WO2012056767A1 - 弾性波分波器 - Google Patents

弾性波分波器 Download PDF

Info

Publication number
WO2012056767A1
WO2012056767A1 PCT/JP2011/064923 JP2011064923W WO2012056767A1 WO 2012056767 A1 WO2012056767 A1 WO 2012056767A1 JP 2011064923 W JP2011064923 W JP 2011064923W WO 2012056767 A1 WO2012056767 A1 WO 2012056767A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
acoustic wave
electrodes
ground
duplexer
Prior art date
Application number
PCT/JP2011/064923
Other languages
English (en)
French (fr)
Inventor
高峰 裕一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2011546361A priority Critical patent/JP4905614B1/ja
Priority to CN201180051818.0A priority patent/CN103181078B/zh
Priority to DE112011103586.1T priority patent/DE112011103586B4/de
Publication of WO2012056767A1 publication Critical patent/WO2012056767A1/ja
Priority to US13/857,169 priority patent/US9013247B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Balance/unbalance networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • H03H9/0576Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including surface acoustic wave [SAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/058Holders; Supports for surface acoustic wave devices
    • H03H9/059Holders; Supports for surface acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0047Balance-unbalance or balance-balance networks using surface acoustic wave devices having two acoustic tracks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/0085Balance-unbalance or balance-balance networks using surface acoustic wave devices having four acoustic tracks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1085Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a non-uniform sealing mass covering the non-active sides of the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14576Transducers whereby only the last fingers have different characteristics with respect to the other fingers, e.g. different shape, thickness or material, split finger
    • H03H9/14582Transducers whereby only the last fingers have different characteristics with respect to the other fingers, e.g. different shape, thickness or material, split finger the last fingers having a different pitch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters

