WO2015182556A1 - パラレルリンク機構およびリンク作動装置 - Google Patents

パラレルリンク機構およびリンク作動装置 Download PDF

Info

Publication number
WO2015182556A1
WO2015182556A1 PCT/JP2015/064934 JP2015064934W WO2015182556A1 WO 2015182556 A1 WO2015182556 A1 WO 2015182556A1 JP 2015064934 W JP2015064934 W JP 2015064934W WO 2015182556 A1 WO2015182556 A1 WO 2015182556A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
end side
hub
plate
base end
Prior art date
Application number
PCT/JP2015/064934
Other languages
English (en)
French (fr)
Inventor
浩 磯部
Original Assignee
Ntn株式会社
浩 磯部
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 浩 磯部 filed Critical Ntn株式会社
Publication of WO2015182556A1 publication Critical patent/WO2015182556A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/46Gearings comprising primarily only links or levers, with or without slides with movements in three dimensions
    • F16H21/48Gearings comprising primarily only links or levers, with or without slides with movements in three dimensions for conveying rotary motions

Definitions

  • This invention relates to a parallel link mechanism and a link actuating device used for a device requiring a wide operating range with high speed and high accuracy such as medical equipment and industrial equipment.
  • Patent Documents 1 and 2 propose parallel link mechanisms used for various working devices such as medical equipment and industrial equipment.
  • the parallel link mechanism of Patent Document 1 has a relatively simple configuration, but the operating angle of each link is small. Therefore, if the operating range of the traveling plate is set large, there is a problem that the link length becomes long, thereby increasing the overall size of the mechanism and increasing the size of the apparatus. There is also a problem that the rigidity of the whole mechanism is low and the weight of the tool mounted on the traveling plate, that is, the weight of the traveling plate is limited to a small weight.
  • the parallel link mechanism of Patent Document 2 has a configuration in which the distal end side link hub is connected to the proximal end side link hub through three or more sets of four-bar linkages so that the posture can be changed. Although it is compact, it can operate in a wide range of operation with high speed and high accuracy.
  • Patent Document 2 has a problem that the component configuration is complicated and the assemblability is poor. In addition, in order to ensure rigidity and strength, each part has a complicated shape, and there is a problem that mass productivity is poor and manufacturing cost is high.
  • An object of the present invention is to provide a parallel link mechanism that can operate in a wide range of operation with high speed and high accuracy, is easy to assemble, is excellent in mass productivity, and can be manufactured at low cost.
  • the link hub on the distal end side is connected to the link hub on the proximal end side so that the posture can be changed via three or more sets of link mechanisms.
  • the end link member on the proximal end side and the distal end side that is rotatably connected to the link hub on the side and the distal end side link hub, and both ends on the other end of the end link member on the proximal end side and the distal end side
  • a central link member rotatably connected to each other, and the end link members on the base end side and the distal end side are made of a plate material having one or more bent portions bent in the plate thickness direction.
  • base end side and “tip end side” are used in the following meanings. That is, the point at which the rotation hub of the link hub and the end link member and the center axis of each rotation pair of the end link member and the central link member intersect with each other is referred to as the “spherical link center” of the link hub. Further, a straight line that passes through the center of the spherical link and intersects with the central axis of the rotational pair of the link hub and the end link member at a right angle is referred to as “the central axis of the link hub”.
  • the spherical link center direction on the base end side is the base end side and the spherical link center direction on the front end side is the front end when viewed from the intersection where the center axes of the link hubs on the base end side and the tip end side intersect with each link hub. On the side.
  • the proximal-side link hub, the distal-side link hub, and the three or more sets of link mechanisms rotate the distal-side link hub around two orthogonal axes with respect to the proximal-side link hub.
  • a free two-degree-of-freedom mechanism is configured. Although this two-degree-of-freedom mechanism is compact, the movable range of the link hub on the distal end side can be widened.
  • the maximum bend angle between the central axis of the link hub on the proximal end side and the central axis of the link hub on the distal end side is about ⁇ 90 °
  • the turning angle of the link hub on the distal end side with respect to the link hub on the proximal end side is 0 ° It can be set in the range of up to 360 °.
  • the end link members on the base end side and the tip end side are made of plate materials, the end link members on the base end side and the tip end side can be manufactured at low cost and are excellent in mass productivity.
  • the end link member on the base end side and the front end side is a plate material, the end link member on the base end side and the front end side and the rotation pair part of the link hub on the base end side and the front end side, and the base end side And the structure of the rotation pair part of the edge part link member of a front end side and a center link member can be simplified, and assembly property improves.
  • the end link members on the proximal end side and the distal end side have two or more bent portions, the outer diameter of the parallel link mechanism becomes compact, and interference between components can be avoided.
  • the plate member constituting the end link member is a metal plate, and the bent portion is formed by sheet metal bending. According to this configuration, the bending portion can be easily processed.
  • the end link member may be composed of two or more plate materials having one or more bent portions bent in the plate thickness direction.
  • the end link member is composed of two plate members, and the two plate members are arranged in parallel so that the plate surfaces face each other. If the end link members on the base end side and the tip end side are formed of two or more plate members, the plate thickness of the plate member can be reduced while ensuring the strength of the end link members on the base end side and the tip end side. Thereby, while being able to manufacture the edge part link member of a base end side and a front end side cheaply, weight reduction can be achieved.
  • each rotation pair of the base end side and the tip end side end link member and the link hub, and the base end side and the tip end side is arranged between the two plate members by disposing the base end side and tip end side link hubs and the center link member incorporating the bearings. It is preferable that a rotary shaft body is inserted through a through hole provided in one plate material and an inner ring of the bearing, and the two plate materials, the inner ring of the bearing, and the rotary shaft body are fixed to each other.
  • both ends of the rotating shaft body are supported by the two plate members on the outer diameter side and the inner diameter side, and the bearing is positioned between the two plate materials. For this reason, the rigidity with respect to the moment load of the rotation pair is increased, and the rigidity of the entire parallel link mechanism is improved.
  • the said structure WHEREIN The said through-hole provided in one board
  • tight hole means that the rotating shaft inserted through the through-hole cannot move relative to the plate material in a direction perpendicular to the axis.
  • the two rotating shaft bodies connected to both ends of the end link member have an angle with each other. For this reason, when the through-hole of a board
  • plate material is a tight hole, after aligning two rotating shaft bodies and two through-holes mutually, a rotating shaft body is advanced and a rotating shaft body is inserted in a through-hole. Even if it is possible, the plate member cannot be moved and the rotary shaft body cannot be inserted into the through hole with respect to the two rotary shaft bodies whose positions are fixed.
  • the assembly can be performed by the following procedure. That is, first, the two rotating shaft bodies are aligned with a plate material having a through-hole that is a tight hole, and the two rotating shaft bodies are advanced while the plate material is fixed in position, thereby rotating the rotating shaft body into the through-hole. Is inserted. Next, the plate member having a through hole which is a loose hole is moved with respect to the two rotary shaft bodies fixed in position, and the rotary shaft body is placed in the through hole while aligning the rotary shaft body and the through hole. Insert.
  • the through hole is a loose hole, there is no need to accurately align the rotary shaft body and the through hole, and the rotary shaft body can be inserted into the through hole while shifting or tilting the plate material. Good assembly workability. Since the rotating shaft body is inserted into the through hole which is a tight hole of one plate member, the assembly accuracy of the connecting portion between the end link member and the rotating shaft body can be ensured.
  • the posture of the distal end side link hub with respect to the proximal end side link hub can be arbitrarily set to two or more sets of the three or more sets of link mechanisms in the parallel link mechanism.
  • a posture changing actuator to be changed is provided. If two or more sets of three or more sets of link mechanisms are provided with attitude change actuators, the attitude of the distal link hub relative to the proximal link hub can be determined. Thereby, the link actuator which can control the angle of 2 degrees of freedom is realizable at low cost.
  • the posture changing actuator is a rotary actuator having a flange surface orthogonal to the output shaft on an output shaft, and among the arbitrary number of the plate members constituting the base end side end link member At least one plate member has a flange mounting surface orthogonal to a rotating shaft rotatably connected to the link hub on the base end side, and the flange mounting surface of the plate member on the flange surface of the posture changing actuator Are preferably linked directly or indirectly. According to this configuration, since the attitude changing actuator can be installed directly on the parallel link mechanism, the drive mechanism has a simple structure, and an inexpensive link operating device can be realized.
  • the posture changing actuator is a rotary actuator provided with a speed reduction mechanism
  • the output shaft of the speed reduction mechanism has a flange surface orthogonal to the output shaft, and the end portion on the base end side
  • At least one of the arbitrary number of the plate members constituting the link member has a flange mounting surface orthogonal to a rotation shaft rotatably connected to the link hub on the base end side, and the It is preferable that the flange mounting surface of the plate member is directly or indirectly coupled to the flange surface.
  • FIG. 1 is a perspective view showing one state of the parallel link mechanism
  • FIG. 2 is a front view in which a part of the parallel link mechanism is omitted.
  • the parallel link mechanism 1 is configured such that a distal end side link hub 3 is connected to a proximal end side link hub 2 via three sets of link mechanisms 4 so that the posture can be changed. In FIG. 2, only one set of link mechanisms 4 is shown. The number of link mechanisms 4 may be four or more.
  • Each link mechanism 4 is composed of an end link member 5 on the proximal end side, an end link member 6 on the distal end side, and a central link member 7, and forms a four-joint link mechanism consisting of four rotating pairs.
  • the end link members 5 and 6 on the proximal end side and the distal end side are curved at a predetermined angle, and one ends thereof are rotatably connected to the link hub 2 on the proximal end side and the link hub 3 on the distal end side, respectively.
  • the center link member 7 is rotatably connected to both ends of the end link members 5 and 6 on the proximal end side and the distal end side, respectively.
  • the three sets of link mechanisms 4 are geometrically identical to each other.
  • the model in which the link mechanism 4 is expressed by a straight line has a shape in which the proximal end portion and the distal end portion are symmetrical with respect to the central portion of the central link member 7. More specifically, a geometric model in which each link member 5, 6, 7 is expressed by a straight line, that is, a model expressed by each rotation pair and a straight line connecting these rotation pairs, is based on the center of the central link member 7. The end portion and the tip end portion are symmetrical.
  • FIG. 4 represents only one set of link mechanisms 4 by straight lines.
  • the parallel link mechanism 1 of this embodiment is a rotationally symmetric type, and includes a base end side link hub 2 and a base end side end link member 5, a front end side link hub 3 and a front end side end link member 6.
  • the positional relationship is such that it is rotationally symmetric with respect to the center line C of the central link member 7.
  • This parallel link mechanism 1 has a structure in which two spherical link mechanisms are combined.
  • the rotation hubs of the link hubs 2 and 3 and the end link members 5 and 6 and the central axes of the rotation pairs of the end link members 5 and 6 and the central link member 7 are spherical surfaces on the proximal end side and the distal end side, respectively.
  • Crossing at link centers PA and PB FIG. 2). Further, the distance from the spherical link centers PA and PB to the respective rotation pairs of the link hubs 2 and 3 and the end link members 5 and 6 is the same on the base end side and the front end side.
  • each rotational pair of the end link members 5 and 6 and the central link member 7 may have a certain crossing angle ⁇ or may be parallel.
  • FIG. 3 is a sectional view of the link hub 2 on the base end side, the end link member 5 on the base end side, and the central link member 7.
