region 12 constituting the semiconductor substrate is an N-type (first conductivity type) semiconductor substrate made of Si.
  • the anode of the photodiode PD is a P-type (second conductivity type) semiconductor region 13 (14), and the cathode is an N-type semiconductor region 12.
  • photoelectric conversion is performed inside the substrate to generate photoelectrons.
  • Avalanche multiplication is performed in the region near the pn junction interface of the semiconductor region 13, and the amplified electron group flows toward the electrode E ⁇ b> 4 formed on the back surface of the semiconductor region 12.
  • the electrode E4 may be provided on the surface side.
  • the photon when a photon is incident on the photodiode PD, the photon is multiplied and extracted as a signal from the electrode or wiring E3 electrically connected to the quenching resistor R1.
  • the wiring E3 is connected to the above-described electrode pad PAD.
  • the quenching resistor R1 is formed on the upper insulating layer 17 of the two insulating layers 16 and 17, and is formed in the semiconductor region 14 (photodetection channel) having a higher impurity concentration than the semiconductor region 13. Electrically connected.
  • An electrode E4 that provides a substrate potential is provided on the back surface of the semiconductor substrate, and the electrode E4 is connected to a positive potential, for example.
  • the insulating layers 16 and 17 are provided with contact holes, and the semiconductor region 14 and the quenching resistor R1 are electrically connected via the contact electrode and the wiring E1 in the contact holes. Note that the wirings E1 and E3 are formed on the insulating layer 16.
  • FIG. 5 is a plan view of the unit structure shown in FIG. In the following plan views, the description of the insulating layers 16 and 17 is omitted, and the internal structure is shown more clearly.
  • the wiring E1 is connected to the quenching resistor R1 through contact holes provided in the insulating layers 16 and 17 (see FIG. 7).
  • the quenching resistor R1 is connected to a wiring E3 located under the contact hole provided in the insulating layer 17 (see FIG. 7).
  • the wiring E3 is a signal readout wiring, is formed on the insulating layer 16, surrounds the semiconductor region 14, and has a quadrangular annular shape.
  • the quenching resistor R1 is located on the semiconductor region 14, and the signal read-out wiring E3 extends around the semiconductor region 14 in a plan view (when the XY plane is viewed from the Z-axis direction). In addition to surrounding in a ring shape, the quenching resistor R1 extends linearly without bending.
  • FIG. 6 is a plan view of a photodiode array having a plurality of unit structures
  • FIG. 7 is a diagram showing a vertical cross-sectional configuration of the photodiode array of FIG.
  • All the signal readout wirings E3 are electrically connected to the electrode pads PAD.
  • the electrode pad PAD is formed on the insulating layer 16.
  • a photodiode array of 2 rows and 2 columns is formed, but this may be N rows ⁇ M columns (N and M are integers of 2 or more).
  • N and M are integers of 2 or more.
  • a plurality of semiconductor regions 14 are formed in one semiconductor region 13.
  • the quenching resistor R1 is not actually visible, but the quenching resistor R1 is indicated by a chain line for the sake of clarity.
  • the quenching resistor R1 is located on the semiconductor region 14 via the insulating layers 16 and 17, and the signal read-out wiring E3 is a ring around each semiconductor region 14 in plan view.
  • Each quenching resistor R1 extends linearly without bending.
  • the signal readout wiring E3 surrounds the semiconductor region 14 in a ring shape, the semiconductor region 14 and the signal readout wiring E3 are close to each other, and a capacitor is interposed between them. It is configured.
  • the high frequency component (peak component) of the carrier generated in the semiconductor region 14 in response to the incidence of the photon is quickly taken out through the capacitor.
  • the quenching resistor R1 is formed on the semiconductor region 14, the signal readout wiring E3 can be arranged as described above, and the opening of the semiconductor region 14 is obstructed by the wiring and the quenching resistance. Since it is not necessary to reduce the rate, the amount of light (sensitivity) detected per pixel can be increased. Further, since the quenching resistor R1 extends linearly without bending, there is an advantage that a portion covering the semiconductor region 14 is reduced and an aperture ratio is increased.
  • the photodetector of this embodiment includes the semiconductor substrate 12, the semiconductor region 13 (first semiconductor region) formed on the semiconductor substrate 12, and a plurality of two-dimensionally in the semiconductor region 13.
  • a pn junction can be formed at the interface between the semiconductor substrate 12 and the semiconductor region 13 or the interface between the semiconductor region 13 and the semiconductor region 14, and these pn junctions can be used in Geiger mode.
  • An operating APD is configured.
  • the semiconductor region 14 is a diffusion region formed by diffusing impurities into the semiconductor region 13, and has a higher impurity concentration than the semiconductor region 13.
  • a p-type semiconductor region 13 is formed on an n-type semiconductor substrate 12 (semiconductor region), and a p-type impurity is added to the surface side of the semiconductor region 13 at a high concentration. Region 14 is formed. Therefore, the pn junction constituting the photodiode is formed between the semiconductor region 12 and the semiconductor region 13.
  • the layer structure of the semiconductor substrate As the layer structure of the semiconductor substrate, a structure in which the conductivity type is reversed from the above can be adopted. That is, in the (type 2) structure, the n-type semiconductor region 13 is formed on the p-type semiconductor region 12, and the semiconductor region 14 is doped with n-type impurities at a high concentration on the surface side of the semiconductor region 13. Formed.
  • the pn junction interface can be formed on the surface layer side.
  • an n-type semiconductor region 13 is formed on the n-type semiconductor region 12, and a semiconductor region 14 in which a p-type impurity is added at a high concentration on the surface side of the semiconductor region 13 is used. Is formed.
  • the pn junction is formed at the interface between the semiconductor region 13 and the semiconductor region 14.
  • the conductivity type can be reversed. That is, in the (type 4) structure, a p-type semiconductor region 13 is formed on a p-type semiconductor region 12, and a semiconductor region 14 to which n-type impurities are added at a high concentration is formed on the surface side of the semiconductor region 13. The structure is formed.
  • FIG. 8 is a plan view of the improved unit structure.
  • the wiring E1 is connected to the quenching resistor R1 through a contact hole provided in the insulating layers 16 and 17 (see FIG. 10).
  • the quenching resistor R1 is connected to a wiring E3 located under the contact hole provided in the insulating layer 17 (see FIG. 10).
  • the wiring E3 is a signal readout wiring, is formed on the insulating layer 16, surrounds the semiconductor region 14, and has a quadrangular annular shape.
  • the quenching resistor R1 is located on the semiconductor region 14, and in plan view (when the XY plane is viewed from the Z-axis direction), the signal readout wiring E3 is a semiconductor Since the periphery of the region 14 is surrounded in a ring shape and the quenching resistor R1 extends linearly without being bent, the same effect as in the case of the structure of FIGS. 5 to 7 can be obtained.
  • the boundary line BY that defines the outer edge of the semiconductor region 14 is covered with the signal readout wiring E3.
  • the boundary line BY is not covered with the signal readout wiring E3.
  • FIG. 9 is a plan view of a photodiode array having a plurality of unit structures shown in FIG. 8, and FIG. 10 is a diagram showing a vertical cross-sectional configuration of the photodiode array of FIG.
  • the signal readout wiring E3 covers the boundary line BY (outer edge of the semiconductor region 14) between the semiconductor region 14 and the first semiconductor region 13 in plan view.
  • the signal readout wiring E3 surrounds the semiconductor region 14 in a ring shape so as to cover the boundary line BY, the gap between the semiconductor region 14 and the signal readout wiring E3 is very large. A capacitor is formed between them. The high frequency component (peak component) of the carrier generated in the semiconductor region 14 in response to the incidence of the photon is quickly taken out through the capacitor.
  • the signal readout wiring E3 covers the boundary line BY described above, the potential in the vicinity of the boundary line in the semiconductor is stabilized, and the output signal is stabilized.
  • the quenching resistor R1 is formed on the semiconductor region 14, the signal readout wiring E3 can be arranged as described above, and the semiconductor region 14 is disturbed by the wiring and the quenching resistor. Since the aperture ratio does not have to be reduced, the amount of light (sensitivity) detected per pixel can be increased.
  • the peak and sensitivity of the output signal can be simultaneously increased, and further stability can be obtained.
  • the signal readout wiring E3 covers all the boundary line BY between the semiconductor region 14 and the semiconductor region 13 in plan view.
  • the capacitance of the capacitor formed between the signal readout wiring E3 and the semiconductor region 14 can be increased to increase the peak of the output signal via the signal readout wiring.
  • FIG. 11 is a plan view of another improved photodiode array. 11 is the same as that shown in FIG.
  • This photodiode array is different from that of FIGS. 6 and 7 only in the shape of the signal readout wiring E3, and the other structures are the same.
  • the signal readout wiring E3 covers only a part (only the lower right corner of the drawing) of the boundary line BY between the semiconductor region 14 and the semiconductor region 13 in plan view. Then, the width in the width direction of the signal readout wiring E3 covering the boundary line BY in the signal readout wiring E3 (for the wiring extending along the X axis, the dimension in the Y axis direction, the wiring extending along the Y axis) (The dimension in the X-axis direction) is larger than the dimension in the width direction of the portion adjacent to this portion.
  • the signal readout wiring E3 covers only a part of the boundary line BY.
  • the capacitance of the capacitor is increased so that the peak of the output signal via the signal readout wiring is increased. Can be high.
  • FIG. 12 is a graph showing the time t (ns) and the intensity I (au) of the output signal of the photodiode array.
  • (A) shows data in the case of the comparative example, and
  • (B) shows data in the case of the example (structure of FIG. 9).
  • one memory on the horizontal axis indicates 5 (ns), and the initial time t0 of the graph indicates a time of ⁇ 5 (ns). Further, the pixel size (the length of one side of one annular square composed of the signal readout wiring E3) is 50 ( ⁇ m).
  • the position of the quenching resistor is arranged outside the ring-shaped signal readout wiring E3, and each ring-shaped signal readout wiring E3 is connected by another signal readout wiring. It was set as the structure which reads.
  • the signal readout through the capacitor is easily performed, and the peak height of the signal intensity I is compared. You can see that it is higher than the example. That is, when the fluorescence emitted from the scintillator enters the photodetector, the waveform peak of the detection signal output from the photodetector in the initial stage is higher than that in the comparative example. Note that the peak height increases as the amount of incident light increases.
  • the above-described detector includes the semiconductor substrate 12, the first semiconductor region 13 formed on the semiconductor substrate 12, and a plurality of detectors formed in two dimensions in the first semiconductor region 13.
  • the second semiconductor region 14 having an impurity concentration higher than that of the semiconductor region 13, the plurality of quenching resistors R1 electrically connected to the respective second semiconductor regions 14, and the plurality of quenching resistors R1 are electrically connected. And is operated in Geiger mode at the interface between the semiconductor substrate 12 and the first semiconductor region 13 or at the interface between the first semiconductor region 13 and the second semiconductor region 14.
  • the quenching resistor R1 is located on the second semiconductor region 14, and the signal readout wiring E3 is an individual detector in plan view. Surrounds the second semiconductor region 14 in a ring shape, the output signal intensity peaks is higher.
  • quenching resistor R1 has a higher resistivity than the signal readout wiring E3 to which it is connected.
  • Quenching resistor R1 is made of, for example, polysilicon.
  • a CVD (Chemical Vapor Deposition) method can be used as a method of forming the resistor R1.
  • Other examples of the resistor constituting the resistor R1 include SiCr, NiCr, TaNi, and FeCr.
  • the above electrode is made of a metal such as aluminum.
  • the semiconductor substrate is made of Si, AuGe / Ni or the like is often used as the electrode material in addition to aluminum. Note that through electrodes and bumps can also be used as the signal extraction structure.
  • a p-type impurity is a group 3 element such as B
  • an n-type impurity is a group 5 element such as N, P, or As. Even if n-type and p-type, which are semiconductor conductivity types, are substituted for each other to form an element, the element can function.
  • a diffusion method or an ion implantation method can be used.
  • SiO 2 or SiNx can be used as a material of the above-mentioned insulating layer.
  • a method for forming the insulating layer when each insulating layer is made of SiO 2 , a thermal oxidation method or a sputtering method can be used. .
  • Type 1 Semiconductor region 12 (conductivity type / impurity concentration / thickness) (N-type / 5 ⁇ 10 11 to 1 ⁇ 10 20 cm ⁇ 3 / 30 to 700 ⁇ m)
  • Semiconductor region 13 (conductivity type / impurity concentration / thickness) (P-type / 1 ⁇ 10 14 to 1 ⁇ 10 17 cm ⁇ 3 / 2 to 50 ⁇ m)
  • Semiconductor region 14 (conductivity type / impurity concentration / thickness) (P-type / 1 ⁇ 10 18 to 1 ⁇ 10 20 cm ⁇ 3 / 10 to 1000 nm)
  • Type 2 Semiconductor region 12 (conductivity type / impurity concentration / thickness) (P-type / 5 ⁇ 10 11 to 1 ⁇ 10 20 cm ⁇ 3 / 30 to 700 ⁇ m)
  • Semiconductor region 13 (conductivity type / impurity concentration / thickness) (N-type / 1 ⁇ 10 14 to 1 ⁇ 10 17
  • the signal readout wiring covers all of the boundary lines constituting the outer edge of the second semiconductor region. However, even if there is a portion that is not covered somewhat, basically the same effect as described above. Play. In this case, at the periphery of the second semiconductor region, the length of the boundary line covered with the signal readout wiring is longer than the length of the boundary line not covered with the signal readout wiring, so that The boundary lines are covered at a plurality of sides constituting the outer edge of the semiconductor region.
  • the peak and light amount of the output signal can be simultaneously increased, and the stability can be further improved.
  • a detector having such a photodetector can be applied to a subject diagnostic apparatus such as a PET apparatus or a CT apparatus, and can form a highly accurate image from the output signal.
  • SC scintillator, R1 ... quenching resistor, D1 ... photodetector, 12 ... semiconductor substrate, 13 ... first semiconductor region, 14 ... second semiconductor region (light detection channel).