Definitions

  • the present invention relates to an elastic wave duplexer.
  • the present invention relates to a CSP type elastic wave duplexer including a longitudinally coupled resonator type elastic wave filter unit.
  • an RF (Radio Frequency Duplex) circuit is used to simultaneously transmit and receive signals.
  • the duplexer is a duplexer including a transmission filter, a reception filter, and a matching circuit.
  • the duplexer is required to have a small insertion loss in the pass band and a large attenuation near the pass band in each of the transmission filter and the reception filter.
  • a surface acoustic wave duplexer in which a transmission filter and a reception filter are surface acoustic wave filters has been put into practical use.
  • a surface acoustic wave duplexer including a balanced longitudinally coupled resonator type surface acoustic wave filter whose reception filter has a balance-unbalance conversion function has been mounted on an RF circuit of a mobile phone (for example, Patent Document 1).
  • a duplexer such as a duplexer.
  • a CSP Chip Size Package
  • acoustic wave demultiplexer in which an elastic wave filter chip is flip-chip mounted on a wiring board and the elastic wave filter chip is sealed with a sealing resin.
  • the vessel is known.
  • an inductor used for the transmission filter and the reception filter in order to improve the filter characteristics of the transmission filter and the reception filter, an inductor used for the transmission filter and the reception filter, an inductor and a delay line constituting a matching circuit, etc. May be formed. That is, the inductor and the delay line may be formed by the wiring provided on the surface of the wiring board or inside.
  • the surface acoustic wave duplexer using a longitudinally coupled resonator type surface acoustic wave filter as a receiving filter is particularly susceptible to deterioration of isolation.
  • the present invention has been made in view of such points, and an object thereof is to provide an elastic wave duplexer having excellent isolation characteristics.
  • the elastic wave duplexer includes an elastic wave filter chip and a wiring board.
  • the acoustic wave filter chip has a longitudinally coupled resonator type acoustic wave filter section.
  • the longitudinally coupled resonator type acoustic wave filter unit includes a piezoelectric substrate and a plurality of IDT electrodes. The plurality of IDT electrodes are formed on the piezoelectric substrate.
  • the wiring board has a die attach surface and a back surface. An elastic wave filter chip is mounted on the die attach surface.
  • the wiring board includes a land electrode layer including a plurality of land electrodes, a back terminal layer including a plurality of terminals, a plurality of intermediate electrode layers including a plurality of wiring electrodes, and at least three dielectric layers.
  • the plurality of land electrodes are formed on the die attach surface.
  • the plurality of land electrodes are connected to the elastic wave filter chip.
  • the plurality of terminals are formed on the back surface.
  • the plurality of wiring electrodes connect the plurality of land electrodes and the plurality of terminals.
  • the dielectric layer is disposed between any two of the land electrode layer, the plurality of intermediate electrode layers, and the back terminal layer.
  • the dielectric layer has a plurality of via-hole electrodes that connect any of the plurality of land electrodes, the plurality of wiring electrodes, and the plurality of terminals.
  • the plurality of terminals include a ground terminal connected to the ground.
  • the plurality of land electrodes include a ground land electrode connected to the ground terminal.
  • the plurality of wiring electrodes include a plurality of ground wiring electrodes that connect the ground terminal and the ground land electrode.
  • the plurality of via hole electrodes include a first ground via hole electrode, a second ground via hole electrode, and a third ground via hole electrode.
  • the first ground via hole electrode connects the ground wiring electrodes.
  • the second ground via hole electrode connects the ground wiring electrode and the ground land electrode.
  • the third ground via hole electrode connects the ground wiring electrode and the ground terminal. More first ground via hole electrodes are provided than each of the second and third ground via hole electrodes.
  • the acoustic wave duplexer includes a transmission filter and a reception filter.
  • the reception filter is composed of a longitudinally coupled resonator type acoustic wave filter section.
  • the longitudinally coupled resonator type acoustic wave filter unit is a balanced longitudinally coupled resonator type acoustic wave filter unit having a balanced-unbalanced conversion function.
  • the dielectric layer is made of a resin.
  • resin includes a resin including a filler and a fibrous member.
  • glass epoxy resin is also included in the resin.
  • more first ground via hole electrodes are provided than each of the second and third ground via hole electrodes. Therefore, the isolation characteristics of the acoustic wave duplexer can be improved.
  • FIG. 1 is a schematic circuit diagram of a duplexer according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a duplexer according to an embodiment of the present invention.
  • FIG. 3 is a schematic perspective plan view of the fourth electrode layer and the third dielectric layer of the wiring board in the duplexer according to the embodiment of the present invention.
  • FIG. 4 is a schematic perspective plan view of the third electrode layer and the second dielectric layer of the wiring board in the duplexer according to the embodiment of the present invention.
  • FIG. 5 is a schematic perspective plan view of the second electrode layer and the first dielectric layer of the wiring board in the duplexer according to the embodiment of the present invention.
  • FIG. 6 is a schematic perspective plan view of the first electrode layer of the wiring board in the duplexer according to the embodiment of the present invention.
  • FIG. 7 is a schematic perspective plan view of the fourth electrode layer and the third dielectric layer of the wiring board in the duplexer of the first comparative example.
  • FIG. 8 is a schematic perspective plan view of the third electrode layer and the second dielectric layer of the wiring board in the duplexer of the first comparative example.
  • FIG. 9 is a schematic perspective plan view of the second electrode layer and the first dielectric layer of the wiring board in the duplexer of the first comparative example.
  • FIG. 10 is a schematic perspective plan view of the first electrode layer of the wiring board in the duplexer of the first comparative example.
  • FIG. 11 is a schematic perspective plan view of the fourth electrode layer and the third dielectric layer of the wiring board in the duplexer of the second comparative example.
  • FIG. 12 is a schematic perspective plan view of the third electrode layer and the second dielectric layer of the wiring board in the duplexer of the second comparative example.
  • FIG. 13 is a schematic perspective plan view of the second electrode layer and the first dielectric layer of the wiring board in the duplexer of the second comparative example.
  • FIG. 14 is a schematic perspective plan view of the first electrode layer of the wiring board in the duplexer of the second comparative example.
  • FIG. 15 is a graph illustrating the differential characteristics of the duplexer of the example and the differential characteristics of the duplexer of the first comparative example.
  • FIG. 16 is a graph illustrating a first unbalance mode of the duplexer of the example and a first unbalance mode of the duplexer of the first comparative example.
  • FIG. 17 is a graph showing a second unbalance mode of the duplexer of the example and a second unbalance mode of the duplexer of the first comparative example.
  • FIG. 18 is a graph showing the differential characteristics of the duplexer of the example and the differential characteristics of the duplexer of the second comparative example.
  • FIG. 19 is a graph showing the first unbalance mode of the duplexer of the example and the first unbalance mode of the duplexer of the second comparative example.
  • FIG. 20 is a graph showing a second unbalance mode of the duplexer of the example and a second unbalance mode of the duplexer of the second comparative example.
  • the elastic wave duplexer according to the present invention is not limited to the duplexer 1.
  • the elastic wave duplexer according to the present invention may be a duplexer other than a duplexer, such as a triplexer.
  • the elastic wave duplexer according to the present invention may be a boundary acoustic wave duplexer using a boundary acoustic wave.
  • the duplexer 1 of this embodiment is mounted on an RF circuit such as a mobile phone that supports a CDMA system such as UMTS.
  • the duplexer 1 is a duplexer corresponding to UMTS-BAND2.
  • the transmission frequency band of UMTS-BAND2 is 1850 MHz to 1910 MHz, and the reception frequency band is 1930 MHz to 1990 MHz.
  • FIG. 1 is a schematic circuit diagram of a duplexer 1 according to the present embodiment. First, the circuit configuration of the duplexer 1 will be described with reference to FIG.
  • the duplexer 1 has an antenna terminal 21 connected to an antenna, a transmission terminal 24, and first and second reception terminals 22a and 22b.
  • a transmission filter 14 is connected between the antenna terminal 21 and the transmission terminal 24.
  • a reception filter 15 is connected between the antenna terminal 21 and the first and second reception terminals 22a and 22b.
  • a matching circuit including an inductor L1 is connected between a connection point between the transmission filter 14 and the reception filter 15 and the connection point between the antenna terminal 21 and the ground.
  • the transmission filter 14 includes an output terminal 14a, an input terminal 14b, and a ladder-type surface acoustic wave filter unit 14A.
  • the output terminal 14 a is connected to the antenna terminal 21.
  • the input terminal 14 b is connected to the transmission terminal 24.
  • the ladder-type surface acoustic wave filter unit 14A is connected between the output terminal 14a and the input terminal 14b.
  • the ladder-type surface acoustic wave filter unit 14A includes a series arm 33 that connects the output terminal 14a and the input terminal 14b. In the series arm 33, series arm resonators S1, S2, and S3 are connected in series.
  • Each of the series arm resonators S1, S2, and S3 includes a plurality of surface acoustic wave resonators that function as one resonator. As described above, each of the series arm resonators S1, S2, and S3 includes a plurality of surface acoustic wave resonators, so that the power durability of the transmission filter 14 can be improved. Note that each of the series arm resonators S1, S2, and S3 may be composed of one surface acoustic wave resonator.
  • the ladder surface acoustic wave filter unit 14A has parallel arms 37 to 39 connected between the series arm 33 and the ground. Each of the parallel arms 37 to 39 is provided with parallel arm resonators P1, P2, and P3. Each of the parallel arm resonators P1, P2, and P3 is composed of a plurality of surface acoustic wave resonators that function as one resonator. As described above, since each of the parallel arm resonators P1, P2, and P3 is configured by a plurality of surface acoustic wave resonators, the power durability of the transmission filter 14 can be improved. Note that each of the parallel arm resonators P1, P2, and P3 may be composed of one surface acoustic wave resonator.
  • An inductor L2 is connected between the parallel arm resonators P1 and P2 and the ground.
  • An inductor L3 is connected between the parallel arm resonator P3 and the ground.
  • the transmission filter 14 has an LC resonance circuit composed of a capacitor C1 and an inductor L4.
  • the capacitor C1 and the inductor L4 are connected in series between the input terminal 14b and the transmission terminal 24.
  • the capacitor C1 and the inductor L4 are connected in parallel with each other.
  • an attenuation pole is formed on the higher frequency side than the pass band of the transmission filter 14. Further, the impedance at the transmission terminal 24 is matched by the capacitor C1 and the inductor L4.
  • Each surface acoustic wave resonator constituting each of the series arm resonators S1 to S3 and the parallel arm resonators P1 to P3 is arranged on one IDT electrode and both sides of the IDT electrode in the surface acoustic wave propagation direction.
  • the capacitor C1 is composed of a pair of comb-like electrodes that are interleaved with each other.
  • the reception filter 15 has an unbalanced signal terminal 15a and first and second balanced signal terminals 15b and 15c.
  • the unbalanced signal terminal 15a is connected to the antenna terminal 21.
  • the first balanced signal terminal 15b is connected to the first receiving terminal 22a.
  • the second balanced signal terminal 15c is connected to the second receiving terminal 22b.
  • the reception filter 15 includes a longitudinally coupled resonator type surface acoustic wave filter unit 15A connected between the unbalanced signal terminal 15a and the first and second balanced signal terminals 15b and 15c.
  • the longitudinally coupled resonator type surface acoustic wave filter unit 15A is a balanced type longitudinally coupled resonator type surface acoustic wave filter unit having a balance-unbalance conversion function.
  • the impedance of the unbalanced signal terminal 15a is 50 ⁇ .
  • the impedances of the first and second balanced signal terminals 15b and 15c are 100 ⁇ .
  • the longitudinally coupled resonator type surface acoustic wave filter unit 15A includes a first longitudinally coupled resonator type surface acoustic wave filter unit 15A1, a second longitudinally coupled resonator type surface acoustic wave filter unit 15A2, and a third longitudinally coupled resonator.
