WO2012050078A1 - 合わせガラス体およびそれに用いる積層体 - Google Patents

合わせガラス体およびそれに用いる積層体 Download PDF

Info

Publication number
WO2012050078A1
WO2012050078A1 PCT/JP2011/073312 JP2011073312W WO2012050078A1 WO 2012050078 A1 WO2012050078 A1 WO 2012050078A1 JP 2011073312 W JP2011073312 W JP 2011073312W WO 2012050078 A1 WO2012050078 A1 WO 2012050078A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
intermediate film
liquid crystal
reflective layer
infrared reflective
Prior art date
Application number
PCT/JP2011/073312
Other languages
English (en)
French (fr)
Inventor
和宏 沖
祐也 阿形
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012050078A1 publication Critical patent/WO2012050078A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/1044Invariable transmission
    • B32B17/10458Polarization selective transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10633Infrared radiation absorbing or reflecting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Definitions

  • the present invention relates to a laminated glass body and a laminate used therefor.
  • the present invention particularly relates to a laminated glass body used for building material windows, automobile windows, and the like, and a heat shielding film used by being affixed thereto, or a laminate for enhancing the heat shielding performance as an interlayer film for these laminated glass bodies.
  • a method of using a cholesteric liquid crystal phase in an infrared light reflecting film has been proposed from the viewpoint of improving heat shielding performance (see Patent Documents 1 to 9).
  • glass having a curved surface such as a windshield of an automobile
  • “glass” includes glass substitutes such as acrylic resin in addition to ordinary narrow glass) Infrared light reflection including liquid crystal
  • the curvature was different on both sides of the film, which made bonding difficult. That is, it has been difficult to obtain a laminated glass that has high heat shielding properties and can be used for a windshield of an automobile at low cost.
  • Patent Document 8 discloses transparency, weather resistance, impact energy absorption, adhesiveness at the interface of the resin layer, and a glass plate by stacking two or more layers with polyvinyl acetal resin as the main component and changing the components. It is described that the TL value can be increased by relaxing the coincidence effect without impairing the basic performance required for laminated glass such as contact properties (see paragraph [0243]).
  • Patent Document 9 discloses an interlayer film for laminated glass, which is an interlayer film for laminated glass excellent in sound insulation by using a polyvinyl acetal resin containing inorganic fine particles, and which can also block sunlight, and this laminated glass. It is described that a laminated glass excellent in sound insulation and light shielding using an intermediate film can be provided.
  • a laminated glass body produced by the present inventors in which an infrared reflective film formed by fixing a composition containing a polymerizable liquid crystal compound is sandwiched between resin glass films between two curved glass plates having different curvatures
  • the heat shielding performance was examined. At this time, as a new problem, it has been found that wrinkles occur in the resin intermediate film and cracks in the infrared reflecting layer occur.
  • the present invention provides a good heat-shielding structure in which an infrared reflecting layer formed by fixing a composition containing a polymerizable liquid crystal compound is sandwiched between resin glass films between two glass plates having different curved surfaces.
  • An object of the present invention is to provide a laminated glass body having performance, in which wrinkles and cracks in the resin intermediate film and the infrared reflection layer are suppressed.
  • the thickness of the resin intermediate in contact with the glass plate on the larger curvature side is larger than the thickness of the resin intermediate in contact with the glass plate on the smaller curvature side.
  • the composition of the resin intermediate in contact with the glass plate on the larger curvature side is different from the composition of the resin intermediate in contact with the glass plate on the smaller curvature side.
  • the glass on the larger curvature side According to at least one aspect of making the additive of the resin intermediate in contact with the plate different from the additive of the resin intermediate in contact with the glass plate on the side having a small curvature, The inventors have found that the problem can be prevented and have solved the present invention.
  • Means for solving the above problems are as follows.
  • a second resin intermediate film disposed on the surface side of the substrate wherein the infrared reflective layer fixes a composition containing a polymerizable liquid crystal compound, and the thickness of the first resin intermediate film is A laminate characterized by being thicker than a thickness of the second resin intermediate film; and a first glass which is in contact with the first resin intermediate film of the laminate and has a curved surface at least partially; And a second glass having a curved surface at least partially in contact with the second resin intermediate film of the laminate, and the curvature of the first glass is greater than the curvature of the second glass.
  • Laminated glass body characterized by being large.
  • a second resin intermediate film disposed on the surface side of the resin layer, and the infrared reflective layer fixes a composition containing a polymerizable liquid crystal compound, and the resin composition of the first resin intermediate film is A laminate having a different resin composition of the second resin interlayer; and a first glass in contact with the first resin interlayer of the laminate and having a curved surface at least partially; And a second glass having a curved surface at least partially in contact with the second resin interlayer of the laminate, and the curvature of the first glass is the curvature of the second glass.
  • Laminated glass body characterized in that it is larger.
  • a second resin intermediate film disposed on the surface side of the substrate, and the infrared reflective layer is fixed to a composition containing a polymerizable liquid crystal compound, and the additive contained in the first resin intermediate film A laminate in which an additive contained in the second resin intermediate film is different from the additive; a first having a curved surface at least partially in contact with the first resin intermediate film of the laminate A second glass that is in contact with the second resin intermediate film of the laminate and has a curved surface at least in part, and the curvature of the first glass is the second A laminated glass body characterized by being larger than the curvature of glass.
  • Infrared reflective layer first resin intermediate film disposed on one surface side of the infrared reflective layer, and opposite side of the surface of the infrared reflective layer on which the first resin intermediate film is disposed And a second resin intermediate film disposed on the surface side of the resin layer, and the infrared reflective layer fixes a composition containing a polymerizable liquid crystal compound, and the resin composition of the first resin intermediate film is A laminate having a different resin composition of the second resin interlayer.
  • Infrared reflective layer first resin intermediate film disposed on one surface side of the infrared reflective layer, and the opposite side of the surface of the infrared reflective layer on which the first resin intermediate film is disposed And a second resin intermediate film disposed on the surface side of the substrate, and the infrared reflective layer is fixed to a composition containing a polymerizable liquid crystal compound, and the additive contained in the first resin intermediate film A laminate in which an additive and an additive contained in the second resin interlayer are different.
  • an infrared reflecting layer in which a composition containing a polymerizable liquid crystal compound is fixed between two glass plates having different curvatures and sandwiched between resin interlayers is disposed. It has become possible to provide a laminated glass body having a heat shielding performance, in which wrinkles and cracks in the resin intermediate film and the infrared reflection layer are suppressed.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the first aspect of the laminated glass body of the present invention is an infrared reflective layer, a first resin intermediate film disposed on one surface side of the infrared reflective layer, and the first resin intermediate of the infrared reflective layer.
  • a second resin intermediate film disposed on the surface side opposite to the surface on which the film is disposed is laminated, and the infrared reflective layer fixes a composition containing a polymerizable liquid crystal compound, A laminate in which the thickness of the first resin interlayer is thicker than the thickness of the second resin interlayer; and in contact with the first resin interlayer of the laminate and at least partially A first glass having a curved surface; and a second glass having a curved surface at least partially in contact with the second resin intermediate film of the laminated body; The curvature is larger than the curvature of the second glass.
  • the second aspect of the laminated glass body of the present invention is an infrared reflective layer, a first resin intermediate film disposed on one surface side of the infrared reflective layer, and the first resin intermediate of the infrared reflective layer.
  • a second resin intermediate film disposed on the surface side opposite to the surface on which the film is disposed is laminated, and the infrared reflective layer fixes a composition containing a polymerizable liquid crystal compound,
  • a laminate in which the resin composition of the first resin interlayer is different from the resin composition of the second resin interlayer; and at least partly in contact with the first resin interlayer of the laminate A first glass having a curved surface; and a second glass in contact with the second resin intermediate film of the laminate and having a curved surface at least in part.
  • the curvature is larger than the curvature of the second glass.
  • the third aspect of the laminated glass body of the present invention is an infrared reflecting layer, a first resin intermediate film disposed on one surface side of the infrared reflecting layer, and the first resin intermediate of the infrared reflecting layer.
  • a second resin intermediate film disposed on the surface side opposite to the surface on which the film is disposed is laminated, and the infrared reflective layer fixes a composition containing a polymerizable liquid crystal compound, A laminate in which an additive contained in the first resin interlayer is different from an additive contained in the second resin interlayer; and in contact with the first resin interlayer of the laminate; and A first glass having a curved surface at least partially; a second glass in contact with the second resin intermediate film of the laminate and having a curved surface at least partially; The curvature of the first glass is larger than the curvature of the second glass To.
  • the laminated glass body of this invention can improve a sound-insulation performance conventionally.
  • the preferable aspect of the laminated glass body of this invention is demonstrated. Needless to say, the present invention is not limited to these examples.
  • the laminated glass body of the present invention includes the laminates of the following first to third aspects, respectively, when the laminated glass body is the first to third aspects.
  • the first aspect of the laminate of the present invention is an infrared reflective layer, a first resin intermediate film disposed on one surface side of the infrared reflective layer, and the first resin intermediate film of the infrared reflective layer And a second resin intermediate film disposed on the surface side opposite to the surface on which the liquid crystal compound is disposed, the infrared reflective layer fixing a composition containing a polymerizable liquid crystal compound, The thickness of one resin intermediate film is thicker than the thickness of the second resin intermediate film.
  • the second aspect of the laminate of the present invention includes an infrared reflective layer, a first resin intermediate film disposed on one surface side of the infrared reflective layer, and the first resin intermediate film of the infrared reflective layer. And a second resin intermediate film disposed on the surface side opposite to the surface on which the liquid crystal compound is disposed, the infrared reflective layer fixing a composition containing a polymerizable liquid crystal compound, The resin composition of one resin interlayer is different from the resin composition of the second resin interlayer.
  • the third aspect of the laminate of the present invention includes an infrared reflective layer, a first resin intermediate film disposed on one surface side of the infrared reflective layer, and the first resin intermediate film of the infrared reflective layer.
  • the additive contained in one resin interlayer is different from the additive contained in the second resin interlayer.
  • a laminated body in which an infrared reflective layer formed by fixing a composition containing a polymerizable liquid crystal compound in each embodiment is sandwiched between resin intermediate films is placed between two curved glass plates having different curvatures.
  • interposed to the resin intermediate film and the wrinkles and cracks in the infrared reflecting layer can be obtained. Furthermore, it is preferable that the sound insulation performance of the laminated glass body of the present invention can be improved by using the laminate of the first to third aspects.
  • FIG. 1 is a schematic view showing an example of the structure of the laminate of the present invention, wherein 1 is an infrared reflecting layer and 3 is a first resin intermediate film.
  • the infrared reflective layer is a layer formed by fixing a polymerizable liquid crystal compound, and is not particularly defined as long as it is a layer having the ability to reflect infrared rays, but fixes a cholesteric liquid crystal phase. (Hereinafter sometimes referred to as “cholesteric liquid crystal layer”).
  • the laminate of the present invention may or may not include a transparent plastic resin film between the infrared reflective layer 1 and the first resin intermediate film 3.
  • the infrared reflective layer may be provided on a transparent plastic resin film such as a PET film and commercialized as it is, and the plastic resin film remains in the final product laminate.
  • a transparent plastic resin film such as a PET film and commercialized as it is
  • further thinning of the laminate may be achieved by adopting a step of peeling the support.
  • Such a transparent plastic support is not included, and the laminate is inferior in brittleness of the film, and thus it is assumed that it is difficult to manufacture. This problem can be solved by adjusting.
  • the infrared reflective layer 1 and the first resin intermediate film 3 may be adjacent to each other or may have other constituent layers. Examples of other constituent layers include an easily adhesive layer and a pressure-sensitive adhesive layer.
  • the laminate of the present invention further has a second resin intermediate film 3 '.
  • the first resin intermediate film 3, the infrared reflection layer 1, the transparent plastic resin film 2, and the second resin intermediate film 3 ' are provided in this order.
  • a transparent plastic resin film may not be included between the infrared reflective layer 1 and the second resin intermediate film 3 ′.
  • the infrared reflective layer 1 and the second resin intermediate film 3 ′ may be adjacent to each other or may have other constituent layers.
  • the heat insulation performance is improved, preferably the sound insulation performance, by increasing the thickness of the resin intermediate film on the side having a smaller curvature radius.
  • the ratio of the thickness of the resin intermediate film on both sides of the cholesteric liquid crystal film is preferably 1.1 to 5 times. Further, it is preferable that the thickness of the thinner one is 0.1 to 5 mm and the thickness of the thicker one is 0.2 to 5 mm. Further, it is more preferable that the thickness of the thinner one is 0.2 to 2.0 mm and the thickness of the thicker one is 0.4 to 3.0 mm.
  • the intermediate film may be thickened by stacking a plurality of sheets.
  • the film thickness of the resin intermediate film (preferably PVB) on both sides of the cholesteric liquid crystal film is usually the same.
  • effects of heat insulation and sound insulation performance can be obtained by making the first and second resin intermediate films have different resin compositions.
  • the resin composition of the first and second resin interlayers is different, for example, from the resins described in JP-A-6-000926 and JP-A-2007-008797, the first and second resin intermediate films An appropriate film can be selected to obtain the effect of heat insulation and sound insulation performance.
  • embodiments described in JP-A-6-000926 and JP-A-2007-008797 can be used.
  • the first and second resin interlayers used in the present invention are preferably polyvinyl acetal resin films as a main component.
  • the polyvinyl acetal resin film is not particularly limited, and those described in, for example, JP-A-6-000926 and JP-A-2007-008797 can be preferably used.
  • a polyvinyl butyral resin film is preferably used in the present invention.
  • the polyvinyl butyral resin film is not particularly defined as long as it is a resin film mainly composed of polyvinyl butyral, and a widely known polyvinyl butyral resin film as an interlayer film for laminated glass bodies can be employed.
  • one is preferably an intermediate film in which a plurality of layers having different compositions are laminated from the viewpoint of improving sound insulation performance.
  • resin which is a main component means resin which occupies the ratio of 50 mass% or more of the said resin intermediate film.
  • the first and second resin interlayers may contain other additives without departing from the spirit of the present invention.
  • the additive contained in said 1st resin intermediate film and the additive contained in said 2nd resin intermediate film differ.
  • the other additive include fine particles for heat ray shielding, fine particles for sound insulation, and plasticizers.
  • the heat ray shielding fine particles and the sound insulation fine particles include inorganic fine particles and metal fine particles.
  • the average particle size of the fine particles is preferably about 10 nm to less than 1 ⁇ m. Larger sizes are not transparent enough to be used for automotive windshields. It is preferable to obtain sound insulation performance at the same time while maintaining the transparent performance that can be used for the windshield of an automobile by setting the size of the fine particles, which has conventionally been 1 ⁇ m or more, to a nano-size level.
  • the structure of the fine particles is preferably spherical, but may not be true. The shape may be changed.
  • the fine particles are desirably dispersed in a resin interlayer (preferably PVB), and may be added in a suitable capsule or added together with a dispersant.
  • the amount added in this case is not particularly limited, but is preferably 0.1 to 10% by mass of the resin component.
  • the light shielding wavelength is usually overlapped in order not to create a non-shielding wavelength in the layer design.
  • the layer structure has a reflective layer on the outside. It is common.
  • the layer to which the fine particles are added is the first resin intermediate disposed on the first glass side having a large curvature (in the case of an automotive windshield, the inside of the vehicle). More preferably, it is a layer.
  • the first glass is disposed on the first glass side having a large curvature (in the case of an automobile windshield, the vehicle interior side).
  • further heat shielding is achieved by adding metal or inorganic fine particles to the thicker PVB to add the infrared reflection performance of the cholesteric liquid crystal film and the infrared absorption performance in the region longer than the reflection wavelength.
  • an effect of sound insulation performance can be obtained.
  • inorganic fine particles examples include calcium carbonate, alumina, kaolin clay, calcium silicate, magnesium oxide, magnesium hydroxide, aluminum hydroxide, magnesium carbonate, talc, feldspar, mica, barite, barium carbonate, titanium oxide, silica, glass bead. And the like. These may be used alone or in combination.
  • the heat ray shielding fine particles tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), aluminum-doped zinc oxide (AZO), indium-doped zinc oxide (IZO), tin-doped zinc oxide, silicon-doped zinc oxide
  • ITO indium oxide
  • ATO antimony-doped tin oxide
  • ATO aluminum-doped zinc oxide
  • IZO indium-doped zinc oxide
  • tin-doped zinc oxide silicon-doped zinc oxide
  • Examples of the light shielding agent include carbon black and red iron oxide.
  • the pigment a dark pigment formed by mixing four types of black pigment carbon black, red pigment (CI Pigment red), blue pigment (CI Pigment ⁇ blue), and yellow pigment (CI Pigment yellow). Examples include reddish-brown mixed pigments.
  • the plasticizer is not particularly limited, and a known plasticizer generally used as a plasticizer for this kind of intermediate film can be used.
  • a known plasticizer generally used as a plasticizer for this kind of intermediate film can be used.
  • triethylene glycol-di-2-ethylbutyrate (3GH) triethylene glycol-di-2-ethylhexanoate (3GO), triethylene glycol-di-n-heptanoate (3G7), tetraethylene glycol- Di-2-ethylhexanoate (4GO), tetraethylene glycol-di-n-heptanoate (4G7), oligoethylene glycol-di-2-ethylhexanoate (NGO) and the like are preferably used.
  • These plasticizers are generally used in the range of 25 to 70 parts by weight with respect to 100 parts by weight of the resin (preferably polyvinyl acetal resin) as the main component of the resin interlayer.
  • the infrared reflective layer is preferably a layer formed by fixing a cholesteric liquid crystal phase.
  • the layer formed by fixing the cholesteric liquid crystal phase is preferably a laminate of four or more layers.
  • the layer formed by fixing the cholesteric liquid crystal phase is preferably a laminate of four or more layers.
  • FIG. 9 shows an example of the laminated structure of the cholesteric liquid crystal layer, wherein 1 is the entire laminated body of the infrared reflecting layer, 3 and 3 ′ are the first and second polybutyral resin films, respectively. , 15a, 15b, 16a, and 16b respectively indicate the infrared reflecting layers.
  • the infrared reflective layers 15a, 15b, 16a and 16b are layers formed by fixing a cholesteric liquid crystal phase
  • the infrared reflective layers 15a, 15b, 16a and 16b exhibit light selective reflectivity for reflecting light of a specific wavelength based on the helical pitch of the cholesteric liquid crystal phase.
  • adjacent infrared reflective layers 15a and 15b have opposite cholesteric liquid crystal phase spiral directions and the same reflection center wavelength ⁇ 15 .
  • adjacent the infrared reflective layer 16a and 16b, together with the spiral directions of the respective cholesteric liquid crystal phase are opposite to each other, the reflection center wavelength lambda 16 is the same.
  • the left and right circularly polarized lights having a predetermined wavelength ⁇ 15 are selectively reflected by the infrared reflecting layers 15a and 15b, and the wavelengths are reflected by the infrared reflecting layers 16a and 16b.
  • Left circularly polarized light and right circularly polarized light having a wavelength ⁇ 16 different from ⁇ 15 are selectively reflected, and as a whole, the reflection characteristics can be broadened.
  • the center wavelength ⁇ 15 of selective reflection by the infrared reflecting layers 15a and 15b is in the range of 1010 to 1070 nm, for example, and the center wavelength ⁇ 16 of selective reflection by the infrared reflecting layers 16a and 16b is, for example, 1190 to 1290 nm. It may be different, such as being in range.
  • the infrared reflection efficiency can be improved by using two pairs of infrared reflection layers each having a selective reflection wavelength in the above range.
  • the spectral distribution of the solar energy intensity shows a general tendency that the shorter the wavelength, the higher the energy.
  • the spectral distribution in the infrared light wavelength range is 2 to 950 to 1130 nm and 1130 to 1350 nm.
  • At least one pair of infrared reflection layers having a central wavelength of selective reflection in the range of 1010 to 1070 nm (more preferably 1020 to 1060 nm), and a central wavelength of selective reflection of 1190 to 1290 nm (more preferably, wave of 1200 to 1280 nm).
  • the helical pitch of the cholesteric liquid crystal phase showing the reflection center wavelength is generally about 650 to 690 nm at the wavelength ⁇ 15 and about 760 to 840 nm at the wavelength ⁇ 16 .
  • the thickness of each infrared reflection layer is about 1 ⁇ m to 8 ⁇ m (preferably about 3 to 7 ⁇ m). However, it is not limited to these ranges.
  • An infrared reflective layer having a desired spiral pitch can be formed by adjusting the type and concentration of materials (mainly polymerizable liquid crystal compound and chiral agent) used for forming the layer.
  • the thickness of a layer can be made into a desired range by adjusting the application quantity.