Abstract

 光検出器においては、半導体領域14の外縁を規定する境界線BYは、信号読出配線E3によって覆われ、半導体領域14と信号読出配線E3との間にはキャパシタが構成されている。キャリアの高周波成分(ピーク成分)は、キャパシタを介して、素早く外部に取り出されるが、信号読出配線E3が、境界線BYを覆うことにより、半導体における境界線近傍の電位が安定し、出力信号が安定する。

Description

光検出器
 本発明は、ポジトロンCT装置(Positron Emission Tomography:PET装置)やCT装置などの医療機器に利用可能な光検出器に関するものである。
 現在、様々な医療機器が用いられている。PET装置は、ポジトロン(陽電子)を放出するアイソトープで標識された薬剤を生体内に導入し、薬剤に起因するγ線を複数の検出器で検出する装置である。PET装置は、リング状のガントリ(架台)、クレードル(寝台)、操作用のコンピュータを備えおり、ガントリ内部には、生体周囲に配置される複数の検出器が内蔵されている。
 ここで、X線又はγ線の効率的な検出器は、シンチレータと光検出器とを組み合わせることで構成することができる。
 なお、X線CT装置とPET装置とを組み合わせたCT/PET装置や、これらにMRI(磁気共鳴画像診断)装置を組み合わせた複合診断装置も考えられている。
 上述のような診断装置に適用される光検出器(フォトダイオードアレイ)は、例えば、特許文献1に記載されている。SiPM(Silicon Photo Multiplier)又はPPD(Pixelated Photon Detector)などのフォトダイオードアレイでは、APD(アバランシェフォトダイオード)をマトリックス状に配置し、複数のAPDを並列に接続し、APD出力の和を読み出す構成を有している。APDをガイガーモードで動作させると、微弱な光を検出することができる。
 すなわち、光子(フォトン)がAPDに入射した場合、APD内部で発生したキャリアは、クエンチング抵抗及び信号読出用の配線パターンを介して外部に出力される。APDにおける電子雪崩の発生した画素には、電流が流れるが、画素に直列接続された数百kΩ程度のクエンチング抵抗において、電圧降下が発生する。この電圧降下により、APDの増幅領域への印加電圧が低下して、電子雪崩による増倍作用は終息する。このように、1つの光子の入射により、1つのパルス信号がAPDから出力される。
 PET装置などの機器においては、光検出器からの出力信号のピーク(光子の入射タイミング)と検出された光子量(感度)が利用され、いずれも値が大きいほど好ましい。
特開2008-311651号公報
 従来の光検出器においては、フォトダイオードアレイを構成する各光検出チャンネルの周縁が電位安定化のためにAl等の金属膜で覆われるとともに、クエンチング抵抗が光検出チャンネルの周縁を覆う金属膜の外側に配置されていたため、隣接する光検出チャンネルの間となる領域を小さくしてフォトダイオードアレイの開口率、感度を向上するのには限界があった。また、出力信号のピークを高くすることで、ノイズ等による出力信号のベースラインの揺らぎの影響を低減し、時間分解能を向上することが求められていた。
 本発明は、このような課題に鑑みてなされたものであり、出力信号のピークを高めて時間分解能を向上するとともに、高開口率、高感度を実現した光検出器を提供することを目的とする。
 上述の課題を解決するため、第1の発明の態様に係る光検出器は、半導体基板と、前記半導体基板上に形成された第1半導体領域と、前記第1半導体領域内に二次元状に複数形成され、前記第1半導体領域よりも不純物濃度が高い第2半導体領域と、個々の前記第2半導体領域にそれぞれ電気的に接続された複数のクエンチング抵抗と、複数の前記クエンチング抵抗に電気的に接続された信号読出配線と、を備え、前記半導体基板と前記第1半導体領域との間の界面、又は、前記第1半導体領域と前記第2半導体領域との間の界面において、ガイガーモードで動作するAPDを構成するpn接合が形成された光検出器であって、前記クエンチング抵抗は、前記第2半導体領域上に位置しており、且つ、平面視において、前記信号読出配線は、個々の前記第2半導体領域の周囲をリング状に囲むと共に、前記第2半導体領域と前記第1半導体領域との間の境界線を覆っていることを特徴とする。
 この光検出器によれば、信号読出配線が、上記境界線を覆うように、第2半導体領域の周囲をリング状に囲んでいるため、第2半導体領域と信号読出配線との間は非常に近くなり、これらの間にはキャパシタが構成されている。光子の入射に応答して第2半導体領域で発生したキャリアの高周波成分(ピーク成分)は、当該キャパシタを介して、素早く外部に取り出される。また、信号読出配線が、上記境界線を覆うことにより、半導体における境界線近傍の電位が安定し、出力信号が安定になる。ここで、クエンチング抵抗は、第2半導体領域上に形成されているため、信号読出配線を上述の配置とすることができ、配線やクエンチング抵抗によって邪魔されることで、第2半導体領域の開口率を小さくしなくても良いため、画素当たりに検出する光量(感度)を大きくすることができる。
 このように、本光検出器によれば、出力信号のピークを高めるとともに、高開口率、高感度を実現し、更に出力信号を安定させることができる。
 また、第2の発明の態様に係る光検出器は、平面視において、前記信号読出配線は、前記第2半導体領域と前記第1半導体領域との間の境界線を全て覆っていることを特徴とする。
 この場合、信号読出配線と第2半導体領域との間に形成されるキャパシタの容量を大きくして、信号読出配線を介した出力信号のピークを高くすることができる。
 また、第3の発明の態様に係る光検出器は、平面視において、前記信号読出配線は、前記第2半導体領域と前記第1半導体領域との間の境界線のうち一部のみを覆っており、前記信号読出配線における前記覆っている部分の前記信号読出配線の幅方向の寸法は、この部分に隣接する部分の幅方向の寸法よりも大きいことを特徴とする。
 この場合、信号読出配線は、上記境界線の一部のみしか覆っていないが、幅方向の寸法が大きいので、キャパシタの容量を大きくして、信号読出配線を介した出力信号のピークを高くすることができる。
 また、第4の発明の態様に係る光検出器は、半導体基板と、前記半導体基板上に形成された第1半導体領域と、前記第1半導体領域内に二次元状に複数形成され、前記第1半導体領域よりも不純物濃度が高い第2半導体領域と、個々の前記第2半導体領域にそれぞれ電気的に接続された複数のクエンチング抵抗と、複数の前記クエンチング抵抗に電気的に接続された信号読出配線と、を備え、前記半導体基板と前記第1半導体領域との間の界面、又は、前記第1半導体領域と前記第2半導体領域との間の界面において、ガイガーモードで動作するAPDを構成するpn接合が形成された光検出器であって、前記クエンチング抵抗は、前記第2半導体領域上に位置しており、且つ、平面視において、前記信号読出配線は、個々の前記第2半導体領域の周囲をリング状に囲むと共に、個々の前記クエンチング抵抗は、屈曲すること無く直線的に延びていることを特徴とする。
 この光検出器によれば、信号読出配線が、第2半導体領域の周囲をリング状に囲んでいるため、第2半導体領域と信号読出配線との間は近くなり、これらの間にはキャパシタが構成されている。光子の入射に応答して第2半導体領域で発生したキャリアの高周波成分(ピーク成分)は、当該キャパシタを介して、素早く外部に取り出される。ここで、クエンチング抵抗は、第2半導体領域上に形成されているため、信号読出配線を上述の配置とすることができ、配線やクエンチング抵抗によって邪魔されることで第2半導体領域の開口率を小さくしなくても良いため、画素当たりに検出する光量(感度)を大きくすることができる。また、クエンチング抵抗が屈曲することなく直線的に延びていることで、第2半導体領域を覆う部分が小さくなり、開口率が大きくなるという利点もある。
