WO2012051820A1 - 衬底结构、半导体器件及其制造方法 - Google Patents

衬底结构、半导体器件及其制造方法 Download PDF

Info

Publication number
WO2012051820A1
WO2012051820A1 PCT/CN2011/071224 CN2011071224W WO2012051820A1 WO 2012051820 A1 WO2012051820 A1 WO 2012051820A1 CN 2011071224 W CN2011071224 W CN 2011071224W WO 2012051820 A1 WO2012051820 A1 WO 2012051820A1
Authority
WO
WIPO (PCT)
Prior art keywords
trench
heat dissipation
layer
dielectric layer
substrate
Prior art date
Application number
PCT/CN2011/071224
Other languages
English (en)
French (fr)
Inventor
钟汇才
梁擎擎
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Priority to US13/376,731 priority Critical patent/US9607877B2/en
Priority to GB1202556.5A priority patent/GB2488869B/en
Publication of WO2012051820A1 publication Critical patent/WO2012051820A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76283Lateral isolation by refilling of trenches with dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • H01L27/0694Integrated circuits having a three-dimensional layout comprising components formed on opposite sides of a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate

Definitions

  • the present invention relates generally to semiconductor fabrication techniques and, in particular, to a substrate structure, a semiconductor device, and a method of fabricating the same. Background technique
  • Isolation is a component that separates the active areas of each component.
  • shallow trench isolation Shallow Trench Isolation
  • a surface of the bottom forms a shallow trench isolation filled with a dielectric material in the substrate, so that the device can be formed only on one surface of the substrate, which is disadvantageous for improving substrate utilization and device integration.
  • the present invention provides a substrate structure, the substrate structure comprising: a semiconductor substrate; a first isolation region; wherein the first isolation region comprises: a first trench, the trench through a semiconductor substrate; a first dielectric layer, the first dielectric layer filling the first trench.
  • the present invention also provides another substrate structure, the structure comprising: a semiconductor substrate; a second isolation region; wherein the second isolation region comprises: a second trench, the second trench penetrating the semiconductor a second dielectric layer, the second dielectric layer is formed on a sidewall of the second trench; a first heat dissipation layer, the first heat dissipation layer fills an area between the inner walls of the second dielectric layer .
  • the present invention further provides a substrate structure, the structure comprising: a semiconductor substrate; a third isolation region; wherein the third isolation region comprises: a third trench, the third trench penetrating the semiconductor a second heat dissipation layer, the second heat dissipation layer is formed on a sidewall of the third trench; and a third dielectric layer is filled between the inner walls of the second heat dissipation layer region.
  • the present invention also provides a semiconductor device formed on the upper surface and/or the lower surface of any of the above semiconductor substrate structures.
  • the present invention also provides a method of fabricating the above semiconductor substrate structure, the method comprising: A) Providing a semiconductor substrate; B) forming a support layer on the semiconductor substrate; C) forming a trench penetrating the semiconductor substrate and exposing the support layer, and filling the trench to form isolation Zone; D) removing the support layer.
  • a method of fabricating a semiconductor device in which a semiconductor device is formed on an upper surface and/or a lower surface of the above substrate structure.
  • the device structure By forming a substrate structure having a through-isolation region penetrating through the substrate, the device structure can be formed by using the two surfaces of the substrate, thereby improving the utilization of the substrate and improving the integration of the device.
  • FIGS. 17-20 illustrate schematic structural views of a semiconductor device in accordance with some embodiments of the present invention. detailed description
  • the present invention generally relates to methods of fabricating semiconductor devices.
  • the following disclosure provides many different embodiments or examples for implementing different structures of the present invention.
  • the components and settings of the specific examples are described below. Of course, they are merely examples and are not intended to limit the invention.
  • the present invention may repeat reference numerals and/or letters in different examples. This repetition is for the purpose of simplification and clarity, and does not in itself indicate the relationship between the various embodiments and/or arrangements discussed.
  • the present invention provides examples of various specific processes and materials, but one of ordinary skill in the art will recognize the applicability of other processes and/or the use of other materials.
  • the structure of the first feature described below "on" the second feature may include embodiments in which the first and second features are formed in direct contact, and may include additional features formed between the first and second features. The embodiment, such that the first and second features may not be in direct contact.
  • FIG. 7 illustrates a first embodiment of a substrate structure of the present invention.
  • the substrate structure includes: a semiconductor substrate 200; a first isolation region 310; wherein the first The isolation region 310 includes: a first trench 206-1, the first trench 206-1 penetrating the semiconductor substrate 200; a first dielectric layer 208, the first dielectric layer 208 filling the first trench Slot 206-1.
  • FIG. 8 illustrates a second embodiment of a substrate structure of the present invention.
