WO2012053495A1 - 多段遠心圧縮機およびそのリターンチャネル - Google Patents
多段遠心圧縮機およびそのリターンチャネル Download PDFInfo
- Publication number
- WO2012053495A1 WO2012053495A1 PCT/JP2011/073876 JP2011073876W WO2012053495A1 WO 2012053495 A1 WO2012053495 A1 WO 2012053495A1 JP 2011073876 W JP2011073876 W JP 2011073876W WO 2012053495 A1 WO2012053495 A1 WO 2012053495A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stage
- impeller
- compressor
- return channel
- vane
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
- F04D17/12—Multi-stage pumps
- F04D17/122—Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/44—Fluid-guiding means, e.g. diffusers
- F04D29/441—Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
- F04D29/444—Bladed diffusers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/122—Fluid guiding means, e.g. vanes related to the trailing edge of a stator vane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/70—Shape
Definitions
- the present invention relates to a multi-stage centrifugal compressor and its return channel, and more particularly to a single-shaft multi-stage multi-stage centrifugal compressor having a plurality of impellers attached to one shaft and its return channel.
- Patent Document 1 An example of a conventional multistage fluid machine is described in Patent Document 1.
- the trailing edge of the return guide vane provided in the return channel is used as a vane so that high efficiency can be obtained outside the partial flow region and good HQ characteristics can be obtained in the partial flow region. It is located on the radially outer side of the rotating shaft from the front edge of the vane of the car. Further, a rectifying plate extending from the rear edge of the return guide vane toward the rotation axis is provided on a part of the return guide vane.
- Patent Documents 2 and 3 describe examples of improving the performance of the return flow path in the conventional multistage centrifugal compressor.
- the blade angle at the center in the width direction (axial direction) is raised at the front edge so that the shape of the front edge and rear edge of the return vane matches the flow.
- the edge is inclined toward the counter-rotating direction of the impeller.
- the movable return vane is arrange
- Centrifugal compressors such as centrifugal compressors for processes often require a wide operating range with high efficiency.
- each stage is designed to have the highest efficiency at the flow rate of the specification point. Therefore, if the operation is performed at a flow rate other than the specification point, the flow matching in each stage is shifted.
- FIG. 3 shows the characteristics of the first stage compressor of the multistage compressor
- FIG. 4 shows the characteristics of the final stage compressor of the multistage compressor.
- the operating limit on the small flow rate side of the compressor is determined by the occurrence of surging.
- the operation limit on the large flow rate side is determined by the generation of choke.
- the point where surging occurs is the surge point Ps
- the flow rate at that time is Qs
- the point where choke is generated is the choke point Pc
- the flow rate at that time is Qc.
- the operation is performed with the flow range up to Qc as the operation range WR.
- There is a specification point P Des that is also a design point in the middle of the operating range, and the flow range from the surge flow rate Qs to the specification point flow rate Q Des is defined as the surge margin SM and choke flow rate Qc at the flow rate Q Des of this specification point P Des.
- To the specification point flow rate Q Des is called a choke margin CM.
- the head H of the first stage compressor becomes HA , which is lower than the head H Des at the specification point P Des. Become. That is, since the working gas is not compressed as compared with the operation at the specification point P Des , the downstream impeller operates at a larger volumetric flow ratio. As a result, the final stage compressor is operated at the operating point A ′ on the larger flow rate side in the volume flow rate ratio than the first stage compressor. That is, the operation is performed where the deviation from the specification point flow rate Q Des is large.
- the operating range of the multistage compressor largely depends on the operating range of the downstream stage compressor, particularly the final stage compressor. Therefore, in order to obtain a multistage compressor having a wide operating range, it is necessary to increase the operating range toward the downstream stage of the compressor. However, there is a limit to expanding the operating range with only the impeller, which is a limitation of the multistage centrifugal compressor.
- the present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to achieve a high-efficiency and wider operating range as a whole in a multistage centrifugal compressor without sacrificing efficiency. is there. Another object of the present invention is to achieve the above object with a simple structure.
- a feature of the present invention that achieves the above object is that a plurality of centrifugal impellers are fixedly attached to one rotating shaft to form a multistage impeller, and a diffuser and a return channel are sequentially provided downstream of each impeller,
- the return channel has a plurality of vanes arranged at intervals in the circumferential direction, and the exit angle of the vane is set. This is because it has increased monotonously as it goes downstream. In this feature, the lower the impeller, the greater the blade angle from the radial direction at the exit of the impeller.
- a plurality of centrifugal impellers are fixedly attached to one rotating shaft to form a multistage impeller, and a diffuser and a return channel are sequentially provided downstream of each impeller.
- a plurality of centrifugal impellers, a diffuser, and a casing that accommodates a return channel, and a plurality of suction passages are formed in the casing to form a plurality of compressor groups.
- the return channel has a plurality of vanes arranged at circumferential intervals and is provided in at least two stages, and the outlet of the vanes The angle is monotonically increased as it goes downstream. And in this characteristic, it is good to enlarge the blade
- Still another feature of the present invention that achieves the above object is used in at least a plurality of stages of a multistage centrifugal compressor in which a number of impellers are attached to one axis, and in a flow path formed between opposing flat plates,
- the exit angle of the plurality of vanes with respect to the radial direction is the vane used in the downstream stage of the vane used in the upstream stage The same or smaller than that.