 本発明の光検出器によれば、出力信号のピークを高めるとともに、高開口率、高感度を実現することができる。
図1は、PET装置等の被検体診断装置の構成を示す図である。 図2は、シンチレータSCと光検出器D1を備える検出器Dの構造を示す図である。 図3は、光検出器D1を構成するフォトダイオードアレイPDAの回路図である。 図4は、1つのフォトダイオード及びクエンチング抵抗の回路図(A)と、この構成を実現するための半導体チップ内の単位構造を示す図(B)である。 図5は、図4に示した単位構造の平面図である。 図6は、図5に示した単位構造を複数備えてなるフォトダイオードアレイの平面図である。 図7は、図6又は図11のフォトダイオードアレイのA-A矢印縦断面構成を示す図である。 図8は、改良した単位構造の平面図である。 図9は、図8に示した単位構造を複数備えてなるフォトダイオードアレイの平面図である。 図10は、図9のフォトダイオードアレイのA-A矢印縦断面構成を示す図である。 図11は、別の改良をしたフォトダイオードアレイの平面図である。 図12は、時間(ns)とフォトダイオードアレイの出力信号の強度(a.u.)を示すグラフであり、(A)は比較例のデータを、(B)は実施例のデータを示す。
 以下、実施の形態に係る光検出器について説明する。なお、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
 まず、実施形態に係る光検出器が適用可能な被検体診断装置について説明する。
 図1は、PET装置やCT装置などの被検体診断装置の概略図である。この被検体診断装置は、一般的なものであり、実施形態に係る光検出器は、このようなタイプの被検体診断装置に適用することができる。
 被検体診断装置は、クレードル101と、クレードル101が内部に位置する開口を有するガントリ102と、制御装置103とを備えている。制御装置103は、クレードル101を移動させる駆動モータ104を、駆動モータ制御信号によって制御し、クレードル101のガントリ102に対する相対位置を変化させる。クレードル101上には、診断が行われる被検体105が配置される。被検体105は、駆動モータ104の駆動によって、ガントリ102の開口の内部へと搬送される。駆動モータ104は、クレードル101を移動させてもよいが、ガントリ102を移動させてもよい。
 ガントリ102の開口を囲むように、検出装置106が複数配置されている。検出装置106は、それぞれが複数の検出器D(図2参照)を有する。
 図2は、検出器Dの構造を示す図である。基板SB上に複数の検出チップD0が配置されている。1つの検出チップD0は、光検出器D1と、光検出器D1上に固定されたシンチレータSCからなる。シンチレータSCに、X線やγ線などのエネルギー線(放射線)が入射すると、蛍光が発生し、かかる蛍光を光検出器D1が検出する。
 再び、図1を参照する。制御装置103からは、検出装置106を制御する制御信号がガントリ102に出力され、ガントリ102からは検出装置106からの検出信号が制御装置103に入力される。
 まず、被検体診断装置が、PET装置の場合について説明する。
 PET装置では、ガントリの開口を囲むように、複数の検出器Dがリング状に配置されている。各検出器Dに含まれる光検出器D1は、二次元状に配置された複数のフォトダイオードアレイPDA(図3参照)を有している。被検体105には、陽電子(ポジトロン)を放出するタイプの放射性同位元素(RI)(陽電子放出核種)が注入されている。なお、PET装置において使用されるRIは、炭素、酸素、フッ素、窒素などの生体中に存在する元素である。陽電子は、体内の陰電子と結合して消滅放射線(γ線)を発生する。すなわち、被検体105からは、γ線が出射される。検出器Dは、出射されたγ線を検出し、制御装置103における信号処理回路50に検出信号を出力する。
 検出器Dは、複数のフォトダイオードアレイPDA(図3参照)の集合体である。信号処理回路50は、検出器Dからの検出信号を処理して、(1)各検出器Dから出力される総エネルギーE、(2)複数のフォトダイオードアレイPDAの中で、γ線の入射した位置P、(3)γ線の入射に応じて、シンチレータから出射された蛍光が、光検出器に入射した際に、初期の段階で光検出器から出力される検出信号の波形ピークのタイミングTを出力する。
 被検体105から出射されたγ線に応じて、出力された情報であるエネルギーE、位置P、タイミングTは、図示しないAD変換回路で、デジタル信号に変換された後、コンピュータ51に入力される。コンピュータ51は、ディスプレイ52、記憶装置53、中央処理装置(CPU)54、入力装置55、ソフトウエアから構成される画像処理回路56を備えている。入力装置55から、CPU54に処理命令を入力すると、記憶装置53に格納されたプログラムに基づいて、各検出器Dに制御信号が送信され、検出器DのON/OFFが制御できる。
 画像処理回路56は、各検出器Dから出力された検出信号(エネルギーE、位置P,タイミングT)を画像処理し、被検体105の内部情報に関する画像、すなわち断層化した画像を作成する。画像処理のアルゴリズムは複数のものが従来から知られているので、それを適用すればよい。作成された画像は、記憶装置53内に格納され、ディスプレイ52上に表示することができる。記憶装置53には、画像処理等を行うプログラムが格納されており、CPU54からの指令により、当該プログラムは動作する。検査に必要な一連の操作(制御信号(検出器のON/OFF)の検出器Dへの出力、駆動モータの制御、検出器Dからの検出信号の取り込み、画像処理、作成画像の記憶装置への格納、ディスプレイへの表示)は、入力装置55によって行うことができる。
 被検体105の内部におけるRI位置Pからは、γ線が一方向とこれとは逆方向に向けて出射される。複数の検出器Dは、リング状に配置されており、特定の検出器D(n)と、RI位置を挟んで、これに対向する検出器D(k)にγ線が入射する。N個の検出器Dを1つのリング上に配置している場合には、最も高い位置にある検出器Dから、時計まわりに数えてn番目の検出器D(n)と、k番目の検出器D(k)にγ線が入射するが、RI位置Pがリングの中心にあり、リングの面内においてγ線が互いに逆方向に向かう場合には、k=n+(2/N)となる。なお、n、k、Nは自然数である。
 PET装置が、TOF型(Time Of Flight)である場合、RIを含む物質を人体や動物及び植物などに投与し、その測定対象中において電子・陽電子対消滅で生成される放射線対(γ線)を計測することにより、測定対象内のその投与物質の分布についての情報を得るものである。すなわち、対向位置に配置された検出器Dのそれぞれの各信号処理回路50から出力されるタイミングTが判明すれば、タイミングの差分が、対向する検出器D間の対角線上における、リングの重心位置からのRI位置Pの変位距離に対応するため、位置検出ができる。
