WO2012053462A1 - 表示装置およびその駆動方法 - Google Patents

表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2012053462A1
WO2012053462A1 PCT/JP2011/073781 JP2011073781W WO2012053462A1 WO 2012053462 A1 WO2012053462 A1 WO 2012053462A1 JP 2011073781 W JP2011073781 W JP 2011073781W WO 2012053462 A1 WO2012053462 A1 WO 2012053462A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
row
rows
control
driving
Prior art date
Application number
PCT/JP2011/073781
Other languages
English (en)
French (fr)
Inventor
宣孝 岸
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2012539708A priority Critical patent/JP5721736B2/ja
Priority to CN201180050512.3A priority patent/CN103168324B/zh
Priority to US13/876,582 priority patent/US8933865B2/en
Publication of WO2012053462A1 publication Critical patent/WO2012053462A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0283Arrangement of drivers for different directions of scanning

Definitions

  • the present invention relates to a display device, and more particularly to a display device including a self-luminous display element driven by a current such as an organic EL display and a driving method thereof.
  • an organic EL (Electro Luminescence) display is known as a thin, high image quality, low power consumption display device.
  • an organic EL display a plurality of pixel circuits including an organic EL element which is a self-luminous display element driven by current and a driving transistor for driving the organic EL element are arranged in a matrix.
  • a method for controlling the amount of current that flows in a current-driven display element such as an organic EL element is a constant current control method (or current that controls the current that should flow through the display element based on the current that flows through the data signal line.
  • Designation type driving method and a constant voltage type control method (or voltage designation type driving method) for controlling the current to be supplied to the display element based on the voltage applied to the data signal line.
  • a constant voltage control method or voltage designation type driving method
  • the current value of the data signal is controlled so that a constant current flows through the organic EL element regardless of the threshold voltage and the internal resistance of the organic EL element. Is not necessary.
  • the constant current control method the number of driving transistors and wirings is increased as compared with the constant voltage control method, so that the aperture ratio decreases. For this reason, the constant voltage type control method is widely adopted.
  • Japanese Unexamined Patent Publication No. 2006-215275 describes a pixel circuit 80 shown in FIG.
  • the pixel circuit 80 includes TFTs (Thin Film Transistors) 81 to 85, a capacitor 86, and an organic EL element 87.
  • TFTs Thin Film Transistors
  • the TFTs 82 and 84 are turned on to initialize the gate-source voltage of the TFT 85 (driving transistor).
  • the threshold voltage of the TFT 85 is held in the capacitor 86 by sequentially turning off the TFT 84 and the TFT 83.
  • the pixel circuit 80 is connected to the data line DTL, the four control lines WSL, AZL1, AZL2, and DSL, and three power lines (Vofs wiring, Vcc wiring, and Vss wiring).
  • the circuit becomes more complicated and the manufacturing cost increases.
  • Japanese Unexamined Patent Publication No. 2006-215275 describes a pixel circuit in which the source terminal of the TFT 82 or the TFT 84 is connected to the control line WSL.
  • Japanese Unexamined Patent Publication No. 2007-316453 discloses a pixel circuit in which the gate terminal of the TFT 82 is connected to the control line of the preceding row. Thus, by sharing the control line and the power supply line, the number of wirings can be reduced.
  • Japanese Unexamined Patent Publication No. 2007-310311 describes a pixel circuit 90 shown in FIG.
  • the pixel circuit 90 includes a TFT 91, a TFT 92, a capacitor 93, and an organic EL element 94.
  • the TFT 91 is turned on.
  • the initialization potential is applied to the power supply line DSL
  • the initialization potential is applied to the anode terminal of the organic EL element 94.
  • the threshold voltage of the TFT 92 driving transistor
  • a data potential is applied to the data line DTL.
  • Japanese Patent Laid-Open No. 2007-148129 describes a pixel circuit that applies an initialization potential from a power supply line and a reference potential from a data line. Furthermore, Japanese Unexamined Patent Application Publication No. 2008-33193 describes a pixel circuit that performs a compensation operation (operation for compensating variation in threshold voltage) in a plurality of horizontal periods before writing. Furthermore, Japanese Unexamined Patent Application Publication No. 2009-237041 discloses that a threshold voltage variation correction process is performed for each of a plurality of lines, and a scanning order for writing for a plurality of lines for which the variation correction process is performed simultaneously is set to one field (1 A display device that reverses every frame) is described.
  • Japanese Unexamined Patent Publication No. 2006-215275 Japanese Unexamined Patent Publication No. 2007-316453 Japanese Unexamined Patent Publication No. 2007-310311 Japanese Unexamined Patent Publication No. 2007-148129 Japanese Unexamined Patent Publication No. 2008-33193 Japanese Unexamined Patent Publication No. 2009-237041
  • the number of wirings connected to the pixel circuit can be reduced. Can be reduced.
  • the pixel circuit obtained by this method has a problem that the number of TFTs is large.
  • the number of TFTs is small.
  • the power supply control circuit needs the same number of output buffers as the power supply lines DSL.
  • the pixel circuit 90 has a problem that the circuit scale and power consumption of the power supply control circuit are increased.
  • an object of the present invention is to provide a display device that can secure a sufficient period for threshold detection with a simple configuration and can suppress the occurrence of uneven brightness.
  • a first aspect of the present invention is an active matrix display device, A plurality of pixel circuits arranged to form a matrix having a plurality of rows and a plurality of columns; A plurality of video signal lines provided corresponding to the columns of the plurality of pixel circuits; A plurality of scanning signal lines and a plurality of control lines provided corresponding to the rows of the plurality of pixel circuits; A plurality of power supply lines provided to supply a power supply potential to the plurality of pixel circuits; A column driving circuit for driving the plurality of video signal lines; A row driving circuit that selectively or collectively drives the plurality of scanning signal lines and the plurality of control lines;
  • the pixel circuit includes: An electro-optic element that emits light based on a current applied from the power line; A driving transistor provided on a path of a current flowing through the electro-optic element; Provided between the control terminal of the driving transistor and the video signal line, and when the scanning signal line is activated by the row driving circuit, the control terminal of the driving transistor and the
  • a threshold detection period for compensating for variations in the threshold voltage of the driving transistor, corresponding to the rows belonging to the row group. All of the scanning signal lines and the control lines are collectively activated, and after the threshold detection period, a writing period for accumulating charges corresponding to the image to be displayed in the capacitor is provided for each row.
  • the scanning signal lines provided corresponding to the rows belonging to the row group are selectively activated sequentially while the selection order is reversed every k frame periods (k is a natural number). Characterized in that it in.
  • the k is 1.
  • a power supply control circuit for driving the plurality of power supply lines; and a common power supply line commonly connected to a group of the plurality of power supply lines for each row group.
  • the power supply control circuit initializes the electro-optic element to the power supply line connected to the common power supply line via the common power supply line corresponding to the row group during the initialization period. It is characterized in that an initialization potential for providing the same is applied.
  • the plurality of rows are grouped into a plurality of row groups.
  • the plurality of rows are grouped so that a plurality of power supply lines belonging to the same row group are not adjacent to each other.
  • a sixth aspect of the present invention is the fourth aspect of the present invention,
  • the plurality of rows are grouped into three or more row groups.
  • a common control line commonly connected to a group of the plurality of control lines is further provided for each row group;
  • the row drive circuit emits light at the same timing in the electro-optic elements in the pixel circuits of all rows belonging to the row group after the writing period for all the rows belonging to the row group ends.
  • the common control line corresponding to the row group is activated.
  • the plurality of rows are grouped into one row group.
  • the plurality of rows are grouped into a plurality of row groups.
  • the power supply control circuit initializes the electro-optic element to the power supply line connected to the common power supply line via the common power supply line corresponding to the row group during the initialization period. It is characterized in that an initialization potential for providing the same is applied.
  • An eleventh aspect of the present invention is the tenth aspect of the present invention,
  • the plurality of rows are grouped into a plurality of row groups.
  • a twelfth aspect of the present invention is the eleventh aspect of the present invention,
  • the plurality of rows are grouped so that a plurality of power supply lines belonging to the same row group are not adjacent to each other.
  • a thirteenth aspect of the present invention is the eleventh aspect of the present invention, The plurality of rows are grouped into three or more row groups.
  • the row driving circuit When focusing on each row group, after the threshold detection period, before the start of the first writing period for the row belonging to the row group, the row driving circuit is provided corresponding to the row belonging to the row group. All of the signal lines are activated in a lump, and the column driving circuit applies a reverse bias potential for setting the driving transistor in a reverse bias state to the plurality of video signal lines.
  • a plurality of pixel circuits arranged to form a matrix having a plurality of rows and a plurality of columns, and a plurality of videos provided corresponding to the columns of the plurality of pixel circuits.
  • a driving method of an active matrix display device comprising: A column driving step for driving the plurality of video signal lines; A row driving step of selectively or collectively driving the plurality of scanning signal lines and the plurality of control lines,
  • the pixel circuit includes: An electro-optic element that emits light based on a current applied from the power line; A driving transistor provided on a path of a current flowing through the electro-optic element; Provided between the control terminal of the driving transistor and the video signal line, and when the scanning signal line is activated in the row driving step, the control terminal of the driving transistor and the video signal line An electrically connected write control transistor; Provided between one conduction terminal of the driving transistor and the power supply line, and when the control line is activated in the row driving step, the one conduction terminal of the driving transistor and the
  • a threshold detection period for compensating for variations in the threshold voltage of the driving transistor, corresponding to the rows belonging to the row group. All the scanning signal lines and the control lines are activated in a lump, and after the threshold detection period, a writing period for accumulating charges corresponding to the image to be displayed in the capacitor is provided for each row.
  • the scanning signal lines provided corresponding to the rows belonging to the row group are selectively sequentially switched while the selection order is reversed every k frame periods (k is a natural number). Characterized in that it is activated.
  • a sixteenth aspect of the present invention is the fifteenth aspect of the present invention,
  • the k is 1.
  • the row driving step When attention is paid to each row group, after the threshold detection period, before the start of the first writing period for the rows belonging to the row group, the row driving step provides scanning corresponding to the rows belonging to the row group. All of the signal lines are activated collectively, and in the column driving step, a reverse bias potential for putting the driving transistor in a reverse bias state is applied to the plurality of video signal lines.
  • the selection order (scanning order) of the scanning signal lines for writing to the capacitors in the pixel circuit is reversed every predetermined frame period. For this reason, the total length of the period (waiting period) from the threshold detection end point to the writing start point is substantially equal in all rows. In the standby period, a leakage current may be generated in the driving transistor and the electro-optical element, but the amount of charge movement due to the leakage current is almost equal in all rows. As a result, the occurrence of uneven brightness due to leakage current is suppressed.
  • the initialization period and the threshold detection period can be set to a sufficiently long period. For this reason, even if the power supply line is driven by a circuit with a relatively small driving capability, the initialization operation can be performed reliably, and threshold value detection is performed reliably, so that compensation for threshold voltage variations (threshold compensation) is achieved. ) Accuracy can be improved. Further, the writing period can be sufficiently ensured as compared with the configuration in which threshold detection is performed during the scanning signal line selection period.
  • the scanning order for writing to the capacitor in the pixel circuit is reversed every frame period. For this reason, the occurrence of uneven brightness due to the leakage current in the driving transistor or electro-optical element in the pixel circuit is effectively suppressed.
  • a common power supply line is provided for each row group, and a power supply potential and an initialization potential are supplied from the power supply control circuit to the power supply line via the common power supply line.
  • the number of output buffers to be provided in the power supply control circuit is smaller than the number of power supply lines, and the circuit scale of the power supply control circuit can be reduced as compared with the configuration in which the power supply lines are individually driven.
  • the initialization potential is supplied using the power supply line, a signal line for supplying the initialization potential is not necessary, and the number of elements in the pixel circuit can be reduced.
  • the pixel circuit can be initialized at a suitable timing for each row group.
  • the fifth aspect of the present invention when two adjacent power supply lines are grouped so as to belong to the same row group, currents flowing through the power supply lines are greatly different in the upper half and the lower half of the screen. While a luminance difference may occur at the center of the screen, the amount of current flowing through the plurality of common power supply lines is substantially the same, so that a luminance difference occurring at the center of the screen can be prevented.
  • pixel circuits in rows belonging to two or more other row groups during a period in which initialization / threshold detection is performed in the pixel circuits of rows belonging to a certain row group Then, light emission is performed. For this reason, the light emission period can be made relatively long.
  • a common control line is provided for each row group, and the row drive circuit and each control line are electrically connected via the common control line. For this reason, the number of pins (terminals) to be provided in the circuit for driving the control lines can be made smaller than the number of control lines.
  • the magnitude of the leakage current generated in the driving transistor in the pixel circuit is substantially the same in all the rows belonging to each row group. As a result, occurrence of luminance unevenness due to leakage current in the driving transistor is suppressed.
  • the scale of the circuit for driving the control line can be effectively reduced.
  • occurrence of luminance unevenness due to a leakage current in the driving transistor is effectively suppressed.
  • the ninth aspect of the present invention it is possible to suppress the occurrence of luminance unevenness due to the leakage current in the driving transistor and to initialize the pixel circuit at a suitable timing for each row group.
  • the same effect as in the sixth aspect of the present invention is obtained.
  • a reverse bias is applied to the control terminal of the driving transistor for a period from the end of threshold detection to the start of writing. For this reason, the shift of the threshold characteristic of the driving transistor is suppressed.
  • the scanning signal lines are selectively activated sequentially while the selection order is reversed every predetermined frame period. For this reason, the cumulative time during which the reverse bias is applied to the control terminal of the driving transistor is substantially equal in the pixel circuits in all rows. As a result, the shift of the threshold characteristic of the driving transistor is suppressed without causing variations among rows.
  • the same effect as that of the first aspect of the present invention can be achieved in the display device driving method.
  • the same effect as in the second aspect of the present invention can be achieved in the display device driving method.
  • the same effect as in the fourteenth aspect of the present invention can be achieved in the display device driving method.
  • FIG. 3 is a circuit diagram illustrating a configuration of a pixel circuit in the first embodiment.
  • 3 is a timing chart (first frame) illustrating a driving method of the pixel circuit in the first embodiment.
  • 6 is a timing chart (second frame) showing a driving method of the pixel circuit in the first embodiment.
  • FIG. 10 is a timing chart (first frame) illustrating a driving method of a pixel circuit according to a third embodiment of the present invention. It is a timing chart (2nd frame) which shows the drive method of the pixel circuit in the said 3rd Embodiment. It is a figure which shows operation
  • FIG. 2 is a block diagram showing the overall configuration of the display device according to the first embodiment of the present invention.
  • a display device 100 shown in FIG. 2 is an organic EL display including a display control circuit 1, a gate driver circuit 2, a source driver circuit 3, a power supply control circuit 4, and (m ⁇ n) pixel circuits 10.
  • m and n are integers of 2 or more
  • i is an integer of 1 to n
  • j is an integer of 1 to m.
  • a row driving circuit is realized by the gate driver circuit 2 and a column driving circuit is realized by the source driver circuit 3.
  • the display device 100 is provided with n scanning signal lines Gi parallel to each other and m data lines Sj parallel to each other orthogonal thereto.
  • the (m ⁇ n) pixel circuits 10 are arranged in a matrix corresponding to each intersection of the scanning signal line Gi and the data line Sj.
  • n control lines Ei and n power supply lines VPi are provided in parallel with the scanning signal lines Gi.
  • a common power supply line 9 which is a current supply trunk line for connecting the power supply control circuit 4 and the power supply line VPi is provided.
  • the scanning signal line Gi and the control line Ei are connected to the gate driver circuit 2, and the data line Sj is connected to the source driver circuit 3.
  • the power supply line VPi is connected to the power supply control circuit 4 through the common power supply line 9.
  • a common potential Vcom is supplied to the pixel circuit 10 by a common electrode (not shown).
  • one end of the power supply line VPi is connected to the common power supply line 9, but both ends (or three or more connection points) of the power supply line VPi are connected to the common power supply line 9. Also good.
  • the display control circuit 1 outputs various control signals to the gate driver circuit 2, the source driver circuit 3, and the power supply control circuit 4. More specifically, the display control circuit 1 outputs the timing signal OE, the start pulse YI, and the clock YCK to the gate driver circuit 2, and the start pulse SP, the clock CLK, the display data DA, and the latch pulse to the source driver circuit 3. LP is output and a control signal CS is output to the power supply control circuit 4.
  • the gate driver circuit 2 includes a shift register circuit, a logical operation circuit, and a buffer.
  • the shift register circuit sequentially transfers the start pulse YI in synchronization with the clock YCK.
  • the logical operation circuit performs a logical operation between the pulse output from each stage of the shift register circuit and the timing signal OE.
  • the output of the logical operation circuit is given to the corresponding scanning signal line Gi and control line Ei via the buffer.
  • the m pixel circuits 10 are connected to one scanning signal line Gi.
  • the pixel circuits 10 are collectively selected m by using the scanning signal line Gi.
  • the timing signal OE is composed of a plurality of signals depending on the configuration of the logic operation circuit.
  • the gate driver circuit 2 includes a portion that functions as a scanning signal line drive circuit that drives the scanning signal line Gi and a portion that functions as a control line drive circuit that drives the control line Ei. ing.
  • the source driver circuit 3 includes an m-bit shift register 5, a register 6, a latch circuit 7, and m D / A converters 8.
  • the shift register 5 has m registers connected in cascade, transfers the start pulse SP supplied to the first-stage register in synchronization with the clock CLK, and outputs a timing pulse DLP from each stage register.
  • Display data DA is supplied to the register 6 in accordance with the output timing of the timing pulse DLP.
  • the register 6 stores display data DA according to the timing pulse DLP.
  • the display control circuit 1 outputs a latch pulse LP to the latch circuit 7.
  • the latch circuit 7 receives the latch pulse LP, the latch circuit 7 holds the display data stored in the register 6.
  • the D / A converter 8 is provided corresponding to the data line Sj.
  • the D / A converter 8 converts the display data held in the latch circuit 7 into an analog voltage, and applies the obtained analog voltage to the data line Sj.
  • the power supply control circuit 4 has p output terminals corresponding to the p common power supply lines 9.
  • the power supply control circuit 4 switches and applies the power supply potential and the initialization potential to the common power supply line 9 based on the control signal CS.
  • p 1
  • all power supply lines VPi are connected to one common power supply line 9.
  • the power supply control circuit 4 applies an initialization potential to one common power supply line 9 at a predetermined timing.
  • p ⁇ 2 the power supply lines VPi are classified into p groups, and the power supply lines included in each group are connected to the same common power supply line 9.
  • the power supply control circuit 4 applies initialization potentials to the p common power supply lines 9 at different timings. In the following description, it is assumed that the power supply potential is a high level potential and the initialization potential is a low level potential.
  • FIG. 3 is a diagram showing a connection form of the power supply lines VPi in the present embodiment.
  • the display device 100 is provided with one common power supply line 111 for connecting the power supply control circuit 4a and the power supply line VPi.