- the vane outlet vane angle may be substantially 0 degrees in the most upstream return channel.
- the entire compressor can be realized with high efficiency and a wider operating range than before. Also, since the vane outlet angle is only set, the efficiency of the entire compressor can be increased with a simple configuration, and a wider operating range than before can be realized.
- FIG. 1 is a longitudinal sectional view showing an embodiment of a multistage centrifugal compressor 10 according to the present invention. Further, FIG. 2 shows a portion of the return channel 3 provided in the multistage centrifugal compressor 10 shown in FIG.
- a plurality of impellers 1a to 1e are fixedly attached to a single rotating shaft 8, and diffusers 2a to 2e are disposed downstream of the impellers 1a to 1e.
- Return channels 3a to 3d that connect the diffusers 2a to 2d and the impellers 1b to 1e of the next stage are arranged downstream of the diffusers 2a to 2d of each stage except the final stage.
- the impellers 1a to 1e, the diffusers 2a to 2e, and the return channels 3a to 3d are accommodated in the compressor casing 6, and the suction casing 4 is disposed on the upstream side of the first stage impeller 1a, and the downstream side of the final stage diffuser 2e. Is provided with a discharge casing 5.
- the multistage compressor 10 shown in FIG. 1 is a five-stage machine.
- the working gas is first introduced into the machine as a flow 9 radially inward from the outside of the multistage centrifugal compressor 10 through the suction casing 4. Then, it flows into the first stage impeller 1a, and then the pressure is increased while passing through the impellers 1a to 1e, the diffusers 2a to 2e, and the return channels 3a to 3d of each stage, and after passing through the final stage diffuser 2e, the discharge casing 5 Exhaled outside the aircraft.
- the number of return channels 3a to 3d is four.
- the return channels 3a to 3d are arranged at intervals in the circumferential direction between two opposed planes formed by the inverted U-shaped section downstream of the diffusers 2a to 2d and the wall surface of the compressor casing 6.
- a ring-shaped portion (see FIG. 2) having a plurality of vanes 13a to 13d.
- the outlet angles ⁇ 3a to ⁇ 3d of the vanes 13a to 13d of the return channel are made larger in the downstream compressor, and the angular distribution of the vanes 13a to 13d in each stage is, for example, FIG. As shown in FIG. 4, the angle is increased by a certain angle as the number of stages increases.
- the vane outlet angle ⁇ is an angle formed by the radial line and the vane outlet blade surface, as shown in FIG. 2.
- the second merit is that the vanes 13a to 13d included in the return channels 3a to 3d reduce the flow turning angle and reduce the loss of the vanes 13a to 13d themselves.
- the flow direction of the vanes 13a to 13d is increased, the flow loss of the vanes 13a to 13d is large, and it is difficult to reduce the flow loss.
- the swirl component remains in the flow that exits the vanes 13a to 13d of the return channels 3a to 3d, particularly the flow that exits the downstream vanes 13a to 13d, and the next-stage impellers 1b to 1e serve as pre-turns. Therefore, the turning angles of the vanes 13a to 13d are made small. Thereby, the load of the vanes 13a to 13d can be reduced, and the loss in the vanes 13a to 13d can be reduced.
- the third merit is the uniform flow distribution. As described above, when the load of the vanes 13a to 13d included in the return channels 3a to 3d is reduced, the distortion of the flow distribution of the flow flowing out from the return channels 3a to 3d is reduced, and it becomes easy to make uniform. This improves the performance of the impeller that is connected to the return channel flow path and designed on the assumption of a uniform suction flow.
- the swirl component is left in the downstream flow and is introduced into the next impeller, so that the swirl component is not left and there is no pre-turn.
- the head is lowered. Therefore, in designing the impeller at the downstream stage, the rotational speed and the outer diameter of the impeller are set in consideration of the head drop.
- the exit angles of the vanes 13b to 3d are applied only to the stage having a large influence as shown in FIG. Is preferably increased.
- the exit angles ⁇ 3a and ⁇ 3b of the first and second vanes 13a and 13b are angles that do not remain turning, and the vane 13c and the lowermost stage that are immediately before the lowermost stage are used.
- the exit angles ⁇ 3c and ⁇ 3d of the vane 13d are the angles at which the turning remains.
- the increment of the exit angle ⁇ 3d of the lowermost vane 13d having a larger influence is made larger than the increment of the exit angle ⁇ 3c of the immediately preceding vane 13c.
- the head drop is significant in the most downstream stage and / or the stage immediately before it, but is small in the other stages, so that the amount of head drop can be reduced as a whole, and the necessary surge margin is ensured.
- FIG. 7 is a nine-stage machine. One set of two stages is used, and the exit angle ⁇ is changed step by step for each group. At that time, of the two stages forming the group, the former stage has the same vane outlet angle ⁇ as the latter stage of the preceding group, and the vane outlet angle ⁇ is increased by a predetermined amount in the latter stage.
