WO2012049783A1 - 風力発電装置の風車及び風力発電装置 - Google Patents

風力発電装置の風車及び風力発電装置 Download PDF

Info

Publication number
WO2012049783A1
WO2012049783A1 PCT/JP2010/069962 JP2010069962W WO2012049783A1 WO 2012049783 A1 WO2012049783 A1 WO 2012049783A1 JP 2010069962 W JP2010069962 W JP 2010069962W WO 2012049783 A1 WO2012049783 A1 WO 2012049783A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
blade
rotation
force
power generation
Prior art date
Application number
PCT/JP2010/069962
Other languages
English (en)
French (fr)
Inventor
一喜 野元
一臣 野元
学 屋宜
Original Assignee
株式会社ビルメン鹿児島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ビルメン鹿児島 filed Critical 株式会社ビルメン鹿児島
Priority to US13/379,089 priority Critical patent/US8258648B2/en
Priority to KR1020127003073A priority patent/KR101205483B1/ko
Priority to CN201080062757.3A priority patent/CN102762854B/zh
Publication of WO2012049783A1 publication Critical patent/WO2012049783A1/ja
Priority to HK13101009.2A priority patent/HK1174080A1/xx

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7066Application in combination with an electrical generator via a direct connection, i.e. a gearless transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/133Stators to collect or cause flow towards or away from turbines with a convergent-divergent guiding structure, e.g. a Venturi conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/14Casings, housings, nacelles, gondels or the like, protecting or supporting assemblies there within
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/42Storage of energy
    • F05B2260/421Storage of energy in the form of rotational kinetic energy, e.g. in flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • F05B2260/506Kinematic linkage, i.e. transmission of position using cams or eccentrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/77Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism driven or triggered by centrifugal forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/79Bearing, support or actuation arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind turbine of a wind turbine generator and a wind turbine generator equipped with the wind turbine.
  • Patent Document 1 In recent years, attention has been focused on wind power generation that does not emit greenhouse gases such as carbon dioxide as a power generation method using renewable energy in order to preserve the global environment (for example, Patent Document 1).
  • An object of the present invention is to provide wind power generation that does not require electrical control, and whose rotational speed is autonomously controlled according to the wind speed, and that has excellent startability and can suppress excessive rotation by the autonomous rotational speed control.
  • An object is to provide a windmill of a device and a wind turbine generator having the same at low cost.
  • the wind turbine of the wind turbine generator of the present invention is A wind turbine of a wind power generator that receives wind power and rotates around a predetermined rotation axis in a constant rotation direction, Two or more wings provided around the rotation shaft so as to rotate by receiving wind force from the rotation axis direction of the rotation shaft, and extending radially outward with respect to the rotation shaft;
  • the blade receives wind force, it receives a pressing force so that the width direction of the wind receiving surface is close to the wind parallel, and the angle between the width direction of the wind receiving surface and the rotation axis direction of the rotating shaft is A blade fixing part fixed to the rotating shaft in a variable form;
  • a biasing means for biasing and holding a blade that receives the wind force at a predetermined angular position for initial rotation in which the width direction is closest to the wind parallel when the wind force falls below a predetermined light wind level, and the wind force exceeds the light wind level
  • the centrifugal force is applied to the wing via the link mechanism so
  • a weight member to be connected and when the wind force reaches a predetermined strong wind level, the blades reach the predetermined angular position for high-speed rotation where the width direction is closest to the wind orthogonal direction, and the wind force is at the strong wind level. If the pressure exceeds the centrifugal force, the pressure force by the wind force and the urging force of the urging means overcome the centrifugal force and push the weight member back inward, thereby returning the wing to the wind parallel direction.
  • An angle adjustment mechanism It is characterized by providing.
  • that the width direction of the wind receiving surface of the blade is close to the wind parallel means that the angle between the width direction of the wind receiving surface of the blade and the wind receiving direction (that is, the axial direction of the rotating shaft) is small. This means that the width direction of the wind receiving surface of the blade is close to the wind orthogonal direction.
  • the width direction of the wind receiving surface of the blade and the surface orthogonal to the wind receiving direction (that is, relative to the axial direction of the rotation axis) This means that the angle formed with the (orthogonal plane) is closer to the smaller side.
  • the angle change between the width direction of the wind receiving surface of the blade and the rotation axis direction of the rotation shaft can be autonomous depending on the rotation speed of the blade without using the power of an electric motor such as a motor. Therefore, power generation can be safely continued even during a power failure, for example.
  • the configuration of the present invention it is possible to obtain an optimal rotation state according to the wind force, not simple self-sustained control in which braking is applied and excessive rotation is prevented as the rotational speed of the windmill increases. It can. That is, the first stage (low gear stage) in which the width direction of the wind receiving surface of the blade is close to the wind parallel so that the windmill is easy to rotate when the wind power is at a low wind level, and the state is rotated at a high torque and low speed.
  • the acceleration rotation performance is high at the time of the first breeze, and further, at the second stage from the time of the light breeze to the time of the strong breeze, it is changed to a state where it can be rotated more easily and the rotation speed can be increased. Furthermore, at the third stage when the predetermined strong wind level is exceeded, excessive rotation of the blades can be suppressed according to the air volume.
  • the third stage is a force that causes the width direction of the wind receiving surface of the blade to be close to the wind perpendicular by the centrifugal force acting on the weight member, and a force that causes the width direction of the wind receiving surface of the blade to be close to the wind parallel by wind force. Is in a balanced state, and the angle between the width direction of the wind receiving surface of the wing and the rotational axis direction of the rotary shaft is automatically determined by the balance.
  • the blade fixing portion according to the present invention is a hinge member having a rotating support shaft extending in the extending direction of the blade and two fixing portions capable of changing the angle formed around the axis of the rotating support shaft.
  • one fixing part can be fixed to the wing, and the other fixing part can be fixed so as to rotate integrally with the rotating shaft side.
  • the rotation support shaft may be provided on the first end portion side so that the blade is rotated on the other end portion side on the first end portion side in the width direction.
  • the wind force received by the wind receiving surface of the blade is included as a force considered for changing the width direction of the blade to a direction close to the wind parallel or a direction close to the wind.
  • the rotation support shaft is not provided at one end in the width direction of the blade, the wind force received on one end side with respect to the rotation support shaft and the wind force received on the other end side cancel each other. Although a lot of waste occurs, the waste can be eliminated by being provided on the end side.
  • the weight member in the present invention can be linked to the outer peripheral end in the width direction of the blade. This facilitates the movement of the wing fixing part by the weight member.
  • the weight member in the present invention is provided for each of a plurality of blades, and each weight member is provided so as to be integrally rotatable with the rotation shaft.
  • the angles of the blades are synchronized with each other according to the position on the rotation axis of the connecting member that slides as the weight member moves in and out.
  • the angle formed by the width direction of the wind receiving surface and the rotation axis direction of the rotary shaft in all the blades is determined by the slide displacement direction and the slide displacement amount of the annular coupling member. It becomes easier to balance the rotation.
  • Each blade fixing portion in the present invention is fixed to the rotating shaft via a common fixing member fixed so as to be integrally rotatable with the rotating shaft, and the biasing means is between the fixing member and the connecting member.
  • a biasing force can be generated in the direction of the rotary shaft ship.
  • the biasing means applies a biasing force to each blade individually, the biasing force applied to each blade may be biased, but each blade is fixed to a common fixing member.
  • the urging means is provided for the fixed member, a common urging force can be applied to each wing, so that the angles of the wings can be unified.
  • the blade angle adjusting mechanism includes the blade including the blade while urging the blade receiving the wind force by the urging means so that the width direction is closer to the wind parallel when the wind force is lower than the light wind level.
  • the abutment member is brought into contact with a movable structure that operates in conjunction with the change in the angle of the contact, and the operation is stopped to hold the position at the initial rotation angular position, while the wind force further exceeds the strong wind level.
  • the movable structure can be configured to return to the initial rotation angular position at which the movable structure abuts against the abutting member.
  • each blade fixing portion is fixed to the rotating shaft via a common fixing member fixed so as to be integrally rotatable with the rotating shaft.
  • the connecting member functions as the above-mentioned structure by connecting to the link mechanism so that the connecting member approaches the fixing member as the width direction of the wing becomes closer to the wind. Either or both of these, an extension part extending toward the other member is formed, and the tip of the other member side of the extension part comes into contact with the other member, so that the wing is The position can be held at the initial rotation angular position. Rather than providing a contact member for each blade, it is easy to determine the initial rotational angular position of all blades by providing the connecting member and the fixing member.
  • wind power generation has a problem that it is not stable because power generation output fluctuates with fluctuations in wind speed, and there is a demand for providing a wind power generation apparatus that can further stabilize unstable power generation output in wind power generation.
  • the wind power generator of the present invention includes: If the rotation axis is coaxial with the rotation axis and the rotation axis is increasing in a constant rotation direction, the rotation axis is integrally rotated with the rotation axis, and the rotation axis is decelerating and the rotation axis is decelerating. Is a flywheel disposed via a one-way clutch so as to be inertially separated from the rotating shaft; A power generation means having a rotor arranged to rotate integrally with the flywheel so as to rotate integrally, and generating electric power by the rotation of the rotor as the flywheel rotates; It is characterized by providing.
  • the output is stable because the power generated by the power generation means is generated based on the stable rotational energy accumulated in the flywheel. A relatively stable power generation output can be obtained.
  • the flywheel and the windmill are separated from each other, so that the flywheel is in an inertial rotation state.
  • the speed reduction element on the flywheel side is greatly reduced, it is possible to continue the rotation for a longer time.
  • the power generation means can obtain a stable power generation output although a gentle attenuation occurs over time. .
  • Rotational energy is accumulated in the weight member as well as the flywheel, so that the rotation can be continued for a longer time.
  • the power generation means is the second power generation means
  • the first power generation means has a rotor arranged so as to rotate integrally with the rotation axis of the windmill.
  • a power generation means different from the second power generation means for generating electric power by rotation of the rotor accompanying rotation, and an output for externally outputting either or any of the electric power generated by the first power generation means and the second power generation means Means.
  • the power generated by the first power generation means varies greatly depending on the wind power received by the windmill, but the power generated by the second power generation means is the fly power.
  • the output is stable because it is generated based on the stable rotational energy accumulated in the wheel.
  • the power generated by both the first power generation means and the second power generation means is superimposed. Is output, the instability of the power generated by the first power generation means is alleviated, and a relatively stable power output can be obtained as a whole.
  • wind power generator which is one Embodiment of this invention, Comprising: The figure which looked at the braid
  • the schematic diagram which showed the state which planarly viewed FIG. The schematic diagram which showed the state of FIG. 6 simply.
  • the schematic diagram which showed simply the state which planarly viewed FIG. The schematic diagram which illustrates simply the rotation operation
  • the block diagram which shows simply the electric constitution of the wind power generator of FIG. The block diagram which shows simply an example of the electrical constitution of the output part of the wind power generator of FIG.
  • the expanded sectional view which shows simply the windmill part in the wind power generator of FIG. The expanded sectional view of the support
  • the expanded sectional view which expanded the inside of the power generation case body in the wind power generator of FIG. It is an embodiment different from FIG. 12 of the wind power generator of this invention, and is the expanded sectional view which expanded the inside of the power generation case body in the embodiment.
  • the rear side perspective view of FIG. FIG. 20 is a front perspective view of FIG. 19.
  • Side surface sectional drawing (side perspective drawing) of FIG. FIG. 26 is a bottom perspective view of the air guide case 200 portion of FIG. 25.
  • FIG. 1 is a view of a blade and a hub as viewed from the back side in the wind turbine generator of this embodiment, and FIG. 2 is a partially enlarged view thereof.
  • FIG. 3 is a partial cross-sectional view of the wind turbine generator of the present embodiment having the windmill 3 of FIG. 1, and FIG. 4 is a partially enlarged view of the weight member 35 described later.
  • FIG. 5 is a partial cross-sectional view of the wind turbine generator of the present embodiment having the windmill of FIG. 1, and FIG. 6 is a partial enlarged view thereof, in which both weight members to be described later are located outward. .
  • a windmill 3 of the wind turbine generator 1 of the present embodiment shown in FIG. 1 receives wind power and rotates around a predetermined rotation axis 2 in a constant rotation direction, and two or more are provided around the rotation axis 2.
