WO2012049996A1 - リンク作動装置 - Google Patents

リンク作動装置 Download PDF

Info

Publication number
WO2012049996A1
WO2012049996A1 PCT/JP2011/072746 JP2011072746W WO2012049996A1 WO 2012049996 A1 WO2012049996 A1 WO 2012049996A1 JP 2011072746 W JP2011072746 W JP 2011072746W WO 2012049996 A1 WO2012049996 A1 WO 2012049996A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
input
output
respect
actuator
Prior art date
Application number
PCT/JP2011/072746
Other languages
English (en)
French (fr)
Inventor
磯部浩
西尾幸宏
永野佳孝
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to DE112011103473.3T priority Critical patent/DE112011103473B4/de
Priority to US13/878,523 priority patent/US9249869B2/en
Publication of WO2012049996A1 publication Critical patent/WO2012049996A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/46Gearings comprising primarily only links or levers, with or without slides with movements in three dimensions
    • F16H21/54Gearings comprising primarily only links or levers, with or without slides with movements in three dimensions for conveying or interconverting oscillating or reciprocating motions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • B25J9/0045Programme-controlled manipulators having parallel kinematics with kinematics chains having a rotary joint at the base
    • B25J9/0048Programme-controlled manipulators having parallel kinematics with kinematics chains having a rotary joint at the base with kinematics chains of the type rotary-rotary-rotary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • B25J9/0078Programme-controlled manipulators having parallel kinematics actuated by cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18888Reciprocating to or from oscillating