- the second stage and the third stage are combined, and the outlet angle ⁇ 3b of the second stage vane 13b is the same as the outlet angle ⁇ 3a of the first stage vane 13a, and the outlet angle ⁇ 3c of the third stage vane 13c. Is increased from the outlet angle ⁇ 3b of the second stage vane 13b by a predetermined increment. If the vane outlet angle ⁇ is changed stepwise in this way, and the amount of pre-turning to the next stage impeller is grasped in advance from the flow at the vane outlet angle ⁇ , performance grasping and design are facilitated.
- FIG. 8 shows the vane angle distribution of the return channel in still another embodiment of the multistage centrifugal compressor according to the present invention.
- two suction flow paths are provided in one compressor casing.
- the compressors are divided into two groups for each suction channel.
- the number of stages of return channels in the first group is 5, and the number of stages of return channels in the second group is 4.
- the exit angle ⁇ of the return channel is made smaller for the suction side among the return channels of the compressor stages forming each group, and larger for the discharge side. That is, it is configured to gradually increase from the suction side or monotonously increase.
- the exit angle ⁇ of the return channel provided in each stage is set, the working gas flows in the same manner as in the above embodiments in units of groups, so that the working range and performance change or improve as described above.
- the patterns shown in FIGS. 6 and 7 can also be used.
- the return channel is configured as described above, and the impeller can also have a smaller surge vane angle at the downstream stage in the impeller so that a wider surge margin SM can be obtained at the downstream stage as a single impeller.
- a wider surge margin SM can be obtained as the entire multistage compressor.
- any multistage centrifugal compressor can be used as long as it has two or more return channels.
- the vane blade outlet angle the case of increasing proportionally, the case of increasing only two subsequent stages, or the case of increasing the stepwise step have been described. Not limited to this, various applications are possible. However, it is preferable that the exit angle increases monotonously as it goes to the subsequent stage.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
多段遠心圧縮機10では、1本の回転軸8に複数の遠心羽根車1a~1eを固定して取り付けて多段の羽根車を構成している。各羽根車の下流に順にディフューザ2a~2eおよびリターンチャネル3a~3dを設け、これら遠心羽根車およびディフューザ、リターンチャネルを圧縮機ケーシング6が収容している。リターンチャネルは円周方向に間隔を置いて配置された複数のベーン3f~3iを有するものであって、少なくとも2段設けられている。ベーンの出口角度β3f~β3iを,下流段に進むに連れ単調増加させた。
Description
本発明は、多段遠心形圧縮機およびそのリターンチャンネルに係り、特に一本の軸に多数の羽根車が取り付けられた一軸多段型の多段遠心圧縮機およびそのリターンチャンネルに関する。
従来の多段流体機械の例が、特許文献1に記載されている。この公報に記載の多段ポンプでは、部分流量域以外では高効率が得られ、部分流量域では良好なH-Q特性が得られるように、戻り流路に設けた戻り案内羽根の後縁を羽根車の羽根の前縁よりも回転軸の径方向外側に位置させている。さらに、戻り案内羽根の後縁から回転軸に向かって延びる整流板を戻り案内羽根の一部に設けている。