  • the rotation axis of the blade (blade) 30 and the blade 30 so that the angle ⁇ formed by the width direction W of the wind receiving surface 30w (see FIG. 11) and the direction of the rotation axis 2x of the rotation shaft 2 can be varied.
  • the angle ⁇ of the blade fixing portion 33 fixed to the blade 2 and the blade 30 is a predetermined value that is closest to the wind parallel (wind parallel direction X: wind receiving direction 2w) when the wind power is below a predetermined level of light wind.
  • the first stage for facilitating accelerated rotation, and when the wind power exceeds a predetermined light wind level, it is varied toward the wind orthogonal (wind orthogonal plane Y).
  • Second stage high rotation stage
  • the third stage excessive rotation prevention stage
  • an angle adjustment mechanism 300 that adjusts so as to vary autonomously according to the wind force in each step.
  • the wind receiving direction 2w coincides with the direction of the rotation axis 2x of the rotation shaft 2 as shown in FIGS.
  • the wind turbine 3 connects (connects) the plurality of blades 30 disposed so as to rotate in a certain direction by receiving wind force from the wind receiving direction 2w, and the plurality of blades 30 so as to be integrally rotatable with the rotary shaft 2.
  • a hub 22 a hub 22.
  • the blade 30 is arranged such that the wind receiving surface 30w (see FIG. 11) intersects the wind receiving direction 2w, and rotates by receiving wind force from the direction of the rotation axis 2x of the rotary shaft 2.
  • Two or more blades 30 are provided around the rotation axis 2x at predetermined intervals (here, three at regular intervals), and each blade 30 extends radially outward with respect to the rotation shaft 2.
  • the hub 22 includes a shaft fixing portion (fixing member) 221 that is fixed so as to rotate integrally with the rotary shaft 2, and blade fixing that fixes each blade 30 to the shaft fixing portion 221.
  • Part (wing fixing part) 33 Accordingly, each blade 30 is fixed to the shaft fixing portion 221 (see FIGS. 1 and 2) by the corresponding blade fixing portion 33 and rotates integrally with the rotary shaft 2.
  • the shaft fixing portion 221 is a cylindrical front end portion 221 ⁇ / b> A having a disk shape, and a center portion of the front end portion 221 ⁇ / b> A extending downstream in the wind receiving direction of the rotary shaft 2. And a rear end portion 221B.
  • the shaft fixing portion 221 has the rotating shaft 2 inserted through from the upstream side in the wind receiving direction, and is fixed so that they are integrally rotated by a fastening member.
  • the blade fixing portion 33 is provided for each of the plurality of blades 30, and when the corresponding blade 30 receives wind force, the width direction W of the wind receiving surface 30 w is close to the wind parallel. It is fixed to a common shaft fixing part (fixing member) 221 so as to receive the pressing force FW (see FIG. 11) and to change the angle ⁇ between the width direction W and the direction of the rotation axis 2x. Is done.
  • each blade fixing portion 33 is integrally fixed to the rotating shaft 2 via the common shaft fixing portion (fixing member) 221 fixed so as to be rotatable integrally with the rotating shaft 2.
  • the blade fixing portion 33 of the present embodiment includes a rotation support shaft 33Z that extends in the extending direction of the blade 30 and a pair that can change an angle between the rotation support shaft 33Z and an axis 33z (see FIG. 2) of the rotation support shaft 33Z.
  • This is a hinge member having two fixing portions 33A and 33B.
  • One fixing portion 33 ⁇ / b> A is integrally fixed to the blade 30 by a fastening member via the blade attachment member 330.
  • the other fixing portion 33B is also integrally fixed to the shaft fixing portion 221 on the rotating shaft 2 side by a fastening member, so that the entire blade fixing portion 33 can be integrally rotated with the shaft fixing portion 221.
  • the blade mounting member 330 includes parallel plate portions 330A and 330A that form a pair for sandwiching the blade 30, and an orthogonal coupling portion 330B that couples them in an orthogonal manner.
  • the blade 30 sandwiched between the parallel plate portions 330A and 330A is integrally fixed by a fastening member.
  • 2A is an enlarged partial cross-sectional view of one plate fixing portion in FIG. 1.
  • FIGS. 2B and 2D are cross-sectional views taken along the line AA in FIG. c) and (e) are schematic views schematically showing the BB cross section of FIG. 2 (a).
  • the angle ⁇ formed by the width direction W of the blade 30 and the direction of the rotation axis 2x is different between FIGS.
  • FIGS. 2B and 2D and FIGS. 2C and 2E show a state where the blade 30 is close to the wind orthogonal direction
  • FIGS. 2C and 2E show a state where the blade 30 is close to the wind parallel.
  • the fixing portion 33A of the blade fixing portion 33 is fastened and fixed to the orthogonal coupling portion 330B, and the blade 30 can rotate around the axis 33z of the rotation support shaft 33Z together with the parallel plate portions 330A and 330A.
  • the fixing portion 33B of the blade fixing portion 33 is directly fixed to the shaft fixing portion 221 by a fastening member.
  • the rotation support shaft 33 ⁇ / b> Z is configured so that the blade 30 rotates around the first end 30 ⁇ / b> A side in the width direction W and the other second end 30 ⁇ / b> B side rotates. It is provided at a position biased toward the first end 30A.
  • the first side end 30A is on the inner circumferential side with respect to the axis 33z
  • the second side end 30B is on the outer circumferential side
  • the rotation support shaft 33Z here is the first side
  • the axis 33z is located outside the edge position on the end 30A side.
  • the angle adjusting mechanism 300 has a predetermined direction in which the width direction W of the blade 30 receiving the wind force is closest to the wind parallel direction (close to the wind parallel direction X) when the wind force falls below a predetermined level of light wind.
  • Energizing means 34 for energizing and holding the initial rotation angular position A, and wind force received by the wind force applied to the blade 30 by the centrifugal force FA when the wind force exceeds the light wind level.
  • the link mechanism 37 (the blade 30 can be moved closer to the wind orthogonal direction (wind orthogonal surface Y side) while displacing itself outward by overcoming the pressing force FW on the surface 30w and the urging force FB of the urging means 34.
  • a weight member 35 (see FIGS. 4 and 6) coupled to the blade 30 via the blade 30 (see FIGS. 4 and 6).
  • the blade 30 is moved in the width direction W. Is the most orthogonal to the wind
  • the pressing force FW by the wind force and the urging force FB of the urging means 34 overcome the centrifugal force FA and the weight
  • the blade 30 is returned so that its width direction W is closer to the wind parallel.
  • that the width direction W of the wind receiving surface 30w of the blade 30 is close to the wind parallel means that the width direction W of the wind receiving surface 30w of the blade 30 and the wind receiving direction 2w (that is, rotation of the rotary shaft 2).
  • the angle formed by the width direction W of the wind surface 30w and the surface Y orthogonal to the wind receiving direction 2w that is, the orthogonal surface Y to the direction of the rotation axis 2x of the rotating shaft 2 is closer to the smaller side.
  • angle adjustment mechanism 300 of this embodiment will be described with reference to FIGS.
  • the angle adjustment mechanism 300 of the present invention is not limited to the configuration of the present embodiment described below.
  • the weight member 35 is provided for each of the plurality of blades 30 and is attached so as to be rotatable integrally with the rotary shaft 2 as shown in FIGS. 7 and 9. These weight members 35 themselves rotate with the rotation of the rotating shaft 2, and are linked mechanisms 37 (see FIGS. 4 and 6) so that they can be displaced inward and outward in the radial direction with respect to the rotating axis 2 x according to the centrifugal force received by themselves. ) To be rotatable integrally or in conjunction with the rotary shaft 2.
  • the link mechanism 37 is moved by a centrifugal force FA that acts more greatly as the rotational speed of the rotary shaft 2 increases.
  • the weight member 35 is located outward as the centrifugal force FA increases, and the weight member decreases as the centrifugal force decreases.
  • the weight member 35 is displaced within a predetermined radial range so that 35 is positioned inward. In this embodiment, as shown in FIG.7 and FIG.9, it has the 1st link member 371 and the 2nd link member 372 which mutually link-link.
  • the weight member 35 is integrally fixed to one end 371A by a fastening member, and one end 372A of the second link member 372 is fixed to the other end 371B.
  • the other end portion 372B of the second link member 372 is attached to the outer peripheral portion of the annular connection member 36 having a disk shape so as to have a rotation axis 373y parallel to the rotation axis 372y.
  • the bent portion 371C positioned in the middle of the L-shaped first link member 371 is rotatably attached to the shaft fixing portion 221 so as to have a rotation axis 371y that is parallel to the rotation axis 372y.
  • the shaft fixing portion 221 is fixed integrally with the rotary shaft 2 and is not displaced with the movement of the weight member 35 in the radial direction.
  • the shaft fixing portion 221 is used as a fixed link, and the first link.
  • the member 371 and the second link member 372 are movable.
  • the urging means 34 is a spring member (a tension spring) and is provided for each blade 30. As shown in FIGS. 7 and 9, the urging means 34 has one end at the blade in the shaft fixing portion 221. While being fixed on the surface opposite to the fixing portion 33, the other end is fixed on the facing surface side of the connecting member 36 facing in the direction of the rotation axis 2x.
  • a spring fixing portion 221 c (see FIG. 2A) that fixes one end of the spring member 34 is provided on the surface upstream of the wind receiving direction of the shaft fixing portion 221, and the wind receiving of the connecting member 36.
  • a spring fixing portion 36c (see FIGS. 4 and 6) for fixing the other end of the spring member 34 is provided on the surface on the downstream side in the direction.
  • the connecting member 36 can be integrally rotated with respect to the rotary shaft 2 via the link mechanism 37 and the shaft fixing portion 221 and slides to the first side of the rotary axis 2x due to the radially inward displacement of the weight member 35.
  • the bearing moves at the center so that it moves (see FIGS. 7 and 8) and slides to the second side of the rotation axis 2x by the displacement of the weight member 35 in the radially outward direction (see FIGS. 9 and 10). It connects with the rotating shaft 2 through the apparatus.
  • the first side is the downstream side in the wind receiving direction (the shaft fixing portion 221 side)
  • the second side is the upstream side in the wind receiving direction.
  • the connecting member 36 is directly or indirectly connected to the corresponding blade 30 so that the angle ⁇ is closer to the wind parallel by the sliding movement of the rotation axis 2x toward the first side due to the radially inward displacement of the weight member 35.
  • the pressing member 362 which is pressed against the blade 30 and pulled back directly or indirectly so that the angle ⁇ approaches the wind orthogonal direction by the sliding movement of the rotation axis 2x to the second side due to the radially outward displacement of the weight member 35 is the blade 30 It is provided for each.
  • the angle ⁇ of each blade 30 is configured to be determined according to the position on the rotation axis of the connecting member 36 that slides as the weight member 35 moves inward and outward in the radial direction. As a result, the angles ⁇ of the blades 30 change in such a manner that they are in synchronism with each other.
  • Each of the pressing members 362 in FIGS. 7 to 10 is shown as a configuration in which the corresponding blade 30 is directly pressed or pulled back, but in reality, as shown in FIG.
  • a fixed portion 33A (here, on the upstream side in the wind receiving direction) that extends through a through hole 221h formed in the disk-shaped front end portion 221A and whose extended tip end is integrally fixed to the corresponding blade 30. It is fixed to a rotation fixing portion 330a) provided in the parallel plate portion 330A so as to be rotatable around an axis parallel to the axis 33z of the rotation support shaft 33Z.
  • the pressing member 362 is fixed so as to be rotatable with respect to the second side far from the rotation support shaft 33Z of the fixing portion 33A.
  • the movable range in the radial direction of the weight member 35 is defined in advance.
  • the state of FIG. 9 is a state in which the weight member 35 is at the radially outermost position, and cannot be displaced further outward in the radial direction due to the configuration of the link mechanism 37. When the weight member 35 reaches this outermost position, the blade 30 reaches a predetermined high-speed rotation angular position B where the width direction W of the wind receiving surface 30w is closest to the wind orthogonal direction (see FIG. 11). ).
  • the state of FIG. 7 is a state in which the weight member 35 is in the radially innermost position and cannot be displaced further inward in the radial direction.