  • the adjacent infrared reflection layers 15a and 15b have the spiral directions of the respective cholesteric liquid crystal phases opposite to each other, and similarly, the adjacent infrared reflection layers 16a and 16b have the spiral directions of the respective cholesteric liquid crystal phases.
  • the opposite is true.
  • an infrared reflection layer made of a reverse cholesteric liquid crystal phase and having the same selective reflection center wavelength close to each other both left circularly polarized light and right circularly polarized light having the same wavelength can be reflected. .
  • the light that has passed through the infrared reflecting layer 16b (the light that is reflected by the right circularly polarized light having the wavelength ⁇ 16 and only the left circularly polarized light is transmitted) is selected so that the next light passes through 15a and 15b instead of 16b when the center wavelength of the reflected is not lambda 16, left-handed circularly polarized light component of the wavelength lambda 16 will be the size of the helical pitch passes through different cholesteric liquid crystal layer.
  • the left circularly polarized light component of wavelength ⁇ 16 is slightly affected by the optical rotatory power of the cholesteric liquid crystal phase in the other infrared reflecting layer, and the change such as the wavelength of the left circularly polarized light component is shifted.
  • this phenomenon is not limited to the “left circularly polarized light component of wavelength ⁇ 16 ”, but is a change that occurs when circularly polarized light with a certain wavelength passes through cholesteric liquid crystal phases with different helical pitches. is there.
  • the present inventor although it is empirical data, one circularly polarized light component that is not reflected by the cholesteric liquid crystal layer having a predetermined helical pitch is not reflected, but is another cholesteric liquid crystal having a different helical pitch.
  • the effects of the present invention can be obtained even if a pair of infrared reflecting layers having the same selective reflection center wavelengths and different spiral directions are not disposed adjacent to each other.
  • Other infrared reflective layers infrared reflective layers formed by fixing cholesteric liquid crystal phases having different helical pitches and having different central wavelengths of selective reflection
  • the set of infrared reflecting layers be adjacent to each other.
  • Each infrared reflection layer can be formed by various methods.
  • An example is a method of forming by coating described later, more specifically, a curable liquid crystal composition capable of forming a cholesteric liquid crystal phase is applied to the surface of a support, an alignment layer, or an infrared reflective layer, After making the said composition into a cholesteric liquid crystal phase, it can be hardened
  • a hardening reaction for example, polymerization reaction, a crosslinking reaction, etc.
  • the aspect of the cholesteric liquid crystal layer is not limited to the above aspect. 5 or more layers of infrared reflecting layers may be laminated on one surface of the substrate, and one or more pairs (5 layers or more in total) of infrared reflecting layers are laminated on both surfaces of the substrate. It may be the configuration. Moreover, the aspect which has 2 or more sets of infrared reflective layers which show the same reflection center wavelength may be sufficient.
  • the thickness of each layer constituting the infrared reflecting layer is preferably 1 to 10 ⁇ m, and more preferably 2 to 7 ⁇ m.
  • the total thickness of the infrared reflecting layer is preferably 10 to 50 ⁇ m, and more preferably 20 to 40 ⁇ m.
  • the laminated body of this invention may have the non-light-reflective layer containing an organic material and / or an inorganic material other than the said structure.
  • An example of the non-light-reflective layer that can be used in the present invention includes an easy-adhesion layer and an adhesive layer for facilitating close contact with other members (for example, a glass plate).
  • an undercoat layer that may be provided when forming an infrared reflective layer of a cholesteric liquid crystal phase, and an infrared reflective layer are formed.
  • an alignment layer that more precisely defines the alignment direction of the liquid crystal compound is used.
  • the layer formed by fixing the cholesteric liquid crystal phase is preferably in contact with the first resin interlayer.
  • the layer formed by fixing the cholesteric liquid crystal phase is preferably in contact with the second resin interlayer.
  • the laminated glass body of the present invention preferably includes a transparent plastic resin between the layer formed by fixing the cholesteric liquid crystal phase and the second resin interlayer.
  • a polymerizable liquid crystal compound is used for forming each infrared reflection layer.
  • a curable liquid crystal composition includes a rod-like liquid crystal compound, a horizontal alignment agent, an optically active compound (chiral agent), and a polymerization initiator. Two or more of each component may be included.
  • a polymerizable liquid crystal compound and a non-polymerizable liquid crystal compound can be used in combination. Also, a combination of a low-molecular liquid crystal compound and a high-molecular liquid crystal compound is possible.
  • it may contain at least one selected from various additives such as a non-uniformity inhibitor, a repellency inhibitor, and a polymerizable monomer.
  • a polymerization inhibitor an antioxidant, an ultraviolet absorber, a light stabilizer, a coloring material, inorganic fine particles, metal fine particles, metal oxide fine particles, etc. Can be added within a range that does not degrade the mechanical performance.
  • Rod-shaped liquid crystal compound An example of a rod-shaped liquid crystal compound that can be used in the present invention is a rod-shaped nematic liquid crystal compound.
  • the rod-like nematic liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoates, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted Phenylpyrimidines, phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
  • the rod-like liquid crystal compound used in the present invention is polymerizable.
  • the polymerizable rod-like liquid crystal compound can be obtained by introducing a polymerizable group into the rod-like liquid crystal compound.
  • the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and particularly preferably an ethylenically unsaturated polymerizable group.
  • the polymerizable group can be introduced into the molecule of the rod-like liquid crystal compound by various methods.
  • the number of polymerizable groups possessed by the polymerizable rod-like liquid crystal compound is preferably 1 to 6, more preferably 1 to 3.
  • polymerizable rod-like liquid crystal compound examples include Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. Nos. 4,683,327, 5,622,648, and 5770107, International Publication WO95 / 22586. No. 95/24455, No. 97/00600, No. 98/23580, No. 98/52905, JP-A-1-272551, JP-A-6-16616, and JP-A-7-110469. 11-80081 and JP-A 2001-328773, and the like. Two or more kinds of polymerizable rod-like liquid crystal compounds may be used in combination. When two or more kinds of polymerizable rod-like liquid crystal compounds are used in combination, the alignment temperature can be lowered.
  • a horizontal alignment agent to the liquid crystal composition as an alignment control agent that contributes to a stable or rapid cholesteric liquid crystal phase.
  • the horizontal alignment agent include fluorine-containing (meth) acrylate-based polymers and compounds represented by the following general formulas (X1) to (X3), and fluorine-based ones are more preferable. You may contain 2 or more types selected from these. These compounds can reduce the tilt angle of the molecules of the liquid crystal compound or can be substantially horizontally aligned at the air interface of the layer.
  • “horizontal alignment” means that the major axis of the liquid crystal molecule is parallel to the film surface, but it is not required to be strictly parallel.
  • An orientation with an inclination angle of less than 20 degrees is meant.
  • the liquid crystal compound is horizontally aligned in the vicinity of the air interface, alignment defects are unlikely to occur, so that the transparency in the visible light region is increased and the reflectance in the infrared region is increased.
  • the molecules of the liquid crystal compound are aligned at a large tilt angle, so that the spiral axis of the cholesteric liquid crystal phase is shifted from the normal of the film surface, so that the reflectivity is reduced or a fingerprint pattern is generated, resulting in an increase in haze or diffraction. It is not preferable because it is shown.
  • Examples of the fluorine-containing (meth) acrylate polymer that can be used as an orientation control agent are described in JP-A No. 2007-272185, [0018] to [0043].
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituent
  • X 1 , X 2 and X 3 each represent a single bond or a divalent linking group.
  • the substituent represented by each of R 1 to R 3 is preferably a substituted or unsubstituted alkyl group (more preferably an unsubstituted alkyl group or a fluorine-substituted alkyl group), an aryl group (particularly a fluorine-substituted alkyl group).
  • An aryl group having a group is preferred), a substituted or unsubstituted amino group, an alkoxy group, an alkylthio group, and a halogen atom.
  • the divalent linking groups represented by X 1 , X 2 and X 3 are each an alkylene group, an alkenylene group, a divalent aromatic group, a divalent heterocyclic residue, —CO—, —NRa— (Ra Is a divalent linking group selected from the group consisting of —O—, —S—, —SO—, —SO 2 —, and combinations thereof. Is preferred.
  • the divalent linking group is selected from the group consisting of an alkylene group, a phenylene group, —CO—, —NRa—, —O—, —S—, and —SO 2 — or selected from the group. It is more preferably a divalent linking group in which at least two groups are combined.
  • the number of carbon atoms of the alkylene group is preferably 1-12.
  • the alkenylene group preferably has 2 to 12 carbon atoms.
  • the number of carbon atoms of the divalent aromatic group is preferably 6-10.
  • R represents a substituent
  • m represents an integer of 0 to 5.
  • Preferred substituents for R are the same as those listed as preferred ranges for the substituents represented by R 1 , R 2 , and R 3 .
  • m preferably represents an integer of 1 to 3, particularly preferably 2 or 3.
  • R 4 , R 5 , R 6 , R 7 , R 8 and R 9 each independently represent a hydrogen atom or a substituent.
  • the substituents represented by R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are each preferably a substituent represented by R 1 , R 2 and R 3 in the general formula (XI). It is the same as that mentioned as a thing.
  • Examples of the compounds represented by the formulas (X1) to (X3) that can be used as the alignment control agent in the present invention include compounds described in JP-A-2005-99248.
  • the alignment control agent one type of the compounds represented by the general formulas (X1) to (X3) may be used alone, or two or more types may be used in combination.
  • the amount of the horizontal alignment agent added is preferably 0.01 to 10% by mass and more preferably 0.01 to 5% by mass with respect to the polymerizable liquid crystal compound.
  • the content is preferably 0.01 to 1% by mass.
  • a fluorine-based aqueous alignment agent when added, the content is preferably 0.01 to 0.09% by mass and more preferably 0.01 to 0.06% by mass with respect to the polymerizable liquid crystal compound.
  • a non-fluorinated aqueous alignment agent it is preferably 0.1 to 1% by mass, more preferably 0.2 to 0.6% by mass, based on the polymerizable liquid crystal compound.
  • the horizontal alignment agent preferably contains a fluorine atom, more preferably a perfluoroalkyl group, from the viewpoint of suppressing the amount of the horizontal alignment agent added to the above range, It is particularly preferred that it contains a perfluoroalkyl group of several 3 to 10.
  • the horizontal alignment agent is non-fluorine-based, it is preferable that the addition amount is 0.1% by mass or more because the problem of alignment defects does not occur.
  • the liquid crystal composition preferably exhibits a cholesteric liquid crystal phase, and for that purpose, it preferably contains an optically active compound.
  • the rod-like liquid crystal compound is a molecule having an illegitimate carbon atom
  • a cholesteric liquid crystal phase may be stably formed without adding an optically active compound.
  • the optically active compound includes various known chiral agents (eg, Liquid Crystal Device Handbook, Chapter 3-4-3, TN, chiral agent for STN, 199 pages, edited by Japan Society for the Promotion of Science, 42nd Committee, 1989). Description).
  • the optically active compound generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom can also be used as a chiral agent.
  • the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the optically active compound (chiral agent) may have a polymerizable group.
  • the optically active compound has a polymerizable group and the rod-like liquid crystal compound used in combination also has a polymerizable group, it is derived from the rod-like liquid crystal compound by a polymerization reaction of the polymerizable optically active compound and the polymerizable rod-like liquid crystal compound.
  • a polymer having a repeating unit and a repeating unit derived from an optically active compound can be formed.
  • the polymerizable group possessed by the polymerizable optically active compound is preferably the same group as the polymerizable group possessed by the polymerizable rod-like liquid crystal compound.
  • the polymerizable group of the optically active compound is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group.
  • the optically active compound may be a liquid crystal compound.
  • the optically active compound in the liquid crystal composition is preferably 1 to 30 mol% with respect to the liquid crystal compound used in combination. A smaller amount of the optically active compound is preferred because it often does not affect liquid crystallinity. Therefore, the optically active compound used as the chiral agent is preferably a compound having a strong twisting power so that a twisted orientation with a desired helical pitch can be achieved even with a small amount. Examples of such a chiral agent exhibiting a strong twisting force include those described in JP-A-2003-287623, which can be preferably used in the present invention.
  • the liquid crystal composition used for forming the infrared reflective layer is a polymerizable liquid crystal composition, it preferably contains a polymerization initiator.
  • the polymerization initiator to be used is preferably a photopolymerization initiator capable of starting the polymerization reaction by irradiation with ultraviolet rays.
  • photopolymerization initiators include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No.
  • the amount of the photopolymerization initiator used is preferably 0.1 to 20% by mass, more preferably 1 to 8% by mass of the liquid crystal composition (solid content in the case of a coating liquid).
  • the support is preferably a transparent plastic resin film. If the said transparent plastic resin film is self-supporting and supports the said infrared light reflection layer, there will be no limitation at all.
  • the haze of the transparent plastic resin film is preferably 3% or less, more preferably 1% or less. It may be a special retardation plate such as a ⁇ / 2 plate manufactured by managing the production process so as to satisfy predetermined optical characteristics, and there is a large variation in in-plane retardation.
  • the variations in Re (1000) are 20 nm or more and 100 nm or more, and the polymer cannot be used as a predetermined retardation plate. A film etc. may be sufficient.
  • the in-plane retardation of the resin substrate is not particularly limited, and for example, a retardation plate having an in-plane retardation Re (1000) of a wavelength of 1000 nm of 800 to 13000 nm can be used.
  • the transparent plastic resin film used in the present invention preferably has a rigidity capable of withstanding the expansion and contraction of the polybilyl butyral resin during pressure bonding or laminating with the polyvinyl butyral resin film, and the Young's modulus is 100 times that of the polyvinyl butyral resin. About 1000 times is preferable. By setting it as such a structure, reflection nonuniformity can be suppressed more effectively.
  • Examples of the polymer film having high transparency to visible light include polymer films for various optical films used as members of display devices such as liquid crystal display devices.
  • Examples of the transparent plastic resin film include polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate and polyethylene naphthalate (PEN); polycarbonate (PC) and polymethyl methacrylate; polyolefins such as polyethylene and polypropylene; polyimides and triacetyl cellulose.
  • PET polyethylene terephthalate
  • PEN polybutylene terephthalate and polyethylene naphthalate
  • PC polycarbonate
  • polymethyl methacrylate polyolefins such as polyethylene and polypropylene
  • polyimides and triacetyl cellulose A film mainly composed of (TAC) is exemplified.
  • TAC triacetyl cellulose
  • the thickness of the transparent plastic resin film is preferably 30 ⁇ m to 200 ⁇ m, more preferably 100 to 200 ⁇ m. By setting it as such a thickness, reflection nonuniformity can be suppressed more effectively.
  • the laminate of the present invention may include an adhesive layer.
  • the adhesive material general adhesive materials such as acrylic, polyester, polyurethane, polyolefin, and polyvinyl alcohol can be used as long as they do not contradict the gist of the present invention. In the present invention, among these, it is preferable to use a polyester type or an acrylic type, and it is more preferable to use an acrylic type.
  • the pressure-sensitive adhesive material may be obtained commercially. Examples of the pressure-sensitive adhesive material preferably used in the present invention include PET-W manufactured by Sanlitz Co., Ltd. and PD-S1 manufactured by Panac Industry Co., Ltd. Can be mentioned.
  • the thickness of the pressure-sensitive adhesive layer can be set to 0.1 to 5.0 ⁇ m, for example.
  • the easy adhesion layer has a function of improving the adhesion between the infrared reflection layer and the pressure-sensitive adhesive layer, for example.
  • a material that can be used for forming the easy-adhesion layer include polyvinyl butyral (PVB) resin.
  • the polyvinyl butyral resin is a kind of polyvinyl acetal produced by reacting polyvinyl alcohol (PVA) and butyraldehyde with an acid catalyst, and is a resin having a repeating unit having the following structure.
  • the easy-adhesion layer may be a layer made of an acrylic resin, a styrene / acrylic resin, a urethane resin, a polyester resin, or the like, so-called an undercoat layer.
  • An easy adhesion layer made of these materials can also be formed by coating.
  • Some commercially available polymer films are provided with an undercoat layer. Therefore, these commercially available products can be used as a substrate.
  • the thickness of the easy adhesion layer is preferably 0.1 to 5.0 ⁇ m.
  • the laminate of the present invention may have an undercoat layer on the infrared reflective layer side.
  • the infrared reflective layer is preferably provided on the support, but at this time, depending on the support, it may be preferable to provide the infrared reflective layer on the undercoat layer.
  • materials that can be used to form the undercoat layer include acrylate copolymer, polyvinylidene chloride, styrene butadiene rubber (SBR), aqueous polyester, and the like.
  • SBR styrene butadiene rubber
  • aqueous polyester and the like.
  • the undercoat layer also contains a polyvinyl butyral resin together with the material. It is preferable.
  • a dialdehyde such as glutaraldehyde, 2,3-dihydroxy-1,4-dioxane, or a hardener such as boric acid is used. It is preferable to use the film appropriately.
  • the addition amount of the hardener is preferably 0.2 to 3.0% by mass of the dry mass of the undercoat layer.
  • the thickness of the undercoat layer is preferably 0.05 to 0.5 ⁇ m.
  • the laminate of the present invention may have an alignment layer between the infrared reflective layer of the cholesteric liquid crystal phase and the second resin intermediate film, but in the method for producing a laminate of the present invention, the support is peeled off. If so, they can be peeled together. Since the alignment layer needs to be adjacent to the infrared reflective layer when forming the infrared reflective layer of the cholesteric liquid crystal phase, it is necessary to provide the alignment layer between the infrared reflective layer of the cholesteric liquid crystal phase and the substrate or undercoat layer. preferable. However, the undercoat layer may have a function of an alignment layer. Moreover, you may have an orientation layer between the infrared reflective layers.
  • the laminate of the present invention may be cut by using a blade, or may be cut by laser, water jet or heat during processing.
  • the laminated glass body of the present invention comprises a first glass that is in contact with the first resin interlayer of the laminate of the present invention and has a curved surface at least partially; the second resin interlayer of the laminate And a second glass having a curved surface at least partially, and the curvature of the first glass is larger than the curvature of the second glass.
  • ⁇ Method for producing laminated glass body> There is no restriction
  • the method for producing a laminate of the present invention comprises a step of laminating a first resin intermediate film on the infrared reflective layer side of a laminate comprising a support and an infrared reflective layer, and a second step on the opposite side of the infrared reflective layer. It is preferable to include a step of forming a gas phase of the resin interlayer.
  • the infrared reflective layer is preferably formed by fixing a composition containing a polymerizable liquid crystal compound and further contains a horizontal alignment agent.
  • the laminate of the present invention has a configuration that does not include a transfer support such as a PET support between the first resin intermediate film and the second resin intermediate film
  • the first resin It is also preferable to include a step of peeling the support from the laminate including the support and the infrared reflection layer after laminating the intermediate film.
  • FIG. 10 is a diagram showing an example of a production method in the case of producing a laminate having only the first resin intermediate film and the infrared reflection layer as essential components, and in FIG. 10, 11a and 11b are Each of the first thermocompression rollers is shown as a pair for performing thermocompression bonding, 12 is a support stripping roller, and 21 is a delivery of a laminate of the support 2 and the infrared reflecting layer 1. 22 is a feed roller for the first resin intermediate film, 23 is a take-up roller for the support, and 24 is a take-up roller for the laminate of the first resin intermediate film and the infrared reflecting layer. .
  • the laminated body of the support body 2 and the infrared reflective layer 1 is sent out from the feed roller 21.
  • the laminated body of the support body 2 and the infrared reflective layer 1 may include another component layer between the support body and the infrared reflective layer.
  • the first resin intermediate film is fed from another feed roller 22 and laminated with a laminate of the support 2 and the infrared reflecting layer 1.
  • the roller 22 for feeding the first polyvinyl butyral resin is provided on the infrared reflecting layer side of the laminate of the support 2 and the infrared reflecting layer 1.
  • the infrared reflective layer 1 and the first resin intermediate film may be adjacent to each other, or other constituent layers may be included between them.
  • the other constituent layer includes an adhesive layer.
  • These laminates are thermocompression bonded by thermocompression rollers 11a and 11b.
  • the conveyance tension between the feed roller 22 and the thermocompression roller is preferably 50 to 200 g / cm, and more preferably 50 to 100 g / cm. By setting it as such a range, the liquid crystal compound of the infrared reflective layer is not broken, wrinkles are not generated in the second resin intermediate film, and the adhesion between the infrared reflective layer and the second resin intermediate film is improved. be able to.
  • the temperature at this time is usually room temperature.
  • the temperature of the thermocompression roller can be set to 60 to 120 ° C., for example, when the infrared reflective layer 1 and the first resin intermediate film 3 are adjacent to each other.
  • the pressure bonding condition is preferably 0.7 ⁇ G / T ⁇ 1 and more preferably 0.7 ⁇ G / T ⁇ 0.9.
  • T represents the total thickness before passing through the first thermocompression roller
  • G represents the overall thickness after passing through the first thermocompression roller.
  • the surface of the resin intermediate film is roughened by embossing or the like so that air can easily escape during sticking.
  • the bonded surface becomes smooth following the adherend surface, and the optical performance is improved.
  • the other surface needs to be maintained in a rough state in order to be bonded to a glass plate or the like. Therefore, it is preferable that the surface of the roller in contact with the resin intermediate film of the thermocompression-bonding roller is roughened and the rough surface of the resin intermediate film is maintained or actively embossed.