また、従来の多段遠心圧縮機において、戻り流路における性能向上を図った例が、特許文献2,3に記載されている。特許文献2に記載の多段遠心圧縮機では、リターンベーンの前縁部および後縁部形状を流れに合致させるように、幅方向(軸方向)中央部の羽根角を前縁部で立て、後縁部で羽根車の反回転方向に向けて傾斜させている。また、特許文献3の遠心圧縮機では、戻り流路の上流側に可動リターンベーンを、その下流側に固定リターンベーンを配設している。
プロセス用遠心圧縮機のような遠心形圧縮機では、高効率とともに広い作動範囲が要求されることが多い。この要求に応じて、遠心型圧縮機を多段の遠心圧縮機で構成する場合には、仕様点の流量で各段が最高効率になるように設計する。そのため、仕様点以外の流量で運転すると、各段の流れのマッチングにずれが生じる。
このマッチングのずれについて、図3および図4に示した多段圧縮機の特性線図を用いて以下に説明する。図3に多段圧縮機の初段圧縮機の特性を、図4に多段圧縮機の最終段圧縮機の特性を示す。圧縮機の小流量側の運転限界は、サージングの発生により決定される。一方大流量側の運転限界は、チョークの発生で決定される。
そこで現実の圧縮機の運転では、サージングを発生する点をサージ点Ps、そのときの流量をQs、チョークを発生する点をチョーク点Pc、そのときの流量をQcとしたときに、このQsからQcまでの流量範囲を作動範囲WRとして、運転する。作動範囲の中間に設計点でもある仕様点PDesがあり、この仕様点PDesの流量QDesを境に、サージ流量Qsから仕様点流量QDesまでの流量範囲をサージマージンSM、チョーク流量Qcから仕様点流量QDesまでの流量範囲をチョークマージンCMと呼んでいる。初段圧縮機を、仕様点流量QDes(体積流量比=1.0)で運転している場合は、最終段圧縮機も仕様点流量QDesで運転される。
これに対して、流量を増やすために初段圧縮機の流量を大流量点Aの流量まで増加させると、初段圧縮機のヘッドHはHAとなり、仕様点PDesのヘッドHDesに比べて低くなる。つまり仕様点PDesでの運転時に比べて作動ガスが圧縮されないので、下流段の羽根車にとっては、より体積流量比の大きいところで運転することになる。その結果、最終段圧縮機は、初段圧縮機よりも体積流量比では大流量側の運転点A’で運転することになる。つまり、仕様点流量QDesからのずれが大きいところでの運転となる。
これとは逆に、初段圧縮機が仕様点PDesよりも小流量側の運転点Bで運転されると、仕様点PDesのヘッドHDesよりもヘッドHが高くなる(HB)のでガスはより圧縮され、次段以降の圧縮機では体積流量比がより小さい運転点で運転される。例えば最終段では、サージ点Psに近い小流量側の運転点B’で運転されることになる。
以上説明したように、多段圧縮機の作動範囲は、下流段の圧縮機、特に最終段の圧縮機の作動範囲に大きく依存する。したがって作動範囲の広い多段圧縮機を得るには、圧縮機の下流段側ほど作動範囲を広くする必要がある。しかしながら、羽根車だけで作動範囲を拡大するには限界があり、これが多段遠心圧縮機の制約になっている。
上記特許文献1に記載のものは多段ポンプの戻り流路の改善であるが、部分流量域での安定性の改善は図られているものの、多段遠心圧縮機ではないので各段を通過する体積流量はほぼ同じである。したがって、多段を構成する各段の羽根車の作動流量の違いについては考慮されていない。
上記特許文献2、3に記載の多段遠心圧縮機では、戻り流路におけるリターンベーンをこの戻り流路を流動するガスの流れに合わせるようにしているので、効率の向上が望めるが、戻り流路に流入するガスの流れに合わせるためには多大な労力と正確な知見が必要である。しかも各段の構成が複雑になり、加工工数が増加し、制御も複雑になる。
本発明は、上記従来技術の不具合に鑑みなされたものでありその目的は、多段遠心圧縮機において、効率を犠牲にすることなく圧縮機全体として、高効率で従来より広い作動範囲とすることにある。本発明の他の目的は、簡単な構成で上記目的を達成することにある。
上記目的を達成する本発明の特徴は、1本の回転軸に複数の遠心羽根車を固定して取り付けて多段の羽根車を構成し、各羽根車の下流に順にディフューザおよびリターンチャネルを設け、これら遠心羽根車およびディフューザ、リターンチャネルを収容するケーシングを備えた多段遠心圧縮機において、前記リターンチャネルは円周方向に間隔を置いて配置された複数のベーンを有し、前記ベーンの出口角度を下流段に進むに連れ単調増加させたことにある。そしてこの特徴において、下流段の前記羽根車ほど、羽根車の出口における半径方向からの羽根角度を大きくするのがよい。
上記目的を達成する本発明の他の特徴は、1本の回転軸に複数の遠心羽根車を固定して取り付けて多段の羽根車を構成し、各羽根車の下流に順にディフューザおよびリターンチャネルを設け、これら遠心羽根車およびディフューザ、リターンチャネルを収容するケーシングを備え、このケーシング内に複数の吸込み流路を形成することにより、複数の圧縮機グループを構成した多段遠心圧縮機において、前記複数の圧縮機グループの中の少なくとも1つの圧縮機グループにおいて、前記リターンチャネルは円周方向に間隔を置いて配置された複数のベーンを有するものであって少なくとも2段設けられており、前記ベーンの出口角度が下流段に進むに連れ単調増加されていることにある。そしてこの特徴において、前記各グループ内で、下流段の前記羽根車ほど、羽根車の出口における半径方向からの羽根角度を大きくするのがよい。
上記目的を達成する本発明のさらに他の特徴は、一軸に多数の羽根車が取り付けられた多段の遠心圧縮機の少なくとも複数段に用いられ、対向する平板間に形成される流路内に、円周方向に間隔を置いて複数のベーンを取り付けて構成したリターンチャネルにおいて、半径方向を基準とした前記複数のベーンの出口角度は、上流段に用いられるベーンの方が下流段に用いられるベーンと同じかそれよりも小さいことにある。そしてこの特徴において、前記ベーンの出口羽根角度は、最上流段のリターンチャネルでは実質的に0度であってもよい。
本発明によれば、多段遠心圧縮機が備えるリターンチャネルのベーンの出口角度を下流段圧縮機ほど大きくしたので、圧縮機全体として高効率で従来より広い作動範囲を実現できる。また、ベーン出口角度を設定するだけなので、簡単な構成で圧縮機全体としての効率を高効率にでき、また従来より広い作動範囲を実現できる
以下、本発明に係る多段遠心圧縮機およびそれに用いるリターンチャネルを、図面を用いて説明する。図1に、本発明に係る多段遠心圧縮機10の一実施例を縦断面図で示す。また図2に、図1に示した多段遠心圧縮機10が備えるリターンチャネル3部を、P方向視して重ね書きして示す。