  • a resonator type surface acoustic wave filter unit 15A3, a fourth longitudinally coupled resonator type surface acoustic wave filter unit 15A4, and surface acoustic wave resonators 17a to 17e are provided.
  • the first and second longitudinally coupled resonator type surface acoustic wave filter sections 15A1 and 15A2 are connected between the unbalanced signal terminal 15a and the first balanced signal terminal 15b.
  • the third and fourth longitudinally coupled resonator type surface acoustic wave filter sections 15A3 and 15A4 are connected between the unbalanced signal terminal 15a and the second balanced signal terminal 15c.
  • Each of the first to fourth longitudinally coupled resonator type surface acoustic wave filter sections 15A1 to 15A4 is provided with three IDT electrodes arranged along the surface acoustic wave propagation direction and these three IDT electrodes. And a pair of reflectors disposed on both sides of the region in the surface acoustic wave propagation direction. That is, each of the first to fourth longitudinally coupled resonator type surface acoustic wave filter units 15A1 to 15A4 is a 3IDT type longitudinally coupled resonator type surface acoustic wave filter unit.
  • the first and second longitudinally coupled resonator type surface acoustic wave filter units 15A1 and 15A2 With respect to the IDT electrodes located on both sides of the surface acoustic wave propagation direction, the IDT electrodes located on both sides of the surface acoustic wave propagation directions of the third and fourth longitudinally coupled resonator type surface acoustic wave filter portions 15A3 and 15A4 are inverted. Yes.
  • the other configuration is the same between the first and second longitudinally coupled resonator type surface acoustic wave filter units 15A1 and 15A2 and the third and fourth longitudinally coupled resonator type surface acoustic wave filter units 15A3 and 15A4. .
  • the surface acoustic wave resonators 17a to 17c are connected in series between the unbalanced signal terminal 15a and the first to fourth longitudinally coupled resonator type surface acoustic wave filter portions 15A1 to 15A4.
  • Each of the surface acoustic wave resonators 17a to 17c has one IDT electrode and a pair of reflectors disposed on both sides of the IDT electrode in the surface acoustic wave propagation direction. That is, each of the surface acoustic wave resonators 17a to 17c is a one-port surface acoustic wave resonator.
  • the surface acoustic wave resonators 17 a to 17 c are provided to adjust the phase with the transmission filter 14. Therefore, the surface acoustic wave resonators 17a to 17c have a resonance frequency within the pass band of the reception filter 15 and an anti-resonance frequency higher than the pass band of the reception filter 15, and outside the pass band. Configured to be located.
  • the surface acoustic wave resonator 17d is connected between a connection point between the first and second longitudinally coupled resonator type surface acoustic wave filter portions 15A1 and 15A2 and the first balanced signal terminal 15b and the ground. ing.
  • the surface acoustic wave resonator 17e is connected between the connection point between the third and fourth longitudinally coupled resonator type surface acoustic wave filter portions 15A3 and 15A4 and the second balanced signal terminal 15c and the ground. It is connected.
  • Each of the surface acoustic wave resonators 17d and 17e has one IDT electrode and a pair of reflectors disposed on both sides of the IDT electrode in the surface acoustic wave propagation direction. That is, each of the surface acoustic wave resonators 17d and 17e is a one-port surface acoustic wave resonator.
  • the surface acoustic wave resonators 17 d and 17 e are provided to increase the out-of-band attenuation of the reception filter 15. Therefore, the surface acoustic wave resonators 17d and 17e are configured such that the resonance frequency is lower than the pass band of the reception filter 15, is located outside the pass band, and the anti-resonance frequency is located in the pass band. Has been.
  • the narrow pitch electrode finger portion is provided at the end of the IDT electrode at the portion where the IDT electrodes are adjacent to each other. Is provided.
  • a narrow pitch electrode finger part is a part where the period of the electrode finger which comprises an IDT electrode is smaller than the period of the electrode finger of the other part of the said IDT electrode in which the narrow pitch electrode finger part is formed.
  • FIG. 2 is a schematic cross-sectional view of the duplexer 1 according to the present embodiment. Next, a specific configuration of the duplexer 1 of the present embodiment will be described with reference mainly to FIG.
  • the duplexer 1 includes a wiring board 10, a transmission-side surface acoustic wave filter chip 18, and a reception-side surface acoustic wave filter chip 19.
  • the transmission-side surface acoustic wave filter chip 18 is formed with portions of the transmission filter 14 excluding the inductors L2 to L4.
  • a terminal 14 c is formed on the transmission-side surface acoustic wave filter chip 18.
  • the terminal 14c is connected to the capacitor C1.
  • the transmission-side surface acoustic wave filter chip 18 is formed on the piezoelectric substrate and the piezoelectric substrate, and includes a pair of combs constituting the IDT electrode and the reflector constituting the surface acoustic wave resonator and the capacitor C1.
  • the reception-side surface acoustic wave filter chip 19 is formed with a reception filter 15 having a longitudinally coupled resonator type surface acoustic wave filter portion 15A.
  • the reception-side surface acoustic wave filter chip 19 is formed on the piezoelectric substrate and the piezoelectric substrate, and includes an IDT electrode, a reflector, a wiring, and the like constituting the longitudinally coupled resonator type surface acoustic wave filter unit 15A. Electrode.
  • the piezoelectric substrate used in the transmission-side surface acoustic wave filter chip 18 and the reception-side surface acoustic wave filter chip 19 of the duplexer 1 include, for example, piezoelectric single crystal substrates such as a LiNbO 3 substrate and a LiTaO 3 substrate.
  • the electrodes of the transmission-side surface acoustic wave filter chip 18 and the reception-side surface acoustic wave filter chip 19 can be formed of, for example, a metal such as aluminum or an alloy.
  • An electrode can also be comprised by the laminated body of a some metal layer, for example.
  • the wiring board 10 has a die attach surface 10a and a back surface 10b.
  • the transmission-side surface acoustic wave filter chip 18 and the reception-side surface acoustic wave filter chip 19 are flip-chip mounted by bumps 26 on the die attach surface 10a.
  • a sealing resin layer 16 is formed on the die attach surface 10 a so as to cover the transmission-side surface acoustic wave filter chip 18 and the reception-side surface acoustic wave filter chip 19. That is, the duplexer 1 of the present embodiment is a CSP type surface acoustic wave filter device.
  • the wiring board 10 is composed of a laminate of first to third dielectric layers 41 to 43 and first to fourth electrode layers 44 to 47.
  • the first electrode layer 44 is disposed under the first dielectric layer 41.
  • the second electrode layer 45 is disposed between the first dielectric layer 41 and the second dielectric layer 42.
  • the third electrode layer 46 is disposed between the second dielectric layer 42 and the third dielectric layer 43.
  • the fourth electrode layer 47 is disposed on the third dielectric layer 43.
  • Each of the first to third dielectric layers 41 to 43 is formed with a plurality of via hole electrodes.
  • the wiring substrate 10 is a laminated substrate formed by alternately laminating electrode layers and dielectric layers.
  • Each of the first to third dielectric layers 41 to 43 can be made of, for example, a resin or ceramics such as alumina. That is, the wiring board 10 may be a printed wiring multilayer board made of resin or a ceramic multilayer board.
  • the wiring board is configured by a laminate of three dielectric layers and four electrode layers.
  • the present invention is not limited to this configuration.
  • the wiring board may have four or more dielectric layers.
  • FIG. 3 is a schematic perspective plan view of the fourth electrode layer 47 and the third dielectric layer 43 of the wiring board 10 in the duplexer 1 according to the present embodiment.
  • FIG. 4 is a schematic perspective plan view of the third electrode layer 46 and the second dielectric layer 42 of the wiring board 10 in the duplexer 1 according to the present embodiment.
  • FIG. 5 is a schematic perspective plan view of the second electrode layer 45 and the first dielectric layer 41 of the wiring board 10 in the duplexer 1 according to the present embodiment.
  • FIG. 6 is a schematic perspective plan view of the first electrode layer 44 of the wiring board 10 in the duplexer 1 according to the present embodiment.
  • FIGS. 3 to 6 show a state in which the duplexer 1 is seen through from the transmitting surface acoustic wave filter chip 18 and the receiving surface acoustic wave filter chip 19 side.
  • the fourth electrode layer 47 is composed of land electrodes 47a to 47l.
  • the fourth electrode layer 47 is a land electrode layer.
  • the land electrodes 47 a to 47 l are formed on the die attach surface 10 a of the wiring substrate 10, and are connected to the transmission-side surface acoustic wave filter chip 18 and the reception-side surface acoustic wave filter chip 19.
  • the third electrode layer 46 includes electrodes 46a to 46c, 46e, and 46g to 46j.
  • the third electrode layer 46 is an intermediate electrode layer.
  • the electrodes 46a to 46c, 46e, 46g to 46j are connected to the land electrodes 47a to 47l on any of the antenna terminal 21, the first and second receiving terminals 22a and 22b, the transmitting terminal 24, and the ground terminal 25. It is a wiring electrode to be connected.
  • the second electrode layer 45 includes electrodes 45a to 45c, 45e, 45g, and 45j.
  • the second electrode layer 45 is an intermediate electrode layer.
  • the electrodes 45a to 45c, 45e, 45g, and 45j are connected to the land electrodes 47a to 47l, any of the antenna terminal 21, the first and second reception terminals 22a and 22b, the transmission terminal 24, and the ground terminal 25. It is a wiring electrode to be connected.
  • the first electrode layer 44 includes an antenna terminal 21, first and second receiving terminals 22 a and 22 b, a transmitting terminal 24, and a ground terminal 25.
  • the first electrode layer 44 is a back terminal layer.
  • the antenna terminal 21, the first and second reception terminals 22 a and 22 b, the transmission terminal 24, and the ground terminal 25 are formed on the back surface 10 b of the wiring board 10.
  • the antenna terminal 21 of the first electrode layer 44 is connected to the electrode 45a of the second electrode layer 45 by the via hole electrode 53a of the first dielectric layer 41.
  • the electrode 45 a of the second electrode layer 45 is connected to the electrode 46 a of the third electrode layer 46 by the via hole electrode 52 a of the second dielectric layer 42.
  • the electrode 46 a of the third electrode layer 46 is connected to the land electrodes 47 a and 47 d of the fourth electrode layer 47 by via-hole electrodes 51 a and 51 d of the third dielectric layer 43.
  • the land electrode 47 a of the fourth electrode layer 47 is connected to the unbalanced signal terminal 15 a of the reception-side surface acoustic wave filter chip 19.
  • the land electrode 47 d of the fourth electrode layer 47 is connected to the output terminal 14 a of the transmission-side surface acoustic wave filter chip 18.
  • the first receiving terminal 22 a of the first electrode layer 44 is connected to the electrode 45 b of the second electrode layer 45 by the via hole electrode 53 b of the first dielectric layer 41.
  • the electrode 45 b of the second electrode layer 45 is connected to the electrode 46 b of the third electrode layer 46 by the via hole electrode 52 b of the second dielectric layer 42.
  • the electrode 46 b of the third electrode layer 46 is connected to the land electrode 47 b of the fourth electrode layer 47 by the via hole electrode 51 b of the third dielectric layer 43.
  • the land electrode 47 b of the fourth electrode layer 47 is connected to the first balanced signal terminal 15 b of the reception-side surface acoustic wave filter chip 19.
  • the second receiving terminal 22 b of the first electrode layer 44 is connected to the electrode 45 c of the second electrode layer 45 by the via hole electrode 53 c of the first dielectric layer 41.
  • the electrode 45 c of the second electrode layer 45 is connected to the electrode 46 c of the third electrode layer 46 by the via hole electrode 52 c of the second dielectric layer 42.
  • the electrode 46 c of the third electrode layer 46 is connected to the land electrode 47 c of the fourth electrode layer 47 by the via hole electrode 51 c of the third dielectric layer 43.
  • the land electrode 47 c of the fourth electrode layer 47 is connected to the second balanced signal terminal 15 c of the reception-side surface acoustic wave filter chip 19.
  • the transmission terminal 24 of the first electrode layer 44 is connected to the electrode 45e of the second electrode layer 45 by a via hole electrode 53e of the first dielectric layer 41.
  • the electrode 45e of the second electrode layer 45 includes electrode portions 45e1 and 45e2.
  • the electrode portion 45e1 is a portion from one end portion of the electrode 45e of the second electrode layer 45 to a connection point with the via-hole electrode 53e of the first dielectric layer 41.
  • the electrode portion 45e2 is a portion from the other end of the electrode 45e of the second electrode layer 45 to a connection point with the via-hole electrode 53e of the first dielectric layer 41.
  • the electrode part 45e1 constitutes an inductor L4.