  • the support 2 is peeled off from the thermocompression-bonded laminate by the take-up roller 23 as necessary. Since the support is provided on the surface opposite to the first resin intermediate film, the position of the take-up roller is also provided on the side opposite to the feed roller 22 of the first resin intermediate film.
  • the conveyance tension between the thermocompression roller and the take-up roller is preferably 50 to 200 g / cm, and more preferably 100 to 200 g / cm. By setting it as such a range, the liquid crystal compound of the infrared reflective layer is not broken, wrinkles are not generated in the second resin intermediate film, and the adhesion between the infrared reflective layer and the second resin intermediate film is improved. be able to.
  • the temperature at this time is usually room temperature.
  • the laminated body of the first resin intermediate film and the infrared reflecting layer is wound up by the winding roller 24.
  • it may be wound up so that any of them is on the inside, but it is preferable that the infrared reflecting layer is on the inside.
  • the conveyance tension between the winding roller 23 and the winding roller 24 is preferably 50 to 200 g / cm, and more preferably 50 to 100 g / cm. At this time, since the laminate does not include a support, the transport tension at this time is extremely important.
  • the liquid crystal compound of the infrared reflective layer is not broken, wrinkles are not generated in the second resin intermediate film, and the adhesion between the infrared reflective layer and the second resin intermediate film is improved. be able to.
  • the temperature at this time is usually room temperature.
  • FIG. 11 is a schematic view showing a method in the case where the second resin intermediate film is further pressure-bonded after the support is peeled off by the take-up roller 23 in FIG.
  • 14 is a conveying roller
  • 22 ′ is a second resin intermediate film feed roller. That is, in FIG. 10, after the support is peeled off by the take-up roller 23, the second resin intermediate film fed by the feed roller 22 ′ is further laminated. Since the second resin intermediate film is provided on the side where the support is provided, the take-up roller 23 and the feed roller 22 ′ are provided on the same side.
  • the infrared reflective layer 1 and the second resin intermediate film may be adjacent to each other, or other constituent layers may be included between them.
  • the other constituent layer includes an adhesive layer.
  • the adhesive layer is usually provided on the second resin intermediate film side.
  • the temperature at this time is usually room temperature.
  • the temperature of the thermocompression roller can be set to 60 to 120 ° C., for example, when the infrared reflective layer 1 and the second resin intermediate film are adjacent to each other.
  • the pressure-bonding condition is preferably 0.6 ⁇ G ′ / T ′ ⁇ 1, and more preferably 0.7 ⁇ G ′ / T ′ ⁇ 0.9.
  • T ′ represents the total thickness before passing through the second thermocompression roller
  • G ′ represents the overall thickness after passing through the second thermocompression roller.
  • the manufacturing method of the laminated body of this invention may have the process of an ear cutting further.
  • the edge cut usually cuts off the end of the film in the width direction in the film being conveyed. This is because the thermal contraction rate is usually different between the infrared reflective layer and the resin intermediate film such as a polyvinyl butyral resin film. Therefore, even when an infrared reflective layer having the same width and a resin intermediate film such as a polyvinyl butyral resin film are laminated, the width after thermocompression may be different. Therefore, the width of the film can be made uniform by performing the edge cutting. Further, as described above, since the infrared reflective layer is preferably formed by coating, the thickness of the end portion tends to be thinner than that of the central portion. From this point of view, by cutting off the edges, a high-quality laminate having a desired thickness over the entire surface can be manufactured.
  • a laminate having an infrared reflective layer provided on a support can be produced by a known method, but is preferably produced by applying a predetermined composition on the support.
  • An example of a manufacturing method is (1) Applying a composition containing a horizontal alignment agent and a polymerizable (curable) liquid crystal compound on the surface of a support such as a transparent plastic resin film to form a cholesteric liquid crystal phase; (2) irradiating the polymerizable liquid crystal composition (hereinafter also referred to as a curable liquid crystal composition) with ultraviolet rays to advance a curing reaction, fixing a cholesteric liquid crystal phase, and forming an infrared reflective layer; (3) forming an adhesive layer on the outermost layer of the infrared reflective layer; Is a production method comprising at least By repeating the steps (1) and (2) twice on one surface of the substrate, an infrared light reflection layer having the same configuration as that shown in FIG. 9 can be produced. In addition, by repeating the steps (1)
  • the undercoat layer is preferably formed on the surface of a support such as a transparent plastic resin film by coating.
  • a support such as a transparent plastic resin film by coating.
  • the alignment layer can be provided by means such as a rubbing treatment of an organic compound (preferably a polymer), oblique vapor deposition of an inorganic compound, or formation of a layer having microgrooves.
  • an alignment layer in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known.
  • the alignment layer is preferably formed on the surface of the polymer film by rubbing treatment.
  • the alignment film is preferably peeled off together with the support described later.
  • the curable liquid crystal composition is applied to the surface of the support or the lower infrared reflection layer.
  • the curable liquid crystal composition is preferably prepared as a coating solution in which a material is dissolved and / or dispersed in a solvent.
  • the coating liquid can be applied by various methods such as a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method.
  • a liquid crystal composition can be discharged from a nozzle using an ink jet apparatus to form a coating film.
  • the curable liquid crystal composition applied to the surface to become a coating film is in a cholesteric liquid crystal phase.
  • the coating film may be dried and the solvent may be removed to obtain a cholesteric liquid crystal phase.
  • the cholesteric liquid crystal phase can be stably formed by heating to the temperature of the isotropic phase and then cooling to the cholesteric liquid crystal phase transition temperature.
  • the liquid crystal phase transition temperature of the curable liquid crystal composition is preferably in the range of 10 to 250 ° C., more preferably in the range of 10 to 150 ° C. from the viewpoint of production suitability and the like.
  • a cooling step or the like may be required to lower the temperature to a temperature range exhibiting a liquid crystal phase.
  • a high temperature is required to make the isotropic liquid state higher than the temperature range once exhibiting the liquid crystal phase, which is disadvantageous from waste of thermal energy, deformation of the substrate, and alteration.
  • the coating film in the cholesteric liquid crystal phase is irradiated with ultraviolet rays to advance the curing reaction.
  • a light source such as an ultraviolet lamp is used.
  • the curing reaction of the liquid crystal composition proceeds, the cholesteric liquid crystal phase is fixed, and an infrared reflecting layer is formed.
  • the amount of irradiation energy of ultraviolet rays is not particularly limited, but is generally preferably about 100 mJ / cm 2 to 800 mJ / cm 2 .
  • limiting in particular about the time which irradiates the said coating film with an ultraviolet-ray it will be determined from the viewpoint of both sufficient intensity
  • ultraviolet irradiation may be performed under heating conditions. Moreover, it is preferable to maintain the temperature at the time of ultraviolet irradiation in the temperature range which exhibits a cholesteric liquid crystal phase so that a cholesteric liquid crystal phase may not be disturbed. Also, since the oxygen concentration in the atmosphere is related to the degree of polymerization, if the desired degree of polymerization is not reached in the air and the film strength is insufficient, the oxygen concentration in the atmosphere is reduced by a method such as nitrogen substitution. It is preferable. A preferable oxygen concentration is preferably 10% or less, more preferably 7% or less, and most preferably 3% or less.
  • the reaction rate of the curing reaction (for example, polymerization reaction) that proceeds by irradiation with ultraviolet rays is 70% or more from the viewpoint of maintaining the mechanical strength of the layer and suppressing unreacted substances from flowing out of the layer. Preferably, it is 80% or more, more preferably 90% or more.
  • a method of increasing the irradiation amount of ultraviolet rays to be irradiated and polymerization under a nitrogen atmosphere or heating conditions are effective.
  • a method of further promoting the reaction by a thermal polymerization reaction by maintaining the polymer at a temperature higher than the polymerization temperature, or a method of irradiating ultraviolet rays again (however, irradiation is performed under conditions satisfying the conditions of the present invention).
  • the reaction rate can be measured by comparing the absorption intensity of the infrared vibration spectrum of a reactive group (for example, a polymerizable group) before and after the reaction proceeds.
  • the cholesteric liquid crystal phase is fixed and an infrared reflective layer is formed.
  • the state in which the liquid crystal phase is “fixed” is the most typical and preferred mode in which the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained.
  • the layer has no fluidity and is oriented by an external field or external force. It shall mean a state in which the fixed orientation form can be kept stable without causing a change in form.
  • the alignment state of the cholesteric liquid crystal phase is fixed by a curing reaction that proceeds by ultraviolet irradiation.
  • the liquid crystal composition may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
  • an infrared light reflecting plate exhibiting preferable visible light transmittance and haze can be provided according to applications.
  • an infrared light reflecting plate having a visible light transmittance of 90% or more and an infrared reflectance satisfying the above reaction can be obtained.
  • the laminated glass body of the present invention is one of preferred embodiments in which a glass having a small curvature / thin PVB / support / cholesteric liquid crystal film / thick PVB / a glass having a large curvature is preferred. This embodiment is shown in FIG.
  • a specific method for producing the laminated glass body according to Embodiment 1 a laminate having a plastic film as a support and a laminate with a cholesteric liquid crystal film is formed, and PVBs having different thicknesses are laminated on both sides of the laminate. make.
  • such a laminate is supplied in the form of a single sheet or a long scroll, and is bonded to a target object (for example, inorganic glass), and the other side is opposite to the surface of the laminate attached to glass.
  • a target object for example, inorganic glass
  • Paste the glass it is desirable to paste one thicker PVB to the side with the smaller radius of curvature.
  • the laminate of the present invention is provided with a shrink margin or a cut margin 41 after thermal compression as shown in FIG. It is preferable to keep it.
  • the laminate in a single-leaf sheet state is pulled and adhered in two directions.
  • the first glass having a large curvature and PVB when they are bonded together, they can be brought into close contact with each other by pulling along the curved surface of the first glass.
  • the second glass having a small curvature and the laminated body of the present invention when they are bonded together, the second glass may be pulled from two directions along the curved surface of the second glass and adhered to the glass. Further, these may be combined and pulled from four directions.
  • Such a bonding method can also be used in other embodiments described later.
  • the configuration of the laminate of the present invention is the same as in the first embodiment.
  • An embodiment in which one PVB is pasted to another glass without being routed and pasted with another member can also be mentioned as a preferable production method.
  • a glass having a smaller curvature and a thin PVB are first laminated.
  • FIG. 4A a glass having a smaller curvature and a thin PVB are first laminated.
  • a PET support a cholesteric liquid crystal film, a thick PVB, a member laminated with a glass having a large curvature in this order, and a method of thermocompression bonding with an autoclave are listed. It can.
  • Embodiment 2-2 As a specific method for obtaining the same configuration as in the first embodiment, first, a laminate in which PVB is laminated only on one side of the laminate of the support and the cholesteric liquid crystal film is supplied, and the target object is obtained. A member attached to (for example, glass) is prepared. Next, another glass member on which only the PVB film is attached in advance is prepared. A production method for obtaining a laminated glass body having the above-described structure by laminating the liquid crystal film side of the laminate including the cholesteric liquid crystal film on the PVB side of the other glass member on which only the PVB film is adhered.
  • the structure of the laminated glass body of the present invention is glass having a small curvature / thin PVB / cholesteric liquid crystal film / thick PVB / large glass, and is a structure obtained by removing the support from the two examples of Embodiments 1 and 2. is there.
  • the specific structure of the laminated glass body of this Embodiment 3 is a structure without a support body (for example, PET support body) layer in FIG.
  • the support may be peeled off in the middle of the process so that the film configuration becomes a single sheet of thin PVB / cholesteric liquid crystal film / thick PVB and supplied for bonding to glass. Good.
  • the completed laminated glass body is glass having a small curvature / thin PVB / liquid crystal film / thick PVB / glass having a large curvature. Moreover, it is desirable to stick the thick PVB film on one glass having a small curvature radius.
  • the configuration of the laminated glass body of the present invention is a glass with a small curvature / thin PVB / liquid crystal film / thick PVB / a glass with a large curvature
  • the method for producing the laminated glass with such a configuration is the same as in the second embodiment.
  • Certain embodiments are also preferred. Specifically, after peeling the support from the laminate in which PVB is laminated on only one side of the laminate of the support and the cholesteric liquid crystal film, the cholesteric liquid crystal film and You may supply the laminated body of PVB.
  • a method of obtaining a laminated glass body by preliminarily pasting the second PVB on the glass and having a cholesteric liquid crystal film between the two PVB films is preferable.
  • a laminate in which PVB is laminated only on one side of the laminate of the support and the cholesteric liquid crystal film before the support is peeled off may be supplied, and the support may be peeled off before being attached to glass.
  • a laminated glass body can be produced by attaching PVB to a cholesteric liquid crystal film on a support by heat and pressure using a nip roll.
  • PVB When producing a laminated glass body in this manner, PVB is placed on the glass side, a laminate of PVB and cholesteric liquid crystal film is attached to glass, the support is then peeled off, and then a new PVB is applied to the cholesteric liquid crystal film.
  • a manufacturing method in which the other glass is pasted after being placed on the substrate is preferable.
  • membrane which peeled a support body beforehand on the other glass and peeled off a support body is also preferable.
  • the laminated glass body of the present invention is laminated so as to satisfy the configuration of the laminated glass body in any aspect, it is preferable that the laminated glass body is manufactured by performing final pressure bonding in bonding with the glass plate. More preferably, the production is performed. Bonding with a glass plate is performed, for example, in a vacuum bag or the like under a reduced pressure at a temperature of 80 to 120 ° C. for 30 to 60 minutes, followed by 1.0 to 1 in a thermocompression bonding apparatus such as an autoclave. Bonding at a temperature of 120 to 150 ° C. under a pressure of 5 MPa makes it possible to obtain a laminated glass body in which a laminate is sandwiched between two glasses.
  • the time for thermocompression bonding at a temperature of 120 to 150 ° C. under a pressure of 1.0 to 1.5 MPa is preferably 20 to 90 minutes.
  • the laminated glass body may be obtained by cooling while releasing the pressure as appropriate.
  • the pressure inside the apparatus at the time of thermocompression bonding (preferably 130 ° C.) is set so that the pressure inside the apparatus at 40 ° C.
  • the method of lowering the temperature while maintaining the pressure is not particularly limited as long as the pressure when the temperature is lowered to 40 ° C. is within the above range, but the pressure inside the pressure device naturally decreases as the temperature decreases.
  • a mode in which the temperature is lowered without leaking pressure from the inside of the apparatus or a mode in which the temperature is lowered while further pressurizing from the outside so that the internal pressure of the apparatus does not decrease as the temperature decreases is preferable.
  • the present invention it is preferable to include a step of releasing the pressure after the temperature is lowered while the pressure is maintained. Specifically, it is preferable to lower the temperature by releasing the pressure after the temperature in the autoclave becomes 40 ° C. or lower after the temperature is lowered while the pressure is maintained. From the above, in the method for producing a laminated glass body of the present invention, the first glass, the first resin intermediate film, the infrared reflective layer, the second resin intermediate film, and the second glass in this order. Including a step of laminating, a step of thermocompression bonding at a temperature of 120 to 150 ° C. under a pressure of 1.0 to 1.5 MPa, a step of lowering the temperature while maintaining the pressure, and a step of releasing the pressure. Is preferred.
  • undercoat layer coating solution (S1) having the composition shown below was prepared.
  • An alignment layer coating solution (H1) having the composition shown below was prepared.
  • Coating solutions (R1) and (L1) containing polymerizable liquid crystals having the compositions shown in the following table were prepared.
  • composition of coating liquid containing polymerizable liquid crystal (R1) Composition of coating liquid containing polymerizable liquid crystal (R1)
  • Horizontal alignment agent (compound described in JP-A-2005-99248)
  • a coating solution (L1) was prepared in the same manner except that the chiral agent LC-756 of the coating solution (R1) containing a polymerizable liquid crystal was changed to the following chiral agent compound 2.
  • Chiral agent Compound 2 (compound described in JP-A-2002-179668)
  • a coating solution (R2) was prepared in the same manner except that the formulation amount of the chiral agent LC-756 in the coating solution (R1) containing a polymerizable liquid crystal was changed to 0.236 parts by mass.
  • the coating liquid (L2) was prepared in the same manner except that the formulation amount of the chiral agent compound 2 in the coating liquid (L1) containing the polymerizable liquid crystal was changed to 0.148 parts by mass.
  • the undercoat layer coating solution (S1) is dried using a wire bar to a film thickness of 0. It apply
  • the cholesteric liquid crystal phase is fixed by the following procedure, and the infrared reflective layer (hereinafter referred to as the CL layer).
  • the CL layer the infrared reflective layer
  • UV irradiation was performed at an output of 60% for 6 to 12 seconds using an electrodeless lamp “D bulb” (90 mW / cm) manufactured by Fusion UV Systems Co., Ltd., and the cholesteric liquid crystal phase was fixed to form a film (infrared reflective layer).
  • the above steps (1) and (2) were repeated to prepare an infrared reflective layer of a cholesteric liquid crystal phase in which four layers were laminated.
  • the coating liquid was applied in the order of (R1), (R2), (L1), and (L2).
  • Example 1 and 2 Comparative Examples 1 and 2] ⁇ Laminated glass body form A> (Lamination with polyvinyl butyral)
  • a polyvinyl butyral (PVB1) is superimposed on the infrared reflective layer on the infrared reflective layer (configuration of FIG. 1) formed by fixing the cholesteric liquid crystal phase on the PET support prepared in Production Example 1, and a dry laminator is formed.
  • a laminate was made by heat and pressure through a nip roll through Taisei Laminator. Moreover, it set so that a PET support body might become an upper roll side, and the PET support body was peeled off after that. Furthermore, the laminated film after peeling PET was wound up.
  • the produced laminated film and PVB2 newly laminated on the surface of the laminated film on which the PVB1 is not laminated are curved.
  • the samples were placed in a vacuum rubber bag, with the large spherical glass / PVB1 / liquid crystal film / PVB2 / superposed spherical glass on the smaller curvature side.
  • the inside of the rubber bag was depressurized (about 55 torr), and the rubber bag was placed in a heating oven and heated to 95 ° C. over 30 minutes. Thereafter, preliminary pressure bonding was performed at 95 ° C. for 40 minutes.
  • Example 1 After standing to cool, the laminated glass sample was put in an autoclave and heat-pressed for 60 minutes under the conditions of 130 ° C. and 1.2 MPa to prepare a laminated glass body.
  • Table 2 The thicknesses of PVB1 and PVB2 in each example and comparative example are shown in Table 2 below.
  • ITO fine particles and an average particle size of 35 nm are added as inorganic fine particles only to the PVB 1 layer, and the composition of the other intermediate film is An intermediate film composed of a plurality of layers having different thicknesses was used.
  • Example 3 and Comparative Example 3 ⁇ Laminated glass body form B> A polyvinyl butyral (PVB3) is superimposed on the infrared reflective layer on the infrared reflective layer (configuration of FIG. 1) formed by fixing the cholesteric liquid crystal phase on the PET support prepared in Production Example 1 above, and a dry laminator is formed. A laminate was made by heat and pressure through a nip roll through Taisei Laminator. Then, the laminated body of a support body, a cholesteric liquid crystal film, and PVB3 was conveyed, and also PVB4 was stuck to the PET support body side, and the laminated body by which PVB was arrange
  • PVB3 polyvinyl butyral
  • the produced laminate is made of spherical glass on the side with larger curvature / PVB3 / liquid crystal film / PET support / PVB4 / spherical surface on the side with smaller curvature. They were stacked so as to become glass. Other processing conditions are the same as those for laminated glass body form A. This embodiment is shown in FIGS. At this time, the margin for shrinkage or the margin for cutting after thermocompression bonding was provided as shown in FIG. The thicknesses of PVB3 and PVB4 in each example and comparative example are shown in Table 2 below.
  • Example 1 Heat insulation performance
  • Example 2 the heat shielding performance of the intermediate film containing the heat ray shielding fine particles was measured by a spectral spectrum and superimposed on the heat shielding performance of the liquid crystal film. The result is shown in FIG. From this result, it was shown that the heat shielding performance in a wide band was obtained. Similarly, when other examples were examined, the heat shielding performance was good.
  • Example 4 A laminated film was produced in the same manner as in Examples 1 and 2. Thereafter, between the two spherical glasses having a size of 260 mm ⁇ 300 mm, the produced laminated film and PVB2 newly laminated on the surface on which the PVB1 of the laminated film is not laminated are combined with glass / PVB1 / The samples were stacked so as to be liquid crystal film / PVB2 / glass, and a sample stacked in a vacuum rubber bag was put. The inside of the rubber bag was depressurized (about 55 torr), and the rubber bag was placed in a heating oven and heated to 95 ° C. over 30 minutes. Thereafter, preliminary pressure bonding was performed at 95 ° C. for 40 minutes.
  • the laminated glass sample After standing to cool, the laminated glass sample was put in an autoclave and heat-pressed for 60 minutes at 130 ° C. and 1.2 MPa. After completion of thermocompression bonding, it was allowed to cool for about 3 hours while maintaining the pressure, and the pressure was released when the temperature in the autoclave became 40 ° C. or lower. At this time, the pressure before opening was 0.9 MPa.
  • the wrinkle of the polyvinyl butyral resin film and the film crack of the infrared reflective layer were evaluated, it was found that both were further improved over Examples 1 and 2. Moreover, when the reflective nonuniformity of this laminated glass plate was confirmed visually, it turned out that all were further improved rather than Example 1 and 2.