  • the innermost position is the abutting member 38 provided at a position facing the moving direction with respect to the movable structure that operates in conjunction with the angle changing operation of the blade 30 including the blade 30 toward the wind parallel direction. Is defined as a contact position. 7 and FIG. 8 and FIG. 11A, the blade 30 is urged closer to the wind parallel by the pressing force FW by the wind force and the urging force FB by the urging means 34. And the angle changing operation of the blade 30 toward the wind parallel direction by the FB stops with the contact member 38 coming into contact with the movable structure operating in conjunction with the angle changing operation of the blade 30 including the blade 30.
  • the stop position is the innermost position in the radial direction of the weight member 35, and the position of the blade 30 at the same time is the initial rotation angular position A.
  • each blade fixing portion 33 is fixed to the rotating shaft 2 via a common fixing member fixed so as to be integrally rotatable with the rotating shaft 2, and the fixing member functions as the contact member 38.
  • the shaft fixing portion 221 is the contact member 38.
  • the connecting member 36 is connected to the link mechanism 37 so as to approach the fixed member as the width direction W of the blade 30 becomes closer to the wind parallel, and functions as the movable structure 39.
  • An extension portion 380 that extends toward the other member is formed on one or both of the shaft fixing portion 221 that is the abutting member 38 and the connecting member 36 that is the movable structure 39.
  • the connecting member 36 is formed with a cylindrical portion or a protruding portion that extends from the center portion toward the shaft fixing portion 221 as an extending portion 380, and the tip of the connecting member 36 and the shaft fixing portion 221 are formed.
  • the blade 30 is held at the initial rotation angular position A by the contact with the contact portion 390.
  • At least one of the contact portion of the contact member 38 and the contact portion of the movable structure 39 is provided as an elastic member such as rubber.
  • the contact portion 390 of the shaft fixing portion 221 is provided as an elastic member.
  • the blade operates in the form shown in FIG.
  • the centrifugal force FA starts to increase and overcomes the pressing force FW on the wind receiving surface 30w and the urging force FB of the urging means 34,
  • the weight member 35 is displaced outward to a position where the FA, FW, and FB are balanced, and the angle ⁇ of the blade 30 also leaves the initial rotation angular position A and changes its position toward the direction perpendicular to the wind.
  • This state is a state in the middle of a transition to a state suitable for higher speed rotation, although it becomes difficult to obtain a higher torque as the position becomes closer to the wind.
  • the outermost position of the weight member 35 is specified.
  • the weight member 35 is not displaced outward.
  • the blade 30 reaches a predetermined high-speed rotation angular position B in which the width direction W is closest to the wind orthogonal direction. This state is a state in which the windmill 3 can rotate at the highest speed.
  • the pressing force FW on the wind receiving surface 30w by the wind force and the urging force FB of the urging means 34 overcome the centrifugal force FA.
  • the blade 30 is returned so that the width direction W is closer to the wind.
  • This state is a state in the middle of the transition of the wind turbine 3 to a state in which it is difficult to obtain a high rotational speed gradually.
  • the blade 30 can be returned to the initial rotation angular position A where the movable structure 39 contacts the contact member 38.
  • the biasing member 34, the weight member 35, and the link mechanism 37 are provided, so that the angle ⁇ of the blade 30 is close to the wind parallel so that the blade 30 can be easily rotated in a light wind.
  • the configuration of the wind turbine generator 1 including the windmill 3 described above will be described.
  • the wind power generator 1 of this invention is not restricted to the structure of this embodiment described below.
  • the wind turbine generator 1 has the above-described configuration, and thus receives a wind force from a predetermined wind receiving direction 2w and rotates around a predetermined rotation axis 2x in a constant rotation direction (FIG. 1). 12 and FIG. 13), and when the rotating shaft 2 is accelerating in the constant rotation direction, the rotating shaft 2 is integrally rotated with the rotating shaft 2 and the rotating shaft 2 rotates at an increased speed.
  • a flywheel 7 see FIG. 17
  • a one-way clutch 6 one-way clutch: see FIG. 17
  • the power generation has a rotor 91 (see FIG. 17) arranged to rotate integrally with the flywheel 7 so as to rotate integrally with the flywheel 7 and generates electric power by the rotation of the rotor 91 accompanying the rotation of the flywheel 7.
  • Machine Configured with a means) 9 see FIG. 13).
  • the generator 9 is a second generator, and has a rotor 51 that is arranged coaxially with the flywheel 7 so as to rotate integrally therewith, and the electric power is generated by the rotation of the rotor 51 as the flywheel 7 rotates.
  • the first generator 5 that is different from the second generator 9 is generated.
  • the 1st generator 5 is provided in the wind receiving direction upstream with respect to the flywheel 7, and the 2nd generator 9 is provided in the wind receiving direction upstream.
  • the wind power generator 1 of this embodiment receives both the power inputs produced
  • An output unit (output means) 10 that outputs externally is provided.
  • the output lines of the generated power of the first generator 5 and the second generator 9 are connected until reaching the external output, and are configured to be externally output by one system.
  • the output unit 10 inputs both three-phase AC power generated by the first generator 5 and the second generator 9 to the rectifier 12 and then boosts the controller. 11 and output at a predetermined voltage, which is further input by the power conditioner 15, and the input DC power is converted into system power and output.
  • the power conditioner 15 may convert the AC power that can be used in the home and output it.
  • the output unit 10 inputs both the first generator 5 and the second generator 9 generated by the first generator 5 and the rectifier 12, and then inputs them to the boost controller 13.
  • DC power having a predetermined voltage may be supplied to the battery (power storage means) 19B for storage. Further, the electric power stored in the battery (electric storage means) 19B may be supplied to the external power supply system 19A via the power conditioner 15.
  • FIG. 15 is an enlarged cross-sectional view schematically showing the wind turbine generator 1 of the present embodiment.
  • the windmill 3 is disposed inside a cylindrical wind tunnel (duct) 31 that extends in a cylindrical shape so as to be coaxial with the direction of the rotation axis 2 x of the rotation shaft 2.
  • the cylindrical wind tunnel portion 31 is formed in a form in which the opening area decreases from the upstream side to the downstream side in the wind receiving direction 2w of the wind turbine 3.
  • the cylindrical wind tunnel portion 31 has a curved shape that bulges inward in the radial direction in a section from the upstream annular end 31A to the downstream annular end 31B in the wind receiving direction 2w.
  • the wind taken in the cylindrical wind tunnel 31 is supplied downstream in a compressed form, and the blades on the downstream side receive this, so that the rotational force obtained by the wind turbine 3 can be increased.
  • a plurality of support members (FRP) 32 extending radially outward from the outer peripheral surface 21 ⁇ / b> A of the nacelle 21 are fixed to the inner peripheral surface of the cylindrical wind tunnel portion 31. It is provided non-rotating.
  • the nacelle 21 accommodates the first generator 5, the flywheel 7, the second generator 9, and the rotating shaft 2 therein, and further accommodates the angle adjustment mechanism 300 here.
  • the hub 22 and the blade 30 are provided on the downstream side of the nacelle 21 in the wind receiving direction 2w, and the rotational force obtained by the downstream blade 30 is upstream of the wind receiving direction 2w via the rotary shaft 2. It is transmitted to the generators 5 and 9 located.
  • the nacelle 21 changes its direction in the horizontal plane in accordance with the wind direction with respect to the column main body 110S together with the upper end portion 110T of the column (tower) 110 extending from the foundation portion 190 (see FIG. 12) of the ground surface. (It can be rotated around the vertical axis 110x of the column main body 110S).
  • the cylindrical wind tunnel portion 31 that covers each blade 30 from the outer peripheral side is provided on the downstream side in the wind receiving direction 2 w of the nacelle 21. It functions as a means like a tail that changes the wind receiving direction 2w. That is, when the cylindrical outer peripheral surface 31C of the cylindrical wind tunnel portion 31 (especially the surface on the horizontal direction side thereof: see FIG. 12) receives wind, it rotates with respect to the upper end portion 110T of the support column 110, and the rotation axis in the direction in which the wind comes.
  • the second rotary shaft ship 2x is directed upstream in the wind receiving direction.
  • FIG. 16 is a cross-sectional view of the nacelle of FIG. 15 cut along a plane passing through the axes 2x and 110x.
  • a generator case body 100 that houses the flywheel 7, the first generator 5, and the second generator 9 in this order from the upstream side in the wind receiving direction 2 w of the windmill 3 is arranged. Then, the nacelle 21 is fastened and fixed by a fastening member.
  • the generator case body 100 houses therein an upstream housing space 9 ⁇ / b> S for housing the second generator 9 and the flywheel 7 in order from the upstream side in the wind receiving direction 2 w.
  • the intermediate housing space 7S and the downstream housing space 5S for housing the first generator 5 are formed, and these are formed into a continuous space.
  • This one-piece space is divided into an upstream-side accommodation space 9S and a downstream-side accommodation space 5S by the flywheel 7 being arranged in the intermediate accommodation space 7S.
  • the cylindrical intermediate storage space 7S is larger in diameter than the cylindrical upstream storage space 9S and the downstream storage space 5S, and the flywheel 7 itself to be stored is also the intermediate storage space 7S in the radial direction.
  • the upstream storage space 9S and the downstream storage space 5S communicate with each other only on the outer peripheral side of the flywheel 7, when the flywheel 7 is disposed, It is surely separated. Thereby, the other space does not receive the influence of the turbulence of the air flow accompanying the rotation of the rotating body (rotor 91, 51) in one of the upstream housing space 9S and the downstream housing space 5S. .
  • the rotary shaft 2 is attached via the bearing device 60 so as to penetrate the power generation case body 100 in its own axial direction and smoothly rotate relative to the power generation case body 100 (see FIG. 17).
  • the bearing device 60 of the present embodiment is a sealed bearing device having a sealing function such as a sealing device (O-ring or the like) or grease, and is sealed by the sealing function.
  • the inside of the sealed generator case body 100 is depressurized so that the resistance (air resistance) due to the filling gas received by the internal rotors 51, 91, 7 and the like is reduced when air is filled at atmospheric pressure. It is an internal state such as a state.
  • the first generator 5 and the second generator 9 include a plurality of magnetic members 52 at predetermined intervals along the circumferential direction of rotors (generator rotors) 51 and 91 that can rotate around the rotation shaft 2.
  • rotors generator rotors
  • 91 a stator (generator that is opposed to the magnetic members 52 and 92 in the form of an air gap, and is arranged non-rotating with respect to the rotors 51 and 91 is disposed.
  • Stator 53, 93 and electric power is generated by relative rotation between the magnetic members 52, 92 and the stator coils 54, 94.
  • the generated power (generated power) increases as the relative rotational speed increases.
  • the magnetic members 52 and 92 in the present embodiment are permanent magnets, and for example, neodymium magnets can be used.
  • the ratio of the numbers of the magnetic members 52 and 92 and the stator coils 54 and 94 is 3: 4, and three-phase AC power is output from the stator coils 54 and 94.
  • slip rings 110SA and 110SB are provided on the upper end shaft portion 111T of the upper end portion 110T of the column 110, and a brush 102CA (shown) that slides on the slip rings 110SA and 110SB is provided.
  • the power generation output is taken out from the stator coils 54 and 94 via 102CB (not shown).
  • the extracted power generation output is connected to the output unit 10 via a wiring passing through the internal space of the cylindrical column (tower) 110.
  • fixed part 120 which included the bearing apparatus is fastened and fixed to the upper end surface of the upper end part 110T of the support
  • the power generation case body 100 is provided on the upstream side in the wind receiving direction with respect to the fixing portions 120.
  • the rotating shaft 2 and a rotating shaft extension 2 ′ that extends the rotating shaft 2 are connected by a shaft connecting portion 130 so as to be integrally rotatable.
  • the rotating shaft 2 inserted through the generator case band 100 is a rotating shaft extension 2 '.
  • Both the stators 53 and 93 in the first generator 5 and the second generator 9 are cylindrical members that are formed to protrude from the generator case body 100 toward the inside of the case along the axial direction of the rotary shaft 2. Provided. In these cylindrical members 53 and 93, openings that penetrate in the radial direction are formed at predetermined intervals along the circumferential direction. These openings are partitioned by pillars extending in the axial direction of the rotary shaft 2 provided in the circumferential direction, and stator coils 54 and 94 are wound around the pillars. In the present embodiment, the winding direction is reversed between adjacent column portions.