  • the substrate structure includes: a semiconductor substrate 200; a second isolation region 320; wherein the second The isolation region 320 includes: a second trench 206-2, the second trench 206-2 penetrating the semiconductor substrate 200; a second dielectric layer 210, the second dielectric layer 210 is formed in the second trench a sidewall of the trench 260-2; a first heat dissipation layer 212, the first heat dissipation layer 212 is filled A region between the inner walls 210-2 of the second dielectric layer 210 is filled.
  • FIG. 9 illustrates a third embodiment of a substrate structure of the present invention.
  • the substrate structure includes: a semiconductor substrate 200; a third isolation region 330; wherein the third The isolation region 330 includes: a third trench 206-3, the third trench 206-3 penetrating the semiconductor substrate 200; a second heat dissipation layer 214, the second heat dissipation layer 214 is formed in the third trench On the sidewall of the trench 206-3; a third dielectric layer 216 filling the region between the inner walls 214-2 of the second heat dissipation layer 214.
  • the third isolation region 330 can simultaneously provide isolation and heat dissipation.
  • the substrate structure may further include one or more of the following structures: a second isolation region in the second embodiment, a third isolation region in the third embodiment, and heat dissipation.
  • the heat dissipation region 340 (refer to FIG. 20) includes: a fourth trench 206-4, the fourth trench 206-4 penetrating the semiconductor substrate 200; a third heat dissipation layer 218, the The third heat dissipation layer 218 fills the fourth trench 206-4.
  • the substrate structure may further include one or more of the following structures: a first isolation region in the first embodiment, a third isolation region in the third embodiment, and the foregoing Cooling area.
  • the substrate structure may further include the above-described heat dissipation region.
  • the semiconductor substrate may include a silicon-on-insulator (SOI) structure.
  • the substrate may further include a silicon substrate (eg, a wafer), and may further include Other basic semiconductors or compound semiconductors such as Ge, GeSi, GaAs, InP or SiC.
  • the substrate may comprise various doping configurations in accordance with design requirements well known in the art (e.g., p-type substrates or n-type substrates).
  • substrate 200 may include an epitaxial layer that may be altered by stress to enhance performance.
  • the first dielectric layer, the second dielectric layer, and the third dielectric layer may include an insulating material, and examples of the insulating material include nitrides, oxides, low-k dielectric materials, or other materials. Or a combination thereof, wherein the first heat dissipation layer, the second heat dissipation layer, and the third heat dissipation layer comprise a metal material.
  • the semiconductor substrate structure with punch-through isolation has been described in detail above. Since the isolation region is penetrated through the substrate, the device structure can be formed by using the two surfaces of the substrate, thereby improving the utilization ratio of the substrate and improving the device.
  • the integration degree in a preferred embodiment, may further include a heat dissipation area to improve the heat dissipation effect of the device.
  • the present invention also provides a semiconductor device having the above substrate structure.
  • the semiconductor device 300 is formed on the upper surface and/or the lower surface of the substrate structure of any of the above embodiments.
  • the semiconductor device can include a transistor, a diode, or other electrical device. The illustration is merely an example, and the invention is not limited thereto.
  • a semiconductor substrate 200 is provided, with reference to Fig. 1.
  • the semiconductor substrate 200 is the same as that described in the foregoing embodiment and will not be described again.
  • a support layer 204 is formed on the semiconductor substrate 200, as shown in FIG.
  • the support layer 204 may be formed by depositing a nitride or an oxide such as SiO 2 or Si 3 N 4 on the semiconductor substrate 200.
  • the support layer 204 may also be other suitable materials, such as a metal material or other semiconductor material different from the semiconductor substrate material; the thickness of the support layer 204 is sufficient to carry the semiconductor.
  • Substrate 200 as an example, the support layer 204 may have a thickness of 50 microns to 200 microns, such as 100 microns.
  • the support layer 204 can be formed by a deposition process.
  • step S03 a trench is formed which penetrates the semiconductor substrate and exposes the support layer, and fills the trench to form an isolation region.
  • a hard mask 202 may be formed on the surface of the semiconductor substrate 200 opposite to the support layer 204.
  • the pad oxide layer 202 may be sequentially deposited on the semiconductor substrate 200.
  • the pad oxide layer 202-1 may be silicon dioxide or the like, which is generally formed by a thermal oxidation process
  • the pad nitride layer 202-2 may be It is silicon nitride, which is generally deposited by chemical vapor deposition, and then patterned by a mask, such as Rffi (Reactive Ion Etching), to form a trenched hard mask 202.
  • the semiconductor substrate 200 is etched by using the hard mask 202 as a mask by using an etching technique, such as RIE, and the via layer is formed by using the support layer 204 as a stop layer. Referring to FIG. 3 .
  • the trenches may all be the first trench 206-1 exposing the support layer 204, and the first trench 206-1 may be filled with the first dielectric layer 208.
  • the isolation region structure 310 that is only filled by the first dielectric layer 208.