  • the electrode 45e of the second electrode layer 45 is connected to the electrodes 46e and 46h of the third electrode layer 46 by via-hole electrodes 52e and 52h of the second dielectric layer 42.
  • the electrode 46e of the third electrode layer 46 constitutes an inductor L4.
  • the electrode 46 e of the third electrode layer 46 is connected to the land electrode 47 e of the fourth electrode layer 47 by the via hole electrode 51 e of the third dielectric layer 43.
  • the land electrode 47 e of the fourth electrode layer 47 is connected to the input terminal 14 b of the transmission surface acoustic wave filter chip 18.
  • the electrode 46 h of the third electrode layer 46 is connected to the land electrode 47 h of the fourth electrode layer 47 by the via hole electrode 51 h of the third dielectric layer 43.
  • the land electrode 47 h of the fourth electrode layer 47 is connected to the terminal 14 c of the transmission-side surface acoustic wave filter chip 18.
  • the ground terminal 25 of the first electrode layer 44 is connected to the electrode 45g of the second electrode layer 45 by the via hole electrode 53g of the first dielectric layer 41.
  • the electrode 45g of the second electrode layer 45 constitutes an inductor L2.
  • the electrode 45 g of the second electrode layer 45 is connected to the electrode 46 g of the third electrode layer 46 by the via hole electrode 52 g of the second dielectric layer 42.
  • the electrode 46g of the third electrode layer 46 constitutes the inductor L2.
  • the electrode 46 g of the third electrode layer 46 is connected to the land electrodes 47 f and 47 g of the fourth electrode layer 47 by via-hole electrodes 51 f and 51 g of the third dielectric layer 43.
  • the land electrode 47 f of the fourth electrode layer 47 is connected to the parallel arm resonator P ⁇ b> 2 of the transmission-side surface acoustic wave filter chip 18.
  • the land electrode 47 g of the fourth electrode layer 47 is connected to the parallel arm resonator P ⁇ b> 1 of the transmission-side surface acoustic wave filter chip 18.
  • the ground terminal 25 of the first electrode layer 44 is connected to the electrode 45j of the second electrode layer 45 by a plurality of via hole electrodes 53j of the first dielectric layer 41.
  • the electrode 45 j of the second electrode layer 45 is connected to the electrodes 46 i and 46 j of the third electrode layer 46 by a plurality of via hole electrodes 52 i and 52 j of the second dielectric layer 42.
  • the electrode 46i of the third electrode layer 46 constitutes an inductor L3.
  • the electrode 46 i of the third electrode layer 46 is connected to the land electrode 47 i of the fourth electrode layer 47 by the via hole electrode 51 i of the third dielectric layer 43.
  • the land electrode 47 i of the fourth electrode layer 47 is connected to the parallel arm resonator P 3 of the transmission-side surface acoustic wave filter chip 18.
  • the electrode 46j of the third electrode layer 46 is connected to the land electrodes 47j, 47k, 47l of the fourth electrode layer 47 by via-hole electrodes 51j, 51k, 51l of the third dielectric layer 43.
  • the land electrodes 47j, 47k, and 47l of the fourth electrode layer 47 are the first to fourth longitudinally coupled resonator type surface acoustic wave filter portions 15A1 to 15A4 and the surface acoustic wave resonators of the reception-side surface acoustic wave filter chip 19, respectively. 17d and 17e.
  • the ground terminal 25 is a ground electrode that connects the transmission filter 14 and the reception filter 15 to the ground.
  • the land electrodes 47j, 47k, 47l, the via hole electrodes 51j, 51k, 51l, the electrode 46j, the plurality of via hole electrodes 52j, the electrode 45j, and the plurality of via hole electrodes 53j connect the reception filter 15 to the ground. It is a ground electrode. Therefore, the land electrodes 47j, 47k, and 47l are ground land electrodes.
  • the electrode 46j and the electrode 45j are ground wiring electrodes 55 that connect the ground terminal 25 and the land electrodes 47j, 47k, and 47l.
  • the plurality of via-hole electrodes 52j are first ground via-hole electrodes that connect the electrode 46j that is the ground wiring electrode 55 and the electrode 45j that is the ground wiring electrode 55.
  • the via-hole electrodes 51j, 51k, and 51l are second ground via-hole electrodes that connect the electrode 46j that is the ground wiring electrode 55 and the land electrodes 47j, 47k, and 47l that are ground land electrodes.
  • the plurality of via-hole electrodes 53j are third ground via-hole electrodes that connect the electrode 45j that is the ground wiring electrode 55 and the ground terminal 25.
  • the via hole electrode 52 j that is the first ground via hole electrode is the via hole electrode 51 j, 51 k, 51 l that is the second ground via hole electrode and the via hole electrode 53 j that is the third ground via hole electrode. More than any of these. Specifically, in the present embodiment, 14 via-hole electrodes 52j are provided. A total of three via-hole electrodes 51j, 51k, 51l are provided. Four via-hole electrodes 53j are provided. Therefore, the isolation characteristic of the duplexer 1 can be improved.
  • the receiving side elasticity The ground near the surface wave filter chip 19 becomes weak. For this reason, in the reception-side surface acoustic wave filter chip 19, a signal outside the pass band that should flow to the ground becomes difficult to flow to the ground. Accordingly, the isolation characteristics are deteriorated.
  • the via-hole electrode 52j that is the first ground via-hole electrode is replaced with the via-hole electrodes 51j, 51k, and 51l that are the second ground via-hole electrodes and the via-hole electrodes that are the third ground via-hole electrodes. If more than 53j is provided, the electrodes formed on the piezoelectric substrate of the reception-side surface acoustic wave filter chip 19 and the wiring are strengthened while strengthening the ground near the reception-side surface acoustic wave filter chip 19 Capacitive coupling with the fourth electrode layer 47 of the substrate 10 can be reduced. Therefore, the isolation characteristics of the duplexer 1 can be improved.
  • the duplexer 1 according to the above embodiment was manufactured with the following design parameters. Note that the wavelength of the surface acoustic wave determined by the period of the electrode fingers of the IDT electrode is ⁇ I.
  • Piezoelectric substrate of receiving surface acoustic wave filter chip 19 40 ° ⁇ 5 ° Y-cut X-propagation LiTaO 3 substrate
  • Electrodes of receiving surface acoustic wave filter chip 19 Al, Ti First longitudinally coupled resonator type surface acoustic wave filter unit 15A1: Cross width of IDT electrode: 30.4 ⁇ I Number of electrode fingers of IDT electrodes on both sides: 39 (of which, the number of narrow-pitch electrode fingers: 5) Number of electrode fingers of center IDT electrode: 43 (of which, the number of narrow pitch electrode fingers at one side end: 3, the number of narrow pitch electrode fingers at the other end: 7) Number of reflector electrode fingers: 65 IDT electrode and reflector metallization ratio: 0.68 IDT electrode and reflector electrode film thickness: 0.091 ⁇ I
  • the period of the narrow pitch electrode finger of the IDT electrode on one side of the IDT electrodes on both sides is designed to be 0.09 ⁇ m smaller than the period of the narrow pitch electrode finger of the IDT electrodes on
  • Second longitudinally coupled resonator type surface acoustic wave filter unit 15A2 The same design parameters as the first longitudinally coupled resonator type surface acoustic wave filter unit 15A1
  • the third and fourth longitudinally coupled resonator type surface acoustic wave filter units 15A3 and 15A4 The only difference is that the first and second longitudinally coupled resonator type surface acoustic wave filter portions 15A1 and 15A2 and the IDT electrodes on both sides are inverted.
  • IDT electrode Number of electrode fingers of IDT electrode: 111 Number of electrode fingers of reflector: 18 Metallization ratio of IDT electrode and reflector: 0.60 IDT electrode and reflector electrode film thickness: 0.091 ⁇ I
  • FIG. 7 is a schematic perspective plan view of the fourth electrode layer 47 and the third dielectric layer 43 of the wiring board 10 in the duplexer of the first comparative example.
  • FIG. 8 is a schematic perspective plan view of the third electrode layer 46 and the second dielectric layer 42 of the wiring board 10 in the duplexer of the first comparative example.
  • FIG. 9 is a schematic perspective plan view of the second electrode layer 45 and the first dielectric layer 41 of the wiring board 10 in the duplexer of the first comparative example.
  • FIG. 10 is a schematic perspective plan view of the first electrode layer 44 of the wiring board 10 in the duplexer of the first comparative example.
  • FIGS. 7 to 10 show a state in which the duplexer of the first comparative example is seen through from the transmitting surface acoustic wave filter chip 18 and the receiving surface acoustic wave filter chip 19 side.
  • the via hole electrodes 52j are provided more than the via hole electrodes 51j, 51k, 51l, but are provided fewer than the via hole electrodes 53j.
  • FIG. 11 is a schematic perspective plan view of the fourth electrode layer 47 and the third dielectric layer 43 of the wiring board 10 in the duplexer of the second comparative example.
  • FIG. 12 is a schematic perspective plan view of the third electrode layer 46 and the second dielectric layer 42 of the wiring board 10 in the duplexer of the second comparative example.
  • FIG. 13 is a schematic perspective plan view of the second electrode layer 45 and the first dielectric layer 41 of the wiring board 10 in the duplexer of the second comparative example.
  • FIG. 14 is a schematic perspective plan view of the first electrode layer 44 of the wiring board 10 in the duplexer of the second comparative example.
  • FIG. 11 to FIG. 14 show a state in which the duplexer of the second comparative example is seen through from the transmitting surface acoustic wave filter chip 18 and the receiving surface acoustic wave filter chip 19 side.
  • the number of via-hole electrodes 52j is the same as the number of via-hole electrodes 53j and is smaller than the number of via-hole electrodes 51j, 51k, 51l.
  • isolation characteristics of the duplexers of the examples and the first and second comparative examples were measured.
  • the isolation characteristic “differential characteristic” which is an isolation characteristic in a differential state between the transmission terminal 24 and the first and second reception terminals 22a and 22b, and the transmission terminal 24
  • the “second unbalance mode”, which is an oscillation characteristic was measured.
  • FIG. 15 shows the differential characteristics of the duplexer 1 of the example and the differential characteristics of the duplexer of the first comparative example.
  • FIG. 16 shows a first unbalance mode of the duplexer 1 of the embodiment and a first unbalance mode of the duplexer of the first comparative example.
  • FIG. 17 shows a second unbalance mode of the duplexer 1 of the embodiment and a second unbalance mode of the duplexer of the first comparative example.
  • the minimum attenuation value in the transmission frequency band (1850 to 1910 MHz) in the differential characteristic is 57.7 dB in the duplexer 1 of the embodiment, and 56. 5 in the duplexer of the first comparative example. 2 dB.
  • the duplexer 1 of the example was 1.5 dB better in differential characteristics than the duplexer of the first comparative example.
  • the minimum value of attenuation in the transmission frequency band (1850 to 1910 MHz) in the first unbalanced mode is 56.0 dB in the duplexer 1 of the embodiment, and the duplexer of the first comparative example. Then, it was 55.0 dB.
  • the first unbalance mode was 1.0 dB better than the duplexer of the first comparative example.
  • the minimum value of attenuation in the transmission frequency band (1850 to 1910 MHz) in the second unbalanced mode is 52.7 dB in the duplexer 1 of the embodiment, and the duplexer of the first comparative example. It was 50.7 dB.
  • the second unbalance mode was 2.0 dB better than the duplexer of the first comparative example.
  • FIG. 18 shows the differential characteristics of the duplexer 1 of the example and the differential characteristics of the duplexer of the second comparative example.
  • FIG. 19 shows a first unbalance mode of the duplexer 1 of the embodiment and a first unbalance mode of the duplexer of the second comparative example.
  • FIG. 20 shows a second unbalance mode of the duplexer 1 of the embodiment and a second unbalance mode of the duplexer of the second comparative example.
  • the minimum attenuation value in the transmission frequency band (1850 to 1910 MHz) in the differential characteristics is 57.7 dB in the duplexer 1 of the embodiment, and 56. 5 in the duplexer of the second comparative example. It was 0 dB.
  • the duplexer 1 of the example was 1.7 dB better in differential characteristics than the duplexer of the second comparative example.
  • the minimum value of attenuation in the transmission frequency band (1850 to 1910 MHz) in the first unbalanced mode is 56.0 dB in the duplexer 1 of the embodiment, and the duplexer of the second comparative example. It was 56.0 dB.
  • the duplexer of the second comparative example and the first unbalance mode were the same.
  • the minimum value of attenuation in the transmission frequency band (1850 to 1910 MHz) in the second unbalanced mode is 52.7 dB in the duplexer 1 of the embodiment, and the duplexer of the second comparative example. It was 51.0 dB. In the duplexer 1 of the example, the second unbalance mode was 1.7 dB better than the duplexer of the second comparative example.
  • the number of via hole electrodes 52j as the first ground via hole electrodes is larger than any of the via hole electrodes 51j, 51k, 51l as the second ground via hole electrodes and the via hole electrode 53j as the third ground via hole electrode. It can be seen that the isolation characteristic of the duplexer 1 can be improved by providing.