Definitions

  • the present invention relates to a link actuating device used for a link mechanism such as a parallel link mechanism or a robot joint that performs complicated processing and article handling in a three-dimensional space at high speed and with high precision.
  • Patent Document 1 An example of a working device having a parallel link mechanism is disclosed in Patent Document 1.
  • the parallel link mechanism has a plurality of links with a traveling plate connected to the lower end, and the upper part of these links is supported by a universal joint so that the angle can be changed, and each link has an effective length positioned below the universal joint. It can be changed.
  • the parallel link mechanism having the above configuration has a small operating angle of each link, it is necessary to increase the link length in order to set a large operating range of the traveling plate. Thereby, there existed a problem that the dimension of the whole mechanism became large and an apparatus became large. Further, when the link length is increased, the rigidity of the entire mechanism is reduced. For this reason, there is a problem that the weight of the tool mounted on the traveling plate, that is, the transportable weight of the traveling plate is limited to a small one.
  • An object of the present invention is to provide a link operating device that is compact but has a wide movable range of the movable portion, high attitude adjustment accuracy, and high rigidity.
  • the output member is connected to the input member via three or more sets of link mechanisms so that the posture can be changed, and each of the link mechanisms has one end rotated to the input member and the output member, respectively.
  • the input side and output side end link members that are connected to each other, and the central link member that rotatably connects the other ends of the input side and output side end link members, respectively,
  • the geometric model expressing the link mechanism as a straight line has a shape in which the input side portion and the output side portion are symmetrical with respect to the central portion of the central link member.
  • the link actuating device connects the end link members to be rotatable with respect to the input member and the output member provided on the input side and the output side, respectively, and the respective end portions on the input side and the output side
  • Three or more sets of link mechanisms in which the link members are rotatably connected to the central link member are provided, and the input side and the output side are geometrically the same with respect to the cross section at the center of each link mechanism.
  • all of the three or more sets of link mechanisms are provided with a stationary mechanism capable of causing the output member to be stationary with respect to the input member in an arbitrary posture, and are respectively formed on the input member and the output member.
  • a structure that contacts the contact portion and connects the input member and the output member to each other is provided.
  • the input member, the output member, and three or more sets of link mechanisms constitute a two-degree-of-freedom mechanism in which the output member can move in two orthogonal axes with respect to the input member.
  • this two-degree-of-freedom mechanism is compact, the movable range of the output member can be widened.
  • the maximum bending angle between the central axis of the input member and the central axis of the output member is about ⁇ 90 °, and the turning angle of the output member relative to the input member can be set in the range of 0 ° to 360 °.
  • the stationary mechanism has an actuator that is directly or indirectly connected to the input-side end link member and acts to restrain the rotation of the input-side end link member with respect to the input member. Is good.
  • the stationary member includes the actuator, not only can the posture of the output member with respect to the input member be stably maintained, but also the posture of the output member with respect to the input member can be changed.
  • the stationary member When the stationary member includes the actuator, the stationary member acts between the contacted portion of the input member and the output member and the structure when the output member is stationary with respect to the input member by the stationary mechanism.
  • Control means for controlling the actuator so as to increase the contact force may be provided.
  • the control means controls the actuator so that the contact force acting between the contacted portions of the input member and the output member and the structure increases, that is, the force is generated between the input member and the output member.
  • the distance between the link spherical centers of the input member and the output member is slightly changed, the magnitude of the contact force acting on the contacted portion changes.
  • the link actuating device When the contact force increases, the link actuating device is kept at a certain operating position against the contact force, and the rigidity of the entire link actuating device during posture adjustment is improved.
  • the control means may control the actuators to drive in directions in which forces generated by the actuators interfere with each other when the output member is stationary with respect to the input member by the stationary mechanism. . If the forces generated by the actuators interfere with each other, the posture change of the output member relative to the input member is suppressed, and the force acts on the entire link actuator. As a result, the distance between the link spherical centers of the input member and the output member fluctuates slightly, so that the magnitude of the contact force acting on the contacted portion changes and the rigidity of the entire link operating device is improved.
  • the control means controls the two actuators of the actuators so that the operation positions of the actuators are determined to be control target positions.
  • the remaining actuators may be controlled so that the torque generated by the actuators becomes a predetermined control target position.
  • the position of the output member relative to the input member is determined.
  • the torque of the remaining actuators the driving force of the two actuators can be reduced, and the actuators can be reduced in size and size.
  • all actuators are position controlled, it is necessary to drive all actuators while coordinating their positions, resulting in a slower operating speed. However, if only two actuators are position controlled, the actuator operates smoothly. Is possible, and the operation speed is also increased.
  • the control means changes the posture of the output member relative to the input member.
  • two actuators among the actuators are controlled so that the operation positions of these actuators are determined to be control target positions, and the remaining actuators are controlled with torque generated by the actuators. Control may be performed so that the target position is reached, or driving may be performed in a servo-off state in which the feedback control function is turned off.
  • the torque of the input side end link member driven by the position-controlled actuator is Since it is transmitted to the remaining actuators via the force transmission mechanism, the remaining actuators can be driven not only by torque control but also in a servo-off state.
  • each of the actuators is a rotary actuator
  • the actuator has a brake device that locks the rotation of the rotary shaft of the rotary actuator, and when the output member is stationary with respect to the input member, the brake device is operated. May be.
  • a brake By applying a brake to the rotation shaft of the actuator, a constant angle can be maintained even if torque is transmitted to the actuator, so that the rigidity of the entire link actuator during posture adjustment is improved.
  • the rotation angle of the input side end link member with respect to the input member is ⁇ n
  • the connecting end shaft of the central link member rotatably connected to the input side end link member, and the output side end link member The angle formed by the connecting end shaft of the central link member rotatably connected to ⁇ is ⁇
  • the circumferential separation angle of each input side end link member with respect to the reference input side end link member is ⁇ n
  • the vertical angle at which the output member is inclined with respect to the central axis of the input member is ⁇
  • the horizontal angle at which the output member is inclined with respect to the central axis of the input member is ⁇
  • cos ( ⁇ / 2) sin ⁇ n ⁇ sin ( ⁇ / 2) sin ( ⁇ + ⁇ n) cos ⁇ n + sin ( ⁇ / 2) 0 It is good to control the attitude
  • the rotation angle of the end link member on each input side can be calculated from the above formula. Based on the calculated value, the attitude of the output member relative to the input member can be controlled by outputting to the actuator that drives each input side end link member.
  • the structure may generate a force between the input member and the output member.
  • a force is generated between the input member and the output member by the structure, backlash of the link operating device is eliminated and rigidity is improved.
  • the attitude adjustment accuracy of the output member with respect to the input member is improved.
  • the input member and the output member have the same number of shaft portions as the link mechanisms protruding from the outer peripheral surface, and the input side and output side end link members of each link mechanism are respectively provided on the shaft portions.
  • the contacted portion is arranged so as to be rotatable and located closer to the inner diameter side than the shaft portion. According to this configuration, by projecting the shaft portion from the outer peripheral surfaces of the input member and the output member, the shaft portion is rotatably supported by the bearings provided on the input side and output side end link members. . With this structure, a wide space can be secured in the central portion of the input member and the output member, and the contacted portion can be easily formed in the wide space.
  • each contacted portion of the input member and the output member has a spherical shape centering on the center of the link spherical surface of each link mechanism, and the structure is slidable on the contacted portion at both ends. It is good to have the spherical contact part to fit. Even if the operating position of the link actuating device is changed, the operation of the link actuating device is affected by bringing the spherical contact portions of the input member and the output member into contact with the spherical contact portion of the structure. The contacted part and the contact part can always be kept in contact with each other.
  • the structure includes an input-side structure portion having a contact portion that fits into a contacted portion of the input member, and an output-side structure portion that fits into a contacted portion of the output member.
  • the distance between the centers of the contact portions of the output side structure portion may be changeable. If the distance between the centers of the contact portions of the input side structure portion and the output side structure portion can be changed, the magnitude of the force generated between the input member and the output member by the structure can be adjusted.
  • one member of the input side structure portion and the output side structure portion has a male screw portion, and the other member has a female screw portion that is screwed with the male screw portion. It is preferable that the distance between the centers of the contact portions of the input side structure portion and the output side structure portion is changed by changing the screwing amount. With this configuration, it is easy to adjust the magnitude of the force generated between the input member and the output member by the structure.
  • the input side slide part slidable with each other along a straight line connecting the centers of the spherical contact parts of the input side structure part and the output side structure part to the input side structure part and the output side structure part.
  • an output side slide portion may be provided.
  • a method of sliding the input-side slide portion and the output-side slide portion relative to each other by forming a space portion between the input-side structure portion and the output-side structure portion and putting fluid in and out of the space portion A method of providing a piezoelectric actuator that slides the input side slide portion and the output side slide portion relative to each other can be adopted.
  • the input side slide part and the output side slide part are provided in the input side structure part and the output side structure part, respectively, the force generated between the input member and the output member by the structure is the same as described above. The size can be easily adjusted.
  • the input member has an end surface on the output member side
  • the output member has a conical concave portion on the input member side end surface.
  • a contacted part is preferable.
  • the maximum fold angle of the fold angle that is an angle formed by the center line of the input member and the center line of the output member is ⁇ max
  • Both the angle formed by the center line of the input member and the angle formed by the generatrix of the inner peripheral surface of the recess in the output member and the center line of the output member may be ⁇ max / 2.
  • rotation angle detecting means for detecting the rotation angle of the end link member on the input side in two or more of the three or more link mechanisms. If a rotation angle detection means is provided, feedback control can be performed using the detection value of this rotation angle detection means. Thereby, the influence of the play and rigidity of the stationary mechanism is reduced, and the attitude adjustment accuracy of the output member with respect to the input member is improved.
  • the rotation angle of the input side end link member with respect to the input member is ⁇ n
  • the connecting end shaft of the central link member rotatably connected to the input side end link member, and the output side end link member The angle formed by the connecting end shaft of the central link member rotatably connected to ⁇ is ⁇
  • the circumferential separation angle of each input side end link member with respect to the reference input side end link member is ⁇ n
  • the vertical angle at which the output member is inclined with respect to the central axis of the input member is ⁇
  • the horizontal angle at which the output member is inclined with respect to the central axis of the input member is ⁇
  • cos ( ⁇ / 2) sin ⁇ n ⁇ sin ( ⁇ / 2) sin ( ⁇ + ⁇ n) cos ⁇ n + sin ( ⁇ / 2) 0
  • the link actuating device 1 includes a base 2 and a link mechanism unit 3 supported on the input side by the base 2, and a medical device is connected to the output side of the link mechanism unit 3.
  • a drive device such as an actuator is mounted.
  • the link actuating device 1 includes a stationary mechanism 4 that stops the link mechanism unit 3 in a fixed state, a structure 5 that connects the input member 14 and the output member 15 of the link mechanism unit 3, and a control unit 6. .
  • the base 2 has a three-layer structure including a base member 7, a motor mounting member 8, and a link mounting member 9.
  • the lower base member 7 is installed on the horizontal installation surface F by a plate-like portion 7a such as a disk provided at the lower end.
  • the middle layer motor mounting member 8 has a plate-like portion 8 a such as a disk at the lower end and is installed on the base member 7.
  • the upper-layer link attachment member 9 is a plate shape such as a disk and is installed on the motor attachment member 8.
  • the link mechanism unit 3 includes three sets of link mechanisms 11, 12, and 13 (hereinafter referred to as “11 to 13”). In FIGS. 1 and 2, only one set of link mechanisms 11 is displayed. Each of these three sets of link mechanisms 11 to 13 has the same geometric shape. That is, each of the link mechanisms 11 to 13 includes a geometric model that expresses each of the link members 11a to 13a, 11b to 13b, and 11c to 13c, which will be described later, as a straight line, an input side portion with respect to the central portion of the central link members 11b to 13b The output side portion is symmetrical.
  • Each of the link mechanisms 11, 12, and 13 includes an input side end link member 11a, 12a, and 13a (hereinafter referred to as “11a to 13a”) and a center link member 11b, 12b, and 13b (hereinafter referred to as “11b to 13b”). And an output side end link member 11c, 12c, 13c (hereinafter referred to as “11c to 13c”), and forms a three-joint link mechanism composed of four rotating pairs.
  • the input side and output side end link members 11a to 13a, 11c to 13c are L-shaped, and their base ends are rotatably connected to the input member 14 and the output member 15, respectively.
  • the center link members 11b to 13b are rotatably connected to the ends of the input side and output side end link members 11a to 13a and 11c to 13c, respectively.
  • the end link members 11a to 13a and 11c to 13c on the input side and the output side have a spherical link structure, and the spherical link centers PA and PC (FIGS. 1 and 2) in the three sets of link mechanisms 11 to 13 match.
  • the distances from the spherical link centers PA and PC are also the same.
  • the rotational couple axes that are the connecting portions of the end link members 11a to 13a, 11c to 13c and the central link members 11b to 13b may have a certain crossing angle or may be parallel to each other.
  • the three sets of link mechanisms 11 to 13 have the same geometric shape.
  • the geometrically identical shape means that a geometric model expressing each link member 11a to 13a, 11b to 13b, 11c to 13c as a straight line is an input side portion and an output side portion with respect to the central portion of the central link members 11b to 13b. Is a symmetrical shape.
  • FIG. 4 is a diagram in which one link mechanism 11 is expressed by a straight line.
  • the link mechanisms 11 to 13 of this embodiment are rotationally symmetric types, and the positional relationship between the input member 14 and the input side end link members 11a to 13a, and the output member 15 and the output side end link members 11c to 13c.
  • the central link members 11b to 13b have a rotationally symmetrical position configuration with respect to the center line A. 1 shows a state in which the central axis B of the input member 14 and the central axis C of the output member 15 are collinear, and FIG. 2 shows the central axis C of the output member 15 with respect to the central axis B of the input member 14. Shows a state where a predetermined operating angle is taken. Even if the postures of the link mechanisms 11 to 13 are changed, the distance L between the spherical links PA and PC on the input side and the output side does not change.