  • This figure shows the relationship between the center axis O1 of the rotation pair of the link hub 2 and the end link member 5, the center axis O2 of the rotation pair of the end link member 5 and the center link member 7, and the spherical link center PA.
  • the shape and positional relationship of the distal end side link hub 3 and the distal end side end link member 6 are also the same as those in FIG. 3 (not shown).
  • FIG. 3 is a sectional view of the link hub 2 on the base end side, the end link member 5 on the base end side, and the central link member 7.
  • This figure shows the relationship between the center axis O1 of the rotation pair of the link hub 2 and the end link member 5, the center axis O2 of the rotation pair of the end link member 5 and the center link member 7, and the spherical link center PA.
  • the angle ⁇ formed by the central axis O1 of each rotational pair of the link hub 2 and the end link member 5 and the central axis O2 of each rotational pair of the end link member 5 and the central link member 7 is 90.
  • the angle ⁇ may be other than 90 °.
  • the link hub 3 on the distal end side is rotatable about two orthogonal axes with respect to the link hub 2 on the proximal end side.
  • a degree mechanism is configured. In other words, it is a mechanism that can freely change the posture of the link hub 3 on the distal end side with respect to the link hub 2 on the proximal end side with two degrees of freedom of rotation. Although this two-degree-of-freedom mechanism is compact, the movable range of the link hub 3 on the distal end side with respect to the link hub 2 on the proximal end side can be widened.
  • a straight line that passes through the spherical link centers PA and PB and intersects with the central axis O1 (FIG. 3) of each rotation pair of the link hubs 2 and 3 and the end link members 5 and 6 at right angles is the central axis of the link hubs 2 and 3.
  • the maximum value of the bending angle ⁇ (FIG. 1) between the link hub center axis QA on the base end side and the link hub center axis QB on the tip end side It can be ⁇ 90 °.
  • the turning angle ⁇ (FIG.
  • the bending angle ⁇ is a vertical angle at which the distal end side link hub central axis QB is inclined with respect to the proximal end side link hub central axis QA.
  • the turning angle ⁇ is a horizontal angle at which the distal end side link hub central axis QB is inclined with respect to the proximal end side link hub central axis QA.
  • the posture change of the distal end side link hub 3 with respect to the proximal end side link hub 2 is performed with the intersection point O of the proximal end side link hub central axis QA and the distal end side link hub central axis QB as the rotation center.
  • the perspective view of FIG. 1 shows a state where the link hub central axis QB on the distal end side takes a certain operating angle with respect to the link hub central axis QA on the proximal end side, and the front view of FIG.
  • the link hub central axis QA and the distal end side link hub central axis QB are on the same line. Even if the posture changes, the distance D (FIG. 2) between the spherical link centers PA and PB on the base end side and the tip end side does not change.
  • the angle of the central axis O1 of the rotation pair of the link hubs 2 and 3 and the end link members 5 and 6 in each link mechanism 4 and the length from the spherical link centers PA and PB are equal to each other.
  • the central axis O1 of the rotational pair of the link hubs 2 and 3 and the end link members 5 and 6 of each link mechanism 4 and the central axis O2 of the rotational pair of the end link members 5 and 6 and the central link 7 Crosses the spherical link centers PA and PB on the base end side and the front end side.
  • the geometric shapes of the end link member 5 on the proximal end side and the end link member 6 on the distal end side are equal.
  • the shape of the central link member 7 is also the same on the proximal end side.
  • a base-side link hub 2 and a distal-side link hub 3 have through-holes 10A and 10B formed in the center thereof along the directions of the link hub central axes QA and QB, respectively, and the outer shape is spherical. It has a donut shape.
  • the centers of the through holes 10A and 10B coincide with the link hub central axes QA and QB.
  • Three base end side end link members 5 and front end side end link members 6 are arranged at equally spaced positions in the circumferential direction of the outer peripheral surfaces of the base end side link hub 2 and the front end side link hub 3. Each is connected rotatably.
  • bearing installation holes 11 penetrating between the outer periphery and the through hole 10A are formed at three locations equally distributed in the circumferential direction, and provided in each bearing installation hole 11.
  • the shaft member 13 is rotatably supported by the two bearings 12.
  • the bearing installation hole 11 is concentric with the central axis O1 of the rotational pair of the link hub 2 and the end link member 5 on the base end side.
  • the outer end portion of the shaft member 13 protrudes from the link hub 2, and a screw portion 13a is formed at the tip thereof.
  • a portion protruding from the link hub 2 of the shaft member 13 is inserted into a shaft insertion hole 25 provided at one end of the end link member 5 on the base end side, and a nut 14 screwed into the screw portion 13a of the shaft member 13 is attached.
  • the proximal end side end link member 5 is coupled to the shaft member 13 by tightening.
  • the end link member 5 on the base end side is rotatably connected to the link hub 2 on the base end side via the bearing 12.
  • the bearing 12 is a rolling bearing such as a deep groove ball bearing, for example, and an outer ring (not shown) is fitted to the inner circumference of the bearing installation hole 11 and an inner ring (not shown) is fitted to the outer circumference of the shaft member 13. is doing.
  • the outer ring is retained by a retaining ring 15.
  • a spacer 16 is interposed between the inner ring and the end link member 5 on the base end side, and the tightening force of the nut 14 is transmitted to the inner ring via the end link member 5 and the spacer 16 on the base end side.
  • a predetermined preload is applied to the bearing 12.
  • a bearing installation hole 18 concentric with the center axis O2 of the rotation pair of the central link member 7 and the end link member 5 on the proximal end side is formed at the end of the central link member 7 on the proximal end side.
  • Two bearings 19 are provided in 18.
  • the shaft member 20 is inserted into the shaft insertion hole 26 provided at the other end of the end link member 5 and the inner ring (not shown) of the bearing 19, and the nut 22 screwed to the threaded portion 20 a of the shaft member 20 is tightened.
  • the base end side end link member 5 is coupled to the shaft member 20.
  • the central link member 7 is rotatably connected to the proximal end side end link member 5 via the bearing 19.
  • the bearing 19 is a rolling bearing such as a deep groove ball bearing, for example, and an outer ring (not shown) is fitted to the inner circumference of the bearing installation hole 18, and an inner ring (not shown) is fitted to the outer circumference of the shaft member 20. is doing.
  • the outer ring is retained by a retaining ring 23.
  • a tightening force of the nut 22 screwed to the tip screw portion 20a of the shaft member 20 is transmitted to the inner ring through the spacer 21 to apply a predetermined preload to the bearing 19.
  • each link mechanism 4 that is, the rotation pairs of the proximal end side link hub 2 and the proximal end link member 5, the distal link hub 3 and the distal end A bearing 12 is provided on the rotating pair of the link member 6, the rotating link of the end link member 5 and the central link member 7 on the proximal end side, and the rotating couple of the end link member 6 and the central link member 7 on the distal end side. , 19 are provided.
  • the frictional resistance at each rotational pair can be suppressed to reduce the rotational resistance, and smooth power transmission can be ensured and the durability can be improved.
  • the radial gap and the thrust gap can be eliminated, and rattling of the rotating pair can be suppressed.
  • the rotational phase difference between the link hub 2 side on the proximal end side and the link hub 3 side on the distal end side is eliminated, and constant velocity can be maintained, and generation of vibration and noise can be suppressed.
  • the bearing clearance between the bearings 12 and 19 is set to be a negative clearance, backlash generated between input and output can be reduced.
  • the bearing 12 By providing the bearing 12 in a state where it is embedded in the link hub 2 on the base end side and the link hub 3 on the front end side, the base end side link hub 2 and the front end side are not enlarged without increasing the overall shape of the parallel link mechanism 1.
  • the outer shape of the link hub 3 can be enlarged. Therefore, it is easy to secure an installation space for attaching the base end side link hub 2 and the front end side link hub 3 to other members.
  • the end link members 5 and 6 are formed by bending a single long and thin metal plate having a constant thickness and a constant width at 90 ° at one bent portion 27 located at the center in the length direction.
  • the overall shape is L-shaped.
  • the shaft insertion holes 25 and 26 are provided at both ends.
  • the bent portion 27 is bent by sheet metal bending.
  • the end link members 5 and 6 are plate members, the end link members 5 and 6 can be manufactured at low cost and mass productivity is good. Further, when the end link members 5 and 6 are plate members, each rotation pair of the end link members 5 and 6 and the link hubs 2 and 3, and each rotation of the end link members 5 and 6 and the central link member 7
  • the configuration of the kinematic part can be simplified and the assemblability is improved.
  • the plate material constituting the end link members 5 and 6 is a metal plate
  • the contour shape can be cut out, the bent portion 27 can be bent, and the shaft insertion holes 25 and 26 can be formed by sheet metal processing. Easy.
  • the bent portions 27 of the end link members 5 and 6 are provided at one place, but the bent portions 27 may be provided at two places as shown in FIG. 5, or may be provided at three or more places. If the bent portions 27 of the end link members 5 and 6 are set at two or more places, it takes a little work, but the amount of overhang of the end link members 5 and 6 with respect to the link hub central axes QA and QB is suppressed. Can do. Thereby, the outer diameter dimension of the parallel link mechanism 1 becomes compact, and interference between components can be avoided.
  • the parallel link mechanism 1 also connects the link hub 3 on the distal end side to the link hub 2 on the proximal end side through three sets of link mechanisms 4 so that the posture can be changed.
  • the positional relationship and operational characteristics of each part are the same as in the first embodiment. Hereinafter, differences from the first embodiment will be described.
  • FIG. 6 is a perspective view showing one state of the parallel link mechanism
  • FIG. 7 is a front view with a part thereof omitted.
  • the link hub 2 on the base end side of the parallel link mechanism 1 is provided with a flat base 30 having a circular through hole 30a at the center, and a circumferentially equidistant arrangement around the through hole 30a of the base 30.
  • three rotating shaft connecting members 31 The center of the through hole 30a is located on the link hub central axis QA on the base end side.
  • a rotating shaft body 32 whose shaft center intersects with the link hub central axis QA is rotatably connected to each rotating shaft connecting member 31.
  • One end of the end link member 5 on the base end side is connected to the rotating shaft body 32.
  • the other end of the end link member 5 on the base end side is connected to a rotary shaft 35 that is rotatably connected to one end of the central link member 7.
  • the link hub 3 on the distal end side is provided with a flat-shaped distal end member 40 having a circular through hole 40a in the center portion, and three pieces provided in the circumferential direction at equal intervals around the through hole 40a of the distal end member 40.
  • the rotary shaft connecting member 41 The center of the through hole 40a is located on the link hub central axis QB on the distal end side.
  • Each rotating shaft connecting member 41 is rotatably connected to a rotating shaft body 42 whose axis intersects the link hub central axis QB.
  • One end of the end link member 6 on the distal end side is connected to the rotating shaft body 42 of the link hub 3.
  • a rotating shaft body 45 that is rotatably connected to the other end of the central link member 7 is connected to the other end of the end portion end link member 6.
  • each of the link constituting plate members 50 and 51 is a plate member having a constant thickness and a constant width, and has only one bent portion 50a and 51a bent at an angle of 90 ° in the plate thickness direction.
  • the end portions of the link constituting plate members 50 and 51 are formed in a semicircular shape (FIGS. 6 and 7).
  • the link constituent plate members 50 and 51 are made of, for example, a metal plate, and the bent portions 50a and 51a are formed by sheet metal bending.
  • FIG. 8 is a cross-sectional view of the link hub 2 on the base end side, the end link member 5 on the base end side, and FIG. 9 is a view showing one end link member 5 and peripheral portions of both ends. 8 and 9, the structure of each rotating pair will be described.
  • FIGS. 8 and 9 show the rotation pair of the base end side end link member 5 and the base end side link hub 2, and the base end side end link member 5 and the center link member 7.
  • the rotating pair of the distal end side link member 6 and the distal end side link hub 3 and the rotating pair of the distal end side link member 6 and the central link member 7 have the same configuration.
  • the bearings 33 and 36 are ball bearings such as a deep groove ball bearing and an angular ball bearing, for example.
  • the bearings 33 and 36 are installed in a state where they are embedded in an inner diameter groove 34 provided in the rotary shaft connecting member 31 (41) and an inner diameter groove 37 provided in the central link member 7, respectively. It is fixed by tightening or other methods.
  • the rotary shaft bodies 32 and 35 (42 and 45) may be rotatably supported by the rotary shaft connecting member 31 (41) and the central link member 7.