  • the first generator 5 and the second generator 9 of the present embodiment are the first and second rotor portions 51A, 91A and the second rotor 51, 91 that are coaxial with the rotary shaft 2 and rotate together with the flywheel 7, respectively. And rotor portions 51B and 91B. Both of these rotor portions 51A, 91A and 51B, 91B have opposing surfaces that face each other (facing each other) via an air gap, and a plurality of magnetic members 92 are predetermined on the opposing surfaces in the circumferential direction. The same number is arranged at intervals and fixed by a fastening member.
  • the magnetic members 52A (52) and 92A (92) of one of the rotor portions 51A and 91A and the magnetic members 52B (52) and 92B (92) of the other rotor portions 51B and 91B have different polarities (magnetic poles).
  • the magnetized surfaces of each other face each other.
  • the stator coils 54 and 94 of the stators 53 and 93 are located in the space between the first rotor portions 51A and 91A and the second rotor portions 52A and 92A.
  • the stator coils 54 and 94 are arranged in the circumferential direction in the annular opposing regions on the stators 53 and 93 sandwiched between the magnetic members 52 and 52 and 92 and 92 between the rotating rotors 51A and 51B and 91A and 91B. A plurality of them are arranged at predetermined intervals along.
  • the first rotor portions 51A and 91A and the second rotor portions 51B and 91B are arranged to face each other in the radial direction with respect to the rotation axis 2x of the rotation shaft 2.
  • the first rotor portions 51A and 91A are fixed to the fixed portions 50A and 90A formed on the outer peripheral side of the fixed portion 70A of the flywheel 7 so as to rotate integrally with the flywheel 7 in a coaxial manner.
  • the cylindrical portions 51B and 91B forming the second rotor portion are rotated integrally with the flywheel 7 coaxially with the fixing portions 50B and 90B formed on the inner peripheral side of the fixing portion 70A of the flywheel 7. It is fixed.
  • the flywheel 7 includes a shaft fixing portion 70C that is fixed to the rotating shaft 2 via a one-way clutch (one-way clutch) 6, and a disk shape that extends radially outward from the shaft fixing portion 70C.
  • it has the outer end part 70D extended from the fixing
  • the wind turbine generator 1 of this embodiment shown in FIG. 18 receives a wind force from a predetermined wind receiving direction 2w and rotates around a predetermined rotation axis 2x in a constant rotation direction, and the rotation shaft 2 of the wind turbine 3
  • a first generator (power generation means) 5 that has a rotor 51 arranged coaxially with the rotor 51 and generates electric power by the rotation of the rotor 51 as the rotary shaft 2 rotates, and the rotary shaft 2
  • the rotating shaft 2 is accelerating in the constant rotation direction, the rotating shaft 2 is rotated integrally with the rotating shaft 2 and the rotating shaft 2 is decelerated and the rotating shaft 2 is decelerated.
  • a flywheel 7 disposed via a one-way clutch (one-way clutch) 6 is separated from the rotary shaft 2 so as to rotate inertially, and is disposed so as to rotate integrally with the flywheel 7.
  • the output part which receives both electric power input produced
  • the generated power generated by the first generator 5 and the second generator 9 and having different phases from each other is externally output by one system.
  • the configuration of the output unit 10 can be the same as that shown in FIGS. 14A and 14B.
  • the 18 includes, as the rotor 51, a first rotor portion 51A and a second rotor portion 51B that are coaxial with the rotary shaft 2 and rotate integrally with each other.
  • Both of the rotor portions 51A and 51B have opposing surfaces that face each other (facing each other) via an air gap, and the same number of magnetic members 52 are provided at predetermined intervals in the circumferential direction on both the opposing surfaces. Arranged and fixed by a fastening member.
  • the magnetic member 52A (52) of one rotor portion 51A and the magnetic member 52B (52) of the other rotor portion 51B are magnetized with different polarities (magnetic poles). Face to face.
  • stator coil 54 of the stator 53 is positioned in the gap between the first rotor portion 51A and the second rotor portion 51B, and the stator coil 54 is composed of the magnetic members 52 of the rotor portions 51A and 51B that rotate.
  • a plurality of annular opposing regions on the stator 53 sandwiched between 52 are arranged at predetermined intervals along the circumferential direction.
  • the first rotor portion 51 ⁇ / b> A and the second rotor portion 51 ⁇ / b> B are arranged to face each other in the radial direction (radial direction) with respect to the axis 2 x of the rotating shaft 2.
  • a shaft fixing portion 50C fixed so as to rotate integrally with the rotary shaft 2
  • a disk-shaped intermediate portion 50B extending radially outward from the shaft fixing portion 50C
  • a rotor main body 50 having an outer end 50A on the radially outer side of the intermediate portion 50B.
  • the rotor body 50 is lighter and has a smaller diameter than the flywheel 7 having a large weight on the outer peripheral side.
  • the cylindrical portion 51A forming the first rotor portion and the cylindrical portion 51B having a diameter larger than the cylindrical portion 51A forming the second rotor portion are integrally rotated in a form coaxial with the rotor main body portion 50. Both are fixed to the outer end 50 ⁇ / b> A of the rotor body 50.
  • the 18 includes, as the rotor 91, a first rotor portion 91A and a second rotor portion 91B that are coaxial with the rotating shaft 2 and rotate together with the flywheel 7 together.
  • Both of the rotor portions 91A and 91B have opposing surfaces facing (facing) each other through an air gap, and the same number of magnetic members 92 are provided at predetermined intervals in the circumferential direction on both opposing surfaces. Arranged and fixed by a fastening member.
  • the magnetic member 92A (92) of one rotor portion 91A and the magnetic member 92B (92) of the other rotor portion 91B are magnetized surfaces having different polarities (magnetic poles).
  • stator coil 94 of the stator 93 is located in the gap between the first rotor portion 91A and the second rotor portion 92A.
  • a plurality of stator coils 94 are arranged at predetermined intervals along the circumferential direction in an annular opposing region on the stator 93 sandwiched between the magnetic members 92 and 92 of both of the rotating rotors 91A and 91B.
  • the first rotor portion 91A and the second rotor portion 91B are arranged to face each other in the radial direction with respect to the axis 2x of the rotating shaft 2.
  • the first rotor portion 91 ⁇ / b> A has a cylindrical portion 91 ⁇ / b> A that forms the first rotor portion and a cylindrical portion 91 ⁇ / b> B that has a larger diameter than the cylindrical portion 91 ⁇ / b> A that forms the second rotor portion with respect to the flywheel 7. 7 are fixed so as to rotate together as a unit.
  • the flywheel 7 includes a shaft fixing portion 70C that is fixed to the rotating shaft 2 via a one-way clutch (one-way clutch) 6, and a disk shape that extends radially outward from the shaft fixing portion 70C.
  • a wind guide case (nacelle) 200 also serving as a power generation unit case (housing) is provided on the windward side of the wind turbine 3 (blade 30), and the power generation unit is stored in the case 200.
  • wind direction fins (wind direction plate portions) 202 can be integrally formed outside the wind guide case 200 (which is also the case main body 201).
  • the cylindrical wind tunnel (duct) 31 as shown in FIGS. 12 and 15 does not exist outside the wind turbine 3, and the wind turbine 3 is exposed (exposed) and receives wind.
  • the case main body 201 of the air guide case 200 has a smooth outer peripheral surface in which a cross section perpendicular to the axial direction of the wind turbine 3 forms a vertically long oval shape or a circular shape, and the windward end of the case main body 201 is the front end side. It has an arcuate vertical cross section that becomes thinner smoothly and has a small curvature at the tip.
  • the above-described wind direction fins 202 protrude outward (for example, upward) from the outer peripheral surface of the case main body 201 (wind guide case 200) in the direction along the axial direction of the windmill 3.
  • the wind direction fins 202 occupy a positional relationship perpendicular to the rotating surface of the windmill 3.
  • the wind direction fins 202 have a length equal to or slightly shorter than the axial length of the case main body 201, and a hypotenuse 203 whose height gradually increases in an arc shape (or linear shape) from the vicinity of the windward front end of the case main body 202.
  • the rear end portion 204 has a maximum height in the vicinity of the leeward end of the case body 202 and descends so as to bite (curve) from the top to the windward side (curved) (on the leeward side).
  • the rear end bulges in an arc shape or the rear end hangs down linearly), but the lower end thereof is continuous with the upper surface of the case body 201.
  • the wind direction fin 202 has a slanted side 203 that is sharpened like a knife edge, and has a curved surface that is sharper toward the rear end from the intermediate portion toward the rear end portion 204.
  • the middle portion is formed to be the thickest and has a sharp triangular shape as shown in FIG.
  • a column connection part 208 that connects to a column (pole) 206 that maintains the wind turbine 3 at a predetermined height is formed.
  • the column 206 is connected here.
  • the column connection portion 208 protrudes downward from the lower surface of the case body 201 and smoothly tapers, and the lower end portion is formed in a cylindrical shape.
  • the upper end portion of the circular cross section of the column 206 is formed in the cylindrical portion.
  • the wind guide case 200 and the wind turbine 3 are rotatably supported around the axis (vertical axis) of the support column 206 through a bearing 210.
  • the wind turbine 3 and the wind guide case 200 are kept free so that the wind direction fins 202 formed in the wind guide case 200 follow the wind direction, in other words, the rotating surface of the wind turbine 3 always faces the wind direction. Will be.
  • FIG. 24 is a side sectional view (perspective view) of a portion including the windmill 3 and the air guide case 200, and the rotating shaft 2 of the windmill 3 is concentric with the center line of the air guide case 200 inside the air guide case 200.
  • the power generation case body 100 that is arranged and shown in FIG. 17 or 18 is assembled concentrically to the rotating shaft 2. Further, the angle adjusting mechanism 300 of the windmill 3 described with reference to FIGS. 2 to 11 is also accommodated in the wind guide case 200.
  • the central portion of the wind turbine 3 (the base end portion of the blade 30) is occupied by a cylindrical portion 212 having a circular cross section.
  • a cone-shaped central portion 214 is formed that protrudes in a cone shape from the portion to the opposite side (leeward side) of the wind guide case 200, and this cone-shaped central portion 214 and the cylindrical portion 212 (slightly tapered toward the leeward side).
  • An annular concave portion 216 having an annular shape and a width becoming narrower toward the bottom side is formed between them and the hub 22 and the blade fixing portion 33 are disposed therein.
  • the cone-shaped annular recess 216 receives a wind from the rear to generate a rotational moment.
  • the guide case 200 and the empty vehicle 3 can change their postures (directions), for example, by nearly 180 degrees, and change their postures so that the tip of the wind guide case 200 faces the windward (facing the wind).