  • the following steps may be further performed: further removing a portion of the first dielectric layer 208 in the first trench 206-1 to restore a portion of the first trench 206-1, with reference to FIG. 10, in one example, Forming a second dielectric layer 210 on the sidewall of the restored first trench 206-1, and filling a region between the inner walls 210-2 of the second dielectric layer 210 with the first heat dissipation layer 212 to form An isolation structure 320 having a sidewall of the second dielectric layer 210 and a first heat dissipation layer 212 is filled, with reference to FIG.
  • a sidewall formed on the sidewall of the restored first trench 206-1 Two heat dissipation layers 214 are formed, and a region between the inner walls 214-2 of the second heat dissipation layer 214 is filled with a third dielectric layer 216 to form an isolation structure 330 with a second heat dissipation layer sidewall 214 and a third dielectric layer 216 filling.
  • a third heat dissipation layer 218 is filled in the restored first trench 206-1 to form a heat dissipation region 340.
  • there is an isolation area structure one 310, an isolation area structure two 320 and an isolation area structure three 330 Refer to Figure 13 for the substrate structure.
  • each of the isolated isolation structures may be removed as needed to recover a portion of the first trench 206-1, and the restored first trench 206-1 is filled with a different shape.
  • the material required for each isolation structure can form a plurality of isolation regions on the same semiconductor substrate 200, or a heat dissipation structure for the same semiconductor substrate 200 to have an isolation structure, which is advantageous for design requirements.
  • the substrate structure of the isolation region structure 310, the isolation region structure 320, the isolation region structure 330, and the heat dissipation region 340 can be formed by multiple masking, etching, and filling methods.
  • a first trench may be formed in the semiconductor substrate 200, and then in the first An isolation region structure 310 is formed in the trench; then, a third trench is formed in a remaining region in the semiconductor substrate 200, and an isolation region structure 330 is formed in the third trench; A fourth trench is formed in a region other than the isolation region structure one 310 and the isolation region structure three 330, and a heat dissipation region 340 is formed in the fourth trench.
  • the semiconductor substrate 200 has a combination of an isolation region structure and a heat dissipation region, the formation method thereof is similar, and will not be described again.
  • a second trench 206-2 exposing the support layer 204 may be formed, a second dielectric layer 210 is formed on a sidewall of the second trench 206-2, and filled with the first heat dissipation layer 212.
  • a method similar to that described in the first embodiment may be employed (filling all of the second trenches first, restoring a portion of the second trenches, and forming other isolation regions in the recovered second trenches) Or a heat dissipating area; or, step etching the trenches to form the isolation structure or the heat dissipating region step by step, further forming at least one of the isolation region structure 310, the isolation region structure 330, and the heat dissipation region 340
  • the combined substrate structure is formed to form a substrate structure having an isolation region structure 320 or an isolation region structure 320 with an isolation region structure 310, an isolation region structure 330, and a heat dissipation region 340.
  • a third trench 206-3 exposing the support layer 204 may be formed, a second heat dissipation layer 214 is formed on a sidewall of the third trench 206-3, and the third dielectric layer 216 is used to fill the trench.
  • a region between the inner walls 214-2 of the second heat dissipation layer 214 is formed to form an isolation region structure 330 having a second heat dissipation layer sidewall and a third dielectric layer filling.
  • a method similar to that described in the first embodiment and the second embodiment may be employed, and may be further formed in combination with at least one of the isolation region structure 310, the isolation region structure 320, and the heat dissipation region 340.
  • the structure structure of the isolation structure structure 320 and the heat dissipation area 340 is any combination of structures.
  • a planarization process is performed to remove the hard mask 202 and other filling materials until the substrate is exposed.
  • the first dielectric layer, the second dielectric layer, and the third dielectric layer comprise an insulating material
  • examples of the insulating material include nitride, oxide, low-k dielectric material or other materials, or A combination thereof, wherein the first heat dissipation layer, the second heat dissipation layer, and the third heat dissipation layer comprise a metal material.
  • the support layer 204 is removed.
  • the support layer 204 may be further removed by CMP or wet etching to expose the substrate to form a substrate structure, with reference to Figures 7-9, 14-16.
  • the illustrated examples are merely examples, and the present invention is not limited thereto.
  • the semiconductor device 300 may be formed on the upper surface and/or the lower surface of any of the above substrate structures, and the semiconductor device may include a transistor, a diode, or Other electrical devices.
  • the illustration is merely an example, and the invention is not limited thereto.
  • the semiconductor substrate having the punch-through isolation, the semiconductor device, and the method of fabricating the same are described in detail above.
  • the isolation region penetrating through the substrate the device structure can be formed by using the two surfaces of the substrate, thereby improving the utilization ratio of the substrate. And improve the integration of the device.
  • a heat sink can be further formed to improve the heat dissipation performance of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Element Separation (AREA)