  • the rotating shaft bodies 32 and 35 (42 and 45) have head portions 32a and 35a having larger diameters at the outer diameter ends than the other portions, and male screw portions 32b and 35b at the inner diameter ends. It is a shaft body.
  • the rotating shaft body 32 (42) of the rotating shaft connecting member 31 (41) includes the through holes 52 and 53 of the link constituting plate members 50 and 51, the inner ring of the bearing 33, and the inner ring and the link constituting plate members 50 and 51. It is inserted through the holes of the interposed spacers 60 and 61.
  • the nut 62 is screwed onto the male threaded portion 32b of the rotating shaft body 32 (42), and the outer diameter side and inner diameter side link constituting plate material 50 is formed by the head 32a and the nut 62 of the rotating shaft body 32 (42). 51, the inner ring of the bearing 33 and the spacers 60, 61 are sandwiched.
  • the end link member 5 (6) is coupled to the rotating shaft body 32 (42) in a state where a preload is applied to the bearing 33.
  • the rotary shaft body 35 (45) of the central link member 7 is interposed between the through holes 52 and 53 of the link constituting plate members 50 and 51, the inner ring of the bearing 36, and the inner ring and the link constituting plate members 50 and 51.
  • the spacers 60 and 61 are inserted through holes.
  • the nut 62 is screwed onto the male threaded portion 35b of the rotary shaft body 35 (45), and the outer diameter side and inner diameter side link constituting plate material 50 is formed by the head 35a and the nut 62 of the rotary shaft body 35 (45). 51, the inner ring of the bearing 36, and the spacers 60, 61 are sandwiched.
  • the end link member 5 is connected to the rotating shaft body 35 (45) in a state where a preload is applied to the bearing 36.
  • the end link members 5 and 6 are configured such that the two link constituent plate members 50 and 51 are arranged in parallel with the plate surfaces facing each other, the strength of the end link members 5 and 6 is ensured.
  • the end link members 5 and 6 can be manufactured at low cost, and the weight can be reduced.
  • both ends of the rotary shaft bodies 32, 35, 42, 45 are supported by the two link constituent plate members 50, 51 on the outer diameter side and the inner diameter side, the rigidity against the moment load of the rotating pair is increased, and the parallel link mechanism 1 The overall rigidity is improved.
  • the through-hole 52 of the link member plate 50 on the outer diameter side is a circle having the same diameter as the diameters of the rotary shaft bodies 32, 35, 42, and 45 (FIG. 6).
  • the through hole 53 of the plate member 51 is a long hole that is long in the longitudinal direction of the link constituting plate member 51 as shown in FIG. 10B. That is, the through hole 52 of the outer diameter side link constituting plate member 50 is a tight hole in which no gap is formed between the rotary shaft bodies 32, 35, 42, 45 inserted through the through hole 52, and the inner diameter side.
  • the through hole 53 of the link constituting plate member 51 is a loose hole in which a gap is formed between the rotary shaft bodies 32, 35, 42, and 45 inserted through the through hole 53.
  • Such through holes 52 and 53 are devised for improving the assembling property.
  • the assembling method of the end link members 5 and 6 will be described taking the end link member 5 on the base end side as an example.
  • the rotating shaft bodies 32 and 35 are inserted from the outer diameter side into the through holes 52 of the link member plate 50 on the outer diameter side.
  • the spacer 60, the inner rings of the bearings 33 and 36, and the spacer 61 are fitted into the respective rotary shaft bodies 32 and 35 in this order from the inner diameter side.
  • the distal ends of the rotating shaft bodies 32 and 35 are inserted into the through holes 53 of the link constituting plate material 51 on the inner diameter side.
  • the tips of the rotating shaft bodies 32 and 35 protrude larger than the spacer 61, the rotating shaft bodies 32 and 35 that are orthogonal to each other cannot be inserted into the through hole 53.
  • the through-holes 53 of the link member plate 51 on the inner diameter side are aligned with the rotary shaft bodies 32 and 35 and then the rotary shaft bodies 32 and 35 are aligned. Is advanced and inserted into the through-hole 53. Since the through hole 53 of the link member 51 on the inner diameter side is a long hole and is flexible in alignment, there is no need to accurately align the rotary shaft bodies 32 and 35 and the through hole 53, and the rotary shaft body. If the tips of 32 and 35 are only slightly protruded from the spacer 61, the rotary shaft bodies 32 and 35 can be inserted into the through holes 53 by shifting or tilting the link component plate material 51. Finally, the end link member 5 is assembled by screwing and tightening the nuts 62 to the male screw portions 32b and 35b of the rotary shaft bodies 32 and 35.
  • the number of link component plate materials may be three or more. Three or more link component plate members may be arranged separately from each other, or a plurality of link component plate members may be used in an overlapping manner according to required strength or the like.
  • each link component plate member 50, 51 there is only one bent portion 50a, 51a of each link component plate member 50, 51, but there may be two bent portions 50a, 51a as shown in FIG. It may be more than places. If there are two or more bent portions 50a, 51a, it takes a little time for processing, but the amount of overhang of the end link members 5, 6 with respect to the link hub central axes QA, QB can be suppressed. The outer diameter of the parallel link mechanism 1 becomes compact, and interference between components can be avoided.
  • the parallel link mechanism 1 is also configured such that the link hub 3 on the distal end side is connected to the link hub 2 on the proximal end side through three sets of link mechanisms 4 so that the posture can be changed. Yes.
  • the positional relationship and operational characteristics of each part are the same as those in the first and second embodiments.
  • the parallel link mechanism 1 is different from the first and second embodiments in that the bearings provided in each rotation pair are of the outer ring rotation type.
  • a shaft portion 71 is formed at three circumferentially spaced locations on the outer peripheral portion of the link hub 2, and inner rings (not shown) of two bearings 72 are fitted to the outer periphery of the shaft portion 71, and end links
  • An outer ring (not shown) of the bearing 72 is fitted to the inner periphery of a cylindrical bearing support member 73 provided at the base end of the member 5.
  • a shaft member 74 is provided at the end of the central link member 7, and inner rings (not shown) of two bearings 75 are fitted to the outer periphery of the shaft member 74 and provided at the tip of the end link member 5.
  • An outer ring (not shown) of the bearing 75 is fitted to the inner periphery of the cylindrical bearing support member 76.
  • the bearings 72 and 75 are ball bearings such as a deep groove ball bearing and an angular ball bearing, for example, and are fixed to the shaft portion 71 and the shaft member 74 in a state where a predetermined preload is applied by tightening with a nut 77. .
  • the end link member 5 has two outer-diameter side and inner-diameter side link plate members 50 and 51 arranged in parallel so that the plate surfaces face each other.
  • bearing support members 73 and 76 are provided between the two link constituent plate members 50 and 51 in a fixed state, respectively. Also in this case, by supporting the both ends of the shaft portion 71 and the shaft member 74 with the two link constituent plate members 50 and 51 on the outer diameter side and the inner diameter side, the rigidity with respect to the moment load of the rotating pair portion increases, and the parallel link mechanism 1 The overall rigidity is improved.
  • FIG. 14 shows a link operating device using the parallel link mechanism 1 of the first embodiment of FIGS.
  • the link actuating device 81 includes a parallel link mechanism 1, a base 82 that supports the parallel link mechanism 1, a plurality of posture changing actuators 83 that actuate the parallel link mechanism 1, and operations of these posture changing actuators 83. And a controller 84 for operating the parallel link mechanism 1.
  • a control device (not shown) for controlling the posture changing actuator 83 may be provided in the controller 84 or may be provided separately from the controller 84.
  • the base 82 is a vertically long member, and the link hub 2 on the base end side of the parallel link mechanism 1 is fixed to the upper surface thereof.
  • a collar-shaped actuator mounting base 85 is provided on the outer periphery of the upper portion of the base 82, and a posture changing actuator 83 is mounted on the actuator mounting base 85 in a suspended state.
  • the number of posture changing actuators 83 is three, which is the same as the number of link mechanisms 4.
  • the attitude changing actuator 83 is a rotary actuator, and a bevel gear 86 attached to an output shaft of the posture changing actuator 83 and a fan-shaped bevel gear 87 attached to the shaft member 13 of the link hub 2 on the proximal end side are engaged with each other.
  • the same number of posture changing actuators 83 as the link mechanisms 4 are provided, but if at least two of the three sets of link mechanisms 4 are provided with the posture changing actuators 83, The posture of the distal end side link hub 3 with respect to the proximal end side link hub 2 can be determined.
  • the link actuating device 81 operates the parallel link mechanism 1 by operating the controller 84 to rotationally drive each attitude changing actuator 83. Specifically, when the posture changing actuator 83 is driven to rotate, the rotation is transmitted to the shaft member 13 via a pair of bevel gears 86 and 87, and the proximal end side link member with respect to the proximal end side link hub 2. The angle of 5 changes. Accordingly, the position and posture of the distal end side link hub 3 with respect to the proximal end side link hub 2 are determined. Here, the angle of the end link member 5 on the base end side is changed using the bevel gears 86 and 87, but other mechanisms (for example, a spur gear and a worm mechanism) may be used.
  • FIGS. 15 to 17 show a link actuating device using the parallel link mechanism 1 of the second embodiment of FIGS.
  • the link actuating device 90 changes the posture of the distal end side link hub 3 with respect to the proximal end side link hub 2 in each of the three sets of link mechanisms 4.
  • Actuator 91 is provided.
  • FIG. 15 illustrates only one set of link mechanism 4 and one posture changing actuator 91.
  • Each posture changing actuator 91 is a rotary actuator provided with a speed reduction mechanism 92, and is installed coaxially with the rotary shaft 32 on the upper surface of the base 30 of the link hub 2 on the proximal end side.
  • the posture changing actuator 91 and the speed reduction mechanism 92 are integrally provided, and the speed reduction mechanism 92 is fixed to the base 30 by a motor fixing member 93. If the posture changing actuators 91 are provided in at least two of the three sets of link mechanisms 4, the posture of the distal link hub 3 relative to the proximal link hub 2 can be determined.
  • the speed reduction mechanism 92 is a flange output and has a large-diameter output shaft 92a.
  • the front end surface of the output shaft 92a is a flat flange surface 94 orthogonal to the center line of the output shaft 92a.
  • the output shaft 92 a is connected to the link constituting plate member 50 on the outer diameter side of the end link member 5 on the proximal end side by a bolt 96 via a spacer 95.
  • the rotary shaft 32 of the rotating pair of the link hub 2 and the end link member 5 is composed of a large diameter portion 32A and a small diameter portion 32B.
  • the small diameter portion 32B is inserted into the inner ring of the bearing 33, and the large diameter portion 32A is decelerated. It fits in an inner diameter groove 97 provided on the output shaft 92 a of the mechanism 92.
  • the end link member 5 is composed of two link constituting plate members 50 and 51 on the outer diameter side and the inner diameter side, as shown in FIG.
  • the outer diameter side link constituting plate member 50 has a flange mounting surface 98 coupled to the flange surface 94 of the speed reduction mechanism 92 via the spacer 95.
  • the flange mounting surface 98 has a circular shape corresponding to the flange surface 94 of the output shaft 92 a, and a through hole 52 through which the rotary shaft body 32 is inserted is provided at the center.
  • a plurality of bolt insertion holes 99 through which the bolts 96 are inserted are provided at equal intervals in the circumferential direction.
  • the link actuator 90 uses a rotary actuator provided with a speed reduction mechanism 92 as the attitude changing actuator 91, the allowable load can be improved. Further, since the inertia moment ratio can be reduced, high-speed operation can be realized. Furthermore, the output shaft 92a of the speed reduction mechanism 92 of the posture changing actuator 91, which is a rotary actuator, is a flange output type, so that the posture changing actuator 91 can be installed directly on the parallel link mechanism 1. Therefore, the drive mechanism portion has a simple structure, and an inexpensive link actuator 90 can be realized.
  • the output shaft 91a of the attitude changing actuator 91 may be a flange output type without providing a speed reduction mechanism.
  • the distal end surface of the output shaft 91a of the attitude changing actuator 91 is a flange surface 94 coupled to the flange mounting surface 98 of the outer-diameter side link component plate member 50 constituting the proximal end side link hub 5.
  • the speed reduction mechanism 92 is attached to the outer diameter side link constituting plate member 50 via the spacer 95.
  • the speed reduction mechanism 92 may be directly installed on the link member plate 50 on the outer diameter side.
  • the output shaft of the posture changing actuator 91 or the speed reduction mechanism 92 and the rotary shaft body 32 may be coupled by a coupling (not shown) using the key output type posture changing actuator 91 or the speed reduction mechanism 92. Therefore, such a thing is also included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Manipulator (AREA)

