JP7169071B2 - 画素構造、撮像素子、撮像装置、および電子機器 - Google Patents

画素構造、撮像素子、撮像装置、および電子機器 Download PDF

Info

Publication number
JP7169071B2
JP7169071B2 JP2018018836A JP2018018836A JP7169071B2 JP 7169071 B2 JP7169071 B2 JP 7169071B2 JP 2018018836 A JP2018018836 A JP 2018018836A JP 2018018836 A JP2018018836 A JP 2018018836A JP 7169071 B2 JP7169071 B2 JP 7169071B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
pixel structure
conductivity type
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018018836A
Other languages
English (en)
Other versions
JP2019140132A (ja
Inventor
隆博 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018018836A priority Critical patent/JP7169071B2/ja
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Priority to EP19704466.2A priority patent/EP3555919B1/en
Priority to US16/464,760 priority patent/US10943941B2/en
Priority to KR1020247012342A priority patent/KR102708231B1/ko
Priority to DE202019005770.6U priority patent/DE202019005770U1/de
Priority to KR1020197015041A priority patent/KR102658578B1/ko
Priority to PCT/JP2019/001939 priority patent/WO2019155875A1/en
Priority to CN201980000739.3A priority patent/CN110352492B/zh
Publication of JP2019140132A publication Critical patent/JP2019140132A/ja
Priority to US17/164,399 priority patent/US11961869B2/en
Priority to JP2022172884A priority patent/JP7392078B2/ja
Application granted granted Critical
Publication of JP7169071B2 publication Critical patent/JP7169071B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • H01L27/14647Multicolour imagers having a stacked pixel-element structure, e.g. npn, npnpn or MQW elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02027Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for devices working in avalanche mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)