Abstract

 優れたアイソレーション特性を有する弾性波分波器を提供する。 第1のグラウンドビアホール電極52jは、グラウンド配線電極55である電極46j,45j間を接続している。第2のグラウンドビアホール電極51j,51k,51lは、グラウンド配線電極55である電極46jとグラウンドランド電極47j,47k,47lとを接続している。第3のグラウンドビアホール電極53jは、グラウンド配線電極55である電極45jとグラウンド端子25とを接続している。第1のグラウンドビアホール電極52jが、第2及び第3のグラウンドビアホール電極51j,51k,51l,53jのそれぞれよりも多く設けられている。

Description

弾性波分波器
 本発明は、弾性波分波器に関する。特に、本発明は、縦結合共振子型弾性波フィルタ部を備えるCSP型の弾性波分波器に関する。
 例えば、UMTS(Universal Mobile Telecommunications System)のようなCDMA(Code Division Multiple Access)方式に対応する携帯電話機などの通信機では、信号の送信及び受信を同時に行うために、RF(Radio Frequency)回路にデュプレクサが搭載されている。デュプレクサは、送信フィルタと、受信フィルタと、整合回路とを備える分波器である。デュプレクサには、送信フィルタ及び受信フィルタのそれぞれにおいて、通過帯域内の挿入損失が小さいこと、通過帯域近傍の減衰量が大きいことなどが求められる。
 従来、送信フィルタ及び受信フィルタが弾性表面波フィルタからなる弾性表面波デュプレクサが実用化されている。近年では、携帯電話機のRF回路においてバランを省略するために、デュプレクサの受信フィルタにバラン機能を持たせることが求められている。そのため、受信フィルタが平衡-不平衡変換機能を有するバランス型の縦結合共振子型弾性表面波フィルタからなる弾性表面波デュプレクサが、携帯電話機のRF回路に搭載されるようになってきている(例えば特許文献1等)。
特開2003-249842号公報
 ところで、携帯電話機などの通信機では、RF回路を小型化するために、デュプレクサなどの分波器の小型化が求められている。小型な分波器としては、配線基板に弾性波フィルタチップがフリップチップ実装されており、弾性波フィルタチップが封止樹脂により封止されている、CSP(Chip Size Package)型の弾性波分波器が知られている。
 CSP型の弾性波分波器においては、送信フィルタや受信フィルタのフィルタ特性を改善するために、送信フィルタや受信フィルタに用いられるインダクタや、整合回路を構成するインダクタや遅延線などが、配線基板に形成されることがある。すなわち、配線基板の表面や内部に設けられた配線により、上記のインダクタや遅延線が形成されることがある。
 しかしながら、配線基板にインダクタや遅延線を形成した場合、配線基板内で電気的な結合などが生じたり、送信フィルタ及び受信フィルタのグラウンドが弱くなったりする場合がある。送信フィルタ及び受信フィルタのグラウンドが弱くなると、グラウンドに流れるべき通過帯域外の信号がグラウンドに流れにくくなる。このため、送信フィルタ及び受信フィルタにおける通過帯域外の減衰量が悪化することになる。その結果、弾性波分波器のアイソレーション特性が悪化することになる。
 特に、縦結合共振子型弾性表面波フィルタでは、ラダー型弾性表面波フィルタに比べて、グラウンドが弱いときに、通過帯域外の減衰量が悪化しやすい。そのため、受信フィルタとして縦結合共振子型弾性表面波フィルタを用いた弾性表面波デュプレクサは、特にアイソレーションが悪化しやすい。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、優れたアイソレーション特性を有する弾性波分波器を提供することにある。
 本発明に係る弾性波分波器は、弾性波フィルタチップと、配線基板とを備えている。弾性波フィルタチップは、縦結合共振子型弾性波フィルタ部を有する。縦結合共振子型弾性波フィルタ部は、圧電基板と、複数のIDT電極とを含む。複数のIDT電極は、圧電基板の上に形成されている。配線基板は、ダイアタッチ面と裏面とを有する。ダイアタッチ面の上に弾性波フィルタチップが実装されている。配線基板は、複数のランド電極を含むランド電極層と、複数の端子を含む裏面端子層と、複数の配線電極を含む複数の中間電極層と、少なくとも3層の誘電体層とを有する。複数のランド電極は、ダイアタッチ面の上に形成されている。複数のランド電極は、弾性波フィルタチップに接続されている。複数の端子は、裏面の上に形成されている。複数の配線電極は、複数のランド電極と複数の端子とを接続している。誘電体層は、ランド電極層と複数の中間電極層と裏面端子層とのうち、いずれか2つの間に配置されている。誘電体層は、複数のランド電極と複数の配線電極と複数の端子とのうち、いずれかを接続する複数のビアホール電極を有する。複数の端子には、グラウンドに接続されるグラウンド端子が含まれている。複数のランド電極には、グラウンド端子に接続されているグラウンドランド電極が含まれている。複数の配線電極には、グラウンド端子とグラウンドランド電極とを接続している複数のグラウンド配線電極が含まれている。複数のビアホール電極は、第1のグラウンドビアホール電極と、第2のグラウンドビアホール電極と、第3のグラウンドビアホール電極とを含む。第1のグラウンドビアホール電極は、グラウンド配線電極間を接続している。第2のグラウンドビアホール電極は、グラウンド配線電極とグラウンドランド電極とを接続している。第3のグラウンドビアホール電極は、グラウンド配線電極とグラウンド端子とを接続している。第1のグラウンドビアホール電極が、第2及び第3のグラウンドビアホール電極のそれぞれよりも多く設けられている。
 本発明に係る弾性波分波器のある特定の局面では、弾性波分波器は、送信フィルタと受信フィルタとを備えている。受信フィルタは、縦結合共振子型弾性波フィルタ部により構成されている。
 本発明に係る弾性波分波器の他の特定の局面では、縦結合共振子型弾性波フィルタ部は、平衡-不平衡変換機能を有するバランス型の縦結合共振子型弾性波フィルタ部である。
 本発明に係る弾性波分波器の別の特定の局面では、誘電体層は、樹脂からなる。
 なお、本発明において、「樹脂」には、フィラーや繊維状部材を含む樹脂が含まれるものとする。例えば、ガラスエポキシ樹脂も樹脂に含まれるものとする。
 本発明では、第1のグラウンドビアホール電極が、第2及び第3のグラウンドビアホール電極のそれぞれよりも多く設けられている、このため、弾性波分波器のアイソレーション特性を改善することができる。
図1は、本発明を実施した一実施形態に係るデュプレクサの略図的回路図である。 図2は、本発明を実施した一実施形態に係るデュプレクサの模式的断面図である。 図3は、本発明を実施した一実施形態に係るデュプレクサにおける、配線基板の第4の電極層と第3の誘電体層との模式的透視平面図である。 図4は、本発明を実施した一実施形態に係るデュプレクサにおける、配線基板の第3の電極層と第2の誘電体層との模式的透視平面図である。 図5は、本発明を実施した一実施形態に係るデュプレクサにおける、配線基板の第2の電極層と第1の誘電体層との模式的透視平面図である。 図6は、本発明を実施した一実施形態に係るデュプレクサにおける、配線基板の第1の電極層の模式的透視平面図である。 図7は、第1の比較例のデュプレクサにおける、配線基板の第4の電極層と第3の誘電体層との模式的透視平面図である。 図8は、第1の比較例のデュプレクサにおける、配線基板の第3の電極層と第2の誘電体層との模式的透視平面図である。 図9は、第1の比較例のデュプレクサにおける、配線基板の第2の電極層と第1の誘電体層との模式的透視平面図である。 図10は、第1の比較例のデュプレクサにおける、配線基板の第1の電極層の模式的透視平面図である。 図11は、第2の比較例のデュプレクサにおける、配線基板の第4の電極層と第3の誘電体層との模式的透視平面図である。 図12は、第2の比較例のデュプレクサにおける、配線基板の第3の電極層と第2の誘電体層との模式的透視平面図である。 図13は、第2の比較例のデュプレクサにおける、配線基板の第2の電極層と第1の誘電体層との模式的透視平面図である。 図14は、第2の比較例のデュプレクサにおける、配線基板の第1の電極層の模式的透視平面図である。 図15は、実施例のデュプレクサの差動特性と、第1の比較例のデュプレクサの差動特性とを示すグラフである。 図16は、実施例のデュプレクサの第1のアンバランスモードと、第1の比較例のデュプレクサの第1のアンバランスモードとを示すグラフである。 図17は、実施例のデュプレクサの第2のアンバランスモードと、第1の比較例のデュプレクサの第2のアンバランスモードとを示すグラフである。 図18は、実施例のデュプレクサの差動特性と、第2の比較例のデュプレクサの差動特性とを示すグラフである。 図19は、実施例のデュプレクサの第1のアンバランスモードと、第2の比較例のデュプレクサの第1のアンバランスモードとを示すグラフである。 図20は、実施例のデュプレクサの第2のアンバランスモードと、第2の比較例のデュプレクサの第2のアンバランスモードとを示すグラフである。
 以下、本発明を実施した好ましい形態について、弾性表面波分波器の一種である図1及び図2に示すデュプレクサ1を例に挙げて説明する。但し、デュプレクサ1は、単なる例示である。本発明に係る弾性波分波器は、デュプレクサ1に何ら限定されない。本発明に係る弾性波分波器は、例えばトリプレクサなどの、デュプレクサ以外の分波器であってもよい。また、本発明に係る弾性波分波器は、弾性境界波を利用した弾性境界波分波器であってもよい。
 本実施形態のデュプレクサ1は、例えば、UMTSのようなCDMA方式に対応する携帯電話機などのRF回路に搭載されるものである。具体的には、デュプレクサ1は、UMTS-BAND2に対応するデュプレクサである。なお、UMTS-BAND2の送信周波数帯は、1850MHz~1910MHzであり、受信周波数帯は、1930MHz~1990MHzである。
 図1は、本実施形態に係るデュプレクサ1の略図的回路図である。まず、図1を参照しながら、デュプレクサ1の回路構成について説明する。
 図1に示すように、デュプレクサ1は、アンテナに接続されるアンテナ端子21と、送信端子24と、第1及び第2の受信端子22a,22bとを有する。アンテナ端子21と送信端子24との間に、送信フィルタ14が接続されている。アンテナ端子21と第1及び第2の受信端子22a,22bとの間に、受信フィルタ15が接続されている。送信フィルタ14及び受信フィルタ15の接続点とアンテナ端子21との間の接続点と、グラウンドとの間には、インダクタL1からなる整合回路が接続されている。
 送信フィルタ14は、出力端子14aと、入力端子14bと、ラダー型弾性表面波フィルタ部14Aとを有する。出力端子14aは、アンテナ端子21と接続されている。入力端子14bは、送信端子24と接続されている。ラダー型弾性表面波フィルタ部14Aは、出力端子14aと入力端子14bとの間に接続されている。ラダー型弾性表面波フィルタ部14Aは、出力端子14aと入力端子14bとを接続している直列腕33を有する。直列腕33において、直列腕共振子S1,S2,S3が直列に接続されている。直列腕共振子S1,S2,S3のそれぞれは、ひとつの共振子として機能する複数の弾性表面波共振子により構成されている。このように、直列腕共振子S1,S2,S3のそれぞれが、複数の弾性表面波共振子によって構成されていることにより、送信フィルタ14の耐電力性を向上させることができる。なお、直列腕共振子S1,S2,S3のそれぞれは、1つの弾性表面波共振子により構成されていてもよい。
 ラダー型弾性表面波フィルタ部14Aは、直列腕33とグラウンドとの間に接続されている並列腕37~39を有する。並列腕37~39のそれぞれには、並列腕共振子P1,P2,P3が設けられている。並列腕共振子P1,P2,P3のそれぞれは、ひとつの共振子として機能する複数の弾性表面波共振子により構成されている。このように、並列腕共振子P1,P2,P3のそれぞれが、複数の弾性表面波共振子によって構成されていることにより、送信フィルタ14の耐電力性を向上させることができる。なお、並列腕共振子P1,P2,P3のそれぞれは、1つの弾性表面波共振子により構成されていてもよい。
 並列腕共振子P1,P2とグラウンドとの間には、インダクタL2が接続されている。並列腕共振子P3とグラウンドとの間には、インダクタL3が接続されている。
 送信フィルタ14は、キャパシタC1とインダクタL4とにより構成されているLC共振回路を有する。キャパシタC1とインダクタL4とは、入力端子14bと送信端子24との間に直列に接続されている。また、キャパシタC1とインダクタL4とは、互いに並列に接続されている。このLC共振回路により、送信フィルタ14の通過帯域よりも高域側に減衰極が形成される。また、キャパシタC1とインダクタL4とにより、送信端子24におけるインピーダンスが整合されている。
 直列腕共振子S1~S3及び並列腕共振子P1~P3のそれぞれを構成している各弾性表面波共振子は、1つのIDT電極と、当該IDT電極の弾性表面波伝搬方向両側に配置された1組の反射器とを有する。すなわち、直列腕共振子S1~S3及び並列腕共振子P1~P3のそれぞれを構成している弾性表面波共振子は、1ポート型弾性表面波共振子である。キャパシタC1は、互いに間挿し合っている一対の櫛歯状電極により構成されている。
 受信フィルタ15は、不平衡信号端子15aと、第1及び第2の平衡信号端子15b,15cとを有する。不平衡信号端子15aは、アンテナ端子21と接続されている。第1の平衡信号端子15bは、第1の受信端子22aと接続されている。第2の平衡信号端子15cは、第2の受信端子22bと接続されている。受信フィルタ15は、不平衡信号端子15aと、第1及び第2の平衡信号端子15b,15cとの間に接続されている、縦結合共振子型弾性表面波フィルタ部15Aを有する。縦結合共振子型弾性表面波フィルタ部15Aは、平衡-不平衡変換機能を有するバランス型の縦結合共振子型弾性表面波フィルタ部である。なお、本実施形態において、不平衡信号端子15aのインピーダンスは50Ωである。第1及び第2の平衡信号端子15b,15cのインピーダンスは100Ωである。