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

 風力発電装置1の風車3であって、付勢部材34と錘部材35とリンク機構37により、微風時に回転し易いようにブレード30の角度θを風平行寄りとする第一段階と、風速が増した時に高回転となり易いようにブレード30の角度θを風直交寄りとする第二段階と、強風時に過回転が防止されるように風直交寄りから風平行寄りにブレード30が押し戻される第三段階という三段階にて、ブレードの角度θを可変させる。これにより、電気制御を必要とせず、風速に応じて自律的に回転速度が制御されるとともに、その自律的な回転速度制御によって、始動性に優れ、なおかつ過剰回転を抑制できる風力発電装置の風車及びそれを備えた風力発電装置を低コストで提供する。

Description

風力発電装置の風車及び風力発電装置
 本発明は、風力発電装置の風車及びその風車を備えた風力発電装置に関する。
 近年、地球環境の保全のため、再生可能エネルギーを用いた発電方法として、二酸化炭素等の温室効果ガスを排出しない風力発電に注目が集まっている(例えば特許文献1等)。
特開2004-239113号公報
 ところが、風力発電は、風速が増した時の過剰な回転上昇は、風車の故障・破壊につながる可能性があるため、これを抑制する手段が必要となる。例えばブレーキ等を用いて減速させる技術等が既に存在している。しかしながら、この場合はブレーキ機構のみならずそれを制御する制御装置も必要となり、コスト面に課題が残る。また、停電時に備えた構成を採用する必要もあるので、より一層の高コスト化は避けられない。
 一方で、過剰な回転に達した場合とは逆に、風車の回転の開始時においても課題がある。風車の回転が停止あるいはほぼ停止した状態においては、風車を回転させるための必要トルクが大きいため、近年では、その始動性の改善についても求められている。例えば、回転開始時のギアを低速ギアとし、回転が増すに従い高速ギアへと切り替えていく制御によって改善することは容易ではあるが、過剰回転を抑制する場合と同様、ギア機構およびその制御装置、さらには停電時に備えた構成も必要となるため、コスト面に課題が残る。
 本発明の課題は、電気制御を必要とせず、風速に応じて自律的に回転速度が制御されるとともに、その自律的な回転速度制御によって、始動性に優れ、なおかつ過剰回転を抑制できる風力発電装置の風車及びそれを備えた風力発電装置を低コストで提供することにある。
課題を解決するための手段および発明の効果
 上記課題を解決するために、本発明の風力発電装置の風車は、
 風力を受けて所定の回転軸周りを一定回転方向に回転する風力発電装置の風車であって、
 回転軸の回転軸線方向からの風力を受けて回転するよう該回転軸周りに2以上設けられ、該回転軸に対し径方向外向きに延出する翼と、
 翼を、風力を受けた場合にその受風面の幅方向が風平行寄りとなるよう押圧力を受ける形で、なおかつその受風面の幅方向と回転軸の回転軸線方向とのなす角度が可変可能となる形で、回転軸に対し固定される翼固定部と、
 風力が所定の微風レベルを下回る場合に、その風力を受ける翼を幅方向が最も風平行寄りとなる所定の初期回転用角度位置に付勢保持する付勢手段と、風力が微風レベルを上回った場合に、遠心力が翼に加わるその風力による押圧力と付勢手段の付勢力とに打ち勝つことにより自らを外方に変位させつつ翼が風直交寄りに可変するようリンク機構を介して翼に連結する錘部材と、を備え、風力が所定の強風レベルに達した場合には、翼を幅方向が最も風直交寄りとなる所定の高速回転用角度位置に到達させるとともに、風力がその強風レベルをさらに上回った場合には、その風力による押圧力と付勢手段の付勢力とが遠心力に打ち勝って錘部材を内方に押し戻すことにより、翼を幅方向が風平行寄りへと復帰させる翼角度調整機構と、
 を備えることを特徴とする。
 なお、本発明において、翼の受風面の幅方向が風平行寄りであるとは、翼の受風面の幅方向と、受風方向(即ち回転軸の軸線方向)とのなす角が小さい側に寄るという意味であり、翼の受風面の幅方向が風直交寄りであるとは、翼の受風面の幅方向と、受風方向に直交する面(即ち回転軸の軸線方向に対する直交面)とのなす角が小さい側に寄るという意味である。
 上記本発明の構成によれば、翼の受風面の幅方向と回転軸の回転軸線方向とのなす角度変化を、モーター等の電動機の動力を用いることなく、翼の回転速度に応じて自律的に制御することができるため、例えば停電時等においても安全に発電を継続できる。
 また、上記本発明の構成によれば、風車の回転速度が増すほどブレーキがかかって過剰回転が防止されるような簡易な自立的制御ではなく、風力に応じた最適な回転状態を得ることができる。即ち、風力が微風レベルの場合に風車が回転しやすいように翼の受風面の幅方向が風平行寄りとなって高トルク・低速回転状態となる第一段階(ローギア段階)と、そこから風力が増して錘部材が遠心力によって外方に変位することによって、リンク部材を介して付勢手段の付勢力に逆らい翼の受風面の幅方向が風直交寄りとなって、低トルク・高速回転状態となる第二段階(トップギア段階)と、さらに風力が増して各翼が受ける風圧が錘部材の遠心力に打ち勝ち、その風力がウエイト部材をある程度押し戻すことにより、翼の受風面の幅方向を風平行寄りに復帰させる第三段階とが存在する。これにより、第一段階の微風時には加速回転性能が高く、さらに微風時から強風時に至るまでの第二段階の時には、より回転しやすい状態、より回転速度を増すことができる状態へと変化していき、さらに所定の強風レベルを超えた第三段階の時には、翼の過剰回転を風量に応じて抑制していくことができる。なお、第三段階は、ウエイト部材に作用する遠心力により翼の受風面の幅方向を風直交寄りとする力と、風力により翼の受風面の幅方向を風平行寄りとする力とが釣り合った状態であり、その釣り合いにより、翼の受風面の幅方向と回転軸の回転軸線方向とのなす角度が自動的に決まる。
 上記本発明における翼固定部は、翼の延出方向に延びる回転支軸と、該回転支軸の軸線周りにおいて互いのなす角度を可変可能とされた2つの固定部とを有した蝶番部材であり、一方の固定部が翼に固定され、他方の固定部が回転軸側と一体回転可能に固定される用に構成できる。この場合、回転支軸は、翼が幅方向における第一側の端部側を中心に他方の第二側の端部側が回転するよう、第一側の端部側に設けられているとよい。本発明においては、翼の幅方向を風平行寄りや風直交寄りに変更するために考慮される力として、翼の受風面が受ける風力が含まれる。回転支軸が翼の幅方向における一方の端部に偏って設けられていなければ、回転支軸に対し一方の端部側で受ける風力と他方の端部側で受ける風力とが打ち消しあうため、多くの無駄が生じてしまうが、端部側に設けられることでその無駄を無くすことができる。
 上記本発明における錘部材は、翼の幅方向における外周側の端部側に対しリンク結合されるものとできる。これにより、錘部材による翼固定部の可動が容易となる。
 上記本発明における錘部材は、複数ある翼毎に設けられ、それぞれが回転軸と一体回転可能に設けられる一方で、それら錘部材は、内外への変位に応じて回転軸に対しスライド移動するようリンク機構を介して共通の連結部材に対し連結することにより、各翼の角度は、それら錘部材の内外への移動に伴いスライド移動する連結部材の回転軸上の位置に応じて、互いに同期して同角度となる形で変化するように構成できる。この構成によると、全ての翼における受風面の幅方向と回転軸の回転軸線方向とのなす角度が、環状連結部材のスライド変位方向及びスライド変位量によって決まる構成となるので、複数ある翼による回転バランスを取りやすくなる。
 上記本発明における各翼固定部は、回転軸と一体回転可能に固定された共通の固定部材を介して回転軸に対し固定されており、付勢手段は、固定部材と連結部材との間で回転軸船方向に付勢力を生じさせるよう設けることができる。これにより、各翼個々に対しそれぞれに付勢手段が付勢力を付与する構成とすると、各翼に付与される付勢力に偏りが生じる可能性があるが、各翼が共通の固定部材に固定され、その固定部材に対し付勢手段が設けられていれば、各翼に対し共通の付勢力を付与することができるため、各翼の上記角度を統一とすることができる。
 上記本発明における翼角度調整機構は、風力が微風レベルを下回る場合に、その風力を受ける翼を、幅方向が風平行寄り側となるよう付勢手段により付勢しつつ、翼を含む該翼の角度の変化に連動して動作する可動構造体に当接部材を当接させてその動作を止めることにより、初期回転用角度位置に位置保持するものである一方、風力が強風レベルをさらに上回った場合には、可動構造体が当接部材に当接する初期回転用角度位置まで位置復帰可能に構成できる。この構成によると、当接部材により風平行寄り側における翼の回転限度位置が物理的に定まるため、初期回転用角度位置がぶれる心配がない。また、この場合、当接部材及び可動構造体の当接面のうち少なくとも一方に弾性部材が設けられていれば、当接時の衝撃を吸収し、風車の長寿命化を図ることができる。
 上記本発明において、上記した連結部材と固定部材との双方を備える場合に、各翼固定部は、回転軸と一体回転可能に固定された共通の固定部材を介して回転軸に対し固定されて上記の当接部材として機能する一方、連結部材は、翼の幅方向が風平行寄りとなるに従い固定部材に接近するようリンク機構と接続して上記の構造体として機能し、固定部材及び連結部材のいずれか又は双方には、他方の部材に向けて延出する延出部が形成され、その延出部における他方の部材側の先端が、その他方の部材に対し当接することにより、翼が初期回転用角度位置に位置保持されるよう構成できる。各翼個々に対し当接部材を設けるよりも、上記した連結部材や固定部材に設けることで、すべての翼の初期回転用角度位置を共通に定めることが容易となる。
 また、風力発電は、風速の変動に伴い発電出力が変動するため、安定しないという課題があり、風力発電における不安定な発電出力をより安定化できる風力発電装置の提供が求められている。
 これに対し本発明の風力発電装置は、既に述べた構成を有する本発明の風車に加えて、
 回転軸と同軸をなし、かつ一定回転方向において、回転軸が増速している場合には該回転軸と一体回転状態となって自身も増速回転し、回転軸が減速している場合には該回転軸から切り離されて慣性回転するように1方向クラッチを介して配置されるフライホイールと、
 フライホイールと同軸をなして一体回転するよう配置されたロータを有し、フライホイールの回転に伴う該ロータの回転により電力を生成する発電手段と、
 を備えることを特徴とする。
 上記本発明の風力発電装置の構成によれば、発電手段によって発電される電力が、フライホイールに蓄積された安定的な回転エネルギーに基づいて生成されるものであるから出力が安定しているため、比較的安定な発電出力を得ることができる。
 また、風車の減速時には、フライホイールと風車の回転軸が切り離されるため、フライホイールは慣性回転状態となる。つまり、フライホイール側の減速要素が大幅に減じられるため、より長時間の回転継続が可能となり、その間、発電手段からは、経時的になだらかな減衰は生じるものの安定した発電出力を得ることができる。
 また、風車の増速時には、風車の回転軸とフライホイールとが一体回転状態となってフライホイールに回転エネルギーが蓄積されるので、その後、風車が減速したとしても、増速時に蓄積された回転エネルギーによって発電手段からは安定した発電出力を、蓄積した分だけ長く継続的に得続けることができる。
 また、錘部材にも、フライホイールと同様、回転エネルギーが蓄積されることになるため、より長時間の回転継続が可能となる。
 上記本発明の風力発電装置において、発電手段を第2の発電手段とし、第1の発電手段として、風車の回転軸と同軸をなして一体回転するよう配置されたロータを有し、回転軸の回転に伴う該ロータの回転により電力を生成する第2の発電手段とは異なる発電手段と、第1の発電手段と第2の発電手段により生成された双方又はいずれかの電力を外部出力する出力手段とを備えるように構成できる。
 上記本発明の風力発電装置の構成によれば、第1の発電手段によって発電される電力は、風車が受ける風力に応じて大きく変動するが、第2の発電手段によって発電される電力は、フライホイールに蓄積された安定的な回転エネルギーに基づいて生成されるものであるから出力が安定しており、例えばこれら第1の発電手段と第2の発電手段による双方の発電電力が重畳された形で出力されれば、第1の発電手段による発電電力の不安定さは緩和され、全体として比較的安定な発電出力を得ることができる。