  • One end of the common power supply line 111 is connected to one output terminal of the power supply control circuit 4 a, and all the power supply lines VPi are connected to the common power supply line 111. That is, in this embodiment, one row group is constituted by the 1st to nth rows.
  • the main line 111 is a main line as long as all the power supply lines VPi can be commonly connected to the power supply control circuit 4a. It does not have to be. Any known configuration can be applied to the number of common power supply lines and the connection position between the common power supply line and the power supply line VPi.
  • FIG. 4 is a circuit diagram showing a configuration of the pixel circuit 10.
  • the pixel circuit 10 includes TFTs 11 to 13, a capacitor 15, and an organic EL element 16.
  • the TFTs 11 to 13 are all N-channel transistors.
  • the TFT 11 functions as a write control transistor.
  • the TFT 12 functions as a driving transistor.
  • the TFT 13 functions as a light emission control transistor.
  • the organic EL element 16 functions as an electro-optical element.
  • the electro-optical element is an organic EL element, FED (Field-Emission Display), LED, charge driving element, liquid crystal, E ink (Electronic-Ink), or the like by applying electricity. It shall mean all elements whose characteristics change.
  • an organic EL element is illustrated as an electro-optical element, but the same description can be made as long as the light emitting element has a light emission amount controlled according to a current amount.
  • the pixel circuit 10 is connected to an electrode having a scanning signal line Gi, a control line Ei, a data line Sj, a power supply line VPi, and a common potential Vcom.
  • the TFT 11 one conduction terminal is connected to the data line Sj, and the other conduction terminal is connected to the gate terminal of the TFT 12.
  • the drain terminal is connected to the power supply line VPi, and the source terminal is connected to the drain terminal of the TFT 12.
  • the source terminal of the TFT 12 is connected to the anode terminal of the organic EL element 16.
  • a common potential Vcom is applied to the cathode terminal of the organic EL element 16.
  • the capacitor 15 is provided between the gate terminal and the source terminal of the TFT 12.
  • the gate terminal of the TFT 11 is connected to the scanning signal line Gi, and the gate terminal of the TFT 13 is connected to the control line Ei.
  • FIG. 5 and 6 are timing charts showing a driving method of the pixel circuit 10 in the present embodiment.
  • FIG. 5 is a timing chart in a preceding frame (referred to as “first frame”) in two consecutive frame periods
  • FIG. 6 shows a subsequent frame (“2” in the two frame periods). It is a timing chart in “the frame”.
  • VGi represents the gate potential of the TFT 12 included in the pixel circuit 10 in the i-th row
  • VSi represents the source potential of the TFT 12 (the anode potential of the organic EL element 16).
  • the pixel circuit 10 performs initialization, threshold value detection (threshold value detection of the TFT 12), writing, and light emission once per frame period, and is turned off in periods other than the light emission period.
  • the organic EL element 16 emits light (and is turned off). However, since the pixel circuit 10 includes the organic EL element 16, hereinafter, the “pixel circuit 10 emits light” and “the pixel circuit 10 is turned off”. "Yes.”
  • the frame period is a unit period for displaying one image, may include a black insertion period, and can be set to various lengths.
  • the potentials of the scanning signal line G1 and the control line E1 are at a low level, and the potential of the power supply line VP1 is at a high level.
  • the potentials of the scanning signal line G1 and the control line E1 change to high level (become active). Thereby, the TFT 11 and the TFT 13 are turned on.
  • the potential of the power supply line VP1 changes to a low level.
  • the low level potential of the power supply line VPi is referred to as VP_L.
  • the potential VP_L a sufficiently low potential, specifically, a potential lower than the gate potential of the TFT 12 immediately before time t11 is used.
  • the reference potential Vref is applied to the data line Sj, and the TFT 11 is turned on as described above, so that the reference potential Vref is applied to the gate of the TFT 12.
  • the reference potential Vref is set to a relatively high level, and the TFT 12 is turned on.
  • the source potential VS1 of the TFT 12 is substantially equal to VP_L.
  • the potential of the power supply line VP1 changes to a high level.
  • the reference potential Vref is applied to the data line Sj.
  • the reference potential Vref is determined so that the TFT 12 is turned on immediately after the above-described time t11 and the voltage applied to the organic EL element 16 does not exceed the light emission threshold voltage after the time t12. For this reason, after time t12, the TFT 12 is maintained in the ON state, but no current flows through the organic EL element 16. Accordingly, current flows from the power supply line VP1 to the source terminal of the TFT 12 via the TFT 13 and the TFT 12, and the source potential VS1 of the TFT 12 rises. The source potential VS1 of the TFT 12 rises until the gate-source voltage Vgs becomes equal to the threshold voltage Vth, and reaches (Vref ⁇ Vth).
  • the potential of the scanning signal line G1 changes to a low level.
  • the TFT 11 is turned off.
  • the potential of the control line E1 also changes to a low level, the TFT 13 is turned off after time t13. For this reason, the source potential VS1 of the TFT 12 is maintained substantially at (Vref ⁇ Vth).
  • the potential of the scanning signal line G1 changes to a high level, and the potential of the data line Sj becomes a level corresponding to display data.
  • the potential of the data line Sj at this time is referred to as a data potential Vdai.
  • the TFT 11 is turned on, and the gate potential VG1 of the TFT 12 changes from Vref to Vda1.
  • the gate-source voltage Vgs of the TFT 12 after time t14 is given by the following equation (1).
  • Vgs ⁇ C OLED / (C OLED + C st ) ⁇ ⁇ (Vda1-Vref) + Vth (1)
  • C OLED is the capacitance value of the organic EL element 16
  • C st is the capacitance value of the capacitor 15.
  • the potential of the scanning signal line G1 changes to a low level.
  • the TFT 11 is turned off. For this reason, the gate-source voltage Vgs of the TFT 12 is maintained substantially at (Vda1 ⁇ Vref + Vth) even if the potential of the data line Sj changes.
  • the potential of the control line E1 changes to high level.
  • the TFT 13 is turned on, and the drain terminal of the TFT 12 is connected to the power supply line VP1 through the TFT 13.
  • the potential of the power supply line VP1 is at a high level, a current flows from the power supply line VP1 to the source terminal of the TFT 12 via the TFT 13 and the TFT 12, and the source potential VS1 of the TFT 12 rises.
  • the gate terminal of the TFT 12 is in a floating state. Therefore, when the source potential VS1 of the TFT 12 increases, the gate potential VG1 of the TFT 12 also increases. At this time, the gate-source voltage Vgs of the TFT 12 is kept substantially constant.
  • the high level potential applied to the power supply line VP1 is determined so that the TFT 12 operates in the saturation region in the light emission period (time t16 to t17). Therefore, the current I flowing through the TFT 12 during the light emission period is given by the following equation (3) if the channel length modulation effect is ignored.
  • I 1/2 ⁇ W / L ⁇ ⁇ ⁇ Cox (Vgs ⁇ Vth) 2 (3)
  • W is the gate width
  • L the gate length
  • the carrier mobility
  • Cox is the gate oxide film capacitance.
  • the current I shown in the above equation (4) changes according to the data potential Vda1, but does not depend on the threshold voltage Vth of the TFT 12. Therefore, even when the threshold voltage Vth varies or when the threshold voltage Vth changes over time, a current corresponding to the data potential Vda1 is supplied to the organic EL element 16 to cause the organic EL element 16 to emit light with a desired luminance. it can.
  • the potential of the control line E1 changes to a low level.
  • the TFT 13 is turned off. For this reason, no current flows through the organic EL element 16, and the pixel circuit 10 is turned off.
  • the pixel circuit 10 in the first row performs initialization in a period from time t11 to time t12, performs threshold detection in a period from time t12 to time t13, and period from time t14 to time t15. Is written, light is emitted during a period from time t16 to time t17, and light is extinguished during a period other than the period from time t16 to time t17.
  • the pixel circuit 10 in the second row performs initialization in the period from time t11 to time t12, and performs threshold detection in the period from time t12 to time t13.
  • Writing and light emission are performed after a predetermined time Ta from the pixel circuit 10.
  • the pixel circuit 10 in the i-th row performs initialization and threshold value detection in the same period as the pixel circuit 10 in the other row, and the writing and writing are delayed by a time Ta from the pixel circuit 10 in the (i-1) -th row. Emits light.
  • writing and light emission of the pixel circuit 10 for each row are performed in ascending order.
  • the operation of the pixel circuit 10 in the second frame will be described.
  • initialization and threshold detection are performed in the pixel circuits 10 in all rows.
  • writing and light emission are performed in the reverse order to the first frame (in descending order). That is, the pixel circuits 10 in all rows perform initialization in a period from time t21 to time t22, and perform threshold detection in a period from time t22 to time t23.
  • the pixel circuits 10 from the n-th row to the first row perform writing and light emission with a delay of Ta for a predetermined time in descending order.
  • the pixel circuit 10 in the i-th row performs initialization and threshold detection in the same period as the pixel circuit 10 in the other row, and performs writing and light emission with a delay of time Ta from the pixel circuit 10 in the (i + 1) -th row. Do.
  • writing and light emission of the pixel circuit 10 for each row are performed in descending order.
  • initialization and threshold detection are first performed in the pixel circuits 10 in all rows in all frames. Thereafter, writing and light emission are performed in the pixel circuit 10 row by row so that the scanning order is reversed every frame.
  • FIG. 1 is a diagram illustrating the operation of the pixel circuits 10 in each row in the present embodiment.
  • the power supply control circuit 4a applies a low level potential (initialization potential) to the common power supply line 111 for a predetermined time at the beginning of one frame period in both the first frame and the second frame. For this reason, the pixel circuits 10 in all rows are initialized at the beginning of one frame period.
  • the pixel circuits 10 in all rows perform threshold detection immediately after initialization. Subsequently, in the first frame, the pixel circuit 10 in the first row is selected, and the pixel circuit 10 in the first row performs writing.
  • the pixel circuit 10 in the second row is selected, and the pixel circuit 10 in the second row performs writing.
  • the pixel circuits 10 in the third to nth rows are sequentially selected for each row, and the selected pixel circuit 10 performs writing.
  • the pixel circuit 10 in the n-th row is selected, and the pixel circuit 10 in the n-th row performs writing.
  • the pixel circuit 10 in the (n ⁇ 1) th row is selected, and the pixel circuit 10 in the (n ⁇ 1) th row performs writing.
  • the pixel circuits 10 in the (n ⁇ 2) to first rows are selected in the reverse order to the first frame for each row, and the selected pixel circuit 10 performs writing.
  • the pixel circuits 10 in each row are turned off during the period from the threshold detection to immediately before writing. By the way, the pixel circuits 10 in each row need to emit light for the same time. In the first frame, the light emission of the pixel circuit 10 in the n-th row needs to be completed by the end of the frame period. Further, in the second frame, the light emission of the pixel circuit 10 in the first row needs to be completed by the end of the frame period. Therefore, the pixel circuits 10 in each row emit light for a certain time T1 after writing, and are turned off during other periods.
  • writing to the pixel circuit 10 (all rows) is performed over one frame period.
  • writing to the pixel circuit 10 is performed over a period of about 1/2 frame (to ensure a light emission period of about 1/2 frame).
  • the scanning speed of the pixel circuit 10 is about twice the normal speed.
  • the length T1 of the light emission period of the pixel circuit 10 is about 1 ⁇ 2 frame period. It may be shorter than a 1 ⁇ 2 frame period. Alternatively, the scanning speed of the pixel circuit 10 may be made higher than about twice the normal speed, and the length of the light emission period may be longer than the 1 ⁇ 2 frame period.
  • the display device includes a plurality of pixel circuits 10 arranged in a matrix, a plurality of scanning signal lines Gi and a plurality of control lines Ei provided corresponding to the rows of the pixel circuits 10, and a pixel circuit.
  • a plurality of data lines Sj provided corresponding to ten columns, a plurality of power supply lines VPi provided for supplying a power supply potential to the pixel circuit 10, and a common power supply connected to the n power supply lines VPi.
  • a gate driver circuit 2 for driving the line 9 (111), the scanning signal line Gi and the control line Ei, a source driver circuit 3 for driving the data line Sj, and a power supply control circuit 4 (4a) for driving the power supply line VPi. It has.
  • the pixel circuit 10 includes an organic EL element 16 (electro-optical element), a TFT 12 (driving transistor) provided on a path of a current flowing through the organic EL element 16, and a gate terminal of the TFT 12 and a data line Sj.
  • the provided TFT 11 write control transistor
  • the TFT 13 light emission control transistor
  • the capacitor 15 provided between the source terminal and the gate terminal of the TFT 12 Including.
  • the selected pixel circuit 10 performs writing to the capacitor 15 provided between the source terminal and the gate terminal of the TFT 12 functioning as a driving transistor, and light emission based on the writing.
  • the threshold voltage is detected so that the voltage applied to the organic EL element 16 does not exceed the light emission threshold voltage, and between the gate and source of the TFT 12 during the period from the threshold detection to the start of writing.
  • the voltage Vgs is maintained equal to the threshold voltage Vth. For this reason, as shown in FIGS. 5 and 6, during the period from the end of threshold detection to the start of writing (hereinafter referred to as “standby period”), the source potential VSi of the TFT 12, that is, the anode potential of the organic EL element 16 is used. Is ideally maintained.
  • the charge movement due to the leakage current in the TFT 12 and the organic EL element 16 is not necessarily zero. Therefore, depending on the length of the standby period, the anode potential of the organic EL element 16 when writing is performed may be different for each row. For example, due to the leak current in the organic EL element 16, it can be considered that the anode potential is relatively high in a row with a short standby period, and the anode potential is relatively low in a row with a long standby period. When this occurs, even if writing based on a data signal having a certain luminance value is performed, the luminance that actually appears on the screen differs depending on the scanning order (selection order of the pixel circuit 10 for each row). It becomes.
  • the scanning order is reversed for each frame.
  • the two frame periods are defined as one unit period
  • the total length of the waiting periods in the one unit period is equal in all rows.
  • the amount of charge movement due to the leakage current in the TFT 12 and the organic EL element 16 is equal in all rows.
  • the fluctuation amount of the anode potential of the organic EL element 16 when writing is performed is almost equal in all the pixel circuits 10, and the occurrence of uneven brightness is suppressed.
  • the initialization period can be set to an appropriate period, typically a period longer than the selection period. . For this reason, even when the current capability of the output buffer included in the power supply control circuit 4 is small, it can be driven sufficiently. Further, the power supply control circuit 4 drives one common power supply line 9 electrically connected to all the power supply lines VPi. Therefore, the output buffer to be provided in the power supply control circuit 4 can be significantly reduced and the circuit scale of the power supply control circuit 4 can be reduced as compared with the configuration in which the power supply lines VPi are individually driven.
  • the initialization potential is supplied using the power supply line VPi, a signal line for supplying the initialization potential is not necessary, and the number of elements in the pixel circuit 10 can be reduced. Furthermore, since the power supply can be driven once per frame, for example, the power consumption can be reduced as compared with the case where the number of times corresponding to the number of rows of the pixel circuit 10 is driven. Further, since the number of common power supply lines 9 is one (or a small number), the area of the power supply wiring region can be reduced.
  • the threshold detection period can be set to an appropriate period, typically a period longer than the selection period. For this reason, threshold detection can be performed reliably, and the accuracy of threshold compensation can be improved.
  • a pixel data writing period can be sufficiently ensured as compared with a configuration in which threshold detection is performed during the selection period. Therefore, the present invention can be easily applied to a configuration in which a writing period is short, that is, a configuration in which driving is performed at high speed, such as a three-dimensional image display device (3D television).
  • the pixel circuits 10 in each row emit light for a certain time T1 after writing, and are turned off during other periods.
  • the lengths of the light emission periods of the pixel circuits 10 in all rows are equalized, and variations in luminance are suppressed.
  • the moving image performance can be improved as in the case of performing black insertion.
  • all the transistors included in the pixel circuit 10 are N-channel type. In this manner, by configuring the transistors included in the pixel circuit 10 with the same conductivity type, the cost of the display device can be reduced.
  • the scanning order is reversed every frame.
  • the present invention is not limited to this, and the scanning order is reversed every plural frames such as every two frames or every three frames. It may be configured. This is the same in the modified examples and other embodiments described later.
  • FIG. 7 is a diagram illustrating a connection form of the power supply lines VPi in the first modification of the first embodiment.
  • the display device 100 is provided with two common power supply lines 121 and 122 for connecting the power supply control circuit 4b and the power supply line VPi.
  • One ends of the common power supply lines 121 and 122 are respectively connected to two output terminals of the power supply control circuit 4b.
  • the power supply lines VP1 to VP (n / 2) are connected to the common power supply line 121, and the power supply lines VP (n / 2 + 1) to VPn are connected to the common power supply line 122.
  • one row group is constituted by the 1st to (n / 2) th rows, and another row group is constituted by the (n / 2 + 1) th to nth rows.
  • FIG. 8 is a diagram showing the operation of the pixel circuits 10 in each row in this modification.
  • the power supply control circuit 4b applies a low level potential to the common power supply line 121 for a predetermined time at the beginning of one frame period, and the common power supply for a predetermined time after the 1/2 frame period elapses.
  • a low level potential is applied to the line 122. Therefore, the pixel circuits 10 in the first to (n / 2) th rows are initialized at the beginning of one frame period, and the pixel circuits 10 in the (n / 2 + 1) th to nth rows are delayed by a 1 ⁇ 2 frame period. Perform initialization.
  • all the pixel circuits 10 in the 1st to (n / 2) th rows are selected simultaneously after the first initialization, and (n / 2 + 1) to n after the second initialization. All the pixel circuits 10 in the row are selected simultaneously.
  • the selected pixel circuit 10 performs threshold detection.
  • the pixel circuits 10 in the 1st to (n / 2) rows are selected in ascending order after the first threshold detection, and the pixel circuits 10 in the (n / 2 + 1) to nth rows after the second threshold detection. Are selected in ascending order.
  • the selected pixel circuit 10 performs writing.
  • the pixel circuits 10 in each row emit light for a predetermined time T2 after writing, and are turned off during other periods.
  • the pixel circuits 10 in the 1st to (n / 2) rows are selected in descending order after the first threshold detection, and the pixel circuits 10 in the (n / 2 + 1) to nth rows after the second threshold detection. Are selected in descending order.
  • the selected pixel circuit 10 performs writing.
  • the pixel circuits 10 in each row emit light for a predetermined time T2 after writing, and are turned off during other periods.
  • the scanning speed of the pixel circuit 10 is the same as normal, and the length T2 of the light emission period of the pixel circuit 10 is about 1 ⁇ 2 frame period.
  • the number of output buffers to be provided in the power supply control circuit 4 (4b) is smaller than the number of power supply lines VPi, and the power supply control circuit is compared with the configuration in which the power supply lines VPi are individually driven.
  • the circuit scale of 4 (4b) can be reduced.
  • the pixel circuit 10 can be initialized at a suitable timing according to the selection period of the pixel circuit 10. .
  • FIG. 9 is a diagram illustrating a connection form of the power supply lines VPi in the second modification of the first embodiment.
  • the display device 100 is provided with two common power supply lines 131 and 132 for connecting the power supply control circuit 4c and the power supply line VPi.
  • One ends of the common power supply lines 131 and 132 are respectively connected to two output terminals of the power supply control circuit 4c.
  • VP (n ⁇ 1) of the odd-numbered rows are connected to the common power supply line 131
  • the power supply lines VP2, VP4,..., VPn of the even-numbered rows are connected to the common power supply line 132 (
  • n is an even number).
  • one row group is configured by the odd-numbered rows
  • another row group is configured by the even-numbered rows.
  • FIG. 10 is a diagram illustrating the operation of the pixel circuits 10 in each row in the present modification.
  • the power supply control circuit 4c applies a low level potential to the common power supply line 131 for a predetermined time at the beginning of one frame period in both the first frame and the second frame, and the common power supply for a predetermined time after the 1 ⁇ 2 frame period elapses.
  • a low level potential is applied to the line 132. Therefore, the pixel circuits 10 in the odd-numbered rows are initialized at the beginning of one frame period, and the pixel circuits 10 in the even-numbered rows are initialized with a delay of 1 ⁇ 2 frame period.
  • all the pixel circuits 10 in the odd-numbered rows are simultaneously selected after the first initialization, and all the pixel circuits 10 in the even-numbered rows are simultaneously selected after the second initialization.
  • the selected pixel circuit 10 performs threshold detection.
  • the odd-numbered pixel circuits 10 are selected in ascending order after the first threshold detection, and the even-numbered pixel circuits 10 are selected in ascending order after the second threshold detection.
  • the selected pixel circuit 10 performs writing.
  • the pixel circuits 10 in each row emit light for a predetermined time T3 after writing, and are turned off during other periods.