Abstract

 パラレルリンク機構(1)は、基端側のリンクハブ(2)に対し先端側のリンクハブ(3)を、3組以上のリンク機構(4)を介して姿勢を変更可能に連結してなる。各リンク機構(4)は、基端側のリンクハブ(2)に一端が回転可能に連結された基端側の端部リンク部材(5)と、先端側のリンクハブ(3)に一端が回転可能に連結された先端側の端部リンク部材(6)と、これら基端側および先端側の端部リンク部材(5,6)の他端に両端がそれぞれ回転可能に連結された中央リンク部材(7)とでなる。基端側および先端側の端部リンク部材(5,6)は、板厚方向に曲がった曲がり部(27)を1箇所以上有する板材からなる。

Description

パラレルリンク機構およびリンク作動装置 関連出願
 この出願は、2014年5月30日出願の特願2014-112121の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、医療機器や産業機器等の高速、高精度で、広範な作動範囲を必要とする機器に用いられるパラレルリンク機構およびリンク作動装置に関する。
 医療機器や産業機器等の各種作業装置に用いられるパラレルリンク機構が、特許文献1、2に提案されている。
特開2000-094245号公報 米国特許第5,893,296号明細書
 特許文献1のパラレルリンク機構は、構成が比較的簡単であるが、各リンクの作動角が小さい。そのため、トラベリングプレートの作動範囲を大きく設定すると、リンク長が長くなることにより、機構全体の寸法が大きくなって装置の大形化を招くという問題がある。また、機構全体の剛性が低く、トラベリングプレートに搭載されるツールの重量、つまりトラベリングプレートにおける可搬重量が小さいものに制限されるという問題もある。
 特許文献2のパラレルリンク機構は、基端側のリンクハブに対し先端側のリンクハブを、4節連鎖の3組以上のリンク機構を介して姿勢を変更可能に連結した構成としたことにより、コンパクトでありながら、高速、高精度で、広範な作動範囲の動作が可能である。
 しかしながら、特許文献2のパラレルリンク機構は、部品構成が複雑であり、組立性が悪いという問題がある。また、剛性や強度を確保するために、各部品が複雑な形状をしており、量産性が悪く、製作コストが高いという問題もある。
 この発明の目的は、高速、高精度で、広範な作動範囲の動作を行うことができ、組立てが容易で、量産性に優れ、安価に製作できるパラレルリンク機構を提供することである。
 この発明のパラレルリンク機構は、基端側のリンクハブに対し先端側のリンクハブを、3組以上のリンク機構を介して姿勢を変更可能に連結し、前記各リンク機構は、それぞれ前記基端側のリンクハブおよび先端側のリンクハブに一端が回転可能に連結された基端側および先端側の端部リンク部材と、これら基端側および先端側の端部リンク部材の他端に両端がそれぞれ回転可能に連結された中央リンク部材とを備え、前記基端側および先端側の端部リンク部材は、板厚方向に曲がった曲がり部を1箇所以上有する板材からなることを特徴とする。
 この明細書において、「基端側」および「先端側」とは、以下の意味で用いられる。すなわち、リンクハブと端部リンク部材の各回転対偶、および、端部リンク部材と中央リンク部材の各回転対偶の中心軸がそれぞれ交差する点をリンクハブの「球面リンク中心」と称する。さらに、この球面リンク中心を通り前記リンクハブと端部リンク部材の回転対偶の中心軸と直角に交わる直線を「リンクハブの中心軸」と称する。この場合、それぞれのリンクハブから基端側および先端側の各リンクハブの中心軸が交差する交点から見て基端側の球面リンク中心方向を基端側、先端側の球面リンク中心方向を先端側としている。
 この構成によれば、基端側のリンクハブと、先端側のリンクハブと、3組以上のリンク機構とで、基端側のリンクハブに対し先端側のリンクハブが直交2軸周りに回転自在な2自由度機構が構成される。この2自由度機構は、コンパクトでありながら、先端側のリンクハブの可動範囲を広くとれる。例えば、基端側のリンクハブの中心軸と先端側のリンクハブの中心軸の最大折れ角は約±90°であり、基端側のリンクハブに対する先端側のリンクハブの旋回角を0°~360°の範囲に設定できる。
 基端側および先端側の端部リンク部材を板材としたため、基端側および先端側の端部リンク部材を低コストで製造することができ、かつ量産性に優れる。また、基端側および先端側の端部リンク部材が板材であると、基端側および先端側の端部リンク部材と基端側および先端側のリンクハブの各回転対偶部、および基端側および先端側の端部リンク部材と中央リンク部材の回転対偶部の構成を簡略にでき、組立性が向上する。曲がり部の曲げ角度を変えることで、設計変更に容易に対応可能である。基端側および先端側の端部リンク部材が曲がり部を2箇所以上有する場合は、パラレルリンク機構の外径寸法がコンパクトになり、部品同士の干渉を回避することができる。
 この発明において、前記端部リンク部材を構成する前記板材は金属板であり、前記曲がり部を板金曲げ加工により形成することが好ましい。この構成によれば、曲がり部の加工が容易である。
 この発明において、前記端部リンク部材は、板厚方向に曲がった曲がり部を1箇所以上有する2つ以上の板材からなっていても良い。好ましくは、前記端部リンク部材は2つの板材からなり、これら2つの板材を板面同士が互いに向き合うように並列に配置する。基端側および先端側の端部リンク部材を2つ以上の板材で構成すると、基端側および先端側の端部リンク部材の強度を確保しつつ、板材の板厚を薄くすることができる。これにより、基端側および先端側の端部リンク部材を安価に製造できると共に、軽量化を図ることができる。
 前記2つの板材を板面同士が互いに向き合うように並列に配置した場合、前記基端側および先端側の端部リンク部材と前記リンクハブとの各回転対偶部、および前記基端側および先端側の端部リンク部材と前記中央リンク部材との回転対偶部は、前記2つの板材の間に、軸受を内蔵した前記基端側および先端側のリンクハブおよび前記中央リンク部材を配置し、前記2つの板材に設けた貫通孔および前記軸受の内輪に回転軸体を挿通し、前記2つの板材、前記軸受の内輪、および前記回転軸体を互いに固定することが好ましい。この構成によると、外径側と内径側の2つの板材で回転軸体の両端を支持し、2つの板材の間に軸受が位置する。このため、回転対偶部のモーメント荷重に対する剛性が高くなり、パラレルリンク機構全体の剛性が向上する。
 上記構成において、前記基端側および先端側の端部リンク部材を構成する前記2つの板材のうちの一方の板材に設けた前記貫通孔は、この貫通孔に挿通される前記回転軸体との間にすきまが生じないタイトな孔とし、もう一方の板材に設けた前記貫通孔は、この貫通孔に挿通される前記回転軸体との間にすきまが生じるルーズな孔とすることが好ましい。ここで、「タイトな孔」とは、貫通孔に挿通された回転軸体が、板材に対して軸心と直交する方向に相対移動不能であることをいう。
 前記端部リンク部材の両端にそれぞれ連結される2つの回転軸体は互いに角度を持っている。このため、板材の貫通孔がタイトな孔であると、2つの回転軸体と2つの貫通孔を互いに位置合わせしてから、回転軸体を進出させて貫通孔に回転軸体を挿通することはできても、位置固定されている2つの回転軸体に対して、板材を移動させて貫通孔に回転軸体を挿通することはできない。
 上記構成のように、2つの板材の貫通孔がそれぞれタイトな孔およびルーズな孔であると、つぎの手順で組立を行うことができる。すなわち、最初に、タイトな孔である貫通孔を有する板材に対して2つの回転軸体を位置合わせし、板材は位置固定したまま2つの回転軸体を進出させることで貫通孔に回転軸体を挿通する。つぎに、位置固定された2つの回転軸体に対して、ルーズな孔である貫通孔を有する板材を移動させて、回転軸体と貫通孔の位置合わせをしながら貫通孔に回転軸体を挿通する。貫通孔がルーズな孔であれば、回転軸体と貫通孔の正確な位置合わせをする必要がなく、しかも板材をずらしたり傾けたりしながら回転軸体を貫通孔に挿通することができるので、組立て作業性が良い。一方の板材のタイトな孔である貫通孔に回転軸体が挿通されているので、端部リンク部材と回転軸体の連結部の組立て精度を確保できる。
 この発明のリンク作動装置は、前記パラレルリンク機構における前記3組以上のリンク機構のうちの2組以上のリンク機構に、前記基端側のリンクハブに対する前記先端側のリンクハブの姿勢を任意に変更する姿勢変更用アクチュエータを設けている。3組以上のリンク機構のうちの2組以上のリンク機構に姿勢変更用アクチュエータを設ければ、基端側のリンクハブに対する前記先端側のリンクハブの姿勢を確定することができる。これにより、2自由度の角度を制御することが可能なリンク作動装置を低コストで実現できる。
 上記リンク作動装置において、前記姿勢変更用アクチュエータは、出力軸にこの出力軸と直交するフランジ面を有するロータリアクチュエータであり、前記基端側の端部リンク部材を構成する任意数の前記板材のうちの少なくとも1つの板材は、前記基端側のリンクハブに回転自在に連結される回転軸と直交するフランジ取付面を有し、前記姿勢変更用アクチュエータの前記フランジ面に前記板材の前記フランジ取付面が直接または間接的に結合されていることが好ましい。この構成によると、パラレルリンク機構に直接、姿勢変更用アクチュエータを設置できるので、駆動機構部が簡素な構造となり、安価なリンク作動装置を実現できる。
 また、上記リンク作動装置において、前記姿勢変更用アクチュエータは減速機構を備えたロータリアクチュエータであり、前記減速機構の出力軸はこの出力軸と直交するフランジ面を有し、前記基端側の端部リンク部材を構成する任意数の前記板材のうちの少なくとも1つの板材は、前記基端側のリンクハブに回転自在に連結される回転軸と直交するフランジ取付面を有し、前記減速機構の前記フランジ面に前記板材の前記フランジ取付面が直接または間接的に結合されていることが好ましい。この構成によると、減速機構を備えたロータリアクチュエータを用いることで許容負荷を向上できる。また、慣性モーメント比を低減できるため、高速動作を実現できる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 本発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、本発明の範囲を定めるために利用されるべきものではない。本発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