Abstract

 互いに異なる曲率を有する2枚の曲面を有するガラス板の間に、重合性液晶化合物を含む組成物を固定してなる赤外線反射層が樹脂中間膜で挟み込んで配置された、良好な遮熱性能を有する合わせガラス体において、曲率が大きい側のガラス板に接する樹脂中間体の厚みを曲率が小さい側のガラス板に接する樹脂中間体の厚みよりも厚くすることにより、互いに異なる曲率を有する2枚の曲面を有するガラス板の間に、重合性液晶化合物を含む組成物を固定してなる赤外線反射層が樹脂中間膜で挟み込んで配置された、良好な遮熱性能を有する合わせガラス体であって、樹脂中間膜および赤外線反射層におけるシワやワレが抑制された合わせガラス体の提供ができる。

Description

合わせガラス体およびそれに用いる積層体
 本発明は、合わせガラス体およびそれに用いる積層体に関する。本発明は、特に建材用窓、自動車用窓等に用いられる合わせガラス体、およびそれに貼付して用いる遮熱フィルムまたはこれらの合わせガラス体用中間膜として遮熱性能を高めるための積層体に関する。
 近年、環境・エネルギーへの関心の高まりから省エネに関する工業製品へのニーズは高く、その一つとして住宅及び自動車等の窓ガラスの遮熱、つまり日光による熱負荷を減少させるのに効果のある、ガラス及びフィルムが求められている。日光による熱負荷を減少させるのには、太陽光スペクトルの赤外領域の太陽光線の透過を防ぐことが必要である。
 赤外光反射膜において、コレステリック液晶相を利用する方法が、遮熱性能を高める観点から提案されている(特許文献1~9参照)。しかしこれを使い対象物に貼り合せることは薄くもろいこともあり、難しかった。特に自動車のフロントガラスなどの曲面を持つガラス(本発明においては、「ガラス」には、通常の狭義のガラス類の他、アクリル樹脂などのガラス代用物も含む)は液晶を含む赤外光反射膜の両側で曲率が異なり、その為に貼り合せが難しいものであった。すなわち、高い熱遮蔽性を備え、かつ自動車のフロントガラスにも使用可能な合わせガラスを安価に得ることは困難であった。
 なお、特許文献8には、ポリビニルアセタール樹脂を主剤として成分を変えた膜を2層以上重ねることにより、透明性、耐候性、衝撃エネルギー吸収性、樹脂層界面での接着性、ガラス板との接触性等の合わせガラスに必要な基本性能を損なうことなく、コインシデンス効果の緩和によってTL値を高め、これにより優れた遮音性能を発揮させることができることが記載されている([0243]段落参照)。また、特許文献9には、無機微粒子を含むポリビニルアセタール樹脂を用いることにより、遮音性に優れた合わせガラス用中間膜であるとともに、太陽光を遮光もできる合わせガラス用中間膜、およびこの合わせガラス用中間膜を用いた遮音性および遮光性に優れた合わせガラスが提供できることが記載されている。
特開2000-219543号公報 特開2009-161406号公報 特開2009-298661号公報 特開2010-013311号公報 特開2010-180089号公報 特開昭59-223256号公報 特表2008-542065号公報 特開平6-000926号公報 特開2007-008797号公報
 本発明者らが、互いに異なる曲率を有する2枚の曲面を有するガラス板の間に、重合性液晶化合物を含む組成物を固定してなる赤外線反射膜が樹脂中間膜で挟み込んで製造した合わせガラス体について、遮熱性能を検討した。このとき、新たな課題として、樹脂中間膜にシワが発生したり、赤外線反射層の膜ワレが発生したりすることが判明した。
 本発明は、互いに異なる曲率を有する2枚の曲面を有するガラス板の間に、重合性液晶化合物を含む組成物を固定してなる赤外線反射層が樹脂中間膜で挟み込んで配置された、良好な遮熱性能を有する合わせガラス体であって、樹脂中間膜および赤外線反射層におけるシワやワレが抑制された合わせガラス体を提供することを目的とする。
 前記課題を解決するため、本発明者が鋭意検討した結果、(1)曲率が大きい側のガラス板に接する樹脂中間体の厚みを曲率が小さい側のガラス板に接する樹脂中間体の厚みよりも厚くする、(2)曲率が大きい側のガラス板に接する樹脂中間体の組成と曲率が小さい側のガラス板に接する樹脂中間体の組成が異なるようにする、(3)曲率が大きい側のガラス板に接する樹脂中間体の添加剤と曲率が小さい側のガラス板に接する樹脂中間体の添加剤が異なるようにする、の少なくとも1つの態様により、樹脂中間膜のシワや赤外線反射膜のワレを防ぐことができることを見出し、本発明を解決するに至った。
 上記課題を解決するための手段は、以下の通りである。
[1] 赤外線反射層と、該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、前記第一の樹脂中間膜の厚みが前記第二の樹脂中間膜の厚みよりも厚いことを特徴とする積層体と;該積層体の前記第一の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第一のガラスと;該積層体の前記第二の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第二のガラスと;が積層されており、前記第一のガラスの曲率が前記第二のガラスの曲率よりも大きいことを特徴とする合わせガラス体。
[2] 赤外線反射層と、該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、前記第一の樹脂中間膜の樹脂組成と前記第二の樹脂中間膜の樹脂組成が異なることを特徴とする積層体と;該積層体の前記第一の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第一のガラスと;該積層体の前記第二の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第二のガラスと;が積層されており、前記第一のガラスの曲率が前記第二のガラスの曲率よりも大きいことを特徴とする合わせガラス体。
[3] 赤外線反射層と、該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、前記第一の樹脂中間膜に含まれる添加剤と前記第二の樹脂中間膜に含まれる添加剤が異なることを特徴とする積層体と;該積層体の前記第一の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第一のガラスと;該積層体の前記第二の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第二のガラスと;が積層されており、前記第一のガラスの曲率が前記第二のガラスの曲率よりも大きいことを特徴とする合わせガラス体。
[4] 前記第一の樹脂中間膜に含まれる添加剤と前記第二の樹脂中間膜に含まれる添加剤が異なることを特徴とする[1]または[2]に記載の合わせガラス体。
[5] 前記第一の樹脂中間膜に含まれる添加剤として、熱線遮蔽用の微粒子および遮音用の微粒子の少なくとも一方を含むことを特徴とする[3]または[4]に記載の合わせガラス体。
[6] 前記赤外線反射層がコレステリック液晶相を固定してなる層を含むことを特徴とする[1]~[5]のいずれか一項に記載の合わせガラス体。
[7] 前記コレステリック液晶相を固定してなる層が、前記第一の樹脂中間膜と接していることを特徴とする[6]に記載の合わせガラス体。
[8] 前記コレステリック液晶相を固定してなる層が、前記第二の樹脂中間膜と接していることを特徴とする[6]または[7]に記載の合わせガラス。
[9] 前記コレステリック液晶相を固定してなる層と、前記第二の樹脂中間膜の間に透明可塑性樹脂を含むことを特徴とする[6]または[7]に記載の合わせガラス体。
[10] 前記第一の樹脂中間膜と前記第二の樹脂中間膜が、いずれもポリビニルブチラールを含むことを特徴とする[1]~[9]のいずれか一項に記載の合わせガラス体。
[11] 前記赤外線反射層が水平配向剤を含むことを特徴とする[1]~[10]のいずれか一項に記載の合わせガラス体。
[12] 前記水平配向剤がフッ素系水平配向剤であることを特徴とする[1]~[11]のいずれか一項に記載の合わせガラス体。
[13] 赤外線反射層と、該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、前記第一の樹脂中間膜の厚みが前記第二の樹脂中間膜の厚みよりも厚いことを特徴とする積層体。
[14] 赤外線反射層と、該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、前記第一の樹脂中間膜の樹脂組成と前記第二の樹脂中間膜の樹脂組成が異なることを特徴とする積層体。
[15] 赤外線反射層と、該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、前記第一の樹脂中間膜に含まれる添加剤と前記第二の樹脂中間膜に含まれる添加剤が異なることを特徴とする積層体。
 本発明によれば、互いに異なる曲率を有する2枚の曲面を有するガラス板の間に、重合性液晶化合物を含む組成物を固定してなる赤外線反射層が樹脂中間膜で挟み込んで配置された、良好な遮熱性能を有する合わせガラス体であって、樹脂中間膜および赤外線反射層におけるシワやワレが抑制された合わせガラス体を提供することが可能になった。
本発明の積層体の実施形態の一例を示す概略図である。 本発明の合わせガラス体の実施形態の他の一例を示す概略図である。 図2の合わせガラス体の実施形態の断面の詳細を示す概略図である。 本発明の合わせガラス体の製造方法の実施形態の一例を示す概略図である。 本発明の合わせガラス体の製造方法の実施形態の他の一例を示す概略図である。 本発明の合わせガラス体の製造方法の実施形態の他の一例を示す概略図である。 実施例1の合わせガラス体に用いた積層体における、各層の光透過率のスペクトルを示した概略図である。 本発明の合わせガラス体の実施形態の他の一例を示す概略図である。 図8の合わせガラス体の実施形態の断面の詳細を示す概略図である。 本発明の積層体の製造方法の実施形態の一例を示す概略図である。 本発明の積層体の製造方法の実施形態の他の一例を示す概略図である。
 以下、本発明について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
[合わせガラス体]
 本発明の合わせガラス体の第一の態様は、赤外線反射層と、該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、前記第一の樹脂中間膜の厚みが前記第二の樹脂中間膜の厚みよりも厚いことを特徴とする積層体と;該積層体の前記第一の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第一のガラスと;該積層体の前記第二の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第二のガラスと;が積層されており、前記第一のガラスの曲率が前記第二のガラスの曲率よりも大きいことを特徴とする。
 本発明の合わせガラス体の第二の態様は、赤外線反射層と、該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、前記第一の樹脂中間膜の樹脂組成と前記第二の樹脂中間膜の樹脂組成が異なることを特徴とする積層体と;該積層体の前記第一の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第一のガラスと;該積層体の前記第二の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第二のガラスと;が積層されており、前記第一のガラスの曲率が前記第二のガラスの曲率よりも大きいことを特徴とする。
 本発明の合わせガラス体の第三の態様は、赤外線反射層と、該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、前記第一の樹脂中間膜に含まれる添加剤と前記第二の樹脂中間膜に含まれる添加剤が異なることを特徴とする積層体と;該積層体の前記第一の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第一のガラスと;該積層体の前記第二の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第二のガラスと;が積層されており、前記第一のガラスの曲率が前記第二のガラスの曲率よりも大きいことを特徴とする。
 このような前記第一~第三の態様をとることによって、上述の本発明の効果を奏することができる。さらに、本発明の合わせガラス体は、遮音性能を従来よりも改善できることが好ましい。
 以下、本発明の合わせガラス体の好ましい態様を説明する。本発明がこれらに限定されるものではないことは言うまでもない。
<積層体>
 本発明の合わせガラス体は、合わせガラス体が前記第一~第三の態様である場合、それぞれ以下の第一~第三の態様の積層体を含む。
 本発明の積層体の第一の態様は、赤外線反射層と、該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、前記第一の樹脂中間膜の厚みが前記第二の樹脂中間膜の厚みよりも厚いことを特徴とする。
 本発明の積層体の第二の態様は、赤外線反射層と、該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、前記第一の樹脂中間膜の樹脂組成と前記第二の樹脂中間膜の樹脂組成が異なることを特徴とする。
 本発明の積層体の第三の態様は、赤外線反射層と、該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、前記第一の樹脂中間膜に含まれる添加剤と前記第二の樹脂中間膜に含まれる添加剤が異なることを特徴とする。
 このような各態様の、重合性液晶化合物を含む組成物を固定してなる赤外線反射層が樹脂中間膜で挟み込んで配置された積層体を、互いに異なる曲率を有する2枚の曲面を有するガラス板の間に挟みこむことで、良好な遮熱性能を有する合わせガラス体であって、樹脂中間膜および赤外線反射層におけるシワやワレが抑制された合わせガラス体を得ることができる。さらに、このような第一~第三の態様の積層体を用いることで、本発明の合わせガラス体の遮音性能も改善できることが好ましい。
 図1は、本発明の積層体の構造の一例を示す概略図であって、1は赤外線反射層を、3は第一の樹脂中間膜をそれぞれ示す。本発明における赤外線反射層とは、重合性液晶化合物を固定してなる層であって、かつ、赤外線を反射する能力を有する層であれば、特に定めるものではないが、コレステリック液晶相を固定してなる層(以下、「コレステリック液晶層」と呼ぶことがある)であることが好ましい。
 本発明の積層体は、赤外線反射層1と第一の樹脂中間膜3の間に透明可塑性樹脂フィルムを含んでいても、含んでいなくてもよい。通常は、生産効率の観点から、赤外線反射層は、PETフィルム等の透明可塑性樹脂フィルムの上に設け、そのまま製品化し、最終製品である積層体の中に可塑性樹脂フィルムが残る構成とすることが好ましい。一方、あえて、該支持体を剥離する工程を採用することにより、積層体のさらなる薄膜化を達成してもよい。このような透明可塑性支持体を含まない、積層体は、膜の脆性に劣るため、製造がしにくいことが想定されていたが、本願発明者らの研究により、製造時の搬送張力および圧着条件を調整することによって、この問題を解決することができる。赤外線反射層1と第一の樹脂中間膜3は、隣接していてもよいし、他の構成層を有していてもよい。他の構成層としては、易接着層や粘着材層が挙げられる。
 本発明の積層体は、さらに、第二の樹脂中間膜3’を有する。図1では、第一の樹脂中間膜3、赤外線反射層1、透明可塑性樹脂フィルム2、第二の樹脂中間膜3’の順に積層するように設けられる。この場合、本発明では、前記赤外線反射層1と第二の樹脂中間膜3’の間に透明可塑性樹脂フィルムを含んでいなくてもよい。また、赤外線反射層1と第二の樹脂中間膜3’は、隣接していてもよいし、他の構成層を有していてもよい。
(樹脂中間膜)
 本発明の合わせガラス体では、第一および第二の樹脂中間膜の主成分を例えば共にPVBなどとした場合でも、第一および第二の樹脂中間膜の厚さや組成を変えること、および/または微粒子を添加した膜とすることで、コレステリック液晶膜を含め少なくとも3層の中間膜を配置することにより、遮熱性と、好ましくは遮音性を得る。
 以下、樹脂中間膜について、本発明の合わせガラス体の第一~第三の態様に対応させて説明する。
 本発明の合わせガラス体の第一の態様では、曲率半径の小さい側の樹脂中間膜を厚くすることで、遮熱性能を改善し、好ましくは遮音性能を改善する。コレステリック液晶膜の両側の樹脂中間膜の厚みの比は1.1から5倍であることが好ましい。また、薄い方の厚みを0.1~5mm、厚い方の厚みを0.2~5mmとすることが好ましい。さらに、薄い方の厚みを0.2~2.0mm、厚い方の厚みを0.4~3.0mmとすることがより好ましい。また、中間膜は複数のシートを重ねることによって厚膜化してもよい。
 なお、通常はコレステリック液晶膜の両側の樹脂中間膜(好ましくはPVB)の膜厚は同じである。
 本発明の合わせガラス体の第二の態様では、第一および第二の樹脂中間膜の樹脂組成が異なる態様とすることで、遮熱や遮音性能の効果を得ることができる。第一および第二の樹脂中間膜の樹脂組成が異なる態様とする場合、例えば特開平6-000926号公報や特開2007-008797号公報などに記載の樹脂から、第一および第二の樹脂中間膜をそれぞれ適当なものを選択して、遮熱や遮音性能の効果を得ることができる。それらの樹脂の組み合わせについては、特開平6-000926号公報や特開2007-008797号公報などに記載の態様を用いることができる。
 本発明で用いる第一および第二の樹脂中間膜は、主成分がポリビニルアセタール系の樹脂フィルムであることが好ましい。前記ポリビニルアセタール系の樹脂フィルムとしては特に制限はなく、例えば特開平6-000926号公報や特開2007-008797号公報などに記載のものを好ましく用いることができる。前記ポリビニルアセタール系の樹脂フィルムの中でも、本発明ではポリビニルブチラール樹脂フィルムを用いることが好ましい。前記ポリビニルブチラール樹脂フィルムは、それぞれ、ポリビニルブチラールを主成分とする樹脂フィルムであれば、特に定めるものは無く、広く公知の合わせガラス体用中間膜としてのポリビニルブチラール樹脂フィルムを採用できる。その中でも、本発明では、第一および第二の樹脂中間膜のそれぞれの樹脂組成のうち、一方は、異なる組成の層が複数積層されてなる中間膜とすることが遮音性能改善の観点から好ましい。なお、主成分である樹脂とは、前記樹脂中間膜の50質量%以上の割合を占める樹脂のことをいう。
 第一および第二の樹脂中間膜には、本発明の趣旨を逸脱しない範囲内において、他の添加剤を含んでいてもよい。
 本発明の合わせガラス体の第三の態様では、前記第一の樹脂中間膜に含まれる添加剤と前記第二の樹脂中間膜に含まれる添加剤が異なることが好ましい。前記他の添加剤としては、例えば、熱線遮蔽用の微粒子および遮音用の微粒子、可塑剤を挙げることができ、本発明では熱線遮蔽用の微粒子および遮音用の微粒子の少なくとも一方を含むことが好ましい。前記熱線遮蔽用の微粒子および遮音用の微粒子としては、例えば、無機微粒子、金属微粒子を挙げることができる。このような微粒子を前記第一または第二の樹脂中間膜などの弾性体内に分散混在せしめることにより、遮熱の効果を得られる。同時に、このような構成により、音波の伝搬を阻害し、振動減衰効果を得ることが好ましい。前記微粒子の平均粒径は10nmないし1μm未満程度であることが好ましい。これ以上のサイズでは自動車用フロントガラスに使用するには透明性が不足する。従来1μm以上とされてきた微粒子のサイズをナノサイズレベルにすることにより、自動車のフロントガラスにも使用可能な透明性能を保持しつつ、遮音性能も同時に得ることが好ましい。また前記微粒子の構造は球状が望ましいが、真球でなくともよい。またその形状を変えることはしてもよい。また、前記微粒子は樹脂中間膜(好ましくはPVB)内で分散していることが望ましく、適当なカプセルに入れることや分散剤とともに添加することもよい。この場合の添加量は、特に制限はないが、樹脂成分の0.1~10質量%であることも好ましい。