多段遠心圧縮機10では、1本の回転軸8に複数の羽根車1a~1eが固定して取り付けられており、各羽根車1a~1eの下流にはディフューザ2a~2eが配置されている。最終段を除く各段のディフューザ2a~2dの下流には、ディフューザ2a~2dと次段の羽根車1b~1eをつなぐリターンチャネル3a~3dが配置されている。羽根車1a~1eおよびディフューザ2a~2e、リターンチャネル3a~3dは、圧縮機ケーシング6内に収容されており、初段羽根車1aの上流側には吸込みケーシング4が、最終段ディフューザ2eの下流側には吐出ケーシング5が設けられている。
図1に示した多段圧縮機10は5段機の場合である。作動ガスは、多段遠心圧縮機10の外部から吸込みケーシング4を通じて、まず半径方向内側に流れ9として機内へ導かれる。そして、初段羽根車1aに流入し、次いで各段の羽根車1a~1eおよびディフューザ2a~2e、リターンチャネル3a~3dを通過する間に昇圧され、最終段ディフューザ2eを経た後、吐出ケーシング5から機外へ吐き出される。
多段圧縮機10が5段機の場合には、リターンチャネル3a~3dの数は4個となる。リターンチャネル3a~3dは、ディフューザ2a~2dの下流の断面逆U字型の部分と、圧縮機ケーシング6の壁面により構成される2つの対向する平面間に、周方向に間隔を置いて配置された複数のベーン13a~13dを有するリング状の部分(図2参照)とを有する。ここで、本実施例では下流段圧縮機ほど、リターンチャネルが有するベーン13a~13dの出口角度β3a~β3dを大きくしており、各段のベーン13a~13dの角度分布は、例えば図5に示すように、段数が増えるごとに一定角度だけ増加させている。ここで、ベーン出口角度βは、図2に示すように、半径方向線とベーン出口の羽根面がなす角度である。
このように構成した本実施例のリターンチャネル3a~3dにおいては、リターンチャネル3a~3dのベーン出口角度β3a~β3dを大きくすると、その出口角度β3a~β3dを大きくしたベーン13a~13dを有するリターンチャネル3a~3dおよびそのリターンチャネル3a~3dに流路が接続する次段の羽根車1b~1eに、下記のメリットが発生する。
つまり、次段の羽根車1b~1eにとっては、羽根車1b~1eに流入する流れに予旋回が残り、羽根車1b~1eの流入相対速度が低くなる。その結果、羽根車1b~1e内の減速比が小さくなり、サージマージンSMが広くなることが期待される。したがって、下流段ほどリターンチャネルが有するベーン出口角度βを大きくすると、そのリターンチャンネルの流路に接続する羽根車2の相対的なサージマージンSMが広くなる。これにより、圧縮機全体のサージマージンSMの広狭は、下流段の羽根車が支配的であることが分かるから、下流段の羽根車のサージマージンSMを広げれば圧縮機全体のサージマージンSMを広げることができる。
第2のメリットとしては、リターンチャネル3a~3dが有するベーン13a~13dが流れの転向角を小さくし、ベーン13a~13d自体の損失を低減することである。通常、ベーン13a~13dは、ディフューザ2a~2dの出口で形成される旋回流れを軸方向に転向させる(β=0°にする)ように働かせる。その結果、ベーン13a~13dでの流れの転向が大きくなり、ベーン13a~13dの流動損失が大きくその低減が困難であった。
本実施例では、リターンチャネル3a~3dが有するベーン13a~13dを出た流れ、特に下流段のベーン13a~13dを出た流れに旋回成分を残して、予旋回として次段羽根車1b~1eに流入させるようにしているので、ベーン13a~13dの転向角を小さくしている。これにより、ベーン13a~13dの負荷を小さくでき、ベーン13a~13dでの損失を軽減できる。
第3のメリットは、流れ分布の一様化である。上記したように、リターンチャネル3a~3dが有するベーン13a~13dの負荷が軽減されると、リターンチャネル3a~3dから流出する流れの流れ分布のひずみが軽減され、一様化されやすくなる。これにより、リターンチャネル流路に接続し、一様吸込み流れを前提に設計されている羽根車の性能が向上する。
本実施例では、リターンチャネル3a~3dを流出する流れに関して、特に下流段の流れに旋回成分を残して、次段の羽根車に流入させているので、旋回成分を残さずに予旋回無しに羽根車に流入させた場合に比べて、ヘッドは低下する、そこで、下流段の羽根車の設計においては、このヘッド低下分を考慮して回転速度や羽根車外径を設定する。
また特に最下流段あるいは最下段の直前の段などの特性が、全体のサージマージンに強く影響している場合は、図6に示すように影響の大きい段についてだけ、ベーン13b~3dの出口角度を大きくするのが好ましい。この図6に示した例では、1段目および2段目のベーン13a、13bの出口角度β3a、β3bは旋回の残らない角度とし、最下段の直前の段であるベーン13cおよび最下段のベーン13dの出口角度β3c、β3dを、旋回の残る角度としている。その際、より影響の大きい最下段のベーン13dの出口角度β3dの増分を、その直前のベーン13cの出口角度β3cの増分に比べて大にしている。ヘッド低下は最下流段および/またはその直前の段では顕著になるがその他の段では少ないので、全体にヘッド低下量を少なくでき、しかも必要なサージマージンが確保される。
以上は5段の多段遠心圧縮機の例であるが、さらに段数の多い多段遠心圧縮機10の例を、図7に示す。この図7に示した多段遠心圧縮機10は、9段機である。2段1組にして、組ごとに段階的に出口角度βを変えている。その際、組をなす2段のうち、前段はその前の組の後段と同じベーン出口角度βとし、後段において、所定量ベーン出口角度βを増加させている。
例えば、第2段と第3段とを組みにし、第2段ベーン13bの出口角度β3bは、第1段ベーン13aの出口角度β3aと同じくし、第3段ベーン13cの出口角度β3cは第2段ベーン13bの出口角度β3bより所定増分だけ増加させている。このように段階的にベーン出口角度βを変化させ、そのベーン出口角度βにおける流れから、次段羽根車への予旋回量を予め把握しておけば、性能把握や設計が容易になる。
図8に、本発明に係る多段遠心圧縮機のさらに他の実施例における、リターンチャネルのベーン角度分布を示す。本実施例では、1台の圧縮機ケーシング内に、2個の吸込み流路が設けられている。たとえば、中間冷却のために圧縮された作動ガスが途中で機外に流出し、冷却された後、再び圧縮機内に戻るような場合である。圧縮機は吸込み流路単位で2つのグループになっている。第1のグループのリターンチャネルの段数は5段であり、第2のグループのリターンチャネルの段数は4段である。