この発明の第1実施形態にかかるパラレルリンク機構の一状態の斜視図である。 同パラレルリンク機構の一部を省略した正面図である。 同パラレルリンク機構の基端側のリンクハブ、基端側の端部リンク部材、および中央リンク部材の断面図である。 同パラレルリンク機構の1つのリンク機構を直線で表現した図である。 同パラレルリンク機構の変形例を示す基端側のリンクハブ、基端側の端部リンク部材、および中央リンク部材の断面図である。 この発明の第2実施形態にかかるパラレルリンク機構の一状態の斜視図である。 同パラレルリンク機構の一部を省略した正面図である。 同パラレルリンク機構の基端側のリンクハブ、基端側の端部リンク部材等の一部破断平面図である。 同パラレルリンク機構の1つの基端側の端部リンク部材およびその両端周辺部の断面図である。 同パラレルリンク機構の端部リンク部材の外径側のリンク構成板材の正面図である。 同パラレルリンク機構の端部リンク部材の内径側のリンク構成板材の正面図である。 同パラレルリンク機構の変形例の1つの基端側の端部リンク部材およびその両端周辺部の断面図である。 この発明の第3実施形態にかかるパラレルリンク機構の一部を省略した正面図である。 同パラレルリンク機構の基端側のリンクハブ、基端側の端部リンク部材、および中央リンク部材の断面図である。 第1実施形態のパラレルリンク機構を用いたリンク作動装置の一部を省略した正面図である。 第2実施形態のパラレルリンク機構を用いたリンク作動装置の一部を省略した正面図である。 同リンク作動装置の基端側のリンクハブ、基端側の端部リンク部材、駆動機構部等の一部破断平面図である。 同リンク作動装置の端部リンク部材の外径側のリンク構成板材の正面図である。 同リンク作動装置の変形例の基端側のリンクハブ、基端側の端部リンク部材等の一部破断平面図である。
 この発明の第1実施形態に係るパラレルリンク機構を図1~図4と共に説明する。
 図1はこのパラレルリンク機構の一状態を示す斜視図、図2は同パラレルリンク機構の一部を省略した正面図である。このパラレルリンク機構1は、基端側のリンクハブ2に対し先端側のリンクハブ3を3組のリンク機構4を介して姿勢変更可能に連結したものである。図2では、1組のリンク機構4のみが示されている。リンク機構4の数は、4組以上であっても良い。
 各リンク機構4は、基端側の端部リンク部材5、先端側の端部リンク部材6、および中央リンク部材7で構成され、4つの回転対偶からなる4節連鎖のリンク機構をなす。基端側および先端側の端部リンク部材5,6は所定の角度に湾曲した形状をしており、一端がそれぞれ基端側のリンクハブ2および先端側のリンクハブ3に回転自在に連結されている。中央リンク部材7は、両端に基端側および先端側の端部リンク部材5,6の他端がそれぞれ回転自在に連結されている。3組のリンク機構4は、互いに幾何学的に同一形状をなす。
 図4に示すように、リンク機構4を直線で表現したモデルは、中央リンク部材7の中央部に対する基端側部分と先端側部分とが対称を成す形状である。より詳しくは、各リンク部材5,6,7を直線で表現した幾何学モデル、すなわち各回転対偶と、これら回転対偶間を結ぶ直線とで表現したモデルが、中央リンク部材7の中央部に対する基端側部分と先端側部分が対称を成す形状である。図4は、1組のリンク機構4のみを直線で表現している。この実施形態のパラレルリンク機構1は回転対称タイプで、基端側のリンクハブ2および基端側の端部リンク部材5と、先端側のリンクハブ3および先端側の端部リンク部材6との位置関係が、中央リンク部材7の中心線Cに対して回転対称となる位置構成になっている。
 このパラレルリンク機構1は、2つの球面リンク機構を組み合わせた構造である。リンクハブ2,3と端部リンク部材5,6の各回転対偶、および端部リンク部材5,6と中央リンク部材7の各回転対偶の中心軸が、基端側と先端側においてそれぞれの球面リンク中心PA,PB(図2)で交差している。また、基端側と先端側において、各球面リンク中心PA,PBからリンクハブ2,3と端部リンク部材5,6の各回転対偶までの距離も同じである。また、各球面リンク中心PA,PBから端部リンク部材5,6と中央リンク部材7の各回転対偶までの距離も同じである。端部リンク部材5,6と中央リンク部材7との各回転対偶の中心軸は、ある交差角γを持っていても良いし、平行であっても良い。
 図3は基端側のリンクハブ2、基端側の端部リンク部材5、および中央リンク部材7の断面図である。同図に、リンクハブ2と端部リンク部材5の回転対偶の中心軸O1と、端部リンク部材5と中央リンク部材7の回転対偶の中心軸O2と、球面リンク中心PAとの関係が示されている。先端側のリンクハブ3および先端側の端部リンク部材6の形状、ならびに位置関係も図3と同様である(図示せず)。図3では、リンクハブ2と端部リンク部材5との各回転対偶の中心軸O1と、端部リンク部材5と中央リンク部材7との各回転対偶の中心軸O2とが成す角度αが90°であるが、前記角度αは90°以外であっても良い。
 基端側のリンクハブ2と先端側のリンクハブ3と3組のリンク機構4とで、基端側のリンクハブ2に対し先端側のリンクハブ3が直交2軸周りに回転自在な2自由度機構が構成される。言い換えると、基端側のリンクハブ2に対して先端側のリンクハブ3を、回転が2自由度で姿勢変更自在な機構である。この2自由度機構は、コンパクトでありながら、基端側のリンクハブ2に対する先端側のリンクハブ3の可動範囲を広くとれる。
 例えば、球面リンク中心PA,PBを通り、リンクハブ2,3と端部リンク部材5,6の各回転対偶の中心軸O1(図3)と直角に交わる直線をリンクハブ2,3の中心軸(以下、「リンクハブ中心軸」とする)QA,QBとした場合、基端側のリンクハブ中心軸QAと先端側のリンクハブ中心軸QBの折れ角θ(図1)の最大値を約±90°とすることができる。また、基端側のリンクハブ2に対する先端側のリンクハブ3の旋回角φ(図1)を0°~360°の範囲に設定できる。折れ角θは、基端側のリンクハブ中心軸QAに対して先端側のリンクハブ中心軸QBが傾斜した垂直角度のことである。旋回角φは、基端側のリンクハブ中心軸QAに対して先端側のリンクハブ中心軸QBが傾斜した水平角度のことである。
 基端側のリンクハブ2に対する先端側のリンクハブ3の姿勢変更は、基端側のリンクハブ中心軸QAと先端側のリンクハブ中心軸QBの交点Oを回転中心として行われる。図1の斜視図は、基端側のリンクハブ中心軸QAに対して先端側のリンクハブ中心軸QBが或る作動角をとった状態を示し、図2の正面図は、基端側のリンクハブ中心軸QAと先端側のリンクハブ中心軸QBが同一線上にある状態を示す。姿勢が変化しても、基端側と先端側の球面リンク中心PA,PB間の距離D(図2)は変化しない。
 このパラレルリンク機構1において、以下の(1)~(4)の条件をすべて満たすとき、中央リンク部材7の対称面に対して、中央リンク部材7と端部リンク部材5,6との角度位置関係を基端側と先端側とで同じにすれば、幾何学的対称性から基端側のリンクハブ2および基端側の端部リンク部材5と、先端側のリンクハブ3および先端側の端部リンク部材6とは同じに動く。
(1)各リンク機構4におけるリンクハブ2,3と端部リンク部材5,6の回転対偶の中心軸O1の角度および球面リンク中心PA,PBからの長さが互いに等しい、
(2)各リンク機構4のリンクハブ2,3と端部リンク部材5,6の回転対偶の中心軸O1と、端部リンク部材5,6と中央リンク7の回転対偶の中心軸O2とが、基端側および先端側において球面リンク中心PA,PBと交差する。
(3)基端側の端部リンク部材5と先端側の端部リンク部材6の幾何学的形状が等しい。
(4)中央リンク部材7についても基端側の先端側とで形状が等しい。
 図1において、基端側のリンクハブ2および先端側のリンクハブ3は、その中心部にそれぞれ貫通孔10A,10Bがリンクハブ中心軸QA,QB方向に沿って形成され、外形が球面状をしたドーナツ形状をしている。貫通孔10A,10Bの中心は、リンクハブ中心軸QA,QBと一致している。これら基端側のリンクハブ2および先端側のリンクハブ3の外周面の円周方向に等間隔の位置に、3つの基端側の端部リンク部材5および先端側の端部リンク部材6がそれぞれ回転自在に連結されている。
 図3において、基端側のリンクハブ2には、外周と貫通孔10A間を貫通する軸受設置孔11が円周方向に等配で3箇所に形成され、各軸受設置孔11内に設けた2つの軸受12により軸部材13が回転自在に支持されている。軸受設置孔11は、リンクハブ2と基端側の端部リンク部材5との回転対偶の中心軸O1と同心である。軸部材13の外側端部はリンクハブ2から突出しており、その先端にねじ部13aが形成されている。軸部材13のリンクハブ2から突出した部分を、基端側の端部リンク部材5の一端に設けられた軸挿通孔25に挿通し、軸部材13のねじ部13aに螺着したナット14を締め付けて、軸部材13に基端側の端部リンク部材5を結合する。これにより、基端側のリンクハブ2に対して基端側の端部リンク部材5が、軸受12を介して回転自在に連結される。
 軸受12は、例えば深溝玉軸受等の転がり軸受であり、その外輪(図示せず)が軸受設置孔11の内周に嵌合し、内輪(図示せず)が軸部材13の外周に嵌合している。外輪は止め輪15によって抜け止めされている。また、内輪と基端側の端部リンク部材5の間には間座16が介在し、ナット14の締付力が基端側の端部リンク部材5および間座16を介して内輪に伝達されて、軸受12に所定の予圧を付与している。
 中央リンク部材7の基端側の端部には、基端側の端部リンク部材5と中央リンク部材7の回転対偶の中心軸O2と同心の軸受設置孔18が形成され、この軸受設置孔18内に2つの軸受19が設けられている。端部リンク部材5の他端に設けられた軸挿通孔26と軸受19の内輪(図示せず)に軸部材20を挿通し、その軸部材20のねじ部20aに螺着したナット22を締め付けて、軸部材20に基端側の端部リンク部材5を結合する。これにより、基端側の端部リンク部材5に対して中央リンク部材7が、軸受19を介して回転自在に連結される。