Description

衬底结构、 半导体器件及其制造方法
技术领域
本发明通常涉及半导体制造技术, 具体来说, 涉及一种衬底结构、 半导体器件及 其制造方法。 背景技术
随着半导体技术的飞速发展, 具有更高性能和更强功能的集成电路要求更大的元 件密度, CMOS 器件和金属连线等部件的尺寸需要进一步缩小, 这需要不断提高器 件的集成度。 隔离是将各元件有源区域分隔开来的部件, 目前, 浅沟槽隔离 (STI, Shallow Trench Isolation)是常用的将有源区隔开的隔离结构, 这种浅沟槽隔离只从衬 底的一个表面, 在衬底内形成由介质材料填充的浅槽隔离, 这样只能在衬底的一个表 面来形成器件, 不利于提高衬底的利用率以及器件的集成度。 发明内容
鉴于上述问题, 本发明提供了一种衬底结构, 所述衬底结构包括: 半导体衬底; 第一隔离区; 其中所述第一隔离区包括: 第一沟槽, 所述沟槽贯穿所述半导体衬底; 第一介质层, 所述第一介质层填满所述第一沟槽。
本发明还提供了另一种衬底结构, 所述结构包括: 半导体衬底; 第二隔离区; 其 中所述第二隔离区包括: 第二沟槽, 所述第二沟槽贯穿所述半导体衬底; 第二介质层, 所述第二介质层形成于所述第二沟槽的侧壁; 第一散热层, 所述第一散热层填满所述 第二介质层内壁之间的区域。
本发明还提供了又一种衬底结构, 所述结构包括: 半导体衬底; 第三隔离区; 其 中所述第三隔离区包括:第三沟槽,所述第三沟槽贯穿所述半导体衬底; 第二散热层, 所述第二散热层形成于所述第三沟槽的侧壁; 第三介质层, 所述第三介质层填满所述 第二散热层的内壁之间的区域。
此外, 本发明还提供了半导体器件, 所述器件形成于上述任一半导体衬底结构的 上表面和 /或下表面上。
此外, 本发明还提供了上述半导体衬底结构的制造方法, 所述方法包括: A) 提 供半导体衬底; B)在所述半导体衬底上形成支撑层; C) 形成沟槽, 所述沟槽贯穿所 述半导体衬底且暴露所述支撑层, 以及填充所述沟槽以形成隔离区; D) 去除所述支 撑层。
此外,还提供了一种半导体器件的制造方法,在上述的衬底结构的上表面和 /或下 表面上形成半导体器件。
通过形成具有贯穿衬底的穿通隔离区的衬底结构, 从而, 可以利用衬底的两个表 面形成器件结构, 进而提高衬底的利用率并提高了器件的集成度。 附图说明
图 1-16示出了根据本发明的实施例的衬底结构的各个制造阶段的结构示意图; 图 17-20示出了根据本发明部分实施例的半导体器件的结构示意图。 具体实施方式
本发明通常涉及制造半导体器件的方法。 下文的公开提供了许多不同的实施例或 例子用来实现本发明的不同结构。 为了简化本发明的公开, 下文中对特定例子的部件 和设置进行描述。 当然, 它们仅仅为示例, 并且目的不在于限制本发明。 此外, 本发 明可以在不同例子中重复参考数字和 /或字母。这种重复是为了简化和清楚的目的, 其 本身不指示所讨论各种实施例和 /或设置之间的关系。此外, 本发明提供了的各种特定 的工艺和材料的例子, 但是本领域普通技术人员可以意识到其他工艺的可应用于性和 /或其他材料的使用。 另外, 以下描述的第一特征在第二特征之 "上"的结构可以包括 第一和第二特征形成为直接接触的实施例, 也可以包括另外的特征形成在第一和第二 特征之间的实施例, 这样第一和第二特征可能不是直接接触。
参考图 7, 图 7示出了本发明衬底结构的第一实施例, 在第一实施例中, 所述衬底 结构包括: 半导体衬底 200 ; 第一隔离区 310; 其中所述第一隔离区 310包括: 第一沟 槽 206-1, 所述第一沟槽 206-1贯穿所述半导体衬底 200; 第一介质层 208, 所述第一介 质层 208填满所述第一沟槽 206-1。
参考图 8, 图 8示出了本发明衬底结构的第二实施例, 在第二实施例中, 所述衬底 结构包括: 半导体衬底 200; 第二隔离区 320; 其中所述第二隔离区 320包括: 第二沟 槽 206- 2, 所述第二沟槽 206-2贯穿所述半导体衬底 200; 第二介质层 210, 所述第二介 质层 210形成于所述第二沟槽 260-2的侧壁上; 第一散热层 212, 所述第一散热层 212填 满所述第二介质层 210内壁 210-2之间的区域。
参考图 9, 图 9示出了本发明衬底结构的第三实施例, 在第三实施例中, 所述衬底 结构包括: 半导体衬底 200; 第三隔离区 330; 其中所述第三隔离区 330包括: 第三沟 槽 206-3, 所述第三沟槽 206-3贯穿所述半导体衬底 200; 第二散热层 214, 所述第二散 热层 214形成于所述第三沟槽 206-3的侧壁上; 第三介质层 216, 所述第三介质层 216填 满所述第二散热层 214的内壁 214-2之间的区域。 采用本实施例, 所述第三隔离区 330 可同时起到隔离及散热作用。