  • the input member 14 and the output member 15 have a hexagonal column shape, and input side and output side end link members 11a to 13a are provided on three side surfaces 16 apart from every other one of the six side surfaces 16 constituting the outer peripheral surface. 11c to 13c are rotatably connected to each other.
  • FIG. 5 is a cross-sectional view showing a connecting portion between the input member 14 and the input side end link members 11a to 13a.
  • a shaft portion 18 protrudes from the side surface 16 of the input member 14, and an inner ring (not shown) of a double row bearing 17 is fitted on the shaft portion 18, and the input side end link members 11 a to 13 a on the input member side.
  • An outer ring (not shown) of the bearing 17 is fitted into the end. That is, the inner ring is fixed to the input member 14, and the outer ring rotates with the input side end link members 11a to 13a.
  • the bearing 17 is a ball bearing such as a deep groove ball bearing or an angular ball bearing, for example, and is fixed by applying a predetermined amount of preload by tightening with a nut 19.
  • a roller bearing or a sliding bearing may be used in addition to the ball bearings arranged in a double row as in the illustrated example.
  • the connecting portion between the output member 15 and the output side end link members 11c to 13c has the same structure.
  • the connecting portions of the input side end link members 11a to 13a and the central link members 11b to 13b are also connected to each other via a double row bearing 20. That is, the outer ring (not shown) of the bearing 20 is fitted on the input side end link members 11a to 13a, and the inner ring (not shown) of the bearing 20 is fitted to the shaft portion 21 provided on the central link members 11b to 13b. It is fitted.
  • the bearing 20 is, for example, a ball bearing such as a deep groove ball bearing or an angular ball bearing, and is fixed by applying a predetermined amount of preload by tightening with a nut 22.
  • a roller bearing or a sliding bearing may be used in addition to the ball bearings arranged in a double row as in the illustrated example.
  • the connecting portions of the output side end link members 11c to 13c and the central link members 11b to 13b have the same structure.
  • the angles and lengths of the shaft portions 18 of the end link members 11a to 13a and 11c to 13c and the geometric shapes of the end link members 11a to 13a and 11c to 13c are the same as those on the input side.
  • the central link members 11b to 13b is the same on the input side and the output side, the central link members 11b to 13b and the input / output members 14 with respect to the symmetry plane of the central link members 11b to 13b.
  • the members 11a to 13a and the output member 15 and the output side end link members 11c to 13c move in the same manner, and the input side and the output side rotate at the same speed with the same rotation angle. It becomes door.
  • the plane of symmetry of the central link members 11b to 13b when rotating at the same speed is referred to as an equal speed bisector.
  • the central link member is a position where the plurality of link mechanisms 11 to 13 can move without contradiction.
  • 11b to 13b are limited to the movement only on the equal speed bisector, and thereby the constant speed rotation can be obtained even if the input side and the output side take any operating angle.
  • the movable range of the output member 15 relative to the input member 14 can be widened.
  • the maximum value (maximum folding angle) of the folding angle ⁇ between the central axis B of the input member 14 and the central axis C of the output member 15 can be about ⁇ 90 °.
  • the turning angle ⁇ of the output member 15 relative to the input member 14 can be set in the range of 0 ° to 360 °.
  • the bending angle ⁇ is a vertical angle at which the output member 15 is inclined with respect to the central axis B of the input member 14, and the turning angle ⁇ is a horizontal angle at which the output member 15 is inclined with respect to the central axis B of the input member 14. It is an angle.
  • the stationary mechanism 4 stops the output member 15 in an arbitrary posture with respect to the input member 14 by stopping the link mechanism unit 3 in a fixed state.
  • the stationary mechanism 4 is provided in all of the three sets of link mechanisms 11-13.
  • Each stationary mechanism 4 is directly or indirectly connected to the input side end link members 11a, 12a, and 13a, and restricts the rotation of the input side end link members 11a, 12a, and 13a relative to the input member 14.
  • the rotary actuator 30 with the brake device 29 which acts so is provided.
  • the brake device 29 is, for example, an electromagnetic brake, and is a mechanism that locks the rotation of the rotary shaft of the rotary actuator 30.
  • the rotary actuator 30 and the brake device 29 are vertically mounted on the plate-like portion 8a of the motor mounting member 8.
  • the output shaft 30 a of the rotary actuator 30 protrudes upward, and the output shaft 30 a and the pinion shaft 31 are connected to each other via a coupling 32.
  • the pinion shaft 31 is disposed coaxially with the output shaft 30 a and is rotatably supported by a double row bearing 33 provided on the link mounting member 9.
  • a cylindrical pinion shaft support holder 34 is fitted into a holder fitting hole 9 a formed in the link attachment member 9, and double row bearings 33 are accommodated in the pinion shaft support holder 34.
  • the pinion shaft support holder 34 is fixed to the link mounting member 9 by bolts 35.
  • the double-row bearing 34 is, for example, a ball bearing such as a deep groove ball bearing or an angular ball bearing, and includes an inner ring (see FIG. (Not shown) is positioned, and an outer ring (not shown) is formed by a collar portion 34a of the shaft support holder 34 and a positioning member 37 fixed to the link mounting member 9 together with the shaft support holder 34 by the bolt 35. Are positioned in the axial direction.
  • the portion of the pinion shaft 31 above the collar portion 31a is a pinion 40 having a helical gear tooth formed on the outer periphery.
  • a connecting member 41 is fixedly attached to a rotating pair of the output side end link members 11a to 13a with the shaft portion 18, and a helical gear tooth meshing with the pinion 40 is attached to the connecting member 41.
  • the central axis of the sector gear 42 coincides with the central axis of the shaft portion 18.
  • the central axis of the pinion 40 and the central axis of the sector gear 42 have a right angle in front view and are offset from each other in the front-rear direction.
  • the pinion 40 and the sector gear 42 are hypoid gears, and both constitute a force transmission mechanism 43.
  • the force transmission mechanism 43 formed of a hypoid gear can take a high reduction ratio and can transmit force in both forward and reverse directions.
  • the connecting member 41 is fixed to the output side end link members 11a to 13a by bolts 44 and 45 as shown in FIG.
  • the structure 5 is configured to generate a force between the input member 14 and the output member 15 by bringing both ends into contact with the contacted portions of the input member 14 and the output member 15.
  • FIG. 7 shows a contacted portion of the input member 14. Although illustration is omitted, the same applies to the contacted portion of the output member 15.
  • a concave portion 50 that is tapered in a conical shape is formed on the end surface of the input member 14 (output member 15) facing the output member 15 (input member 14), and the innermost portion of the concave portion 50 is spherical.
  • the contacted part 51 is made of.
  • the center of the spherical contacted part 51 coincides with the spherical link center PA (PC) on the input side (output side).
  • the contact portions 5 a at both ends of the structure 5 have a spherical shape that is slidably fitted into the contacted portion 51.
  • the structure 5 is formed on both the inner peripheral surface of the recess 50 in the input member 14 and the inner peripheral surface of the recess 50 in the output member 15. Contact. Therefore, the operating range of the link operating device is restricted, and the reliability is improved.
  • the structure 5 has an input-side structure portion 52 having a contact portion 5 a that fits in the contacted portion 51 of the input member 14, and a contact portion 5 a that fits in the contacted portion 51 of the output member 15.
  • the output-side structure portion 53 is formed, and the female screw portion 52a of the input-side structure portion 52 and the male screw portion 53a of the output-side structure portion 53 are screwed together.
  • the center distance M between the contact portions 5a of the input-side structure portion 52 and the output-side structure portion 53 is changed.
  • the structure 5 may have a configuration in which the center-to-center distance M is changed by sliding the input-side structure portion 52 and the output-side structure portion 53 with each other.
  • the center-to-center distance M between the contact portions of the input-side structure portion 52 and the output-side structure portion 53 can be changed, the force generated between the input member 14 and the output member 15 by the structure 5 is reduced.
  • the size can be adjusted.
  • the structure 5 that connects the input member 14 and the output member 15 to each other, the effect of suppressing rattling of the link operating device and the effect of increasing the rigidity are provided. Is obtained.
  • the structure 5 in the link actuating device according to the second embodiment shown in FIG. 9 includes an input-side structure portion 52 and an output-side structure portion 53, and a sphere of the input-side structure portion 52 and the output-side structure portion 53.
  • the part 52 and the output-side structure part 53 are slidable with respect to each other.
  • a fluid 54 such as air, water, or oil is sealed in the space 54 formed by the input side slide portion 52b and the output side slide portion 53b, and the pressure between the input member 14 and the output member 15 is sealed by the fluid pressure.
  • the force generated between them is controlled.
  • the space 54 can be supplied with fluid from the outside via a pipe joint 55.
  • the input side slide portion 52b and the output side slide portion 53b are slid relative to each other to change the center distance M.
  • the contact surface between the input side slide part 52b and the output side slide part 53b has, for example, a sliding bearing structure. The smaller the gap between the slide parts 52b and 53b, the smaller the fluid leakage from the space part 54, so that a larger force can be generated.
  • the structure 5 in the link actuating device according to the third embodiment shown in FIG. 10 is also provided with a cylindrical input-side slide portion 52b in the input-side structure portion 52, and the output-side structure.
  • the portion 53 is provided with an output-side slide portion 53b that is slidable on the input-side slide portion 52b, so that the input-side structure portion 52 and the output-side structure portion 53 can slide with respect to each other.
  • a piezoelectric actuator 56 is provided in a space between the input side slide portion 52b and the output side slide portion 53b.
  • the piezoelectric actuator 56 is connected to an external power source by a wiring 57. By applying a voltage to the piezoelectric actuator 56, the piezoelectric actuator 56 expands and contracts, and the center distance M changes.
  • the body can easily adjust the magnitude of the force generated between the input member and the output member.
  • the control means 6 is of a numerical control type by a computer, and an attitude setting means 60 for setting the attitude of the output member 15 with respect to the input member 14 and an attitude for detecting the attitude of the output member 15 with respect to the input member 14.
  • the posture setting means 60 sets the posture of the output member 15 by defining, for example, the bending angle ⁇ (FIG. 3) and the turning angle ⁇ (FIG. 3).
  • the posture detecting means 61 detects, for example, the rotation angle ⁇ n ( ⁇ 1, ⁇ 2 in FIG. 3) of the input side end link members 11a to 13a.
  • the bending angle ⁇ , the turning angle ⁇ , and each rotation angle ⁇ n are mutually related, and the other value can be derived from one value.
  • each rotary actuator 30 is controlled so that the contact force to be increased. In other words, each rotary actuator 30 is controlled so that a force is generated between the input member 14 and the output member 15.
  • the distance L between the link spherical centers PA and PC of the input member 14 and the output member 15 fluctuates slightly, and the magnitude of the contact force acting on the contacted portion 51 of the input member 14 and the output member 15 changes. Specifically, the contact force increases. Since the link actuating device 1 is intended to be kept at a constant operating position against this contact force, the rigidity of the entire link actuating device 1 during posture adjustment is improved.
  • (FIG. 3) is connected to the connecting end shafts of the central link members 11b to 13b rotatably connected to the input side end link members 11a to 13a and the output side end link members 11c to 13c. This is an angle formed by the connecting end shafts of the central link members 11b to 13b that are rotatably connected.
  • ⁇ n ( ⁇ 1, ⁇ 2, ⁇ 3 in FIG. 3) is a circumferential separation angle of the input side end link members 11a to 13a with respect to the reference input side end link member 11a.
  • the signal of the posture detection means 61 is used for two of the three rotary actuators 30 so that the rotation angle ⁇ n becomes the control target value.
  • the remaining one rotary actuator 30 is feedback controlled using a signal from the torque detection means 62 so that the torque generated by the rotary actuator 30 becomes a predetermined control target value.
  • the attitude of the output member 15 with respect to the input member 14 is determined.
  • torque control for the remaining actuators 40 the driving force of the two rotary actuators 30 can be reduced, and the rotary actuators 30 can be reduced in size and size.
  • the following control may be performed instead of the above control. That is, of the three rotary actuators 30, two rotary actuators 30 are position-controlled in the same manner as described above, and the remaining one rotary actuator 30 is operated in a servo-off state in which the feedback control function is turned off. Since the torque of the input side end link members 11a to 13a driven by the two rotary actuators 30 whose positions are controlled is transmitted to the remaining one rotary actuator 30 via the force transmission mechanism 43, the remaining 1 The two rotary actuators 30 can be operated even in the servo-off state.
  • the brake device 29 brakes the rotary shaft of the rotary actuator 30 to stop the rotation of each rotary actuator 30. Thereby, even if torque is transmitted to the rotary actuator 30, a constant angle can be maintained, so that the rigidity of the entire link actuator 1 during posture adjustment is improved.
  • the link actuating device 1 is configured as a two-degree-of-freedom mechanism in which the output member 15 is movable in two orthogonal axes with respect to the input member 14, and the movable range of the output member 15 can be widened while being compact. Therefore, the operability of a drive device such as a medical actuator mounted on the output member 15 is good. Further, by providing the stationary mechanism 4 in all of the three sets of link mechanisms 11 to 13, when a force is generated between the input member 14 and the output member 15 by the structure 5, the entire link operating device 1. In this state, the link actuator 1 has little backlash and has high rigidity.
  • the link actuating device 1 is provided with the structure 5 that contacts the contacted portions 51 of the input member 14 and the output member 15 and connects the input member 14 and the output member 15.
  • the play of the link actuator 1 can be eliminated and the rigidity can be improved.
  • the attitude adjustment accuracy of the output member 15 with respect to the input member 14 is improved. Since the structure 5 can change the center distance M between the contact portions 5a at both ends, the preload amount can be easily adjusted.
  • the shaft portion 18 protrudes from the outer peripheral surfaces of the input member 14 and the output member 15, the shaft portion 18 and the input side and output side end link members 11a to 13a and 11c to 13c are connected to each other in a rotatable manner.
  • a wide space can be secured at the center of the input member 14 and the output member 15. Therefore, the contacted part 51 can be easily formed in the wide space.
  • Each contacted portion 51 of the input member 14 and the output member 15 has a spherical shape centering on the link spherical center PA, PC of each link mechanism 11 to 13, and the contact portion 5a of the structure 5 is the contacted portion 51. Therefore, even if the posture of the output member 15 with respect to the input member 14 changes, the contacted portion 51 and the contact portion 5a are always kept in contact with each other. Does not affect.
  • FIG. 11 shows a fourth embodiment, in which a block diagram of a control system is added to the drawing corresponding to FIG.
  • the posture detection means 61 shown in the figure includes rotation angle detection means 71 provided at two or more of the three input side end link members 11a to 13a of the link mechanism section 3.
  • the rotation angles of the input side end link members 11a and 12a are detected by two rotation angle detecting means 71.
  • the rotation angle detection means 71 is a rotary encoder, and the rotation shaft 71a is inserted into a hole 74 provided in the shaft portion 18 of the input member 14 in a fixed state.
  • the output signals of the two rotation angle detection means 71 are sent to the angle calculation means 75.
  • the angle calculation means 75 calculates a bending angle ⁇ (FIG. 3) and a turning angle ⁇ (FIG. 3) representing the position and orientation of the output member 15 from the output signal, and sends them to the control means 6.
  • the forward conversion is conversion for calculating the bending angle ⁇ and the turning angle ⁇ from the rotation angles of the input side end link members 11a to 13a.
  • the rotation angle detection means 71 is provided as in the fourth embodiment, feedback control can be performed using the detection value of the rotation angle detection means 71. Thereby, the influence of the play and rigidity of the stationary mechanism 4 is reduced, and the attitude adjustment accuracy of the output member 15 with respect to the input member 14 is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Transmission Devices (AREA)
  • Manipulator (AREA)