リターンチャネルの出口角βは、それぞれのグループを形成する圧縮機段が有するリターンチャネルのうち、吸込み側のものほど小さく吐出側のものほど大きくする。すなわち、吸込み側から順に徐々に大きくなるようにもしくは単調増加するように構成されている。このように各段に設けたリターンチャネルの出口角βを設定すれば、作動ガスは各グループ単位で上記各実施例と同様に流れるので、作動範囲や性能が上述したように変化または向上する。なお、リターンチャネルの出口角を下流段に向かって変化させるパターンとしては、図6や図7に示したパターンも利用できる。
また、図示していないが、上記のようにリターンチャネルを構成するとともに、羽根車においても下流段ほど出口羽根角度を小さくし、羽根車単体として下流段ほどより広いサージマージンSMの得られる羽根車構造とすれば、多段圧縮機全体として、より広いサージマージンSMが得られる。
上記実施例では、5段機と9段機を例にとり説明したが、本発明がこれらの段数に限られるものでないことはいうまでもない。すなわち、リターンチャネルを2段以上有するものであれば、どんな多段遠心圧縮機にも適用できる。また、ベーンの羽根出口角度の設定例として、比例的に増大させる場合、後段2段のみを増大させる場合、隔段をステップ的に増大させる場合について説明したが、この羽根出口角度の設定もこれらに限らず、種々適用できる。ただし、後段に行くにつれ出口角度が単調に増加するのが好ましい。
1a~1e…羽根車、2a~2e…ディフューザ、3、3a~3h…リターンチャネル、13a~13h…ベーン、4…吸込ケーシング、5…吐出ケーシング、6…圧縮機ケーシング、7…軸受、8…回転軸、9…流入流れ、10…多段遠心圧縮機、A,A’…大流量側運転点、B,B’…小流量側運転点、CM…チョークマージン、H…ヘッド、Ps…サージ点、Q…体積流量比、Qc…チョーク流量、Qs…サージ流量、SM…サージマージン、WR…作動範囲、β3a~β3h…ベーン出口角度。
Claims (6)
- 1本の回転軸に複数の遠心羽根車を固定して取り付けて多段の羽根車を構成し、各羽根車の下流に順にディフューザおよびリターンチャネルを形成し、これら遠心羽根車およびディフューザ、リターンチャネルを収容するケーシングを備えた多段遠心圧縮機において、前記リターンチャネルは円周方向に間隔を置いて配置された複数のベーンを有し、前記ベーンの出口角度を下流段に進むに連れ単調増加させたことを特徴とする多段遠心圧縮機。
- 下流段の前記羽根車ほど、羽根車の出口における半径方向からの羽根角度を大きくしたことを特徴とする請求項1記載の多段遠心圧縮機。
- 1本の回転軸に複数の遠心羽根車を固定して取り付けて多段の羽根車を構成し、各羽根車の下流に順にディフューザおよびリターンチャネルを設け、これら遠心羽根車およびディフューザ、リターンチャネルを収容するケーシングを備え、このケーシング内に複数の吸込み流路を形成することにより、複数の圧縮機グループを構成した多段遠心圧縮機において、
前記複数の圧縮機グループの中の少なくとも1つの圧縮機グループにおいて、前記リターンチャネルは円周方向に間隔を置いて配置された複数のベーンを有するものであって少なくとも2段設けられており、前記ベーンの出口角度が下流段に進むに連れ単調増加されていることを特徴とする多段遠心圧縮機。 - 前記各グループ内で、下流段の前記羽根車ほど、羽根車の出口における半径方向からの羽根角度を大きくしたことを特徴とする請求項3記載の多段遠心圧縮機。
- 一軸に多数の羽根車が取り付けられた多段の遠心圧縮機の少なくとも複数段に用いられ、対向する平板間に形成される流路内に、円周方向に間隔を置いて複数のベーンを取り付けて構成したリターンチャネルにおいて、半径方向を基準とした前記複数のベーンの出口角度は、上流段に用いられるベーンの方が下流段に用いられるベーンと同じかそれよりも小さいことを特徴とする多段遠心圧縮機に用いるリターンチャネル。
- 前記ベーンの出口羽根角度は、最上流段のリターンチャネルでは実質的に0度であることを特徴とする請求項5に記載のリターンチャネル。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180050219.7A CN103168175B (zh) | 2010-10-18 | 2011-10-17 | 多级离心压缩机及其返回通道 |
US13/879,833 US20130259644A1 (en) | 2010-10-18 | 2011-10-17 | Multi-stage centrifugal compressor and return channels therefor |
EP11834334.2A EP2631492A1 (en) | 2010-10-18 | 2011-10-17 | Multi-stage centrifugal compressor and return channels therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010233576A JP5613006B2 (ja) | 2010-10-18 | 2010-10-18 | 多段遠心圧縮機およびそのリターンチャネル |
JP2010-233576 | 2010-10-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012053495A1 true WO2012053495A1 (ja) | 2012-04-26 |
Family
ID=45975206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/073876 WO2012053495A1 (ja) | 2010-10-18 | 2011-10-17 | 多段遠心圧縮機およびそのリターンチャネル |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130259644A1 (ja) |
EP (1) | EP2631492A1 (ja) |
JP (1) | JP5613006B2 (ja) |
CN (1) | CN103168175B (ja) |
WO (1) | WO2012053495A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI648471B (zh) * | 2014-05-08 | 2019-01-21 | 德商貝克公司 | 特別用於側通道機器之葉輪 |