 また、コンピュータ51では、2つのタイミングTが求められた場合には、これが電子・陽電子消滅に起因して発生したものかどうかも判定する。この判定は、一方の検出器D(n)においてγ線が検出された検出時刻の前後の一定時間の間に、他方の検出器D(k)においてγ線が検出されたか否かによりなされる。この条件で検出された場合には、同一の電子・陽電子対消滅に伴って発生したγ線対であると判定でき、有効な値として画像処理回路56における画像処理に採用することができる。
 タイミングTの測定においては、所定の閾値(SHとする)を、検出器Dの信号強度が超えた場合には、γ線の入射があったと判定し、そうでない場合には、入射が無かったと判定する。閾値SHは、例えば電子・陽電子対消滅に伴って発生する一対のγ線の光子エネルギーである511keVの付近に設定される。これにより、電気的ノイズ信号や、散乱ガンマ線(消滅γ線の一方或いは両方が散乱物質により方向を変えられたγ線であり、散乱のためにエネルギーが減少している)に起因するノイズ信号等が除かれる。
 タイミングTの判定後も、シンチレータからの光検出器への蛍光入射は持続するため、蛍光入射光量の積算値を求めれば、入射した蛍光の強度、すなわち、エネルギーEを求めることができる。各検出器D内における蛍光の入射位置Pは、信号処理回路50において各フォトダイオードアレイからの信号強度の二次元的な重心位置を求めることにより、算出することができる。この位置Pは、必要に応じて、より精密な画像解析を行う場合に、用いることができる。
 TOF-PET装置は、複数の検出器Dからなる放射線検出器アレイ(検出装置106)と、信号処理回路50と、信号処理回路50の出力に基づいて、画像処理を行うコンピュータ51を有している。これらの構成は、リング状に配置された全ての検出器Dに採用されているが、説明の明確化のため、同図では1つの信号処理回路50を代表して示している。
 次に、被検体診断装置が、X線CT装置の場合について説明する。
 X線CT装置も、上述の構造のクレードル101とガントリ102を備えているが、ガントリ102はX線を出射するX線源(図示せず)を内蔵している。X線源からのX線が入射する位置に、複数の検出器Dが配置され、検出装置106が構成されている。
 図1のガントリ102の開口内に位置するクレードル101には被検体105が配置され、被検体105にはX線源からX線が照射される。被検体105を透過したX線は、複数の検出器Dにて検出され、この検出信号を、アンプ等を内蔵する信号処理回路50を介して、コンピュータ51に入力し、画像処理することで、被検体105の内部情報に関する画像、すなわちコンピュータ断層画像を得ることができる。X線CT装置の場合、検出器Dはガントリ102の開口軸の回りに回転させる構成としてよい。
 PET装置とX線CT装置を一体化している場合には、制御装置103は、PET装置で得られた画像と、X線CT装置で得られた画像とを重ねることができる。X線CT装置においては、実施形態に係る検出器Dを用いているので、高品質な画像を取得することが可能である。
 被検体105は、リング状に配置された検出装置106の中心に配置される。検出装置106は、回転軸AXを中心に回転する。図示しないX線源からは、被検体105にX線が照射され、これを透過したX線が複数の検出器D(n)に入射する。各検出器の出力は、信号処理回路50を経て、コンピュータ51に入力される。X線CT装置の制御装置103は、PET装置と同様に機能するディスプレイ52、CPU54、記憶装置53、入力装置55、画像処理回路56を備えている。
 入力装置55により、撮影の開始が指示されると、記憶装置53に格納されたプログラムが起動し、X線源駆動回路が制御され、この駆動回路からX線源に駆動信号が出力され、X線源からX線が出射される。また、記憶装置53に格納されたプログラムが起動し、ガントリ駆動モータを駆動し、検出装置106、ガントリ開口軸の周りに回転させ、更に、制御信号(検出器のON/OFF)を検出器Dに出力して、検出器DをONさせ、検出信号を、信号処理回路50を介して、コンピュータ51の画像処理回路56に入力する。画像処理回路56では、記憶装置53に入力された断層画像作成プログラムにしたがって、コンピュータ断層画像を作成する。作成された画像は、記憶装置53に格納され、ディスプレイ52に表示することができる。
 上述のように、記憶装置53には、画像処理等を行うプログラムが格納されており、中央処理装置(CPU)54からの指令により、当該プログラムは動作する。検査に必要な一連の操作(制御信号(検出器のON/OFF)の検出器Dへの出力、各種駆動モータの制御、検出器Dからの検出信号の取り込み、検出信号の画像処理、作成画像の記憶装置への格納、ディスプレイへの表示)は、入力装置55によって行うことができる。
 なお、各種プログラムは、従来の装置に搭載されているものを用いることができる。
 図3は、フォトダイオードアレイPDAの回路図である。
 光検出器D1は半導体チップを備えており、半導体チップの光感応領域内にフォトダイオードアレイPDAが形成されている。フォトダイオードアレイPDAは、複数のフォトダイオードPDと、各フォトダイオードPDにそれぞれ直列に接続されたクエンチング抵抗R1とを有している。各フォトダイオードPDのカソード同士は共通接続されており、アノード同士はクエンチング抵抗R1を介して共通接続されている。複数のフォトダイオードPDは、二次元的に配置される。
 また、全てのクエンチング抵抗R1は、電極又は配線E3を介して、電極パッドPADに接続されている。半導体チップでは、フォトダイオードPDのカソード側の電位(+)が、アノード側の電位(-)よりも相対的に高く設定される。アノードとなる電極パッドPADから信号が取り出される。なお、フォトダイオードにおけるカソードとアノードは置換して用いることもできるし、半導体チップにおける導電型には、N型とP型があるが、これらは互いに置換しても、同様の機能を奏することができる。
 なお、フォトダイオードPDは、ガイガーモードで動作するアバランシェフォトダイオード(APD)である。ガイガーモードでは、APDのブレイクダウン電圧よりも大きな逆方向電圧(逆バイアス電圧)をAPDのアノード/カソード間に印加する。すなわち、アノードには基準値よりも低い(-)電位を、カソードには基準値よりも高い(+)電位を印加する。これらの電位の極性は相対的なものであり、一方の電位をグランド電位とすることも可能である。
 図4は、1つのフォトダイオードPD及びクエンチング抵抗R1の回路図(A)と、この構成を実現するための半導体チップ内の単位構造を示す図(B)である。半導体チップ内には、フォトダイオードアレイが形成されているので、同図の単位構造が二次元的に複数形成されている。
 半導体基板を構成する半導体領域12は、Siからなる、N型(第1導電型)の半導体基板である。フォトダイオードPDのアノードはP型(第2導電型)の半導体領域13(14)であり、カソードはN型の半導体領域12である。APDとしてのフォトダイオードPDに光子が入射すると、基板内部で光電変換が行われて光電子が発生する。半導体領域13のpn接合界面の近傍領域において、アバランシェ増倍が行われ、増幅された電子群は半導体領域12の裏面に形成された電極E4に向けて流れる。この電極E4は表面側に設けられていてもよい。すなわち、フォトダイオードPDに光子が入射すると、増倍されて、信号として、クエンチング抵抗R1に電気的に接続された電極又は配線E3から取り出される。配線E3は、上述の電極パッドPADに接続される。
 なお、クエンチング抵抗R1は、2層からなる絶縁層16、17のうち、上部の絶縁層17上に形成されており、半導体領域13よりも高不純物濃度の半導体領域14(光検出チャンネル)に電気的に接続されている。半導体基板の裏面には基板電位を与える電極E4が設けられており、電極E4は例えば正電位に接続されている。