本発明の一実施形態である風力発電装置であって、ブレード及びハブを背面側から見た図。 図1の部分拡大図と、それを平面視した図。 図1の風車を有した風力発電装置の部分断面図であって、錘部材が径方向内側に位置した状態を示す図。 図3の部分拡大図。 図1の風車を有した風力発電装置の部分断面図であって、錘部材が径方向外側に位置した状態を示す図。 図5の部分拡大図。 図4の状態を簡略的に示した模式図。 図4を平面視した状態を簡略的に示した模式図。 図6の状態を簡略的に示した模式図。 図6を平面視した状態を簡略的に示した模式図。 図1の実施形態におけるブレードの回転動作を簡略的に説明する模式図。 図1の実施形態を適用可能な本発明の風力発電装置の位置実施形態を簡略的に示す外観図。 図12の風力発電装置の電気的構成を簡略的に示すブロック図。 図12の風力発電装置の出力部の電気的構成の一例を簡略的に示すブロック図。 図14Aの変形例を簡略的に示すブロック図。 図12の風力発電装置における風車部分を簡略的に示す拡大断面図。 図12の風力発電装置における支柱部分の拡大断面図。 図12の風力発電装置における発電ケース体内部を拡大した拡大断面図。 本発明の風力発電装置の図12とは異なる実施形態であり、その実施形態における発電ケース体内部を拡大した拡大断面図。 本発明の別の実施例の側面図。 図19の正面図。 図19の背面図。 図19の後方側斜視図。 図19の前方側斜視図。 図19の側面断面図(側面透視図)。 図25の風導ケース200部分の底面透視図。
 以下、本発明の風力発電装置の風車、及びその風車を用いた風力発電装置の一実施形態を、図面を参照して説明する。
 図1は、本実施形態の風力発電装置においてブレード及びハブを背面側から見た図であり、図2はその部分拡大図である。図3は、図1の風車3を有した本実施形態の風力発電装置の部分断面図であり、図4はその部分拡大図であり、双方とも、後述する錘部材35が内方に位置している。図5は、図1の風車を有した本実施形態の風力発電装置の部分断面図であり、図6はその部分拡大図であり、双方とも、後述する錘部材が外方に位置している。
 図1に示す本実施形態の風力発電装置1の風車3は、風力を受けて所定の回転軸2の周りを一定回転方向に回転するものであり、該回転軸2の周りに2以上設けられるブレード(翼)30と、該ブレード30を、その受風面30w(図11参照)の幅方向Wと回転軸2の回転軸線2xの方向とのなす角度θが可変可能となる形で回転軸2に対し固定される翼固定部33と、該ブレード30の角度θを、風力が所定の微風レベルを下回る場合に最も風平行寄り(風平行方向X寄り:受風方向2w寄り)となる所定の初期回転用角度位置Aとして加速回転しやすいようにする第一段階(回転開始段階)と、風力が所定の微風レベルをこえた場合に風直交寄り(風直交面Y寄り)に可変してより高速回転となりやすいようにする第二段階(高回転段階)と、風力が所定の強風レベルをこえた場合に風直交寄りから風平行寄りに押し戻して過回転が防止されるようにする第三段階(過剰回転防止段階)という風力に応じた各段階を有し、それら各段階する形で、風力に応じて自立的に可変するよう調整する角度調整機構300(図13及び図5参照)と、を備えて構成される。
 本実施形態の風車3は、図3及び図5に示すように、受風方向2wが回転軸2の回転軸線2xの方向と一致している。風車3は、該受風方向2wから風力を受けることで一定方向に回転するように配置される複数のブレード30と、それら複数のブレード30を回転軸2と一体回転可能に連結(接続)するハブ22と、を備えて構成される。
 ブレード30は、受風面30w(図11参照)が受風方向2wに対し交差するように配置されており、回転軸2の回転軸線2xの方向からの風力を受けて回転する。ブレード30は、回転軸線2xの周りに所定間隔おきに2以上設けられ(ここでは等間隔おきに3枚)、各々が回転軸2に対し径方向外向きに延出する。
 ハブ22は、図4及び図6に示すように、回転軸2に対し一体回転する形で固定される軸固定部(固定部材)221と、各ブレード30を軸固定部221に固定するブレード固定部(翼固定部)33と、を有する。これにより、各ブレード30は、対応するブレード固定部33によって軸固定部221(図1及び図2参照)に固定され、回転軸2と一体に回転する。
 軸固定部221は、図4及び図6に示すように、円盤形状をなす環状の前端部221Aと、その前端部221Aの中心部が回転軸2の受風方向下流側に延出した筒状の後端部221Bとを有した形状をなす。軸固定部221は、受風方向上流側から回転軸2が挿通されており、それらが締結部材によって互いが一体に回転するよう固定されている。
 ブレード固定部33は、図4及び図6に示すように、複数あるブレード30毎に設けられ、対応するブレード30が風力を受けた場合にその受風面30wの幅方向Wが風平行寄りとなるよう押圧力FW(図11参照)を受ける形で、なおかつ該幅方向Wと回転軸線2xの方向とのなす角度θが可変可能な形で、共通の軸固定部(固定部材)221に固定される。これにより、各ブレード固定部33は、回転軸2と一体回転可能に固定された共通の軸固定部(固定部材)221を介して回転軸2に対し一体に固定される。
 本実施形態のブレード固定部33は、ブレード30の延出方向に延びる回転支軸33Zと、該回転支軸33Zの軸線33z(図2参照)周りにおいて互いのなす角度を可変可能とされた対をなす2つの固定部33A,33Bとを有した蝶番部材である。一方の固定部33Aは、ブレード取付部材330を介した形で、ブレード30に対し締結部材によって一体に固定される。他方の固定部33Bは回転軸2側の軸固定部221に対し同じく締結部材によって一体に固定され、これによりブレード固定部33全体が軸固定部221と一体回転可能となる。
 本実施形態のブレード取付部材330は、図2に示すように、ブレード30を挟持するための対をなす平行板部330A,330Aと、これらを直交する形で結合する直交結合部330Bとを有して構成され、平行板部330A,330Aに挟まれたブレード30が締結部材によって一体に固定される。図2の(a)は、図1における1つのプレート固定部を拡大した部分断面図であり、図2の(b)及び(d)は図2(a)のA-A断面、図2(c)及び(e)は図2(a)のB-B断面を簡略的に示した模式図である。ただし、図2の(b)及び(d)と、図2の(c)及び(e)とではブレード30の幅方向Wと回転軸線2xの方向とのなす角度θが異なっており、図2の(b)及び(d)はブレード30が風直交寄りの状態、図2の(c)及び(e)はブレード30が風平行寄りの状態を示している。図2においては、ブレード固定部33の固定部33Aが直交結合部330Bに対し締結固定され、ブレード30が平行板部330A,330Aと共に回転支軸33Zの軸線33z周りに回転可能とされている。他方、ブレード固定部33の固定部33Bは、軸固定部221に対し締結部材によって直接固定されている。
 回転支軸33Zは、図8及び図10に示すように、ブレード30が幅方向Wにおける第一側の端部30A側を中心にして、他方の第二側の端部30B側が回転するよう、第一側の端部30A側に偏った位置に設けられている。本実施形態においては、第一側の端部30Aが軸線33zに対し内周側となり、第二側の端部30Bが外周側となっており、ここでの回転支軸33Zは、第一側の端部30A側の端縁位置よりも外側に軸線33zが位置している。
 角度調整機構300は、図11に示すように、風力が所定の微風レベルを下回る場合に、その風力を受けるブレード30を幅方向Wが最も風平行寄り(風平行方向X寄り)となる所定の初期回転用角度位置Aに付勢保持する付勢手段34(図4及び図6参照)と、風力がその微風レベルを上回った場合に、遠心力FAが、ブレード30に加わるその風力による受風面30wへの押圧力FWと付勢手段34の付勢力FBとに打ち勝つことにより自らを外方に変位させつつブレード30が風直交寄り(風直交面Y寄り)に可変するようリンク機構37(図4及び図6参照)を介してブレード30に連結する錘部材35(図4及び図6参照)と、を備え、風力が所定の強風レベルに達した場合には、ブレード30を幅方向Wが最も風直交寄りとなる所定の高速回転用角度位置Bに到達させるとともに、風力がその強風レベルをさらに上回った場合には、その風力による押圧力FWと付勢手段34の付勢力FBとが遠心力FAに打ち勝って錘部材35を内方に押し戻すことにより、ブレード30をその幅方向Wが風平行寄りとなるよう復帰させる。
 なお、本発明において、ブレード30の受風面30wの幅方向Wが風平行寄りであるとは、ブレード30の受風面30wの幅方向Wと、受風方向2w(即ち回転軸2の回転軸線2xの方向、即ち風平行方向X)とのなす角θが小さい側に寄るという意味であり、ブレード30の受風面30wの幅方向Wが風直交寄りであるとは、ブレード30の受風面30wの幅方向Wと、受風方向2wに直交する面Y(即ち回転軸2の回転軸線2xの方向に対する直交面Y)とのなす角が小さい側に寄るという意味である。
 以下、本実施形態の角度調整機構300の構成を、図7~図10を用いて説明する。なお、本発明の角度調整機構300は、以下で述べる本実施形態の構成に限られるものではない。
 錘部材35は、複数あるブレード30毎に設けられ、図7及び図9に示すように、それぞれが回転軸2に対し一体回転可能となるよう取り付けられる。これら錘部材35は、回転軸2の回転に伴い自らも回転し、自らが受ける遠心力に応じて回転軸線2xに対する径方向内外に変位可能となるよう、リンク機構37(図4及び図6参照)を介して回転軸2と一体にあるいは連動して回転可能に設けられている。ここでは軸固定部221に対し、その径方向(対応する錘部材35が変位する径方向)と回転軸線2xとの双方に対し直交する回転軸線371y周りに回転可能な形で連結固定される。一方で、リンク機構37を介して共通の連結部材36に対し連結し、これにより、連結部材36は、錘部材35の径方向における内外への変位に応じて、回転軸2上をスライド移動するように設けられる。
 リンク機構37は、回転軸2の回転速度が大きいほど大きく作用する遠心力FAによって可動するものであり、遠心力FAが大きくなるほど錘部材35が外方に位置し、遠心力が小さくなるほど錘部材35が内方に位置するよう、予め定められた径方向範囲の中で錘部材35を変位させる。本実施形態においては、図7及び図9に示すように、互いがリンク結合する第一リンク部材371と第二リンク部材372とを有して構成される。L字形状に形成された第一リンク部材371には、一方の端部371Aに錘部材35が締結部材により一体に固定され、他方の端部371Bに第二リンク部材372の一方の端部372Aが、回転軸線2xとその径方向(対応する錘部材35が変位する径方向)との双方に直交する回転軸線372yを有する形で互いに回転可能に取り付けられる。第二リンク部材372の他方の端部372Bは、円盤形状をなした環状の連結部材36の外周部に対し、回転軸線372yと平行な回転軸線373yを有する形で互いに回転可能に取り付けられる。また、L字形状に形成された第一リンク部材371の中間に位置する屈曲部371Cには、軸固定部221に対し同じく回転軸線372yと平行な回転軸線371yを有する形で回転可能に取り付けられる。軸固定部221は、回転軸2と一体に固定されており、錘部材35の径方向の移動に伴い変位を生じることはなく、この軸固定部221を固定リンクとする形で、第一リンク部材371と第二リンク部材372とが可動する。
 付勢手段34は、ばね部材(引っ張りばね)であり、ブレード30毎に設けられ、それら付勢手段34は、図7及び図9に示すように、一方の端部が軸固定部221におけるブレード固定部33とは逆の面側にて固定されるとともに、他方の端部が、回転軸線2xの方向にて対向する連結部材36の対向面側にて固定される。本実施形態においては、軸固定部221の受風方向上流側の面に、ばね部材34の一端を固定するばね固定部221c(図2(a)参照)が設けられ、連結部材36の受風方向下流側の面に、ばね部材34の他端を固定するばね固定部36c(図4及び図6参照)が設けられている。このばね固定部221c,36cの対が予め複数個所(ここでは三箇所)に設けられていることで、ばね部材34の数を増やす形での付勢力の調整が可能となっている。
 連結部材36は、リンク機構37及び軸固定部221を介して回転軸2に対し一体回転可能とされるとともに、錘部材35の径方向内方への変位により回転軸線2xの第一側にスライド移動し(図7及び図8参照)、錘部材35の径方向外方への変位により回転軸線2xの第二側にスライド移動する(図9及び図10参照)ように、中央部にて軸受装置を介して回転軸2に対し連結している。ここでは第一側が受風方向下流側(軸固定部221側)、第二側が受風方向上流側である。
 連結部材36には、対応するブレード30を、錘部材35の径方向内方への変位による回転軸線2xの第一側へのスライド移動によって角度θが風平行寄りとなるよう直接的又は間接的に押し付け、錘部材35の径方向外方への変位による回転軸線2xの第二側へのスライド移動によって角度θが風直交寄りとなるよう直接的又は間接的に引き戻す押付部材362が、ブレード30毎に設けられている。これにより、各ブレード30の角度θは、それら錘部材35の径方向における内外への移動に伴いスライド移動する連結部材36の回転軸上の位置に応じて決定されるよう構成されており、これにより各ブレード30の角度θが互いに同期して同角度となる形で変化する。