 軸受19は、例えば深溝玉軸受等の転がり軸受であり、その外輪(図示せず)が軸受設置孔18の内周に嵌合し、内輪(図示せず)が軸部材20の外周に嵌合している。外輪は止め輪23によって抜け止めされている。軸部材20の先端ねじ部20aに螺着したナット22の締付力が間座21を介して内輪に伝達されて、軸受19に所定の予圧を付与している。
 以上、基端側のリンクハブ2と基端側の端部リンク部材5の回転対偶部、および基端側の端部リンク部材5と中央リンク部材7の回転対偶部について説明したが、先端側のリンクハブ3と先端側の端部リンク部材6の回転対偶部、および先端側の端部リンク部材6と中央リンク部材7の回転対偶部も同じ構成である(図示省略)。
 このように、各リンク機構4における4つの回転対偶部、つまり、基端側のリンクハブ2と基端側の端部リンク部材5の回転対偶部、先端側のリンクハブ3と先端側の端部リンク部材6の回転対偶部、基端側の端部リンク部材5と中央リンク部材7の回転対偶部、および先端側の端部リンク部材6と中央リンク部材7の回転対偶部に、軸受12,19を設けた構造としている。これにより、各回転対偶での摩擦抵抗を抑えて回転抵抗の軽減を図ることができ、滑らかな動力伝達を確保できると共に耐久性を向上できる。
 この軸受12,19を設けた構造では、軸受12,19に予圧を付与することにより、ラジアル隙間とスラスト隙間をなくし、回転対偶のがたつきを抑えることができる。これにより、基端側のリンクハブ2側と先端側のリンクハブ3側間の回転位相差がなくなり等速性を維持できると共に、振動や異音の発生を抑制できる。特に、軸受12,19の軸受隙間を負すきまとすることにより、入出力間に生じるバックラッシュを少なくすることができる。
 軸受12を基端側のリンクハブ2および先端側のリンクハブ3に埋め込んだ状態で設けたことにより、パラレルリンク機構1全体の外形を大きくすることなく、基端側のリンクハブ2および先端側のリンクハブ3の外形を拡大することができる。そのため、基端側のリンクハブ2および先端側のリンクハブ3を他の部材に取り付けるための取付スペースの確保が容易である。
 この実施形態の端部リンク部材5,6は、一定厚さ、一定幅の細長い1枚の金属板を、その長さ方向の中央部に位置する1箇所の曲がり部27で90°に折り曲げて、全体形状をL字状としてある。両端部に、前記軸挿通孔25,26が設けられている。曲がり部27の折り曲げは、板金曲げ加工により行われる。
 このように、各端部リンク部材5,6を板材とすると、端部リンク部材5,6を安価に製造することができ、かつ量産性が良い。また、端部リンク部材5,6が板材であると、端部リンク部材5,6とリンクハブ2,3の各回転対偶部、および端部リンク部材5,6と中央リンク部材7の各回転対偶部の構成を簡略にでき、組立て性が向上する。特に、端部リンク部材5,6を構成する板材を金属板とすると、輪郭形状の切り出し、曲がり部27の折り曲げ、および軸挿通孔25,26の形成を板金加工で行うことができ、加工が容易である。
 上記実施形態は、端部リンク部材5,6の曲がり部27が1箇所であるが、図5のように、曲がり部27を2箇所としてもよく、あるいは3箇所以上にしても良い。端部リンク部材5,6の曲がり部27を2箇所以上とすると、加工に若干手間がかかるようになるが、リンクハブ中心軸QA,QBに対する端部リンク部材5,6の張り出し量を抑えることができる。これにより、パラレルリンク機構1の外径寸法がコンパクトになり、部品同士の干渉を回避することができる。
 図6~図10は、この発明の第2実施形態を示す。このパラレルリンク機構1も、第1実施形態と同様に、基端側のリンクハブ2に対し先端側のリンクハブ3を3組のリンク機構4を介して姿勢変更可能に連結している。各部の位置関係や動作特性も、第1実施形態と同じである。以下、第1実施形態と異なる点について説明する。
 図6はこのパラレルリンク機構の一状態を示す斜視図、図7はその一部を省略した正面図である。このパラレルリンク機構1の基端側のリンクハブ2は、中央部に円形の貫通孔30aを有する平板状の土台30と、この土台30の貫通孔30aの周囲に円周方向等配で設けられた3個の回転軸連結部材31とで構成される。貫通孔30aの中心は、基端側のリンクハブ中心軸QA上に位置する。各回転軸連結部材31には、軸心がリンクハブ中心軸QAと交差する回転軸体32が回転自在に連結されている。この回転軸体32に、基端側の端部リンク部材5の一端が連結される。基端側の端部リンク部材5の他端には、中央リンク部材7の一端に回転自在に連結された回転軸体35が連結される。
 また、先端側のリンクハブ3は、中央部に円形の貫通孔40aを有する平板状の先端部材40と、この先端部材40の貫通孔40aの周囲に円周方向等配で設けられた3個の回転軸連結部材41とで構成される。貫通孔40aの中心は、先端側のリンクハブ中心軸QB上に位置する。各回転軸連結部材41は、軸心がリンクハブ中心軸QBと交差する回転軸体42が回転自在に連結されている。このリンクハブ3の回転軸体42に、先端側の端部リンク部材6の一端が連結される。先端側の端部リンク部材6の他端には、中央リンク部材7の他端に回転自在に連結された回転軸体45が連結される。
 このパラレルリンク機構1の基端側および先端側の端部リンク部材5,6は、第1実施形態とは異なり、図8に示すように、板面同士が互いに向き合うように並列に配置した外径側および内径側の2つのリンク構成板材50,51からなる。図8は基端側の端部リンク部材5を示すが、先端側の端部リンク部材6も同様である。図8では、各リンク構成板材50,51は、一定厚さ、一定幅の板材で、それぞれ板厚方向に90°の角度に曲がった曲がり部50a,51aを1箇所だけ有する。リンク構成板材50,51の端部は、半円形に形成されている(図6、図7)。リンク構成板材50,51は例えば金属板からなり、板金曲げ加工により曲がり部50a,51aが形成される。
 図8は基端側のリンクハブ2、基端側の端部リンク部材5等の断面図、図9はそのうちの1つの端部リンク部材5およびその両端周辺部を取り出して表した図であり、図8,9と共に各回転対偶部の構成を説明する。図8、図9は、基端側の端部リンク部材5と基端側のリンクハブ2の回転対偶部、および基端側の端部リンク部材5と中央リンク部材7の回転対偶部を示すが、先端側の端部リンク部材6と先端側のリンクハブ3の回転対偶部、および先端側の端部リンク部材6と中央リンク部材7の回転対偶部も同じ構成である。
 外径側および内径側のリンク構成板材50,51の両端の端部間には、リンクハブ2(3)の回転軸連結部材31(41)および中央リンク部材7の一端がそれぞれ配置される。回転軸連結部材31(41)の前記回転軸体32(42)は、2個の軸受33を介して回転軸連結部材31(41)に支持されている。また、中央リンク部材7の前記回転軸体35(45)は、2個の軸受36を介して中央リンク部材7に支持されている。
 軸受33,36は、例えば深溝玉軸受、アンギュラ玉軸受等の玉軸受である。また、軸受33,36は、回転軸連結部材31(41)に設けられた内径溝34、および中央リンク部材7に設けられた内径溝37にそれぞれ埋め込んだ状態で設置され、圧入、接着、加締め等の方法で固定してある。軸受33,36を使用せずに、回転軸体32,35(42,45)を回転軸連結部材31(41)および中央リンク部材7に回転自在に接触させて支持しても良い。
 図9に示すように、回転軸体32,35(42,45)は、外径端に他の部分よりも径が大きい頭部32a,35aを有し、内径端に雄ねじ部32b,35bを有する軸体である。回転軸連結部材31(41)の回転軸体32(42)は、リンク構成板材50,51の貫通孔52,53、軸受33の内輪、およびこの内輪とリンク構成板材50,51との間に介在させたスペーサ60,61の孔に挿通される。この状態で、回転軸体32(42)の雄ねじ部32bにナット62を螺着し、回転軸体32(42)の頭部32aとナット62とで外径側および内径側のリンク構成板材50,51、軸受33の内輪、およびスペーサ60,61を挟み付ける。これにより、軸受33に予圧を付与した状態で、回転軸体32(42)に端部リンク部材5(6)が連結される。
 また、中央リンク部材7の回転軸体35(45)は、リンク構成板材50,51の貫通孔52,53、軸受36の内輪、およびこの内輪とリンク構成板材50,51との間に介在させたスペーサ60,61の孔に挿通される。この状態で、回転軸体35(45)の雄ねじ部35bにナット62を螺着し、回転軸体35(45)の頭部35aとナット62とで外径側および内径側のリンク構成板材50,51、軸受36の内輪、およびスペーサ60,61を挟み付ける。これによりで、軸受36に予圧を付与した状態で、回転軸体35(45)に端部リンク部材5が連結される。
 このように、端部リンク部材5,6を、2つのリンク構成板材50,51が板面同士を互いに向き合わせて並列に配置された構成とすると、端部リンク部材5,6の強度を確保しつつ、各リンク構成板材50,51の板厚を薄くすることができる。それにより、端部リンク部材5,6を安価に製造できると共に、軽量化を図ることができる。また、外径側と内径側の2つのリンク構成板材50,51で回転軸体32,35,42,45の両端を支持するので、回転対偶部のモーメント荷重に対する剛性が高くなり、パラレルリンク機構1全体の剛性が向上する。
 外径側のリンク構成板材50の貫通孔52は、図10Aのように、回転軸体32,35,42,45(図6)の直径とほぼ同径の円形であり、内径側のリンク構成板材51の貫通孔53は、図10Bのように、このリンク構成板材51の長手方向に長い長孔とされている。つまり、外径側のリンク構成板材50の貫通孔52は、この貫通孔52に挿通される回転軸体32,35,42,45との間にすきまが生じないタイトな孔であり、内径側のリンク構成板材51の貫通孔53は、この貫通孔53に挿通される回転軸体32,35,42,45との間にすきまが生じるルーズな孔である。このような貫通孔52,53としたのは、組立て性を高めるための工夫である。
 基端側の端部リンク部材5を例にとって、端部リンク部材5,6の組立て方法を説明する。まず、外径側のリンク構成板材50の貫通孔52に回転軸体32,35を外径側から挿通する。その後、それぞれの回転軸体32,35に対して内径側からスペーサ60、軸受33,36の内輪、スペーサ61を順に嵌め込む。さらに、回転軸体32,35の先端を内径側のリンク構成板材51の貫通孔53に挿通する。その際、回転軸体32,35の先端がスペーサ61よりも大きく突出していると、互いに直交している回転軸体32,35を貫通孔53に挿通することができない。