 絶縁層16及び17には、コンタクトホールが設けられており、半導体領域14とクエンチング抵抗R1とは、コンタクトホール内のコンタクト電極及び配線E1を介して、電気的に接続されている。なお、配線E1及びE3は、絶縁層16上に形成されている。
 図5は、図4に示した単位構造の平面図である。なお、以下の平面図では絶縁層16,17の記載を省略して、内部構造をより明瞭に図示することとする。
 配線E1は絶縁層16,17(図7参照)に設けられたコンタクトホールを介して、クエンチング抵抗R1に接続されている。クエンチング抵抗R1は、絶縁層17に設けられたコンタクトホールを介して、その下層に位置する配線E3に接続されている(図7参照)。配線E3は、信号読出用の配線であって、絶縁層16上に形成され、半導体領域14の周囲を囲んでおり、四角環状の形状を有している。
 ここで、クエンチング抵抗R1は、半導体領域14上に位置しており、且つ、平面視において(XY平面をZ軸方向から見た場合において)、信号読出配線E3は、半導体領域14の周囲をリング状に囲むと共に、クエンチング抵抗R1は、屈曲すること無く直線的に延びている。
 図6は、複数の単位構造を備えてなるフォトダイオードアレイの平面図であり、図7は、図6のフォトダイオードアレイのA-A矢印縦断面構成を示す図である。
 全ての信号読出用の配線E3は、電極パッドPADに電気的に接続される。電極パッドPADは、絶縁層16上に形成されている。同図では、2行2列のフォトダイオードアレイが形成されているが、これはN行×M列であってもよい(N、Mは2以上の整数)。複数のフォトダイオードを備える構造では、1つの半導体領域13内に複数の半導体領域14が形成されている。なお、図7の断面図では、実際にはクエンチング抵抗R1は見えないが、説明を明瞭にするため、クエンチング抵抗R1を鎖線で示す。
 上述のように、クエンチング抵抗R1は、半導体領域14上に絶縁層16,17を介して位置しており、且つ、平面視において、信号読出配線E3は、個々の半導体領域14の周囲をリング状に囲むと共に、個々のクエンチング抵抗R1は、屈曲すること無く直線的に延びている。
 この光検出器によれば、信号読出配線E3が、半導体領域14の周囲をリング状に囲んでいるため、半導体領域14と信号読出配線E3との間は近くなり、これらの間にはキャパシタが構成されている。光子の入射に応答して半導体領域14で発生したキャリアの高周波成分(ピーク成分)は、当該キャパシタを介して、素早く外部に取り出される。ここで、クエンチング抵抗R1は、半導体領域14上に形成されているため、信号読出配線E3を上述の配置とすることができ、配線やクエンチング抵抗によって邪魔されることで半導体領域14の開口率を小さくしなくても良いため、画素当たりに検出する光量(感度)を大きくすることができる。また、クエンチング抵抗R1が屈曲することなく直線的に延びていることで、半導体領域14を覆う部分が小さくなり、開口率が大きくなるという利点もある。
 以上、説明したように、本実施形態の光検出器は、半導体基板12と、半導体基板12上に形成された半導体領域13(第1半導体領域)と、半導体領域13内に二次元状に複数形成され、半導体領域13よりも不純物濃度が高い半導体領域14(第2半導体領域)と、個々の半導体領域14にそれぞれ電気的に接続された複数のクエンチング抵抗R1と、複数のクエンチング抵抗R1に電気的に接続された信号読出配線E3と、を備えている。
 ここで、半導体基板12と半導体領域13との間の界面、又は、半導体領域13と半導体領域14との間の界面において、pn接合を形成することができ、これらのpn接合によって、ガイガーモードで動作するAPDを構成している。
 半導体領域14は、不純物を半導体領域13内に拡散することによって形成される拡散領域であり、半導体領域13よりも高い不純物濃度を有している。本例(タイプ1)では、n型の半導体基板12(半導体領域)上に、p型の半導体領域13が形成され、半導体領域13の表面側に、高濃度にp型不純物が添加された半導体領域14が形成されている。したがって、フォトダイオードを構成するpn接合は、半導体領域12と半導体領域13との間に形成されている。
 なお、半導体基板の層構造としては、上記とは導電型を反転させた構造を採用することもできる。すなわち、(タイプ2)の構造は、p型の半導体領域12上に、n型の半導体領域13を形成し、半導体領域13の表面側に、高濃度にn型不純物が添加された半導体領域14を形成してなる。
 また、pn接合界面を、表面層側において形成することもできる。この場合、(タイプ3)の構造は、n型の半導体領域12上に、n型の半導体領域13が形成され、半導体領域13の表面側に、p型不純物を高濃度に添加した半導体領域14が形成される構造となる。なお、この構造の場合には、pn接合は、半導体領域13と半導体領域14との界面において形成される。
 もちろん、かかる構造においても、導電型を反転させることができる。すなわち、(タイプ4)の構造は、p型の半導体領域12上に、p型の半導体領域13が形成され、半導体領域13の表面側に、n型不純物を高濃度に添加した半導体領域14が形成される構造となる。
 図8は、改良した単位構造の平面図である。
 配線E1は絶縁層16,17(図10参照)に設けられたコンタクトホールを介して、クエンチング抵抗R1に接続されている。クエンチング抵抗R1は、絶縁層17に設けられたコンタクトホールを介して、その下層に位置する配線E3に接続されている(図10参照)。配線E3は、信号読出用の配線であって、絶縁層16上に形成され、半導体領域14の周囲を囲んでおり、四角環状の形状を有している。
 上述の実施形態と同様に、クエンチング抵抗R1は、半導体領域14上に位置しており、且つ、平面視において(XY平面をZ軸方向から見た場合において)、信号読出配線E3は、半導体領域14の周囲をリング状に囲むと共に、クエンチング抵抗R1は、屈曲すること無く直線的に延びているため、図5~図7の構造の場合と同様の効果を奏する。
 この単位構造の図5に示したものとの相違点は、信号読出配線E3の形状のみであり、他の構造は、同一である。
 すなわち、平面視において、半導体領域14の外縁を規定する境界線BYは、信号読出配線E3によって覆われている。なお、前述の図5に示した構造の場合、境界線BYは、信号読出配線E3によって覆われていない。
 図9は、図8に示した単位構造を複数備えてなるフォトダイオードアレイの平面図であり、図10は、図9のフォトダイオードアレイのA-A矢印縦断面構成を示す図である。
 このフォトダイオードアレイの図6及び図7に示したものとの相違点は、信号読出配線E3の形状のみであり、他の構造は、同一である。
 すなわち、平面視において、信号読出配線E3は、半導体領域14と第1半導体領域13との間の境界線BY(半導体領域14の外縁)を覆っている。
 この光検出器によれば、信号読出配線E3が、境界線BYを覆うように、半導体領域14の周囲をリング状に囲んでいるため、半導体領域14と信号読出配線E3との間は非常に近くなり、これらの間にはキャパシタが構成されている。光子の入射に応答して半導体領域14で発生したキャリアの高周波成分(ピーク成分)は、当該キャパシタを介して、素早く外部に取り出される。