 微粒子とコレステリック液晶膜とのハイブリット型の場合では、層設計上非遮蔽波長を作らないために通常遮光波長を重ねる。本発明では、遮光波長帯が重なった場合には吸収より反射の方が遮熱的に有利なため、本発明の合わせガラス体の第三の態様では、反射層が外側に有る層構成とするのが一般的である。すなわち、本発明の合わせガラス体の第三の態様では、微粒子を添加する層は、曲率の大きい第一のガラス側(自動車用フロントガラスであれば車内側)に配置される第一の樹脂中間層であることが、より好ましい。
 本発明に合わせガラス体が、前記第一の態様と前記第三の態様を共に満たす場合は、曲率の大きい第一のガラス側(自動車用フロントガラスであれば車内側)に配置される第一の樹脂中間層の厚みを厚くし、かつ、その厚い方の第一の樹脂中間層に微粒子を添加することが、遮熱および遮音の観点から好ましい。すなわち、具体的には、厚い方のPVBに金属や無機物の微粒子を添加してコレステリック液晶膜の赤外線の反射性能と、その反射波長より波長の長い領域の赤外線吸収性能を加えることによりさらなる熱遮蔽や好ましくは遮音性能の効果を得ることができる。
 前記無機微粒子としては、炭酸カルシウム、アルミナ、カオリンクレー、珪酸カルシウム、酸化マグネシウム、水酸化マグネシウム、水酸化アルミニウム、炭酸マグネシウム、タルク、長石粉、マイカ、バライト、炭酸バリウム、酸化チタン、シリカ、ガラスビ-ズ等が挙げられる。これらは単独で用いられてもよく、混合して用いられてもよい。
 また、熱線遮蔽微粒子としては、錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)、アルミニウムドープ酸化亜鉛(AZO)、インジウムドープ酸化亜鉛(IZO)、錫ドープ酸化亜鉛、珪素ドープ酸化亜鉛、アンチモン酸亜鉛、6ホウ化ランタン、6ホウ化セリウム、金微粉、銀微粉、白金微粉、アルミニウム微粉、鉄、ニッケル、銅、ステンレス、スズ、コバルト及びこれらを含む合金粉末等が挙げられる。遮光剤としては、カーボンブラック、赤色酸化鉄等が挙げられる。顔料としては、黒色顔料カーボンブラックと赤色顔料(C.I.Pigment  red)と青色顔料(C.I.Pigment  blue)と黄色顔料(C.I.Pigment  yellow)の4種を混合してなる暗赤褐色の混合顔料等が挙げられる。
 上記可塑剤としては、特に限定されず、この種の中間膜用の可塑剤として一般的に用いられている公知の可塑剤を用いることができる。例えば、トリエチレングリコール-ジ-2-エチルブチレート(3GH)、トリエチレングリコール-ジ-2-エチルヘキサノエート(3GO)、トリエチレングリコール-ジ-n-ヘプタノエート(3G7)、テトラエチレングリコール-ジ-2-エチルヘキサノエート(4GO)、テトラエチレングリコール-ジ-n-ヘプタノエート(4G7)、オリゴエチレングリコール-ジ-2-エチルヘキサノエート(NGO)などが好適に用いられる。これらの可塑剤は、一般に、前記樹脂中間膜の主成分である樹脂(好ましくは、ポリビニルアセタール樹脂)100重量部に対して25~70重量部の範囲で用いられる。
(赤外線反射層)
 本発明の積層体は、上述のとおり、前記赤外線反射層はコレステリック液晶相を固定してなる層であることが好ましい。
 本発明では、前記コレステリック液晶相を固定してなる層が、4層以上の積層体であることが好ましい。本発明の積層体は、前記コレステリック液晶相を固定してなる層が、4層以上の積層体であることが好ましい。図9は、コレステリック液晶層の積層構成の一例を示したものであって、1は赤外線反射層の積層体全体を、3および3’は、それぞれ、第一および第二のポリブチラール樹脂フィルムを、15a、15b、16a及び16bは、各赤外線反射層を、をそれぞれ示している。
 赤外線反射層15a、15b、16a及び16bは、コレステリック液晶相を固定してなる層であるので、当該コレステリック液晶相の螺旋ピッチに基づいて、特定の波長の光を反射する光選択反射性を示す。本発明の1つの実施形態では、隣接する赤外線反射層15aと15bは、それぞれのコレステリック液晶相の螺旋方向が互いに逆であるとともに、その反射中心波長λ15が同一である。また、同様に、隣接する赤外線反射層16aと16bは、それぞれのコレステリック液晶相の螺旋方向が互いに逆であるとともに、その反射中心波長λ16が同一である。本実施形態では、λ15≠λ16を満足するので、赤外線反射層15aと15bによって所定の波長λ15の左円偏光及右円偏光を選択反射するとともに、赤外線反射層16aと16bによって、波長λ15とは異なる波長λ16の左円偏光及び右円偏光を選択反射しており、全体として、反射特性の広帯域化が図れている。
 図9では、赤外線反射層15aと15bによる選択反射の中心波長λ15が、例えば1010~1070nmの範囲にあり、赤外線反射層16aと16bによる選択反射の中心波長λ16が、例えば1190~1290nmの範囲にあるなど、異なっていてもよい。選択反射波長がそれぞれ前記範囲である2組の赤外線反射層を利用することで、赤外線の反射効率を改善できる。太陽光エネルギー強度のスペクトル分布は、短波長であるほど高エネルギーであるという一般的傾向を示すが、赤外光波長域のスペクトル分布には、波長950~1130nm、及び波長1130~1350nmに、2つのエネルギー強度のピークが存在する。選択反射の中心波長が、1010~1070nm(より好ましくは1020~1060nm)の範囲にある少なくとも一組の赤外線反射層と、選択反射の中心波長が、1190~1290nm(より好ましく波1200~1280nm)の範囲にある少なくとも一組の赤外線反射層とを利用することにより、該2つのピークに相当する光をより効率的に反射することができ、その結果、遮熱性をより改善することができる。
 上記反射中心波長を示すコレステリック液晶相の螺旋ピッチは、一般的には、波長λ15で650~690nm程度、波長λ16で760nm~840nm程度である。また、各赤外線反射層の厚みは、1μm~8μm程度(好ましくは3~7μm程度)である。但し、これらの範囲に限定されるものではない。層の形成に用いる材料(主には重合性液晶化合物及びキラル剤)の種類及びその濃度等を調整することで、所望の螺旋ピッチの赤外線反射層を形成することができる。また層の厚みは、塗布量を調整することで所望の範囲とすることができる。
 上記した通り、隣接する赤外線反射層15aと15bは、それぞれのコレステリック液晶相の螺旋方向が互いに逆であり、同様に、隣接する赤外線反射層16aと16bは、それぞれのコレステリック液晶相の螺旋方向が互いに逆である。この様に、逆向きのコレステリック液晶相からなり、選択反射の中心波長が同一の赤外線反射層を近くに配置することで、同波長の左円偏光及び右円偏光の双方を反射することができる。
 例えば、赤外線反射層16bを通過した光(波長λ16の右円偏光が反射され、左円偏光のみが透過した光)が、次に通過するのが16bではなく15aや15bのように、選択反射の中心波長がλ16ではない場合、波長λ16の左円偏光成分は螺旋ピッチのサイズが異なるコレステリック液晶層を通過することになる。この場合、波長λ16の左円偏光成分は、他の赤外線反射層中のコレステッリツク液晶相の旋光性の影響を僅かではあるが受けることになり、左円偏光成分の波長がシフトするなどの変化が生じる。当然のことながら、この現象は、「波長λ16の左円偏光成分」に限って起こるわけではなく、ある波長のある円偏光が、異なる螺旋ピッチのコレステリック液晶相を通過する場合に生じる変化である。本発明者が種々検討した結果、経験則的なデータではあるが、所定の螺旋ピッチのコレステリック液晶層によって反射されなかった一方の円偏光成分が、反射されないまま、螺旋ピッチが異なる他のコレステリック液晶層を通過する場合、通過する当該層の数が3以上になると、通過する円偏光成分への悪影響が顕著になり、その後に、当該円偏光を反射可能なコレステリック液晶層に到達しても、当該層による反射率が顕著に低下することがわかった。本発明では、選択反射の中心波長が互いに同一であり、且つ螺旋方向が互いに異なる一組の赤外線反射層は、隣接させて配置しなくても、本発明の効果が得られるが、当該一組の赤外線反射層の間に配置される、他の赤外線反射層(螺旋ピッチが異なるコレステリック液晶相を固定して形成された、選択反射の中心波長が異なる赤外線反射層)は、2以下であるのが好ましい。勿論、当該一組の赤外線反射層が隣接しているのが好ましい。
 各赤外線反射層は、種々の方法で形成することができる。一例は、後述する塗布により形成する方法であり、より具体的には、コレステリック液晶相を形成し得る硬化性液晶組成物を、支持体、配向層、又は赤外線反射層等の表面に塗布し、当該組成物をコレステリック液晶相とした後、硬化反応(例えば、重合反応や架橋反応等)を進行させることで硬化させて、形成することができる。
 コレステリック液晶層の態様は、上記態様に限定されるものではない。基板の一方の表面上に、5層以上赤外線反射層を積層した構成であってもよいし、また、基板の双方の表面上に、1組以上ずつ(合計で5層以上)赤外線反射層積層した構成であってもよい。また、同一の反射中心波長を示す2組以上の赤外線反射層を有する態様であってもよい。
 赤外線反射層を構成する各層の厚さは、それぞれ、1~10μmであることが好ましく、2~7μmであることがより好ましい。赤外線反射層全体の厚さは、10~50μmであることが好ましく、20~40μmであることがより好ましい。
 また、本発明の積層体は、上記構成のほかに有機材料及び/又は無機材料を含む非光反射性の層を有していてもよい。本発明に利用可能な前記非光反射性の層の一例には、他の部材(例えば、ガラス板)と密着するのを容易とするための易接着層や粘着材層が含まれる。
 また、本発明に利用可能な前記非光反射性の層の他の例には、コレステリック液晶相の赤外線反射層を形成する際に設けられてもよい下塗り層、及び赤外線反射層を形成する際に利用される、液晶化合物の配向方向をより精密に規定する配向層が含まれる場合がある。
 本発明の合わせガラス体は、前記コレステリック液晶相を固定してなる層が、前記第一の樹脂中間膜と接していることが好ましい。
 一方、本発明の合わせガラス体は、前記コレステリック液晶相を固定してなる層が、前記第二の樹脂中間膜と接していることが好ましい。但し、本発明の合わせガラス体は、前記コレステリック液晶相を固定してなる層と、前記第二の樹脂中間膜の間に透明可塑性樹脂を含むことも好ましい。
 本発明における赤外光反射層では、各赤外線反射層の形成に、重合性液晶化合物を用いる。その中でも、硬化性の液晶組成物を用いるのが好ましい。前記液晶組成物の好ましい一例は、棒状液晶化合物、水平配向剤、光学活性化合物(キラル剤)、及び重合開始剤を含有するものである。各成分を2種以上含んでいてもよい。例えば、重合性の液晶化合物と非重合性の液晶化合物との併用が可能である。また、低分子液晶化合物と高分子液晶化合物との併用も可能である。更に、配向の均一性や塗布適性、膜強度を向上させるために、ムラ防止剤、ハジキ防止剤、及び重合性モノマー等の種々の添加剤から選ばれる少なくとも1種を含有していてもよい。また、前記液晶組成物中には、必要に応じて、さらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、無機微粒子、金属微粒子、金属酸化物微粒子等を、光学的性能を低下させない範囲で添加することができる。
棒状液晶化合物
 本発明に使用可能な棒状液晶化合物の例は、棒状ネマチック液晶化合物である。前記棒状ネマチック液晶化合物の例には、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類及びアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。
 本発明に利用する棒状液晶化合物は、重合性である。
 重合性棒状液晶化合物は、重合性基を棒状液晶化合物に導入することで得られる。重合性基の例には、不飽和重合性基、エポキシ基、及びアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基が特に好ましい。重合性基は種々の方法で、棒状液晶化合物の分子中に導入できる。重合性棒状液晶化合物が有する重合性基の個数は、好ましくは1~6個、より好ましくは1~3個である。重合性棒状液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、及び特開2001-328973号公報などに記載の化合物が含まれる。2種類以上の重合性棒状液晶化合物を併用してもよい。2種類以上の重合性棒状液晶化合物を併用すると、配向温度を低下させることができる。
配向制御剤
 本発明では、前記液晶組成物中に、安定的に又は迅速にコレステリック液晶相となるのに寄与する配向制御剤として、水平配向剤を添加することが好ましい。水平配向剤としては、含フッ素(メタ)アクリレート系ポリマー、及び下記一般式(X1)~(X3)で表される化合物が例示され、フッ素系のものがより好ましい。これらから選択される2種以上を含有していてもよい。これらの化合物は、層の空気界面において、液晶化合物の分子のチルト角を低減若しくは実質的に水平配向させることができる。尚、本明細書で「水平配向」とは、液晶分子長軸と膜面が平行であることをいうが、厳密に平行であることを要求するものではなく、本明細書では、水平面とのなす傾斜角が20度未満の配向を意味するものとする。液晶化合物が空気界面付近で水平配向する場合、配向欠陥が生じ難いため、可視光領域での透明性が高くなり、また赤外領域での反射率が増大する。一方、液晶化合物の分子が大きなチルト角で配向すると、コレステリック液晶相の螺旋軸が膜面法線からずれるため、反射率が低下したり、フィンガープリントパターンが発生してヘイズの増大や回折性を示したりするため好ましくない。
 配向制御剤として利用可能な前記含フッ素(メタ)アクリレート系ポリマーの例は、特開2007-272185号公報の[0018]~[0043]等に記載がある。
 以下、水平配向剤として利用可能な、下記一般式(X1)~(X3)で表される化合物について、順に説明する。
Figure JPOXMLDOC01-appb-C000001
 式中、R1、R2及びR3は各々独立して、水素原子又は置換基を表し、X1、X2及びX3は単結合又は二価の連結基を表す。R1~R3で各々表される置換基としては、好ましくは置換もしくは無置換の、アルキル基(中でも、無置換のアルキル基又はフッ素置換アルキル基がより好ましい)、アリール基(中でもフッ素置換アルキル基を有するアリール基が好ましい)、置換もしくは無置換のアミノ基、アルコキシ基、アルキルチオ基、ハロゲン原子である。X1、X2及びX3で各々表される二価の連結基は、アルキレン基、アルケニレン基、二価の芳香族基、二価のヘテロ環残基、-CO-、―NRa-(Raは炭素原子数が1~5のアルキル基又は水素原子)、-O-、-S-、-SO-、-SO2-及びそれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。二価の連結基は、アルキレン基、フェニレン基、-CO-、-NRa-、-O-、-S-及び-SO2-からなる群より選ばれる二価の連結基又は該群より選ばれる基を少なくとも二つ組み合わせた二価の連結基であることがより好ましい。アルキレン基の炭素原子数は、1~12であることが好ましい。アルケニレン基の炭素原子数は、2~12であることが好ましい。二価の芳香族基の炭素原子数は、6~10であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 式中、Rは置換基を表し、mは0~5の整数を表す。mが2以上の整数を表す場合、複数個のRは同一でも異なっていてもよい。Rとして好ましい置換基は、R1、R2、及びR3で表される置換基の好ましい範囲として挙げたものと同様である。mは、好ましくは1~3の整数を表し、特に好ましくは2又は3である。
Figure JPOXMLDOC01-appb-C000003
 式中、R4、R5、R6、R7、R8及びR9は各々独立して、水素原子又は置換基を表す。R4、R5、R6、R7、R8及びR9でそれぞれ表される置換基は、好ましくは一般式(XI)におけるR1、R2及びR3で表される置換基の好ましいものとして挙げたものと同様である。
 本発明において配向制御剤として使用可能な、前記式(X1)~(X3)で表される化合物の例には、特開2005-99248号公報に記載の化合物が含まれる。
 なお、本発明では、配向制御剤として、前記一般式(X1)~(X3)で表される化合物の一種を単独で用いてもよいし、二種以上を併用してもよい。
 本発明における赤外線反射層は、前記水平配向剤の添加量が、前記重合性液晶化合物に対して0.01~10質量%であることが好ましく、0.01~5質量%であることがより好ましく、0.01~1質量%であることが特に好ましい。
 特に、フッ素系水系配向剤を添加する場合、重合性液晶化合物に対し、0.01~0.09質量%であることが好ましく、0.01~0.06質量%であることがより好ましい。一方、非フッ素系水系配向剤を添加する場合、重合性液晶化合物に対し、0.1~1質量%が好ましく、0.2~0.6質量%がさらに好ましい。
 また、本発明における赤外線反射層は、前記水平配向剤の添加量を上記範囲に抑える観点から、前記水平配向剤がフッ素原子を含むことが好ましく、パーフルオロアルキル基を含むことがより好ましく、炭素数3~10のパーフルオロアルキル基を含むことが特に好ましい。
 なお、水平配向剤が非フッ素系である場合には、添加量が0.1質量%以上であれば、配向欠陥の問題が生じないため、好ましい。
光学活性化合物(キラル剤)
 前記液晶組成物は、コレステリック液晶相を示すものであることが好ましく、そのためには、光学活性化合物を含有しているのが好ましい。但し、上記棒状液晶化合物が不正炭素原子を有する分子である場合には、光学活性化合物を添加しなくても、コレステリック液晶相を安定的に形成可能である場合もある。前記光学活性化合物は、公知の種々のキラル剤(例えば、液晶デバイスハンドブック、第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第一42委員会編、1989に記載)から選択することができる。光学活性化合物は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物あるいは面性不斉化合物もカイラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。光学活性化合物(キラル剤)は、重合性基を有していてもよい。光学活性化合物が重合性基を有するとともに、併用する棒状液晶化合物も重合性基を有する場合は、重合性光学活性化合物と重合性棒状液晶合物との重合反応により、棒状液晶化合物から誘導される繰り返し単位と、光学活性化合物から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性光学活性化合物が有する重合性基は、重合性棒状液晶化合物が有する重合性基と、同種の基であることが好ましい。従って、光学活性化合物の重合性基も、不飽和重合性基、エポキシ基又はアジリジニル基であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基であることが特に好ましい。
 また、光学活性化合物は、液晶化合物であってもよい。
 前記液晶組成物中の光学活性化合物は、併用される液晶化合物に対して、1~30モル%であることが好ましい。光学活性化合物の使用量は、より少なくした方が液晶性に影響を及ぼさないことが多いため好まれる。従って、キラル剤として用いられる光学活性化合物は、少量でも所望の螺旋ピッチの捩れ配向を達成可能なように、強い捩り力のある化合物が好ましい。この様な、強い捩れ力を示すキラル剤としては、例えば、特開2003-287623公報に記載のキラル剤が挙げられ、本発明に好ましく用いることができる。
重合開始剤