WO2022180902A1 (ja) * | 2021-02-25 | 2022-09-01 | 株式会社日立インダストリアルプロダクツ | 多段遠心圧縮機 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5875429B2 (ja) * | 2012-03-27 | 2016-03-02 | 株式会社日立製作所 | 多段遠心送風機 |
CN103603828A (zh) * | 2013-12-01 | 2014-02-26 | 湖北双剑鼓风机股份有限公司 | 一种风机隔板 |
JP6184018B2 (ja) * | 2014-02-06 | 2017-08-23 | 三菱重工業株式会社 | 中間吸込型ダイアフラムおよび遠心回転機械 |
DE102014105528A1 (de) * | 2014-04-17 | 2015-10-22 | Airbus Operations Gmbh | Verdichteranordnung und Wellenleistungstriebwerk mit einer Verdichteranordnung |
US9726194B2 (en) | 2014-04-21 | 2017-08-08 | Solar Turbines Incorporated | Universal housing for a centrifugal gas compressor |
JP6470578B2 (ja) * | 2015-02-03 | 2019-02-13 | 三菱重工コンプレッサ株式会社 | 遠心圧縮機 |
JP6642189B2 (ja) * | 2016-03-29 | 2020-02-05 | 三菱重工コンプレッサ株式会社 | 遠心圧縮機 |
JP6763804B2 (ja) * | 2017-02-23 | 2020-09-30 | 三菱重工コンプレッサ株式会社 | 遠心圧縮機 |
JP6935312B2 (ja) * | 2017-11-29 | 2021-09-15 | 三菱重工コンプレッサ株式会社 | 多段遠心圧縮機 |
JP7019446B2 (ja) * | 2018-02-20 | 2022-02-15 | 三菱重工サーマルシステムズ株式会社 | 遠心圧縮機 |
JP7161419B2 (ja) * | 2019-02-05 | 2022-10-26 | 三菱重工コンプレッサ株式会社 | 遠心回転機械の製造方法、及び遠心回転機械 |
JP2021011828A (ja) * | 2019-07-04 | 2021-02-04 | 三菱重工業株式会社 | 多段遠心圧縮機 |
WO2021148239A1 (en) * | 2020-01-23 | 2021-07-29 | Nuovo Pignone Tecnologie - S.R.L. | A return channel with non-constant return channel vanes pitch and centrifugal turbomachine including said return channel |
CN111550448B (zh) * | 2020-05-27 | 2021-10-29 | 江西省子轩科技有限公司 | 一种具有扩散器的压缩机或鼓风机 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6036702A (ja) * | 1983-08-10 | 1985-02-25 | Ebara Corp | 多段タ−ボ機械 |
JPH08200289A (ja) | 1995-01-31 | 1996-08-06 | Mitsubishi Heavy Ind Ltd | 多段遠心圧縮機 |
JPH08200296A (ja) * | 1995-01-30 | 1996-08-06 | Hitachi Ltd | 一軸多段遠心圧縮機 |
JPH09203394A (ja) | 1996-01-24 | 1997-08-05 | Mitsubishi Heavy Ind Ltd | 多段遠心圧縮機のリターンベーン |
JP2001200797A (ja) * | 2000-01-17 | 2001-07-27 | Hitachi Ltd | 多段遠心圧縮機 |
JP2005330878A (ja) | 2004-05-19 | 2005-12-02 | Torishima Pump Mfg Co Ltd | 多段流体機械 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2300766A (en) * | 1940-05-10 | 1942-11-03 | Bbc Brown Boveri & Cie | Multistage centrifugal compressor |
US4770606A (en) * | 1985-08-05 | 1988-09-13 | Kazuo Kuroiwa | Centrifugal compressor |
JPH0646035B2 (ja) * | 1988-09-14 | 1994-06-15 | 株式会社日立製作所 | 多段遠心圧縮機 |
US7905703B2 (en) * | 2007-05-17 | 2011-03-15 | General Electric Company | Centrifugal compressor return passages using splitter vanes |
CN201090462Y (zh) * | 2007-08-15 | 2008-07-23 | 沈阳鼓风机(集团)有限公司 | 一种闭式高能头模型级 |
JP4951583B2 (ja) * | 2008-04-28 | 2012-06-13 | 日立アプライアンス株式会社 | ターボ冷凍機 |
US8632302B2 (en) * | 2009-12-07 | 2014-01-21 | Dresser-Rand Company | Compressor performance adjustment system |
-
2010
- 2010-10-18 JP JP2010233576A patent/JP5613006B2/ja not_active Expired - Fee Related
-
2011
- 2011-10-17 EP EP11834334.2A patent/EP2631492A1/en not_active Withdrawn