Abstract

 コンパクトでありながら、可動部の可動範囲が広く、かつ姿勢調整精度が高く、しかも剛性が高いリンク作動装置を提供する。入力部材(14)に対し出力部材(15)を、3組以上のリンク機構(11)を介して姿勢を変更可能に連結する。リンク機構(11)は、入力側および出力側の端部リンク部材(11a,11c)と、中央リンク部材(11b)とでなる。リンク機構(11)は、各リンク部材(11a,11b,11c)を直線で表現した幾何学モデルが、中央リンク部材(11b)の中央部に対する入力側部分と出力側部分とが対称を成す形状である。3組以上のリンク機構(11)のすべてに、入力部材(14)に対して出力部材(15)を任意の姿勢で静止させることが可能な静止機構(4)を設ける。また、入力部材(14)および出力部材(15)にそれぞれ形成された被接触部に接触して入力部材(14)と出力部材(15)とを互いに連結する構造体(5)を設ける。

Description

リンク作動装置 関連出願
 本出願は、2010年10月14日出願の特願2010-231433の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、三次元空間における複雑な加工や物品の取り回し等の作業を高速かつ精密に実行するパラレルリンク機構やロボット関節等のリンク機構に利用されるリンク作動装置に関する。
 パラレルリンク機構を具備する作業装置の一例が、特許文献1に開示されている。この作業装置は、ツールを取付けたトラベリングプレートの位置および姿勢をパラレルリンク機構により変更するようにしたものである。パラレルリンク機構は、下端にトラベリングプレートが連結された複数のリンクを備え、これらリンクの上部が自在継手により角度変更可能に支持されると共に、リンクごとに、自在継手よりも下方へ位置する有効長さを変更可能とされている。
特開2000-94245号公報
 上記構成のパラレルリンク機構は、各リンクの作動角が小さいため、トラベリングプレートの作動範囲を大きく設定するためには、リンク長さを長くする必要がある。それにより、機構全体の寸法が大きくなって、装置が大型になってしまうという問題があった。また、リンク長さを長くすると、機構全体の剛性の低下を招く。そのため、トラベリングプレートに搭載されるツールの重量、つまりトラベリングプレートの可搬重量も小さいものに制限されるという問題もあった。
 この発明は、コンパクトでありながら、可動部の可動範囲が広く、かつ姿勢調整精度が高く、しかも剛性が高いリンク作動装置を提供することを目的としている。
 この発明のリンク作動装置は、入力部材に対し出力部材を、3組以上のリンク機構を介して姿勢を変更可能に連結し、前記各リンク機構は、それぞれ前記入力部材および出力部材に一端が回転可能に連結された入力側および出力側の端部リンク部材と、これら入力側および出力側の端部リンク部材の他端をそれぞれ回転可能に連結した中央リンク部材とでなり、前記各リンク機構は、このリンク機構を直線で表現した幾何学モデルが、前記中央リンク部材の中央部に対する入力側部分と出力側部分とが対称を成す形状である。言い換えると、この発明のリンク作動装置は、入力側および出力側のそれぞれに設けた入力部材および出力部材に対して回転可能に端部リンク部材を連結し、入力側と出力側のそれぞれの端部リンク部材を中央リンク部材に対して回転可能に連結したリンク機構を3組以上有し、各リンク機構の中央部における横断面に関して入力側と出力側を幾何学的に同一としたものである。さらに、前記3組以上のリンク機構のすべてに、前記入力部材に対して前記出力部材を任意の姿勢で静止させることが可能な静止機構を設け、前記入力部材および出力部材にそれぞれ形成された被接触部に接触して入力部材と出力部材とを互いに連結する構造体を設けたものである。
 この構成によれば、入力部材と、出力部材と、3組以上のリンク機構とで、入力部材に対し出力部材が直交2軸方向に移動自在な2自由度機構が構成される。この2自由度機構は、コンパクトでありながら、出力部材の可動範囲を広くとれる。例えば、入力部材の中心軸と出力部材の中心軸の最大折れ角は約±90°であり、入力部材に対する出力部材の旋回角を0°~360°の範囲に設定できる。
 入力部材と出力部材とを互いに連結する構造体を設けたことにより、リンク作動装置のガタつきを抑える効果および剛性を高める効果が得られる。また、3組以上のリンク機構のすべてに静止機構を設けたため、例えば構造体により入力部材と出力部材との間に力を発生させた場合に、その力を逃すリンク機構が無く、リンク作動装置全体に予圧がかかる。そのため、リンク作動装置のガタつきが減少し、かつ剛性が向上する。構造体により入力部材と出力部材との間に力を発生させない場合でも、出力部材に力が作用したときに、角度制御されていないフリーのリンク機構が存在しないため、リンク作動装置全体の剛性が向上し、出力部材の姿勢調整精度が向上する。
 この発明において、前記静止機構は、前記入力側の端部リンク部材に直接または間接的に連結され、前記入力部材に対する前記入力側の端部リンク部材の回転を拘束するように作用するアクチュエータを有するのが良い。静止部材が上記アクチュエータを有すると、入力部材に対する出力部材の姿勢を安定して保持できるだけでなく、入力部材に対する出力部材の姿勢を変更することが可能である。
 静止部材が前記アクチュエータを有する場合、前記静止機構により前記入力部材に対し前記出力部材を任意の姿勢で静止させるとき、前記入力部材および出力部材の被接触部と前記構造体との間に作用する接触力が大きくなるように前記アクチュエータを制御する制御手段を設けると良い。制御手段により、入力部材および出力部材の被接触部と前記構造体との間に作用する接触力が大きくなるように、すなわち入力部材と出力部材間に力が発生するようにアクチュエータを制御して、入力部材および出力部材のリンク球面中心間の距離を微小に変動させると、被接触部に作用する接触力の大きさが変わる。接触力が大きくなると、この接触力に抗してリンク作動装置を一定の動作位置に保とうとするため、姿勢調整時におけるリンク作動装置全体の剛性が向上する。
 前記制御手段は、前記静止機構により前記入力部材に対し前記出力部材を任意の姿勢で静止させるとき、前記各アクチュエータを、それぞれが発生する力が互いに干渉し合う方向に駆動させるように制御すると良い。各アクチュエータの発生する力が互いに干渉し合えば、入力部材に対する出力部材の姿勢変化が抑制され、リンク作動装置全体に力が作用する。それにより、入力部材および出力部材のリンク球面中心間の距離が微小に変動するため、被接触部に作用する接触力の大きさが変わり、リンク作動装置全体の剛性が向上する。
 また、前記制御手段は、前記入力部材に対し前記出力部材を姿勢変更するとき、前記各アクチュエータのうち2つのアクチュエータについては、これらアクチュエータの動作位置が定められた制御目標位置となるように制御し、残りのアクチュエータについては、このアクチュエータが発生するトルクが定められた制御目標位置となるように制御しても良い。少なくとも2つのアクチュエータを位置制御することにより、入力部材に対する出力部材の位置が決定される。残りのアクチュエータをトルク制御することで、前記2つのアクチュエータの駆動力を低減することができ、アクチュエータを小型・コンパクト化できる。また、すべてのアクチュエータを位置制御した場合、すべてのアクチュエータの位置を協調させながら駆動する必要があるため、動作速度が遅くなるが、2つのアクチュエータだけを位置制御させれば、アクチュエータのスムーズな動作が可能になり、動作速度も速くなる。
 また、前記各アクチュエータと前記各入力側の端部リンク部材との間に相互に力の伝達が可能な力伝達機構を有する場合、前記制御手段は、前記入力部材に対し前記出力部材を姿勢変更するとき、前記各アクチュエータのうち2つのアクチュエータについては、これらアクチュエータの動作位置が定められた制御目標位置となるように制御し、残りのアクチュエータについては、このアクチュエータが発生するトルクが定められた制御目標位置となるように制御するか、またはフィードバック制御機能をオフした状態であるサーボオフ状態で駆動しても良い。各アクチュエータと各入力側の端部リンク部材との間に相互に力の伝達が可能な力伝達機構を有すると、位置制御されるアクチュエータで駆動される入力側の端部リンク部材のトルクが、力伝達機構を介して残りのアクチュエータに伝達されるため、この残りのアクチュエータについては、トルク制御による駆動に限らず、サーボオフ状態でも駆動が可能である。
 前記各アクチュエータがロータリアクチュエータである場合、このロータリアクチュエータの回転軸の回転をロックするブレーキ装置を有し、前記入力部材に対し前記出力部材を任意の姿勢で静止させるとき、前記ブレーキ装置を作動させても良い。アクチュエータの回転軸にブレーキをかけることにより、アクチュエータにトルクが伝達されても一定の角度を保てるため、姿勢調整時におけるリンク作動装置全体の剛性が向上する。
 前記入力部材に対する前記入力側の端部リンク部材の回転角をβn、前記入力側の端部リンク部材に回転自在に連結された中央リンク部材の連結端軸と、前記出力側の端部リンク部材に回転自在に連結された中央リンク部材の連結端軸とが成す角度をγ、基準となる入力側の端部リンク部材に対する各入力側の端部リンク部材の円周方向の離間角をδn、前記入力部材の中心軸に対して前記出力部材が傾斜した垂直角度をθ、前記入力部材の中心軸に対して前記出力部材が傾斜した水平角度をφとした場合に、
cos(θ/2)sinβn-sin(θ/2)sin(φ+δn)cosβn+sin(γ/2)=0
で表される式を逆変換することで、前記入力部材に対する前記出力部材の姿勢を制御するのが良い。入力部材に対する出力部材の姿勢を指定すると、上記式より、各入力側の端部リンク部材の回転角を計算できる。その計算値に基づき、各入力側の端部リンク部材を駆動するアクチュエータに出力することにより、入力部材に対する出力部材の姿勢を制御できる。
 この発明において、前記構造体は、前記入力部材と出力部材との間に力を発生させるものであるのが良い。構造体により入力部材と出力部材との間に力を発生させると、リンク作動装置のガタが無くなり、剛性が向上する。その結果、入力部材に対する出力部材の姿勢調整精度が向上する。
 この発明において、前記入力部材および出力部材は、外周面から突出する前記リンク機構と同数の軸部を有し、これら軸部に各リンク機構の前記入力側および出力側の端部リンク部材をそれぞれ回転可能に連結し、かつ前記軸部よりも内径側に前記被接触部を配置するのが良い。この構成によると、入力部材および出力部材の外周面から軸部を突出させたことにより、入力側および出力側の端部リンク部材に設けた軸受により前記軸部を回転自在に支持する構造となる。この構造であると、入力部材および出力部材の中央部に広いスペースを確保することが可能であり、その広いスペースに被接触部を容易に形成することができる。
 この発明において、前記入力部材および出力部材の各被接触部は、前記各リンク機構のリンク球面中心を中心とする球面形状であり、前記構造体は、両端に前記被接触部に摺動自在に嵌る球体状の接触部を有するのが良い。入力部材および出力部材の球面形状の被接触部と、構造体の球体状の接触部とを互いに接触させることにより、リンク作動装置の動作位置に変わっても、リンク作動装置の動作に影響を与えることなく、被接触部と接触部が常に接触する状態に維持できる。
 前記構造体は、前記入力部材の被接触部に嵌る接触部を有する入力側構造体部分と、前記出力部材の被接触部に嵌る出力側構造体部分とでなり、これら入力側構造体部分および出力側構造体部分の各接触部の中心間距離を変更可能としたものであって良い。入力側構造体部分および出力側構造体部分の各接触部の中心間距離を変更可能であると、構造体により入力部材と出力部材間に発生させる力の大きさを調整できる。
 例えば、前記入力側構造体部分および出力側構造体部分のうち一方の部材は雄ねじ部を有し、他方の部材は前記雄ねじ部と螺合する雌ねじ部を有し、これら雄ねじ部と雌ねじ部のねじ込み量を変えることで、前記入力側構造体部分および出力側構造体部分の各接触部の中心間距離を変更するものとするのが良い。この構成であると、構造体により入力部材と出力部材間に発生させる力の大きさの調整が容易である。
 また、前記入力側構造体部分および出力側構造体部分に、これら入力側構造体部分および出力側構造体部分の球体状の接触部の中心を結ぶ直線に沿って互いにスライド自在な入力側スライド部および出力側スライド部をそれぞれ設けても良い。その場合、前記入力側構造体部分と出力側構造体部分とで空間部を形成し、この空間部に流体を出し入れすることで、前記入力側スライド部および出力側スライド部を互いにスライドさせる手法や、前記入力側スライド部および出力側スライド部を互いにスライドさせる圧電アクチュエータを設ける手法を採用できる。このように、入力側構造体部分および出力側構造体部分に入力側スライド部および出力側スライド部をそれぞれに設けても、前記同様に、構造体により入力部材と出力部材間に発生させる力の大きさの調整が容易になる。
 この発明において、前記入力部材は前記出力部材側の端面に、また前記出力部材は前記入力部材側の端面に、それぞれ円すい状に先狭まりとなる凹部を有し、これら凹部の最奥部を前記被接触部とするのが良い。この構成にすると、構造体と入力部材および出力部材とが干渉することを有効に回避することができ、リンク作動装置の動作範囲を広くできる。
 上記構成とする場合、前記入力部材の中心線と前記出力部材の中心線とがなす角度である折れ角の最大折れ角がθmaxであり、前記入力部材における前記凹部の内周面の母線と前記入力部材の中心線とがなす角度、および前記出力部材における前記凹部の内周面の母線と前記出力部材の中心線とがなす角度を、共にθmax/2とすると良い。この構成であると、前記折れ角が最大折れ角を超えると、構造体が、入力部材における凹部の内周面および出力部材における凹部の内周面の両方に接触する。そのため、リンク作動装置の動作範囲が規制され、信頼性が向上する。