结合第一实施例, 可选地, 所述衬底结构还可以包括以下结构的一种或多种: 第 二实施例中的第二隔离区、 第三实施例中的第三隔离区以及散热区, 其中, 所述散热 区 340 (参考图 20)包括:第四沟槽 206-4,所述第四沟槽 206-4贯穿所述半导体衬底 200; 第三散热层 218, 所述第三散热层 218填满所述第四沟槽 206-4。
结合第二实施例, 可选地, 所述衬底结构还可以包括以下结构的一种或多种: 第 一实施例中的第一隔离区、 第三实施例中的第三隔离区以及上述散热区。
结合第三实施例, 可选地, 所述衬底结构还可以包括上述散热区。 以上各实施例 中, 所述半导体衬底可以包括绝缘体上硅 (SOI) 结构, 如图 7所示, 在另外的实施例 中, 衬底还可以包括硅衬底 (例如晶片), 还可以包括其他基本半导体或化合物半导 体, 例如 Ge、 GeSi、 GaAs、 InP或 SiC等。 根据现有技术公知的设计要求 (例如 p型衬 底或者 n型衬底), 衬底可以包括各种掺杂配置。 此外, 可选地, 衬底 200可以包括外 延层, 可以被应力改变以增强性能。 在以上各实施例中, 其中所述第一介质层、 第二 介质层和第三介质层可包括绝缘材料, 所述绝缘材料的例子包括氮化物、 氧化物、 低 k介质材料或其他材料, 或其组合, 其中所述第一散热层、 第二散热层和第三散热层 包括金属材料。
以上对具有穿通隔离的半导体衬底结构进行了详细的描述, 由于具有贯穿衬底的 隔离区, 从而, 可以利用衬底的两个表面形成器件结构, 进而提高衬底的利用率并提 高了器件的集成度, 在优选的实施例中, 还可以进一步包括散热区, 以提高器件的散 热效果。
此外, 本发明还提供了具有上述衬底结构的半导体器件, 参考图 17-图 20, 所述半 导体器件 300形成于上述任一实施例的衬底结构的上表面和 /或下表面上, 所述半导体 器件可以包括晶体管、二极管或其他电学器件。所述图例仅为示例, 本发明不限于此。
以上对本发明衬底结构及半导体器件的实施例进行了详细的描述, 为了更好地理 解本发明, 下面将详细描述其实现步骤。
在步骤 S01, 提供半导体衬底 200, 参考图 1。 所述半导体衬底 200与前述实施例中 所述的相同, 不再赘述。
在步骤 S02, 在所述半导体衬底 200上形成支撑层 204, 如图 2所示。 可以通过在所 述半导体衬底 200上沉积氮化物或氧化物, 例如 Si02或 Si3N4, 来形成支撑层 204。 在其 他实施例中, 所述支撑层 204也可为适合的其他材料, 如金属材料或异于所述半导体 衬底材料的其他半导体材料等; 所述支撑层 204的厚度需足以承载所述半导体衬底 200, 作为示例, 所述支撑层 204的厚度可为 50微米 -200微米, 如 100微米。 可以淀积工 艺形成所述支撑层 204。
在步骤 S03, 形成沟槽, 所述沟槽贯穿所述半导体衬底且暴露所述支撑层, 以及 填充所述沟槽以形成隔离区。
具体来说, 首先, 可以在与所述支撑层 204相对的半导体衬底 200的表面上形成硬 掩膜 202,在本发明实施例中,可以在半导体衬底 200上依次淀积垫氧化层 202-1和垫氮 化层 202-2, 如图 2所示, 所述垫氧化层 202-1可以是二氧化硅等, 一般采用热氧化的工 艺形成, 所述垫氮化层 202-2可以是氮化硅, 一般采用化学气相沉积的工艺淀积形成, 而后通过掩膜进行图形化, 例如 Rffi (反应离子刻蚀) 的方法, 从而形成有沟槽的硬 掩膜 202。 而后, 利用刻蚀技术, 例如 RIE的方法, 以所述硬掩膜 202为掩膜刻蚀所述 半导体衬底 200, 并以支撑层 204为停止层, 形成穿通的沟槽 206, 参考图 3。
在第一实施例中, 参考图 4, 所述沟槽可以全部为暴露所述支撑层 204的第一沟槽 206-1 , 并采用第一介质层 208填充所述第一沟槽 206-1, 以形成仅由第一介质层 208填 充的隔离区结构一 310。
可选地, 可以进一步进行以下步骤:进一步去除部分所述第一沟槽 206-1内的第一 介质层 208, 以恢复部分第一沟槽 206-1 , 参考图 10, 在一个例子中, 在恢复的所述第 一沟槽 206-1的侧壁上形成第二介质层 210,并釆用第一散热层 212填充所述第二介质层 210内壁 210-2之间的区域, 以形成具有第二介质层 210侧壁及第一散热层 212填充的隔 离结构二 320, 参考图 11 , 或者在另一个例子中, 在恢复的所述第一沟槽 206-1的侧壁 上形成第二散热层 214, 并采用第三介质层 216填充所述第二散热层 214内壁 214-2之间 区域, 以形成具有第二散热层侧壁 214及第三介质层 216填充的隔离结构三 330, 参考 图 12, 或者在又一个实施例中, 在恢复的所述第一沟槽 206-1内填充第三散热层 218, 以形成散热区 340。 同时具有隔离区结构一 310、 隔离区结构二 320和隔离区结构三 330 的衬底结构参考图 13。