  • the odd-numbered pixel circuits 10 are selected in descending order after the first threshold detection, and the even-numbered pixel circuits 10 are selected in descending order after the second threshold detection.
  • the selected pixel circuit 10 performs writing.
  • the pixel circuits 10 in each row emit light for a predetermined time T3 after writing, and are turned off during other periods.
  • the scanning speed of the pixel circuit 10 is the same as normal, and the length T3 of the light emission period of the pixel circuit 10 is about 1 ⁇ 2 frame period.
  • writing can be performed on the pixel circuit 10 in the order in the display screen.
  • the amount of current flowing through the common power supply lines 121 and 122 is greatly different, such as when the luminance is greatly different between the upper half and the lower half of the screen, a luminance difference occurs at the center of the screen.
  • the amount of current flowing through the common power supply lines 131 and 132 is almost the same in many cases, so that a difference in luminance occurring at the center of the screen can be prevented.
  • FIG. 11 is a diagram showing a connection form of the power supply lines VPi in the third modification of the first embodiment.
  • the display device 100 is provided with three common power supply lines 141 to 143 for connecting the power supply control circuit 4d and the power supply line VPi.
  • One ends of the common power supply lines 141 to 143 are respectively connected to three output terminals of the power supply control circuit 4d.
  • the power supply lines VP1 to VP (n / 3) are connected to the common power supply line 141, the power supply lines VP (n / 3 + 1) to VP (2n / 3) are connected to the common power supply line 142, and the power supply line VP (2n / 3 + 1).
  • the first row group is configured by the 1st to (n / 3) rows
  • the second row group is configured by the (n / 3 + 1) to (2n / 3) rows
  • a third row group is constituted by the (2n / 3 + 1) to nth rows.
  • FIG. 12 is a diagram showing the operation of the pixel circuits 10 in each row in the present modification.
  • the power supply control circuit 4d applies a low level potential to the common power supply line 141 for a predetermined time at the beginning of one frame period in both the first frame and the second frame, and the common power supply for a predetermined time after the 1 / frame period elapses.
  • a low level potential is applied to the line 142, and a low level potential is applied to the common power supply line 143 for a predetermined time after the 3 frame period has elapsed.
  • the pixel circuits 10 in the 1st to (n / 3) rows are initialized at the beginning of one frame period, and the pixel circuits 10 in the (n / 3 + 1) to (2n / 3) rows are 1/3 frames. Initialization is delayed by a period, and the pixel circuits 10 in the (2n / 3 + 1) to nth rows are further delayed by a 1/3 frame period.
  • all the pixel circuits 10 in the 1st to (n / 3) rows are selected simultaneously after the first initialization, and (n / 3 + 1) to (n All the pixel circuits 10 in the (2n / 3) th row are selected simultaneously, and after the third initialization, all the pixel circuits 10 in the (2n / 3 + 1) -nth row are selected simultaneously.
  • the selected pixel circuit 10 performs threshold detection.
  • the pixel circuits 10 in the 1st to (n / 3) rows are selected in ascending order after the first threshold detection, and the (n / 3 + 1) to (2n / 3) rows after the second threshold detection.
  • Pixel circuits 10 are selected in ascending order, and the pixel circuits 10 in the (2n / 3 + 1) to n-th rows are selected in ascending order after the third threshold detection.
  • the selected pixel circuit 10 performs writing.
  • the pixel circuits 10 in each row emit light for a predetermined time T4 after writing, and are turned off during other periods.
  • the pixel circuits 10 in the 1st to (n / 3) rows are selected in descending order after the first threshold detection, and the (n / 3 + 1) to (2n / 3) rows after the second threshold detection.
  • the pixel circuits 10 are selected in descending order, and the pixel circuits 10 in the (2n / 3 + 1) to n-th rows are selected in descending order after the third threshold detection.
  • the selected pixel circuit 10 performs writing.
  • the pixel circuits 10 in each row emit light for a predetermined time T4 after writing, and are turned off during other periods. In the example shown in FIG. 12, the scanning speed of the pixel circuit 10 is the same as normal, and the length T4 of the light emission period of the pixel circuit 10 is about 2/3 frame period.
  • the pixel circuits 10 in the rows belonging to the other two row groups emit light during the period in which the pixel circuits 10 in the row belonging to a certain row group perform initialization and threshold detection. Yes.
  • the length of the light emission period of each pixel circuit 10 is about 2/3 frame period. In other words, the light emission period can be lengthened as compared with a configuration in which one or two common power supply lines are provided.
  • the number p of the common power supply lines 9 may be four or more.
  • p ⁇ 4 the connection configuration of the power supply lines VPi and the operation of the pixel circuits 10 in each row are the same as described above.
  • p ⁇ 3 adjacent (n / p) power supply lines may be connected to the same common power supply line, and (p ⁇ 1) skipped (n / p) power supply lines may be connected.
  • the power supply lines VP3, VP6,... May be connected to the third common power supply line, respectively.
  • p 1
  • m power supply lines may be provided corresponding to the columns of the pixel circuits 10.
  • the number p of the common power supply lines 9, the scanning speed of the pixel circuit 10, and the length of the light emission period of the pixel circuit 10 are in a trade-off relationship. For example, if the number p of the common power supply lines 9 is increased, the scanning speed of the pixel circuit 10 can be slowed, or the light emission period of the pixel circuit 10 can be lengthened. However, in this case, the number of output buffers to be provided in the power supply control circuit 4 increases, and the circuit scale of the power supply control circuit 4 increases. Therefore, these parameters may be determined in consideration of the specifications and cost of the display device.
  • FIG. 13 is a block diagram showing an overall configuration of a display device according to the second embodiment of the present invention.
  • a display device 200 shown in FIG. 13 includes a control line drive circuit 20 and a connection for connecting the control line drive circuit 20 and the control line Ei in addition to the components in the first embodiment (see FIG. 2). And a common control line 21.
  • the scanning signal line Gi is connected to the gate driver circuit 2
  • the control line Ei is connected to the control line drive circuit 20 via the common control line 21.
  • a row drive circuit is realized by the gate driver circuit 2 and the control line drive circuit 20.
  • control line drive circuit 20 is provided separately from the gate driver circuit 2 is that, in this embodiment, a plurality of control lines Ei are driven as described later.
  • the gate driver circuit 2 is 1 This is because the circuit is described as outputting a signal that becomes active row by row. Therefore, for example, the gate driver circuit 2 and the control line drive circuit 20 may be configured by one IC chip.
  • the pixel circuit 10 has the configuration shown in FIG. 4 as in the first embodiment.
  • the control line driving circuit 20 has q output terminals corresponding to the q common control lines 21.
  • the control line drive circuit 20 switches and applies a high level potential and a low level potential to the common control line 21 based on the control signal TS.
  • q 1
  • all control lines Ei are connected to one common control line 21.
  • q ⁇ 2 the control lines Ei are classified into q groups, and the control lines included in each group are connected to the same common control line 21.
  • FIG. 14 is a diagram illustrating a connection form of the power supply line VPi and the control line Ei in the present embodiment.
  • the display device 200 is provided with one common power supply line 111 for connecting the power supply control circuit 4a and the power supply line VPi, and connects the control line drive circuit 20a and the control line Ei.
  • one common control line 211 is provided.
  • One end of the common power supply line 111 is connected to one output terminal of the power supply control circuit 4 a, and all the power supply lines VPi are connected to the common power supply line 111.
  • One end of the common control line 211 is connected to one output terminal of the control line drive circuit 20a, and all the control lines Ei are connected to the common control line 211.
  • FIG. 15 and 16 are timing charts showing a driving method of the pixel circuit 10 in the present embodiment.
  • FIG. 15 is a timing chart in the first frame of two consecutive frame periods
  • FIG. 16 is a timing chart in the second frame of the two frame periods.
  • the length of the period from the end of writing to the start of light emission is the same in all rows (see FIGS. 5 and 6), but in this embodiment, it is within one frame period.
  • the period from the writing end time to the light emission starting time becomes longer as the writing start time is relatively earlier.
  • the pixel circuits 10 in all rows start light emission at the same timing and end light emission at the same timing.
  • writing in the pixel circuit 10 for each row is performed in ascending order for the first frame and in descending order for the second frame.
  • FIG. 17 is a diagram illustrating the operation of the pixel circuits 10 in each row in the present embodiment.
  • the pixel circuit 10 performs initialization, threshold value detection (threshold value detection of the TFT 12), writing, and light emission once per frame period, and is turned off in periods other than the light emission period.
  • threshold value detection threshold value detection of the TFT 12
  • the pixel circuits 10 in all rows are simultaneously (collectively) fixed time T5. Light is emitted only at the end of one frame period (in other words, immediately before the initialization of the next frame).
  • the n control lines Ei are connected to the control line drive circuit 20 via one common control line 21. Therefore, compared to the first embodiment, the pins (terminals) to be provided in the control line driving circuit (the gate driver circuit 2 in the first embodiment 2, the control line driving circuit 20 in the present embodiment). ) Can be greatly reduced. Further, the scale of the control line driving circuit can be greatly reduced as compared with the first embodiment.
  • the gate-source voltage Vgs of the TFT 12 does not change. However, since a slight leakage current exists in the TFT 12, the gate-source voltage Vgs actually decreases little by little. For this reason, when the length of the period from the threshold detection end time to the light emission start time differs for each row as in the first embodiment, the magnitude of the leakage current in the TFT 12 differs for each row, resulting in uneven luminance. May occur.
  • the length of the period from the threshold detection end time to the light emission start time is the same in all the rows, so that the leakage current in the TFT 12 is the same in all the pixel circuits 10. Thereby, the occurrence of uneven brightness due to the leakage current generated in the TFT 12 is suppressed.
  • FIG. 18 is a diagram illustrating a connection form of the power supply line VPi and the control line Ei in the first modification of the second embodiment.
  • the display device 200 is provided with two common power supply lines 121 and 122 for connecting the power supply control circuit 4b and the power supply line VPi, and the control line drive circuit 20b and the control line Ei are connected to each other.
  • Two common control lines 221 and 222 are provided for connection.
  • One ends of the common power supply lines 121 and 122 are respectively connected to two output terminals of the power supply control circuit 4b.
  • the power supply lines VP1 to VP (n / 2) are connected to the common power supply line 121, and the power supply lines VP (n / 2 + 1) to VPn are connected to the common power supply line 122.
  • One ends of the common control lines 221 and 222 are connected to two output terminals of the control line drive circuit 20b, respectively.
  • the control lines E1 to E (n / 2) are connected to the common control line 221 and the control lines E (n / 2 + 1) to En are connected to the common control line 222.
  • FIG. 19 is a diagram showing the operation of the pixel circuits 10 in each row in this modification.
  • the pixel circuits 10 in the first to (n / 2) th rows perform initialization and threshold detection at the beginning of one frame period, and the pixels in the (n / 2 + 1) th to nth rows
  • the circuit 10 performs initialization and threshold detection with a delay of 1 ⁇ 2 frame period.
  • the writing of the pixel circuit 10 for each row is performed in ascending order in the first frame.
  • the second frame is performed in descending order.
  • all the pixel circuits 10 in the 1st to (n / 2) th rows start light emission at the same timing in the first frame and the second frame. Light emission ends at the timing. Further, all the pixel circuits 10 in the (n / 2 + 1) to n-th rows start light emission at the same timing and end light emission at the same timing.
  • the length T6 of the light emission period is equal in the pixel circuits 10 in all rows. In the example shown in FIG. 19, the scanning speed of the pixel circuit 10 is the same as normal, and the length T6 of the light emission period of the pixel circuit 10 is about 1 ⁇ 2 frame period.
  • the circuit scale of the power supply control circuit 4 (4b) and the control line drive circuit 20 (20b) can be reduced as compared with the configuration in which the power supply line VPi and the control line Ei are individually driven. .
  • the length of the period from the threshold detection end time to the light emission start time is equal in all rows, the occurrence of luminance unevenness due to the leakage current generated in the TFT 12 in the pixel circuit 10 is suppressed.
  • FIG. 20 is a diagram illustrating a connection form of the power supply line VPi and the control line Ei in the second modification example of the second embodiment.
  • the display device 200 is provided with two common power supply lines 131 and 132 for connecting the power supply control circuit 4c and the power supply line VPi, and the control line drive circuit 20c and the control line Ei are connected to each other.
  • Two common control lines 231 and 232 are provided for connection.
  • One ends of the common power supply lines 131 and 132 are respectively connected to two output terminals of the power supply control circuit 4c.
  • VP (n ⁇ 1) of the odd-numbered rows are connected to the common power supply line 131, and the power supply lines VP2, VP4,..., VPn of the even-numbered rows are connected to the common power supply line 132 (
  • n is an even number).
  • One ends of the common control lines 231 and 232 are respectively connected to two output terminals of the control line drive circuit 20c.
  • the odd-numbered control lines E 1, E 3,..., E (n ⁇ 1) are connected to the common control line 231, and the even-numbered control lines E 2, E 4,.
  • FIG. 21 is a diagram showing the operation of the pixel circuits 10 in each row in the present modification.
  • the odd-numbered pixel circuits 10 perform initialization and threshold detection at the beginning of one frame period, and the even-numbered pixel circuits 10 are initially delayed by a 1 ⁇ 2 frame period. And threshold detection.
  • writing to the pixel circuit 10 for each row is performed in ascending order for the first frame and in descending order for the second frame.
  • all the pixel circuits 10 in odd-numbered rows start light emission at the same timing and end light emission at the same timing in both the first frame and the second frame.
  • all the pixel circuits 10 in the even-numbered rows start light emission at the same timing and end light emission at the same timing.
  • the length T7 of the light emission period is equal in the pixel circuits 10 in all rows.
  • the scanning speed of the pixel circuit 10 is the same as normal, and the length T7 of the light emission period of the pixel circuit 10 is about 1 ⁇ 2 frame period.
  • FIG. 22 is a diagram illustrating a connection form of the power supply line VPi and the control line Ei in the third modification example of the second embodiment.
  • the display device 200 is provided with three common power supply lines 141 to 143 for connecting the power supply control circuit 4d and the power supply line VPi, and the control line drive circuit 20d and the control line Ei are connected to each other.
  • Three common control lines 241 to 243 are provided for connection.
  • One ends of the common power supply lines 141 to 143 are respectively connected to three output terminals of the power supply control circuit 4d.
  • the power supply lines VP1 to VP (n / 3) are connected to the common power supply line 141, the power supply lines VP (n / 3 + 1) to VP (2n / 3) are connected to the common power supply line 142, and the power supply line VP (2n / 3 + 1). ) To VPn are connected to the common power supply line 143.
  • One ends of the common control lines 241 to 243 are connected to three output terminals of the control line driving circuit 20d, respectively.
  • control lines E1 to E (n / 3) are connected to the common control line 241, the control lines E (n / 3 + 1) to E (2n / 3) are connected to the common control line 242, and the control line E (2n / 3 + 1) ) To En are connected to the common control line 243.
  • FIG. 23 is a diagram showing the operation of the pixel circuits 10 in each row in the present modification.
  • the pixel circuits 10 in the 1st to (n / 3) rows perform initialization and threshold detection at the beginning of one frame period, and (n / 3 + 1) to (2n / 3)
  • the pixel circuit 10 in the row performs initialization / threshold detection with a delay of 1/3 frame period
  • the pixel circuit 10 in the (2n / 3 + 1) -nth row is further initialized / threshold with a delay of 1/3 frame period.
  • Perform detection The writing of the pixel circuit 10 for each of the first to (n / 3) th rows is performed in ascending order for the first frame, and in descending order for the second frame. The same applies to the (n / 3 + 1) to (2n / 3) rows and the (2n / 3 + 1) to n rows.
  • all the pixel circuits 10 in the 1st to (n / 3) rows start light emission at the same timing in the first frame and the second frame, and the same Light emission ends at the timing. Further, all the pixel circuits 10 in the (n / 3 + 1) to (2n / 3) rows start light emission at the same timing and end light emission at the same timing. Further, all the pixel circuits 10 in the (2n / 3 + 1) -nth rows start light emission at the same timing and end light emission at the same timing.
  • the length T8 of the light emission period is equal in the pixel circuits 10 in all rows. In the example shown in FIG. 23, the scanning speed of the pixel circuit 10 is the same as normal, and the length T8 of the light emission period of the pixel circuit 10 is about 2/3 frame period.
  • the pixel circuits 10 in the rows belonging to the other two row groups emit light during the period in which the pixel circuits 10 in the row belonging to a certain row group perform initialization and threshold detection. Yes.
  • the length of the light emission period of each pixel circuit 10 is about 2/3 frame period. In other words, the light emission period can be lengthened as compared with a configuration in which one or two common power supply lines and one or two common control lines are provided.
  • the number q of common control lines 21 may be four or more.
  • q ⁇ 4 the connection form of the control line Ei and the operation of the pixel circuit 10 in each row are the same as described above.
  • q ⁇ 3 adjacent (n / q) control lines may be connected to the same common control line, and (q ⁇ 1) skipped (n / q) control lines may be connected.
  • Control lines may be connected to the same common control line.
  • q 3
  • two control lines Ei are selected to be skipped
  • the control lines E1, E4,... Are used as the first common control line
  • the control lines E3, E6,... May be connected to the third common control line, respectively.
  • 24 and 25 are timing charts showing a driving method of the pixel circuit 10 in the present embodiment.
  • the reverse bias negative bias
  • the reverse bias is simultaneously applied to the gates of the TFTs 12 in the pixel circuits 10 in all rows (time t14 to t15 in FIG. 24, time t24 to t25 in FIG. 25). See).
  • the reverse bias is applied to the gates of the TFTs 12 by applying a sufficiently low potential Vneg to the data lines Sj with the potentials of all the scanning signal lines Gi at a high level.
  • a reverse bias is continuously applied to the gate of the TFT 12 throughout the period until writing is started. Since the operation other than the application of the reverse bias to the gate of the TFT 12 is the same as that in the first embodiment, the description thereof is omitted.
  • FIG. 26 is a diagram illustrating the operation of the pixel circuits 10 in each row in the present embodiment.
  • the pixel circuits 10 in all the rows are initialized at the beginning of one frame period, then the threshold value is detected, and then the reverse bias is applied to the gate of the TFT 12. .
  • This reverse bias application is continued for a period until writing is started in the pixel circuits 10 of each row.
  • writing and light emission of the pixel circuit 10 for each row are performed in ascending order.
  • writing and light emission of the pixel circuit 10 for each row are performed in descending order. Note that, in both the first frame and the second frame, the pixel circuits 10 in each row emit light for a certain time T9, and are turned off in other periods.
  • the threshold characteristic shifts in the positive direction when a positive bias is applied to the gate, and the threshold characteristic shifts in the negative direction when a reverse bias (negative bias) is applied to the gate. It is known.
  • the threshold characteristic shifts in the positive direction means that “Id (drain current) -Vg (gate voltage) characteristic shifts in the right direction”.
  • a positive voltage is usually applied between the gate and source of a driving transistor (TFT 12) during a period of light emission. For this reason, as the emission time is accumulated, the threshold characteristic of the driving transistor gradually shifts in the positive direction.
  • a reverse bias is applied to the gate of the TFT 12 during a period from the end of threshold detection to the start of writing. For this reason, a shift (in the positive direction) of the threshold characteristic of the TFT 12 functioning as a driving transistor is suppressed. Further, since the scanning order is reversed for each frame, the accumulated time for applying the reverse bias to the gates of the TFTs 12 is substantially equal in the pixel circuits 10 in all rows. Thereby, the shift of the threshold characteristic of the TFT 12 is suppressed without causing the variation for each row.
  • FIG. 27 is a diagram illustrating the operation of the pixel circuits 10 in each row in the modified example of the third embodiment.
  • the pixel circuits 10 in all the rows simultaneously emit light for a certain time T10 as shown in FIG. May be.
  • the power supply line VPi and the control line Ei are classified into a plurality of groups, and the power supply line VPi and the control line Ei are grouped. You may make it the structure driven for every.
  • the organic EL display has been described as an example, but the present invention is not limited to this.
  • the present invention can be applied to a display device other than an organic EL display as long as the display device includes a self-luminous display element driven by current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 簡易な構成で閾値検出のための期間を充分に確保することができ、かつ、輝度ムラの発生を抑止することのできる表示装置を提供する。 表示装置は、複数の画素回路と、複数の走査信号線および複数の制御線に接続されたゲートドライバ回路と、複数の電源線に共通電源線を介して接続された電源制御回路とを備える。画素回路は、有機EL素子と複数のTFTとコンデンサとを含む。各フレーム期間において、初期化および閾値検出が複数の行で一括して行われた後、1行ずつ順次に書き込みおよび発光が行われる。ここで、連続する2フレーム期間のうちの先行するフレーム(1フレーム目)においては、1行目からn行目の順(昇順)に書き込みが行われ、当該2フレーム期間のうちの後続のフレーム(2フレーム目)においては、n行目から1行目の順(降順)に書き込みが行われる。