 この発明において、前記3組以上のリンク機構うちのの2組以上に、前記入力側の端部リンク部材の回転角を検出する回転角検出手段を設けると良い。回転角検出手段を設ければ、この回転角検出手段の検出値を用いてフィードバック制御を行うことができる。それにより、静止機構のガタや剛性の影響が小さくなり、入力部材に対する出力部材の姿勢調整精度が向上する。
 前記入力部材に対する前記入力側の端部リンク部材の回転角をβn、前記入力側の端部リンク部材に回転自在に連結された中央リンク部材の連結端軸と、前記出力側の端部リンク部材に回転自在に連結された中央リンク部材の連結端軸とが成す角度をγ、基準となる入力側の端部リンク部材に対する各入力側の端部リンク部材の円周方向の離間角をδn、前記入力部材の中心軸に対して前記出力部材が傾斜した垂直角度をθ、前記入力部材の中心軸に対して前記出力部材が傾斜した水平角度をφとした場合に、
cos(θ/2)sinβn-sin(θ/2)sin(φ+δn)cosβn+sin(γ/2)=0
で表される式を順変換することで、前記入力部材に対する前記出力部材の姿勢を推定すると良い。回転角検出手段によって検出される2つ以上の入力側の端部リンク部材の回転角から、入力部材に対する出力部材の姿勢を推定できる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1実施形態にかかるリンク作動装置の一部を省略した正面図に制御系のブロック図を加えた図である。 同リンク作動装置の異なる状態を示す一部を省略した正面図である。 同リンク作動装置の斜視図である。 同リンク作動装置のリンク機構の一つを直線で表現した図である。 同リンク作動装置の入力部材、入力側の端部リンク部材、および中央リンク部材の断面図である。 同リンク作動装置の一部の破断側面図である。 同リンク作動装置の一部を拡大した破断側面図である。 同リンク作動装置の構造体の断面図である。 この発明の第2実施形態にかかるリンク作動装置の構造体の縦断面図である。 この発明の第3実施形態にかかるリンク作動装置の構造体の縦断面図である。 この発明の第4実施形態にかかるリンク作動装置の入力部材、入力側の端部リンク部材、および中央リンク部材の縦断面図に制御系のブロック図を加えた図である。
 この発明の第1実施形態を図1~図8と共に説明する。図1および図2に示すように、このリンク作動装置1は、基台2と、この基台2に入力側が支持されたリンク機構部3とを備え、リンク機構部3の出力側に、医療用アクチュエータ等の駆動装置が装着される。リンク作動装置1は、他に、リンク機構部3を一定の状態に静止させる静止機構4、リンク機構部3の入力部材14と出力部材15とを連結する構造体5、および制御手段6を備える。
 基台2は、ベース部材7、モータ取付部材8、およびリンク取付部材9からなる3層構造である。下層のベース部材7は、下端に設けた円板等の板状部7aにより、水平な設置面F上に設置される。中層のモータ取付部材8は、下端に円板等の板状部8aを有し、ベース部材7の上に設置される。上層のリンク取付部材9は、円板等の板状であり、モータ取付部材8の上に設置される。
 図3に示すように、リンク機構部3は、3組のリンク機構11,12,13(以下、「11~13」と表記する)を具備する。なお、図1および図2では、1組のリンク機構11のみを表示している。これら3組のリンク機構11~13のそれぞれは幾何学的に同一形状をなす。すなわち、各リンク機構11~13は、後述の各リンク部材11a~13a,11b~13b,11c~13cを直線で表現した幾何学モデルが、中央リンク部材11b~13bの中央部に対する入力側部分と出力側部分が対称を成す形状である。
 各リンク機構11,12,13は、入力側の端部リンク部材11a,12a,13a(以下、「11a~13a」と表記する)、中央リンク部材11b,12b,13b(以下、「11b~13b」と表記する)、および出力側の端部リンク部材11c,12c,13c(以下、「11c~13c」と表記する)で構成され、4つの回転対偶からなる3節連鎖のリンク機構をなす。入力側および出力側の端部リンク部材11a~13a,11c~13cはL字状をなし、基端がそれぞれ入力部材14および出力部材15に回転自在に連結されている。中央リンク部材11b~13bは、両端に入力側および出力側の端部リンク部材11a~13a,11c~13cの先端がそれぞれ回転自在に連結されている。
 入力側および出力側の端部リンク部材11a~13a,11c~13cは球面リンク構造で、3組のリンク機構11~13における球面リンク中心PA,PC(図1、図2)は一致しており、また、その球面リンク中心PA,PCからの距離も同じである。端部リンク部材11a~13a,11c~13cと中央リンク部材11b~13bとの連結部となる回転対偶軸は、ある交差角をもっていてもよいし、平行であってもよい。
 つまり、3組のリンク機構11~13は、幾何学的に同一形状をなす。幾何学的に同一形状とは、各リンク部材11a~13a,11b~13b,11c~13cを直線で表現した幾何学モデルが、中央リンク部材11b~13bの中央部に対する入力側部分と出力側部分が対称を成す形状であることを言う。図4は、一つのリンク機構11を直線で表現した図である。
 この実施形態のリンク機構11~13は回転対称タイプで、入力部材14および入力側の端部リンク部材11a~13aと、出力部材15および出力側の端部リンク部材11c~13cとの位置関係が、中央リンク部材11b~13bの中心線Aに対して回転対称となる位置構成になっている。図1は、入力部材14の中心軸Bと出力部材15の中心軸Cとが同一線上にある状態を示し、図2は、入力部材14の中心軸Bに対して出力部材15の中心軸Cが所定の作動角をとった状態を示す。各リンク機構11~13の姿勢が変化しても、入力側と出力側の球面リンク中心PA,PC間の距離Lは変化しない。
 入力部材14および出力部材15は六角柱状で、外周面を構成する6つの側面16のうちの1つ置きに離れた3つの側面16に、入力側および出力側の端部リンク部材11a~13a,11c~13cがそれぞれ回転自在に連結されている。
 図5は、入力部材14と入力側の端部リンク部材11a~13aの連結部を示す断面図である。入力部材14の側面16から軸部18が突出し、この軸部18に複列の軸受17の内輪(図示せず)が外嵌し、入力側の端部リンク部材11a~13aの入力部材側の端部に軸受17の外輪(図示せず)が内嵌している。つまり、内輪は入力部材14に固定され、外輪が入力側の端部リンク部材11a~13aと共に回転する構造である。軸受17は、例えば深溝玉軸受、アンギュラ玉軸受等の玉軸受であって、ナット19による締付けでもって所定の予圧量を付与して固定されている。軸受17としては、図示例のように玉軸受を複列で配列する以外に、ローラ軸受や滑り軸受を用いてもよい。出力部材15と出力側の端部リンク部材11c~13cの連結部も、同様の構造である。
 また、入力側の端部リンク部材11a~13aと中央リンク部材11b~13bの連結部も複列の軸受20を介して互いに回転自在に連結されている。すなわち、入力側の端部リンク部材11a~13aに軸受20の外輪(図示せず)が外嵌し、中央リンク部材11b~13bに設けた軸部21に軸受20の内輪(図示せず)が外嵌している。軸受20は、例えば深溝玉軸受、アンギュラ玉軸受等の玉軸受であって、ナット22による締付けでもって所定の予圧量を付与して固定されている。軸受20としては、図示例のように玉軸受を複列で配列する以外に、ローラ軸受や滑り軸受を用いてもよい。出力側の端部リンク部材11c~13cと中央リンク部材11b~13bの連結部も、同様の構造である。
 前記リンク機構11~13において、端部リンク部材11a~13a,11c~13cの軸部18の角度、長さ、および端部リンク部材11a~13a,11c~13cの幾何学的形状が入力側と出力側で等しく、また、中央リンク部材11b~13bについても入力側と出力側で形状が等しいとき、中央リンク部材11b~13bの対称面に対して中央リンク部材11b~13bと、入出力部材14,15と連結される端部リンク部材11a~13a,11c~13cとの角度位置関係を入力側と出力側で同じにすれば、幾何学的対称性から入力部材14および入力側の端部リンク部材11a~13aと、出力部材15および出力側の端部リンク部材11c~13cとは同じに動き、入力側と出力側は同じ回転角になって等速で回転することになる。この等速回転するときの中央リンク部材11b~13bの対称面を等速二等分面という。
 このため、入力部材14および出力部材15を共有する同じ幾何学形状のリンク機構11~13を円周上に複数配置させることにより、複数のリンク機構11~13が矛盾なく動ける位置として中央リンク部材11b~13bが等速二等分面上のみの動きに限定され、これにより入力側と出力側は任意の作動角をとっても等速回転が得られる。
 各リンク機構11~13における4つの回転対偶の回転部、つまり、入力部材14と入力側の端部リンク部材11a~13aとの連結部分、出力部材15と出力側の端部リンク部材11c~13cとの連結部分、および入力側および出力側の端部リンク部材11a~13a,11c~13cと中央リンク部材11b~13bとの2つの連結部分を軸受構造とすることにより、その連結部分での摩擦抵抗を抑えて回転抵抗の軽減を図ることができ、滑らかな動力伝達を確保できると共に耐久性を向上できる。
 このリンク機構部3の構成によれば、入力部材14に対する出力部材15の可動範囲を広くとれる。例えば、入力部材14の中心軸Bと出力部材15の中心軸Cの折れ角θの最大値(最大折れ角)を約±90°とすることができる。また、入力部材14に対する出力部材15の旋回角φを0°~360°の範囲で設定できる。折れ角θは、入力部材14の中心軸Bに対して出力部材15が傾斜した垂直角度のことであり、旋回角φは、入力部材14の中心軸Bに対して出力部材15が傾斜した水平角度のことである。
 静止機構4は、リンク機構部3を一定の状態に静止させることで、入力部材14に対して出力部材15を任意の姿勢で静止させる。静止機構4は3組のリンク機構11~13のすべてに設けられる。各静止機構4は、前記入力側の端部リンク部材11a、12a,13aに直接または間接的に連結され、前記入力部材14に対する前記入力側の端部リンク部材11a、12a,13aの回転を拘束するように作用するブレーキ装置29付きのロータリアクチュエータ30を備える。静止部材4が前記アクチュエータ30を有すると、入力部材14に対する出力部材15の姿勢を安定して保持できるだけでなく、入力部材14に対する出力部材15の姿勢を変更することが可能である。ブレーキ装置29は、例えば電磁ブレーキであって、ロータリアクチュエータ30の回転軸の回転をロックする機構である。ロータリアクチュエータ30およびブレーキ装置29は、前記モータ取付部材8の板状部8aに縦向きに取付けられている。
 図6に示すように、ロータリアクチュエータ30の出力軸30aは上方に突出し、この出力軸30aとピニオン軸31とが、カップリング32を介して互いに連結されている。ピニオン軸31は、出力軸30aと同軸上に配置され、前記リンク取付部材9に設けた複列の軸受33により回転自在に支持されている。詳しくは、リンク取付部材9に形成されたホルダ嵌合孔9aに筒状のピニオン軸支持ホルダ34が嵌合し、このピニオン軸支持ホルダ34内に複列の軸受33が収容されている。ピニオン軸支持ホルダ34は、ボルト35によりリンク取付部材9に固定されている。複列の軸受34は、例えば深溝玉軸受、アンギュラ玉軸受等の玉軸受であり、ピニオン軸31のつば部31aと、ピニオン軸31のねじ部31bに螺合するナット36とにより、内輪(図示せず)の軸方向位置が位置決めされ、軸支持ホルダ34のつば部34aと、前記ボルト35により軸支持ホルダ34と共にリンク取付部材9に固定された位置決め部材37とにより、外輪(図示せず)の軸方向位置が位置決めされている。
 ピニオン軸31の前記つば部31aよりも上側の部分は、外周に螺旋状のギア歯が形成されたピニオン40とされている。一方、前記出力側の端部リンク部材11a~13aにおける前記軸部18との回転対偶部に連結部材41が固定して取付けられ、この連結部材41に、前記ピニオン40と噛み合う螺旋状のギア歯が形成された扇形ギア42が設けられている。扇形ギア42の中心軸は、軸部18の中心軸と一致する。ピニオン40の中心軸と扇形ギア42の中心軸とは、正面視で直角の角度を持ち、かつ互いに前後にオフセットされている。すなわち、ピニオン40および扇形ギア42はハイポイドギアであり、両者で力伝達機構43を構成する。ハイポイドギアからなる力伝達機構43は、高い減速比をとることができ、正逆両方向に力の伝達が可能である。なお、連結部材41は、図5に示すように、ボルト44,45により出力側の端部リンク部材11a~13aに固定されている。
 構造体5は、両端を入力部材14および出力部材15の被接触部にそれぞれ接触させて、入力部材14と出力部材15との間に力を発生させるものである。図7は、入力部材14の被接触部を示す。図示は省略するが、出力部材15の被接触部も同様である。入力部材14(出力部材15)における出力部材15(入力部材14)と対向する側の端面に、円すい状に先狭まりとなる凹部50が形成されており、この凹部50の最奥部が球面状の被接触部51とされている。球面状の被接触部51の中心は、前記入力側(出力側)の球面リンク中心PA(PC)と一致する。構造体5の両端の接触部5aは、上記被接触部51に摺動自在に嵌る球体状である。
 前記凹部50の内周面の母線Dと入力部材14(出力部材15)の中心線B(C)とがなす角度αは、入力部材14の中心線Bと出力部材15の中心線Cとがなす角度である折れ角θ(図3)の最大折れ角をθmaxとした場合、α=θmax/2としてある。