 縦結合共振子型弾性表面波フィルタ部15Aは、第1の縦結合共振子型弾性表面波フィルタ部15A1と、第2の縦結合共振子型弾性表面波フィルタ部15A2と、第3の縦結合共振子型弾性表面波フィルタ部15A3と、第4の縦結合共振子型弾性表面波フィルタ部15A4と、弾性表面波共振子17a~17eとを有する。
 第1,第2の縦結合共振子型弾性表面波フィルタ部15A1,15A2は、不平衡信号端子15aと第1の平衡信号端子15bとの間に接続されている。一方、第3,第4の縦結合共振子型弾性表面波フィルタ部15A3,15A4は、不平衡信号端子15aと第2の平衡信号端子15cとの間に接続されている。
 第1~第4の縦結合共振子型弾性表面波フィルタ部15A1~15A4のそれぞれは、弾性表面波伝搬方向に沿って配置された3つのIDT電極と、それら3つのIDT電極が設けられている領域の弾性表面波伝搬方向両側に配置された一対の反射器とを有する。すなわち、第1~第4の縦結合共振子型弾性表面波フィルタ部15A1~15A4のそれぞれは、3IDT型の縦結合共振子型弾性表面波フィルタ部である。
 なお、第1~第4の縦結合共振子型弾性表面波フィルタ部15A1~15A4では、位相を反転するために、第1,第2の縦結合共振子型弾性表面波フィルタ部15A1,15A2の弾性表面波伝搬方向両側に位置するIDT電極に対して、第3,第4の縦結合共振子型弾性表面波フィルタ部15A3,15A4の弾性表面波伝搬方向両側に位置するIDT電極が反転されている。それ以外の構成は、第1,第2の縦結合共振子型弾性表面波フィルタ部15A1,15A2と第3,第4の縦結合共振子型弾性表面波フィルタ部15A3,15A4とで同じである。
 弾性表面波共振子17a~17cは、不平衡信号端子15aと第1~第4の縦結合共振子型弾性表面波フィルタ部15A1~15A4との間に直列に接続されている。弾性表面波共振子17a~17cのそれぞれは、1つのIDT電極と、当該IDT電極の弾性表面波伝搬方向両側に配置された1組の反射器とを有する。すなわち、弾性表面波共振子17a~17cのそれぞれは、1ポート型弾性表面波共振子である。
 弾性表面波共振子17a~17cは、送信フィルタ14との位相を調整するために設けられている。そのため、弾性表面波共振子17a~17cは、共振周波数が受信フィルタ15の通過帯域内に位置し、かつ反共振周波数が受信フィルタ15の通過帯域よりも高域側であって、通過帯域外に位置するように構成されている。
 弾性表面波共振子17dは、第1,第2の縦結合共振子型弾性表面波フィルタ部15A1,15A2と第1の平衡信号端子15bとの間の接続点と、グラウンドとの間に接続されている。一方、弾性表面波共振子17eは、第3,第4の縦結合共振子型弾性表面波フィルタ部15A3,15A4と第2の平衡信号端子15cとの間の接続点と、グラウンドとの間に接続されている。
 弾性表面波共振子17d,17eのそれぞれは、1つのIDT電極と、当該IDT電極の弾性表面波伝搬方向両側に配置された1組の反射器とを有する。すなわち、弾性表面波共振子17d,17eのそれぞれは、1ポート型弾性表面波共振子である。弾性表面波共振子17d,17eは、受信フィルタ15の帯域外減衰量を大きくするために設けられている。そのため、弾性表面波共振子17d,17eは、共振周波数が受信フィルタ15の通過帯域よりも低域側であって、通過帯域外に位置し、反共振周波数が通過帯域内に位置するように構成されている。
 なお、本実施形態では、第1~第4の縦結合共振子型弾性表面波フィルタ部15A1~15A4において、IDT電極同士が隣り合う部分には、IDT電極の端部に狭ピッチ電極指部が設けられている。狭ピッチ電極指部とは、IDT電極を構成する電極指の周期が、狭ピッチ電極指部が形成されている当該IDT電極の他の部分の電極指の周期よりも小さい部分である。
 図2は、本実施形態に係るデュプレクサ1の模式的断面図である。次に、図2を主として参照しながら、本実施形態のデュプレクサ1の具体的構成について説明する。
 図2に示すように、デュプレクサ1は、配線基板10と、送信側弾性表面波フィルタチップ18と、受信側弾性表面波フィルタチップ19とを備えている。図1に示すように、送信側弾性表面波フィルタチップ18には、送信フィルタ14のインダクタL2~L4を除く部分が形成されている。送信側弾性表面波フィルタチップ18には、端子14cが形成されている。端子14cは、キャパシタC1に接続されている。送信側弾性表面波フィルタチップ18は、圧電基板と、圧電基板の上に形成されており、弾性表面波共振子を構成しているIDT電極及び反射器、キャパシタC1を構成している一対の櫛歯状電極、配線などを含む電極とを有する。一方、受信側弾性表面波フィルタチップ19には、縦結合共振子型弾性表面波フィルタ部15Aを有する受信フィルタ15が形成されている。受信側弾性表面波フィルタチップ19は、圧電基板と、圧電基板の上に形成されており、縦結合共振子型弾性表面波フィルタ部15Aを構成しているIDT電極及び反射器、配線などを含む電極とを有する。
 デュプレクサ1の送信側弾性表面波フィルタチップ18及び受信側弾性表面波フィルタチップ19に用いられる圧電基板の具体例としては、例えば、LiNbO基板やLiTaO基板などの圧電単結晶基板が挙げられる。送信側弾性表面波フィルタチップ18及び受信側弾性表面波フィルタチップ19の電極は、例えば、アルミニウムなどの金属や合金により形成することができる。電極は、例えば、複数の金属層の積層体によって構成することもできる。
 図2に示すように、配線基板10は、ダイアタッチ面10aと、裏面10bとを有する。図2に示すように、上記送信側弾性表面波フィルタチップ18及び受信側弾性表面波フィルタチップ19は、ダイアタッチ面10aの上に、バンプ26によりフリップチップ実装されている。ダイアタッチ面10aの上には、送信側弾性表面波フィルタチップ18及び受信側弾性表面波フィルタチップ19を覆うように、封止樹脂層16が形成されている。すなわち、本実施形態のデュプレクサ1は、CSP型の弾性表面波フィルタ装置である。
 図2に示すように、配線基板10は、第1~第3の誘電体層41~43と第1~第4の電極層44~47との積層体により構成されている。第1の電極層44は、第1の誘電体層41の下に配置されている。第2の電極層45は、第1の誘電体層41と第2の誘電体層42の間に配置されている。第3の電極層46は、第2の誘電体層42と第3の誘電体層43の間に配置されている。第4の電極層47は、第3の誘電体層43の上に配置されている。第1~第3の誘電体層41~43には、それぞれ、複数のビアホール電極が形成されている。配線基板10は、電極層と誘電体層とが交互に積層されて形成されている積層基板である。なお、第1~第3の誘電体層41~43のそれぞれは、例えば、樹脂や、アルミナなどのセラミックスなどにより構成することができる。すなわち、配線基板10は、樹脂からなるプリント配線多層基板や、セラミック多層基板であってもよい。
 なお、本実施形態では、配線基板が3つの誘電体層と4つの電極層との積層体により構成されている例について説明する。但し、本発明は、この構成に限定されない。本発明においては、配線基板は、4層以上の誘電体層を有していてもよい。
 図3は、本実施形態に係るデュプレクサ1における、配線基板10の第4の電極層47と第3の誘電体層43との模式的透視平面図である。図4は、本実施形態に係るデュプレクサ1における、配線基板10の第3の電極層46と第2の誘電体層42との模式的透視平面図である。図5は、本実施形態に係るデュプレクサ1における、配線基板10の第2の電極層45と第1の誘電体層41との模式的透視平面図である。図6は、本実施形態に係るデュプレクサ1における、配線基板10の第1の電極層44の模式的透視平面図である。図3~図6は、送信側弾性表面波フィルタチップ18及び受信側弾性表面波フィルタチップ19側からデュプレクサ1を透視した状態を示している。
 図3に示すように、第4の電極層47は、ランド電極47a~47lにより構成されている。第4の電極層47は、ランド電極層である。ランド電極47a~47lは、配線基板10のダイアタッチ面10aの上に形成されており、送信側弾性表面波フィルタチップ18及び受信側弾性表面波フィルタチップ19に接続されている。
 図4に示すように、第3の電極層46は、電極46a~46c,46e,46g~46jにより構成されている。第3の電極層46は、中間電極層である。電極46a~46c,46e,46g~46jは、ランド電極47a~47lを、アンテナ端子21と、第1及び第2の受信端子22a,22bと、送信端子24と、グラウンド端子25とのいずれかに接続する配線電極である。
 図5に示すように、第2の電極層45は、電極45a~45c,45e,45g,45jにより構成されている。第2の電極層45は、中間電極層である。電極45a~45c,45e,45g,45jは、ランド電極47a~47lを、アンテナ端子21と、第1及び第2の受信端子22a,22bと、送信端子24と、グラウンド端子25とのいずれかに接続する配線電極である。
 図6に示すように、第1の電極層44は、アンテナ端子21と、第1及び第2の受信端子22a,22bと、送信端子24と、グラウンド端子25とにより構成されている。第1の電極層44は、裏面端子層である。アンテナ端子21と、第1及び第2の受信端子22a,22bと、送信端子24と、グラウンド端子25とは、配線基板10の裏面10bの上に形成されている。
 第1の電極層44のアンテナ端子21は、第1の誘電体層41のビアホール電極53aによって、第2の電極層45の電極45aに接続されている。第2の電極層45の電極45aは、第2の誘電体層42のビアホール電極52aによって、第3の電極層46の電極46aに接続されている。第3の電極層46の電極46aは、第3の誘電体層43のビアホール電極51a,51dによって、第4の電極層47のランド電極47a,47dに接続されている。第4の電極層47のランド電極47aは、受信側弾性表面波フィルタチップ19の不平衡信号端子15aに接続されている。第4の電極層47のランド電極47dは、送信側弾性表面波フィルタチップ18の出力端子14aに接続されている。
 第1の電極層44の第1の受信端子22aは、第1の誘電体層41のビアホール電極53bによって、第2の電極層45の電極45bに接続されている。第2の電極層45の電極45bは、第2の誘電体層42のビアホール電極52bによって、第3の電極層46の電極46bに接続されている。第3の電極層46の電極46bは、第3の誘電体層43のビアホール電極51bによって、第4の電極層47のランド電極47bに接続されている。第4の電極層47のランド電極47bは、受信側弾性表面波フィルタチップ19の第1の平衡信号端子15bに接続されている。
 第1の電極層44の第2の受信端子22bは、第1の誘電体層41のビアホール電極53cによって、第2の電極層45の電極45cに接続されている。第2の電極層45の電極45cは、第2の誘電体層42のビアホール電極52cによって、第3の電極層46の電極46cに接続されている。第3の電極層46の電極46cは、第3の誘電体層43のビアホール電極51cによって、第4の電極層47のランド電極47cに接続されている。第4の電極層47のランド電極47cは、受信側弾性表面波フィルタチップ19の第2の平衡信号端子15cに接続されている。
 第1の電極層44の送信端子24は、第1の誘電体層41のビアホール電極53eによって、第2の電極層45の電極45eに接続されている。第2の電極層45の電極45eは、電極部45e1,45e2とを有する。電極部45e1は、第2の電極層45の電極45eの一方の端部から、第1の誘電体層41のビアホール電極53eとの接続点までの部分である。電極部45e2は、第2の電極層45の電極45eの他方の端部から、第1の誘電体層41のビアホール電極53eとの接続点までの部分である。電極部45e1は、インダクタL4を構成している。第2の電極層45の電極45eは、第2の誘電体層42のビアホール電極52e,52hによって、第3の電極層46の電極46e,46hに接続されている。第3の電極層46の電極46eは、インダクタL4を構成している。第3の電極層46の電極46eは、第3の誘電体層43のビアホール電極51eによって、第4の電極層47のランド電極47eに接続されている。第4の電極層47のランド電極47eは、送信側弾性表面波フィルタチップ18の入力端子14bに接続されている。第3の電極層46の電極46hは、第3の誘電体層43のビアホール電極51hによって、第4の電極層47のランド電極47hに接続されている。第4の電極層47のランド電極47hは、送信側弾性表面波フィルタチップ18の端子14cに接続されている。
 第1の電極層44のグラウンド端子25は、第1の誘電体層41のビアホール電極53gによって、第2の電極層45の電極45gに接続されている。第2の電極層45の電極45gは、インダクタL2を構成している。第2の電極層45の電極45gは、第2の誘電体層42のビアホール電極52gによって、第3の電極層46の電極46gに接続されている。第3の電極層46の電極46gは、インダクタL2を構成している。第3の電極層46の電極46gは、第3の誘電体層43のビアホール電極51f,51gによって、第4の電極層47のランド電極47f,47gに接続されている。第4の電極層47のランド電極47fは、送信側弾性表面波フィルタチップ18の並列腕共振子P2に接続されている。第4の電極層47のランド電極47gは、送信側弾性表面波フィルタチップ18の並列腕共振子P1に接続されている。
 また、第1の電極層44のグラウンド端子25は、第1の誘電体層41の複数のビアホール電極53jによって、第2の電極層45の電極45jに接続されている。第2の電極層45の電極45jは、第2の誘電体層42の複数のビアホール電極52i,52jによって、第3の電極層46の電極46i,46jに接続されている。第3の電極層46の電極46iは、インダクタL3を構成している。第3の電極層46の電極46iは、第3の誘電体層43のビアホール電極51iによって、第4の電極層47のランド電極47iに接続されている。第4の電極層47のランド電極47iは、送信側弾性表面波フィルタチップ18の並列腕共振子P3に接続されている。第3の電極層46の電極46jは、第3の誘電体層43のビアホール電極51j,51k,51lによって、第4の電極層47のランド電極47j,47k,47lに接続されている。第4の電極層47のランド電極47j,47k,47lは、受信側弾性表面波フィルタチップ19の第1~第4の縦結合共振子型弾性表面波フィルタ部15A1~15A4及び弾性表面波共振子17d,17eに接続されている。