Description

本開示は、画素構造、撮像素子、撮像装置、および電子機器に関し、特に、アバランシェダイオードを用いる場合に生じるアフターパルスによる影響を低減できるようにした画素構造、撮像素子、撮像装置、および電子機器に関する。
アバランシェフォトダイオード(以下、SPAD:Single Photon Avalanche Diodeと称する)を用いた、撮像装置が開示されている(特許文献1参照)。
SPADは、入射光が入射されることにより、発生する電子を、アバランシェ増幅させて画素信号として出力させるフォトダイオードである。
より詳細には、SPADは、例えば、N型の半導体層であるN+層と、このN+層よりも深い位置(光の入射方向に対して前段の位置)にP+型の半導体層であるP+層とが設けられており、この2つの層の界面のPN接合でアバランシェ増幅領域が形成されている。
さらに、このP+層より深い位置には光を吸収し、光電変換により電子を発生する光吸収層が形成され、ここで光電変換されて発生された電子がアバランシェ増幅領域まで伝搬し、アバランシェ増幅される。
この光吸収層はアノード電極(P++層)と接続されており、一方で、PN接合を形成するN+層は、N+層よりも不純物濃度の高いN++層が形成されて、カソード電極に接続されている。
国際公開公報WO2017/094362号
ところで、SPADにおいては、アバランシェ増幅に伴って、アフターパルスを発生させることが知られている。
このアフターパルスは、ガイガーモードで駆動するアバランシェフォトダイオード(APD)を使った光子検出器に特有のノイズで、測定したい光パルスを検出した後に、測定する光子が入射していないにもかかわらずパルス信号を検出する現象である。
アフターパルスは、検出した光と時間的な相関を持ち、一般的に光子検出直後に発生する確率が高く、時間の経過とともに発生確率は減少してゆく。
しかしながら、アフターパルスは、測定したい光パルスとの区別が困難なことから、光検出の誤動作の原因となる。また、アフターパルスが発生している期間は光検出ができないため、高繰り返しで光検出を行うためには、このアフターパルスの発生期間を早期に終了させる必要がある。
本開示は、このような状況に鑑みてなされたものであり、特に、SPADを用いる際に発生するアフターパルスによる影響を低減できるようにするものである。
本開示の一側面の画素構造は、SPAD(Single Photon Avalanche Diode:単一光子アバランシェフォトダイオード)の画素構造において、第1の導電型の第1の半導体層と、前記第1の導電型とは反対の第2の導電型の第2の半導体層とが接合された接合部と、前記接合部よりも、入射光の入射方向に対して前段の領域に、前記入射光が入射するエピタキシャル半導体層からなる基板と、前記基板よりも不純物濃度が高い、前記第1の導電型の第3の半導体層と、前記第3の半導体層の、前記入射方向に対して直交する断面の中央部からみた外周に沿って、前記第3の半導体層の不純物濃度よりも高濃度に形成される第4の半導体層とを備える画素構造である。
前記第3の半導体層と前記第4の半導体層とを併せた半導体層は、前記入射光の入射方向に対して直交する方向の幅が、前記接合部における幅よりも大きくすることができる。
前記入射光を吸収して光電変換により電子正孔対に分離する光吸収層をさらに含ませるようにすることができ、前記第3の半導体層の前記入射方向の厚さは、前記光吸収層よりも薄くすることができる。
前記第4の半導体層は、前記入射方向に対して、前記第3の半導体層よりも後段に形成されるようにすることができる。
隣接する画素と電気的、および、光学的に分離する分離領域と、前記入射光を吸収して光電変換により電子正孔対に分離する光吸収層と、前記分離領域の側面、および前記光吸収層の前記入射方向の前段に、前記第2の導電型の、前記第2の半導体層の不純物濃度よりも高濃度の第5の半導体層とをさらに含ませるようにすることができ、前記第3の半導体層の一部は、前記第5の半導体層と接続されるようにすることができる。
前記第3の半導体層の一部は、前記入射方向からみて方形状に構成される画素の角部を除く範囲で、前記第5の半導体層と接続されるようにすることができる。
前記第5の半導体層は、前記SPADのアノードと接続されるようにすることができる。
前記第3の半導体層は、前記入射方向に対して直交する断面の中央部からみた外周方向に複数に領域分割され、外周方向の領域ほど、前記入射方向に対して後段に形成されるようにすることができる。
前記入射光を吸収して光電変換により電子正孔対に分離する光吸収層をさらに含ませるようにすることができ、前記接合部において、前記光吸収層により生成された電子または正孔がアバランシェ増幅されることによりアフターパルスが発生するとき、前記第3の半導体層は、前記光吸収層により生成された電子または正孔を、排出経路に誘導することができる。
前記第3の半導体層は、ポテンシャルバリアにより、前記光吸収層により生成された電子または正孔を、前記排出経路に誘導することができる。
前記排出経路は、前記第1の半導体層とすることができる。
前記電子または正孔を排出するドレインをさらに含ませるようにすることができ、前記第3の半導体層には、前記電子または正孔を前記排出経路としての前記ドレインに誘導させるようにすることができる。
前記ドレインは、前記入射方向に対して直交する断面の中央部からみて、前記第3の半導体層の外周部より外側にリング状で、かつ、前記入射方向に対して前記第1の半導体層と同一の位置に形成されるようにすることができる。
前記第1の半導体層および前記ドレインはカソードと電気的に接続されるようにすることができる。
前記第1の半導体層および前記ドレインの間に相互を電気的に分離する分離層をさらに含ませるようにすることができ、前記第1の半導体層はカソードと電気的に接続され、前記ドレインはグランド(GND)電位に電気的に接続されるようにすることができる。
前記第1の導電型および前記第2の導電型は、P型およびN型であり、前記接合部は、PN接合により形成されるようにすることができる。
本開示の一側面の撮像素子は、SPAD(Single Photon Avalanche Diode:単一光子アバランシェフォトダイオード)の画素構造において、第1の導電型の第1の半導体層と、前記第1の導電型とは反対の第2の導電型の第2の半導体層とが接合された接合部と、前記接合部よりも、入射光の入射方向に対して前段の領域に、前記入射光が入射するエピタキシャル半導体層からなる基板と、前記基板よりも不純物濃度が高い、前記第1の導電型の第3の半導体層と、前記第3の半導体層の、前記入射方向に対して直交する断面の中央部からみた外周に沿って、前記第3の半導体層の不純物濃度よりも高濃度に形成される第4の半導体層とを有する画素構造の画素を備える撮像素子である。
本開示の一側面の撮像装置は、SPAD(Single Photon Avalanche Diode:単一光子アバランシェフォトダイオード)の画素構造において、第1の導電型の第1の半導体層と、前記第1の導電型とは反対の第2の導電型の第2の半導体層とが接合された接合部と、前記接合部よりも、入射光の入射方向に対して前段の領域に、前記入射光が入射するエピタキシャル半導体層からなる基板と、前記基板よりも不純物濃度が高い、前記第1の導電型の第3の半導体層と、前記第3の半導体層の、前記入射方向に対して直交する断面の中央部からみた外周に沿って、前記第3の半導体層の不純物濃度よりも高濃度に形成される第4の半導体層とを有する画素構造の画素を備える撮像素子を含む撮像装置である。
本開示の一側面の電子機器は、SPAD(Single Photon Avalanche Diode:単一光子アバランシェフォトダイオード)の画素構造において、第1の導電型の第1の半導体層と、前記第1の導電型とは反対の第2の導電型の第2の半導体層とが接合された接合部と、前記接合部よりも、入射光の入射方向に対して前段の領域に、前記入射光が入射するエピタキシャル半導体層からなる基板と、前記基板よりも不純物濃度が高い、前記第1の導電型の第3の半導体層と、前記第3の半導体層の、前記入射方向に対して直交する断面の中央部からみた外周に沿って、前記第3の半導体層の不純物濃度よりも高濃度に形成される第4の半導体層とを備えた画素構造の画素を備える撮像素子を含む電子機器である。
本開示の一側面においては、SPAD(Single Photon Avalanche Diode:単一光子アバランシェフォトダイオード)の画素構造において、第1の導電型の第1の半導体層と、前記第1の導電型とは反対の第2の導電型の第2の半導体層とが接合された接合部よりも、入射光の入射方向に対して前段の領域に、前記入射光が入射するエピタキシャル半導体層からなる基板と、前記基板よりも不純物濃度が高い、前記第1の導電型の第3の半導体層と、前記第3の半導体層の、前記入射方向に対して直交する断面の中央部からみた外周に沿って、前記第3の半導体層の不純物濃度よりも高濃度に形成される第4の半導体層とが設けられる。
本開示の一側面によれば、特に、SPADを用いる際に発生するアフターパルスによる影響を低減することが可能となる。
アフターパルスの発生の原理を説明する図である。 アフターパルスの発生の原理を説明する図である。 本開示の第1の実施の形態の画素構造の構成例を説明する図である。 図3の画素がアレイ状に配置された撮像素子の構成例を説明する図である。 図4の撮像素子の画素回路の構成例を説明する図である。 入射光となるフォトンが検出されるときのカソード電極の電圧の変化を説明する図である。 ポテンシャルバリアを説明する図である。 入射光を検出するときの電子の伝搬経路を説明する図である。 クエンチ時において発生する不要な電子の電荷排出経路への誘導を説明する図である。 P-層の長さを、アバランシェ増幅領域と同じサイズにした場合の電子の伝搬経路を説明する図である。 P-層の外周部に沿ってP層を形成する本開示の第2の実施の形態の画素構造の構成例を説明する図である。 図11の画素構造における電子の伝搬経路を説明する図である。 P-層を外周部までの距離に応じて2分割し、外周部ほど深い位置に形成する本開示の第3の実施の形態の画素構造の構成例を説明する図である。 図13の画素構造における電子の伝搬経路を説明する図である。 P-層を外周部までの距離に応じて3分割し、外周部ほど深い位置に形成する本開示の第4の実施の形態の画素構造の構成例を説明する図である。 P-層の外周部に沿って、かつ、P-層よりも深い位置にP層を形成する本開示の第5の実施の形態の画素構造の構成例を説明する図である。 図16の画素構造における電子の伝搬経路を説明する図である。 図3の画素構造の構成におけるPN型を入れ替えた本開示の第6の実施の形態の画素構造の構成例を説明する図である。 電荷を排出するドレインを設けるようにした本開示の第7の実施の形態の画素構造の構成例を説明する図である。 ドレインとアバランシェ増幅領域との間にSTIを設けるようにした本開示の第8の実施の形態の画素構造の構成例を説明する図である。 第2の実施の形態におけるP層の一部をN++層まで伸ばすようにした本開示の第9の実施の形態の画素構造の構成例を説明する図である。 本開示の画素構造の画素からなる撮像素子を適用した電子機器としての撮像装置の構成例を示すブロック図である 撮像装置の構成を示す図である。 TOFについて説明するための図である。 画素領域、周辺領域、パッド領域について説明するための図である。 APDの断面図である。 内視鏡手術システムの概略的な構成の一例を示す図である。 カメラヘッド及びCCUの機能構成の一例を示すブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。尚、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
1.アフターパルスについて
2.第1の実施の形態
3.第2の実施の形態
4.第3の実施の形態
5.第4の実施の形態
6.第5の実施の形態
7.第6の実施の形態
8.第7の実施の形態
9.第8の実施の形態
10.第9の実施の形態
11.電子機器への適用例
12.撮像装置への適用
13.周辺領域を含めた構成について
14.内視鏡手術システムへの応用例
15.移動体への応用例
<<1.アフターパルスについて>>
本開示は、SPAD(Single Photon Avalanche Diode:単一光子アバランシェフォトダイオード)を用いた撮像装置に関する技術であり、SPADを用いることで生じるアフターパルスによる影響を低減できるようにした撮像装置に関する技術である。
そこで、まず、アフターパルスについて説明する。
図1は、SPADを用いた画素1の基本的な構造図であり、図1の上部が、側面断面図であり、下部が、図1の上部における図中の上面方向からみた上面図である。また、図1の上部においては、図中の下部から画素1に入射光が入射する。
画素1は、SPAD10とクエンチ回路18から構成される。
SPAD10は、N+層11、P+層12、エピタキシャル半導体層(P--層)13、アバランシェ増幅領域14、光吸収層15、N++層16、およびP++層17より構成されている。
また、入射光が入射する画素1におけるSPAD10の入射面には、オンチップレンズ20が設けられており、オンチップレンズ20により、入射光の透過方向に存在するSPAD10のエピタキシャル半導体層13に入射光が集光されて入射される。
エピタキシャル半導体層13は、第1の導電型(P型)の構成であり、図中上部のアバランシェ増幅領域14と、図中下部の光吸収層15とを備える。
光吸収層15は、入射光の光量に応じた光電変換により電子21を発生し、発生した電子21が、アバランシェ増幅領域14に伝搬する。
アバランシェ増幅領域14は、図中上部にエピタキシャル半導体層13とは導電型が反対の第2の導電型(N型)の半導体層であるN+層11を備え、N+層11の図中の下部に第1の導電型(P+)半導体層であるP+層12を備えることにより、この2つの層の界面のPN接合部により、P+層12からN+層11への電子21の透過によりアバランシェ増幅がなされる。
光吸収層15は、アノード電極17aが接続されたP++層17と接続され、PN接合を形成するN+層11には、N+層11よりも不純物濃度が高いN++層16が形成され、カソード電極16aに接続されている。
また、アノード電極(P++層)17の図中の左右の端部、すなわち、画素1の外周部には、隣接する画素1との分離領域19が形成されている。
カソード電極16aは、クエンチ回路18を介してグランド(GND)電位に接続され、アノード電極17aには負のバイアス電圧が印加される。