可选地, 还可以根据需要, 去除上述已形成的各隔离结构中的一部分, 以恢复部 分数目的第一沟槽 206-1, 在恢复的第一沟槽 206-1中填充异于己形成的各隔离结构所 需的材料, 可使同一半导体衬底 200上形成多种隔离区结构, 或者, 在使同一半导体 衬底 200具有隔离区结构之余, 还具有散热结构, 利于满足设计需要。 此外, 还可以 通过多次掩膜、 刻蚀、 填充的方法来形成隔离区结构一 310同隔离区结构二 320、 隔离 区结构三 330、散热区 340任意结构组合的衬底结构。作为示例, 在所述半导体衬底 200 具有隔离区结构一 310、 隔离区结构三 330和散热区 340时, 可先在所述半导体衬底 200 中形成第一沟槽, 再在所述第一沟槽中形成隔离区结构一 310; 继而, 在所述半导体 衬底 200中的剩余区域中形成第三沟槽, 再在所述第三沟槽中形成隔离区结构三 330; 最后, 在所述隔离区结构一 310和隔离区结构三 330之外的区域中形成第四沟槽, 再在 所述第四沟槽中形成散热区 340。 所述半导体衬底 200具有隔离区结构及散热区的组合 时, 其形成方法与之类似, 不再赘述。
在第二实施例中, 仅描述同第一实施例不同的地方, 相同之处不再赘述。 参考图 5, 可以形成暴露所述支撑层 204的第二沟槽 206-2, 在所述第二沟槽 206-2的侧壁上形 成第二介质层 210, 并采用第一散热层 212填充所述第二介质层 210内壁 210-2之间的区 域, 以形成具有第二介质层侧壁和第一散热层填充的隔离区结构二 320。 可选地, 可 采用与第一实施例中描述的方法类似的方法(先填充全部第二沟槽, 再恢复部分数目 的第二沟槽, 在恢复的第二沟槽中形成其他隔离区结构或散热区; 或者, 分步刻蚀各 沟槽, 进而分步形成各隔离区结构或散热区), 进一步形成其与隔离区结构一 310、 隔 离区结构三 330、 散热区 340中至少一项组合而成的衬底结构, 从而形成具有隔离区结 构二 320或隔离区结构二 320同隔离区结构一 310、 隔离区结构三 330、 散热区 340任意 结构组合的衬底结构。
在第三实施例中, 仅描述同第一实施例及第二实施例不同的地方, 相同之处不再 赘述。 参考图 6, 可以形成暴露所述支撑层 204第三沟槽 206-3, 在所述第三沟槽 206-3 的侧壁上形成第二散热层 214, 并采用第三介质层 216填充所述第二散热层 214内壁 214-2之间的区域, 以形成具有第二散热层侧壁和第三介质层层填充的隔离区结构三 330。 可选地, 可采用与第一实施例及第二实施例中描述的方法类似的方法, 可以进 一步形成其与隔离区结构一 310、 隔离区结构二 320、 散热区 340中至少一项组合而成 的衬底结构, 从而形成具有隔离区结构三 330或隔离区结构三 330同隔离区结构一 310、 隔离区结构二 320、 散热区 340任意结构组合的衬底结构。
而后, 进行平坦化处理, 去除硬掩膜 202及其他填充材料, 直至暴露衬底。
在以上各实施例中, 其中所述第一介质层、 第二介质层和第三介质层包括绝缘材 料, 所述绝缘材料的例子包括氮化物、 氧化物、 低 k介质材料或其他材料, 或其组合, 其中所述第一散热层、 第二散热层和第三散热层包括金属材料。
在步骤 S04, 在步骤 S04, 去除所述支撑层 204。 可以利用 CMP或湿法刻蚀的方法, 进一步将支撑层 204去除, 以暴露衬底, 形成衬底结构, 参考图 7-图 9、 图 14-图 16。 所 述图例仅为示例, 本发明不限于此。
而后, 根据需要, 参考图 7-图 9、 图 17-图 20, 可以在上述任一衬底结构的上表面 和 /或下表面上形成半导体器件 300, 所述半导体器件可以包括晶体管、 二极管或其他 电学器件。 所述图例仅为示例, 本发明不限于此。
以上对具有穿通隔离的半导体衬底、 半导体器件及其制造方法进行了详细的描 述, 通过形成贯穿衬底的隔离区, 可以利用衬底的两个表面形成器件结构, 从而提高 衬底的利用率并提高了器件的集成度。 此外, 在优选的实施例中, 还可以进一步形成 散热区, 以提高器件的散热性能。
虽然关于示例实施例及其优点已经详细说明, 应当理解在不脱离本发明的精神和 所附权利要求限定的保护范围的情况下, 可以对这些实施例进行各种变化、 替换和修 改。 对于其他例子, 本领域的普通技术人员应当容易理解在保持本发明保护范围内的 同时, 工艺步骤的次序可以变化。
此外, 本发明的应用范围不局限于说明书中描述的特定实施例的工艺、 机构、 制 造、 物质组成、 手段、 方法及步骤。 从本发明的公开内容, 作为本领域的普通技术人 员将容易地理解, 对于目前己存在或者以后即将开发出的工艺、 机构、 制造、 物质组 成、 手段、 方法或步骤, 其中它们执行与本发明描述的对应实施例大体相同的功能或 者获得大体相同的结果, 依照本发明可以对它们进行应用。 因此, 本发明所附权利要 求旨在将这些工艺、机构、 制造、 物质组成、 手段、 方法或步骤包含在其保护范围内。