 なお、図7~図10における各押付部材362は、対応するブレード30を直接的に押し付ける、あるいは引き戻す構成として図示されているが、実際のところは図2に示すように、軸固定部221の円盤状の前端部221Aに形成された貫通孔221hを貫通する形で延出し、その延出先端部が、対応するブレード30に一体に固定される固定部33A(ここでは受風方向上流側の平行板部330Aに設けられた回転固定部330a)に対し、回転支軸33Zの軸線33zと平行な軸線周りに回動可能な形で固定されている。なお、ここでの押付部材362は、固定部33Aの回転支軸33Zから遠い側の第二側に対し回動可能に固定されている。
 また、錘部材35は、径方向における可動範囲があらかじめ規定されている。図9の状態は、錘部材35が径方向の最外位置にある状態であり、リンク機構37の構成上、これ以上径方向外側には変位できない。錘部材35が、この最外位置に到達したときに、ブレード30は、その受風面30wの幅方向Wが最も風直交寄りとなる所定の高速回転用角度位置Bに到達する(図11参照)。一方で、図7の状態は、錘部材35が径方向の最内位置にある状態であり、これ以上径方向内側には変位できない。ただし、これはリンク機構37の構成により規定される最内位置ではない。即ち、その最内位置は、ブレード30を含むブレード30の風平行寄りへの角度変更動作に連動して動作する可動構造体に対し、その動作方向に対向する位置に設けられた当接部材38との当接位置として規定されている。図7及び図8、さらには図11(a)の状態において、ブレード30は、風力による押圧力FWと付勢手段34による付勢力FBにより風平行寄りに付勢されるが、それらの力FW及びFBによるブレード30の風平行寄りへの角度変更動作は、ブレード30を含むブレード30の角度変更動作に連動して動作する可動構造体に対し当接部材38が当接する形で止まる。そして、その停止位置が、錘部材35の径方向における最内位置であって、同時のそのときのブレード30の位置が、初期回転用角度位置Aとなっている。
 本実施形態においては、各ブレード固定部33が、回転軸2と一体回転可能に固定された共通の固定部材を介して回転軸2に対し固定され、その固定部材が当接部材38として機能する。ここでは、軸固定部221が当接部材38である。一方、連結部材36は、ブレード30の幅方向Wが風平行寄りとなるに従い上記固定部材に接近するようリンク機構37と接続しており、上記の可動構造体39として機能する。そして、当接部材38である軸固定部221及び可動構造体39である連結部材36のいずれか又は双方には他方の部材に向けて延出する延出部380が形成されており、その延出部380における他方の部材側の先端がその他方の部材の当接部390に対し当接することにより、ブレード30が初期回転用角度位置Aに位置保持される。ここでは、連結部材36に、その中央部から軸固定部221側に向けて延出形成された筒状部又は突起部が延出部380として形成されており、その先端と軸固定部221の当接部390とが当接することにより、ブレード30は、初期回転用角度位置Aに位置保持される。なお、当接部材38の当接部及び可動構造体39の当接部のうち少なくとも一方は、ゴム等の弾性部材として設けられている。ここでは、軸固定部221の当接部390が弾性部材として設けられている。
 このような構成を有することにより、ブレードは、図11に示すような形で動作することになる。
 即ち、風力が所定の微風レベルを下回る場合には、図11(a)に示すように、その風力によるブレード30の受風面30wへの押圧力FWと付勢手段34の付勢力FBとが遠心力FAに打ち勝って錘部材35を内方に押し付けて、ブレード30は初期回転用角度位置Aに付勢保持される。具体的にいえば、風力が所定の微風レベルを下回る場合、上述の可動構造体39が当接部材38に当接するよう上記の押圧力FWと付勢力FBとにより押し付けられ、その当接位置である初期回転用角度位置Aにブレード30が位置保持され、このときブレード30は、その受風面の幅方向が最も風平行寄りとなる。この状態は、わずかな風力でも風車3が高いトルクを得やすい状態で、風車3が回転し易い状態である。ただし、高い回転数を得難い状態である。
 風力が上記の微風レベルを上回って所定の強風レベルに達した場合には、遠心力FAが増大し始めて、受風面30wへの押圧力FWと付勢手段34の付勢力FBとに打ち勝ち、FAと、FW及びFBとが釣り合う位置まで錘部材35が外方へ変位するとともに、ブレード30の角度θも初期回転用角度位置Aを離れ、風直交寄りへと位置を変える。この状態は、風直交寄りとなるほど高いトルクは得にくくなるものの、より高速回転に適した状態へ遷移している途中の状態である。
 ただし、錘部材35は最外位置が規定されている。その最外位置に到達すると錘部材35はそれよりも外方へは変位しない。このとき、ブレード30は、その幅方向Wが最も風直交寄りとなる所定の高速回転用角度位置Bに到達した状態となる。この状態は、風車3が最も高速で回転可能な状態である。
 風力がその強風レベルをさらに上回った場合には、その風力による受風面30wへの押圧力FWと付勢手段34の付勢力FBとが遠心力FAに打ち勝って、今度は錘部材35を内方に押し戻すことにより、ブレード30を幅方向Wが風平行寄りとなるように復帰させる。この状態は、風車3が徐々に高い回転数を得難い状態へと遷移している途中の状態である。ここでのブレード30は、上述の可動構造体39が当接部材38に当接する初期回転用角度位置Aまで位置復帰可能とされている。
 このように、本実施形態によれば、付勢部材34と錘部材35とリンク機構37とを有することで、微風時に回転し易いようにブレード30の角度θを風平行寄りとする第一段階と、風速が増した時に高回転となり易いようにブレード30の角度θを風直交寄りとする第二段階と、強風時に過回転が防止されるように風直交寄りから風平行寄りにブレード30が押し戻される第三段階という三段階にて、ブレード30の角度θを可変させることが可能となり、この三段階のブレード30の角度変更による自律的な回転速度制御によって、風車3は、始動性に優れ、高回転時の効率も高く、なおかつ強風時の過剰回転の抑制も可能となっている。
 以下、上記した風車3を備える風力発電装置1の構成について説明する。なお、本発明の風力発電装置1は、以下で述べる本実施形態の構成に限られるものではない。
 本実施形態の風力発電装置1は、上記のような構成を有することにより所定の受風方向2wからの風力を受けて所定の回転軸線2xの周りを一定回転方向に回転する風車3(図1,図12及び図13参照)と、上記一定回転方向において、回転軸2が増速している場合には該回転軸2と一体回転状態となって自身も増速回転し、回転軸2が減速している場合には該回転軸2から切り離されて慣性回転するように1方向クラッチ6(ワンウェイクラッチ:図17参照)を介して配置されるフライホイール7(図17参照)を備えて構成され、さらにここでは、フライホイール7と同軸をなして一体回転するよう配置されたロータ91(図17参照)を有してフライホイール7の回転に伴う該ロータ91の回転により電力を生成する発電機(発電手段)9(図13参照)を備えて構成される。
 さらにいえば、発電機9を第二の発電機とし、フライホイール7と同軸をなして一体回転するよう配置されたロータ51を有してフライホイール7の回転に伴う該ロータ51の回転により電力を生成する、第2の発電機9とは異なる第1の発電機5を備えて構成されている。ここでは、図17に示すように、フライホイール7に対する受風方向上流側に第一の発電機5が設けられ、受風方向上流側に第二の発電機9が設けられる。
 そして、本実施形態の風力発電装置1は、図14A及び図14Bに示すように、第1の発電機5と第2の発電機9により生成された双方の電力入力を受け、それらを合わせて外部出力する出力部(出力手段)10を備えて構成される。つまり、第1の発電機5及び第2の発電機9の発電電力の出力ラインを、外部出力に至るまでの間で接続し、1系統で外部出力する形で構成される。
 出力部10は、例えば図14Aに示すように、第1の発電機5と第2の発電機9により生成された双方の三相の交流電力を、それぞれ整流器12に入力した上で、昇圧コントローラ11に入力して所定の電圧で出力し、さらにそれをパワーコンディショナ15にて入力して、入力された直流の電力を系統電力に変換し、出力するように構成できる。これにより、第1の発電機5と第2の発電機9により生成された双方の電力を合わせて外部の電源系統19Aに供給することができ、例えば売電等が可能となる。また、パワーコンディショナ15にて、家庭内で使える交流電力に変換して出力してもよい。また、出力部10は、図14Bに示すように、第1の発電機5と第2の発電機9により生成された双方をそれぞれ、整流器12に入力した上で、昇圧コントローラ13に入力し、所定電圧とされた直流の電力をバッテリー(蓄電手段)19Bに供給して蓄電させてもよい。また、バッテリー(蓄電手段)19Bに蓄電された電力を、パワーコンディショナ15を介して外部の電源系統19Aに供給するようにしてもよい。
 図15は、本実施形態の風力発電装置1を簡略的に示した拡大断面図である。風車3は、回転軸2の回転軸線2xの方向に同軸をなす形で筒状に延出する筒状風洞部(ダクト)31の内側に配置される。筒状風洞部31は、風車3の受風方向2wの上流側から下流側に向けて開口面積が減少していく形で形成される。具体的にいえば、筒状風洞部31は、受風方向2wの上流側の環状端部31Aから下流側の環状端部31Bまでの間の区間において、径方向内向きに膨出した湾曲形状をなす。この筒状風洞部31において取り込まれた風は、圧縮された形で下流に供給され、下流側のブレードがこれを受けることになるので、風車3が得る回転力を増すことができる。
 筒状風洞部31は、その内周面に、ナセル21の外周面21Aから外向きに放射状に延出する複数の支持部材(FRP)32が固定されており、ナセル21と共に回転軸2に対し非回転に設けられている。ナセル21は、第1の発電機5とフライホイール7と第2の発電機9、さらに回転軸2を内部に収容し、ここではさらに角度調整機構300を収容している。ハブ22及びブレード30は、受風方向2wにおいてナセル21よりも下流側に設けられており、下流側のブレード30で得た回転力が、回転軸2を介して受風方向2wの上流側に位置する発電機5,9側へと伝達される。
 ナセル21は、図15に示すように、地表の基礎部190(図12参照)から延びる支柱(タワー)110の上端部110Tと共に、支柱本体110Sに対し風向きに合わせて水平面内において向きを変えることが可能(支柱本体110Sの鉛直方向の軸線110xの周りに回転可能)に取り付けられている。本実施形態においては、各ブレード30を外周側から被う筒状風洞部31が、ナセル21の受風方向2wの下流側に設けられているため、その筒状風洞部31が、風車3の受風方向2wを可変する尾翼のような手段として機能する。即ち、筒状風洞部31の筒状外周面31C(特にその水平方向側の面:図12参照)が風を受けると、支柱110の上端部110Tに対し回転し、風が来る向きに回転軸2の回転軸船2xを受風方向上流側に向ける。
 図16は、図15のナセルを軸線2x,110xを通過する平面で切断した断面図である。ナセル21の内部には、フライホイール7と第1の発電機5と第2の発電機9とを、風車3の受風方向2wの上流側からこの順で収容した発電機ケース体100が配置され、ナセル21に対し締結部材によって締結固定される。
 図17に示すように、発電機ケース体100は、その内部に、受風方向2wの上流側から順に、第2の発電機9を収容する上流側収容空間9Sと、フライホイール7を収容する中間収容空間7Sと、第1の発電機5を収容する下流側収容空間5Sとを有し、これらをひとつながりの空間とする形状をなす。このひとつながりの空間は、フライホイール7が中間収容空間7S内に配置されることで、上流側収容空間9Sと下流側収容空間5Sとに分断される。これら円筒状の上流側収容空間9S及び下流側収容空間5Sよりも、同じく円筒状の中間収容空間7Sの方が径大で、かつ収容されるフライホイール7自体も、径方向において中間収容空間7Sの円筒状外周壁に対し近接して位置するため、フライホイール7が配置されたときには、上流側収容空間9Sと下流側収容空間5Sとは、フライホイール7の外周側においてのみ連通するので、より確実な分離状態となっている。これにより、上流側収容空間9S及び下流側収容空間5Sのうち、一方の空間内での回転体(ロータ91,51)の回転に伴う気流の乱れの影響を、他方の空間が受けることがない。