 前記赤外線反射層の形成に用いる液晶組成物は、重合性液晶組成物であるため、重合開始剤を含有しているのが好ましい。本発明では、紫外線照射により硬化反応を進行させるので、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であるのが好ましい。光重合開始剤の例には、α-カルボニル化合物(米国特許第二367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第二448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第二722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジン及びフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)及びオキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。
 光重合開始剤の使用量は、液晶組成物(塗布液の場合は固形分)の0.1~20質量%であることが好ましく、1~8質量%であることがさらに好ましい。
(支持体)
 ここで、発明の積層体を製造する際には、透明可塑性樹脂フィルム等の支持体が用いられるが、最終製品には、透明熱可塑性フィルムが残らない構成であっても、残る構成であってもよい。したがって、本発明の製造方法では、支持体を剥離する工程を含む場合は、本発明の支持体は、ロール トゥ ロールで製造するときに可塑性は必要であるが、透明であることは必ずしも必要ない。
 前記支持体を本発明の積層体および合わせガラス体が含む場合、前記支持体は透明可塑性樹脂フィルムであることが好ましい。
 前記透明可塑性樹脂フィルムは、自己支持性があり、上記赤外線光反射層を支持するものであれば、なんら限定はない。透明可塑性樹脂フィルムのヘイズは、好ましくは3%以下であり、より好ましくは1%以下である。所定の光学特性を満足するように、生産工程を管理して製造される、λ/2板等の特殊の位相差板であってもよいし、また、面内レターデーションのバラツキが大きく、具体的には、波長1000nmの面内レターデーションRe(1000)のバラツキで表現すれば、Re(1000)のバラツキが20nm以上、また100nm以上であり、所定の位相差板としては使用不可能なポリマーフィルム等であってもよい。また樹脂基材の面内レターデーションについても特に制限はなく、例えば、波長1000nmの面内レターデーションRe(1000)が、800~13000nmである位相差板等を用いることができる。
 本発明で用いる透明可塑性樹脂フィルムは、ポリビニルブチラール樹脂フィルムとの圧着や合わせガラス時にポリビリルブチラール樹脂の伸縮に耐えうる剛性を有していることが好ましく、ヤング率はポリビニルブチラール樹脂の100倍~1000倍程度が好ましい。このような構成とすることにより、反射ムラをより効果的に抑制することができる。
 可視光に対する透過性が高いポリマーフィルムとしては、液晶表示装置等の表示装置の部材として用いられる種々の光学フィルム用のポリマーフィルムが挙げられる。前記透明可塑性樹脂フィルムとしては、例えばポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)等のポリエステル;ポリカーボネート(PC)、ポリメチルメタクリレート;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリイミド、トリアセチルセルロース(TAC)、などを主成分とするフィルムが例示される。この中でも、ポリエチレンテレフタレートおよび/またはトリアセチルセルロースを主成分とするフィルムが好ましい。
 本発明では、透明可塑性樹脂フィルムの厚さが、30μm~200μmであることが好ましく、100~200μmであることがより好ましい。このような厚さとすることにより、反射ムラをより効果的に抑制することができる。
(粘着材層)
 上述のとおり本発明の積層体は、粘着材層を含んでいてもよい。
 前記粘着材は、本発明の趣旨に反しない限りにおいて、アクリル系、ポリエステル系、ポリウレタン系、ポリオレフィン系、ポリビニルアルコール系など一般的な粘着材を用いることができる。本発明では、その中でもポリエステル系やアクリル系を用いることが好ましく、アクリル系を用いることがより好ましい。
 前記粘着材は商業的に入手してもよく、本発明に好ましく用いられる粘着材の一例としては、サンリッツ(株)社製のPET-Wやパナック工業(株)社製のPD-S1などを挙げることができる。
 粘着材層の厚みは、例えば、0.1~5.0μmとすることができる。
(易接着層)
 易接着層は、例えば、赤外線反射層と粘着材層との接着性を改善する機能を有する。易接着層の形成に利用可能な材料としては、ポリビニルブチラール(PVB)樹脂が挙げられる。ポリビニルブチラール樹脂は、ポリビニルアルコール(PVA)とブチルアルデヒドを酸触媒で反応させて生成するポリビニルアセタールの一種であり、下記構造の繰り返し単位を有する樹脂である。
Figure JPOXMLDOC01-appb-C000004
 また、前記易接着層は、いわゆるアンダーコート層といわれる、アクリル樹脂、スチレン/アクリル樹脂、ウレタン樹脂、ポリエステル樹脂等からなる層であってもよい。これらの材料からなる易接着層も塗布により形成することができる。なお、市販されているポリマーフィルムの中には、アンダーコート層が付与されているものもあるので、それらの市販品を基板として利用することもできる。さらに、前記易接着層には紫外線吸収剤や帯電防止剤、滑剤、ブロッキング防止剤などを添加してもよい。
 なお、易接着層の厚みは、0.1~5.0μmが好ましい。
(下塗り層)
 本発明の積層体は、赤外線反射層側に下塗り層を有していてもよい。赤外線反射層は、通常、支持体上に設けられることが好ましいが、このとき、支持体によっては、下塗り層を設けた上に赤外線反射層を設けることが好ましい場合があるためである。
 下塗り層の形成に利用可能な材料の例には、アクリル酸エステル共重合体、ポリ塩化ビニリデン、スチレンブタジエンゴム(SBR)、水性ポリエステル等が含まれる。また、下塗り層の表面を中間膜と接着する態様では、下塗り層と中間膜との接着性が良好であるのが好ましく、その観点では、下塗り層は、ポリビニルブチラール樹脂も、前記材料とともに含有しているのが好ましい。また、下塗り層は、上記したように密着力を適度に調節する必要があるので、グルタルアルデヒド、2,3-ジヒドロキシ-1,4-ジオキサン等のジアルデヒド類またはホウ酸等の硬膜剤を適宜用いて硬膜させることが好ましい。硬膜剤の添加量は、下塗り層の乾燥質量の0.2~3.0質量%が好ましい。
 下塗り層の厚みは、0.05~0.5μmが好ましい。
(配向層)
 本発明の積層体は、コレステリック液晶相の赤外線反射層と第二の樹脂中間膜との間に配向層を有していてもよいが、本発明の積層体の製造方法では、支持体を剥離する場合はその際に一緒に剥離することもできる。
 配向層は、コレステリック液晶相の赤外線反射層を製膜する際には、該赤外線反射層と隣接する必要があるので、コレステリック液晶相の赤外線反射層と基板又は下塗り層との間に設けるのが好ましい。但し、下塗り層が配向層の機能を有していてもよい。また、赤外線反射層の間に配向層を有していてもよい。
 本発明の積層体は、加工に際し、刃物を用いて切断したり、レーザー、ウオータージェットや熱によって切断したりしてもよい。
<第一のガラスと第二のガラス>
 本発明の合わせガラス体は、本発明の積層体の前記第一の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第一のガラスと;該積層体の前記第二の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第二のガラスと;が積層されており、前記第一のガラスの曲率が前記第二のガラスの曲率よりも大きいことを特徴とする。
<合わせガラス体の製造方法>
 本発明の合わせガラス体の製造方法は、特に制限はなく、いかなる方法で製造してもよい。その中でも、一度本発明の積層体を得てから、それをガラスと貼り合わせて合わせガラス体とする方法が好ましい。一方、一度も本発明の積層体の構成を経由せずに、あらかじめ部材の一部をガラスと貼り合わせたもの同士を貼り合わせて、合わせガラス体とする方法によって製造してもよい。
 以下において、まず、一度本発明の積層体を得てから、それをガラスと貼り合わせて合わせガラス体とする方法を説明する。
(積層体の製造方法)
 本発明の積層体の製造方法は、支持体と赤外線反射層を含む積層体の赤外線反射層側に、第一の樹脂中間膜を積層する工程と、さらに赤外線反射層の反対側に第二の樹脂中間膜をセ気相する工程を含むことが好ましい。また、赤外線反射層は、重合性液晶化合物を含む組成物を固定してなり、さらに水平配向剤を含むことも好ましい。
 さらに、本発明の積層体が、前記第一の樹脂中間膜と第二の樹脂中間膜との間にPET支持体などの転写用支持体を含まないような構成の場合は、第一の樹脂中間膜を積層後に支持体と赤外線反射層を含む積層体から支持体を剥離する工程を含むことも好ましい。以下、本発明の積層体の製造方法について説明する。
 図10は、第一の樹脂中間膜と赤外線反射層のみを必須構成要素とする積層体をインラインで製造する場合の製造方法の一例を示す図であって、図10中、11a・11bは、第一の熱圧着ローラをそれぞれ示し、一対となって熱圧着を行うものであり、12は支持体の剥ぎ取り用ローラであり、21は、支持体2と赤外線反射層1の積層体の送り出しローラであり、22は第一の樹脂中間膜の送り出しローラであり、23は支持体の巻き取りローラであり、24は第一の樹脂中間膜と赤外線反射層の積層体の巻き取りローラである。
図10の(1)
 本実施形態では、支持体2と赤外線反射層1の積層体が送り出しローラ21から送り出される。ここで、支持体2と赤外線反射層1の積層体は、支持体と赤外線反射層の間に他の構成層を含んでいてもよい。
 一方、第一の樹脂中間膜は、別の送り出しローラ22から送り出され、支持体2と赤外線反射層1の積層体と積層される。第一のポリビニルブチラール樹脂を送り出すローラ22は、支持体2と赤外線反射層1の積層体の赤外線反射層側に設けられる。赤外線反射層1と第一の樹脂中間膜は隣接していてもよいし、それらの間に他の構成層を含んでいてもよい。この場合の他の構成層としては、粘着材層が挙げられる。
 これらの積層体は、熱圧着ローラ11a・11bによって熱圧着される。
 送り出しローラ22と熱圧着ローラの間の搬送張力は、好ましくは、50~200g/cmであり、より好ましくは、50~100g/cmである。このような範囲とすることにより、赤外線反射層の液晶化合物を壊さず、第二の樹脂中間膜にシワを発生させず、赤外線反射層と第二の樹脂中間膜の間の接着性を向上することができる。
 また、このときの温度は、通常は、室温である。熱圧着ローラの温度は、例えば、赤外線反射層1と第一の樹脂中間膜3が隣接する場合、60~120℃とすることができる。
 圧着条件が0.7≦G/T<1であることが好ましく、0.7≦G/T<0.9であることがより好ましい。ここで、Tは前記第一の熱圧着ローラを通過する前の全体の厚みを表し、Gは前記第一の熱圧着ローラを通過した後の全体の厚みを表す。この構成となるように熱圧着することにより、赤外線反射層の液晶化合物を壊さず、第一の樹脂中間膜にシワを発生させず、赤外線反射層と第一の樹脂中間膜の間の接着性を向上することができる。
 通常、樹脂中間膜は貼着の際に空気が逃げ易いように表面がエンボス加工などにより粗面状態にされている。貼り合わせた面は被着面に倣って平滑になり、光学性能が良くなるが、もう一方の面はガラス板等に貼り合わせる為に粗面状態を保持する必要がある。従って、前記熱圧着ローラの樹脂中間膜に接するローラの表面は粗面状態にして、樹脂中間膜の粗面状態を保つか、または積極的にエンボス加工することが好ましい。
図10の(2)
 次に、熱圧着された積層体から、必要に応じて巻き取りローラ23によって支持体2が剥ぎ取られる。支持体は、第一の樹脂中間膜と反対側の面に設けられているから、巻き取りローラの位置も、第一の樹脂中間膜の送り出しローラ22とは反対の側に設けられる。
 熱圧着ローラと巻き取りローラの間の搬送張力は、好ましくは、50~200g/cmであり、より好ましくは、100~200g/cmである。このような範囲とすることにより、赤外線反射層の液晶化合物を壊さず、第二の樹脂中間膜にシワを発生させず、赤外線反射層と第二の樹脂中間膜の間の接着性を向上することができる。
 また、このときの温度は、通常は、室温である。
 なお、支持体を本発明の積層体が含む態様とする場合は、巻き取りローラ23による支持体の剥ぎ取りを行わずに、その他の工程を行えばよい。
図10の(3)
 最終的に、第一の樹脂中間膜と赤外線反射層の積層体は、巻き取りローラ24によって巻き取られる。このとき、いずれが内側になるように巻き取られてもよいが、赤外線反射層が内側となる方が好ましい。このような構成とすることにより、赤外線反射層の破壊をより効果的に抑制することが可能になる。
 巻き取りローラ23と巻き取りローラ24の間の搬送張力は、好ましくは、50~200g/cmであり、より好ましくは、50~100g/cmである。このとき、積層体は支持体を含まないため、このときの搬送張力がきわめて重要となる。このような範囲とすることにより、赤外線反射層の液晶化合物を壊さず、第二の樹脂中間膜にシワを発生させず、赤外線反射層と第二の樹脂中間膜の間の接着性を向上することができる。
 また、このときの温度は、通常は、室温である。
第二の樹脂中間膜の圧着
 本発明の積層体は、さらに、第二の樹脂中間膜を有する。このような積層体の製造方法について、図11に従って説明する。図11は、図10において、巻き取りローラ23によって支持体を剥ぎ取った後、さらに、第二の樹脂中間膜を圧着する場合の方法を示した概略図であって、13a・13bは第二の圧着ローラを、14は搬送ローラを、22’は第二の樹脂中間膜の送り出しローラをそれぞれ示している。
 すなわち、図10において、巻き取りローラ23によって支持体を剥ぎ取ったあと、さらに、送り出しローラ22'によって送り出された第二の樹脂中間膜が積層される。第二の樹脂中間膜は、支持体が設けられていた側に設けられることから、巻き取りローラ23と送り出しローラ22'は同じ側に設けられる。
 なお、支持体を本発明の積層体が含む態様とする場合は、巻き取りローラ23による支持体の剥ぎ取りを行わずに、その他の工程を行えばよい。
 赤外線反射層1と第二の樹脂中間膜は隣接していてもよいし、それらの間に他の構成層を含んでいてもよい。この場合の他の構成層としては、粘着材層が挙げられる。粘着材層は、通常、第二の樹脂中間膜側に設けられている。
 これらの積層体は、熱圧着ローラ13a・13bによって熱圧着される。
 第二の熱圧着ローラから巻き取りローラ23までの搬送張力は、好ましくは、50~200g/cmであり、より好ましくは、50~100g/cmである。このような範囲とすることにより、赤外線反射層の液晶化合物を壊さず、第二の樹脂中間膜にシワを発生させず、赤外線反射層と第二の樹脂中間膜の間の接着性を向上することができる。
 また、このときの温度は、通常は、室温である。熱圧着ローラの温度は、例えば、赤外線反射層1と第二の樹脂中間膜が隣接する場合、60~120℃とすることができる。
 圧着条件が0.6≦G’/T’<1であることが好ましく、0.7≦G’/T’<0.9であることがより好ましい。ここで、T’は前記第二の熱圧着ローラを通過する前の全体の厚みを表し、G’は前記第二の熱圧着ローラを通過した後の全体の厚みを表す。この構成となるように熱圧着することにより、赤外線反射層の液晶化合物を壊さず、第二の樹脂中間膜にシワを発生させず、赤外線反射層と第二の樹脂中間膜の間の接着性を向上することができる。
耳切り
 本発明の積層体の製造方法は、さらに、耳切りの工程を有していてもよい。耳切りは、通常、搬送中のフィルムにおいて、フィルムの幅方向の端部を切り落とす。これは、赤外線反射層とポリビニルブチラール樹脂フィルムなどの樹脂中間膜とでは、通常、熱収縮率が異なっている。そのため、同じ幅の赤外線反射層とポリビニルブチラール樹脂フィルムなどの樹脂中間膜を積層したとしても、熱圧着後の幅が異なっている場合がある。そのため、耳切りを行うことによって、フィルムの幅を揃えることができる。また、赤外線反射層は、上述のとおり、好ましくは塗布によって形成するため、端部の厚みが中心部に比べて薄くなりやすい。かかる観点からも耳切りを行うことによって、全面に渡って所望の厚さになっている品質の良い積層体を製造することができる。
赤外線反射層の形成
 支持体上に赤外線反射層が設けられた積層体は、公知の方法によって製造できるが、支持体の上に、所定の組成物を塗布して作製されるのが好ましい。製造方法の一例は、
(1)透明可塑性樹脂フィルム等の支持体の表面に、水平配向剤と重合性(硬化性の)液晶化合物を含む組成物を塗布して、コレステリック液晶相の状態にすること、
(2)前記重合性液晶組成物(以下、硬化性液晶組成物とも言う)に紫外線を照射して硬化反応を進行させ、コレステリック液晶相を固定して赤外線反射層を形成すること、
(3)前記赤外線反射層の最外層上に粘着材層を形成すること、
を少なくとも含む製造方法である。
 (1)及び(2)の工程を、基板の一方の表面上で2回繰り返すことで図9に示す構成と同様の構成の赤外光反射層を作製することができる。また、(1)及び(2)の工程を基板の一方の表面上で4回繰り返すことで、さらに積層数を増やした赤外光反射膜を作製することができる。
下塗り層、配向層の形成
 前記下塗り層は、塗布により透明可塑性樹脂フィルム等の支持体の表面上に形成されることが好ましい。このときの塗布方法については特に限定はなく、公知の方法をもちいることができる。
 前記配向層は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成等の手段で設けることができる。さらには、電場の付与、磁場の付与、或いは光照射により配向機能が生じる配向層も知られている。配向層は、ポリマーの膜の表面に、ラビング処理により形成するのが好ましい。配向膜は、後述する支持体と共に剥離することが好ましい。
(1)工程
 前記(1)工程では、まず、支持体又は下層の赤外線反射層の表面に、前記硬化性液晶組成物を塗布する。前記硬化性の液晶組成物は、溶媒に材料を溶解及び/又は分散した、塗布液として調製されるのが好ましい。前記塗布液の塗布は、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法等の種々の方法によって行うことができる。また、インクジェット装置を用いて、液晶組成物をノズルから吐出して、塗膜を形成することもできる。
 次に、表面に塗布され、塗膜となった硬化性液晶組成物を、コレステリック液晶相の状態にすることが好ましい。前記硬化性液晶組成物が、溶媒を含む塗布液として調製されている態様では、塗膜を乾燥し、溶媒を除去することで、コレステリック液晶相の状態にすることができる場合がある。また、コレステリック液晶相への転移温度とするために、所望により、前記塗膜を加熱してもよい。例えば、一旦等方性相の温度まで加熱し、その後、コレステリック液晶相転移温度まで冷却する等によって、安定的にコレステリック液晶相の状態にすることができる。前記硬化性液晶組成物の液晶相転移温度は、製造適性等の面から10~250℃の範囲内であることが好ましく、10~150℃の範囲内であることがより好ましい。10℃未満であると液晶相を呈する温度範囲にまで温度を下げるために冷却工程等が必要となることがある。また200℃を超えると、一旦液晶相を呈する温度範囲よりもさらに高温の等方性液体状態にするために高温を要し、熱エネルギーの浪費、基板の変形、変質等からも不利になる。
(2)工程
 次に、(2)の工程では、コレステリック液晶相の状態となった塗膜に、紫外線を照射して、硬化反応を進行させる。紫外線照射には、紫外線ランプ等の光源が利用される。この工程では、紫外線を照射することによって、前記液晶組成物の硬化反応が進行し、コレステリック液晶相が固定されて、赤外線反射層が形成される。
 紫外線の照射エネルギー量については特に制限はないが、一般的には、100mJ/cm2~800mJ/cm2程度が好ましい。また、前記塗膜に紫外線を照射する時間については特に制限はないが、硬化膜の充分な強度及び生産性の双方の観点から決定されるであろう。