 そこで、回転軸体32,35の突出量を少なくした状態で、回転軸体32,35に対して内径側のリンク構成板材51の貫通孔53を位置合わせしてから、回転軸体32,35を進出させて貫通孔53に挿通する。内径側のリンク構成板材51の貫通孔53は長孔であり位置合わせに融通性があるため、回転軸体32,35と貫通孔53の正確な位置合わせをする必要がなく、しかも回転軸体32,35の先端がスペーサ61から少し程度突出しているだけなら、リンク構成板材51をずらしたり傾けたりすることで回転軸体32,35を貫通孔53に挿入することができる。最後に、回転軸体32,35の雄ねじ部32b,35bにナット62を螺着して締め付けることで、端部リンク部材5の組立てが完了する。
 この方法であると、先端が突出した回転軸体32,35に対して貫通孔53を嵌める際に、目視での位置合わせが可能であり、組立て作業性が良い。タイトな孔である外径側のリンク構成板材50の貫通孔51に回転軸体32,35が挿通されているため、端部リンク部材5と回転軸体32,35の連結部の組立て精度は確保できる。
 リンク構成板材の数は3つ以上であっても良い。3つ以上のリンク構成板材をそれぞれ離して配置しても良く、要求される強度等に応じて複数のリンク構成板材を重ね合わせて使用しても良い。
 また、図6~9の例では、各リンク構成板材50,51の曲がり部50a,51aが1箇所だけであるが、図11のように曲がり部50a,51aを2箇所としてもよく、あるいは3箇所以上にしても良い。曲がり部50a,51aを2箇所以上とすると、加工に若干手間がかかるようになるが、リンクハブ中心軸QA,QBに対する端部リンク部材5,6の外側への張り出し量を抑えることができるため、パラレルリンク機構1の外径寸法がコンパクトになり、部品同士の干渉を回避することができる。
 図12および図13は、この発明の第3実施形態を示す。このパラレルリンク機構1も、第1および第2実施形態と同様に、基端側のリンクハブ2に対し先端側のリンクハブ3を3組のリンク機構4を介して姿勢変更可能に連結している。各部の位置関係や動作特性も、第1および第2実施形態と同じである。このパラレルリンク機構1が第1および第2実施形態と異なる点は、各回転対偶部に設けられる軸受を外輪回転タイプとしたことである。
 図13と共に、基端側のリンクハブ2と基端側の端部リンク部材5の回転対偶部、および基端側の端部リンク部材5と中央リンク部材7の回転対偶部を例にとって説明する。
 リンクハブ2の外周部における円周方向に等配の3箇所に軸部71が形成され、この軸部71の外周に2つの軸受72の内輪(図示せず)が嵌合し、端部リンク部材5の基端に設けられた筒状の軸受支持部材73の内周に軸受72の外輪(図示せず)が嵌合している。また、中央リンク部材7の端部に軸部材74が設けられ、この軸部材74の外周に2つの軸受75の内輪(図示せず)が嵌合し、端部リンク部材5の先端に設けられた筒状の軸受支持部材76の内周に軸受75の外輪(図示せず)が嵌合している。軸受72,75は、例えば深溝玉軸受、アンギュラ玉軸受等の玉軸受であって、ナット77による締付けでもって所定の予圧量が付与された状態で軸部71および軸部材74に固定されている。
 端部リンク部材5は、図6~図10の第2実施形態と同様に、板面同士が互いに向き合うように並列に配置した外径側および内径側の2つのリンク構成板材50,51を有し、これら2つのリンク構成板材50,51間に軸受支持部材73,76がそれぞれ固定状態で設けられている。この場合も、外径側と内径側の2つのリンク構成板材50,51で軸部71および軸部材74の両端を支持することで、回転対偶部のモーメント荷重に対する剛性が高くなり、パラレルリンク機構1全体の剛性が向上する。
 図14は、図1~図4の第1実施形態のパラレルリンク機構1を用いたリンク作動装置を示す。このリンク作動装置81は、パラレルリンク機構1と、このパラレルリンク機構1を支持する土台82と、パラレルリンク機構1を作動させる複数の姿勢変更用アクチュエータ83と、これら姿勢変更用アクチュエータ83の動作によりパラレルリンク機構1を作動させるコントローラ84とを備える。姿勢変更用アクチュエータ83を制御する制御装置(図示せず)は、コントローラ84内に設けられていても良く、コントローラ84と別に設けられていても良い。
 前記土台82は縦長の部材であって、その上面にパラレルリンク機構1の基端側のリンクハブ2が固定されている。土台82の上部の外周にはつば状のアクチュエータ取付台85が設けられ、このアクチュエータ取付台85に姿勢変更用アクチュエータ83が垂下状態で取り付けられている。姿勢変更用アクチュエータ83の数は、リンク機構4と同数の3個である。姿勢変更用アクチュエータ83はロータリアクチュエータからなり、その出力軸に取り付けたかさ歯車86と基端側のリンクハブ2の軸部材13に取り付けた扇形のかさ歯車87とが噛み合っている。
 なお、図14の例では、リンク機構4と同数の姿勢変更用アクチュエータ83が設けられているが、3組のリンク機構4のうち少なくとも2組に姿勢変更用アクチュエータ83が設けられていれば、基端側のリンクハブ2に対する先端側のリンクハブ3の姿勢を確定することができる。
 このリンク作動装置81は、コントローラ84を操作して各姿勢変更用アクチュエータ83を回転駆動することで、パラレルリンク機構1を作動させる。詳しくは、姿勢変更用アクチュエータ83を回転駆動すると、その回転が一対のかさ歯車86,87を介して軸部材13に伝達されて、基端側のリンクハブ2に対する基端側の端部リンク部材5の角度が変更する。それにより、基端側のリンクハブ2に対する先端側のリンクハブ3の位置および姿勢が決まる。ここでは、かさ歯車86,87を用いて基端側の端部リンク部材5の角度を変更しているが、その他の機構(例えば、平歯車やウォーム機構)でも良い。
 図15~図17は、図6~図10の第2実施形態のパラレルリンク機構1を用いたリンク作動装置を示す。このリンク作動装置90は、図15、図16に示すように、3組のリンク機構4のそれぞれに、基端側のリンクハブ2に対する先端側のリンクハブ3の姿勢を任意に変更する姿勢変更用アクチュエータ91が設けられている。図15は、1組のリンク機構4と1つの姿勢変更用アクチュエータ91のみを図示している。
 各姿勢変更用アクチュエータ91は、減速機構92を備えたロータリアクチュエータであり、基端側のリンクハブ2の土台30の上面に、回転軸体32と同軸上に設置されている。姿勢変更用アクチュエータ91と減速機構92は一体に設けられ、モータ固定部材93により減速機構92が土台30に固定されている。なお、3組のリンク機構4のうち少なくとも2組に姿勢変更用アクチュエータ91を設ければ、基端側のリンクハブ2に対する先端側のリンクハブ3の姿勢を確定することができる。
 図16において、減速機構92はフランジ出力であって、大径の出力軸92aを有する。出力軸92aの先端面は、出力軸92aの中心線と直交する平面状のフランジ面94となっている。出力軸92aは、スペーサ95を介して、基端側の端部リンク部材5の外径側のリンク構成板材50にボルト96で接続されている。リンクハブ2と端部リンク部材5の回転対偶部の回転軸体32は大径部32Aと小径部32Bとからなり、小径部32Bが前記軸受33の内輪に挿通され、大径部32Aは減速機構92の出力軸92aに設けられた内径溝97に嵌っている。
 端部リンク部材5は、図9の示すものと同様に、外径側および内径側の2つのリンク構成板材50,51とで構成される。外径側のリンク構成板材50は、減速機構92の前記フランジ面94と前記スペーサ95を介して結合されるフランジ取付面98を有する。フランジ取付面98は、図17に示すように、出力軸92aのフランジ面94に対応する円形であり、中心部に回転軸体32が挿通される貫通孔52が設けられ、この貫通孔52の周囲に、ボルト96が挿通される複数のボルト挿通孔99が円周方向に等配で設けられている。
 このリンク作動装置90は、姿勢変更用アクチュエータ91として減速機構92を備えたロータリアクチュエータを用いているので、許容負荷を向上できる。また、慣性モーメント比を低減できるから、高速動作を実現できる。さらに、ロータリアクチュエータである姿勢変更用アクチュエータ91の減速機構92の出力軸92aをフランジ出力タイプとしたことにより、パラレルリンク機構1に直接、姿勢変更用アクチュエータ91を設置することができる。そのため、駆動機構部が簡素な構造となり、安価なリンク作動装置90を実現できる。
 本発明は、以上の実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。例えば、図18のように、減速機構を設けずに、姿勢変更用アクチュエータ91の出力軸91aをフランジ出力タイプとしても良い。その場合、姿勢変更用アクチュエータ91の出力軸91aの先端面が、基端側のリンクハブ5を構成する外径側のリンク構成板材50のフランジ取付面98と結合されるフランジ面94となる。
 また、図15~図17では、スぺーサ95を介して外径側のリンク構成板材50に減速機構92を取り付けているが、パラレルリンク機構1と姿勢変更用アクチュエータ91の干渉等の問題がなければ、外径側のリンク構成板材50に減速機構92を直接設置しても構わない。さらに、キー出力タイプの姿勢変更用アクチュエータ91または減速機構92を用い、カップリング(図示せず)により姿勢変更用アクチュエータ91または減速機構92の出力軸と回転軸体32を連結しても良い。したがって、そのようなものも本発明の範囲内に含まれる。
1 パラレルリンク機構
2 基端側のリンクハブ
3 先端側のリンクハブ
4 リンク機構
5 基端側の端部リンク部材
6 先端側の端部リンク部材
7 中央リンク部材
12,19,33,36,72,75 軸受
27 曲がり部
32,35,42,45 回転軸体
50 外径側のリンク構成板材(板材)
50a 曲がり部
51 内径側のリンク構成板材(板材)
51a 曲がり部
52 貫通孔(タイトな孔)
53 貫通孔(ルーズな孔)
81,90 リンク作動装置
83,91 姿勢変更用アクチュエータ
91a,92a 出力軸
92 減速機構
94 フランジ面
98 フランジ取付面