Description

表示装置およびその駆動方法
 本発明は、表示装置に関し、より詳しくは、有機ELディスプレイなどの電流で駆動される自発光型表示素子を備えた表示装置およびその駆動方法に関する。
 薄型、高画質、低消費電力の表示装置として、従来より有機EL(Electro Luminescence)ディスプレイが知られている。有機ELディスプレイには、電流で駆動される自発光型表示素子である有機EL素子およびこれを駆動するための駆動用トランジスタを含む複数の画素回路がマトリクス状に配置されている。
 このような有機EL素子などの電流駆動型表示素子に流される電流量を制御する方式は、データ信号線に流れる電流に基づいて表示素子に流すべき電流を制御する定電流型制御方式(または電流指定型駆動方式)と、データ信号線に印加される電圧に基づいて表示素子に流すべき電流を制御する定電圧型制御方式(または電圧指定型駆動方式)とに大別される。有機ELディスプレイを定電圧型制御方式によって動作させる際には、駆動用トランジスタの閾値電圧のばらつきや、有機EL素子の経時劣化による高抵抗化から生じる電流減少(輝度低下)を補償する必要がある。これに対して、定電流型制御方式では、上記閾値電圧や有機EL素子の内部抵抗とは無関係に有機EL素子に一定の電流が流れるようデータ信号の電流値が制御されるため、通常上記補償は必要とはならない。しかし、定電流型制御方式によると、定電圧型制御方式よりも駆動用トランジスタや配線の数が増加するため、開口率が低下する。このため、定電圧型制御方式が広く採用されている。
 定電圧型制御方式を採用する構成において上記補償動作を行う画素回路は、従来より各種の構成が知られている。日本の特開2006-215275号公報には、図28に示す画素回路80が記載されている。この画素回路80は、TFT(Thin Film Transistor)81~85、コンデンサ86、および有機EL素子87を含んでいる。画素回路80に対して書き込みが行われるときには、まず、TFT82,84をオン状態にすることにより、TFT85(駆動用トランジスタ)のゲート-ソース間電圧が初期化される。次に、TFT84およびTFT83を順にオフ状態にすることにより、TFT85の閾値電圧がコンデンサ86に保持される。次に、データ線DTLにデータ電位が印加されると共に、TFT81がオン状態にされる。このように各TFTを制御することにより、TFT85の閾値電圧のばらつきや、有機EL素子87の経時劣化による高抵抗化(から生じる電流減少)を補償することができる。
 画素回路80は、データ線DTL,4本の制御線WSL,AZL1,AZL2,DSL、および3本の電源線(Vofs用配線,Vcc用配線,およびVss用配線)に接続されている。一般に、画素回路に接続される配線(特に、制御線)の本数が多いほど、回路は複雑になり、製造コストは高くなる。そこで日本の特開2006-215275号公報には、TFT82またはTFT84のソース端子を制御線WSLに接続した画素回路が記載されている。日本の特開2007-316453号公報には、TFT82のゲート端子を先行する行の制御線に接続した画素回路が記載されている。このように制御線と電源線とを共通化することにより、配線の本数を削減することができる。
 日本の特開2007-310311号公報には、図29に示す画素回路90が記載されている。画素回路90は、TFT91,TFT92,コンデンサ93,および有機EL素子94を含んでいる。画素回路90に対して書き込みが行われるときには、まず、TFT91がオン状態にされる。次に、電源線DSLに初期化電位が印加され、有機EL素子94のアノード端子に初期化電位が与えられる。次に、電源線DSLに電源電位を印加することにより、TFT92(駆動用トランジスタ)の閾値電圧がコンデンサ93に保持される。次に、データ線DTLにデータ電位が印加される。このように電源線から初期化電位を与えることにより、少ない素子数でTFT92の閾値電圧のばらつきを補償することができる。
 また、日本の特開2007-148129号公報には、電源線から初期化電位を与え、データ線から基準電位を与える画素回路が記載されている。さらに、日本の特開2008-33193号公報には、書き込みを行う前の複数の水平期間で補償動作(閾値電圧のばらつきを補償するための動作)を行う画素回路が記載されている。さらにまた、日本の特開2009-237041号公報には、閾値電圧のばらつき補正処理を複数ラインずつ行い、かつ、ばらつき補正処理を同時に行う複数ラインについての書き込みのための走査順序を1フィールド(1フレーム)毎に逆にする表示装置が記載されている。
日本の特開2006-215275号公報 日本の特開2007-316453号公報 日本の特開2007-310311号公報 日本の特開2007-148129号公報 日本の特開2008-33193号公報 日本の特開2009-237041号公報
 図28に示す画素回路80に対して、日本の特開2006-215275号公報や日本の特開2007-316453号公報に記載された方法を適用すれば、画素回路に接続される配線の本数を削減することができる。しかしながら、この方法で得られた画素回路には、TFTの個数が多いという問題がある。これに対して、図29に示す画素回路90では、TFTの個数は少ない。しかしながら、画素回路90を使用するときには、電源線DSLを制御線WSLと連動して駆動する必要がある。このため、電源制御回路には電源線DSLと同数の出力バッファが必要となる。また、電源線DSLの電位を制御線WSLの選択期間に合わせて短時間で変化させる必要があるので、電源制御回路に設ける出力バッファには大きな電流能力が必要となる。したがって、画素回路90については、電源制御回路の回路規模や消費電力が大きくなるという問題がある。
 また、日本の特開2008-33193号公報や日本の特開2009-237041号公報に記載された方法を適用すれば、補償動作(閾値検出とも呼ばれる)に必要な期間が充分に確保されるものの構成が複雑となる。これに対して、その他の従来例のように補償動作を選択期間内に行うようにすると、構成を簡易にすることができるもののTFTの閾値電圧の検出に必要な期間が充分には確保されない。さらに、補償動作の期間が充分に確保される場合であっても、行ごとの補償動作や書き込みのタイミングによっては画面上に輝度ムラが発生することが懸念される。
 そこで、本発明は、簡易な構成で閾値検出のための期間を充分に確保することができ、かつ、輝度ムラの発生を抑止することのできる表示装置を提供することを目的とする。
 本発明の第1の局面は、アクティブマトリクス型の表示装置であって、
 複数の行および複数の列を有するマトリクスを形成するように配置された複数の画素回路と、
 前記複数の画素回路の列に対応して設けられた複数の映像信号線と、
 前記複数の画素回路の行に対応して設けられた複数の走査信号線および複数の制御線と、
 前記複数の画素回路に電源電位を供給するために設けられた複数の電源線と、
 前記複数の映像信号線を駆動する列駆動回路と、
 前記複数の走査信号線および前記複数の制御線を選択的または一括的に駆動する行駆動回路と
を備え、
 前記画素回路は、
  前記電源線から与えられる電流に基づいて発光する電気光学素子と、
  前記電気光学素子を流れる電流の経路上に設けられた駆動用トランジスタと、
  前記駆動用トランジスタの制御端子と前記映像信号線との間に設けられ、前記走査信号線が前記行駆動回路によってアクティブにされたときに前記駆動用トランジスタの前記制御端子と前記映像信号線とを電気的に接続する書き込み制御トランジスタと、
  前記駆動用トランジスタの一方の導通端子と前記電源線との間に設けられ、前記制御線が前記行駆動回路によってアクティブにされたときに前記駆動用トランジスタの前記一方の導通端子と前記電源線とを電気的に接続する発光制御トランジスタと、
  前記駆動用トランジスタの前記制御端子と前記駆動用トランジスタの他方の導通端子との間に設けられたコンデンサと
を含み、
 前記複数の行を1個または複数個の行グループにグループ化したときの各行グループに着目したとき、前記行駆動回路は、フレーム期間開始後の所定期間であって前記電気光学素子を初期化するための初期化期間および当該初期化期間後の所定期間であって前記駆動用トランジスタの閾値電圧のばらつきを補償するための閾値検出期間には、前記行グループに属する行に対応して設けられている走査信号線および制御線の全てを一括的にアクティブにし、前記閾値検出期間後には、表示すべき画像に応じた電荷を前記コンデンサに蓄積させるための書き込み期間が行毎に設けられるよう、前記行グループに属する行に対応して設けられている走査信号線を、kフレーム期間毎(kは自然数)に選択順序を逆にしつつ、選択的に順次にアクティブにすることを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記kは1であることを特徴とする。
 本発明の第3の局面は、本発明の第1の局面において、
 前記複数の電源線を駆動する電源制御回路を更に備えるとともに、前記複数の電源線のうちの一群に共通的に接続される共通電源線を前記行グループ毎に更に備え、
 各行グループに着目したとき、前記電源制御回路は、前記初期化期間に、前記行グループに対応する共通電源線を介して、当該共通電源線に接続されている電源線に前記電気光学素子を初期化するための初期化電位を与えることを特徴とする。
 本発明の第4の局面は、本発明の第3の局面において、
 前記複数の行は、複数個の行グループにグループ化されていることを特徴とする。
 本発明の第5の局面は、本発明の第4の局面において、
 同一の行グループに属する複数の電源線が互いに隣接することのないよう、前記複数の行がグループ化されていることを特徴とする。
 本発明の第6の局面は、本発明の第4の局面において、
 前記複数の行は、3個以上の行グループにグループ化されていることを特徴とする。
 本発明の第7の局面は、本発明の第1の局面において、
 前記複数の制御線のうちの一群に共通的に接続される共通制御線を前記行グループ毎に更に備え、
 各行グループに着目したとき、前記行駆動回路は、前記行グループに属する行の全てについての書き込み期間終了後に、前記行グループに属する全ての行の画素回路内の前記電気光学素子が同じタイミングで発光するよう、前記行グループに対応する共通制御線をアクティブにすることを特徴とする。
 本発明の第8の局面は、本発明の第7の局面において、
 前記複数の行は、1個の行グループにグループ化されていることを特徴とする。
 本発明の第9の局面は、本発明の第7の局面において、
 前記複数の行は、複数個の行グループにグループ化されていることを特徴とする。
 本発明の第10の局面は、本発明の第7の局面において、
 前記複数の電源線を駆動する電源制御回路を更に備えるとともに、前記複数の電源線のうちの一群に共通的に接続される共通電源線を前記行グループ毎に更に備え、
 各行グループに着目したとき、前記電源制御回路は、前記初期化期間に、前記行グループに対応する共通電源線を介して、当該共通電源線に接続されている電源線に前記電気光学素子を初期化するための初期化電位を与えることを特徴とする。
 本発明の第11の局面は、本発明の第10の局面において、
 前記複数の行は、複数個の行グループにグループ化されていることを特徴とする。
 本発明の第12の局面は、本発明の第11の局面において、
 同一の行グループに属する複数の電源線が互いに隣接することのないよう、前記複数の行がグループ化されていることを特徴とする。
 本発明の第13の局面は、本発明の第11の局面において、
 前記複数の行は、3個以上の行グループにグループ化されていることを特徴とする。
 本発明の第14の局面は、本発明の第1の局面において、
 各行グループに着目したとき、前記閾値検出期間後、前記行グループに属する行についての最初の書き込み期間開始前に、前記行駆動回路は、前記行グループに属する行に対応して設けられている走査信号線の全てを一括的にアクティブにし、前記列駆動回路は、前記駆動用トランジスタを逆バイアス状態にするための逆バイアス電位を前記複数の映像信号線に印加することを特徴とする。
 本発明の第15の局面は、複数の行および複数の列を有するマトリクスを形成するように配置された複数の画素回路と、前記複数の画素回路の列に対応して設けられた複数の映像信号線と、前記複数の画素回路の行に対応して設けられた複数の走査信号線および複数の制御線と、前記複数の画素回路に電源電位を供給するために設けられた複数の電源線とを備えるアクティブマトリクス型の表示装置の駆動方法であって、
 前記複数の映像信号線を駆動する列駆動ステップと、
 前記複数の走査信号線および前記複数の制御線を選択的または一括的に駆動する行駆動ステップと
を備え、
 前記画素回路は、
  前記電源線から与えられる電流に基づいて発光する電気光学素子と、
  前記電気光学素子を流れる電流の経路上に設けられた駆動用トランジスタと、
  前記駆動用トランジスタの制御端子と前記映像信号線との間に設けられ、前記走査信号線が前記行駆動ステップでアクティブにされたときに前記駆動用トランジスタの前記制御端子と前記映像信号線とを電気的に接続する書き込み制御トランジスタと、
  前記駆動用トランジスタの一方の導通端子と前記電源線との間に設けられ、前記制御線が前記行駆動ステップでアクティブにされたときに前記駆動用トランジスタの前記一方の導通端子と前記電源線とを電気的に接続する発光制御トランジスタと、
  前記駆動用トランジスタの前記制御端子と前記駆動用トランジスタの他方の導通端子との間に設けられたコンデンサと
を含み、
 前記複数の行を1個または複数個の行グループにグループ化したときの各行グループに着目したとき、前記行駆動ステップでは、フレーム期間開始後の所定期間であって前記電気光学素子を初期化するための初期化期間および当該初期化期間後の所定期間であって前記駆動用トランジスタの閾値電圧のばらつきを補償するための閾値検出期間には、前記行グループに属する行に対応して設けられている走査信号線および制御線の全てが一括的にアクティブにされ、前記閾値検出期間後には、表示すべき画像に応じた電荷を前記コンデンサに蓄積させるための書き込み期間が行毎に設けられるよう、前記行グループに属する行に対応して設けられている走査信号線が、kフレーム期間毎(kは自然数)に選択順序を逆にされつつ、選択的に順次にアクティブにされることを特徴とする。
 本発明の第16の局面は、本発明の第15の局面において、
 前記kは1であることを特徴とする。
 本発明の第17の局面は、本発明の第15の局面において、
 各行グループに着目したとき、前記閾値検出期間後、前記行グループに属する行についての最初の書き込み期間開始前に、前記行駆動ステップでは、前記行グループに属する行に対応して設けられている走査信号線の全てが一括的にアクティブにされ、前記列駆動ステップでは、前記駆動用トランジスタを逆バイアス状態にするための逆バイアス電位が前記複数の映像信号線に印加されることを特徴とする。
 本発明の第1の局面によれば、各行グループに着目すると、画素回路内のコンデンサへの書き込みのための走査信号線の選択の順序(走査順序)は所定フレーム期間毎に逆にされる。このため、閾値検出終了時点から書き込み開始時点までの期間(待機期間)の合計の長さは、全ての行でほぼ等しくなる。上記待機期間には駆動用トランジスタや電気光学素子でのリーク電流が生じ得るが、リーク電流による電荷の移動量は全ての行でほぼ等しくなる。その結果、リーク電流に起因する輝度ムラの発生が抑制される。また、各フレーム期間において、各行グループに属する全ての行の画素回路の初期化・閾値検出が一括して行われるので、初期化期間および閾値検出期間を充分に長い期間に設定することができる。このため、仮に駆動能力の比較的小さい回路によって電源線が駆動されていても初期化動作を確実に行うことができ、また、閾値検出が確実に行われるので閾値電圧のばらつきの補償(閾値補償)の精度を向上させることができる。さらに、走査信号線の選択期間中に閾値検出が行われる構成と比較して、書き込み期間を充分に確保することができる。
 本発明の第2の局面によれば、各行グループに着目すると、画素回路内のコンデンサへの書き込みのための走査順序は1フレーム期間毎に逆にされる。このため、画素回路内の駆動用トランジスタや電気光学素子でのリーク電流に起因する輝度ムラの発生が効果的に抑制される。
 本発明の第3の局面によれば、行グループ毎に共通電源線が設けられ、共通電源線を介して電源制御回路から電源線に電源電位および初期化電位が供給される。このため、電源制御回路に設けられるべき出力バッファの個数が電源線の本数よりも少なくなり、電源線を個別に駆動する構成と比較して、電源制御回路の回路規模を小さくすることができる。また、電源線を用いて初期化電位の供給が行われるので、初期化電位供給用の信号線等が不要となり、画素回路内の素子数を少なくすることができる。
 本発明の第4の局面によれば、行グループ毎に好適なタイミングで画素回路の初期化を行うことができる。
 本発明の第5の局面によれば、隣接する2本の電源線が同一の行グループに属するようグループ化される場合には画面の上半分と下半分で電源線に流れる電流が大きく異なると画面の中央で輝度差が発生することがあるのに対し、複数の共通電源線に流れる電流の量がほぼ同じになるので画面の中央に発生する輝度差を防止することができる。
 本発明の第6の局面によれば、或る1つの行グループに属する行の画素回路で初期化・閾値検出が行われている期間中、他の2以上の行グループに属する行の画素回路では発光が行われる。このため、発光期間を比較的長くすることが可能となる。
 本発明の第7の局面によれば、行グループ毎に共通制御線が設けられ、共通制御線を介して行駆動回路と各制御線とが電気的に接続される。このため、制御線を駆動するための回路に設けられるべきピン(端子)の数を制御線の本数よりも少なくすることができる。また、1つの行グループに属する全ての行の画素回路について同じタイミングで発光させることが可能となる。このため、閾値検出終了時点から発光開始時点までの期間の長さが、各行グループに属する全ての行で等しくなる。これにより、画素回路内の駆動用トランジスタに生じるリーク電流の大きさが、各行グループに属する全ての行でほぼ同じになる。その結果、駆動用トランジスタでのリーク電流に起因する輝度ムラの発生が抑制される。
 本発明の第8の局面によれば、制御線を駆動するための回路の規模を効果的に縮小することができる。また、全ての行の画素回路について同じタイミングで発光させることが可能となるので、駆動用トランジスタでのリーク電流に起因する輝度ムラの発生が効果的に抑制される。
 本発明の第9の局面によれば、駆動用トランジスタでのリーク電流に起因する輝度ムラの発生を抑制するとともに、行グループ毎に好適なタイミングで画素回路の初期化を行うことができる。
 本発明の第10の局面によれば、行グループ毎に共通制御線を備えた構成の表示装置において、本発明の第3の局面と同様の効果が得られる。