さらに、図1の下部で示されるように、図中上面からみて画素1の外周部に分離領域19が形成され、分離領域19の内側にP++層17が形成される。さらに、P++層17の内側にアバランシェ増幅領域14が形成される。
尚、図1の下部においては、アバランシェ増幅領域14の上面から見えるN+層11のみが描かれているが、図示せぬN+層11の下部にP+層12が設けられている。そして、N+層11の上部中央付近にカソード電極16aが接続されている。
また、図1においては、カソード電極16aは、N+層11の上部中央付近に設けられた構成とされているが、N+層11内であれば、上部のいずれかに設けられていればよい。
検出する光は、図1上部の下方から入射し、オンチップレンズ20で集光された後、光吸収層15で光電変換され電子・正孔対が生成される。
アノード電極17aおよびカソード電極16a間に降伏電圧Vbdより高い電圧が印加されることにより、アバランシェ増幅領域14に強い電界が発生され、光入射によって光吸収層15で発生した電子21(または正孔)はアバランシェ増幅領域14まで伝搬されてガイガーモードで増幅される。
また、アバランシェ増幅は、クエンチ回路18を介してアノード電極17aおよびカソード電極16a間の電圧を降伏電圧Vbdより低く下げることで停止させることができる。
パッシブなクエンチ動作を行う場合、例えば、クエンチ回路18として抵抗が配置される。増倍電流(電子がアバランシェ増幅されることにより発生する電流)がこの抵抗からなるクエンチ回路18を流れることで電圧降下が発生し、カソード電位が降伏電圧Vbd以下に下げられて増倍が停止される(クエンチ動作)。
そして、次の新しい光子を検出できるように、検出器の電圧を降伏電圧より高い電圧にリセットする。
アフターパルスは、ガイガーモードで駆動するアバランシェフォトダイオード(APD)を使った光子検出器に特有のノイズであり、所定の光子(入射光)が入射して、光パルス信号(光子に基づいて光電変換により発生した電子により発生する信号)を検出した後に、次の光子が入射していないにもかかわらず再びパルス信号が検出される現象である。
アフターパルスの原因は、以下のように2種類が考えられる。
まず、第一の原因として、アバランシェ増幅現象によって、大量に発生したキャリアが、クエンチ動作後も、APD素子を構成する結晶の内部に残留し続け、次の光子を検出するためにアノード電極17a、およびカソード電極16a間に降伏電圧より高い電圧パルスを印加したときに、その残留キャリアを種として再び増幅パルスが生成されることが考えられる。
また、第二の原因として、アバランシェ増幅現象によって、例えば、図2で示されるようにアバランシェ増幅領域14内が発光し、その光が光吸収層15で再び電子正孔対に変換され、光吸収層15からアバランシェ増幅領域14まで電子21(または正孔)が伝搬して再び増幅されることが考えられる。
このような原因により、アフターパルスは初めに検出した光信号と時間的な相関を持つことが知られている。一般的に光子検出直後に発生する確率が高く、時間の経過とともに発生確率は減少する。
しかしながら、測定したい光パルスと、アフターパルスとの区別は困難なことから、アフターパルスの光検出が、誤動作の原因となっていた。また、アフターパルスが発生している期間は次の光検出ができないため、高速で繰り返して光検出を行うためには、このアフターパルスの発生頻度を小さくすることが望まれる。
本開示は、前述のアバランシェ増幅によりアバランシェ増幅領域14内が発光し、その光が光吸収層15で再び電子正孔対に変換され、アバランシェ増幅領域14まで電子21(または正孔)が伝搬して再増幅するアフターパルスにおいて、その発生頻度を低減し、高速で、かつ、高頻度の繰り返しでの光子検出を可能にする。
<<2.第1の実施の形態>>
次に、図3,図4を参照して、本開示のSPAD(Single Photon Avalanche Diode)を用いた撮像素子(光検出装置)の画素構造の第1の実施の形態の構成例について説明する。
尚、図3は、本開示の撮像素子を構成するSPADを用いた画素101の構造図である。図3の上部は、側面断面図であり、図3の下部は、図3の上部の画素101を図中の上面方向からみた上面図である。また、図3の上部においては、図中の下部から入射光が入射する。さらに、図4の下部は、図3の下部の上面で示される画素101からなる画素101-1乃至101-4を、2画素×2画素のアレイ状に配置したときの配置例を示している。また、図4の上部は、図4の下部における画素101が水平方向に隣接して配置された場合のAA’側面断面図である。
すなわち、本開示の撮像素子は、図4の下部で示されるように画素101がn画素×m画素のアレイ状に配置された構成となる。
尚、画素101-1乃至101-4のそれぞれについて特に区別する必要がない場合、単に、画素101と称し、その他の構成についても、同様に称する。
画素101は、図3の上部で示されるように、SPAD110とクエンチ回路118より構成される。
SPAD110は、N+層111、P+層112、エピタキシャル半導体層113、アバランシェ増幅領域114、光吸収層115、N++層116、カソード電極116a、P++層117、アノード電極117a、分離領域119、およびP-層131より構成される。
尚、図3におけるN+層111、P+層112、エピタキシャル半導体層113、アバランシェ増幅領域114、光吸収層115、N++層116、カソード電極116a、P++層117、アノード電極117a、クエンチ回路118、分離領域119、オンチップレンズ120、および電子121は、それぞれ、図1のN+層11、P+層12、エピタキシャル半導体層13、アバランシェ増幅領域14、光吸収層15、N++層16、カソード電極16a、P++層17、アノード電極17a、クエンチ回路18、分離領域19、オンチップレンズ20、および電子21に対応する構成である。
すなわち、画素101における、第1の導電型(P型)のエピタキシャル半導体層(P--基板)113に、エピタキシャル半導体層113とは導電型が反対の第2の導電型(N型)の半導体層であるN+層111と、N+層111の図中の下に第1の導電型(P型)の半導体層であるP+層112が設けられており、N+層111とP+層112との界面のPN接合領域においてアバランシェ増幅領域114が形成される。
さらに、P+層112よりも深い位置(図3の上部および図4の上部のP+層112の下の位置)にP-層131が形成される。P-層131はP+層112と深さ方向に同じ程度の幅を持ち、図3の下図示されるようにP-層131の長さWbは、N+層111の長さWaよりも大きいか、または同等である。
P-層131は、クエンチ時に光吸収層115の電子121の、アバランシェ増幅領域114への侵入を防ぎ、電子121をP-層131よりも外側の電荷排出経路へ誘導する。換言すれば、P-層131は、クエンチ時に、電子121を、アバランシェ増幅領域114におけるN+層111とP+層112との境界(PN接合領域)を通過しないように、直接N+層111に伝搬するように誘導する。また、分離領域119は、SiO2、または、SiO2に金属膜を埋め込んだ構造のものであり、隣接する画素と電気的、または、光学的に分離する。
また、クエンチ時に光吸収層115の電子121の、アバランシェ増幅領域114への侵入を防ぎ、電子121をP-層131よりも外側(図中の左右外側)の電荷排出経路へ電子121を誘導させる効果を高めるために、図3の下部で示されるように、P-層131の長さWbは、N+層111の長さWaよりも大きく構成することで、電子121を直接N+層111に誘導し易い構成とすることができ、例えば、10%程度大きいことが望ましい。ただし、P-層131の長さWbが、N+層111の長さWaよりも小さく構成されても、不要な電子121へのアバランシェ増幅領域114の侵入を低下させる効果は発生する。
尚、P-層131は、P+層112に対して近接して構成されることは必須ではないが、P-層131を浅い位置に設けるようにすると(図3の上部において、上方に移動させると)、光吸収層115の入射光の入射方向に対する厚さを厚くすることになり、光検出効率を向上させることができる。このため、P-層131は、P+層112に対して近接して構成されることが望ましい。また、P-層131の入射光の入射方向の厚さは、光吸収層115の厚さよりも薄い。
アバランシェ増幅領域114における、PN接合領域を形成する不純物濃度の高いN+層111とP+層112の他に、P-層131が形成されることにより、アバランシェ増幅領域114より深い位置に局所的に不純物濃度が高い領域が形成される。ここで、N+層111、P+層112、および、P-層131の不純物濃度の大小関係は、不純物濃度(N+層111)>不純物濃度(P+層112)>不純物濃度(P-層131)となる。
このP-層131により、局所的に不純物濃度の高い領域が形成されることで、ポテンシャルバリアを形成することができる。尚、ポテンシャルバリアが形成される原理については、図6乃至図9を参照して詳細を後述する。また、P-層131によりポテンシャルバリアが形成されるので、以降において、P-層131は、バリア形成層131とも称する。
さらに、このP-層131よりも深い位置(入射光の入射方向に対して前段の位置)に光を吸収する光吸収層115が形成され、光吸収層115で光電変換により発生する電子121がP-層131を通ってアバランシェ増幅領域114まで伝搬されて、アバランシェ増幅される。
光吸収層115に隣接して裏面側(図3上部における下側)と分離領域119の側壁(分離領域119の内側)にP++層117が形成されておりアノード電極117aと電気的に接続されている。
アノード電極117aには負のバイアス電圧が印加されており、アノード電極117aに接続されたP++層117にも負バイアスが印加される。
PN接合を形成するN+層111には、N+層111よりも不純物濃度の高いN++層116がN+層111の中央部に配置され、カソード電極116aと接続されている。
図3の上部の構成では、カソード電極116aは、クエンチ回路118を介してグランド(GND)電位に接続される。これによりアノード電極117aとカソード電極116aとの間に電圧が印加されることで、アバランシェ増幅領域114に強い電界が発生されてアバランシェ増幅が引き起こされる。検出する光は図の下方から入射し、オンチップレンズ120を透過した後、集光されて光吸収層115に入射し、光吸収層115で光電変換されて、電子正孔対が生成され、光吸収層115の電界によりアバランシェ増幅領域114側へと誘導される。
<画素回路の構成例>
次に、図5を参照して、SPAD100を用いた画素101からなる撮像素子を形成する画素回路の構成例について説明する。
図5においては、垂直方向の3行で、かつ、水平方向に右側から第1列乃至第4列のそれぞれについて、画素101が、3行×4列にアレイ状に配置される場合の画素回路の回路構成が示されている。
画素101からなる光検出装置は、画素101がアレイ状に配置されている。
すなわち、図中の最上段の行である1行目は第1列乃至第4列において、画素101-11-1乃至101-11-4の4画素が配置され、上から2段目の2行目は第1列乃至第4列において、画素101-12-1乃至101-12-4の4画素が配置され、上から3段目の3行目は第1列乃至第4列において、画素101-13-1乃至101-13-4の4画素が配置されている。
画素101-11-1乃至101-11-4,101-12-1乃至101-12-4,101-13-1乃至101-13-4には、それぞれAND回路153-11-1乃至153-11-4,153-12-1乃至153-12-4,153-13-1乃至153-13-4が設けられている。
AND回路153-11-1,153-12-1,153-13-1が、第1列に並列で接続され、AND回路153-11-2,153-12-2,153-13-2が、第2列に並列で接続され、AND回路153-11-3,153-12-3,153-13-3が、第3列に並列で接続され、AND回路153-11-4,153-12-4,153-13-4が、第4列に並列で接続されている。
そして、AND回路153-11-1,153-12-1,153-13-1は、第1列の画素101-11-1,101-12-1,101-13-1の画素信号を出力する場合、デコーダ(decoder)150より第1列にHigh信号が供給され、その他の列にLow信号が供給されて、画素101-11-1,101-12-1,101-13-1の画素信号がそれぞれOR回路152-11乃至152-13に出力される。
また、AND回路153-11-2,153-12-2,153-13-2は、第2列の画素101-11-2,101-12-2,101-13-2の画素信号を出力する場合、デコーダ(decoder)150より第2列にHigh信号が供給され、その他の列にLow信号が供給されて、画素101-11-2,101-12-2,101-13-2の画素信号がOR回路152-11乃至152-13に出力される。
さらに、AND回路153-11-3,153-12-3,153-13-3は、第3列の画素101-11-3,101-12-3,101-13-3の画素信号を出力する場合、デコーダ(decoder)150より第3列にHigh信号が供給され、その他の列にLow信号が供給されて、画素101-11-3,101-12-3,101-13-3の画素信号がOR回路152-11乃至152-13に出力される。
また、AND回路153-11-4,153-12-4,153-13-4は、第4列の画素101-11-4,101-12-4,101-13-4の画素信号を出力する場合、デコーダ(decoder)150より第4列にHigh信号が供給され、その他の列にLow信号が供給されて、画素101-11-4,101-12-4,101-13-4の画素信号がOR回路152-11乃至152-13に出力される。
OR回路152-11は、それぞれAND回路153-11-1,153-11-2,153-11-3,153-11-4のいずれかから画素信号が出力されるとき、TDC151-11に出力する。
OR回路152-12は、それぞれAND回路153-12-1,153-12-2,153-11-3,153-12-4のいずれかから画素信号が出力されるとき、TDC151-11に出力する。
OR回路152-13は、それぞれAND回路153-13-1,153-13-2,153-13-3,153-13-4のいずれかから画素信号が出力されるとき、TDC151-11に出力する。
TDC151-11乃至151-13は、それぞれOR回路152-11乃至152-13より供給される画素信号に基づいて、検出される光が被写体間を往復するときのアナログの往復時間情報をデジタルの往復時間情報に変換して各画素101の画素信号として出力する。