 また、信号読出配線E3が、上述の境界線BYを覆うことにより、半導体における境界線近傍の電位が安定し、出力信号が安定になる。ここで、クエンチング抵抗R1は、半導体領域14上に形成されているため、信号読出配線E3を上述の配置とすることができ、配線やクエンチング抵抗によって邪魔されることで、半導体領域14の開口率を小さくしなくても良いため、画素当たりに検出する光量(感度)を大きくすることができる。
 このように、上述の構造の光検出器によれば、出力信号のピーク及び感度を、同時に高め、また、更に安定性も得ることができる。
 また、この光検出器は、平面視において、信号読出配線E3は、半導体領域14と半導体領域13との間の境界線BYを全て覆っている。この場合、信号読出配線E3と半導体領域14との間に形成されるキャパシタの容量を大きくして、信号読出配線を介した出力信号のピークを高くすることができる。
 図11は、別の改良をしたフォトダイオードアレイの平面図である。なお、図11のA-A矢印断面構造は、図7と同一である。
 このフォトダイオードアレイの構造は、図6及び図7の構造と比較して、信号読出配線E3の形状のみが異なり、その他の構造は同一である。
 この光検出器は、平面視において、信号読出配線E3は、半導体領域14と半導体領域13との間の境界線BYのうち一部のみ(図面の右下の角部のみ)を覆っている。そして、信号読出配線E3における境界線BYを覆っている部分の信号読出配線E3の幅方向の寸法(X軸に沿って延びる配線に対してはY軸方向の寸法、Y軸に沿って延びる配線に対してはX軸方向の寸法)は、この部分に隣接する部分の幅方向の寸法よりも大きい。
 この場合、信号読出配線E3は、上記境界線BYの一部のみしか覆っていないが、幅方向の寸法が大きいので、キャパシタの容量を大きくして、信号読出配線を介した出力信号のピークを高くすることができる。
 図12は、時間t(ns)とフォトダイオードアレイの出力信号の強度I(a.u.)を示すグラフである。(A)は比較例の場合のデータを示し、(B)は実施例(図9の構造)の場合のデータを示す。
 なお、横軸の1つのメモリは5(ns)を示し、グラフの初期値の時刻t0は、-5(ns)の時刻を示す。また、画素サイズ(信号読出配線E3から構成される1つの環状の四角の一辺の長さ)は、50(μm)である。
 比較例では、図6の構造において、クエンチング抵抗の位置を、リング状の信号読出配線E3の外側に配置し、個々のリング状の信号読出配線E3を別の信号読出配線で接続して信号を読み出す構造とした。
 実施例の構造の場合、上述のように、第2半導体領域と信号読出配線が近接しているので、キャパシタを介した信号読出しが容易に行われ、信号強度Iのピークの高さが、比較例よりも高くなっていることが分かる。すなわち、シンチレータから出射された蛍光が光検出器に入射した際に、初期の段階で光検出器から出力される検出信号の波形ピークが、比較例よりも高くなっている。なお、入光量が増加すればピークの高さは増加する。
 以上、説明したように、上述の検出器は、半導体基板12と、半導体基板12上に形成された第1半導体領域13と、第1半導体領域13内に二次元状に複数形成され、第1半導体領域13よりも不純物濃度が高い第2半導体領域14と、個々の第2半導体領域14にそれぞれ電気的に接続された複数のクエンチング抵抗R1と、複数のクエンチング抵抗R1に電気的に接続された信号読出配線E3と、を備え、半導体基板12と第1半導体領域13との間の界面、又は、第1半導体領域13と第2半導体領域14との間の界面において、ガイガーモードで動作するAPDを構成するpn接合が形成された光検出器であり、クエンチング抵抗R1は、第2半導体領域14上に位置しており、且つ、平面視において、信号読出配線E3は、個々の第2半導体領域14の周囲をリング状に囲み、出力信号強度ピークが高くなっている。
 最後に、各要素の材料について説明する。
 上述のクエンチング抵抗R1は、これが接続される信号読出配線E3よりも抵抗率が高い。クエンチング抵抗R1は、たとえばポリシリコン等からなる。抵抗R1の形成方法としては、CVD(Chemical Vapor Deposition)法を用いることができる。抵抗R1を構成する抵抗体としては、その他、SiCr、NiCr、TaNi、FeCrなどが挙げられる。
 上述の電極はアルミニウムなどの金属からなる。半導体基板がSiからなる場合には、電極材料としては、アルミニウムの他に、AuGe/Niなどもよく用いられる。なお、信号取出構造として、貫通電極とバンプを用いることもできる。
 Siを用いた場合におけるp型不純物としては、Bなどの3族元素が用いられ、n型不純物としては、N、P又はAsなどの5族元素が用いられる。半導体の導電型であるn型とp型は、互いに置換して素子を構成しても、当該素子を機能させることができる。これらの不純物の添加方法としては、拡散法やイオン注入法を用いることができる。
 上述の絶縁層の材料としては、SiO又はSiNxを用いることができ、絶縁層の形成方法としては、各絶縁層がSiOからなる場合には、熱酸化法又はスパッタ法を用いることができる。
 なお、上述の半導体構造における各層の導電型、不純物濃度及び厚みの好適な範囲は以下の通りである。
 (タイプ1)
半導体領域12(導電型/不純物濃度/厚み)
(n型/5×1011~1×1020cm-3/30~700μm)
半導体領域13(導電型/不純物濃度/厚み)
(p型/1×1014~1×1017cm-3/2~50μm)
半導体領域14(導電型/不純物濃度/厚み)
(p型/1×1018~1×1020cm-3/10~1000nm)
(タイプ2)
半導体領域12(導電型/不純物濃度/厚み)
(p型/5×1011~1×1020cm-3/30~700μm)
半導体領域13(導電型/不純物濃度/厚み)
(n型/1×1014~1×1017cm-3/2~50μm)
半導体領域14(導電型/不純物濃度/厚み)
(n型/1×1018~1×1020cm-3/10~1000nm)
(タイプ3)
半導体領域12(導電型/不純物濃度/厚み)
(n型/5×1011~1×1020cm-3/30~700μm)
半導体領域13(導電型/不純物濃度/厚み)
(n型/1×1014~1×1017cm-3/2~50μm)
半導体領域14(導電型/不純物濃度/厚み)
(p型/1×1018~1×1020cm-3/10~1000nm)
(タイプ4)
半導体領域12(導電型/不純物濃度/厚み)
(p型/5×1011~1×1020cm-3/30~700μm)
半導体領域13(導電型/不純物濃度/厚み)
(p型/1×1014~1×1017cm-3/2~50μm)
半導体領域14(導電型/不純物濃度/厚み)
(n型/1×1018~1×1020cm-3/10~1000nm)
 なお、上記実施形態では、信号読出配線が第2半導体領域の外縁を構成する境界線の全てを覆っていたが、多少、覆っていない箇所があっても、基本的には上記と同様の効果を奏する。この場合、第2半導体領域の周縁において、信号読出配線に覆われていない境界線の長さよりも、信号読出配線に覆われた境界線の長さの方が長くなり、信号読出配線が第2半導体領域の外縁を構成する複数辺において境界線を覆うことになる。
 以上説明したように、上述の光検出器によれば、出力信号のピーク及び光量を、同時に高め、また、更に安定性も向上させることができる。また、かかる光検出器を有する検出器は、PET装置やCT装置などの被検体診断装置に適用することができ、その出力信号から高精度な画像を形成することができる。
 SC…シンチレータ、R1…クエンチング抵抗、D1…光検出器、12…半導体基板、13…第1半導体領域、14…第2半導体領域(光検出チャンネル)。