- 2011-10-17 CN CN201180050219.7A patent/CN103168175B/zh not_active Expired - Fee Related
- 2011-10-17 WO PCT/JP2011/073876 patent/WO2012053495A1/ja active Application Filing
- 2011-10-17 US US13/879,833 patent/US20130259644A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6036702A (ja) * | 1983-08-10 | 1985-02-25 | Ebara Corp | 多段タ−ボ機械 |
JPH08200296A (ja) * | 1995-01-30 | 1996-08-06 | Hitachi Ltd | 一軸多段遠心圧縮機 |
JPH08200289A (ja) | 1995-01-31 | 1996-08-06 | Mitsubishi Heavy Ind Ltd | 多段遠心圧縮機 |
JPH09203394A (ja) | 1996-01-24 | 1997-08-05 | Mitsubishi Heavy Ind Ltd | 多段遠心圧縮機のリターンベーン |
JP2001200797A (ja) * | 2000-01-17 | 2001-07-27 | Hitachi Ltd | 多段遠心圧縮機 |
JP2005330878A (ja) | 2004-05-19 | 2005-12-02 | Torishima Pump Mfg Co Ltd | 多段流体機械 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI648471B (zh) * | 2014-05-08 | 2019-01-21 | 德商貝克公司 | 特別用於側通道機器之葉輪 |
WO2022180902A1 (ja) * | 2021-02-25 | 2022-09-01 | 株式会社日立インダストリアルプロダクツ | 多段遠心圧縮機 |
JP2022129710A (ja) * | 2021-02-25 | 2022-09-06 | 株式会社日立インダストリアルプロダクツ | 多段遠心圧縮機 |
JP7433261B2 (ja) | 2021-02-25 | 2024-02-19 | 株式会社日立インダストリアルプロダクツ | 多段遠心圧縮機 |
US12049903B2 (en) | 2021-02-25 | 2024-07-30 | Hitachi Industrial Products, Inc. | Multistage centrifugal compressor |
Also Published As
Publication number | Publication date |
---|---|
US20130259644A1 (en) | 2013-10-03 |
EP2631492A1 (en) | 2013-08-28 |
CN103168175B (zh) | 2016-01-06 |
JP2012087646A (ja) | 2012-05-10 |
JP5613006B2 (ja) | 2014-10-22 |
CN103168175A (zh) | 2013-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5613006B2 (ja) | 多段遠心圧縮機およびそのリターンチャネル | |
JP5608062B2 (ja) | 遠心型ターボ機械 | |
US10760587B2 (en) | Extended sculpted twisted return channel vane arrangement | |
US20160108920A1 (en) | Centrifugal compressor | |
JP5905315B2 (ja) | 遠心圧縮機 | |
US8267644B2 (en) | Multistage centrifugal compressor | |
US10989201B2 (en) | Centrifugal compressor | |
EP3421814B1 (en) | Centrifugal compressor | |
JP6158008B2 (ja) | 回転機械 | |
JP2007247622A (ja) | 遠心形ターボ機械 | |
JP2010236401A (ja) | 遠心形流体機械 | |
JP3557389B2 (ja) | 多段遠心圧縮機 | |
EP3477075B1 (en) | Turbocharger, turbocharger nozzle vane, and turbine | |
JP3187468U (ja) | 多段遠心圧縮機 | |
JP5232721B2 (ja) | 遠心圧縮機 | |
US6884021B2 (en) | Single cascade multistage turbine | |
RU2699860C2 (ru) | Усовершенствованная улитка для турбомашины, турбомашина, содержащая такую улитку, и способ работы | |
JP2006336486A (ja) | ターボ圧縮機 | |
JP6265000B2 (ja) | 遠心圧縮機 | |
JP6258237B2 (ja) | 遠心圧縮機 | |
WO2020075378A1 (ja) | 遠心式流体機械 | |
WO2016166910A1 (ja) | 入口案内羽根及び遠心圧縮機 | |
JPH11303797A (ja) | 多段圧縮機 | |
WO2017170285A1 (ja) | 遠心羽根車、およびこれを備える遠心式流体機械 | |
JP2008095638A (ja) | 斜流圧縮機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11834334 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2011834334 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011834334 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13879833 Country of ref document: US |