 本発明の第11の局面によれば、行グループ毎に共通制御線を備えた構成の表示装置において、本発明の第4の局面と同様の効果が得られる。
 本発明の第12の局面によれば、行グループ毎に共通制御線を備えた構成の表示装置において、本発明の第5の局面と同様の効果が得られる。
 本発明の第13の局面によれば、行グループ毎に共通制御線を備えた構成の表示装置において、本発明の第6の局面と同様の効果が得られる。
 本発明の第14の局面によれば、各画素回路において、閾値検出の終了時点から書き込みが開始される時点までの期間、駆動用トランジスタの制御端子に逆バイアスが印加される。このため、駆動用トランジスタの閾値特性のシフトが抑制される。ここで、走査信号線は、所定フレーム期間毎に選択順序が逆にされつつ、選択的に順次にアクティブにされる。このため、駆動用トランジスタの制御端子に逆バイアスが印加される累積時間は、全ての行の画素回路でほぼ等しくなる。その結果、行ごとのばらつきを生ずることなく、駆動用トランジスタの閾値特性のシフトが抑制される。
 本発明の第15の局面によれば、本発明の第1の局面と同様の効果を表示装置の駆動方法において奏することができる。
 本発明の第16の局面によれば、本発明の第2の局面と同様の効果を表示装置の駆動方法において奏することができる。
 本発明の第17の局面によれば、本発明の第14の局面と同様の効果を表示装置の駆動方法において奏することができる。
本発明の第1の実施形態に係る表示装置における各行の画素回路の動作を示す図である。 上記第1の実施形態における表示装置の全体構成を示すブロック図である。 上記第1の実施形態における電源線の接続形態を示す図である。 上記第1の実施形態における画素回路の構成を示す回路図である。 上記第1の実施形態における画素回路の駆動方法を示すタイミングチャート(1フレーム目)である。 上記第1の実施形態における画素回路の駆動方法を示すタイミングチャート(2フレーム目)である。 上記第1の実施形態の第1の変形例における電源線の接続形態を示す図である。 上記第1の実施形態の第1の変形例における各行の画素回路の動作を示す図である。 上記第1の実施形態の第2の変形例における電源線の接続形態を示す図である。 上記第1の実施形態の第2の変形例における各行の画素回路の動作を示す図である。 上記第1の実施形態の第3の変形例における電源線の接続形態を示す図である。 上記第1の実施形態の第3の変形例における各行の画素回路の動作を示す図である。 本発明の第2の実施形態に係る表示装置の全体構成を示すブロック図である。 上記第2の実施形態における電源線および制御線の接続形態を示す図である。 上記第2の実施形態における画素回路の駆動方法を示すタイミングチャート(1フレーム目)である。 上記第2の実施形態における画素回路の駆動方法を示すタイミングチャート(2フレーム目)である。 上記第2の実施形態における各行の画素回路の動作を示す図である。 上記第2の実施形態の第1の変形例における電源線および制御線の接続形態を示す図である。 上記第2の実施形態の第1の変形例における各行の画素回路の動作を示す図である。 上記第2の実施形態の第2の変形例における電源線および制御線の接続形態を示す図である。 上記第2の実施形態の第2の変形例における各行の画素回路の動作を示す図である。 上記第2の実施形態の第3の変形例における電源線および制御線の接続形態を示す図である。 上記第2の実施形態の第3の変形例における各行の画素回路の動作を示す図である。 本発明の第3の実施形態における画素回路の駆動方法を示すタイミングチャート(1フレーム目)である。 上記第3の実施形態における画素回路の駆動方法を示すタイミングチャート(2フレーム目)である。 上記第3の実施形態における各行の画素回路の動作を示す図である。 上記第3の実施形態の変形例における各行の画素回路の動作を示す図である。 従来の表示装置に含まれる画素回路の回路図である。 従来の別の表示装置に含まれる画素回路の回路図である。
 以下、添付図面を参照しつつ、本発明の実施形態について説明する。
<1.第1の実施形態>
<1.1 全体構成>
 図2は、本発明の第1の実施形態に係る表示装置の全体構成を示すブロック図である。図2に示す表示装置100は、表示制御回路1,ゲートドライバ回路2,ソースドライバ回路3,電源制御回路4,および(m×n)個の画素回路10を備えた有機ELディスプレイである。以下、mおよびnは2以上の整数、iは1以上n以下の整数、jは1以上m以下の整数であるとする。なお、本実施形態においては、ゲートドライバ回路2によって行駆動回路が実現され、ソースドライバ回路3によって列駆動回路が実現される。
 表示装置100には、互いに並行なn本の走査信号線Giおよびこれに直交する互いに並行なm本のデータ線Sjが設けられる。(m×n)個の画素回路10は、走査信号線Giとデータ線Sjとの各交差点に対応してマトリクス状に配置される。また、走査信号線Giと並行に、n本の制御線Eiおよびn本の電源線VPiが設けられる。さらに、電源制御回路4と電源線VPiとを接続するための電流供給用幹配線である共通電源線9が設けられる。走査信号線Giおよび制御線Eiはゲートドライバ回路2に接続され、データ線Sjはソースドライバ回路3に接続される。電源線VPiは、共通電源線9を介して電源制御回路4に接続される。画素回路10には、図示しない共通電極により共通電位Vcomが供給される。なお、ここでは電源線VPiの一端が共通電源線9に接続される構成であるが、電源線VPiの両端(または3つ以上の接続点)が共通電源線9に接続される構成であってもよい。
 表示制御回路1は、ゲートドライバ回路2,ソースドライバ回路3,および電源制御回路4に各種制御信号を出力する。より詳細には、表示制御回路1は、ゲートドライバ回路2にタイミング信号OE,スタートパルスYI,およびクロックYCKを出力し、ソースドライバ回路3にスタートパルスSP,クロックCLK,表示データDA,およびラッチパルスLPを出力し、電源制御回路4に制御信号CSを出力する。
 ゲートドライバ回路2は、シフトレジスタ回路,論理演算回路,およびバッファを含んでいる。シフトレジスタ回路は、クロックYCKに同期してスタートパルスYIを順次転送する。論理演算回路は、シフトレジスタ回路の各段から出力されたパルスとタイミング信号OEとの間で論理演算を行う。論理演算回路の出力は、バッファを経由して、対応する走査信号線Giおよび制御線Eiに与えられる。1本の走査信号線Giには、m個の画素回路10が接続されている。画素回路10は、走査信号線Giを用いてm個ずつ一括して選択される。上記タイミング信号OEについては、論理演算回路の構成によっては複数の信号で構成される。なお、本実施形態においては、ゲートドライバ回路2には、走査信号線Giを駆動する走査信号線駆動回路として機能する部分と制御線Eiを駆動する制御線駆動回路として機能する部分とが含まれている。
 ソースドライバ回路3は、mビットのシフトレジスタ5,レジスタ6,ラッチ回路7,およびm個のD/A変換器8を含んでいる。シフトレジスタ5は、縦続接続されたm個のレジスタを有し、初段のレジスタに供給されたスタートパルスSPをクロックCLKに同期して転送し、各段のレジスタからタイミングパルスDLPを出力する。タイミングパルスDLPの出力タイミングに合わせて、レジスタ6には表示データDAが供給される。レジスタ6は、タイミングパルスDLPに従い、表示データDAを記憶する。レジスタ6に1行分の表示データDAが記憶されると、表示制御回路1はラッチ回路7に対してラッチパルスLPを出力する。ラッチ回路7は、ラッチパルスLPを受け取ると、レジスタ6に記憶された表示データを保持する。D/A変換器8は、データ線Sjに対応して設けられる。D/A変換器8は、ラッチ回路7に保持された表示データをアナログ電圧に変換し、得られたアナログ電圧をデータ線Sjに印加する。
 電源制御回路4は、p本の共通電源線9に対応して、p個の出力端子を有する。電源制御回路4は、制御信号CSに基づき、共通電源線9に電源電位および初期化電位を切り替えて印加する。p=1のとき、全ての電源線VPiは1本の共通電源線9に接続される。この場合、電源制御回路4は、1本の共通電源線9に所定のタイミングで初期化電位を印加する。p≧2のとき、電源線VPiはp個のグループに分類され、各グループに含まれる電源線は同じ共通電源線9に接続される。この場合、電源制御回路4は、p本の共通電源線9に互いに異なるタイミングで初期化電位を印加する。以下、電源電位はハイレベル電位であって初期化電位はローレベル電位であることを前提に説明する。
 なお、ここではまずp=1の場合を例に挙げて説明し、p≧2の場合については変形例として後述する(p=2の場合:第1の変形例および第2の変形例、p=3の場合:第3の変形例)。図3は、本実施形態における電源線VPiの接続形態を示す図である。図3に示すように、表示装置100には、電源制御回路4aと電源線VPiとを接続するために、1本の共通電源線111が設けられている。共通電源線111の一端は電源制御回路4aが有する1個の出力端子に接続され、全ての電源線VPiは共通電源線111に接続されている。すなわち、本実施形態おいては、1~n行目によって1つの行グループが構成されている。なお、この共通電源線111は電流供給用幹配線であることを前提に説明しているが、全ての電源線VPiを電源制御回路4aに共通的に接続することができる配線であれば幹配線でなくてもよい。また、共通電源線の本数,共通電源線と電源線VPiとの接続位置については周知のあらゆる構成を適用することができる。
<1.2 画素回路の構成>
 図4は、画素回路10の構成を示す回路図である。図4に示すように、画素回路10は、TFT11~13,コンデンサ15,および有機EL素子16を含んでいる。TFT11~13は、いずれもNチャネル型トランジスタである。TFT11は、書き込み制御トランジスタとして機能する。TFT12は、駆動用トランジスタとして機能する。TFT13は、発光制御トランジスタとして機能する。有機EL素子16は、電気光学素子として機能する。
 なお、本明細書において、電気光学素子とは、有機EL素子の他、FED(Field Emission Display),LED,電荷駆動素子,液晶,Eインク(Electronic Ink)など、電気を与えることにより光学的な特性が変化する全ての素子をいうものとする。また、以下では電気光学素子として有機EL素子を例示するが、電流量に応じて発光量が制御される発光素子であれば同様の説明が可能である。
 図4に示すように、画素回路10は、走査信号線Gi,制御線Ei,データ線Sj,電源線VPi,および共通電位Vcomを有する電極に接続される。TFT11については、一方の導通端子はデータ線Sjに接続され、他方の導通端子はTFT12のゲート端子に接続される。TFT13については、ドレイン端子は電源線VPiに接続され、ソース端子はTFT12のドレイン端子に接続される。TFT12のソース端子は、有機EL素子16のアノード端子に接続される。有機EL素子16のカソード端子には、共通電位Vcomが印加される。コンデンサ15は、TFT12のゲート端子とソース端子の間に設けられる。TFT11のゲート端子は走査信号線Giに接続され、TFT13のゲート端子は制御線Eiに接続される。
<1.3 駆動方法>
 図5および図6は、本実施形態における画素回路10の駆動方法を示すタイミングチャートである。なお、図5は、連続する2フレーム期間のうちの先行するフレーム(「1フレーム目」とする。)におけるタイミングチャートであり、図6は、当該2フレーム期間のうちの後続のフレーム(「2フレーム目」とする。)におけるタイミングチャートである。図5および図6において、VGiはi行目の画素回路10に含まれるTFT12のゲート電位を表し、VSiは当該TFT12のソース電位(有機EL素子16のアノード電位)を表している。画素回路10は、1フレーム期間に1回ずつ、初期化,閾値検出(TFT12の閾値検出),書き込み,および発光を行い、発光期間以外の期間では消灯する。なお、発光(および消灯)するのは有機EL素子16であるが、画素回路10にはこの有機EL素子16が含まれるため、以下では「画素回路10が発光する」,「画素回路10が消灯する」と表現する。また、フレーム期間とは、1つの画像を表示するための単位期間であって、黒挿入期間等が含まれていてもよく、種々の長さに設定可能である。
 図5を参照しつつ、1フレーム目における1行目の画素回路10の動作を説明する。時刻t11より前では、走査信号線G1および制御線E1の電位はローレベルであり、電源線VP1の電位はハイレベルである。時刻t11において、走査信号線G1および制御線E1の電位はハイレベルに変化する(アクティブとなる)。これにより、TFT11およびTFT13はオン状態になる。また、時刻t11には、電源線VP1の電位はローレベルに変化する。なお、以下、電源線VPiのローレベル電位をVP_Lという。電位VP_Lには、充分に低い電位、具体的には、時刻t11直前のTFT12のゲート電位よりも低い電位が使用される。また、時刻t11にはデータ線Sjには基準電位Vrefが印加されており、上述したようにTFT11がオン状態になることから、基準電位VrefがTFT12のゲートに与えられる。その基準電位Vrefは比較的高いレベルに設定されており、TFT12はオン状態になる。上述したようにTFT13もオン状態になっていることから、TFT12のソース電位VS1はVP_Lにほぼ等しくなる。
 時刻t12において、電源線VP1の電位はハイレベルに変化する。このときデータ線Sjには基準電位Vrefが印加されている。この基準電位Vrefは、上述した時刻t11の直後にTFT12がオン状態になり、かつ、時刻t12以降に有機EL素子16に対する印加電圧が発光閾値電圧を超えないように決定される。このため、時刻t12以降、TFT12はオン状態で維持されるが、有機EL素子16に電流は流れない。したがって、電源線VP1からTFT13とTFT12を経由してTFT12のソース端子に電流が流れ込み、TFT12のソース電位VS1は上昇する。TFT12のソース電位VS1は、ゲート-ソース間電圧Vgsが閾値電圧Vthに等しくなるまで上昇し、(Vref-Vth)に到達する。
 時刻t13において、走査信号線G1の電位はローレベルに変化する。これにより、TFT11はオフ状態になる。また、制御線E1の電位もローレベルに変化するので、時刻t13以降、TFT13はオフ状態になる。このため、TFT12のソース電位VS1は、ほぼ(Vref-Vth)のまま維持される。
 時刻t14において、走査信号線G1の電位はハイレベルに変化し、データ線Sjの電位は表示データに応じたレベルになる。なお、以下、このときのデータ線Sjの電位をデータ電位Vdaiという。時刻t14以降、TFT11はオン状態になり、TFT12のゲート電位VG1はVrefからVda1に変化する。時刻t14以降におけるTFT12のゲート-ソース間電圧Vgsは、次式(1)で与えられる。
  Vgs={COLED/(COLED+Cst)}
        ×(Vda1-Vref)+Vth …(1)
 ただし、上式(1)において、COLEDは有機EL素子16の容量値であり、Cstはコンデンサ15の容量値である。
 有機EL素子16の容量値は充分に大きく、COLED≫Cstが成立する。このため、上式(1)を次式(2)に変形する(近似させる)ことができる。
  Vgs=Vda1-Vref+Vth …(2)
 このように、TFT12のゲート電位VG1がVrefからVda1に変化したときに、TFT12のソース電位VS1はほとんど変化せず、TFT12のゲート-ソース間電圧Vgsはほぼ(Vda1-Vref+Vth)になる。
 時刻t15において、走査信号線G1の電位はローレベルに変化する。時刻t15以降、TFT11はオフ状態になる。このため、TFT12のゲート-ソース間電圧Vgsは、データ線Sjの電位が変化しても、ほぼ(Vda1-Vref+Vth)のまま維持される。
 時刻t16において、制御線E1の電位はハイレベルに変化する。時刻t16以降、TFT13はオン状態になり、TFT12のドレイン端子はTFT13を介して電源線VP1に接続される。このとき電源線VP1の電位はハイレベルであるので、電源線VP1からTFT13とTFT12とを経由してTFT12のソース端子に電流が流れ、TFT12のソース電位VS1は上昇する。この時点でTFT12のゲート端子はフローティング状態にある。したがって、TFT12のソース電位VS1が上昇すると、TFT12のゲート電位VG1も上昇する。このとき、TFT12のゲート-ソース間電圧Vgsはほぼ一定に保たれる。
 電源線VP1に印加されるハイレベル電位は、発光期間(時刻t16~t17)においてTFT12が飽和領域で動作するように決定される。このため、発光期間においてTFT12を流れる電流Iは、チャネル長変調効果を無視すれば、次式(3)で与えられる。
  I=1/2・W/L・μ・Cox(Vgs-Vth)2 …(3)
 ただし、上式(3)において、Wはゲート幅、Lはゲート長、μはキャリア移動度、Coxはゲート酸化膜容量である。
 そして、上式(2)と上式(3)から、次式(4)が導かれる。
  I=1/2・W/L・μ・Cox(Vda1-Vref)2 …(4)
 上式(4)に示す電流Iは、データ電位Vda1に応じて変化するが、TFT12の閾値電圧Vthには依存しない。したがって、閾値電圧Vthがばらつく場合や、閾値電圧Vthが経時的に変化する場合でも、有機EL素子16にデータ電位Vda1に応じた電流を流し、有機EL素子16を所望の輝度で発光させることができる。
 時刻t17において、制御線E1の電位はローレベルに変化する。時刻t17以降、TFT13はオフ状態になる。このため、有機EL素子16に電流は流れず、画素回路10は消灯する。
 以上のように、1行目の画素回路10は、時刻t11から時刻t12までの期間に初期化を行い、時刻t12から時刻t13までの期間に閾値検出を行い、時刻t14から時刻t15までの期間に書き込みを行い、時刻t16から時刻t17までの期間に発光し、時刻t16から時刻t17までの期間以外の期間には消灯する。
 2行目の画素回路10は、1行目の画素回路10と同様に時刻t11から時刻t12までの期間に初期化を行って時刻t12から時刻t13までの期間に閾値検出を行い、1行目の画素回路10から所定時間Taだけ遅れて、書き込みおよび発光を行う。一般に、i行目の画素回路10は、他の行の画素回路10と同じ期間に初期化および閾値検出を行い、(i-1)行目の画素回路10から時間Taだけ遅れて、書き込みおよび発光を行う。このように、1フレーム目においては、行ごとの画素回路10の書き込みおよび発光は昇順で行われる。