 このような構成にすると、前記折れ角θが最大折れ角θmaxを超えると、構造体5が、入力部材14における凹部50の内周面および出力部材15における凹部50の内周面の両方に接触する。そのため、リンク作動装置の動作範囲が規制され、信頼性が向上する。
 図8に示すように、構造体5は、入力部材14の被接触部51に嵌る接触部5aを有する入力側構造体部分52と、出力部材15の被接触部51に嵌る接触部5aを有する出力側構造体部分53とでなり、入力側構造体部分52の雌ねじ部52aと出力側構造体部分53の雄ねじ部53aとが螺合している。これら雄ねじ部52aと雌ねじ部53aのねじ込み量を変えることで、入力側構造体部分52および出力側構造体部分53の各接触部5aの中心間距離Mが変更される。入力側構造体部分52に雄ねじ部(図示せず)を設け、出力側構造体部分53に雌ねじ部(図示せず)を設けた構成としてもよい。このような構成であると、構造体5により入力部材14と出力部材15間に発生させる力の大きさの調整が容易である。
 構造体5は、入力側構造体部分52と出力側構造体部分53とが互いにスライドさせることで、前記中心間距離Mを変更する構成であっても良い。このように、入力側構造体部分52および出力側構造体部分53の各接触部の中心間距離Mを変更可能であると、構造体5により入力部材14と出力部材15間に発生させる力の大きさを調整できる。
 以上説明したように、この第1実施形態によれば、入力部材14と出力部材15とを互いに連結する構造体5を設けたことにより、リンク作動装置のガタつきを抑える効果および剛性を高める効果が得られる。
 図9に示す第2実施形態にかかるリンク作動装置における構造体5は、入力側構造体部分52および出力側構造体部分53に、これら入力側構造体部分52および出力側構造体部分53の球体状の接触部の中心を結ぶ直線に沿って互いにスライド自在な入力側スライド部52bおよび出力側スライド部53bをそれぞれ設けたものである。つまり、入力側構造体部分52に筒状の入力側スライド部52bを設け、出力側構造体部分53に前記入力側スライド部52bにスライド自在な出力側スライド部53bを設けて、入力側構造体部分52および出力側構造体部分53を互いにスライド可能としている。入力側スライド部52bと出力側スライド部53bとで形成された空間部54には空気、水、油等の流体が封入されており、この流体の圧力により、入力部材14と出力部材15との間に発生する力を制御している。空間部54には、管継手55を介して外部から流体を供給可能である。空間部54内に流体を出し入れすることで、入力側スライド部52bおよび出力側スライド部53bを互いに摺動させて、前記中心間距離Mを変更する。入力側スライド部52bと出力側スライド部53bとの接触面は、例えば滑り軸受構造になっている。両スライド部52b,53bの隙間が小さいほど、空間部54からの流体の漏れが少ないため、大きな力を発生できる。
 この第2実施形態のように、入力側構造体部分52および出力側構造体部分53に入力側スライド部52bおよび出力側スライド部53bをそれぞれに設けても、構造体5により入力部材14と出力部材15間に発生させる力の大きさの調整が容易になる。
 図10に示す第3実施形態にかかるリンク作動装置における構造体5も、前記第2実施形態と同様に、入力側構造体部分52に筒状の入力側スライド部52bを設け、出力側構造体部分53に前記入力側スライド部52bにスライド自在な出力側スライド部53bを設けて、入力側構造体部分52および出力側構造体部分53を互いにスライド可能としている。入力側スライド部52bと出力側スライド部53bとの間の空間に、圧電アクチュエータ56が設けられている。圧電アクチュエータ56は、配線57により外部の電源に繋がっている。圧電アクチュエータ56に電圧をかけることにより、この圧電アクチュエータ56が伸縮し、前記中心間距離Mが変更する。
 この第3実施形態の場合でも、前記第2実施形態と同様、入力側構造体部分および出力側構造体部分に入力側スライド部および出力側スライド部をそれぞれに設けても、前記同様に、構造体により入力部材と出力部材間に発生させる力の大きさの調整が容易になる。
 図1において、制御手段6は、コンピュータによる数値制御式のものであり、入力部材14に対する出力部材15の姿勢を設定する姿勢設定手段60と、入力部材14に対する出力部材15の姿勢を検出する姿勢検出手段61と、ロータリアクチュエータ30のトルクを検出するトルク検出手段62とからの信号に基づき、各静止機構4のロータリアクチュエータ30および電磁ブレーキ29に出力指令を与える。姿勢設定手段60は、例えば折れ角θ(図3)および旋回角φ(図3)を規定することで、出力部材15の姿勢を設定する。姿勢検出手段61は、例えば入力側の端部リンク部材11a~13aの回転角βn(図3におけるβ1,β2)を検出する。折れ角θおよび旋回角φと、各回転角βnとは相互関係があり、一方の値から他方の値を導くことができる。
 入力部材14に対し出力部材15を任意の姿勢で静止させる場合は、前記制御手段6により、入力部材14および出力部材15の各被接触部51と構造体5の接触部5aとの間に作用する接触力が大きくなるように各ロータリアクチュエータ30を制御する。言い換えると、入力部材14と出力部材15間に力が発生するように各ロータリアクチュエータ30を制御する。それにより、入力部材14および出力部材15のリンク球面中心PA,PC間の距離Lが微小に変動し、入力部材14および出力部材15の被接触部51に作用する接触力の大きさが変わる。具体的には、接触力が大きくなる。この接触力に抗してリンク作動装置1を一定の動作位置に保とうとするため、姿勢調整時におけるリンク作動装置1全体の剛性が向上する。
 また、前記静止機構4により前記入力部材14に対し前記出力部材15を任意の姿勢で静止させるとき、前記制御手段6による前記ロータリアクチュエータ30の制御において、それぞれが発生する力が互いに干渉し合う方向に各ロータリアクチュエータ30を駆動させる。各ロータリアクチュエータ30の発生する力が互いに干渉し合えば、入力部材14に対する出力部材15の姿勢変化が抑制され、リンク作動装置1全体に力が作用する。それにより、リンク球面中心PA,PC間の距離Lの変動が抑えられて、リンク作動装置1全体の剛性がより一層向上する。
 入力部材14に対し出力部材15を姿勢変更する場合は、姿勢設定手段60により設定された出力部材15の姿勢に応じて、入力側の端部リンク部材11a~13aの回転角βnの制御目標値を計算する。上記回転角βnは、ロータリアクチュエータ30の動作位置を意味する。βnの計算は、下記の式1を逆変換することで行われる。逆変換とは、折れ角θおよび旋回角φから端部リンク部材11a~13aの回転角βnを算出する変換のことである。
cos(θ/2)sinβn-sin(θ/2)sin(φ+δn)cosβn+sin(γ/2)=0 …(式1)
 ここで、γ(図3)は、入力側の端部リンク部材11a~13aに回転自在に連結された中央リンク部材11b~13bの連結端軸と、出力側の端部リンク部材11c~13cに回転自在に連結された中央リンク部材11b~13bの連結端軸とが成す角度である。δn(図3におけるδ1,δ2,δ3)は、基準となる入力側の端部リンク部材11aに対する各入力側の端部リンク部材11a~13aの円周方向の離間角である。
 回転角βnの制御目標値を計算したなら、3つのロータリアクチュエータ30のうち2つのロータリアクチュエータ30については、前記回転角βnが制御目標値となるように、姿勢検出手段61の信号を利用してフィードバック制御する。残りの1つのロータリアクチュエータ30については、このロータリアクチュエータ30の発生するトルクが定められた制御目標値となるように、トルク検出手段62の信号を利用してフィードバック制御する。
 このように、2つのロータリアクチュエータ30を位置制御することにより、入力部材14に対する出力部材15の姿勢が決定される。残りのアクチュエータ40はトルク制御とすることで、前記2つのロータリアクチュエータ30の駆動力を低減することができ、ロータリアクチュエータ30を小型・コンパクト化できる。すべてのロータリアクチュエータ30を位置制御した場合、すべてのロータリアクチュエータ30の位置を協調させながら駆動する必要があるため、動作速度が遅くなるが、2つのロータリアクチュエータ30だけを位置制御させるのであれば、ロータリアクチュエータ30のスムーズな動作が可能になり、動作速度が速くなる。
 この第3実施形態のように、力伝達機構43が設けられている場合、上記制御に代えて、以下のように制御してもよい。すなわち、3つのロータリアクチュエータ30のうち2つのロータリアクチュエータ30については、前記同様に位置制御し、残りの1つのロータリアクチュエータ30については、フィードバック制御機能をオフした状態であるサーボオフ状態で動作させる。位置制御される2つのロータリアクチュエータ30で駆動される入力側の端部リンク部材11a~13aのトルクが、力伝達機構43を介して残りの1つのロータリアクチュエータ30に伝達されるため、残りの1つのロータリアクチュエータ30をサーボオフ状態でも動作させることが可能である。
 姿勢変更中の出力部材15を静止させるときは、ブレーキ装置29によりロータリアクチュエータ30の回転軸にブレーキをかけて、各ロータリアクチュエータ30を回転停止させる。それにより、ロータリアクチュエータ30にトルクが伝達されても一定の角度を保てるため、姿勢調整時におけるリンク作動装置1全体の剛性が向上する。
 このリンク作動装置1は、入力部材14に対し出力部材15が直交2軸方向に移動自在な2自由度機構として構成されており、コンパクトでありながら、出力部材15の可動範囲を広くとれる。そのため、出力部材15に搭載される医療用アクチュエータ等の駆動装置の操作性が良い。また、3組のリンク機構11~13のすべてに静止機構4を設けたことにより、構造体5により入力部材14と出力部材15との間に力を発生させた場合に、リンク作動装置1全体に予圧がかかった状態となり、リンク作動装置1のガタつきが少なく、かつ剛性が高い。構造体5により入力部材14と出力部材15との間に力を発生させない場合でも、出力部材15に力が作用したときに、角度制御されていないフリーのリンク機構11~13が存在しないため、リンク作動装置1全体の剛性が高く、入力部材14に対する出力部材15の姿勢調整精度が良い。
 また、このリンク作動装置1には、入力部材14および出力部材15の被接触部51にそれぞれ接触して入力部材14と出力部材15を連結する構造体5が設けられているため、この構造体5により入力部材14と出力部材15との間に力を発生、すなわち予圧を与えることにより、リンク作動装置1のガタを無くし、剛性を向上させることができる。その結果、入力部材14に対する出力部材15の姿勢調整精度が向上する。構造体5は、両端の各接触部5aの中心間距離Mを変更可能であるため、上記予圧量を容易に調整できる。
 入力部材14および出力部材15の外周面から軸部18を突出し、この軸部18と、入力側および出力側の端部リンク部材11a~13a,11c~13cとを互いに回転可能に連結させたため、入力部材14および出力部材15の中央部に広いスペースを確保することができる。そのため、その広いスペースに被接触部51を容易に形成することができる。
 入力部材14および出力部材15の各被接触部51は、各リンク機構11~13のリンク球面中心PA,PCを中心とする球面形状であり、構造体5の接触部5aは上記被接触部51に摺動自在に嵌る球体状であるため、入力部材14に対する出力部材15の姿勢が変わっても、被接触部51と接触部5aが常に接触する状態に維持され、リンク作動装置1の動作に影響を与えない。
 図11は、第4実施形態を示し、図5に対応する図面に制御系のブロック図を加えたものである。同図に示す姿勢検出手段61は、リンク機構部3の3つの入力側の端部リンク部材11a~13aのうち2つ以上に設けられた回転角検出手段71を有する。図例では、2つの回転角検出手段71により、入力側の端部リンク部材11a,12aの回転角を検出する。例えば、回転角検出手段71はロータリエンコーダであり、その回転軸71aが、入力部材14の軸部18に設けた孔74に固定状態で挿入されている。
 上記2つの回転角検出手段71の出力信号は、角度算出手段75に送られる。角度算出手段75は、上記出力信号より、出力部材15の位置および姿勢を表す折れ角θ(図3)および旋回角φ(図3)を算出し、それを制御手段6に送る。
 なお、上記角度算出手段75による折れ角θおよび旋回角φの算出は、前記式1を順変換することで行われる。順変換とは、入力側の端部リンク部材11a~13aの回転角度から折れ角θおよび旋回角φを算出する変換のことである。
 この第4実施形態のように、回転角検出手段71を設ければ、この回転角検出手段71の検出値を用いてフィードバック制御を行うことができる。それにより、静止機構4のガタや剛性の影響が小さくなり、入力部材14に対する出力部材15の姿勢調整精度が向上する。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
1…リンク作動装置
4…静止機構
5…構造体
5a…接触部
6…制御手段
11,12,13…リンク機構
11a,12a,13a…入力側の端部リンク部材
11b,12b,13b…中央リンク部材
11c,12c,13c…出力側の端部リンク部材
14…入力部材
15…出力部材
29…ブレーキ装置
30…ロータリアクチュエータ
43…力伝達機構
50…凹部
51…被接触部
52…入力側構造体部分
52a…雌ねじ部
52b…入力側スライド部
53…出力側構造体部分
53a…雄ねじ部
53b…出側スライド部
54…空間部
56…圧電アクチュエータ
71…回転角検出手段