各画素101は、SPAD100、およびクエンチ回路118から構成されており、SPAD100からの画素信号を、NOT回路161に出力する。NOT回路161は、画素信号を反転して出力する。尚、図5において、クエンチ回路118は、抵抗により構成されているが、抵抗以外の回路から構成されるようにしてもよい。
すなわち、図3乃至図5を参照して説明したように、本開示の撮像素子は、画素単位で、図示せぬ光源から光が発せられてから、各画素101により光が検出されるまでの光の被写体までの往復時間を検出することができる。したがって、本開示の撮像素子による検出結果を用いることで、例えば、画素単位の被写体までの距離に応じた値を画素値とすることで、距離画像(デプス画像)を生成することができる。つまり、本開示の撮像素子により、例えば、デプスセンサとして機能させることができる。
<光検出動作>
次に、図6を参照して、SPAD100を用いた各画素101に光(フォトン)が入射したときの一連の光検出動作について説明する。
図6は、画素101のSPAD100に対してフォトンが入射するときの、カソード電極116aに印加される電圧波形を示しており、横軸が時間であり、縦軸がカソード電極116aに印加される電圧であるカソード電圧Vcの変化を示している。
尚、図6においては、クエンチ回路118は、パッシブ型のクエンチ動作を行うために抵抗を用いた場合について説明する。
また、図6において、電圧Vbdは、降伏電圧を示し、カソード電極116aに印加される電圧Vcが、降伏電圧である電圧Vbdより小さいとアバランシェ増幅が停止する。電圧Vopは、フォトンの入射を待ち受けている状態の電圧であり、十分な効率でフォトンを検出するために降伏電圧Vbdよりも高い電圧に設定される。
まず、フォトンが入射する前の時刻t0において、カソード電極116aに電圧Vcが、電圧Vopとされて光が検出できる状態にされる。
次に、時刻t1において、フォトンが入射すると、光吸収層115でフォトンが光電変換されることにより、電子121が生成され、生成された電子121がアバランシェ増幅領域114に到達するとアバランシェ増幅が発生する。
そして、アバランシェ増幅によりカソード電極116aからクエンチ回路118の抵抗に電流が流れて電圧降下が発生する。
これに伴って、時刻t2において、カソード電極116aの電圧(電位)Vcが降伏電圧Vbdよりも低くなり、増幅が停止する。ここで、アバランシェ増幅により発生する電流がクエンチ回路118に流れることで電圧降下を発生させ、発生した電圧降下に伴って、カソード電極116aの電圧Vcが降伏電圧Vbdよりも低い状態となることで、アバランチェ増幅を停止させる動作がクエンチ動作である。
増幅が停止するとクエンチ回路118の抵抗に流れる電流が徐々に減少して、時刻t4において、再びカソード電極116aの電圧Vcが元の電圧Vopまで戻り、次の新たなフォトンを検出できる状態となる(リチャージ動作)。
尚、ここでは、アバランシェ増幅により、アバランシェ増幅領域114内において生じる発光により発生した電子が、アバランシェ増幅領域114に到達するタイミングを時刻t3とし、その時のカソード電極116aの電圧Vcを電圧Vaとしている。
<アノード電極とカソード電極間のバイアス電位とポテンシャル分布>
次に、図7を参照して、アノード電極117aとカソード電極116a間にバイアス電位を印加した場合の深さ方向のポテンシャル分布について説明する。
図7において、点線P(t0)はクエンチ動作がなされる前の時刻t0におけるポテンシャル分布を示しており、実線P(t2)はクエンチ後の時刻t2でのポテンシャル分布を示している。
すなわち、図7で示されるように、クエンチ動作がなされる前の時刻t0にはP-層131にポテンシャルバリア(障壁)Wがないが、クエンチ後の時刻t2にはポテンシャルバリア(障壁)Wが形成されている。
例えば、1e14/cm3乃至1e15/cm3の比較的低ドーピング濃度のエピタキシャル半導体層113を想定する場合、P-層(バリア形成層)131のドーピング濃度はエピタキシャル半導体層113のドーピング濃度より高く、カソード電極116aに印加される電圧が降伏電圧Vbd以下になったときには、P-層131でポテンシャルバリア(障壁)Wが形成されるように1e15/cm3乃至1e16/cm3程度の濃度に設定されるのが望ましい。
すなわち、図7を参照して示したように、時刻t0において、P-層131の部分にはポテンシャルバリアがなく、この状態で時刻t1において、光吸収層115にフォトン(光)が入射すると、フォトンにより電子121が発生する。
発生した電子121は、例えば、図8の上部の実線で示されるように、アバランシェ増幅領域114に伝搬され、アバランシェ増幅される。アバランシェ増幅が生じると、アバランシェ増幅領域114が発光すると同時に、時刻t2において、クエンチ動作でカソード電極116aの電圧Vcが降伏電圧Vbd以下となり増幅が停止する。
クエンチ動作により、カソード電極116aの電圧Vcが降伏電圧Vbd以下となった後は、図9で示されるように、時刻t2において、図7を参照して説明したように、P-層(バリア形成層)131近傍においてポテンシャルバリア(障壁)Wが形成されているので、電子121は、曲線の矢印で示されるように、アバランシェ増幅領域114へ侵入しないように誘導されて、アバランシェ増幅が防止される。
さらに、P-層(バリア形成層)131は、電子121を外周方向の電荷排出経路へ誘導する。すなわち、時刻t1で入射したフォトンのアバランシェ増幅による発光で、光吸収層115に新たに発生した電子121は、アバランシェ増幅領域114を通らず(N+層111とP+層112との境界を通ることなく)、図9の曲線状の実線の矢印で示される電荷排出経路を通って、直接N+層111に排出される。
その結果、アバランシェ増幅による発光に起因したアフターパルスを抑制することが可能となる。このとき、電荷排出経路を通った電子121によってカソード電極116aから出力される信号は増幅されていないため非常に小さく無視できる量である。
尚、図8以降においては、オンチップレンズ120と分離領域119の図示を省略する。
すなわち、図6,図7で示されるように、時刻t0において、カソード電極116aの電圧Vcが電圧Vopの時は、P-層131近傍にポテンシャルバリアはなく、時刻t2において、カソード電極116aの電圧Vcが電圧Vbdになったときにはバリアが現れるようにする。
そして、アバランシェ増幅による発光により発生した電子がアバランシェ増幅領域114に到達する時刻t3までポテンシャルバリアが形成されている必要がある。
そこで、ポテンシャルバリアが形成されるカソード電極116aの電圧Vcを電圧Vthとしそれ以下でバリアが形成されるとした場合、時刻t3でのカソード電極116aの電圧Vc( (t3))が電圧Vaであるとき、Vc(t3)=Va<Vthを満たすようにP-層(バリア形成層)131の不純物濃度を決定する。
さらに時刻t4ではポテンシャルバリアが無くなるようにVth<Vc(t4)を満たすようにP-層(バリア形成層)131の不純物濃度を決定する。例えば、P-層131の不純物濃度を1e15/cm3乃至1e16/cm3程度に設定すればよい。
このように通常の光子検出を行う場合はP-層131にポテンシャルバリアがなく、光電変換された電子121は全てアバランシェ増幅される。一方、このアバランシェ増幅でアバランシェ増幅領域114が発光している期間は、クエンチ動作によりP-層(バリア形成層)131にポテンシャルバリアが形成され、この発光により光電変換された電子は増幅領域を通らずに電荷排出経路を通って排出される。その結果、アバランシェ増幅による発光に起因したアフターパルスによる影響を低減することが可能となる。
また、このP-層131のクエンチ回路118側からみたときの大きさについては、P-層131はクエンチ時にアバランシェ増幅領域114を通らないようにすると同時に電子をP-層131の外側を通る電荷排出経路に誘導させる役割を持つため、図8の下部で示されるように、P-層131の長さWbは、N+層111の長さWaと同等か、または、N+層111の長さWaよりも大きくする。
図10は、P-層131の長さを、アバランシェ増幅領域114と同じサイズにした場合の電子の伝搬経路を模式的に示したものである。
すなわち、電子121は、ポテンシャルバリアでP-層131の外周側に向かって誘導されるが、P-層131のサイズが小さいとP-層131外側を通った電子がN+層111に移動する間に、アバランシェ増幅領域114の電界で再びアバランシェ増幅領域114に侵入する可能性がある。
このため、P-層(バリア形成層)131のサイズは、アバランシェ増幅領域114より大きい方が電荷を排出し易くなり、アフターパルスの発生による影響を抑制する効果を高めることが可能となる。
しかしながら、一方でP-層131を大きくすると電荷排出経路であるP-層131とP++層117の間隔が狭くなり、電子121が排出され難くなる。このため、図8の下部におけるP-層131の長さWbは、N+層111の長さWaよりも適切な大きさとすることが望ましく、例えば、P-層131の長さWbは、N+層111の長さWaより10%程度大きいことが望ましい。
以上のような構成により、アバランシェ増幅による発光で発生するアフターパルスにより影響を低減することが可能となる。また、アフターパルスによる影響を低減することで、光を検出してから次の新しい光子を検出できるようになるまでの時間を短縮することが可能となり、高繰り返しの光検出器を実現することが可能となる。
<<3.第2の実施の形態>>
以上においては、一様なP-層131をアバランシェ増幅領域114の光の入射方向に対して前段に設ける(例えば、図3の上部における図中上から下方向に深さを設定した場合の深い位置に設ける)例について説明してきた。しかしながら、クエンチ時に、電子121を、アバランシェ増幅領域114におけるN+層111とP+層112との境界(PN接合領域)を通過しないように、N+層111に直接誘導できる構成であれば、他の構成でもよい。例えば、P-層131の外周部に、P-層131よりも不純物濃度をさらに高めた層を形成するようにして、電子121を電荷排出経路へと誘導できるようにしてもよい。
図11は、P-層131の外周部に、P-層131よりも不純物濃度をさらに高めた層を形成するようにした画素101の構成例を示している。
図11においては、P-層131の外周部に不純物濃度をさらに高くした層を設けるようにすることで、不要な電荷の排出の効果を高めている。図11の画素101においては、P-層131の外周部に沿って、P-層131よりも不純物濃度の高いP層171が形成されている。
P-層131とP層171は、深さは略同様であるが不純物濃度が異なるため、それぞれ異なるインプラント工程により形成される。P層171の不純物濃度は、クエンチ動作によってカソード電極116aの電位が変わっても、常にポテンシャルバリアが形成される濃度に設定される。
<P-層の外周部にP層が形成される効果>
図12は、P層171が形成される場合の電荷排出経路を示している。図12の上部は、図3の上部における画素101と同様に、P-層131のみが形成される場合の電荷排出経路が示されている。また、図12の下部は、P-層131の外周部に沿って、P-層131より不純物濃度の高いP層171が形成された画素101である。
図12の上部の点線の矢印では、電子121の誘導経路がクエンチ動作する前のカソード電極116aの電圧Vcが電圧Vopであるときの電子121の移動経路を示しており、電子121はP-層131を通過して、アバランシェ増幅領域114に移動しアバランシェ増幅される。
また、図12の上部の実線の矢印は、クエンチ後のカソード電極116aの電圧Vcが、Vc<Vbdであるときの電子121の移動経路を示しており、P-層131により形成されるポテンシャルバリア(障壁)によって、電子121はアバランシェ増幅領域114を通らずに、P-層131の外側の実線の矢印で示されるような電荷排出経路を通ってN+層111に排出される。
しかしながら、リチャージ動作中にカソード電極116aの電圧Vcが電圧Vbdから電圧Vopに戻るにつれて、P-層131の外周部でポテンシャルバリアが小さくなり、図12の上部の一点鎖線の矢印で示される移動経路のように不要な電子121が十分に排出できず、アバランシェ増幅領域114に戻ることがあった。
そこで、図12の下部で示されるように、常にポテンシャルバリア(障壁)を形成するP層171をP-層131の外周部に沿って形成することにより、前述の一点鎖線で示されるような移動経路の発生を抑制するため、不要な電子の排出効果を高めることができる。
<<4.第3の実施の形態>>
以上においては、クエンチ動作時に電荷排出経路に不要な電子121を誘導するためのポテンシャルバリアを形成するためのP-層131、または、P-層131とその外周部にP層171が形成された構成を、アバランシェ増幅領域114に対して平行な平面として形成する例について説明してきた。しかしながら、P-層131、または、P-層131の外周部にP層171が形成された構成は、不要な電子121を電荷排出経路に誘導し易い形状に形成できれば、平面として形成されるようにしなくてもよく、例えば、外周部をより浅い位置に形成するようにしてもよい。
図13は、P-層131の外周部を浅い位置に形成するようにした画素101の構成例を示している。
図13の画素101においては、図3の画素101におけるP-層131の外周部が分割されて、P-層131の中心部の深さ方向の位置に対して、浅い位置に形成されており、図13の上部で示されるように、中心部の第1のP-層131-1の外周に第2のP-層131-2が形成されており、換言すれば、第2のP-層131-2が、第1のP-層131-1よりも浅い位置に形成されている、または、第1のP-層131-1が、第2のP-層131-2よりも深い位置に形成されている。
さらに、図13の下部は、図13の上部におけるAA’断面であり、第2のP-層131-2は、第1のP-層131-1の外周部に沿って配置されていることが示されている。
第2のP-層131-2は、例えば、インプラントのエネルギーを変えることにより第1のP-層131-1よりも浅い位置に形成される。
<外周部を浅くする効果>
図14は、クエンチ動作によって、第1のP-層131-1と第2のP-層131-2にポテンシャルバリアが形成されている状態を示している。尚、図14の上部には、第1のP-層131-1と第2のP-層131-2とがほぼ同一の深さに形成される場合の構成が示されており、図14の下部には、第1のP-層131-1が第2のP-層131-2よりも浅い深さに形成される場合の構成が示されている。