Claims (9)

  1.  基端側のリンクハブに対し先端側のリンクハブを、3組以上のリンク機構を介して姿勢を変更可能に連結するパラレルリンク機構であって、
     前記各リンク機構は、それぞれ前記基端側のリンクハブおよび先端側のリンクハブに一端が回転可能に連結された基端側および先端側の端部リンク部材と、これら基端側および先端側の端部リンク部材の他端に両端がそれぞれ回転可能に連結された中央リンク部材とを備え、
     前記基端側および先端側の端部リンク部材は、板厚方向に曲がった曲がり部を1箇所以上有する板材からなるパラレルリンク機構。
  2.  請求項1に記載のパラレルリンク機構において、前記基端側および先端側の端部リンク部材を構成する前記板材は金属板であり、前記曲がり部を板金曲げ加工により形成したパラレルリンク機構。
  3.  請求項1または2に記載のパラレルリンク機構において、前記基端側および先端側の端部リンク部材は、板厚方向に曲がった曲がり部を1箇所以上有する2つ以上の板材からなるパラレルリンク機構。
  4.  請求項3に記載のパラレルリンク機構において、前記基端側および先端側の端部リンク部材は2つの板材からなり、これら2つの板材を板面同士が互いに向き合うように並列に配置したパラレルリンク機構。
  5.  請求項4に記載のパラレルリンク機構において、前記基端側および先端側の端部リンク部材と前記基端側および先端側のリンクハブとの各回転対偶部、および前記基端側および先端側の端部リンク部材と前記中央リンク部材との各回転対偶部は、前記2つの板材の間に、軸受を内蔵した前記基端側および先端側のリンクハブおよび前記中央リンク部材を配置し、前記2つの板材に設けた貫通孔および前記軸受の内輪に回転軸体を挿通し、前記2つの板材、前記軸受の内輪、および前記回転軸体を互いに固定したパラレルリンク機構。
  6.  請求項5に記載のパラレルリンク機構において、前記基端側および先端側の端部リンク部材を構成する前記2つの板材のうちの一方の板材に設けた前記貫通孔は、この貫通孔に挿通される前記回転軸体との間にすきまが生じないタイトな孔であり、もう一方の板材に設けた前記貫通孔は、この貫通孔に挿通される前記回転軸体との間にすきまが生じるルーズな孔であるパラレルリンク機構。
  7.  請求項1ないし請求項6のいずれか1項に記載のパラレルリンク機構を用いたリンク作動装置であって、
     前記3組以上のリンク機構のうちの2組以上のリンク機構に、前記基端側のリンクハブに対する前記先端側のリンクハブの姿勢を任意に変更する姿勢変更用アクチュエータが設けられているリンク作動装置。
  8.  請求項7に記載のリンク作動装置において、前記姿勢変更用アクチュエータは、出力軸にこの出力軸と直交するフランジ面を有するロータリアクチュエータであり、
     前記基端側の端部リンク部材を構成する任意数の前記板材のうちの少なくとも1つの板材は、前記基端側のリンクハブに回転自在に連結される回転軸と直交するフランジ取付面を有し、
     前記姿勢変更用アクチュエータの前記フランジ面に前記板材の前記フランジ取付面が直接または間接的に結合されているリンク作動装置。
  9.  請求項7に記載のリンク作動装置において、前記姿勢変更用アクチュエータは減速機構を備えたロータリアクチュエータであり、
     前記減速機構の出力軸はこの出力軸と直交するフランジ面を有し、
     前記基端側の端部リンク部材を構成する任意数の前記板材のうちの少なくとも1つの板材は、前記基端側のリンクハブに回転自在に連結される回転軸と直交するフランジ取付面を有し、
     前記減速機構の前記フランジ面に前記板材の前記フランジ取付面が直接または間接的に結合されているリンク作動装置。
PCT/JP2015/064934 2014-05-30 2015-05-25 パラレルリンク機構およびリンク作動装置 WO2015182556A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-112121 2014-05-30
JP2014112121A JP6352054B2 (ja) 2014-05-30 2014-05-30 パラレルリンク機構およびリンク作動装置

Publications (1)

Publication Number Publication Date
WO2015182556A1 true WO2015182556A1 (ja) 2015-12-03

Family

ID=54698883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064934 WO2015182556A1 (ja) 2014-05-30 2015-05-25 パラレルリンク機構およびリンク作動装置

Country Status (2)

Country Link
JP (1) JP6352054B2 (ja)
WO (1) WO2015182556A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467046B2 (ja) * 2018-08-15 2024-04-15 ナブテスコ株式会社 歯車装置
JP7220555B2 (ja) * 2018-12-07 2023-02-10 Ntn株式会社 パラレルリンク機構およびリンク作動装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520941A (ja) * 1997-10-16 2001-11-06 ロス−ハイム デザインズ, インコーポレイテッド ロボットマニピュレータ
JP2013096547A (ja) * 2011-11-04 2013-05-20 Ntn Corp パラレルリンク機構、等速自在継手、およびリンク作動装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520941A (ja) * 1997-10-16 2001-11-06 ロス−ハイム デザインズ, インコーポレイテッド ロボットマニピュレータ
JP2013096547A (ja) * 2011-11-04 2013-05-20 Ntn Corp パラレルリンク機構、等速自在継手、およびリンク作動装置

Also Published As

Publication number Publication date
JP2015224782A (ja) 2015-12-14
JP6352054B2 (ja) 2018-07-04

Similar Documents

Publication Publication Date Title
WO2015151898A1 (ja) パラレルリンク機構およびリンク作動装置
US10661398B2 (en) Link actuator to initially set position of origin
JP7022008B2 (ja) リンク作動装置
JP6297622B2 (ja) リンク作動装置
US10780574B2 (en) Link actuating device
WO2020196164A1 (ja) パラレルリンク機構およびリンク作動装置
JP5992228B2 (ja) リンク作動装置
US11000946B2 (en) Link operating device
JP5911697B2 (ja) パラレルリンク機構、等速自在継手、およびリンク作動装置
JP7089852B2 (ja) リンク作動装置
WO2015182556A1 (ja) パラレルリンク機構およびリンク作動装置
WO2015182557A1 (ja) パラレルリンク機構およびリンク作動装置
WO2013015165A1 (ja) 等速自在継手およびリンク作動装置
JP6133162B2 (ja) リンク作動装置
JP2019058969A (ja) リンク作動装置
JP7417917B2 (ja) パラレルリンク機構およびリンク作動装置
JP2020060253A (ja) パラレルリンク機構およびリンク作動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15800026

Country of ref document: EP

Kind code of ref document: A1