 次に、2フレーム目における画素回路10の動作について説明する。図6から把握されるように、2フレーム目においても、まず全ての行の画素回路10で初期化と閾値検出とが行われる。その後、1フレーム目とは逆の順序で(降順で)、書き込みおよび発光が行われる。すなわち、全ての行の画素回路10は、時刻t21から時刻t22までの期間に初期化を行い、時刻t22から時刻t23までの期間に閾値検出を行う。その後、n行目から1行目までの画素回路10が、降順で所定時間Taずつ遅れて、書き込みおよび発光を行う。一般に、i行目の画素回路10は、他の行の画素回路10と同じ期間に初期化および閾値検出を行い、(i+1)行目の画素回路10から時間Taだけ遅れて、書き込みおよび発光を行う。このように、2フレーム目においては、行ごとの画素回路10の書き込みおよび発光は降順で行われる。
 以上のように、本実施形態においては、全てのフレームで、まず全ての行の画素回路10で初期化と閾値検出とが行われる。その後、1フレーム毎に走査順序が逆になるように、1行ずつ画素回路10での書き込みおよび発光が行われる。
 図1は、本実施形態における各行の画素回路10の動作を示す図である。電源制御回路4aは、1フレーム目においても2フレーム目においても、1フレーム期間の先頭で所定時間だけ共通電源線111にローレベル電位(初期化電位)を印加する。このため、全ての行の画素回路10は、1フレーム期間の先頭で初期化を行う。次に、1フレーム目においても2フレーム目においても、初期化直後に全ての行の画素回路10は、閾値検出を行う。続いて、1フレーム目においては、1行目の画素回路10が選択され、1行目の画素回路10が書き込みを行う。次に2行目の画素回路10が選択され、2行目の画素回路10が書き込みを行う。以下、同様に、3~n行目の画素回路10が行ごとに順に選択され、選択された画素回路10が書き込みを行う。一方、2フレーム目においては、閾値検出後、n行目の画素回路10が選択され、n行目の画素回路10が書き込みを行う。次に(n-1)行目の画素回路10が選択され、(n-1)行目の画素回路10が書き込みを行う。以下、同様に、(n-2)~1行目の画素回路10が行ごとに1フレーム目とは逆の順に選択され、選択された画素回路10が書き込みを行う。
 各行の画素回路10は、閾値検出から書き込み直前までの期間では消灯する。ところで、各行の画素回路10は同じ時間だけ発光する必要がある。また、1フレーム目にはn行目の画素回路10の発光が当該フレーム期間の最後までに完了する必要がある。さらに、2フレーム目には1行目の画素回路10の発光が当該フレーム期間の最後までに完了する必要がある。このため、各行の画素回路10は、書き込み後に一定時間T1だけ発光し、それ以外の期間には消灯する。
 一般的な表示装置では、(全ての行の)画素回路10に対する書き込みは、1フレーム期間かけて行われる。これに対して、本実施形態では、図1に示すように、(約1/2フレームの発光期間を確保するために)画素回路10に対する書き込みは約1/2フレーム期間かけて行われる。このため、画素回路10の走査速度は、通常の約2倍になる。なお、この例では、画素回路10の発光期間の長さT1は約1/2フレーム期間となっているが、画素回路10の走査速度を通常の約2倍にしたまま発光期間の長さを1/2フレーム期間よりも短くしてもよい。あるいは、画素回路10の走査速度を通常の約2倍より速くして、発光期間の長さを1/2フレーム期間より長くしてもよい。
<1.4 効果>
 本実施形態に係る表示装置は、マトリクス状に配置された複数の画素回路10と、画素回路10の行に対応して設けられた複数の走査信号線Giおよび複数の制御線Eiと、画素回路10の列に対応して設けられた複数のデータ線Sjと、画素回路10に電源電位を供給するために設けられた複数の電源線VPiと、n本の電源線VPiに接続された共通電源線9(111)と、走査信号線Giおよび制御線Eiを駆動するゲートドライバ回路2と、データ線Sjを駆動するソースドライバ回路3と、電源線VPiを駆動する電源制御回路4(4a)とを備えている。画素回路10は、有機EL素子16(電気光学素子)と、有機EL素子16を流れる電流の経路上に設けられたTFT12(駆動用トランジスタ)と、TFT12のゲート端子とデータ線Sjとの間に設けられたTFT11(書き込み制御トランジスタ)と、TFT12のドレイン端子と電源線VPiとの間に設けられたTFT13(発光制御トランジスタ)と、TFT12のソース端子とゲート端子との間に設けられたコンデンサ15とを含んでいる。本実施形態によれば、以上のような構成において、全てのフレームで、全ての行の画素回路10が初期化および閾値検出を行った後、画素回路10が行ごとに順に選択される。選択された画素回路10は、駆動用トランジスタとして機能するTFT12のソース端子とゲート端子との間に設けられたコンデンサ15への書き込みおよび当該書き込みに基づく発光を行う。ところで、上述したように、閾値検出の際には有機EL素子16に対する印加電圧が発光閾値電圧を超えないようにされ、閾値検出後、書き込みが開始されるまでの期間、TFT12のゲート-ソース間電圧Vgsが閾値電圧Vthに等しくなった状態で維持される。このため、図5および図6に示すように、閾値検出終了時点から書き込み開始時点までの期間(以下、「待機期間」という。)には、TFT12のソース電位VSiすなわち有機EL素子16のアノード電位は理想的には維持される。しかしながら、TFT12や有機EL素子16でのリーク電流による電荷の移動は必ずしも零ではない。従って、待機期間の長さによって、書き込みが行われる際の有機EL素子16のアノード電位が行ごとに異なることがある。例えば、有機EL素子16でのリーク電流に起因して、待機期間の短い行では相対的にアノード電位が高くなり、待機期間の長い行では相対的にアノード電位が低くなるということが考えられる。このようなことが生じると、或る一定の輝度値のデータ信号に基づく書き込みが行われても、走査順序(行ごとの画素回路10の選択順序)によって実際に画面上に現れる輝度が異なることとなる。その結果、輝度ムラが発生する。この点、本実施形態によれば、1フレーム毎に走査順序が逆にされる。このため、2フレーム期間を1単位期間とすると、1単位期間中の待機期間の合計の長さは全ての行で等しくなる。これにより、TFT12や有機EL素子16でのリーク電流による電荷の移動量は、全ての行で等しくなる。その結果、書き込みが行われる際の有機EL素子16のアノード電位の変動量が全ての画素回路10においてほぼ等しくなり、輝度ムラの発生が抑制される。
 また、各フレーム期間の先頭で全ての行の画素回路10の初期化が一括して行われるので、初期化期間を適宜の期間、典型的には選択期間よりも長い期間に設定することができる。このため、電源制御回路4に含まれる出力バッファの電流能力が小さい場合であっても充分に駆動することができる。さらに、電源制御回路4は、全ての電源線VPiに電気的に接続された1つの共通電源線9を駆動する。したがって、電源線VPiを個別に駆動する構成よりも、電源制御回路4に設けられるべき出力バッファを大幅に削減し、電源制御回路4の回路規模を小さくすることができる。また、電源線VPiを用いて初期化電位の供給が行われるので、初期化電位供給用の信号線等が不要となり、画素回路10内の素子数を少なくすることができる。さらに、電源の駆動回数を1フレームで1回とすることができるので、例えば画素回路10の行数に相当する回数を駆動する場合よりも消費電力を低減することができる。また、共通電源線9が1つ(または少ない数)であることにより、電源供給用の配線領域の面積を小さくすることができる。
 さらにまた、全ての行の画素回路10で閾値検出が一括して行われるので、閾値検出期間を適宜の期間、典型的には選択期間よりも長い期間に設定することができる。このため、閾値検出を確実に行うことができ、閾値補償の精度を向上させることができる。また、選択期間中に閾値検出が行われる構成に比べて、画素データの書き込み期間を充分に確保することができる。そのため、例えば3次元画像表示装置(3Dテレビ)などのように書き込み期間が短い構成すなわち高速で駆動が行われる構成においても、本発明を容易に適用することができる。
 また、上述したように、各行の画素回路10は、書き込み後に一定時間T1だけ発光し、それ以外の期間には消灯する。これにより、全ての行の画素回路10の発光期間の長さが等しくなり、輝度のばらつきが抑えられる。さらに、画素回路10は発光期間以外の期間には消灯するので、黒挿入を行う場合と同様に、動画性能を向上させることができる。
 さらにまた、画素回路10に含まれる全てのトランジスタは、Nチャネル型である。このように画素回路10に含まれるトランジスタを同じ導電型で構成することにより、表示装置のコストを削減することができる。
 なお、本実施形態においては、1フレーム毎に走査順序が逆になる構成としているが、本発明はこれに限定されず、2フレーム毎,3フレーム毎など複数フレーム毎に走査順序が逆になる構成にしても良い。これについては、後述する変形例や他の実施形態においても同様である。
<1.5 変形例>
<1.5.1 第1の変形例>
 図7は、上記第1の実施形態の第1の変形例における電源線VPiの接続形態を示す図である。本変形例においては、表示装置100には、電源制御回路4bと電源線VPiとを接続するために、2本の共通電源線121,122が設けられる。共通電源線121,122の一端は、電源制御回路4bが有する2個の出力端子にそれぞれ接続される。電源線VP1~VP(n/2)は共通電源線121に接続され、電源線VP(n/2+1)~VPnは共通電源線122に接続される。すなわち、本変形例においては、1~(n/2)行目によって1つの行グループが構成され、(n/2+1)~n行目によって別の1つの行グループが構成されている。
 図8は、本変形例における各行の画素回路10の動作を示す図である。電源制御回路4bは、1フレーム目においても2フレーム目においても、1フレーム期間の先頭で所定時間だけ共通電源線121にローレベル電位を印加し、1/2フレーム期間経過後に所定時間だけ共通電源線122にローレベル電位を印加する。このため、1~(n/2)行目の画素回路10は1フレーム期間の先頭で初期化を行い、(n/2+1)~n行目の画素回路10は1/2フレーム期間だけ遅れて初期化を行う。
 1フレーム目においても2フレーム目においても、1回目の初期化後に1~(n/2)行目の全ての画素回路10が同時に選択され、2回目の初期化後に(n/2+1)~n行目の全ての画素回路10が同時に選択される。選択された画素回路10が閾値検出を行う。
 1フレーム目においては、1回目の閾値検出後に1~(n/2)行目の画素回路10が昇順で選択され、2回目の閾値検出後に(n/2+1)~n行目の画素回路10が昇順で選択される。選択された画素回路10が書き込みを行う。各行の画素回路10は、書き込み後に一定時間T2だけ発光し、それ以外の期間には消灯する。2フレーム目においては、1回目の閾値検出後に1~(n/2)行目の画素回路10が降順で選択され、2回目の閾値検出後に(n/2+1)~n行目の画素回路10が降順で選択される。選択された画素回路10が書き込みを行う。各行の画素回路10は、書き込み後に一定時間T2だけ発光し、それ以外の期間には消灯する。図8に示す例では、画素回路10の走査速度は通常と同じであり、画素回路10の発光期間の長さT2は約1/2フレーム期間となる。
 なお、(n/2+1)~n行目によって構成される行グループに着目すると、「時刻t01に或るフレーム期間が開始して、時刻t02に当該フレーム期間が終了する」と考えることもできる。第2の変形例以下についても、同様に考えることができる。
 本変形例によれば、電源制御回路4(4b)に設けられるべき出力バッファの個数が電源線VPiの本数よりも少なくなり、電源線VPiを個別に駆動する構成と比較して、電源制御回路4(4b)の回路規模を小さくすることができる。また、共通電源線121と共通電源線122とに互いに異なるタイミングで初期化電位を印加することにより、画素回路10の選択期間に合わせて好適なタイミングで画素回路10の初期化を行うことができる。
<1.5.2 第2の変形例>
 図9は、上記第1の実施形態の第2の変形例における電源線VPiの接続形態を示す図である。本変形例においては、表示装置100には、電源制御回路4cと電源線VPiとを接続するために、2本の共通電源線131,132が設けられる。共通電源線131,132の一端は、電源制御回路4cが有する2個の出力端子にそれぞれ接続される。奇数行目の電源線VP1,VP3,…,VP(n-1)は共通電源線131に接続され、偶数行目の電源線VP2,VP4,…,VPnは共通電源線132に接続される(ここでは、nは偶数とする)。すなわち、本変形例においては、奇数行目によって1つの行グループが構成され、偶数行目によって別の1つの行グループが構成されている。
 図10は、本変形例における各行の画素回路10の動作を示す図である。電源制御回路4cは、1フレーム目においても2フレーム目においても、1フレーム期間の先頭で所定時間だけ共通電源線131にローレベル電位を印加し、1/2フレーム期間経過後に所定時間だけ共通電源線132にローレベル電位を印加する。このため、奇数行目の画素回路10は1フレーム期間の先頭で初期化を行い、偶数行目の画素回路10は1/2フレーム期間だけ遅れて初期化を行う。
 1フレーム目においても2フレーム目においても、1回目の初期化後に奇数行目の全ての画素回路10が同時に選択され、2回目の初期化後に偶数行目の全ての画素回路10が同時に選択される。選択された画素回路10が閾値検出を行う。
 1フレーム目においては、1回目の閾値検出後に奇数行目の画素回路10が昇順で選択され、2回目の閾値検出後に偶数行目の画素回路10が昇順で選択される。選択された画素回路10が書き込みを行う。各行の画素回路10は、書き込み後に一定時間T3だけ発光し、それ以外の期間には消灯する。2フレーム目においては、1回目の閾値検出後に奇数行目の画素回路10が降順で選択され、2回目の閾値検出後に偶数行目の画素回路10が降順で選択される。選択された画素回路10が書き込みを行う。各行の画素回路10は、書き込み後に一定時間T3だけ発光し、それ以外の期間には消灯する。図10に示す例では、画素回路10の走査速度は通常と同じであり、画素回路10の発光期間の長さT3は約1/2フレーム期間となる。
 上述した第1の変形例によれば、画素回路10に対して表示画面内の順序に従って書き込みを行うことができる。しかしながら、画面の上半分と下半分で輝度が大きく異なる場合など、共通電源線121,122(図7参照)を流れる電流の量が大きく異なる場合には、画面の中央で輝度差が発生することがある。この点、第2の変形例によれば、共通電源線131,132を流れる電流の量は多くの場合ほぼ同じになるので、画面の中央に発生する輝度差を防止することができる。
<1.5.3 第3の変形例>
 図11は、上記第1の実施形態の第3の変形例における電源線VPiの接続形態を示す図である。本変形例においては、表示装置100には、電源制御回路4dと電源線VPiとを接続するために、3本の共通電源線141~143が設けられる。共通電源線141~143の一端は、電源制御回路4dが有する3個の出力端子にそれぞれ接続される。電源線VP1~VP(n/3)は共通電源線141に接続され、電源線VP(n/3+1)~VP(2n/3)は共通電源線142に接続され、電源線VP(2n/3+1)~VPnは共通電源線143に接続される。すなわち、本変形例においては、1~(n/3)行目によって第1の行グループが構成され、(n/3+1)~(2n/3)行目によって第2の行グループが構成され、(2n/3+1)~n行目によって第3の行グループが構成されている。
 図12は、本変形例における各行の画素回路10の動作を示す図である。電源制御回路4dは、1フレーム目においても2フレーム目においても、1フレーム期間の先頭で所定時間だけ共通電源線141にローレベル電位を印加し、1/3フレーム期間経過後に所定時間だけ共通電源線142にローレベル電位を印加し、さらに1/3フレーム期間経過後に所定時間だけ共通電源線143にローレベル電位を印加する。このため、1~(n/3)行目の画素回路10は1フレーム期間の先頭で初期化を行い、(n/3+1)~(2n/3)行目の画素回路10は1/3フレーム期間だけ遅れて初期化を行い、(2n/3+1)~n行目の画素回路10はさらに1/3フレーム期間だけ遅れて初期化を行う。
 1フレーム目においても2フレーム目においても、1回目の初期化後に1~(n/3)行目の全ての画素回路10が同時に選択され、2回目の初期化後に(n/3+1)~(2n/3)行目の全ての画素回路10が同時に選択され、3回目の初期化後に(2n/3+1)~n行目の全ての画素回路10が同時に選択される。選択された画素回路10が閾値検出を行う。
 1フレーム目においては、1回目の閾値検出後に1~(n/3)行目の画素回路10が昇順で選択され、2回目の閾値検出後に(n/3+1)~(2n/3)行目の画素回路10が昇順で選択され、3回目の閾値検出後に(2n/3+1)~n行目の画素回路10が昇順で選択される。選択された画素回路10が書き込みを行う。各行の画素回路10は、書き込み後に一定時間T4だけ発光し、それ以外の期間には消灯する。2フレーム目においては、1回目の閾値検出後に1~(n/3)行目の画素回路10が降順で選択され、2回目の閾値検出後に(n/3+1)~(2n/3)行目の画素回路10が降順で選択され、3回目の閾値検出後に(2n/3+1)~n行目の画素回路10が降順で選択される。選択された画素回路10が書き込みを行う。各行の画素回路10は、書き込み後に一定時間T4だけ発光し、それ以外の期間には消灯する。図12に示す例では、画素回路10の走査速度は通常と同じであり、画素回路10の発光期間の長さT4は約2/3フレーム期間となる。
 本変形例によれば、或る1つの行グループに属する行の画素回路10が初期化・閾値検出を行っている期間中、他の2つの行グループに属する行の画素回路10は発光している。このように、各画素回路10の発光期間の長さは約2/3フレーム期間となる。すなわち、1本または2本の共通電源線が設けられている構成と比較して、発光期間を長くすることができる。
<1.5.4 その他の変形例>
 共通電源線9の本数pについては、4以上でもよい。p≧4の場合、電源線VPiの接続形態および各行の画素回路10の動作は、上記と同様である。また、p≧3の場合には、隣接配置された(n/p)本の電源線を同じ共通電源線に接続してもよく、(p-1)本飛ばしの(n/p)本の電源線を同じ共通電源線に接続してもよい。例えば、p=3の場合に、電源線VPiを2本飛ばしに選択し、電源線VP1,VP4,…を第1の共通電源線に、電源線VP2,VP5,…を第2の共通電源線に、電源線VP3,VP6,…を第3の共通電源線にそれぞれ接続してもよい。また、p=1の場合には、画素回路10の行に対応してn本の電源線VPiを設ける代わりに、画素回路10の列に対応してm本の電源線を設けてもよい。