図14の上部で示されるように、第1のP-層131-1と第2のP-層131-2がほぼ同じ深さの場合、画素101の中央のポテンシャルバリア近傍の電子121は図14の上部の実線の矢印で示されるように外周方向に移動し、曲線の矢印で示される電荷排出経路を介して排出される。しかしながら、外周方向に向かって濃度勾配が殆どついていないためにポテンシャル勾配が小さく、電子121が外周部まで移動するのに時間がかかる。
これに対して、図14の下部で示されるように、第2のP-層131-2が第1のP-層131-1よりも浅く形成されると、外周方向に向かってポテンシャル勾配が付けられることになり、電子121を短時間で排出することができる。第2のP-層131-2と第1のP-層131-1との深さの差については、外周方向に向かって途切れることなくポテンシャルバリアを形成する必要があるため、P-層131-1,131-2のそれぞれの厚さの半分より小さくするのが望ましい。
<<5.第4の実施の形態>>
以上においては、P-層131を2層に分けて、外周部をより浅い位置に形成する例について説明してきたが、P-層131は、2層以上に分けるようにしてもよく、例えば、3層以上に分割し、外周部ほど、浅い位置に形成されるようにしてもよい。
図15は、P-層131を3層に分割し、外周部ほど、浅い位置に形成されるようにした画素101の構成例を示している。
第2のP-層131-2は、第1のP-層131-1の外周部に沿って形成され、第1のP-層131-1よりも浅い位置に形成される。また、第3のP-層131-3は、第2のP-層131-2の外周部に沿って形成され、第2のP-層131-2よりも浅い位置に形成される。
図15の下部は、図15の上部のBB’断面であり、図15の上部と併せて、第2のP-層131-2が、第1のP-層131-1の外周部に沿って形成され、第1のP-層131-1よりも浅い位置に形成されていることが示されている。また、同様に、第3のP-層131-3が、第2のP-層131-2の外周部に沿って形成され、第2のP-層131-2よりも浅い位置に形成されていることが示されている。
すなわち、P-層131は、外周方向に向かって分割されていることが示されている。また、図15で示される画素101の構造は、P-層131-1乃至131-3の領域毎にインプラントのエネルギーを変化させることで実現される。
尚、図13,図14の画素101においては、P-層131が2分割されて、外周部に向かって2段階にポテンシャル勾配が付けられているが、2段階の変化ではポテンシャルに平坦な部分が残り、電子121をスムーズに電荷排出経路に移動させることができない場合がある。
そこで、図15の画素101で示されるように、P-層131の分割数を増やして、外周部に向かってポテンシャル勾配を滑らかに変化させることで、ポテンシャルバリア近傍で画素中央付近の電子121を外周の電荷排出経路に向かって、スムーズに移動させることが可能となり、電子121を排出する時間を短くすることが可能となる。
尚、以上においては、P-層131の分割数については、3層に分割する例について説明してきたが、分割数は、3層以上であってもよい。
<<6.第5の実施の形態>>
以上においては、P-層131を複数の外周部に向かって分割し、外周部ほど浅い位置に形成するようにする例について説明してきたが、図11の第2の実施の形態の画素101におけるP-層131の外周部に設けられたP層171を、P-層131の外周に沿って、P-層131よりも浅い位置に形成するようにしてもよい。
図16は、P-層131の外周部に設けられたP層171を、P-層131の外周に沿って、P-層131よりも浅い位置に形成するようにした画素101の構成例を示している。
図16で示されるように、P-層131の外周部にP-層131よりも不純物濃度が高いP層171が形成されており、P層171がP-層131よりも浅い位置に配置される。
このような構成により、図11の画素101における外周部にP層171が設けられることにより生じる電子121が排出される効果を高めることができ、さらに、図17で示されるようにP層171がP-層131よりも浅い位置に配置されることで、ポテンシャルバリア近傍の画素中央付近から外周に向かってポテンシャル勾配を付けることが可能となり、不要な電子121を排出する時間を短くすることができる。
<<7.第6の実施の形態>>
以上においては、第1の導電型がP型であり、第2の導電型がN型である場合の例について説明してきたが、第1の導電型がN型であり、第2の導電型がP型であってもよい。
図18は、第1の導電型がN型であり、第2の導電型がP型であるときの画素101の構成例を示している。
すなわち、図18の画素101は、SPAD210とクエンチ回路218より構成されている。
SPAD210は、P+層211、N+層212、エピタキシャル半導体層(N--)213、アバランシェ増幅領域214、光吸収層215、P++層216、カソード電極216a、N++層217、アノード電極217a、クエンチ回路218、およびN-層(バリア形成層)231より構成されている。
尚、図18のP+層211、N+層212、エピタキシャル半導体層(N--)213、アバランシェ増幅領域214、光吸収層215、P++層216、カソード電極216a、N++層217、アノード電極217a、クエンチ回路218、およびN-層(バリア形成層)231は、N+層111、P+層112、エピタキシャル半導体層(P--)113、アバランシェ増幅領域114、光吸収層115、N++層116、カソード電極116a、P++層117、アノード電極117a、クエンチ回路118、およびP-層(バリア形成層)131に対応する。
また、SPAD210の光吸収層215は、入射光の光量に応じた正孔221を発生させる。
さらに、アバランシェ増幅領域214は、P+層211、およびN+層212のPN接合領域であり、P+層211が、N+層212よりも浅い位置に形成されて、正孔221をアバランシェ増幅して出力する。
N-層(バリア形成層)231は、図3における構成と同じように、カソード電極216aの電圧が電圧Vopの時はポテンシャルバリアがなく、クエンチ後にカソード電極216aの電圧<Vbd(降伏電圧)では、ポテンシャルバリアを発生する。
ポテンシャルバリアが発生すると、図18の実線の矢印で示される正孔排出経路上を移動して、正孔221がアバランシェ増幅領域214を通らずに、N-層231の外周側を通って、P+層211に到達し、P++層216に接続されたカソード電極216aから出力され、図3の画素101と同等の効果を得ることが可能である。
<<8.第7の実施の形態>>
以上においては(第1の実施の形態から第6の実施の形態においては)、クエンチ動作中に発生した不要な電子121が、N+層111に排出される例について説明してきたが、N+層111の外側に、別途ドレインを設けるようにして、ドレインを介して電子121を排出するようにしてもよい。
図19は、N+層111の外側に、別途ドレインを設けるようにして、ドレインを介して電子121を排出するようにした画素101の構成例を示している。
図19の上部で示されるように、N+層111の外側に、ドレイン(N+層)251が形成されており、カソード電極116aと接続されている。
このドレイン251は、アバランシェ増幅領域114のN+層111と同じ不純物濃度とするか、N+層111よりも不純物濃度を高くする。
また、図19の下部で示されるように、ドレイン251はN+層111を取り囲むようにリング状に形成される。ドレイン251とカソード電極116aとは、同電圧にしないと電位差が発生し、カソード電極116aとドレイン251間にリーク電流が流れてしまうため、ドレイン251とカソード電極116aとが接続されて同電位とされる。また、ドレイン251とP++層117間の距離はブレークダウンを起こさないように設定する
ドレイン251は、アバランシェ増幅領域114から離れた位置に形成されることにより、電子121が、電荷排出経路から再びアバランシェ増幅領域214に入り難くすることができる。
また、ドレイン251の深さも調整することができるので、電荷排出経路の設計自由度を向上させることが可能となる。
<<9.第8の実施の形態>>
以上においては、電荷排出経路として、N+層111の外周部にドレイン251を形成し、カソード電極116aと接続することで、不要な電子121を効率よく排出する例について説明してきたが、N+層111とドレイン251との間に電気的に分離する構成を設けて、ドレイン251をカソード電極116aとを別の電位とするようにしてもよい。
図20は、N+層111とドレイン251との間に、双方を電気的に分離するSTIを形成するようにした画素101の構成例を示している。尚、図20の画素101の構成例について、図19と異なる点は、ドレイン251とN+層111との間にSTI(shallow trench isolation)271が設けられている点である。
STI271は、ドレイン251とN+層111との間を電気的に分離しているため、ドレイン251とN+層111とは、それぞれ異なる電位に設定することが可能になる。
すなわち、図19の画素101においては、ドレイン251とカソード電極116aとの電圧を揃えて、同電位とする必要があった。
しかしながら、図20の画素101においては、分離素子であるSTI271がドレイン251とカソード電極116aとの間に挿入されることで、ドレイン251とカソード電極116aとを異なる電位にすることが可能となり、ドレイン251をGND接続して不要な電子121をGNDに排出することができる。これにより、ドレイン251からの排出信号とカソード電極116aからのSPAD出力信号を分離することが可能となり、検出信号のSN比を高めることが可能となる。また、ドレイン251とP++層117間の距離はブレークダウンを起こさないように設定する
<<10.第9の実施の形態>>
図11を参照して説明した、第2の実施の形態においては、P-層131の外周部に沿ってP層171が形成された構成であり、図21の上部で示されるように、点線の楕円で囲われた電荷排出経路に近い領域で光電変換された電子121は、カソード電極116aの電圧Vcが電圧Vopであっても画素101の中央部へ向かう電界が弱いために、P層171の外側を通ってN+層111に到達して排出されることがある。
この場合、検出したい光子により発生した電子121が電荷排出経路を通ってしまうので、検出ロスとなりフォトンの検出効率(PDE: Photon Detection Efficiency)を低下させる可能性があった。
そこで、検出ロスを防止するため、P層171の一部をP++層117まで広げて、カソード電極116aの電圧Vcが電圧Vopであり、画素101の中央部へ向かう電界が弱くても、電子121が排出されないようにしてもよい。
図21は、P層171の一部をP++層117まで広げるようにした画素101の構成例を示している。
方形状の画素101の上面において、中心から図中の水平方向に対しては、図21の下部のBB'断面である、図21の中部において示されるように、P層171の一部が対辺となるP++層117まで広げられており、カソード電極116aが電圧Vopであり、画素101の中央部へ向かう電界が弱くても、電子121の排出を防止することができる。
また、図21の下部で示されるように、方形状の画素101の角部については、点線の楕円状の範囲で示されるようにエピタキシャル半導体層113とされて、電子121の電荷排出経路の形成が可能な構成とされている。
すなわち、カソード電極116aの電圧Vc<Vbd(降伏電圧)の時に形成される電荷排出経路は、必ずしもP層171の外周全てで形成する必要がない。
したがって、図21の下部のBB’断面で示されるように、電子121を排出しない箇所はP層171をP++層117まで広げて、電子121の排出を防止する。
一方、図21の下部で示されるように、画素101のコーナ部には、P層171が形成されていないので、点線の楕円の範囲の付近に、電荷排出経路を形成することが可能になるので、フォトンの検出効率(PDE: Photon Detection Efficiency)の低下を低減することが可能になる。
尚、図21における点線の楕円で示されるような電荷排出経路が形成される範囲については、1カ所でも設けられればよいので、図21の下部で示されるような4か所のうちの1カ所でもよく、それ以外の3カ所の範囲は、P層171をP++層117まで伸ばすようにしてもよい。
<<11.電子機器への適用例>>
上述した画素構造を適用した撮像素子は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像装置、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
図22は、本技術を適用した電子機器としての撮像装置の構成例を示すブロック図である。
図22に示される撮像装置501は、光学系502、シャッタ装置503、固体撮像素子504、駆動回路505、信号処理回路506、モニタ507、およびメモリ508を備えて構成され、静止画像および動画像を撮像可能である。
光学系502は、1枚または複数枚のレンズを有して構成され、被写体からの光(入射光)を固体撮像素子504に導き、固体撮像素子504の受光面に結像させる。
シャッタ装置503は、光学系502および固体撮像素子504の間に配置され、駆動回路505の制御に従って、固体撮像素子504への光照射期間および遮光期間を制御する。
固体撮像素子504は、上述した固体撮像素子を含むパッケージにより構成される。固体撮像素子504は、光学系502およびシャッタ装置503を介して受光面に結像される光に応じて、一定期間、信号電荷を蓄積する。固体撮像素子504に蓄積された信号電荷は、駆動回路505から供給される駆動信号(タイミング信号)に従って転送される。
駆動回路505は、固体撮像素子504の転送動作、および、シャッタ装置503のシャッタ動作を制御する駆動信号を出力して、固体撮像素子504およびシャッタ装置503を駆動する。
信号処理回路506は、固体撮像素子504から出力された信号電荷に対して各種の信号処理を施す。信号処理回路506が信号処理を施すことにより得られた画像(画像データ)は、モニタ507に供給されて表示されたり、メモリ508に供給されて記憶(記録)されたりする。
このように構成されている撮像装置501においても、上述した図3,図11乃至図21の画素101を備えた固体撮像素子504を適用することにより、アバランシェ増幅により発生するアフターパルスによる影響を低減させることが可能となる。