Claims

权 利 要 求
1.一种衬底结构, 所述衬底结构包括:
半导体衬底;
第一隔离区;
其中所述第一隔离区包括: 第一沟槽, 所述第一沟槽贯穿所述半导体衬底; 第一 介质层, 所述第一介质层填满所述第一沟槽。
2. 根据权利要求 1所述的衬底结构, 还包括第二隔离区, 其中所述第二隔离区包 括: 第二沟槽, 所述第二沟槽贯穿所述半导体衬底; 第二介质层, 所述第二介质层形 成于所述第二沟槽的侧壁; 第一散热层, 所述第一散热层填满所述第二介质层内壁之 间的区域。
3. 根据权利要求 1所述的衬底结构, 还包括第三隔离区, 其中所述第三隔离区包 括: 第三沟槽, 所述第三沟槽贯穿所述半导体衬底; 第二散热层, 所述第二散热层形 成于所述第三沟槽的侧壁; 第三介质层, 所述第三介质层填满所述第二散热层的内壁 之间的区域。
4. 根据权利要求 1-3中任一项所述的衬底结构,还包括散热区,所述散热区包括: 第四沟槽, 所述第四沟槽贯穿所述半导体衬底; 第三散热层, 所述第三散热层填满所 述第四沟槽。
5. 根据权利要求 1至 4中任一项所述的衬底结构, 其中所述第一介质层、第二介 质层和第三介质层包括绝缘材料。
6. 根据权利要求 1至 4中任一项所述的衬底结构, 其中所述第一散热层、第二散 热层和第三散热层包括金属材料。
7. 一种半导体器件, 所述半导体器件形成于如权利要求 1-6中任一项所述的衬底 结构的上表面和 /或下表面上。
8.一种衬底结构, 所述衬底结构包括,
半导体衬底;
第二隔离区;
其中所述第二隔离区包括: 第二沟槽, 所述第二沟槽贯穿所述半导体衬底; 第二 介质层, 所述第二介质层形成于所述第二沟槽的侧壁; 第一散热层, 所述第一散热层 填满所述第二介质层内壁之间的区域。
9. 根据权利要求 8所述的衬底结构, 还包括第三隔离区, 其中所述第三隔离区包 括: 第三沟槽, 所述第三沟槽贯穿所述半导体衬底; 第二散热层, 所述第二散热层形 成于所述第三沟槽的侧壁; 第三介质层, 所述第三介质层填满所述第二散热层的内壁 之间的区域。
10. 根据权利要求 9所述的衬底结构, 还包括第一隔离区, 其中所述第一隔离区 包括: 第一沟槽, 所述沟槽贯穿所述半导体衬底; 第一介质层, 所述第一介质层填满 所述第一沟槽。
11. 根据权利要求 8至 10中任一项所述的衬底结构, 还包括散热区, 所述散热区 包括: 第四沟槽, 所述第四沟槽贯穿所述半导体衬底; 第三散热层, 所述第三散热层 填满所述第四沟槽。
12. 根据权利要求 8至 11中任一项所述的衬底结构, 其中所述第一介质层、第二 介质层和第三介质层包括绝缘材料。
13. 根据权利要求 8至 11中任一项所述的衬底结构, 其中所述第一散热层、第二 散热层和第三散热层包括金属材料。
14. 一种半导体器件, 所述半导体器件形成于如权利要求 8-13中任一项所述的衬 底结构的上表面和 /或下表面上。
15.一种衬底结构, 所述衬底结构包括- 半导体衬底;
第三隔离区;
其中所述第三隔离区包括: 第三沟槽, 所述第三沟槽贯穿所述半导体衬底; 第二 散热层, 所述第二散热层形成于所述第三沟槽的侧壁; 第三介质层, 所述第三介质层 填满所述第二散热层的内壁之间的区域。
16. 根据权利要求 15所述的衬底结构, 还包括散热区, 所述散热区包括: 第四沟 槽, 所述第四沟槽贯穿所述半导体衬底; 第三散热层, 所述第三散热层填满所述第四 沟槽。
17. 根据权利要求 15或 16中所述的衬底结构, 其中所述第三介质层包括绝缘材 料。
18. 根据权利要求 15或 16中所述的衬底结构, 其中所述第二和第三散热层包括 金属材料。
19. 一种半导体器件, 所述半导体器件形成于如权利要求 15-18 中任一项所述的 衬底结构的上表面和 /或下表面上。
20. 一种衬底结构的制造方法, 所述方法包括:
A)提供半导体衬底;
B) 在所述半导体衬底上形成支撑层;
C) 形成沟槽, 所述沟槽贯穿所述半导体衬底且暴露所述支撑层, 以及填充所述 沟槽以形成隔离区;
D) 去除所述支撑层。
21. 根据权利要求 20所述的方法, 其中所述步骤 C)包括: 形成贯穿所述半导体 衬底且暴露所述支撑层的第一沟槽, 并采用第一介质层填充所述第一沟槽, 以形成第 一隔离区。
22. 根据权利要求 20所述的方法, 其中所述步骤 C)包括: 形成贯穿所述半导体 衬底且暴露所述支撑层的第二沟槽, 以及在所述第二沟槽的侧壁上形成第二介质层, 并釆用第一散热层填充所述第二介质层内壁之间的区域, 以形成第二隔离区。
23. 根据权利要求 20所述的方法, 其中所述步骤 C)包括: 形成贯穿所述半导体 衬底且暴露所述支撑层的第三沟槽, 以及在所述第三沟槽的侧壁上形成第二散热层, 并采用第三介质层填充所述第二散热层内壁之间的区域, 以形成第三隔离区。
24. 根据权利要求 21所述的方法, 其中所述步骤 C)还包括: 去除部分所述第一 沟槽内的第一介质层, 以恢复部分第一沟槽, 以及在恢复的所述第一沟槽的侧壁上形 成第二介质层, 并采用第一散热层填充所述第二介质层内壁之间的区域。
25. 根据权利要求 21所述的方法, 其中所述步骤 C)还包括: 去除部分所述第一 沟槽内的第一介质层, 以恢复部分第一沟槽, 以及在恢复的所述第一沟槽的侧壁上形 成第二散热层, 并采用第三介质层填充所述第二散热层内壁之间的区域。
26. 根据权利要求 22所述的方法, 其中所述步骤 C)还包括: 去除部分所述第二 沟槽内的第二介质层以及第一散热层, 以恢复部分第二沟槽, 以及在恢复的所述第二 沟槽的侧壁上形成第二散热层, 并采用第三介质层填充所述第二散热层内壁之间的区 域。
27. 根据权利要求 24所述的方法, 其中所述步骤 C)还包括: 去除部分所述第一 沟槽内的第一介质层和 /或所述第一散热层及所述第二介质层, 以恢复部分第一沟槽, 以及在恢复的所述第一沟槽的侧壁上形成第二散热层, 并采用第三介质层填充所述第 一沟槽。
28. 根据权利要求 20所述的方法, 在所述步骤 C)之后还包括步骤: 去除部分沟 槽内的填充物, 以恢复部分沟槽, 并采用第三散热层填满所述沟槽。
29. 根据权利要求 20-28 中任一项所述的方法, 其中所述第一介质层、 第二介质 层和第三介质层包括绝缘材料。
30. 根据权利要求 20-29中任一项所述的方法, 其中所述第一散热层、 第二散热 层和第三散热层包括金属材料。
31.一种半导体器件的制造方法, 包括步骤: 在如权利要求 20-30 中任一项所述 的衬底结构的上表面和 /或下表面上形成半导体器件。
PCT/CN2011/071224 2010-10-21 2011-03-04 衬底结构、半导体器件及其制造方法 WO2012051820A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/376,731 US9607877B2 (en) 2010-10-21 2011-03-04 Substrate structure, semiconductor device, and method for manufacturing the same
GB1202556.5A GB2488869B (en) 2010-10-21 2011-03-04 Substrate structure, semiconductor device, and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010520798.4 2010-10-21
CN2010105207984A CN102456689A (zh) 2010-10-21 2010-10-21 一种衬底结构、半导体器件及其制造方法

Publications (1)

Publication Number Publication Date
WO2012051820A1 true WO2012051820A1 (zh) 2012-04-26

Family

ID=45974645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071224 WO2012051820A1 (zh) 2010-10-21 2011-03-04 衬底结构、半导体器件及其制造方法

Country Status (3)