Claims (4)

  1.  半導体基板と、
     前記半導体基板上に形成された第1半導体領域と、
     前記第1半導体領域内に二次元状に複数形成され、前記第1半導体領域よりも不純物濃度が高い第2半導体領域と、
     個々の前記第2半導体領域にそれぞれ電気的に接続された複数のクエンチング抵抗と、
     複数の前記クエンチング抵抗に電気的に接続された信号読出配線と、
     を備え、
     前記半導体基板と前記第1半導体領域との間の界面、又は、前記第1半導体領域と前記第2半導体領域との間の界面において、ガイガーモードで動作するAPDを構成するpn接合が形成された光検出器であって、
     前記クエンチング抵抗は、前記第2半導体領域上に位置しており、且つ、
     平面視において、
     前記信号読出配線は、
     個々の前記第2半導体領域の周囲をリング状に囲むと共に、
     前記第2半導体領域と前記第1半導体領域との間の境界線を覆っている、
    ことを特徴とする光検出器。
  2.  平面視において、
     前記信号読出配線は、
     前記第2半導体領域と前記第1半導体領域との間の境界線を全て覆っている、
    ことを特徴とする請求項1に記載の光検出器。
  3.  平面視において、
     前記信号読出配線は、
     前記第2半導体領域と前記第1半導体領域との間の境界線のうち一部のみを覆っており、
     前記信号読出配線における前記覆っている部分の前記信号読出配線の幅方向の寸法は、この部分に隣接する部分の幅方向の寸法よりも大きい、
    ことを特徴とする請求項1に記載の光検出器。
  4.  半導体基板と、
     前記半導体基板上に形成された第1半導体領域と、
     前記第1半導体領域内に二次元状に複数形成され、前記第1半導体領域よりも不純物濃度が高い第2半導体領域と、
     個々の前記第2半導体領域にそれぞれ電気的に接続された複数のクエンチング抵抗と、
     複数の前記クエンチング抵抗に電気的に接続された信号読出配線と、
     を備え、
     前記半導体基板と前記第1半導体領域との間の界面、又は、前記第1半導体領域と前記第2半導体領域との間の界面において、ガイガーモードで動作するAPDを構成するpn接合が形成された光検出器であって、
     平面視において、
     前記信号読出配線は、個々の前記第2半導体領域の周囲をリング状に囲むと共に、
     個々の前記クエンチング抵抗は、屈曲すること無く直線的に延びている、ことを特徴とする光検出器。
PCT/JP2014/083269 2013-12-19 2014-12-16 光検出器 WO2015093482A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14871693.9A EP3086375B1 (en) 2013-12-19 2014-12-16 Optical detector
CN201480068840.XA CN105830232B (zh) 2013-12-19 2014-12-16 光检测器
EP21159894.1A EP3848980A1 (en) 2013-12-19 2014-12-16 Optical detector
US15/104,359 US9825083B2 (en) 2013-12-19 2014-12-16 Optical detector with photodiode array having avalanche photodiodes connected to quenching resistors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013262598A JP6162595B2 (ja) 2013-12-19 2013-12-19 光検出器
JP2013-262598 2013-12-19