<<12.撮像装置への適用>>
上述した画素101は、距離を測定する装置に適用できる。ここでは、距離を測定する測距装置に、画素101を適用した場合を例に挙げて、画素101の適用例の一例を説明する。
図23は、本技術を適用した画素101を適用した測距装置の一実施の形態の構成を示す図である。図23に示した測距装置1000は、光パルス送信機1021、光パルス受信機1022、RSフリップフロップ1023を含む構成とされている。
距離を測定する方法として、TOF(Time Of Flight)方式を用いた場合を例に挙げて説明する。TOF型センサとして、上述した101を用いることができる。
TOF型センサは、自己が発した光が、対象物に当たり、反射して帰ってくるまでの時間を計測することで、対象物までの距離を計測するセンサである。TOF型センサは、例えば、図24に示したタイミングで動作する。
図24を参照して測距装置1000の動作について説明する。光パルス送信機1021は、供給されるトリガーパルスに基づき、光を発光する(光送信パルス)。発光された光が対象物に当たり、反射されてきた反射光を、光パルス受信機1022は、受信する。光パルス受信機1022として、上記した画素101を用いることができる。
送信光パルスが発光された時刻と、受信光パルスが受光された時刻との差分が、対象物との距離に応じた時間、すなわち光飛行時間TOFに相当する。
トリガーパルスは、光パルス送信機1021に供給されるとともに、フリップフロップ1023にも供給される。トリガーパルスが光パルス送信機1021に供給されることで、短時間光パルスが送信され、フリップフロップ1023に供給されることで、フリップフロップ1023がリセットされる。
光パルス受信機1022に画素101を用いた場合、画素101に受信光パルスが受信されると、フォトンが発生する。その発生したフォトン(電気パルス)により、フリップフロップ1023がリセットされる。
このような動作により、光飛行時間TOFに相当するパルス幅をもったゲート信号を生成することができる。この生成されるゲート信号を、クロック信号などを用いてカウントすることで、TOFを算出(デジタル信号として出力)することができる。
測距装置1000では、上記したような処理により、距離情報が生成される。このような測距装置1000に対して、上述した画素101を用いることができる。
<<13.周辺領域を含めた構成について>>
上記した実施の形態においては、SPADを用いた画素101について説明した。画素101は、図25、図26に示すように、センサチップ1310に設けられている画素領域A1にアレイ状に配置されている。図26では、画素101-1と画素101-2が画素領域A1に並んで配置されている例を示した。
この画素101が配置されているセンサチップ1310の下面(光入射面とは逆側の面)には、ロジックチップ1610が接続されている。このロジックチップ1610には、画素101からの信号を処理したり、画素101に電力を供給したりする回路が形成されている。
画素領域A1の外側には、周辺領域A2が配置されている。さらに周辺領域A2の外側には、パッド領域A3が配置されている。
パッド領域A3は、図26に示すように、センサチップ1310の上端から配線層1311の内部まで達する垂直方向の孔であって、電極パッド1312への配線用の孔であるパッド開口部1313が、一直線に並ぶように形成されている。
パッド開口部1313の底には、配線用の電極パッド1312が設けられている。この電極パッド1312は、例えば、配線層1311内の配線と接続されたり、他の外部装置(チップなど)と接続されたりする際に用いられる。また、センサチップ1310とロジックチップ1610との貼り合わせ面に近い配線層が、電極パッド1312を兼ねる構成とすることもできる。
センサチップ1310に形成された配線層1311と、ロジックチップ1610に形成された配線層は、それぞれ絶縁膜と複数の配線を含んで形成され、複数の配線や電極パッド1312は、例えば銅(Cu)やアルミニウム(Al)などの金属で形成される。画素領域A1や周辺領域A2に形成された配線も、同様の材料で形成される。
画素領域A1とパッド領域A3との間には、周辺領域A2が設けられている。周辺領域A2の構成は、n型半導体領域1321、p型半導体領域1322で構成されている。また、p型半導体領域1322は、配線1324とコンタクト1325を介して接続され、配線1324は、グランド(GND)に接続されている。
図26に示す例では、画素領域A1において、センサチップ1310とロジックチップ1610の貼り合わせ面側に形成された配線層のうち、最も貼り合わせ面側の配線層の一部同士が直接接合される形で、センサチップ1310とロジックチップ1610が電気的に接続されている。
n型半導体領域1321には、トレンチ1323-1と1323-2の2本のトレンチが形成されている。このトレンチ1323は、画素領域A1と周辺領域A2を確実に分離するために設けられている。図25は、2本のトレンチ1323が形成されている場合を示しているが、トレンチ1323については、少なくとも1本のトレンチ1323が形成されていれば良い。
画素101は、カソードとアノードの間に高い電圧が印加されている。また、周辺領域A2は、GNDに接地されている。このことから、画素領域A1と周辺領域A2の間に設けられている分離領域では、アノードに高い電圧がかかっていることによる高電界領域が発生し、ブレークダウンが発生してしまう可能性がある。ブレークダウンを回避するためには、画素領域A1と周辺領域A2の間に設けられている分離領域を広げることが考えられるが、分離領域を広げることで、センサチップ1310が大きくなってしまう。
このようなブレークダウンを防ぐために、トレンチ1323が形成されている。このトレンチ1323により、分離領域を広げなくても、ブレークダウンを防ぐことが可能となる。
<<14.内視鏡手術システムへの応用例>>
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
図27は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
図27では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
図28は、図27に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、内視鏡11100や、カメラヘッド11102(の撮像部11402)等に適用され得る。具体的には、図3,図11乃至図21の画素101は、撮像部10402に適用することができる。内視鏡11100や、カメラヘッド11102(の撮像部11402)等に本開示に係る技術を適用することにより、アバランシェ増幅により発生するアフターパルスによる影響を低減させることが可能となる。
なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。
<<15.移動体への応用例>>
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
図29は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図29に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図29の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
図30は、撮像部12031の設置位置の例を示す図である。
図30では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
なお、図30には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031等に適用され得る。具体的には、図3,図11乃至図21の画素101は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、アバランシェ増幅により発生するアフターパルスによる影響を低減させることが可能となる。
尚、本開示は、以下のような構成も取ることができる。
<1> SPAD(Single Photon Avalanche Diode:単一光子アバランシェフォトダイオード)の画素構造において、
第1の導電型の第1の半導体層と、前記第1の導電型とは反対の第2の導電型の第2の半導体層とが接合された接合部と、
前記接合部よりも、入射光の入射方向に対して前段の領域に、シリコン基板よりも不純物濃度が高い、前記第1の導電型の第3の半導体層とを備える
画素構造。
<2> 前記第3の半導体層は、前記入射光の入射方向に対して直交する方向の幅が、前記接合部における幅と略同一であるか、または、前記接合部における幅よりも大きい
<1>に記載の画素構造。
<3> 前記入射光を吸収して光電変換により電子正孔対に分離する光吸収層をさらに含み、
前記第3の半導体層の前記入射方向の厚さは、前記光吸収層よりも薄い
<2>に記載の画素構造。
<4> 前記第3の半導体層の、前記入射方向に対して直交する断面の中央部からみた外周に沿って、前記第3の半導体層の不純物濃度よりも高濃度の第4の半導体層が形成される
<1>に記載の画素構造。
<5> 前記第4の半導体層は、前記入射方向に対して、前記第3の半導体層よりも後段に形成される
<4>に記載の画素構造。
<6> 隣接する画素と電気的、および、光学的に分離する分離領域と、
前記入射光を吸収して光電変換により電子正孔対に分離する光吸収層と、
前記分離領域の側面、および前記光吸収層の前記入射方向の前段に、前記第2の導電型の、前記第2の半導体層の不純物濃度よりも高濃度の第5の半導体層とをさらに含み、
前記第3の半導体層の一部は、前記第5の半導体層と接続される
<4>に記載の画素構造。
<7> 前記第3の半導体層の一部は、前記入射方向からみて方形状に構成される画素の角部を除く範囲で、前記第5の半導体層と接続される
<6>に記載の画素構造。
<8> 前記第5の半導体層は、前記SPADのアノードと接続されている
<7>に記載の画素構造。
<9> 前記第3の半導体層は、前記入射方向に対して直交する断面の中央部からみた外周方向に複数に領域分割され、外周方向の領域ほど、前記入射方向に対して後段に形成される
<1>に記載の画素構造。
<10> 前記入射光を吸収して光電変換により電子正孔対に分離する光吸収層をさらに含み、
前記接合部において、前記光吸収層により生成された電子または正孔がアバランシェ増幅されることによりアフターパルスが発生するとき、前記第3の半導体層は、前記光吸収層により生成された電子または正孔を、排出経路に誘導する
<1>に記載の画素構造。
<11> 前記第3の半導体層は、ポテンシャルバリアにより、前記光吸収層により生成された電子または正孔を、前記排出経路に誘導する
<10>に記載の画素構造。
<12> 前記排出経路は、前記第1の半導体層である
<10>に記載の画素構造。
<13> 前記電子または正孔を排出するドレインをさらに含み、
前記第3の半導体層は、前記電子または正孔を前記排出経路としての前記ドレインに誘導する
<10>に記載の画素構造。
<14> 前記ドレインは、前記入射方向に対して直交する断面の中央部からみて、前記第3の半導体層の外周部より外側にリング状で、かつ、前記入射方向に対して前記第1の半導体層と同一の位置に形成される
<13>に記載の画素構造。
<15> 前記第1の半導体層および前記ドレインはカソードと電気的に接続される
<14>に記載の画素構造。
<16> 前記第1の半導体層および前記ドレインの間に相互を電気的に分離する分離層をさらに含み、
前記第1の半導体層はカソードと電気的に接続され、
前記ドレインはグランド電極と電気的に接続される
<14>に記載の画素構造。
<17> 前記第1の導電型および前記第2の導電型は、P型およびN型であり、
前記接合部は、PN接合により形成される
<1>に記載の画素構造。
<18> SPAD(Single Photon Avalanche Diode:単一光子アバランシェフォトダイオード)の画素構造において、
第1の導電型の第1の半導体層と、前記第1の導電型とは反対の第2の導電型の第2の半導体層とが接合された接合部と、
前記接合部よりも、入射光の入射方向に対して前段の領域に、シリコン基板よりも不純物濃度が高い、前記第1の導電型の第3の半導体層とを有する画素構造の画素を備える
撮像素子。
<19> SPAD(Single Photon Avalanche Diode:単一光子アバランシェフォトダイオード)の画素構造において、
第1の導電型の第1の半導体層と、前記第1の導電型とは反対の第2の導電型の第2の半導体層とが接合された接合部と、
前記接合部よりも、入射光の入射方向に対して前段の領域に、シリコン基板よりも不純物濃度が高い、前記第1の導電型の第3の半導体層とを有する画素構造の画素を備える撮像素子を含む
撮像装置。
<20> SPAD(Single Photon Avalanche Diode:単一光子アバランシェフォトダイオード)の画素構造において、
第1の導電型の第1の半導体層と、前記第1の導電型とは反対の第2の導電型の第2の半導体層とが接合された接合部と、
前記接合部よりも、入射光の入射方向に対して前段の領域に、シリコン基板よりも不純物濃度が高い、前記第1の導電型の第3の半導体層とを備えた画素構造の画素を備える撮像素子を含む
電子機器。
101,101-11-1乃至101-11-4,101-12-1乃至101-12-4,101-13-1乃至101-13-4 画素, 111 N+層, 112 P+層, 113 エピタキシャル半導体層, 114 アバランシェ増幅領域, 115 光吸収層, 116 カソード電極, 117 P++, 118 クエンチ回路, 119 分離領域, 120 オンチップレンズ, 121 電子, 131,131-1乃至131-3 P-層(バリア形成層), 150 デコーダ(decoder), 151-11乃至151-13 OR回路, 153,153-11-1乃至153-11-4,153-12-1乃至153-12-4,153-13-1乃至153-13-4 AND回路, 161 NOT回路, 171 P層, 211 P+層, 212 N+層, 213 エピタキシャル半導体層, 214 アバランシェ増幅領域, 215 光吸収層, 216a カソード電極, 217 N++, 218 クエンチ回路, 221 正孔, 231 N-層(バリア形成層), 251 ドレイン, 271 STI