 このように共通電源線9の本数p,画素回路10の走査速度,および画素回路10の発光期間の長さは、トレードオフの関係にある。例えば、共通電源線9の本数pを増やせば、画素回路10の走査速度を遅くしたり、画素回路10の発光期間を長くしたりすることができる。ただし、この場合、電源制御回路4に設けられるべき出力バッファの個数が増加し、電源制御回路4の回路規模が増大する。したがって、表示装置の仕様やコストなどを考慮して、これらのパラメータを決定すればよい。
<2.第2の実施形態>
<2.1 構成>
 図13は、本発明の第2の実施形態に係る表示装置の全体構成を示すブロック図である。図13に示す表示装置200は、上記第1の実施形態(図2参照)における構成要素に加えて、制御線駆動回路20と、該制御線駆動回路20と制御線Eiとを接続するための共通制御線21とを備えている。本実施形態においては、走査信号線Giはゲートドライバ回路2に接続され、制御線Eiは共通制御線21を介して制御線駆動回路20に接続されている。ゲートドライバ回路2と制御線駆動回路20とによって、行駆動回路が実現されている。なお、ゲートドライバ回路2とは別に制御線駆動回路20が設けられている理由は、本実施形態では後述するように制御線Eiが複数本ずつ駆動されるところ、ここではゲートドライバ回路2は1行ずつ順にアクティブとなる信号を出力する回路であるとして説明しているからである。従って、例えばゲートドライバ回路2と制御線駆動回路20とが1つのICチップで構成されていても良い。画素回路10については、上記第1の実施形態と同様、図4に示す構成となっている。
 制御線駆動回路20は、q本の共通制御線21に対応して、q個の出力端子を有する。制御線駆動回路20は、制御信号TSに基づき、共通制御線21にハイレベルの電位およびローレベルの電位を切り替えて印加する。q=1のとき、全ての制御線Eiは1本の共通制御線21に接続される。q≧2のとき、制御線Eiはq個のグループに分類され、各グループに含まれる制御線は同じ共通制御線21に接続される。電源線VPiおよび共通電源線9については上記第1の実施形態と同様である。但し、本実施形態においては、p=q、すなわち、共通電源線9の本数と共通制御線21の本数とは等しくされる。
 なお、ここではまずq=1の場合を例に挙げて説明し、q≧2の場合については変形例として後述する(q=2の場合:第1の変形例および第2の変形例、q=3の場合:第3の変形例)。図14は、本実施形態における電源線VPiおよび制御線Eiの接続形態を示す図である。図14に示すように、表示装置200には、電源制御回路4aと電源線VPiとを接続するために1本の共通電源線111が設けられ、制御線駆動回路20aと制御線Eiとを接続するために1本の共通制御線211が設けられている。共通電源線111の一端は電源制御回路4aが有する1個の出力端子に接続され、全ての電源線VPiは共通電源線111に接続されている。共通制御線211の一端は制御線駆動回路20aが有する1個の出力端子に接続され、全ての制御線Eiは共通制御線211に接続されている。
<2.2 駆動方法>
 図15および図16は、本実施形態における画素回路10の駆動方法を示すタイミングチャートである。なお、図15は、連続する2フレーム期間のうちの1フレーム目におけるタイミングチャートであり、図16は、当該2フレーム期間のうちの2フレーム目におけるタイミングチャートである。上記第1の実施形態においては、書き込み終了時点から発光開始時点までの期間の長さは全ての行で等しかったが(図5および図6を参照)、本実施形態においては、1フレーム期間内において書き込み開始時点が相対的に早い行ほど書き込み終了時点から発光開始時点までの期間が長くなっている。これにより、全ての行の画素回路10は、同じタイミングで発光を開始し、同じタイミングで発光を終了する。なお、本実施形態においても、行ごとの画素回路10の書き込みは、1フレーム目には昇順で行われ、2フレーム目には降順で行われる。
 図17は、本実施形態における各行の画素回路10の動作を示す図である。上記第1の実施形態と同様、画素回路10は、1フレーム期間に1回ずつ、初期化,閾値検出(TFT12の閾値検出),書き込み,および発光を行い、発光期間以外の期間では消灯する。しかしながら、上記第1の実施形態とは異なり、各行の画素回路10が書き込み終了時点から各行毎に異なる所定の期間消灯した後、全ての行の画素回路10が同時に(一括的に)一定時間T5だけ発光し、1フレーム期間の最後(言い換えれば次のフレームの初期化直前)で同時に消灯する。
<2.3 効果>
 本実施形態によれば、n本の制御線Eiは1本の共通制御線21を介して制御線駆動回路20に接続されている。このため、上記第1の実施形態と比較して、制御線駆動用の回路(上記第1の実施形態におけるゲートドライバ回路2,本実施形態における制御線駆動回路20)に設けられるべきピン(端子)の数を大幅に少なくすることが可能となる。また、上記第1の実施形態と比較して、制御線駆動用の回路の規模を大幅に縮小することが可能となる。
 ところで、各行において走査信号線Giの電位および制御線Eiの電位がローレベルになっている期間には、データ線Sjの電位が変化しても、理想的にはTFT12のゲート-ソース間電圧Vgsは変化しない。しかしながら、TFT12にはわずかなリーク電流が存在するため、ゲート-ソース間電圧Vgsは、実際には少しずつ低下していく。このため、上記第1の実施形態のように閾値検出終了時点から発光開始時点までの期間の長さが行ごとに異なる場合には、TFT12におけるリーク電流の大きさが行ごとに異なって輝度ムラが発生することが考えられる。この点、本実施形態によれば、閾値検出終了時点から発光開始時点までの期間の長さが全ての行で等しくなるので、TFT12におけるリーク電流の大きさが全ての画素回路10で等しくなる。これにより、TFT12に生じるリーク電流に起因する輝度ムラの発生が抑制される。
<2.4 変形例>
<2.4.1 第1の変形例>
 図18は、上記第2の実施形態の第1の変形例における電源線VPiおよび制御線Eiの接続形態を示す図である。本変形例においては、表示装置200には、電源制御回路4bと電源線VPiとを接続するために2本の共通電源線121,122が設けられ、制御線駆動回路20bと制御線Eiとを接続するために2本の共通制御線221,222が設けられている。共通電源線121,122の一端は、電源制御回路4bが有する2個の出力端子にそれぞれ接続される。電源線VP1~VP(n/2)は共通電源線121に接続され、電源線VP(n/2+1)~VPnは共通電源線122に接続される。共通制御線221,222の一端は、制御線駆動回路20bが有する2個の出力端子にそれぞれ接続される。制御線E1~E(n/2)は共通制御線221に接続され、制御線E(n/2+1)~Enは共通制御線222に接続される。
 図19は、本変形例における各行の画素回路10の動作を示す図である。1フレーム目においても2フレーム目においても、1~(n/2)行目の画素回路10は1フレーム期間の先頭で初期化・閾値検出を行い、(n/2+1)~n行目の画素回路10は1/2フレーム期間だけ遅れて初期化・閾値検出を行う。1~(n/2)行目の画素回路10についても、(n/2+1)~n行目の画素回路10についても、行ごとの画素回路10の書き込みは、1フレーム目には昇順で行われ、2フレーム目には降順で行われる。
 本変形例においては、図19に示すように、1フレーム目においても2フレーム目においても、1~(n/2)行目の全ての画素回路10は、同じタイミングで発光を開始し、同じタイミングで発光を終了する。また、(n/2+1)~n行目の全ての画素回路10は、同じタイミングで発光を開始し、同じタイミングで発光を終了する。発光期間の長さT6は、全行の画素回路10で等しくなっている。なお、図19に示す例では、画素回路10の走査速度は通常と同じであり、画素回路10の発光期間の長さT6は約1/2フレーム期間となる。
 本変形例によれば、電源線VPiや制御線Eiを個別に駆動する構成と比較して、電源制御回路4(4b)および制御線駆動回路20(20b)の回路規模を小さくすることができる。また、閾値検出終了時点から発光開始時点までの期間の長さが全ての行で等しくなるので、画素回路10内のTFT12に生じるリーク電流に起因する輝度ムラの発生が抑制される。
<2.4.2 第2の変形例>
 図20は、上記第2の実施形態の第2の変形例における電源線VPiおよび制御線Eiの接続形態を示す図である。本変形例においては、表示装置200には、電源制御回路4cと電源線VPiとを接続するために2本の共通電源線131,132が設けられ、制御線駆動回路20cと制御線Eiとを接続するために2本の共通制御線231,232が設けられている。共通電源線131,132の一端は、電源制御回路4cが有する2個の出力端子にそれぞれ接続される。奇数行目の電源線VP1,VP3,…,VP(n-1)は共通電源線131に接続され、偶数行目の電源線VP2,VP4,…,VPnは共通電源線132に接続される(ここでは、nは偶数とする)。共通制御線231,232の一端は、制御線駆動回路20cが有する2個の出力端子にそれぞれ接続される。奇数行目の制御線E1,E3,…,E(n-1)は共通制御線231に接続され、偶数行目の制御線E2,E4,…,Enは共通制御線232に接続される。
 図21は、本変形例における各行の画素回路10の動作を示す図である。1フレーム目においても2フレーム目においても、奇数行目の画素回路10は1フレーム期間の先頭で初期化・閾値検出を行い、偶数行目の画素回路10は1/2フレーム期間だけ遅れて初期化・閾値検出を行う。奇数行目の画素回路10についても、偶数行目の画素回路10についても、行ごとの画素回路10の書き込みは、1フレーム目には昇順で行われ、2フレーム目には降順で行われる。
 本変形例においては、図21に示すように、1フレーム目においても2フレーム目においても、奇数行目の全ての画素回路10は、同じタイミングで発光を開始し、同じタイミングで発光を終了する。また、偶数行目の全ての画素回路10は、同じタイミングで発光を開始し、同じタイミングで発光を終了する。発光期間の長さT7は、全行の画素回路10で等しくなっている。なお、図21に示す例では、画素回路10の走査速度は通常と同じであり、画素回路10の発光期間の長さT7は約1/2フレーム期間となる。
 本変形例によれば、上記第1の変形例と同様の効果が得られるほか、画面の中央に発生する輝度差を防止することができる(第1の実施形態の第2の変形例を参照)。
<2.4.3 第3の変形例>
 図22は、上記第2の実施形態の第3の変形例における電源線VPiおよび制御線Eiの接続形態を示す図である。本変形例においては、表示装置200には、電源制御回路4dと電源線VPiとを接続するために3本の共通電源線141~143が設けられ、制御線駆動回路20dと制御線Eiとを接続するために3本の共通制御線241~243が設けられている。共通電源線141~143の一端は、電源制御回路4dが有する3個の出力端子にそれぞれ接続される。電源線VP1~VP(n/3)は共通電源線141に接続され、電源線VP(n/3+1)~VP(2n/3)は共通電源線142に接続され、電源線VP(2n/3+1)~VPnは共通電源線143に接続される。共通制御線241~243の一端は、制御線駆動回路20dが有する3個の出力端子にそれぞれ接続される。制御線E1~E(n/3)は共通制御線241に接続され、制御線E(n/3+1)~E(2n/3)は共通制御線242に接続され、制御線E(2n/3+1)~Enは共通制御線243に接続される。
 図23は、本変形例における各行の画素回路10の動作を示す図である。1フレーム目においても2フレーム目においても、1~(n/3)行目の画素回路10は1フレーム期間の先頭で初期化・閾値検出を行い、(n/3+1)~(2n/3)行目の画素回路10は1/3フレーム期間だけ遅れて初期化・閾値検出を行い、(2n/3+1)~n行目の画素回路10はさらに1/3フレーム期間だけ遅れて初期化・閾値検出を行う。1~(n/3)行目についての行ごとの画素回路10の書き込みは、1フレーム目には昇順で行われ、2フレーム目には降順で行われる。これについては、(n/3+1)~(2n/3)行目についても、(2n/3+1)~n行目についても同様である。
 本変形例においては、図23に示すように、1フレーム目においても2フレーム目においても、1~(n/3)行目の全ての画素回路10は、同じタイミングで発光を開始し、同じタイミングで発光を終了する。また、(n/3+1)~(2n/3)行目の全ての画素回路10は、同じタイミングで発光を開始し、同じタイミングで発光を終了する。さらに、(2n/3+1)~n行目の全ての画素回路10は、同じタイミングで発光を開始し、同じタイミングで発光を終了する。発光期間の長さT8は、全行の画素回路10で等しくなっている。なお、図23に示す例では、画素回路10の走査速度は通常と同じであり、画素回路10の発光期間の長さT8は約2/3フレーム期間となる。
 本変形例によれば、或る1つの行グループに属する行の画素回路10が初期化・閾値検出を行っている期間中、他の2つの行グループに属する行の画素回路10は発光している。このように、各画素回路10の発光期間の長さは約2/3フレーム期間となる。すなわち、1本または2本の共通電源線および1本または2本の共通制御線が設けられている構成と比較して、発光期間を長くすることができる。
<2.5.4 その他の変形例>
 共通制御線21の本数qについては、4以上でもよい。q≧4の場合、制御線Eiの接続形態および各行の画素回路10の動作は、上記と同様である。また、q≧3の場合には、隣接配置された(n/q)本の制御線を同じ共通制御線に接続してもよく、(q-1)本飛ばしの(n/q)本の制御線を同じ共通制御線に接続してもよい。例えば、q=3の場合に、制御線Eiを2本飛ばしに選択し、制御線E1,E4,…を第1の共通制御線に、制御線E2,E5,…を第2の共通制御線に、制御線E3,E6,…を第3の共通制御線にそれぞれ接続してもよい。
<3.第3の実施形態>
<3.1 構成>
 表示装置の全体構成,電源線VPiの接続形態,および画素回路10の構成については、上記第1の実施形態と同様であるので説明を省略する(図2,図3,および図4を参照)。
<3.2 駆動方法>
 図24および図25は、本実施形態における画素回路10の駆動方法を示すタイミングチャートである。図24および図25に示すように、本実施形態においては、1フレーム目においても2フレーム目においても、全ての行の画素回路10での閾値検出の終了時点から各行の画素回路10での書き込みが開始される時点までの期間に、全ての行の画素回路10において一斉にTFT12のゲートに逆バイアス(負バイアス)が印加される(図24の時刻t14~t15,図25の時刻t24~t25を参照)。TFT12のゲートへの逆バイアスの印加は、具体的には、全ての走査信号線Giの電位をハイレベルにした状態でデータ線Sjに充分に低い電位Vnegを印加することによって行われる。なお、各行の画素回路10では、書き込みが開始されるまでの期間を通じて、TFT12のゲートに逆バイアスが印加され続ける。TFT12のゲートに逆バイアスが印加される以外の動作については、上記第1の実施形態と同様であるので、説明を省略する。
 図26は、本実施形態における各行の画素回路10の動作を示す図である。1フレーム目においても2フレーム目においても、全ての行の画素回路10は、1フレーム期間の先頭で初期化を行い、次に閾値検出を行い、次にTFT12のゲートへの逆バイアス印加を行う。この逆バイアス印加は、各行の画素回路10において書き込みが開始されるまでの期間継続される。1フレーム目においては、逆バイアス印加後、行ごとの画素回路10の書き込みおよび発光が昇順で行われる。2フレーム目においては、逆バイアス印加後、行ごとの画素回路10の書き込みおよび発光が降順で行われる。なお、1フレーム目においても2フレーム目においても、各行の画素回路10は一定時間T9だけ発光し、それ以外の期間には消灯する。
<3.3 効果>
 一般にTFT(薄膜トランジスタ)に関しては、「ゲートに正バイアスが印加されると閾値特性が正方向にシフトし、ゲートに逆バイアス(負バイアス)が印加されると閾値特性が負方向にシフトする」ということが知られている。なお、「閾値特性が正方向にシフトする」とは「Id(ドレイン電流)-Vg(ゲート電圧)特性が右方向にシフトする」ということである。自発光型表示素子を備えた表示装置においては、通常、発光している期間中、駆動用トランジスタ(TFT12)のゲート-ソース間には正の電圧が印加される。このため、発光時間が累積されるに従って、駆動用トランジスタの閾値特性は徐々に正方向にシフトする。この点、本実施形態によれば、各画素回路10において、閾値検出の終了時点から書き込みが開始される時点までの期間、TFT12のゲートに逆バイアスが印加される。このため、駆動用トランジスタとして機能するTFT12の閾値特性の(正方向への)シフトが抑制される。また、1フレーム毎に走査順序が逆にされているので、TFT12のゲートに逆バイアスが印加される累積時間は、全ての行の画素回路10でほぼ等しくなる。これにより、行ごとのばらつきを生ずることなく、TFT12の閾値特性のシフトが抑制される。なお、TFT12のゲートに逆バイアスが印加されている期間には、TFT12はオフ状態で維持され、TFT12のソースからの電荷の移動は生じない。従って、TFT12においてゲートに逆バイアスを印加しつつソースに閾値を保持し続けることができる。
<3.4 変形例>
 図27は、上記第3の実施形態の変形例における各行の画素回路10の動作を示す図である。上記第2の実施形態のようにn本の制御線Eiを一括的に駆動する構成とすることによって、図27に示すように全ての行の画素回路10が同時に一定時間T10だけ発光するようにしても良い。また、上記第1および第2の実施形態の第1~第3の変形例と同様に、電源線VPiや制御線Eiを複数個のグループに分類して、電源線VPiや制御線Eiをグループ毎に駆動する構成にしても良い。
<4.その他>
 上記各実施形態においては有機ELディスプレイを例に挙げて説明したが、本発明はこれに限定されない。電流で駆動される自発光型表示素子を備えた表示装置であれば、有機ELディスプレイ以外の表示装置にも本発明を適用することができる。
 1…表示制御回路
 2…ゲートドライバ回路
 3…ソースドライバ回路
 4,4a,4b,4c,4d…電源制御回路
 5…シフトレジスタ
 6…レジスタ
 7…ラッチ回路
 8…D/A変換器
 9…共通電源線
 10…画素回路
 11…TFT(書き込み制御トランジスタ)
 12…TFT(駆動用トランジスタ)
 13…TFT(発光制御トランジスタ)
 15…コンデンサ
 16…有機EL素子(電気光学素子)
 20,20a,20b,20c,20d…制御線駆動回路
 21…共通制御線
 100,200…表示装置
 Gi…走査信号線
 Ei…制御線
 Sj…データ線
 VPi…電源線