 硬化反応を促進するため、加熱条件下で紫外線照射を実施してもよい。また、紫外線照射時の温度は、コレステリック液晶相が乱れないように、コレステリック液晶相を呈する温度範囲に維持するのが好ましい。また、雰囲気の酸素濃度は重合度に関与するため、空気中で所望の重合度に達せず、膜強度が不十分の場合には、窒素置換等の方法により、雰囲気中の酸素濃度を低下させることが好ましい。好ましい酸素濃度としては、10%以下が好ましく、7%以下がさらに好ましく、3%以下が最も好ましい。紫外線照射によって進行される硬化反応(例えば重合反応)の反応率は、層の機械的強度の保持等や未反応物が層から流出するのを抑える等の観点から、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがよりさらに好ましい。反応率を向上させるためには照射する紫外線の照射量を増大する方法や窒素雰囲気下あるいは加熱条件下での重合が効果的である。また、一旦重合させた後に、重合温度よりも高温状態で保持して熱重合反応によって反応をさらに推し進める方法や、再度紫外線を照射する(ただし、本発明の条件を満足する条件で照射する)方法を用いることもできる。反応率の測定は反応性基(例えば重合性基)の赤外振動スペクトルの吸収強度を、反応進行の前後で比較することによって行うことができる。
 上記工程では、コレステリック液晶相が固定されて、赤外線反射層が形成される。ここで、液晶相を「固定化した」状態は、コレステリック液晶相となっている液晶化合物の配向が保持された状態が最も典型的、且つ好ましい態様である。それだけには限定されず、具体的には、通常0℃~50℃、より過酷な条件下では-30℃~70℃の温度範囲において、該層に流動性が無く、また外場や外力によって配向形態に変化を生じさせることなく、固定化された配向形態を安定に保ち続けることができる状態を意味するものとする。本発明では、紫外線照射によって進行する硬化反応により、コレステリック液晶相の配向状態を固定する。
 なお、本発明においては、コレステリック液晶相の光学的性質が層中において保持されていれば十分であり、最終的に赤外線反射層中の液晶組成物がもはや液晶性を示す必要はない。例えば、液晶組成物が、硬化反応により高分子量化して、もはや液晶性を失っていてもよい。
 赤外光反射板としてその他の重要な性能は、可視光の透過率とヘイズである。材料の選択及び製造条件等を調整して、用途に応じて、好ましい可視光の透過率及びヘイズを示す赤外光反射板を提供できる。例えば可視光の透過率が高い用途に用いられる態様では、可視光の透過率が90%以上であり、且つ赤外の反射率が上記反応を満足する赤外光反射板とすることができる。
<第一のガラスおよび第二のガラスとの積層>
 以上により得られた本発明の積層体を、前記第一のガラスまたは第二のガラスと積層するときの好ましい態様について、以下説明する。
 あわせて、一度も本発明の積層体の構成を経由せずに、あらかじめ部材の一部をガラスと貼り合わせたもの同士を貼り合わせて、合わせガラス体とする方法による製造方法についても説明する。
(実施態様1)
 本発明の合わせガラス体は、曲率の小さいガラス/薄いPVB/支持体/コレステリック液晶膜/厚いPVB/曲率の大きいガラスという構成が好ましい態様の一つである。この態様を図2に示す。
 実施態様1の合わせガラス体を製造する具体的な方法としては、プラスチックフイルムを支持体としてコレステリック液晶膜との積層体を作り、前記積層体の両面に厚みの異なるPVBを積層した更なる積層体を作る。その後、単葉のシート状態または長尺の巻物状態でこのような積層体を供給し、目的の対象物(例えば無機ガラス)に貼り合わせ、更にガラスに貼り付けた積層体の面の反対面に他のガラスを貼り付ける。この積層体とガラスとの貼り合わせを行う際には、一方のより厚いPVBを曲率半径の小さい側に貼りつけることが望ましい。
 このとき、単葉のシート状態として、第一のガラスおよび第二のガラスと貼り付ける場合、図4に記載のように本発明の積層体には、縮みしろまたは熱圧縮後のカットしろ41を設けておくことが好ましい。さらに、よりガラスとPVBとの接着性や密着性を改善させる観点からは、単葉のシート状態の積層体を2方向から引張り、密着させることも好ましい。例えば図6に示すように曲率の大きい第一のガラスとPVBを貼り合わせるときに、該第一のガラスの曲面に沿って引っ張ることで、密着させることができる。また、曲率の小さい第二のガラスと本発明の積層体を貼り合わせるときにも同様に、第二のガラスの曲面に沿って2方向から引張り、ガラスに密着させてもよい。さらに、これらを組み合わせて、4方向から引っ張ってもよい。なお、このような貼り合わせ方法は、後述するその他の実施態様においても用いることができる。
(実施態様2-1)
 前記実施態様1と同様の、曲率の小さいガラス/薄いPVB/支持体/コレステリック液晶膜/厚いPVB/曲率の大きいガラスという構成を得るための具体的な方法として、本発明の積層体の構成を経由せずに、PVBの一方を他のガラスに貼りつけておき、その他の部材と貼り合わせる態様も好ましい製造方法として挙げることができる。具体的には、図4(A)に示すように、曲率の小さい方のガラスと、薄いPVBとを先に積層しておく。これと、図4(b)に示すような、PET支持体、コレステリック液晶膜、厚いPVB、曲率の大きなガラスをこの順に積層した部材と重ね合わせ、その後オートクレーブで熱圧着する方法などを挙げることができる。
(実施態様2-2)
 また、前記実施態様1と同様の構成を得るための具体的な方法として、まず、前記支持体とコレステリック液晶膜の積層体の片側のみにPVBを積層した積層体を供給し、目的の対象物(例えばガラス)に貼り付けた部材を用意する。次に、予めPVB膜のみを貼りつけた他のガラスの部材を用意する。PVB膜のみを貼りつけた他のガラスの部材のPVB側に、前記コレステリック液晶膜を含む積層体の液晶膜側を貼り合わせ、上記構成の合わせガラス体を得る製造方法を挙げることができる。
(実施態様3)
 本発明の合わせガラス体の構成は、曲率の小さいガラス/薄いPVB/コレステリック液晶膜/厚いPVB/大きいガラスであり、実施態様1や2の2つの実施例から支持体を除いた構成のものである。本実施態様3の合わせガラス体の具体的な構成は、下記実施態様4とあわせて、図2において支持体(例えば、PET支持体)層が無い構成となる。
 合わせガラス等の用途によっては前記支持体を工程途中で剥ぎとって、膜構成が、薄いPVB/コレステリック液晶膜/厚いPVBの単葉シートとなるようにして、ガラスとの貼り合わせに供給してもよい。この場合は前記完成した合わせガラス体は、曲率の小さいガラス/薄いPVB/液晶膜/厚いPVB/曲率の大きいガラスとなる。また、厚いPVB膜は一方の曲率半径の小さいガラスに貼ることが望ましい。
(実施態様4)
 本発明の合わせガラス体の構成が、曲率の小さいガラス/薄いPVB/液晶膜/厚いPVB/曲率の大きいガラスである場合、このような構成の合わせガラスの製法は第二の実施態様と同じである態様も好ましい。
 具体的には、前記支持体とコレステリック液晶膜の積層体の片側のみにPVBを積層した積層体から、支持体を剥がした後で、単葉のシート状態または長尺の巻物状態でコレステリック液晶膜とPVBの積層体を供給してもよい。この場合、ガラスに第二のPVBを予め貼っておき、2層のPVBフィルムの間にコレステリック液晶膜があるようにして、合わせガラス体を得る方法が好ましい。もちろん、前記支持体をはぎ取る前の前記支持体とコレステリック液晶膜の積層体の片側のみにPVBを積層した積層体を供給し、ガラスに貼り付ける前に前記支持体を剥ぎとってもよい。
 支持体上のコレステリック液晶膜に、ニップロールを使用して熱と圧力によりPVBを貼着し、合わせガラス体を製造することもできる。このような態様で合わせガラス体を生産する際は、PVBをガラス側にしてPVBとコレステリック液晶膜の積層体をガラスと貼り、次に支持体をはぎ取り、その次に新たなPVBをコレステリック液晶膜の上に載せた後、もう一方のガラスを貼りつける製造方法が好ましい。また、もう一方のガラスに予めPVBを貼っておき、支持体をはぎ取った後のコレステリック液晶膜上に、ガラスとPVBを貼り合わせた部材を貼りつけて製造する製造方法も好ましい。
(ガラス板との圧着)
 本発明の合わせガラス体は、いずれの態様で合わせガラス体の構成を満たすように積層された場合も、ガラス板との貼り合わせにおいて最後に圧着を行って製造されることが好ましく、加熱圧着を行って製造されることがより好ましい。
 ガラス板との貼りあわせは、例えば、真空バッグなどで減圧下において、温度80~120℃、時間30~60分で予備圧着した後、オートクレーブなどの加熱圧着用の装置中、1.0~1.5MPaの加圧下で120~150℃の温度で貼り合せ、2枚のガラスに積層体が挟まれた合わせガラス体とすることができる。また、粘着材等を用いて貼り合わせてもよい。このとき、1.0~1.5MPaの加圧下で120~150℃の温度での加熱圧着の時間は、20~90分であることが好ましい。
 加熱圧着終了後、放冷の仕方については特に制限はなく、適宜圧力を開放しながら放冷して、合わせガラス体を得てもよい。本発明では、加熱圧着終了後、圧力を保持した状態で降温を行うことが、得られる合わせガラス体のシワや割れをさらに改善する観点から好ましい。ここで、圧力を保持した状態で降温するとは、加熱圧着時(好ましくは130℃)の装置内部圧力から、40℃のときの装置内部圧力が加熱圧着時の75%~100%となるように降温することを意味する。圧力を保持した状態で降温する方法としては、40℃まで降温したときの圧力が上記範囲内であれば特に制限はないが、圧力装置内部圧力が温度減少に伴って自然と低下していくように装置内部から圧力を漏らさずに降温する態様や、装置内部圧力が温度減少に伴って減少しないように外部からさらに加圧しながら降温する態様が好ましい。圧力を保持した状態で降温する場合、120~150℃で加熱圧着した後、40℃まで1~5時間かけて放冷することが好ましい。
 本発明では、圧力を保持した状態で降温を行った後、次いで圧力を開放する工程を含むことが好ましい。具体的には、圧力を保持した状態で降温を行った後、オートクレーブ内の温度が40℃以下になった後に圧力を開放して降温することが好ましい。
 以上より、本発明の合わせガラス体の製造方法は、前記第一のガラス、前記第一の樹脂中間膜、前記赤外線反射層、前記第二の樹脂中間膜および前記第二のガラスをこの順で積層する工程と、その後1.0~1.5MPaの加圧下で120~150℃の温度で加熱圧着する工程と、圧力を保持した状態で降温を行う工程と、圧力を開放する工程を含むことが好ましい。
 以下に実施例と比較例(なお比較例は公知技術というわけではない)を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
[製造例1]
(下塗り層用塗布液の調製)
 下記に示す組成の下塗り層用塗布液(S1)を調製した。
下塗り層用塗布液(S1)の組成:
 アクリルエステル樹脂ジュリマーET-410
 (東亞合成(株)製、固形分濃度30%)         50質量部
 メタノール                       50質量部
(配向層用塗布液の調製)
 下記に示す組成の配向層用塗布液(H1)を調製した。
配向層用塗布液(H1)の組成:
 変性ポリビニルアルコールPVA203(クラレ社製)   10質量部
 グルタルアルデヒド                  0.5質量部
 水                          371質量部
 メタノール                      119質量部
(重合性液晶を含む塗布液(重合性液晶組成物)の調製)
 下記表に示す組成の重合性液晶を含む塗布液(R1)及び(L1)をそれぞれ調製した。
重合性液晶を含む塗布液の組成(R1)
Figure JPOXMLDOC01-appb-T000005
水平配向剤:(特開2005-99248号公報記載の化合物)
Figure JPOXMLDOC01-appb-C000006
水平配向剤:
Figure JPOXMLDOC01-appb-C000007
 また、重合性液晶を含む塗布液(R1)のキラル剤LC-756を下記キラル剤化合物2に変更しただけで他は同様にして塗布液(L1)を調製した。
キラル剤:化合物2(特開2002-179668号公報に記載の化合物)
Figure JPOXMLDOC01-appb-C000008
 また、重合性液晶を含む塗布液(R1)のキラル剤LC-756の処方量を0.236質量部に変更しただけで他は同様にして塗布液(R2)を調製した。
 また、重合性液晶を含む塗布液(L1)のキラル剤化合物2の処方量を0.148質量部に変更しただけで他は同様にして塗布液(L2)を調製した。
(塗布および製膜)
 PETフィルム(下塗り層無し、富士フイルム(株)製、厚み:188μm、樹脂1)の表面上に、下塗り層用塗布液(S1)を、ワイヤーバーを用いて、乾燥後の膜厚が0.25μmになるように塗布した。その後、150℃で10分間加熱し、乾燥、固化し、下塗り層を形成した。
 次いで、形成した下塗り層の上に、配向層用塗布液(H1)を、ワイヤーバーを用いて、乾燥後の膜厚が1.0μmになるように塗布した。その後、100℃で2分間加熱し、乾燥、固化し、配向層を形成した。配向層に対し、ラビング処理(レーヨン布、圧力:0.1kgf、回転数:1000rpm、搬送速度:10m/min、回数:1往復)を施した。
 次いで、調製した重合性液晶を含む塗布液(R1)、(R2)、(L1)、(L2)を用い、下記の手順にてコレステリック液晶相を固定し、赤外線反射層(以下、CL層とも言う)を製造した。
(1)各塗布液を、ワイヤーバーを用いて、乾燥後の膜の厚みが6μmになるように、前記PETフィルム上に、室温にて塗布した。
(2)室温にて30秒間乾燥させて溶剤を除去した後、125℃の雰囲気で2分間加熱し、その後95℃でコレステリック液晶相とした。次いで、フージョンUVシステムズ(株)製無電極ランプ「Dバルブ」(90mW/cm)にて、出力60%で6~12秒間UV照射し、コレステリック液晶相を固定して、膜(赤外線反射層)を作製した。
(3)室温まで冷却した後、上記工程(1)及び(2)を繰り返し、4層積層されたコレステリック液晶相の赤外線反射層を作製した。
 なお、塗布液は、(R1)、(R2)、(L1)、(L2)の順番に塗布を行なった。
(表面処理)
 得られた赤外線反射層(CL層)の表面を、下記の手順にて洗浄した。
2-ブタノンの入った容器に、上記で製膜した積層体を浸漬させ、40℃で10分間、洗浄処理をした。
[実施例1、2、比較例1および2]
<合わせガラス体形態A>
(ポリビニルブチラールとの貼り合わせ)
 上記製造例1で作成したPET支持体上のコレステリック液晶相を固定してなる赤外線反射層(図1の構成)に対して、ポリビニルブチラール(PVB1)を赤外線反射層の上に重ね合わせ、ドライラミネーター(大成ラミネーター製)に通してニップロールにより熱と圧力により積層体を作成した。また、PET支持体が上部ロール側になるようにセットし、その後、PET支持体を剥ぎ取った。さらに、PETを剥がした後の積層フィルムを巻き取った。
 大きさ260mm×300mmの2枚の曲率が互いに異なる球面ガラスの間に、作製した前記積層フィルムと前記積層フィルムのPVB1が積層されていない側の表面上に新たに積層したPVB2とを、曲率が大きい側の球面ガラス/PVB1/液晶膜/PVB2/曲率が小さい側の球面ガラスとなるように重ね合わせ、真空ゴムバッグに重ねたサンプルを入れた。ゴムバッグ内を減圧し(約55torr)、ゴムバッグを加熱オーブンの中に入れて30分かけて95℃に昇温した。その後、95℃で40分予備圧着をおこなった。放冷後、合わせガラスサンプルをオートクレーブの中に入れて130℃、1.2MPaの条件で60分加熱圧着させることで合わせガラス体を作製した。その態様を図8に示す。
 また、各実施例および比較例におけるPVB1とPVB2の厚みを下記表2に示す。
 また、各実施例および比較例において、実施例1ではPVB1層のみに無機微粒子として、ITO微粒子、平均粒径35nm(三菱マテリアル化成株式会社製)を添加し、もう一方の中間膜には、組成の異なる複数の層からなる中間膜を用いた。
[実施例3および比較例3]
<合わせガラス体形態B>
 上記製造例1で作成したPET支持体上のコレステリック液晶相を固定してなる赤外線反射層(図1の構成)に対して、ポリビニルブチラール(PVB3)を赤外線反射層の上に重ね合わせ、ドライラミネーター(大成ラミネーター製)に通してニップロールにより熱と圧力により積層体を作成した。その後、支持体とコレステリック液晶膜とPVB3の積層体を搬送し、更にPET支持体側にPVB4を貼着し、コレステリック液晶膜とその両面にPVBが配置された積層体を作製した。
 大きさ260mm×300mmの2枚の曲率が互いに異なる球面ガラスの間に、作製した積層体を、曲率が大きい側の球面ガラス/PVB3/液晶膜/PET支持体/PVB4/曲率が小さい側の球面ガラスとなるように重ね合わせた。その他の処理条件は合わせガラス体形態Aと同じである。その態様を図2~4に示す。なお、このとき、縮みしろ、または熱圧着後のカットしろを図4に記載のように設けた。
 また、各実施例および比較例におけるPVB3とPVB4の厚みを下記表2に示す。
[評価]
(シワ、ワレの評価)
 作成した合わせガラスは、ポリビニルブチラール樹脂フィルムのシワ、赤外線反射層の膜ワレを評価した。判定は○△×で行い、それぞれの評価基準を下記のようにした。
○: シワ、ワレが確認されない。
△: シワ、ワレが弱く確認できる。
×: シワ、ワレが顕著に確認できる。
Figure JPOXMLDOC01-appb-T000009
(遮熱性能)
 実施例1において、熱線遮蔽微粒子を含有させた中間膜の遮熱性能を分光スペクトルにより測定し、液晶膜が有する遮熱性能と重ね合わせた。その結果を図7に示す。この結果から、幅広い帯域においての遮熱性能が得られたことが示された。
 同様にその他の実施例においても検討したところ、遮熱性能は良好であった。
(遮音性能)
 特開平6-926号公報に記載の方法により試験したところ、各実施例の合わせガラス体は、各比較例の合わせガラス体よりも遮音性能に優れる傾向にあることがわかった。
 また、上記実施例において、水平配向剤としてフッ素系1以外の水平配向剤を用いたところ、フッ素系の水平配向剤を用いたときに遮熱性能に優れる傾向になることがわかった。
[実施例4]
 実施例1および2と同様にして、積層フィルムを製造した。
 その後、大きさ260mm×300mmの2枚の球面ガラスの間に、作製した前記積層フィルムと前記積層フィルムのPVB1が積層されていない側の表面上に新たに積層したPVB2とを、ガラス/PVB1/液晶膜/PVB2/ガラスとなるように重ね合わせ、真空ゴムバッグに重ねたサンプルを入れた。ゴムバッグ内を減圧し(約55torr)、ゴムバッグを加熱オーブンの中に入れて30分かけて95℃に昇温した。その後、95℃で40分予備圧着をおこなった。放冷後、合わせガラスサンプルをオートクレーブの中に入れて130℃、1.2MPaの条件で60分加熱圧着させた。加熱圧着終了後、圧力を保持した状態でおよそ3時間かけて放冷し、オートクレーブ内の温度が40℃以下になったところで圧力を開放した。このとき、開放前の圧力は0.9MPaであった。
 作成した合わせガラスについて、ポリビニルブチラール樹脂フィルムのシワと赤外線反射層の膜ワレを評価したところ、いずれも実施例1および2よりもさらに改善されていたことがわかった。また、この合わせガラス板の反射ムラを目視にて確認したところ、いずれも実施例1および2よりもさらに改善されていたことがわかった。
1    赤外線反射層
2    支持体
3    第一の樹脂中間膜
3’   第二の樹脂中間膜
11a、11b 第一の熱圧着ローラ
12   (転写用)支持体の剥ぎ取り用ローラ
13a、13b 第二の熱圧着ローラ
14   搬送ローラ
15a  コレステリック液晶相を固定してなる赤外線反射層
15b  コレステリック液晶相を固定してなる赤外線反射層
16a  コレステリック液晶相を固定してなる赤外線反射層
16b  コレステリック液晶相を固定してなる赤外線反射層
19   第一のガラス板(第二のガラス板よりも曲率が大きい)
19’  第二のガラス板(第一のガラス板よりも曲率が小さい)
21   (転写用)支持体と赤外線反射層の積層体の送り出しローラ
22、22’ 樹脂中間膜の送り出しローラ
23   (転写用)支持体の巻き取りローラ
24   樹脂中間膜と赤外線反射層の積層体の巻き取りローラ
41   縮みしろ、または熱圧着後のカットしろ
51   コレステリック液晶相を固定してなる赤外線反射膜の光透過スペクトル
52   熱戦遮蔽微粒子を含有するPVB2の光透過スペクトル