Claims (20)

  1.  入力部材に対し出力部材を、3組以上のリンク機構を介して姿勢を変更可能に連結し、前記各リンク機構は、それぞれ前記入力部材および出力部材に一端が回転可能に連結された入力側および出力側の端部リンク部材と、これら入力側および出力側の端部リンク部材の他端をそれぞれ回転可能に連結した中央リンク部材とでなり、前記各リンク機構は、このリンク機構を直線で表現した幾何学モデルが、前記中央リンク部材の中央部に対する入力側部分と出力側部分とが対称を成す形状であるリンク作動装置であって、
     前記3組以上のリンク機構のすべてに、前記入力部材に対して前記出力部材を任意の姿勢で静止させることが可能な静止機構を設け、
     前記入力部材および出力部材にそれぞれ形成された被接触部に接触して入力部材と出力部材とを互いに連結する構造体を設けたリンク作動装置。
  2.  請求項1において、前記静止機構は、前記入力側の端部リンク部材に直接または間接的に連結され、前記入力部材に対する前記入力側の端部リンク部材の回転を拘束するように作用するアクチュエータを有するリンク作動装置。
  3.  請求項2において、前記静止機構により前記入力部材に対し前記出力部材を任意の姿勢で静止させるとき、前記入力部材および出力部材の被接触部と前記構造体との間に作用する接触力が大きくなるように前記アクチュエータを制御する制御手段を設けたリンク作動装置。
  4.  請求項3において、前記制御手段は、前記静止機構により前記入力部材に対し前記出力部材を任意の姿勢で静止させるとき、前記各アクチュエータを、それぞれが発生する力が互いに干渉し合う方向に駆動させるように制御するリンク作動装置。
  5.  請求項3において、前記制御手段は、前記入力部材に対し前記出力部材を姿勢変更するとき、前記各アクチュエータのうち2つのアクチュエータについては、これらアクチュエータの動作位置が定められた制御目標位置となるように制御し、残りのアクチュエータについては、このアクチュエータの発生するトルクが定められた制御目標位置となるように制御するリンク作動装置。
  6.  請求項3において、前記各アクチュエータと前記各入力側の端部リンク部材との間に相互に力の伝達が可能な力伝達機構を有し、前記制御手段は、前記入力部材に対し前記出力部材を姿勢変更するとき、前記各アクチュエータのうち2つのアクチュエータについては、これらアクチュエータの動作位置が定められた制御目標位置となるように制御し、残りのアクチュエータについては、このアクチュエータの発生するトルクが定められた制御目標位置となるように制御するか、またはフィードバック制御機能をオフした状態であるサーボオフ状態で駆動するリンク作動装置。
  7.  請求項2において、前記各アクチュエータはロータリアクチュエータであって、このロータリアクチュエータの回転軸の回転をロックするブレーキ装置を有し、前記入力部材に対し前記出力部材を任意の姿勢で静止させるとき、前記ブレーキ装置を作動させるリンク作動装置。
  8.  請求項2において、前記入力部材に対する前記入力側の端部リンク部材の回転角をβn、前記入力側の端部リンク部材に回転自在に連結された中央リンク部材の連結端軸と、前記出力側の端部リンク部材に回転自在に連結された中央リンク部材の連結端軸とが成す角度をγ、基準となる入力側の端部リンク部材に対する各入力側の端部リンク部材の円周方向の離間角をδn、前記入力部材の中心軸に対して前記出力部材が傾斜した垂直角度をθ、前記入力部材の中心軸に対して前記出力部材が傾斜した水平角度をφとした場合に、
    cos(θ/2)sinβn-sin(θ/2)sin(φ+δn)cosβn+sin(γ/2)=0
    で表される式を逆変換することで、前記入力部材に対する前記出力部材の姿勢を制御するリンク作動装置。
  9.  請求項1において、前記構造体は、前記入力部材と出力部材との間に力を発生させるリンク作動装置。
  10.  請求項1において、前記入力部材および出力部材は、外周面から突出する前記リンク機構と同数の軸部を有し、これら軸部に各リンク機構の前記入力側および出力側の端部リンク部材をそれぞれ回転可能に連結し、かつ前記軸部よりも内径側に前記被接触部を配置したリンク作動装置。
  11.  請求項1において、前記入力部材および出力部材の各被接触部は、前記各リンク機構のリンク球面中心を中心とする球面形状であり、前記構造体は、両端に前記被接触部に摺動自在に嵌る球体状の接触部を有するリンク作動装置。
  12.  請求項11において、前記構造体は、前記入力部材の被接触部に嵌る接触部を有する入力側構造体部分と、前記出力部材の被接触部に嵌る接触部を有する出力側構造体部分とでなり、これら入力側構造体部分および出力側構造体部分の各接触部の中心間距離を変更可能としたリンク作動装置。
  13.  請求項12において、前記入力側構造体部分および出力側構造体部分のうち一方の部材は雄ねじ部を有し、他方の部材は前記雄ねじ部と螺合する雌ねじ部を有し、これら雄ねじ部と雌ねじ部のねじ込み量を変えることで、前記入力側構造体部分および出力側構造体部分の各接触部の中心間距離を変更するものとしたリンク作動装置。
  14.  請求項12において、前記入力側構造体部分および出力側構造体部分に、これら入力側構造体部分および出力側構造体部分の球体状の接触部の中心を結ぶ直線に沿って互いにスライド自在な入力側スライド部および出力側スライド部をそれぞれ設けたリンク作動装置。
  15.  請求項14において、前記入力側構造体部分と出力側構造体部分とで空間部を形成し、この空間部に流体を出し入れすることで、前記入力側スライド部および出力側スライド部を互いにスライドさせるものとしたリンク作動装置。
  16.  請求項14において、前記入力側スライド部および出力側スライド部を互いにスライドさせる圧電アクチュエータを設けたリンク作動装置。
  17.  請求項1において、前記入力部材は前記出力部材側の端面に、また前記出力部材は前記入力部材側の端面に、それぞれ円すい状に先狭まりとなる凹部を有し、これら凹部の最奥部を前記被接触部としたリンク作動装置。
  18.  請求項17において、前記入力部材の中心線と前記出力部材の中心線とがなす角度である折れ角の最大折れ角がθmaxであり、前記入力部材における前記凹部の内周面の母線と前記入力部材の中心線とがなす角度、および前記出力部材における前記凹部の内周面の母線と前記出力部材の中心線とがなす角度を、共にθmax/2としたリンク作動装置。
  19.  請求項1において、前記3組以上のリンク機構うちのの2組以上に、前記入力側の端部リンク部材の回転角を検出する回転角検出手段を設けたリンク作動装置。
  20.  請求項19において、前記入力部材に対する前記入力側の端部リンク部材の回転角をβn、前記入力側の端部リンク部材に回転自在に連結された中央リンク部材の連結端軸と、前記出力側の端部リンク部材に回転自在に連結された中央リンク部材の連結端軸とが成す角度をγ、基準となる入力側の端部リンク部材に対する各入力側の端部リンク部材の円周方向の離間角をδn、前記入力部材の中心軸に対して前記出力部材が傾斜した垂直角度をθ、前記入力部材の中心軸に対して前記出力部材が傾斜した水平角度をφとした場合に、cos(θ/2)sinβn-sin(θ/2)sin(φ+δn)cosβn+sin(γ/2)=0
    で表される式を順変換することで、前記入力部材に対する前記出力部材の姿勢を推定するリンク作動装置。
PCT/JP2011/072746 2010-10-14 2011-10-03 リンク作動装置 WO2012049996A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112011103473.3T DE112011103473B4 (de) 2010-10-14 2011-10-03 Eine verbindungstätigende Vorrichtung
US13/878,523 US9249869B2 (en) 2010-10-14 2011-10-03 Link actuating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-231433 2010-10-14
JP2010231433A JP5675258B2 (ja) 2010-10-14 2010-10-14 リンク作動装置