Claims (17)

  1.  アクティブマトリクス型の表示装置であって、
     複数の行および複数の列を有するマトリクスを形成するように配置された複数の画素回路と、
     前記複数の画素回路の列に対応して設けられた複数の映像信号線と、
     前記複数の画素回路の行に対応して設けられた複数の走査信号線および複数の制御線と、
     前記複数の画素回路に電源電位を供給するために設けられた複数の電源線と、
     前記複数の映像信号線を駆動する列駆動回路と、
     前記複数の走査信号線および前記複数の制御線を選択的または一括的に駆動する行駆動回路と
    を備え、
     前記画素回路は、
      前記電源線から与えられる電流に基づいて発光する電気光学素子と、
      前記電気光学素子を流れる電流の経路上に設けられた駆動用トランジスタと、
      前記駆動用トランジスタの制御端子と前記映像信号線との間に設けられ、前記走査信号線が前記行駆動回路によってアクティブにされたときに前記駆動用トランジスタの前記制御端子と前記映像信号線とを電気的に接続する書き込み制御トランジスタと、
      前記駆動用トランジスタの一方の導通端子と前記電源線との間に設けられ、前記制御線が前記行駆動回路によってアクティブにされたときに前記駆動用トランジスタの前記一方の導通端子と前記電源線とを電気的に接続する発光制御トランジスタと、
      前記駆動用トランジスタの前記制御端子と前記駆動用トランジスタの他方の導通端子との間に設けられたコンデンサと
    を含み、
     前記複数の行を1個または複数個の行グループにグループ化したときの各行グループに着目したとき、前記行駆動回路は、フレーム期間開始後の所定期間であって前記電気光学素子を初期化するための初期化期間および当該初期化期間後の所定期間であって前記駆動用トランジスタの閾値電圧のばらつきを補償するための閾値検出期間には、前記行グループに属する行に対応して設けられている走査信号線および制御線の全てを一括的にアクティブにし、前記閾値検出期間後には、表示すべき画像に応じた電荷を前記コンデンサに蓄積させるための書き込み期間が行毎に設けられるよう、前記行グループに属する行に対応して設けられている走査信号線を、kフレーム期間毎(kは自然数)に選択順序を逆にしつつ、選択的に順次にアクティブにすることを特徴とする、表示装置。
  2.  前記kは1であることを特徴とする、請求項1に記載の表示装置。
  3.  前記複数の電源線を駆動する電源制御回路を更に備えるとともに、前記複数の電源線のうちの一群に共通的に接続される共通電源線を前記行グループ毎に更に備え、
     各行グループに着目したとき、前記電源制御回路は、前記初期化期間に、前記行グループに対応する共通電源線を介して、当該共通電源線に接続されている電源線に前記電気光学素子を初期化するための初期化電位を与えることを特徴とする、請求項1に記載の表示装置。
  4.  前記複数の行は、複数個の行グループにグループ化されていることを特徴とする、請求項3に記載の表示装置。
  5.  同一の行グループに属する複数の電源線が互いに隣接することのないよう、前記複数の行がグループ化されていることを特徴とする、請求項4に記載の表示装置。
  6.  前記複数の行は、3個以上の行グループにグループ化されていることを特徴とする、請求項4に記載の表示装置。
  7.  前記複数の制御線のうちの一群に共通的に接続される共通制御線を前記行グループ毎に更に備え、
     各行グループに着目したとき、前記行駆動回路は、前記行グループに属する行の全てについての書き込み期間終了後に、前記行グループに属する全ての行の画素回路内の前記電気光学素子が同じタイミングで発光するよう、前記行グループに対応する共通制御線をアクティブにすることを特徴とする、請求項1に記載の表示装置。
  8.  前記複数の行は、1個の行グループにグループ化されていることを特徴とする、請求項7に記載の表示装置。
  9.  前記複数の行は、複数個の行グループにグループ化されていることを特徴とする、請求項7に記載の表示装置。
  10.  前記複数の電源線を駆動する電源制御回路を更に備えるとともに、前記複数の電源線のうちの一群に共通的に接続される共通電源線を前記行グループ毎に更に備え、
     各行グループに着目したとき、前記電源制御回路は、前記初期化期間に、前記行グループに対応する共通電源線を介して、当該共通電源線に接続されている電源線に前記電気光学素子を初期化するための初期化電位を与えることを特徴とする、請求項7に記載の表示装置。
  11.  前記複数の行は、複数個の行グループにグループ化されていることを特徴とする、請求項10に記載の表示装置。
  12.  同一の行グループに属する複数の電源線が互いに隣接することのないよう、前記複数の行がグループ化されていることを特徴とする、請求項11に記載の表示装置。
  13.  前記複数の行は、3個以上の行グループにグループ化されていることを特徴とする、請求項11に記載の表示装置。
  14.  各行グループに着目したとき、前記閾値検出期間後、前記行グループに属する行についての最初の書き込み期間開始前に、前記行駆動回路は、前記行グループに属する行に対応して設けられている走査信号線の全てを一括的にアクティブにし、前記列駆動回路は、前記駆動用トランジスタを逆バイアス状態にするための逆バイアス電位を前記複数の映像信号線に印加することを特徴とする、請求項1に記載の表示装置。
  15.  複数の行および複数の列を有するマトリクスを形成するように配置された複数の画素回路と、前記複数の画素回路の列に対応して設けられた複数の映像信号線と、前記複数の画素回路の行に対応して設けられた複数の走査信号線および複数の制御線と、前記複数の画素回路に電源電位を供給するために設けられた複数の電源線とを備えるアクティブマトリクス型の表示装置の駆動方法であって、
     前記複数の映像信号線を駆動する列駆動ステップと、
     前記複数の走査信号線および前記複数の制御線を選択的または一括的に駆動する行駆動ステップと
    を備え、
     前記画素回路は、
      前記電源線から与えられる電流に基づいて発光する電気光学素子と、
      前記電気光学素子を流れる電流の経路上に設けられた駆動用トランジスタと、
      前記駆動用トランジスタの制御端子と前記映像信号線との間に設けられ、前記走査信号線が前記行駆動ステップでアクティブにされたときに前記駆動用トランジスタの前記制御端子と前記映像信号線とを電気的に接続する書き込み制御トランジスタと、
      前記駆動用トランジスタの一方の導通端子と前記電源線との間に設けられ、前記制御線が前記行駆動ステップでアクティブにされたときに前記駆動用トランジスタの前記一方の導通端子と前記電源線とを電気的に接続する発光制御トランジスタと、
      前記駆動用トランジスタの前記制御端子と前記駆動用トランジスタの他方の導通端子との間に設けられたコンデンサと
    を含み、
     前記複数の行を1個または複数個の行グループにグループ化したときの各行グループに着目したとき、前記行駆動ステップでは、フレーム期間開始後の所定期間であって前記電気光学素子を初期化するための初期化期間および当該初期化期間後の所定期間であって前記駆動用トランジスタの閾値電圧のばらつきを補償するための閾値検出期間には、前記行グループに属する行に対応して設けられている走査信号線および制御線の全てが一括的にアクティブにされ、前記閾値検出期間後には、表示すべき画像に応じた電荷を前記コンデンサに蓄積させるための書き込み期間が行毎に設けられるよう、前記行グループに属する行に対応して設けられている走査信号線が、kフレーム期間毎(kは自然数)に選択順序を逆にされつつ、選択的に順次にアクティブにされることを特徴とする、駆動方法。
  16.  前記kは1であることを特徴とする、請求項15に記載の駆動方法。
  17.  各行グループに着目したとき、前記閾値検出期間後、前記行グループに属する行についての最初の書き込み期間開始前に、前記行駆動ステップでは、前記行グループに属する行に対応して設けられている走査信号線の全てが一括的にアクティブにされ、前記列駆動ステップでは、前記駆動用トランジスタを逆バイアス状態にするための逆バイアス電位が前記複数の映像信号線に印加されることを特徴とする、請求項15に記載の駆動方法。
PCT/JP2011/073781 2010-10-21 2011-10-17 表示装置およびその駆動方法 WO2012053462A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012539708A JP5721736B2 (ja) 2010-10-21 2011-10-17 表示装置およびその駆動方法
CN201180050512.3A CN103168324B (zh) 2010-10-21 2011-10-17 显示装置及其驱动方法
US13/876,582 US8933865B2 (en) 2010-10-21 2011-10-17 Display device and drive method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010236209 2010-10-21
JP2010-236209 2010-10-21

Publications (1)

Publication Number Publication Date
WO2012053462A1 true WO2012053462A1 (ja) 2012-04-26

Family

ID=45975174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073781 WO2012053462A1 (ja) 2010-10-21 2011-10-17 表示装置およびその駆動方法

Country Status (4)

Country Link
US (1) US8933865B2 (ja)
JP (1) JP5721736B2 (ja)
CN (1) CN103168324B (ja)
WO (1) WO2012053462A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029438A (ja) * 2012-07-31 2014-02-13 Sony Corp 表示装置、駆動回路、および電子機器
JP2014157333A (ja) * 2013-02-18 2014-08-28 Japan Display Inc 表示装置及び表示装置の駆動方法
JP2014174220A (ja) * 2013-03-06 2014-09-22 Japan Display Inc 表示装置の駆動方法
JP2015043008A (ja) * 2013-08-26 2015-03-05 株式会社ジャパンディスプレイ 有機el表示装置
JP2015141315A (ja) * 2014-01-29 2015-08-03 日本放送協会 駆動回路、表示装置、表示装置の駆動方法
JP2017151300A (ja) * 2016-02-25 2017-08-31 株式会社ジャパンディスプレイ 表示装置及び表示装置の駆動方法
US20180018915A1 (en) * 2012-12-20 2018-01-18 Lg Display Co., Ltd. Method of driving organic light emitting display device
US10388214B2 (en) 2014-12-02 2019-08-20 Samsung Display Co., Ltd. Organic light emitting display and driving method of the same
WO2020194740A1 (ja) * 2019-03-28 2020-10-01 シャープ株式会社 表示装置、表示装置の駆動方法
WO2023144644A1 (ja) * 2022-01-28 2023-08-03 株式会社半導体エネルギー研究所 表示装置、および表示装置の駆動方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197120A (ja) * 2013-03-29 2014-10-16 ソニー株式会社 表示装置、cmos演算増幅器及び表示装置の駆動方法
US9620057B2 (en) * 2013-08-16 2017-04-11 Boe Technology Group Co., Ltd. Method and apparatus for adjusting driving voltage for pixel circuit, and display device
KR102187835B1 (ko) 2013-10-17 2020-12-07 엘지디스플레이 주식회사 유기 발광 다이오드 표시장치 및 그 구동 방법
KR102083458B1 (ko) * 2013-12-26 2020-03-02 엘지디스플레이 주식회사 유기발광 표시장치
CN106663404A (zh) * 2014-07-15 2017-05-10 夏普株式会社 显示装置及其驱动方法
KR20160148790A (ko) * 2015-06-16 2016-12-27 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 구동 방법
JP6700731B2 (ja) * 2015-11-13 2020-05-27 キヤノン株式会社 投影装置および投影システム
CN105788529A (zh) * 2016-05-10 2016-07-20 上海天马有机发光显示技术有限公司 一种有机发光显示面板及其驱动方法
JP2018063351A (ja) * 2016-10-13 2018-04-19 株式会社ジャパンディスプレイ 有機el表示装置及び有機el表示装置の駆動方法
KR102563968B1 (ko) * 2016-11-21 2023-08-04 엘지디스플레이 주식회사 표시 장치
KR102609494B1 (ko) * 2016-11-29 2023-12-01 엘지디스플레이 주식회사 외부 보상용 표시장치와 그 구동방법
KR102539185B1 (ko) * 2016-12-01 2023-06-02 삼성전자주식회사 디스플레이 장치, 그의 구동 방법 및 비일시적 컴퓨터 판독가능 기록매체
CN106652806B (zh) * 2016-12-15 2019-02-26 广东威创视讯科技股份有限公司 显示屏配置电源确定方法和系统
CN111971739B (zh) * 2018-03-30 2022-05-17 夏普株式会社 显示装置的驱动方法以及显示装置
CN109244112B (zh) * 2018-09-18 2021-05-11 京东方科技集团股份有限公司 一种显示面板以及显示装置
JP7374543B2 (ja) * 2019-10-03 2023-11-07 JDI Design and Development 合同会社 表示装置
CN111369934B (zh) * 2020-04-09 2021-04-02 深圳市华星光电半导体显示技术有限公司 显示装置和终端
CN111883062B (zh) * 2020-06-29 2021-10-22 北京大学深圳研究生院 像素阵列的补偿驱动方法、驱动装置以及显示设备
CN111968576B (zh) 2020-08-21 2022-01-07 上海视涯技术有限公司 一种有机发光显示面板以及驱动方法
US11698530B2 (en) * 2020-09-21 2023-07-11 Meta Platforms Technologies, Llc Switch leakage compensation for global illumination
CN113012652B (zh) * 2021-03-09 2022-11-08 Tcl华星光电技术有限公司 一种背光驱动电路及液晶显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002091376A (ja) * 2000-06-27 2002-03-27 Hitachi Ltd 画像表示装置及びその駆動方法
JP2006133731A (ja) * 2004-11-08 2006-05-25 Samsung Sdi Co Ltd 発光表示装置及びその駆動方法
JP2007148129A (ja) * 2005-11-29 2007-06-14 Sony Corp 表示装置及びその駆動方法
WO2008152817A1 (ja) * 2007-06-15 2008-12-18 Panasonic Corporation 画像表示装置
JP2009192854A (ja) * 2008-02-15 2009-08-27 Casio Comput Co Ltd 表示駆動装置、並びに、表示装置及びその駆動制御方法
JP2009237041A (ja) * 2008-03-26 2009-10-15 Sony Corp 画像表示装置及び画像表示方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6738034B2 (en) * 2000-06-27 2004-05-18 Hitachi, Ltd. Picture image display device and method of driving the same
JP2006215275A (ja) 2005-02-03 2006-08-17 Sony Corp 表示装置
JP5355080B2 (ja) 2005-06-08 2013-11-27 イグニス・イノベイション・インコーポレーテッド 発光デバイス・ディスプレイを駆動するための方法およびシステム
JP4636006B2 (ja) 2005-11-14 2011-02-23 ソニー株式会社 画素回路及び画素回路の駆動方法、表示装置及び表示装置の駆動方法、並びに、電子機器
US8004477B2 (en) 2005-11-14 2011-08-23 Sony Corporation Display apparatus and driving method thereof
CN100550102C (zh) * 2005-11-14 2009-10-14 索尼株式会社 显示设备及其驱动方法
JP4240059B2 (ja) 2006-05-22 2009-03-18 ソニー株式会社 表示装置及びその駆動方法
JP2007316453A (ja) 2006-05-29 2007-12-06 Sony Corp 画像表示装置
JP4203772B2 (ja) 2006-08-01 2009-01-07 ソニー株式会社 表示装置およびその駆動方法
JP2008051990A (ja) 2006-08-24 2008-03-06 Sony Corp 表示装置
JP2008233129A (ja) * 2007-03-16 2008-10-02 Sony Corp 画素回路および表示装置とその駆動方法
JP2008310128A (ja) * 2007-06-15 2008-12-25 Sony Corp 表示装置、表示装置の駆動方法および電子機器
JP2009104013A (ja) * 2007-10-25 2009-05-14 Sony Corp 表示装置、表示装置の駆動方法および電子機器
JP2009133914A (ja) 2007-11-28 2009-06-18 Sony Corp 表示装置
JP5146090B2 (ja) 2008-05-08 2013-02-20 ソニー株式会社 El表示パネル、電子機器及びel表示パネルの駆動方法
KR101341011B1 (ko) * 2008-05-17 2013-12-13 엘지디스플레이 주식회사 발광표시장치
JP2010054564A (ja) 2008-08-26 2010-03-11 Sony Corp 画像表示装置及び画像表示装置の駆動方法
JP5380996B2 (ja) 2008-10-10 2014-01-08 ソニー株式会社 3次元画像システム、表示装置、3次元画像システムのシャッター動作同期装置、3次元画像システムのシャッター動作同期方法及び電子機器
JP2010145578A (ja) 2008-12-17 2010-07-01 Sony Corp 表示装置、表示装置の駆動方法および電子機器
KR101351416B1 (ko) * 2010-05-18 2014-01-14 엘지디스플레이 주식회사 액티브 매트릭스 유기 발광 다이오드 표시 장치의 전압 보상형 화소 회로
KR101182238B1 (ko) 2010-06-28 2012-09-12 삼성디스플레이 주식회사 유기 발광 표시장치 및 그의 구동방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002091376A (ja) * 2000-06-27 2002-03-27 Hitachi Ltd 画像表示装置及びその駆動方法
JP2006133731A (ja) * 2004-11-08 2006-05-25 Samsung Sdi Co Ltd 発光表示装置及びその駆動方法
JP2007148129A (ja) * 2005-11-29 2007-06-14 Sony Corp 表示装置及びその駆動方法
WO2008152817A1 (ja) * 2007-06-15 2008-12-18 Panasonic Corporation 画像表示装置
JP2009192854A (ja) * 2008-02-15 2009-08-27 Casio Comput Co Ltd 表示駆動装置、並びに、表示装置及びその駆動制御方法
JP2009237041A (ja) * 2008-03-26 2009-10-15 Sony Corp 画像表示装置及び画像表示方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029438A (ja) * 2012-07-31 2014-02-13 Sony Corp 表示装置、駆動回路、および電子機器
US20180018915A1 (en) * 2012-12-20 2018-01-18 Lg Display Co., Ltd. Method of driving organic light emitting display device
US10896637B2 (en) * 2012-12-20 2021-01-19 Lg Display Co., Ltd. Method of driving organic light emitting display device
JP2014157333A (ja) * 2013-02-18 2014-08-28 Japan Display Inc 表示装置及び表示装置の駆動方法
JP2014174220A (ja) * 2013-03-06 2014-09-22 Japan Display Inc 表示装置の駆動方法
JP2015043008A (ja) * 2013-08-26 2015-03-05 株式会社ジャパンディスプレイ 有機el表示装置
US9847061B2 (en) 2013-08-26 2017-12-19 Japan Display Inc. Organic EL display device
JP2015141315A (ja) * 2014-01-29 2015-08-03 日本放送協会 駆動回路、表示装置、表示装置の駆動方法
US10388214B2 (en) 2014-12-02 2019-08-20 Samsung Display Co., Ltd. Organic light emitting display and driving method of the same
JP2017151300A (ja) * 2016-02-25 2017-08-31 株式会社ジャパンディスプレイ 表示装置及び表示装置の駆動方法
WO2020194740A1 (ja) * 2019-03-28 2020-10-01 シャープ株式会社 表示装置、表示装置の駆動方法
WO2023144644A1 (ja) * 2022-01-28 2023-08-03 株式会社半導体エネルギー研究所 表示装置、および表示装置の駆動方法

Also Published As

Publication number Publication date
CN103168324A (zh) 2013-06-19
JPWO2012053462A1 (ja) 2014-02-24
JP5721736B2 (ja) 2015-05-20
CN103168324B (zh) 2015-08-05
US20130181969A1 (en) 2013-07-18
US8933865B2 (en) 2015-01-13

Similar Documents

Publication Publication Date Title
JP5721736B2 (ja) 表示装置およびその駆動方法
JP5554411B2 (ja) 表示装置およびその駆動方法
JP5680218B2 (ja) 表示装置およびその駆動方法
JP5726325B2 (ja) 表示装置およびその駆動方法
JP2015025978A (ja) 駆動回路、表示装置、及び駆動方法
WO2018173244A1 (ja) 表示装置、および表示装置の画素回路の駆動方法
JP2008225492A (ja) 表示装置
TWI567715B (zh) A display device, a display driving device, a driving method of a display device, and an electronic device having a display device
WO2011125361A1 (ja) 表示装置およびその駆動方法
KR102604731B1 (ko) 표시 장치
KR102498990B1 (ko) 표시 장치
WO2012128073A1 (ja) 表示装置およびその駆動方法
KR102485956B1 (ko) 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012539708

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13876582

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834301

Country of ref document: EP

Kind code of ref document: A1