Publications (1)

Publication Number Publication Date
WO2015093482A1 true WO2015093482A1 (ja) 2015-06-25

Family

ID=53402827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083269 WO2015093482A1 (ja) 2013-12-19 2014-12-16 光検出器

Country Status (6)

Country Link
US (1) US9825083B2 (ja)
EP (2) EP3848980A1 (ja)
JP (1) JP6162595B2 (ja)
CN (1) CN105830232B (ja)
TW (1) TWI586990B (ja)
WO (1) WO2015093482A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10852401B2 (en) 2015-09-02 2020-12-01 Sony Corporation Distance measurement apparatus and distance measurement method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104054326B (zh) * 2012-03-29 2017-10-13 株式会社岛津制作所 半导体光电倍增元件
CN108287336B (zh) * 2018-01-26 2020-05-19 华中科技大学 一种面阵盖革apd激光雷达距离像强度像生成系统
JP7169071B2 (ja) 2018-02-06 2022-11-10 ソニーセミコンダクタソリューションズ株式会社 画素構造、撮像素子、撮像装置、および電子機器
JP7441086B2 (ja) * 2020-03-23 2024-02-29 株式会社東芝 光検出器、光検出システム、ライダー装置、及び車
CN111682086A (zh) * 2020-07-23 2020-09-18 云南大学 一种自由运行模式下的负反馈雪崩光电二极管
JP7431699B2 (ja) * 2020-08-20 2024-02-15 株式会社東芝 光検出器、光検出システム、ライダー装置、及び車
JP2022074328A (ja) * 2020-11-04 2022-05-18 浜松ホトニクス株式会社 光検出器、放射線検出器及びpet装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311651A (ja) 2007-06-15 2008-12-25 General Electric Co <Ge> 半導体光電子増倍器の構造
WO2012057082A1 (ja) * 2010-10-29 2012-05-03 浜松ホトニクス株式会社 フォトダイオードアレイ
US20130056843A1 (en) * 2011-09-02 2013-03-07 Electronics And Telecomunications Research Institute Photomultiplier and manufacturing method thereof
JP2013088319A (ja) * 2011-10-19 2013-05-13 Hamamatsu Photonics Kk 放射線検出装置
JP2013195295A (ja) * 2012-03-21 2013-09-30 Toshiba Corp 放射線検出装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2416840C2 (ru) * 2006-02-01 2011-04-20 Конинклейке Филипс Электроникс, Н.В. Лавинный фотодиод в режиме счетчика гейгера
JP5183471B2 (ja) 2006-07-03 2013-04-17 浜松ホトニクス株式会社 フォトダイオードアレイ
GB201004922D0 (en) * 2010-03-24 2010-05-12 Sensl Technologies Ltd Silicon photomultiplier and readout method
GB201014843D0 (en) * 2010-09-08 2010-10-20 Univ Edinburgh Single photon avalanche diode for CMOS circuits
JP5808592B2 (ja) * 2011-07-04 2015-11-10 浜松ホトニクス株式会社 基準電圧決定方法及び推奨動作電圧決定方法
JP5832852B2 (ja) * 2011-10-21 2015-12-16 浜松ホトニクス株式会社 光検出装置
JP2015081863A (ja) * 2013-10-23 2015-04-27 株式会社東芝 光検出器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311651A (ja) 2007-06-15 2008-12-25 General Electric Co <Ge> 半導体光電子増倍器の構造
WO2012057082A1 (ja) * 2010-10-29 2012-05-03 浜松ホトニクス株式会社 フォトダイオードアレイ
US20130056843A1 (en) * 2011-09-02 2013-03-07 Electronics And Telecomunications Research Institute Photomultiplier and manufacturing method thereof
JP2013088319A (ja) * 2011-10-19 2013-05-13 Hamamatsu Photonics Kk 放射線検出装置
JP2013195295A (ja) * 2012-03-21 2013-09-30 Toshiba Corp 放射線検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10852401B2 (en) 2015-09-02 2020-12-01 Sony Corporation Distance measurement apparatus and distance measurement method

Also Published As

Publication number Publication date
CN105830232B (zh) 2018-04-17
EP3086375A1 (en) 2016-10-26
JP2015119093A (ja) 2015-06-25
EP3086375B1 (en) 2021-03-31
TWI586990B (zh) 2017-06-11
US20160322417A1 (en) 2016-11-03
EP3848980A1 (en) 2021-07-14
TW201534954A (zh) 2015-09-16
JP6162595B2 (ja) 2017-07-12
EP3086375A4 (en) 2017-11-15
CN105830232A (zh) 2016-08-03
US9825083B2 (en) 2017-11-21

Similar Documents

Publication Publication Date Title
US11101315B2 (en) Detector, PET system and X-ray CT system
JP6162595B2 (ja) 光検出器
JP6193171B2 (ja) 光検出器
US9109953B2 (en) Photodetector and computed tomography apparatus
US9568620B2 (en) Solid state photomultiplier
US8860166B2 (en) Photo detector array of geiger mode avalanche photodiodes for computed tomography systems
JP6190915B2 (ja) 検出器、pet装置及びx線ct装置
JP2015084392A (ja) 光検出器
JP2008246206A (ja) 半導体式の光電子増倍器及びシンチレータを用いたフォトン計数ct検出器
US9869781B2 (en) Active pulse shaping of solid state photomultiplier signals
JP6487619B2 (ja) 検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871693

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15104359

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014871693

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014871693

Country of ref document: EP