Claims (19)

  1. SPAD(Single Photon Avalanche Diode:単一光子アバランシェフォトダイオード)の画素構造において、
    第1の導電型の第1の半導体層と、前記第1の導電型とは反対の第2の導電型の第2の半導体層とが接合された接合部と、
    前記接合部よりも、入射光の入射方向に対して前段の領域に、前記入射光が入射するエピタキシャル半導体層からなる基板と、
    前記基板よりも不純物濃度が高い、前記第1の導電型の第3の半導体層と、
    前記第3の半導体層の、前記入射方向に対して直交する断面の中央部からみた外周に沿って、前記第3の半導体層の不純物濃度よりも高濃度に形成される第4の半導体層とを備える
    画素構造。
  2. 前記第3の半導体層と前記第4の半導体層とを併せた半導体層は、前記入射光の入射方向に対して直交する方向の幅が、前記接合部における幅よりも大きい
    請求項1に記載の画素構造。
  3. 前記入射光を吸収して光電変換により電子正孔対に分離する光吸収層をさらに含み、
    前記第3の半導体層の前記入射方向の厚さは、前記光吸収層よりも薄い
    請求項に記載の画素構造。
  4. 前記第4の半導体層は、前記入射方向に対して、前記第3の半導体層よりも後段に形成される
    請求項1に記載の画素構造。
  5. 隣接する画素と電気的、および、光学的に分離する分離領域と、
    前記入射光を吸収して光電変換により電子正孔対に分離する光吸収層と、
    前記分離領域の側面、および前記光吸収層の前記入射方向の前段に、前記第2の導電型の、前記第2の半導体層の不純物濃度よりも高濃度の第5の半導体層とをさらに含み、
    前記第3の半導体層の一部は、前記第5の半導体層と接続される
    請求項1に記載の画素構造。
  6. 前記第3の半導体層の一部は、前記入射方向からみて方形状に構成される画素の角部を除く範囲で、前記第5の半導体層と接続される
    請求項5に記載の画素構造。
  7. 前記第5の半導体層は、前記SPADのアノードと接続されている
    請求項6に記載の画素構造。
  8. 前記第3の半導体層は、前記入射方向に対して直交する断面の中央部からみた外周方向に複数に領域分割され、外周方向の領域ほど、前記入射方向に対して後段に形成される
    請求項1に記載の画素構造。
  9. 前記入射光を吸収して光電変換により電子正孔対に分離する光吸収層をさらに含み、
    前記接合部において、前記光吸収層により生成された電子または正孔がアバランシェ増幅されることによりアフターパルスが発生するとき、前記第3の半導体層は、前記光吸収層により生成された電子または正孔を、排出経路に誘導する
    請求項1に記載の画素構造。
  10. 前記第3の半導体層は、ポテンシャルバリアにより、前記光吸収層により生成された電子または正孔を、前記排出経路に誘導する
    請求項9に記載の画素構造。
  11. 前記排出経路は、前記第1の半導体層である
    請求項9に記載の画素構造。
  12. 前記電子または正孔を排出するドレインをさらに含み、
    前記第3の半導体層は、前記電子または正孔を前記排出経路としての前記ドレインに誘導する
    請求項9に記載の画素構造。
  13. 前記ドレインは、前記入射方向に対して直交する断面の中央部からみて、前記第3の半導体層の外周部より外側にリング状で、かつ、前記入射方向に対して前記第1の半導体層と同一の位置に形成される
    請求項12に記載の画素構造。
  14. 前記第1の半導体層および前記ドレインはカソードと電気的に接続される
    請求項13に記載の画素構造。
  15. 前記第1の半導体層および前記ドレインの間に相互を電気的に分離する分離層をさらに含み、
    前記第1の半導体層はカソードと電気的に接続され、
    前記ドレインはグランド電極と電気的に接続される
    請求項13に記載の画素構造。
  16. 前記第1の導電型および前記第2の導電型は、P型およびN型であり、
    前記接合部は、PN接合により形成される
    請求項1に記載の画素構造。
  17. SPAD(Single Photon Avalanche Diode:単一光子アバランシェフォトダイオード)の画素構造において、
    第1の導電型の第1の半導体層と、前記第1の導電型とは反対の第2の導電型の第2の半導体層とが接合された接合部と、
    前記接合部よりも、入射光の入射方向に対して前段の領域に、前記入射光が入射するエピタキシャル半導体層からなる基板と、
    前記基板よりも不純物濃度が高い、前記第1の導電型の第3の半導体層と、
    前記第3の半導体層の、前記入射方向に対して直交する断面の中央部からみた外周に沿って、前記第3の半導体層の不純物濃度よりも高濃度に形成される前記第1の導電型の第4の半導体層とを有する画素構造の画素を備える
    撮像素子。
  18. SPAD(Single Photon Avalanche Diode:単一光子アバランシェフォトダイオード)の画素構造において、
    第1の導電型の第1の半導体層と、前記第1の導電型とは反対の第2の導電型の第2の半導体層とが接合された接合部と、
    前記接合部よりも、入射光の入射方向に対して前段の領域に、前記入射光が入射するエピタキシャル半導体層からなる基板と、
    前記基板よりも不純物濃度が高い、前記第1の導電型の第3の半導体層と、
    前記第3の半導体層の、前記入射方向に対して直交する断面の中央部からみた外周に沿って、前記第3の半導体層の不純物濃度よりも高濃度に形成される第4の半導体層とを有する画素構造の画素を備える撮像素子を含む
    撮像装置。
  19. SPAD(Single Photon Avalanche Diode:単一光子アバランシェフォトダイオード)の画素構造において、
    第1の導電型の第1の半導体層と、前記第1の導電型とは反対の第2の導電型の第2の半導体層とが接合された接合部と、
    前記接合部よりも、入射光の入射方向に対して前段の領域に、前記入射光が入射するエピタキシャル半導体層からなる基板と、
    前記基板よりも不純物濃度が高い、前記第1の導電型の第3の半導体層と、
    前記第3の半導体層の、前記入射方向に対して直交する断面の中央部からみた外周に沿って、前記第3の半導体層の不純物濃度よりも高濃度に形成される第4の半導体層とを備えた画素構造の画素を備える撮像素子を含む
    電子機器。
JP2018018836A 2018-02-06 2018-02-06 画素構造、撮像素子、撮像装置、および電子機器 Active JP7169071B2 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2018018836A JP7169071B2 (ja) 2018-02-06 2018-02-06 画素構造、撮像素子、撮像装置、および電子機器
CN201980000739.3A CN110352492B (zh) 2018-02-06 2019-01-23 像素结构、图像传感器、摄像装置和电子设备
KR1020247012342A KR102708231B1 (ko) 2018-02-06 2019-01-23 화소 구조, 화상 센서, 촬상 장치 및 전자 기기
DE202019005770.6U DE202019005770U1 (de) 2018-02-06 2019-01-23 Pixelstruktur, Bildsensor, Bildaufnahmevorrichtung und Elektronikeinrichtung
KR1020197015041A KR102658578B1 (ko) 2018-02-06 2019-01-23 화소 구조, 화상 센서, 촬상 장치, 및 전자 기기
PCT/JP2019/001939 WO2019155875A1 (en) 2018-02-06 2019-01-23 Pixel structure, image sensor, image capturing apparatus, and electronic device
EP19704466.2A EP3555919B1 (en) 2018-02-06 2019-01-23 Pixel structure, image sensor, image capturing apparatus, and electronic device
US16/464,760 US10943941B2 (en) 2018-02-06 2019-01-23 Pixel structure, image sensor, image capturing apparatus, and electronic device
US17/164,399 US11961869B2 (en) 2018-02-06 2021-02-01 Pixel structure, image sensor, image capturing apparatus, and electronic device
JP2022172884A JP7392078B2 (ja) 2018-02-06 2022-10-28 画素構造、撮像素子、撮像装置、および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018018836A JP7169071B2 (ja) 2018-02-06 2018-02-06 画素構造、撮像素子、撮像装置、および電子機器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022172884A Division JP7392078B2 (ja) 2018-02-06 2022-10-28 画素構造、撮像素子、撮像装置、および電子機器