Claims (15)

  1.  赤外線反射層と、
     該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、
     該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、
     前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、
     前記第一の樹脂中間膜の厚みが前記第二の樹脂中間膜の厚みよりも厚いことを特徴とする積層体と;
     該積層体の前記第一の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第一のガラスと;
     該積層体の前記第二の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第二のガラスと;
    が積層されており、前記第一のガラスの曲率が前記第二のガラスの曲率よりも大きいことを特徴とする合わせガラス体。
  2.  赤外線反射層と、
     該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、
     該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、
     前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、
     前記第一の樹脂中間膜の樹脂組成と前記第二の樹脂中間膜の樹脂組成が異なることを特徴とする積層体と;
     該積層体の前記第一の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第一のガラスと;
     該積層体の前記第二の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第二のガラスと;
    が積層されており、前記第一のガラスの曲率が前記第二のガラスの曲率よりも大きいことを特徴とする合わせガラス体。
  3.  赤外線反射層と、
     該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、
     該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、
     前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、
     前記第一の樹脂中間膜に含まれる添加剤と前記第二の樹脂中間膜に含まれる添加剤が異なることを特徴とする積層体と;
     該積層体の前記第一の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第一のガラスと;
     該積層体の前記第二の樹脂中間膜に接し、かつ、少なくとも一部に曲面を有する第二のガラスと;
    が積層されており、前記第一のガラスの曲率が前記第二のガラスの曲率よりも大きいことを特徴とする合わせガラス体。
  4.  前記第一の樹脂中間膜に含まれる添加剤と前記第二の樹脂中間膜に含まれる添加剤が異なることを特徴とする請求項1または2に記載の合わせガラス体。
  5.  前記第一の樹脂中間膜に含まれる添加剤として、熱線遮蔽用の微粒子および遮音用の微粒子の少なくとも一方を含むことを特徴とする請求項3または4に記載の合わせガラス体。
  6.  前記赤外線反射層がコレステリック液晶相を固定してなる層を含むことを特徴とする請求項1~5のいずれか一項に記載の合わせガラス体。
  7.  前記コレステリック液晶相を固定してなる層が、前記第一の樹脂中間膜と接していることを特徴とする請求項6に記載の合わせガラス体。
  8.  前記コレステリック液晶相を固定してなる層が、前記第二の樹脂中間膜と接していることを特徴とする請求項6または7に記載の合わせガラス。
  9.  前記コレステリック液晶相を固定してなる層と、前記第二の樹脂中間膜の間に透明可塑性樹脂を含むことを特徴とする請求項6または7に記載の合わせガラス体。
  10.  前記第一の樹脂中間膜と前記第二の樹脂中間膜が、いずれもポリビニルブチラールを含むことを特徴とする請求項1~9のいずれか一項に記載の合わせガラス体。
  11.  前記赤外線反射層が水平配向剤を含むことを特徴とする請求項1~10のいずれか一項に記載の合わせガラス体。
  12.  前記水平配向剤がフッ素系水平配向剤であることを特徴とする請求項1~11のいずれか一項に記載の合わせガラス体。
  13.  赤外線反射層と、
     該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、
     該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、
     前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、
     前記第一の樹脂中間膜の厚みが前記第二の樹脂中間膜の厚みよりも厚いことを特徴とする積層体。
  14.  赤外線反射層と、
     該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、
     該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、
     前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、
     前記第一の樹脂中間膜の樹脂組成と前記第二の樹脂中間膜の樹脂組成が異なることを特徴とする積層体。
  15.  赤外線反射層と、
     該赤外線反射層の一方の表面側に配置された第一の樹脂中間膜と、
     該赤外線反射層の前記第一の樹脂中間膜が配置されている表面と反対側の表面側に配置された第二の樹脂中間膜とが積層されており、
     前記赤外線反射層が重合性液晶化合物を含む組成物を固定してなり、
     前記第一の樹脂中間膜に含まれる添加剤と前記第二の樹脂中間膜に含まれる添加剤が異なることを特徴とする積層体。
PCT/JP2011/073312 2010-10-15 2011-10-11 合わせガラス体およびそれに用いる積層体 WO2012050078A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-232576 2010-10-15
JP2010232576 2010-10-15
JP2011017770A JP2012101999A (ja) 2010-10-15 2011-01-31 合わせガラス体およびそれに用いる積層体
JP2011-017770 2011-01-31

Publications (1)

Publication Number Publication Date
WO2012050078A1 true WO2012050078A1 (ja) 2012-04-19

Family

ID=45938307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073312 WO2012050078A1 (ja) 2010-10-15 2011-10-11 合わせガラス体およびそれに用いる積層体

Country Status (2)

Country Link
JP (1) JP2012101999A (ja)
WO (1) WO2012050078A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2883848A4 (en) * 2012-07-31 2016-04-06 Sekisui Chemical Co Ltd LAMINATED GLASS AND METHOD FOR ASSEMBLING LAMINATED GLASS
CN105873877A (zh) * 2014-01-31 2016-08-17 积水化学工业株式会社 夹层玻璃及夹层玻璃的安装方法
WO2017204121A1 (ja) * 2016-05-25 2017-11-30 旭硝子株式会社 合わせガラス
CN110467339A (zh) * 2019-08-13 2019-11-19 洛阳兰迪玻璃机器股份有限公司 一种曲面钢化玻璃的成型方法及设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231467A (ja) * 2013-05-30 2014-12-11 日本化薬株式会社 赤外線反射フィルムおよびこれを用いた合わせガラス
JP6668823B2 (ja) * 2015-04-08 2020-03-18 Agc株式会社 合わせ板
JP6729208B2 (ja) 2015-09-07 2020-07-22 Agc株式会社 合わせガラス
JP6672683B2 (ja) * 2015-10-05 2020-03-25 コニカミノルタ株式会社 合わせガラスの製造方法および合わせガラス
JP6988377B2 (ja) * 2017-11-01 2022-01-05 大日本印刷株式会社 合わせガラス製造装置、合わせガラス製造方法
JP7073795B2 (ja) * 2018-03-09 2022-05-24 大日本印刷株式会社 合わせガラス製造方法
WO2020009203A1 (ja) * 2018-07-06 2020-01-09 Agc株式会社 Aピラー用ガラス板
KR102253130B1 (ko) * 2019-11-13 2021-05-14 에스케이씨 주식회사 플라스틱 중간막, 이를 포함하는 적층체 및 이를 포함하는 이동수단
WO2021204566A1 (de) 2020-04-07 2021-10-14 Saint-Gobain Glass France Verfahren zum herstellen einer verbundscheibe und verbundscheibe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020439A (ja) * 2005-07-14 2007-02-01 Fujifilm Holdings Corp 植物成長制御用フィルム
JP2008542065A (ja) * 2005-05-26 2008-11-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ねじれネマチック液晶を含む多層ラミネート
JP2010061119A (ja) * 2008-08-04 2010-03-18 Fujifilm Corp 赤外域選択反射膜及び赤外域選択反射フィルム
JP2010222233A (ja) * 2009-02-27 2010-10-07 Central Glass Co Ltd 断熱合わせガラス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008542065A (ja) * 2005-05-26 2008-11-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ねじれネマチック液晶を含む多層ラミネート
JP2007020439A (ja) * 2005-07-14 2007-02-01 Fujifilm Holdings Corp 植物成長制御用フィルム
JP2010061119A (ja) * 2008-08-04 2010-03-18 Fujifilm Corp 赤外域選択反射膜及び赤外域選択反射フィルム
JP2010222233A (ja) * 2009-02-27 2010-10-07 Central Glass Co Ltd 断熱合わせガラス

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104470869B (zh) * 2012-07-31 2018-06-22 积水化学工业株式会社 夹层玻璃及夹层玻璃的安装方法
EP2883847A4 (en) * 2012-07-31 2016-04-06 Sekisui Chemical Co Ltd INTERMEDIATE FILM FOR COMPOSITE GLASS, COMPOSITE GLASS AND METHOD OF MOUNTING THE COMPOSITE GLASS
US10766230B2 (en) 2012-07-31 2020-09-08 Sekisui Chemical Co., Ltd. Laminated glass and method of mounting laminated glass
US10654250B2 (en) 2012-07-31 2020-05-19 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, laminated glass, and method of mounting laminated glass
EP2883848A4 (en) * 2012-07-31 2016-04-06 Sekisui Chemical Co Ltd LAMINATED GLASS AND METHOD FOR ASSEMBLING LAMINATED GLASS
US10414130B2 (en) 2012-07-31 2019-09-17 Sekisui Chemical Co., Ltd. Laminated glass and method of mounting laminated glass
EP3100989A4 (en) * 2014-01-31 2017-07-26 Sekisui Chemical Co., Ltd. Laminated glass and method for fitting laminated glass
CN105873877B (zh) * 2014-01-31 2019-07-12 积水化学工业株式会社 夹层玻璃及夹层玻璃的安装方法
EP3100988A4 (en) * 2014-01-31 2017-07-26 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, laminated glass and method for fitting laminated glass
CN105873877A (zh) * 2014-01-31 2016-08-17 积水化学工业株式会社 夹层玻璃及夹层玻璃的安装方法
EP3912809A1 (en) * 2014-01-31 2021-11-24 Sekisui Chemical Co., Ltd. Intermediate film for laminated glass, laminated glass and method for fitting laminated glas
US11524487B2 (en) 2014-01-31 2022-12-13 Sekisui Chemical Co., Ltd. Laminated glass and method for fitting laminated glass
WO2017204121A1 (ja) * 2016-05-25 2017-11-30 旭硝子株式会社 合わせガラス
US11130316B2 (en) 2016-05-25 2021-09-28 AGC Inc. Laminated glass
CN110467339A (zh) * 2019-08-13 2019-11-19 洛阳兰迪玻璃机器股份有限公司 一种曲面钢化玻璃的成型方法及设备
CN110467339B (zh) * 2019-08-13 2023-08-29 洛阳兰迪玻璃机器股份有限公司 一种曲面钢化玻璃的成型方法及设备

Also Published As

Publication number Publication date
JP2012101999A (ja) 2012-05-31

Similar Documents

Publication Publication Date Title
WO2012050078A1 (ja) 合わせガラス体およびそれに用いる積層体
JP5671365B2 (ja) 赤外光反射板並びに合わせガラス用積層中間膜シート及び合わせガラスとそれらの製造方法
JP5259501B2 (ja) 赤外光反射板、赤外光反射性合わせガラス、並びにコレステリック液晶層を有する積層体及び合わせガラス
JP5709710B2 (ja) 赤外光反射層及び赤外光反射板並びにガラス用積層中間膜シート及び合わせガラスとそれらの製造方法
JP5961498B2 (ja) 熱線カットフィルムおよびその製造方法、合わせガラス並びに熱線カット部材
JP2011154215A (ja) 赤外光反射板、合わせガラス用積層中間膜シート及びその製造方法、並びに合わせガラス
WO2013146923A1 (ja) コレステリック液晶性混合物、フィルム、赤外反射板、積層体および合わせガラス
WO2013146664A1 (ja) 光反射層、光反射板並びに合わせガラス用積層中間膜シート及び合わせガラスとそれらの製造方法
WO2013038969A1 (ja) コレステリック液晶性混合物、フィルム、選択反射板、積層体および合わせガラス
JP5457982B2 (ja) 赤外光反射板
JP2012032454A (ja) 赤外線反射膜
JP2012162427A (ja) 合わせガラスおよびその製造方法
JP2011158750A (ja) 遮熱部材、及び合わせガラス
JP5457970B2 (ja) 赤外光反射膜および赤外光反射板
JP5777463B2 (ja) フィルム、赤外反射板、積層体および合わせガラス
JP2012051063A (ja) コレステリック液晶層を含む積層体の切断方法
JP2013200516A (ja) 液晶フィルム、赤外反射板および合わせガラス
JP2013040089A (ja) 積層中間膜およびその製造方法、ならびに、合わせガラスおよびその製造方法
JP5297359B2 (ja) 接着性積層体の製造方法、接着性積層体、並びに機能性合わせガラス及びその製造方法
JP2013047157A (ja) 積層中間膜およびその製造方法、ならびに、合わせガラスおよびその製造方法
JP2012051220A (ja) 積層体および積層体の製造方法
JP5828815B2 (ja) 積層中間膜およびその製造方法、ならびに、合わせガラスおよびその製造方法
JP5400592B2 (ja) 合わせガラス用積層中間膜シートの製造方法
JP5542418B2 (ja) 遮熱部材
JP2012051219A (ja) 積層体および積層体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832513

Country of ref document: EP

Kind code of ref document: A1