 配線基板10において、グラウンド端子25は、送信フィルタ14と受信フィルタ15とをグラウンドに接続するグラウンド電極である。また、ランド電極47j,47k,47lと、ビアホール電極51j,51k,51lと、電極46jと、複数のビアホール電極52jと、電極45jと、複数のビアホール電極53jとは、受信フィルタ15をグラウンドに接続するグラウンド電極である。このため、ランド電極47j,47k,47lは、グラウンドランド電極である。電極46jと電極45jとは、グラウンド端子25とランド電極47j,47k,47lとを接続している、グラウンド配線電極55である。複数のビアホール電極52jは、グラウンド配線電極55である電極46jと、グラウンド配線電極55である電極45jとを接続している、第1のグラウンドビアホール電極である。ビアホール電極51j,51k,51lは、グラウンド配線電極55である電極46jと、グラウンドランド電極であるランド電極47j,47k,47lとを接続している、第2のグラウンドビアホール電極である。複数のビアホール電極53jは、グラウンド配線電極55である電極45jと、グラウンド端子25とを接続している、第3のグラウンドビアホール電極である。
 本実施形態では、配線基板10において、第1のグラウンドビアホール電極であるビアホール電極52jが、第2のグラウンドビアホール電極であるビアホール電極51j,51k,51l及び第3のグラウンドビアホール電極であるビアホール電極53jのいずれよりも多く設けられている。具体的には、本実施形態では、ビアホール電極52jは、14個設けられている。ビアホール電極51j,51k,51lは、合計3個設けられている。ビアホール電極53jは、4個設けられている。従って、デュプレクサ1のアイソレーション特性を改善することができる。
 例えば、第3のグラウンドビアホール電極であるビアホール電極53jの数を多くし、第1及び第2のグラウンドビアホール電極であるビアホール電極52j,51j,51k,51lの数を少なくした場合は、受信側弾性表面波フィルタチップ19に近い位置でのグラウンドが弱くなってしまう。このため、受信側弾性表面波フィルタチップ19において、グラウンドに流れるべき通過帯域外の信号がグラウンドに流れにくくなってしまう。従って、アイソレーション特性が悪化する。
 また、例えば、第2のグラウンドビアホール電極であるビアホール電極51j,51k,51lの数を多くし、第1及び第3のグラウンドビアホール電極であるビアホール電極52j,53jの数を少なくすることも考えられる。この場合は、受信側弾性表面波フィルタチップ19に近い位置でのグラウンドは強化される。しかしながら、このような構成では、受信側弾性表面波フィルタチップ19の圧電基板上に形成された電極と、配線基板10の第4の電極層47との容量結合が大きくなってしまう。従って、アイソレーション特性が悪化する。第2のグラウンドビアホール電極であるビアホール電極51j,51k,51lに加えて、第1及び第3のグラウンドビアホール電極であるビアホール電極52j,53jの少なくとも一方の数を多くした場合も同様である。また、ビアホール電極51j,51k,51lと、ビアホール電極52jと、ビアホール電極53jのすべての数を多くすると、配線基板が樹脂からなるプリント配線基板である場合、レーザの照射によるビアホール電極の形成に要する時間が長くなってしまい、デュプレクサの生産性が低下してしまう。
 それに対して、本実施形態のように、第1のグラウンドビアホール電極であるビアホール電極52jを、第2のグラウンドビアホール電極であるビアホール電極51j,51k,51l及び第3のグラウンドビアホール電極であるビアホール電極53jのいずれよりも多く設けた場合は、受信側弾性表面波フィルタチップ19に近い位置でのグラウンドを強化しつつ、受信側弾性表面波フィルタチップ19の圧電基板上に形成された電極と、配線基板10の第4の電極層47との容量結合を小さくすることができる。従って、デュプレクサ1のアイソレーション特性を向上させることができる。
 以下、この効果について、具体例を参照しつつ、さらに詳細に説明する。なお、以下の実施例並びに第1及び第2の比較例の説明において、上記実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。
 (実施例)
 まず、実施例として、下記の設計パラメータで、上記実施形態に係るデュプレクサ1を作製した。なお、IDT電極の電極指の周期で定まる弾性表面波の波長をλIとする。
 (実施例の設計パラメータ)
 受信側弾性表面波フィルタチップ19の圧電基板:40°±5°YカットX伝搬LiTaO基板
 受信側弾性表面波フィルタチップ19の電極:Al,Ti
 第1の縦結合共振子型弾性表面波フィルタ部15A1:
  IDT電極の交叉幅:30.4λI
  両側のIDT電極の電極指の本数:39本(うち、狭ピッチ電極指の本数:5本)
  中央のIDT電極の電極指の本数:43本(うち、一方側端部の狭ピッチ電極指の本数:3本、他方側端部の狭ピッチ電極指の本数:7本)
  反射器の電極指の本数:65本
  IDT電極及び反射器のメタライゼーションレシオ:0.68
  IDT電極及び反射器の電極膜厚:0.091λI
  両側のIDT電極のうちの一方側のIDT電極の狭ピッチ電極指の周期を、他方側のIDT電極の狭ピッチ電極指の周期より0.09μm小さく設計している。
 第2の縦結合共振子型弾性表面波フィルタ部15A2:
 第1の縦結合共振子型弾性表面波フィルタ部15A1と同じ設計パラメータ
 第3,第4の縦結合共振子型弾性表面波フィルタ部15A3,15A4:
 第1,第2の縦結合共振子型弾性表面波フィルタ部15A1,15A2と、両側のIDT電極が反転されている点のみが異なる。
 弾性表面波共振子17a~17c:
  IDT電極の交叉幅:11.0λI
  IDT電極の電極指の本数:71本
  反射器の電極指の本数:18本
  IDT電極及び反射器のメタライゼーションレシオ:0.60
  IDT電極及び反射器の電極膜厚:0.095λI
 弾性表面波共振子17d,17e:
  IDT電極の交叉幅:30.0λI
  IDT電極には、IDT電極の中央部分の交差幅が最も大きくなるように交差幅重み付けが施されており、上記の値は交差幅が最も大きい部分の値である。
  IDT電極の電極指の本数:111本
  反射器の電極指の本数:18本
  IDT電極及び反射器のメタライゼーションレシオ:0.60
  IDT電極及び反射器の電極膜厚:0.091λI
 (第1及び第2の比較例)
 第1及び第2の比較例では、配線基板10の構成が異なる以外は、上記実施例と同様の構成を有するデュプレクサを作製した。
 図7は、第1の比較例のデュプレクサにおける、配線基板10の第4の電極層47と第3の誘電体層43との模式的透視平面図である。図8は、第1の比較例のデュプレクサにおける、配線基板10の第3の電極層46と第2の誘電体層42との模式的透視平面図である。図9は、第1の比較例のデュプレクサにおける、配線基板10の第2の電極層45と第1の誘電体層41との模式的透視平面図である。図10は、第1の比較例のデュプレクサにおける、配線基板10の第1の電極層44の模式的透視平面図である。図7~図10は、送信側弾性表面波フィルタチップ18及び受信側弾性表面波フィルタチップ19側から第1の比較例のデュプレクサを透視した状態を示している。
 図7~図10に示すように、第1の比較例のデュプレクサでは、ビアホール電極52jは、4個設けられている。ビアホール電極51j,51k,51lは、合計3個設けられている。ビアホール電極53jは、21個設けられている。従って、第1の比較例のデュプレクサでは、ビアホール電極52jは、ビアホール電極51j,51k,51lよりは多く設けられているものの、ビアホール電極53jよりは少なく設けられている。
 図11は、第2の比較例のデュプレクサにおける、配線基板10の第4の電極層47と第3の誘電体層43との模式的透視平面図である。図12は、第2の比較例のデュプレクサにおける、配線基板10の第3の電極層46と第2の誘電体層42との模式的透視平面図である。図13は、第2の比較例のデュプレクサにおける、配線基板10の第2の電極層45と第1の誘電体層41との模式的透視平面図である。図14は、第2の比較例のデュプレクサにおける、配線基板10の第1の電極層44の模式的透視平面図である。図11~図14は、送信側弾性表面波フィルタチップ18及び受信側弾性表面波フィルタチップ19側から第2の比較例のデュプレクサを透視した状態を示している。
 図11~図14に示すように、第2の比較例のデュプレクサでは、ビアホール電極52jは、4個設けられている。ビアホール電極51j,51k,51lは、合計10個設けられている。ビアホール電極53jは、4個設けられている。従って、第2の比較例のデュプレクサでは、ビアホール電極52jは、ビアホール電極53jと同数であって、ビアホール電極51j,51k,51lよりも少ない数だけ設けられている。
 (実施例及び第1及び第2の比較例のデュプレクサのアイソレーション特性)
 次に、実施例のデュプレクサ1並びに第1及び第2の比較例のデュプレクサのアイソレーション特性を測定した。具体的には、アイソレーション特性として、送信端子24と第1及び第2の受信端子22a,22bとの間の差動状態でのアイソレーション特性である「差動特性」と、送信端子24と第1の受信端子22aとの間のアンバランスモードでのアイソレーション特性である「第1のアンバランスモード」と、送信端子24と第2の受信端子22bとの間のアンバランスモードでのアイソレーション特性である「第2のアンバランスモード」とを測定した。
 図15に、実施例のデュプレクサ1の差動特性と、第1の比較例のデュプレクサの差動特性とを示す。図16に、実施例のデュプレクサ1の第1のアンバランスモードと、第1の比較例のデュプレクサの第1のアンバランスモードとを示す。図17に、実施例のデュプレクサ1の第2のアンバランスモードと、第1の比較例のデュプレクサの第2のアンバランスモードとを示す。
 図15に示すように、差動特性での送信周波数帯(1850~1910MHz)における減衰量の最小値が、実施例のデュプレクサ1では57.7dBであり、第1の比較例のデュプレクサでは56.2dBであった。実施例のデュプレクサ1は、差動特性が第1の比較例のデュプレクサよりも1.5dB優れていた。
 図16に示すように、第1のアンバランスモードでの送信周波数帯(1850~1910MHz)における減衰量の最小値が、実施例のデュプレクサ1では56.0dBであり、第1の比較例のデュプレクサでは55.0dBであった。実施例のデュプレクサ1は、第1のアンバランスモードが第1の比較例のデュプレクサよりも1.0dB優れていた。
 図17に示すように、第2のアンバランスモードでの送信周波数帯(1850~1910MHz)における減衰量の最小値が、実施例のデュプレクサ1では52.7dBであり、第1の比較例のデュプレクサでは50.7dBであった。実施例のデュプレクサ1は、第2のアンバランスモードが第1の比較例のデュプレクサよりも2.0dB優れていた。
 図18に、実施例のデュプレクサ1の差動特性と、第2の比較例のデュプレクサの差動特性とを示す。図19に、実施例のデュプレクサ1の第1のアンバランスモードと、第2の比較例のデュプレクサの第1のアンバランスモードとを示す。図20に、実施例のデュプレクサ1の第2のアンバランスモードと、第2の比較例のデュプレクサの第2のアンバランスモードとを示す。
 図18に示すように、差動特性での送信周波数帯(1850~1910MHz)における減衰量の最小値が、実施例のデュプレクサ1では57.7dBであり、第2の比較例のデュプレクサでは56.0dBであった。実施例のデュプレクサ1は、差動特性が第2の比較例のデュプレクサよりも1.7dB優れていた。
 図19に示すように、第1のアンバランスモードでの送信周波数帯(1850~1910MHz)における減衰量の最小値が、実施例のデュプレクサ1では56.0dBであり、第2の比較例のデュプレクサでは56.0dBであった。実施例のデュプレクサ1は、第2の比較例のデュプレクサと第1のアンバランスモードが同等であった。
 図20に示すように、第2のアンバランスモードでの送信周波数帯(1850~1910MHz)における減衰量の最小値が、実施例のデュプレクサ1では52.7dBであり、第2の比較例のデュプレクサでは51.0dBであった。実施例のデュプレクサ1は、第2のアンバランスモードが第2の比較例のデュプレクサよりも1.7dB優れていた。
 以上の結果から、第1のグラウンドビアホール電極であるビアホール電極52jを、第2のグラウンドビアホール電極であるビアホール電極51j,51k,51l及び第3のグラウンドビアホール電極であるビアホール電極53jのいずれよりも多く設けることにより、デュプレクサ1のアイソレーション特性を改善できることが分かる。
1…デュプレクサ
10…配線基板
10a…ダイアタッチ面
10b…裏面
14…送信フィルタ
14A…ラダー型弾性表面波フィルタ部
14a…出力端子
14b…入力端子
14c…端子
15…受信フィルタ
15A…縦結合共振子型弾性表面波フィルタ部
15A1…第1の縦結合共振子型弾性表面波フィルタ部
15A2…第2の縦結合共振子型弾性表面波フィルタ部
15A3…第3の縦結合共振子型弾性表面波フィルタ部
15A4…第4の縦結合共振子型弾性表面波フィルタ部
15a…不平衡信号端子
15b…第1の平衡信号端子
15c…第2の平衡信号端子
16…封止樹脂層
17a~17e…弾性表面波共振子
18…送信側弾性表面波フィルタチップ
19…受信側弾性表面波フィルタチップ
21…アンテナ端子
22a…第1の受信端子
22b…第2の受信端子
24…送信端子
25…グラウンド端子
26…バンプ
33…直列腕
37~39…並列腕
41…第1の誘電体層
42…第2の誘電体層
43…第3の誘電体層
44…第1の電極層
45…第2の電極層
45a~45j…電極
46…第3の電極層
46a~46j…電極
47…第4の電極層
47a~47l…ランド電極
51a~51l…ビアホール電極
52a~52j…ビアホール電極
53a~53j…ビアホール電極
55…グラウンド配線電極
L1~L4…インダクタ
P1~P3…並列腕共振子
S1~S3…直列腕共振子
C1…キャパシタ