Publications (2)

Publication Number Publication Date
JP2019140132A JP2019140132A (ja) 2019-08-22
JP7169071B2 true JP7169071B2 (ja) 2022-11-10

Family

ID=65363343

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018018836A Active JP7169071B2 (ja) 2018-02-06 2018-02-06 画素構造、撮像素子、撮像装置、および電子機器
JP2022172884A Active JP7392078B2 (ja) 2018-02-06 2022-10-28 画素構造、撮像素子、撮像装置、および電子機器

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022172884A Active JP7392078B2 (ja) 2018-02-06 2022-10-28 画素構造、撮像素子、撮像装置、および電子機器

Country Status (7)

Country Link
US (2) US10943941B2 (ja)
EP (1) EP3555919B1 (ja)
JP (2) JP7169071B2 (ja)
KR (1) KR102658578B1 (ja)
CN (1) CN110352492B (ja)
DE (1) DE202019005770U1 (ja)
WO (1) WO2019155875A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7169071B2 (ja) 2018-02-06 2022-11-10 ソニーセミコンダクタソリューションズ株式会社 画素構造、撮像素子、撮像装置、および電子機器
CN112385051B (zh) * 2018-07-12 2022-09-09 深圳帧观德芯科技有限公司 具有银纳米粒子电极的图像传感器
IT201800007424A1 (it) * 2018-07-23 2020-01-23 Dispositivo e metodo per rilevare dati ottici risolti nel tempo
WO2020203250A1 (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 光検出器
JP2021052130A (ja) * 2019-09-26 2021-04-01 ソニーセミコンダクタソリューションズ株式会社 半導体装置及びその製造方法、並びに電子機器
FR3102612B1 (fr) 2019-10-28 2023-04-07 St Microelectronics Crolles 2 Sas Circuit integré comprenant un réseau de diodes à avalanche déclenchée par un photon unique et procédé de fabrication d’un tel circuit intégré
CN114585941A (zh) * 2019-11-20 2022-06-03 索尼半导体解决方案公司 固态成像装置和距离测量系统
JP7379117B2 (ja) 2019-11-27 2023-11-14 キヤノン株式会社 光電変換装置及び光電変換システム
JPWO2021132056A1 (ja) * 2019-12-25 2021-07-01
US11527670B2 (en) * 2020-02-13 2022-12-13 Infineon Technologies Dresden GmbH & Co. KG Photon avalanche diode and methods of producing thereof
EP4123708A4 (en) * 2020-03-18 2023-11-22 Sony Semiconductor Solutions Corporation SEMICONDUCTOR IMAGING ELEMENT AND ELECTRONIC DEVICE
WO2021189005A1 (en) * 2020-03-20 2021-09-23 Adaps Photonics Inc. Spad pixel circuits and methods thereof for direct time of flight sensors
WO2021199701A1 (ja) * 2020-03-31 2021-10-07 ソニーセミコンダクタソリューションズ株式会社 受光素子および電子機器
US11170549B2 (en) * 2020-04-09 2021-11-09 Wisconsin Alumni Research Foundation Systems, methods, and media for high dynamic range quanta burst imaging
US20230238405A1 (en) * 2020-06-24 2023-07-27 Sony Semiconductor Solutions Corporation Semiconductor device and electronic device
US20230290792A1 (en) * 2020-06-29 2023-09-14 Sony Semiconductor Solutions Corporation Imaging device and electronic device
CN111968999A (zh) * 2020-09-08 2020-11-20 上海大芯半导体有限公司 堆栈式背照单光子雪崩二极管图像传感器
JP2022082882A (ja) * 2020-11-24 2022-06-03 ソニーセミコンダクタソリューションズ株式会社 受光素子、測距システム、および、電子機器
JP2022083067A (ja) * 2020-11-24 2022-06-03 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、および撮像装置、並びに電子機器
JP2022114788A (ja) * 2021-01-27 2022-08-08 ソニーセミコンダクタソリューションズ株式会社 受光素子、受光素子の製造方法及び測距システム
JP7487131B2 (ja) * 2021-03-18 2024-05-20 株式会社東芝 半導体装置
EP4324032A1 (en) * 2021-04-14 2024-02-21 Fondazione Bruno Kessler A diode radiation sensor
IT202100009443A1 (it) * 2021-04-14 2022-10-14 Fond Bruno Kessler Un sensore di radiazioni
IT202100009434A1 (it) * 2021-04-14 2022-10-14 Fond Bruno Kessler Un sensore di radiazioni
KR102610700B1 (ko) * 2021-05-25 2023-12-06 주식회사 우리로 광자를 검출할 수 있는 최적의 위치로 아발란치 포토 다이오드를 정렬시키는 방법
KR102368114B1 (ko) * 2021-05-25 2022-02-28 주식회사 우리로 서로 다른 2개의 모드로 동작되는 단일광자 검출소자 중 어느 하나로 동작할 수 있는 아발란치 포토 다이오드
CN113433584B (zh) * 2021-06-28 2022-11-04 哈尔滨工业大学 可兼容电子收集和空穴收集的像素探测器中的像素电路
WO2024004222A1 (ja) * 2022-07-01 2024-01-04 ソニーセミコンダクタソリューションズ株式会社 光検出装置およびその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110272561A1 (en) 2010-03-23 2011-11-10 Stmicroelectronics S.R.L. Method of detecting impinging position of photons on a geiger-mode avalanche photodiode, related geiger-mode avalanche photodiode and fabrication process
JP2013048278A (ja) 2006-07-03 2013-03-07 Hamamatsu Photonics Kk フォトダイオードアレイ
JP2013174588A (ja) 2012-02-15 2013-09-05 First Sensor AG 放射線検出器用半導体構造および放射線検出器
JP2015041746A (ja) 2013-08-23 2015-03-02 株式会社豊田中央研究所 シングルフォトンアバランシェダイオード
JP2015119093A (ja) 2013-12-19 2015-06-25 浜松ホトニクス株式会社 光検出器
CN106847960A (zh) 2017-01-23 2017-06-13 重庆邮电大学 一种基于深n阱结构的单光子雪崩二极管及其制作工艺
US20180019268A1 (en) 2016-07-18 2018-01-18 Omnivision Technologies, Inc. Stacked-chip backside-illuminated spad sensor with high fill-factor

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936437B2 (ja) 1974-05-29 1984-09-04 富士通株式会社 半導体受光装置
JPS5252593A (en) * 1975-10-27 1977-04-27 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light receiving diode
NL7709618A (nl) * 1977-09-01 1979-03-05 Philips Nv Stralingsgevoelige halfgeleiderinrichting en werkwijze ter vervaardiging daarvan.
WO2008113067A2 (en) * 2007-03-15 2008-09-18 Johns Hopkins University Deep submicron and nano cmos single photon photodetector pixel with event based circuits for readout data-rate reduction
US7898001B2 (en) * 2008-12-03 2011-03-01 Stmicroelectronics (Research & Development) Limited Single photon detector and associated methods for making the same
IT1392366B1 (it) * 2008-12-17 2012-02-28 St Microelectronics Rousset Fotodiodo operante in modalita' geiger con resistore di soppressione integrato e controllabile, schiera di fotodiodi e relativo procedimento di fabbricazione
IT1393781B1 (it) 2009-04-23 2012-05-08 St Microelectronics Rousset Fotodiodo operante in modalita' geiger con resistore di soppressione integrato e controllabile ad effetto jfet, schiera di fotodiodi e relativo procedimento di fabbricazione
GB201014843D0 (en) * 2010-09-08 2010-10-20 Univ Edinburgh Single photon avalanche diode for CMOS circuits
US8680645B2 (en) * 2011-08-09 2014-03-25 Infineon Technologies Austria Ag Semiconductor device and a method for forming a semiconductor device
US9728667B1 (en) * 2011-10-21 2017-08-08 Radiation Monitoring Devices, Inc. Solid state photomultiplier using buried P-N junction
JP6145655B2 (ja) * 2012-12-18 2017-06-14 パナソニックIpマネジメント株式会社 半導体光検出器
ITTO20130398A1 (it) 2013-05-16 2014-11-17 St Microelectronics Srl Fotodiodo a valanga operante in modalita' geiger includente una struttura di confinamento elettro-ottico per la riduzione dell'interferenza, e schiera di fotodiodi
US9312401B2 (en) 2014-01-15 2016-04-12 Omnivision Technologies, Inc. Single photon avalanche diode imaging sensor for complementary metal oxide semiconductor stacked chip applications
WO2016003451A1 (en) * 2014-07-02 2016-01-07 The Johns Hopkins University Photodetection circuit and operating method thereof
US10217889B2 (en) * 2015-01-27 2019-02-26 Ladarsystems, Inc. Clamped avalanche photodiode
FR3041817B1 (fr) 2015-09-30 2017-10-13 Commissariat Energie Atomique Photodiode de type spad
EP3385987A4 (en) 2015-12-03 2019-11-27 Sony Semiconductor Solutions Corporation SEMICONDUCTOR IMAGING ELEMENT AND IMAGING APPARATUS
IT201600079027A1 (it) * 2016-07-27 2018-01-27 St Microelectronics Srl Schiera di fotodiodi a valanga operanti in modalita' geiger per la rilevazione di radiazione infrarossa
US10438987B2 (en) * 2016-09-23 2019-10-08 Apple Inc. Stacked backside illuminated SPAD array
EP3309847B1 (en) * 2016-10-13 2024-06-05 Canon Kabushiki Kaisha Photo-detection apparatus and photo-detection system
US10103285B1 (en) * 2017-04-13 2018-10-16 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device and method of manufacturing the same
WO2019080036A1 (en) * 2017-10-26 2019-05-02 Shenzhen Xpectvision Technology Co., Ltd. RADIATION DETECTOR CAPABLE OF PROCESSING NOISE
JP2018018836A (ja) 2017-11-01 2018-02-01 Smk株式会社 コンタクトの接触構造
JP7169071B2 (ja) 2018-02-06 2022-11-10 ソニーセミコンダクタソリューションズ株式会社 画素構造、撮像素子、撮像装置、および電子機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048278A (ja) 2006-07-03 2013-03-07 Hamamatsu Photonics Kk フォトダイオードアレイ
US20110272561A1 (en) 2010-03-23 2011-11-10 Stmicroelectronics S.R.L. Method of detecting impinging position of photons on a geiger-mode avalanche photodiode, related geiger-mode avalanche photodiode and fabrication process
JP2013174588A (ja) 2012-02-15 2013-09-05 First Sensor AG 放射線検出器用半導体構造および放射線検出器
JP2015041746A (ja) 2013-08-23 2015-03-02 株式会社豊田中央研究所 シングルフォトンアバランシェダイオード
JP2015119093A (ja) 2013-12-19 2015-06-25 浜松ホトニクス株式会社 光検出器
US20180019268A1 (en) 2016-07-18 2018-01-18 Omnivision Technologies, Inc. Stacked-chip backside-illuminated spad sensor with high fill-factor
CN106847960A (zh) 2017-01-23 2017-06-13 重庆邮电大学 一种基于深n阱结构的单光子雪崩二极管及其制作工艺

Also Published As

Publication number Publication date
KR102658578B1 (ko) 2024-04-19
JP2023015157A (ja) 2023-01-31
CN110352492B (zh) 2024-07-16
CN110352492A (zh) 2019-10-18
US10943941B2 (en) 2021-03-09
JP7392078B2 (ja) 2023-12-05
US20200335546A1 (en) 2020-10-22
KR20240054402A (ko) 2024-04-25
DE202019005770U1 (de) 2022-01-12
US20210183938A1 (en) 2021-06-17
EP3555919B1 (en) 2021-10-27
US11961869B2 (en) 2024-04-16
KR20200116405A (ko) 2020-10-12
WO2019155875A1 (en) 2019-08-15
EP3555919A1 (en) 2019-10-23
JP2019140132A (ja) 2019-08-22

Similar Documents

Publication Publication Date Title
JP7169071B2 (ja) 画素構造、撮像素子、撮像装置、および電子機器
US20230094219A1 (en) Light receiving element, optical device, and electronic apparatus
US20240038801A1 (en) Photodetector and electronic device
US20220392942A1 (en) Imaging device and electronic apparatus
US20220291347A1 (en) Imaging element and distance measuring apparatus
WO2019176303A1 (ja) 撮像装置駆動回路および撮像装置
US20230040457A1 (en) Photodetector
JP2023178687A (ja) 光電変換装置、光電変換システム
KR20230042641A (ko) 광전 변환장치
US12080735B2 (en) Solid-state imaging element, solid-state imaging device, and electronic equipment
KR102708231B1 (ko) 화소 구조, 화상 센서, 촬상 장치 및 전자 기기
US20230046614A1 (en) Observation apparatus, observation method, and distance measurement system
JP2020126961A (ja) 撮像装置および撮像システム
WO2024024515A1 (ja) 光検出素子および測距システム
US20230215959A1 (en) Photoelectric conversion apparatus, photoelectric conversion system, and moving body
EP4391061A1 (en) Optical detection device and method for manufacturing same
WO2022244297A1 (ja) 固体撮像装置及び電子機器
WO2022158170A1 (ja) 光検出素子および電子機器
WO2024057805A1 (ja) 撮像素子および電子機器
JP2023183170A (ja) 光検出素子および光検出システム
JP2024039120A (ja) 光検出装置および電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221028

R150 Certificate of patent or registration of utility model

Ref document number: 7169071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150