Publications (1)

Publication Number Publication Date
WO2012049996A1 true WO2012049996A1 (ja) 2012-04-19

Family

ID=45938225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072746 WO2012049996A1 (ja) 2010-10-14 2011-10-03 リンク作動装置

Country Status (4)

Country Link
US (1) US9249869B2 (ja)
JP (1) JP5675258B2 (ja)
DE (1) DE112011103473B4 (ja)
WO (1) WO2012049996A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011225217B2 (en) * 2010-03-11 2014-11-20 Nippon Steel Corporation Positioning apparatus, working system, and hot working apparatus
EP2829367B1 (en) * 2012-03-23 2019-03-06 NTN Corporation Link actuation device
JP6029969B2 (ja) * 2012-12-18 2016-11-24 Ntn株式会社 リンク作動装置
JP6133162B2 (ja) * 2013-07-29 2017-05-24 Ntn株式会社 リンク作動装置
EP2979823B1 (en) * 2013-03-26 2019-07-10 NTN Corporation Linking apparatus control device
JP5976580B2 (ja) * 2013-03-26 2016-08-23 Ntn株式会社 リンク作動装置の制御装置
JP6215623B2 (ja) * 2013-09-10 2017-10-18 Ntn株式会社 リンク作動装置の制御装置
JP6271288B2 (ja) * 2014-02-20 2018-01-31 Ntn株式会社 リンク作動装置の制御装置および制御方法
JP6289973B2 (ja) * 2014-03-31 2018-03-07 Ntn株式会社 パラレルリンク機構およびリンク作動装置
JP6453066B2 (ja) 2014-12-05 2019-01-16 Ntn株式会社 リンク作動装置の制御方法
JP6502115B2 (ja) * 2015-02-13 2019-04-17 Ntn株式会社 リンク作動装置を用いた多関節ロボット
EP3470704B1 (en) * 2016-06-08 2021-04-28 NTN Corporation Link operating device
GB2552383B (en) * 2016-07-22 2022-08-24 Cmr Surgical Ltd Gear packaging for robotic joints
WO2018029910A1 (ja) 2016-08-08 2018-02-15 三菱電機株式会社 パラレルリンク機構の制御装置
JP2018075689A (ja) * 2016-11-11 2018-05-17 Ntn株式会社 作動装置および双腕型作動装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419082A (ja) * 1990-05-15 1992-01-23 Shin Meiwa Ind Co Ltd ロボット
JPH0811081A (ja) * 1994-06-29 1996-01-16 Kawasaki Heavy Ind Ltd 空間3および4自由度の駆動装置
JPH1177577A (ja) * 1997-09-02 1999-03-23 Toshiba Mach Co Ltd ワイヤ駆動式マニピュレータ
JP2000120824A (ja) * 1998-10-16 2000-04-28 Seiko Seiki Co Ltd パラレルリンク機構
JP2004009276A (ja) * 2002-06-11 2004-01-15 Ntn Corp リンク作動装置
JP2005305585A (ja) * 2004-04-20 2005-11-04 Ntn Corp 遠隔操作システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762016A (en) * 1987-03-27 1988-08-09 The Regents Of The University Of California Robotic manipulator having three degrees of freedom
US6047610A (en) * 1997-04-18 2000-04-11 Stocco; Leo J Hybrid serial/parallel manipulator
AU9036098A (en) * 1997-08-28 1999-03-16 Microdexterity Systems Parallel mechanism
JP2000094245A (ja) 1998-09-17 2000-04-04 Fanuc Ltd パラレルリンク機構を具備する作業装置
DE69930398T2 (de) * 1999-09-20 2006-10-19 Nikon Corp. Belichtungssystem mit einem parallelen Verbindungsmechanismus und Belichtungsverfahren
KR100334902B1 (ko) 1999-12-06 2002-05-04 윤덕용 정밀작업용 6자유도 병렬기구
JP4632560B2 (ja) * 2000-03-01 2011-02-16 シーグ パック システムズ アクチェンゲゼルシャフト 三次元空間内で製品を操作するロボット
JP2005144627A (ja) * 2003-11-18 2005-06-09 Ntn Corp リンク作動装置
CN1878640A (zh) 2003-12-03 2006-12-13 Ntn株式会社 联动装置
EP1792694B1 (en) * 2004-07-20 2010-06-02 Kawasaki Jukogyo Kabushiki Kaisha Arm structure for robot
JP4806229B2 (ja) * 2005-07-29 2011-11-02 国立大学法人東京工業大学 マイクロマニピュレータ
CN101262985B (zh) * 2005-09-16 2011-12-14 株式会社爱发科 输送机构、输送装置及真空处理装置
JP4232795B2 (ja) * 2005-10-19 2009-03-04 セイコーエプソン株式会社 平行リンク機構及び産業用ロボット
KR101160242B1 (ko) * 2006-11-14 2012-06-26 가부시키가이샤 알박 회전 도입 기구, 기판 반송 장치 및 진공 처리 장치
JP5364412B2 (ja) 2009-03-26 2013-12-11 富士通テン株式会社 検索装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419082A (ja) * 1990-05-15 1992-01-23 Shin Meiwa Ind Co Ltd ロボット
JPH0811081A (ja) * 1994-06-29 1996-01-16 Kawasaki Heavy Ind Ltd 空間3および4自由度の駆動装置
JPH1177577A (ja) * 1997-09-02 1999-03-23 Toshiba Mach Co Ltd ワイヤ駆動式マニピュレータ
JP2000120824A (ja) * 1998-10-16 2000-04-28 Seiko Seiki Co Ltd パラレルリンク機構
JP2004009276A (ja) * 2002-06-11 2004-01-15 Ntn Corp リンク作動装置
JP2005305585A (ja) * 2004-04-20 2005-11-04 Ntn Corp 遠隔操作システム

Also Published As

Publication number Publication date
DE112011103473B4 (de) 2024-06-06
DE112011103473T5 (de) 2013-08-01
JP2012082937A (ja) 2012-04-26
US20130192420A1 (en) 2013-08-01
US9249869B2 (en) 2016-02-02
JP5675258B2 (ja) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5675258B2 (ja) リンク作動装置
WO2013065560A1 (ja) リンク作動装置の原点位置初期設定方法およびリンク作動装置
WO2011145499A1 (ja) リンク作動装置
WO2013065675A1 (ja) パラレルリンク機構、等速自在継手およびリンク作動装置
US9243696B2 (en) Link actuating device
JP6502115B2 (ja) リンク作動装置を用いた多関節ロボット
WO2015151898A1 (ja) パラレルリンク機構およびリンク作動装置
WO2013069533A1 (ja) リンク作動装置
JP5911697B2 (ja) パラレルリンク機構、等速自在継手、およびリンク作動装置
JP7022008B2 (ja) リンク作動装置
JP6282764B2 (ja) パラレルリンク機構、等速自在継手、およびリンク作動装置
WO2017051839A1 (ja) 組合せ型リンク作動装置
EP2998081B1 (en) Link actuation device
WO2014156784A1 (ja) リンク作動装置の制御装置
WO2016098633A1 (ja) リンク作動装置
WO2017213034A1 (ja) リンク作動装置
JP7089852B2 (ja) リンク作動装置
JP6029969B2 (ja) リンク作動装置
JP2012066323A (ja) 操作機構
WO2016129623A1 (ja) リンク作動装置を用いた多関節ロボット
WO2013015165A1 (ja) 等速自在継手およびリンク作動装置
JP6133162B2 (ja) リンク作動装置
WO2019065650A1 (ja) リンク作動装置
JP2005147333A (ja) リンク作動装置
WO2015182556A1 (ja) パラレルリンク機構およびリンク作動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832432

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13878523

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011103473

Country of ref document: DE

Ref document number: 1120111034733

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832432

Country of ref document: EP

Kind code of ref document: A1