Country Link
US (1) US9607877B2 (zh)
CN (1) CN102456689A (zh)
WO (1) WO2012051820A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104355284B (zh) * 2014-10-13 2016-06-29 华东光电集成器件研究所 一种mems器件双面对通介质隔离结构及制备方法
US10546816B2 (en) * 2015-12-10 2020-01-28 Nexperia B.V. Semiconductor substrate with electrically isolating dielectric partition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080224257A1 (en) * 2007-03-12 2008-09-18 Denso Corporation Semiconductor device
CN101673701A (zh) * 2008-09-09 2010-03-17 中芯国际集成电路制造(北京)有限公司 形成浅沟槽隔离结构的方法及浅沟槽隔离结构
CN101783314A (zh) * 2009-01-21 2010-07-21 台湾积体电路制造股份有限公司 形成隔离结构的方法和相应的器件

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144401A (en) * 1987-02-26 1992-09-01 Kabushiki Kaisha Toshiba Turn-on/off driving technique for insulated gate thyristor
JPH0254554A (ja) * 1988-08-19 1990-02-23 Fujitsu Ltd 半導体装置およびその製造方法
US5811315A (en) * 1997-03-13 1998-09-22 National Semiconductor Corporation Method of forming and planarizing deep isolation trenches in a silicon-on-insulator (SOI) structure
US6159586A (en) * 1997-09-25 2000-12-12 Nitto Denko Corporation Multilayer wiring substrate and method for producing the same
JPH11186389A (ja) * 1997-12-24 1999-07-09 Mitsubishi Electric Corp 半導体装置およびその製造方法
US6492684B2 (en) * 1998-01-20 2002-12-10 International Business Machines Corporation Silicon-on-insulator chip having an isolation barrier for reliability
US6133610A (en) * 1998-01-20 2000-10-17 International Business Machines Corporation Silicon-on-insulator chip having an isolation barrier for reliability and process of manufacture
GB0022329D0 (en) * 2000-09-12 2000-10-25 Mitel Semiconductor Ltd Semiconductor device
JP3510576B2 (ja) * 2000-09-28 2004-03-29 Necエレクトロニクス株式会社 半導体装置及びその製造方法
GB2372631B (en) * 2001-02-22 2005-08-03 Mitel Semiconductor Ltd Semiconductor-on-insulator structure
CN1476073A (zh) * 2002-08-12 2004-02-18 矽统科技股份有限公司 浅沟槽隔离构造及其制造方法
US7820519B2 (en) * 2006-11-03 2010-10-26 Freescale Semiconductor, Inc. Process of forming an electronic device including a conductive structure extending through a buried insulating layer
US8278731B2 (en) 2007-11-20 2012-10-02 Denso Corporation Semiconductor device having SOI substrate and method for manufacturing the same
CN101640182B (zh) * 2008-07-31 2011-05-04 中芯国际集成电路制造(北京)有限公司 形成浅沟槽隔离结构的方法及半导体器件的制造方法
CN101777513A (zh) * 2009-01-09 2010-07-14 中芯国际集成电路制造(上海)有限公司 改善栅氧化层生长的方法以及浅沟槽隔离工艺的制作方法
JP5438384B2 (ja) * 2009-06-05 2014-03-12 新光電気工業株式会社 樹脂基板における高周波線路構造及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080224257A1 (en) * 2007-03-12 2008-09-18 Denso Corporation Semiconductor device
CN101673701A (zh) * 2008-09-09 2010-03-17 中芯国际集成电路制造(北京)有限公司 形成浅沟槽隔离结构的方法及浅沟槽隔离结构
CN101783314A (zh) * 2009-01-21 2010-07-21 台湾积体电路制造股份有限公司 形成隔离结构的方法和相应的器件

Also Published As

Publication number Publication date
US9607877B2 (en) 2017-03-28
US20120261790A1 (en) 2012-10-18
CN102456689A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
TWI276156B (en) Formation of active area using semiconductor growth process without STI integration
US6114219A (en) Method of manufacturing an isolation region in a semiconductor device using a flowable oxide-generating material
US8846452B2 (en) Semiconductor device package and methods of packaging thereof
JP2005311367A (ja) ハイブリッド結晶方位上の歪みシリコンcmos
US20080217702A1 (en) Semiconductor device and method of fabricating isolation region
CN107680943A (zh) 多层膜器件及方法
JP2009531868A (ja) マルチプレート分離構造を有する半導体デバイス
WO2011160423A1 (zh) 半导体器件的接触的制造方法及具有该接触的半导体器件
US8829642B2 (en) Semiconductor device and method for manufacturing the same
WO2013143032A1 (zh) 半导体器件及其制造方法
WO2012051820A1 (zh) 衬底结构、半导体器件及其制造方法
US6872632B2 (en) Method of fabricating semiconductor device
US9048286B2 (en) Substrate for integrated circuit and method for forming the same
WO2012065369A1 (zh) 沟槽隔离结构及其形成方法
US6489193B1 (en) Process for device isolation
KR100960925B1 (ko) 반도체 소자의 제조방법
US11810786B2 (en) Method for fabricating semiconductor device
WO2011160466A1 (zh) 层间介质层及其制造方法、具有该层间介质层的半导体器件
US20150087134A1 (en) Semiconductor isolation region uniformity
GB2488869A (en) Substrate structure, semiconductor device and manufacturing method thereof
JP5588162B2 (ja) 半導体装置の製造方法
TW543142B (en) Hollow trench isolator and method of fabricating the same
JP4349421B2 (ja) 半導体装置の製造方法
CN114121663A (zh) 半导体器件的形成方法
KR100461329B1 (ko) 반도체 소자의 소자 분리막 형성 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13376731

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1202556

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20110304

WWE Wipo information: entry into national phase

Ref document number: 1202556.5

Country of ref document: GB

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11833726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11833726

Country of ref document: EP

Kind code of ref document: A1