Claims (4)

  1.  圧電基板と、前記圧電基板の上に形成されている複数のIDT電極とを含む縦結合共振子型弾性波フィルタ部を有する弾性波フィルタチップと、
     ダイアタッチ面と裏面とを有し、前記ダイアタッチ面の上に前記弾性波フィルタチップが実装されており、前記ダイアタッチ面の上に形成されており前記弾性波フィルタチップに接続されている複数のランド電極を含むランド電極層と、前記裏面の上に形成されている複数の端子を含む裏面端子層と、前記複数のランド電極と前記複数の端子とを接続している複数の配線電極を含む複数の中間電極層と、少なくとも3層の誘電体層とを有する配線基板と、
    を備え、
     前記誘電体層は、前記ランド電極層と前記複数の中間電極層と前記裏面端子層とのうち、いずれか2つの間に配置され、かつ、前記複数のランド電極と前記複数の配線電極と前記複数の端子とのうち、いずれかを接続する複数のビアホール電極を有し、
     前記複数の端子には、グラウンドに接続されるグラウンド端子が含まれ、
     前記複数のランド電極には、前記グラウンド端子に接続されているグラウンドランド電極が含まれ、
     前記複数の配線電極には、前記グラウンド端子と前記グラウンドランド電極とを接続している複数のグラウンド配線電極が含まれ、
     前記複数のビアホール電極には、前記グラウンド配線電極間を接続している第1のグラウンドビアホール電極と、前記グラウンド配線電極と前記グラウンドランド電極とを接続している第2のグラウンドビアホール電極と、前記グラウンド配線電極と前記グラウンド端子とを接続している第3のグラウンドビアホール電極とを含み、
     前記第1のグラウンドビアホール電極が、前記第2及び第3のグラウンドビアホール電極のそれぞれよりも多く設けられている、弾性波分波器。
  2.  送信フィルタと受信フィルタとを備え、前記受信フィルタが前記縦結合共振子型弾性波フィルタ部により構成されている、請求項1に記載の弾性波分波器。
  3.  前記縦結合共振子型弾性波フィルタ部は、平衡-不平衡変換機能を有するバランス型の縦結合共振子型弾性波フィルタ部である、請求項1または2に記載の弾性波分波器。
  4.  前記誘電体層は、樹脂からなる、請求項1~3のいずれか一項に記載の弾性波分波器。
PCT/JP2011/064923 2010-10-26 2011-06-29 弾性波分波器 WO2012056767A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011546361A JP4905614B1 (ja) 2010-10-26 2011-06-29 弾性波分波器
CN201180051818.0A CN103181078B (zh) 2010-10-26 2011-06-29 弹性波分波器
DE112011103586.1T DE112011103586B4 (de) 2010-10-26 2011-06-29 Demultiplexer für elastische Wellen
US13/857,169 US9013247B2 (en) 2010-10-26 2013-04-05 Elastic wave demultiplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-239787 2010-10-26
JP2010239787 2010-10-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/857,169 Continuation US9013247B2 (en) 2010-10-26 2013-04-05 Elastic wave demultiplexer

Publications (1)

Publication Number Publication Date
WO2012056767A1 true WO2012056767A1 (ja) 2012-05-03

Family

ID=45993501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064923 WO2012056767A1 (ja) 2010-10-26 2011-06-29 弾性波分波器

Country Status (5)

Country Link
US (1) US9013247B2 (ja)
JP (1) JP4905614B1 (ja)
CN (1) CN103181078B (ja)
DE (1) DE112011103586B4 (ja)
WO (1) WO2012056767A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090269A1 (ja) * 2015-11-27 2017-06-01 株式会社村田製作所 フィルタ装置
WO2022024807A1 (ja) * 2020-07-31 2022-02-03 株式会社村田製作所 弾性波フィルタおよびマルチプレクサ
WO2022071185A1 (ja) * 2020-09-30 2022-04-07 株式会社村田製作所 マルチプレクサ
WO2023058584A1 (ja) * 2021-10-07 2023-04-13 株式会社村田製作所 フィルタ装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010046794B4 (de) * 2010-09-28 2015-07-16 Epcos Ag Mit akustischen Wellen arbeitendes Filter mit verringerten Nichtlinearitäten
CN104221285B (zh) 2012-04-10 2016-12-21 株式会社村田制作所 梯型弹性表面波滤波器
JP5880529B2 (ja) * 2013-11-29 2016-03-09 株式会社村田製作所 弾性表面波フィルタ
WO2015125460A1 (en) * 2014-02-18 2015-08-27 Skyworks Panasonic Filter Solutions Japan Co., Ltd. Acoustic wave elements and ladder filters using same
US10135422B2 (en) * 2015-10-01 2018-11-20 Skyworks Filter Solutions Japan Co., Ltd. Filter devices having improved attenuation characteristics
US10404234B2 (en) 2016-09-02 2019-09-03 Skyworks Filter Solutions Japan Co., Ltd. Filter device with phase compensation, and electronic devices including same
JP2018088678A (ja) 2016-11-29 2018-06-07 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 位相をキャンセルするループ回路を含むフィルタ
US11038487B2 (en) 2018-07-18 2021-06-15 Skyworks Solutions, Inc. FBAR filter with integrated cancelation circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066978A (ja) * 2004-08-24 2006-03-09 Kyocera Corp 弾性表面波装置および通信装置
JP2008118192A (ja) * 2006-10-31 2008-05-22 Kyocera Corp 分波器デバイス用回路基板、分波器、及び通信装置
WO2008146525A1 (ja) * 2007-05-28 2008-12-04 Murata Manufacturing Co., Ltd. デュプレクサ及び弾性波装置
JP2009500928A (ja) * 2005-07-08 2009-01-08 エプコス アクチエンゲゼルシャフト 改善された隣接チャネル抑圧を有するhfフィルタ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6750737B2 (en) * 2001-10-02 2004-06-15 Matsushita Electric Industrial Co., Ltd. High frequency switch and radio communication apparatus with layered body for saw filter mounting
JP2003249840A (ja) * 2001-12-18 2003-09-05 Murata Mfg Co Ltd 弾性表面波装置
JP3833569B2 (ja) 2001-12-21 2006-10-11 富士通メディアデバイス株式会社 分波器及びこれを用いた電子装置
JP2003298462A (ja) * 2002-04-01 2003-10-17 Ngk Spark Plug Co Ltd 分波器デバイス用セラミック基板
JP4381113B2 (ja) * 2003-11-27 2009-12-09 三洋電機株式会社 アンテナ共用器
US7196594B2 (en) * 2004-01-29 2007-03-27 Triquint, Inc. Surface acoustic wave duplexer having enhanced isolation performance
JP5073355B2 (ja) * 2007-04-20 2012-11-14 太陽誘電株式会社 アンテナ分波器
CN101689846B (zh) * 2007-08-30 2013-10-09 京瓷株式会社 电子部件
DE112009004700B4 (de) * 2008-12-10 2017-03-16 Murata Manufacturing Co., Ltd. Hochfrequenzmodul

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066978A (ja) * 2004-08-24 2006-03-09 Kyocera Corp 弾性表面波装置および通信装置
JP2009500928A (ja) * 2005-07-08 2009-01-08 エプコス アクチエンゲゼルシャフト 改善された隣接チャネル抑圧を有するhfフィルタ
JP2008118192A (ja) * 2006-10-31 2008-05-22 Kyocera Corp 分波器デバイス用回路基板、分波器、及び通信装置
WO2008146525A1 (ja) * 2007-05-28 2008-12-04 Murata Manufacturing Co., Ltd. デュプレクサ及び弾性波装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090269A1 (ja) * 2015-11-27 2017-06-01 株式会社村田製作所 フィルタ装置
JPWO2017090269A1 (ja) * 2015-11-27 2017-11-24 株式会社村田製作所 フィルタ装置
CN108352826A (zh) * 2015-11-27 2018-07-31 株式会社村田制作所 滤波器装置
US10326424B2 (en) 2015-11-27 2019-06-18 Murata Manufacturing Co., Ltd. Filter device
CN108352826B (zh) * 2015-11-27 2021-08-06 株式会社村田制作所 滤波器装置
WO2022024807A1 (ja) * 2020-07-31 2022-02-03 株式会社村田製作所 弾性波フィルタおよびマルチプレクサ
WO2022071185A1 (ja) * 2020-09-30 2022-04-07 株式会社村田製作所 マルチプレクサ
WO2023058584A1 (ja) * 2021-10-07 2023-04-13 株式会社村田製作所 フィルタ装置

Also Published As

Publication number Publication date
JPWO2012056767A1 (ja) 2014-03-20
CN103181078A (zh) 2013-06-26
JP4905614B1 (ja) 2012-03-28
DE112011103586B4 (de) 2017-05-18
DE112011103586T5 (de) 2013-10-24
CN103181078B (zh) 2015-09-02
US9013247B2 (en) 2015-04-21
US20130214873A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP4905614B1 (ja) 弾性波分波器
CN106253877B (zh) 梯型弹性波滤波器和天线共用器
JP5423931B2 (ja) 弾性波分波器
JP4868064B2 (ja) 弾性波分波器
CN103109458B (zh) 弹性波分波器
US7459997B2 (en) Elastic wave filter device and duplexer
US9093980B2 (en) Elastic wave filter device
WO2011092879A1 (ja) 弾性表面波フィルタ装置
JP5333403B2 (ja) 弾性表面波フィルタ装置
US9595938B2 (en) Elastic wave device
WO2011061904A1 (ja) 弾性波フィルタ装置とこれを用いたアンテナ共用器
JP5700121B2 (ja) 弾性波フィルタ装置
US20130222077A1 (en) Elastic wave filter device
WO2007049699A1 (ja) 分波器とそれを用いた通信装置
JP5018894B2 (ja) 弾性波フィルタ装置
WO2012114593A1 (ja) 弾性波分波器
JP3985717B2 (ja) 弾性表面波装置およびそれを用いた通信装置
JP2003060484A (ja) 弾性表面波装置
US7800460B2 (en) Elastic wave filter device and duplexer
US8791774B2 (en) Branching filter
JP2013168692A (ja) 弾性波分波器
JP2012085279A (ja) デュプレクサ
JPWO2008146524A1 (ja) 弾性波フィルタ装置
WO2012132093A1 (ja) 弾性波装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011546361

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835908

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120111035861

Country of ref document: DE

Ref document number: 112011103586

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835908

Country of ref document: EP

Kind code of ref document: A1