 回転軸2は、発電ケース体100に対し自身の軸線方向に貫通し、なおかつ発電ケース体100に対し円滑に相対回転するよう軸受装置60を介して取り付けられる(図17参照)。本実施形態の軸受装置60は、例えばシール装置(Oリング等)やグリース等のような密閉機能付きの密閉型軸受装置であり、その密閉機能によって密閉状態としている。密閉された発電機ケース体100内部は、空気が大気圧で充填されている場合に、内部の回転体51,91,7等が受ける充填気体による抵抗(空気抵抗)が軽減されるよう、減圧状態等のような内部状態とされている。
 第1の発電機5及び第2の発電機9は、回転軸2の周りを回転可能なロータ(発電機回転子)51,91の周方向に沿って所定間隔おきに複数の磁性部材52,92が配置されるとともに、それら磁性部材52,92に対しエアギャップを形成する形で対向し、かつ該ロータ51,91に対し非回転となるステータコイル54,94が配置されたステータ(発電機固定子)53,93を備えて構成され、それら磁性部材52,92とステータコイル54,94との相対回転により電力を生成する。生成される電力(発電電力)は、その相対回転速度が大きいほどが大となる。なお、本実施形態における磁性部材52,92は永久磁石であり、例えばネオジウム磁石等を用いることができる。また、本実施形態においては、磁性部材52,92とステータコイル54,94との数の比が3:4であり、ステータコイル54,94からは三相の交流電力が出力される。
 支柱110の上端部110Tの上端軸部111Tには、図16に示すように、スリップリング110SA,110SBが設けられており、各スリップリング110SA,110SB上を摺動するブラシ102CA(図示有り),102CB(図示なし)を介し、ステータコイル54,94から発電出力を取り出すよう構成されている。取り出された発電出力は、筒状の支柱(タワー)110の内部空間を通る配線を介して、出力部10に接続される。
 なお、支柱110の上端部110Tの上端面には、回転軸2に回転可能に固定するために、図16に示すように、軸受装置を内包した固定部120が締結部材により締結固定されている。発電ケース体100は、それら固定部120よりも受風方向上流側に設けられている。なお、回転軸2の受風方向上流側では、回転軸2と、これを延長する回転軸延長部2’とが軸連結部130により一体回転可能に連結されている。発電機ケース帯100内を挿通する回転軸2はその回転軸延長部2’である。
 第1の発電機5及び第2の発電機9における双方のステータ53,93は、発電機ケース体100からケース内部に向けて回転軸2の軸線方向に沿って突出形成された筒状部材として設けられる。それら筒状部材53,93には、径方向に貫通する開口部が周方向に沿って所定間隔おきに形成される。これらの開口部は、周方向に設けられた回転軸2の軸線方向に延びる各柱部により区画されており、各柱部にはステータコイル54,94が巻き付けられている。本実施形態においては、隣接する柱部で巻き方向が逆向きとなっている。
 本実施形態の第1の発電機5及び第2の発電機9は、ロータ51,91として、回転軸2と同軸をなしフライホイール7と共に互いに一体回転する第1ロータ部51A,91Aと第2ロータ部51B,91Bとを有する。それら双方のロータ部51A,91Aと51B,91Bは、エアギャップを介して互いに対向(対面)する対向面を有し、それら双方の対向面上には、周方向において複数の磁性部材92が所定間隔おきに同数配置され、締結部材により固定されている。ただし、一方のロータ部51A,91Aの磁性部材52A(52),92A(92)と他方のロータ部51B,91Bの磁性部材52B(52),92B(92)とは、互いに異なる極性(磁極)の着磁面同士にて対面している。さらに、それら第1ロータ部51A,91Aと第2ロータ部52A,92Aとの間の空隙にステータ53,93のステータコイル54,94が位置する。ステータコイル54,94は、回転するそれら双方のロータ51A,51Bと91A,91Bの磁性部材間52,52と92,92に挟まれるステータ53,93上の環状の対向領域に、その周方向に沿って所定間隔おきに複数配置される。
 また、第1の発電機5及び第2の発電機9において、第1ロータ部51A,91A及び第2ロータ部51B,91Bは、回転軸2の回転軸線2xに対する径方向に対向して配置される。第1ロータ部51A,91Aは、フライホイール7の固定部70Aの外周側に形成される固定部50A,90Aに対し、フライホイール7に対し同軸をなして一体回転するよう固定されている。第2ロータ部をなす円筒状部51B,91Bは、フライホイール7の固定部70Aの内周側に形成される固定部50B,90Bに対し、フライホイール7に対し同軸をなして一体回転するよう固定されている。
 なお、本実施形態のフライホイール7は、回転軸2に対し1方向クラッチ(ワンウェイクラッチ)6を介して固定される軸固定部70Cと、軸固定部70Cから径方向外側に延出する円盤状の中間部70Bと、中間部70Bの径方向外側にて第1ロータ部51A,91A及び第2ロータ部51B,91Bが一体に固定される固定部70Aとを有する。さらに本実施形態では、固定部70Aから径方向外側に延出する外端部70Dを有する。
 以上、本発明の一実施形態を説明したが、これはあくまでも例示にすぎず、本発明はこれに限定されるものではなく、特許請求の範囲の趣旨を逸脱しない限りにおいて、当業者の知識に基づく種々の変更が可能である。
 例えば上記実施形態を、以下のように変更することができる。
 図18に示す本実施形態の風力発電装置1は、所定の受風方向2wからの風力を受けて所定の回転軸線2xの周りを一定回転方向に回転する風車3と、風車3の回転軸2と同軸をなして一体回転するよう配置されたロータ51を有して回転軸2の回転に伴う該ロータ51の回転により電力を生成する第1の発電機(発電手段)5と、回転軸2と同軸をなし、かつ上記一定回転方向において、回転軸2が増速している場合には該回転軸2と一体回転状態となって自身も増速回転し、回転軸2が減速している場合には該回転軸2から切り離されて慣性回転するように1方向クラッチ(ワンウェイクラッチ)6を介して配置されるフライホイール7と、フライホイール7と同軸をなして一体回転するよう配置されたロータ91を有してフライホイール7の回転に伴う該ロータ91の回転により電力を生成する、第1の発電機5とは異なる第2の発電機(発電手段)9と、を備えて構成される。
 さらに、図18の風力発電装置1の場合は、第1の発電機5と第2の発電機9により生成された双方の電力入力を受け、それらを合わせて外部出力する出力部(出力手段)10を備えて構成される。つまり、第1の発電機5及び第2の発電機9で発電された互いに位相の異なる発電電力を、1系統で外部出力する形で構成される。なお、この場合の出力部10の構成は図14A及び図14Bと同様とすることができる。
 図18の第1の発電機5は、ロータ51として、回転軸2と同軸をなし互いに一体回転する第1ロータ部51Aと第2ロータ部51Bとを有する。それら双方のロータ部51A,51Bは、エアギャップを介して互いに対向(対面)する対向面を有し、それら双方の対向面上には、周方向において複数の磁性部材52が所定間隔おきに同数配置され、締結部材により固定されている。ただし、それら双方のロータ部51A,51Bのうち、一方のロータ部51Aの磁性部材52A(52)と他方のロータ部51Bの磁性部材52B(52)とは、互いに異なる極性(磁極)の着磁面同士にて対面している。さらに、それら第1ロータ部51Aと第2ロータ部51Bとの間の空隙にステータ53のステータコイル54が位置し、ステータコイル54は、回転するそれら双方のロータ部51A,51Bの磁性部材52,52間に挟まれるステータ53上の環状の対向領域に、その周方向に沿って所定間隔おきに複数配置される。
 また、第1の発電機5において、第1ロータ部51A及び第2ロータ部51Bは、回転軸2の軸線2xに対する径方向(ラジアル方向)に対向して配置される。本実施形態においては、ロータ51の本体部として、回転軸2と一体回転するよう固定される軸固定部50Cと、軸固定部50Cから径方向外側に延出する円盤状の中間部50Bと、中間部50Bの径方向外側の外端部50Aと、を有したロータ本体部50を備える。ただし、ロータ本体部50は、外周側に大重量を有するフライホイール7よりも軽く、小径である。第1ロータ部をなす円筒状部51Aと、第2ロータ部をなす、円筒状部51Aよりも径大の円筒状部51Bとは、ロータ本体部50に対し同軸をなす形で一体回転するよう双方とも、ロータ本体部50の外端部50Aに固定されている。
 図18の第2の発電機9は、ロータ91として、回転軸2と同軸をなしフライホイール7と共に互いに一体回転する第1ロータ部91Aと第2ロータ部91Bとを有する。それら双方のロータ部91A,91Bは、エアギャップを介して互いに対向(対面)する対向面を有し、それら双方の対向面上には、周方向において複数の磁性部材92が所定間隔おきに同数配置され、締結部材により固定されている。ただし、それら双方のロータ91A,91Bのうち、一方のロータ部91Aの磁性部材92A(92)と他方のロータ部91Bの磁性部材92B(92)とは、互いに異なる極性(磁極)の着磁面同士にて対面している。さらに、それら第1ロータ部91Aと第2ロータ部92Aとの間の空隙にステータ93のステータコイル94が位置する。ステータコイル94は、回転するそれら双方のロータ91A,91Bの磁性部材間92,92に挟まれるステータ93上の環状の対向領域に、その周方向に沿って所定間隔おきに複数配置される。
 また、第2の発電機9において、第1ロータ部91A及び第2ロータ部91Bは、回転軸2の軸線2xに対する径方向に対向して配置される。第1ロータ部91Aは、フライホイール7に対し、第1ロータ部をなす円筒状部91Aと、第2ロータ部をなす、円筒状部91Aよりも径大の円筒状部91Bとが、フライホイール7に対し同軸をなして共に一体回転するよう固定されている。
 なお、本実施形態のフライホイール7は、回転軸2に対し1方向クラッチ(ワンウェイクラッチ)6を介して固定される軸固定部70Cと、軸固定部70Cから径方向外側に延出する円盤状の中間部70Bと、中間部70Bの径方向外側にて第1ロータ部をなす円筒状部91Aと第2ロータ部をなす円筒状部91Bを固定する固定部70Aとを有し、本実施形態ではさらに、固定部70Aから径方向外側に延出する外端部70Dを有する。
 図19~図23に示すように、風車3(ブレード30)の風上側に、発電部ケース(ハウジング)を兼ねる風導ケース(ナセル)200を設け、このケース200の内部に発電部を格納するとともに、その風導ケース200(ケース本体201でもある)の外部に風向フィン(風向板部)202を一体的に形成することができる。この例では、風車3の外側に図12、図15に示したような筒状風洞部(ダクト)31は存在せず、風車3がむき出し(露出状態)で風を受ける。風導ケース200のケース本体201は風車3の軸方向に直角な断面が、縦長楕円状又は円形状等をなす滑らかな外周面を有し、そのケース本体201の風上側の端部は先端側ほど滑らかに細くなり、先端が曲率の小さい円弧状の縦断面を有している。
 ケース本体201の外周面には、上述の風向フィン202が、風車3の軸方向に沿う方向において、そのケース本体201(風導ケース200)の外周面から外方に(例えば上向きに)突出するように形成され、風向フィン202は風車3の回転面と直角な位置関係を占める。風向フィン202はケース本体201の軸方向長さと同等か少し短い長さを有し、かつケース本体202の風上側先端近傍から漸次高さが円弧状(又は直線状)に増加する斜辺203を備えて、ケース本体202の風下側の端部近傍で最大高さとなり、その頂部から風上側へ円弧状(湾曲状)に食い込む(えぐれる)ように降下する後端部204を備え(風下側に円弧状に膨出する後端部、あるいは直線状に垂下する後端部でもよいが)、その下端がケース本体201の上部面に連続する。また風向フィン202は、その斜辺203がナイフエッジ状に先鋭に形成され、また中間部から後端部204に向かっても後端ほど先鋭となる曲面を有して、風向フィン202の風向き方向の中間部が最も厚く形成され、風上からみて、図20に示すように先鋭な三角形状をなしている。
 このような風向フィン202とはケース本体201の軸線をはさんで反対側(下側)には、風車3を所定の高さに維持する支柱(ポール)206と接続する支柱接続部208が形成され、ここに支柱206が接続される。この支柱接続部208はケース本体201の下面から下方に突出するとともに、滑らかに先細りとなり、下端部が円筒状になるように形成されて、その円筒状部に支柱206の円形断面の上端部が嵌合され、かつ、図19に示すように軸受(ベアリング)210を介して、風導ケース200及び風車3が、支柱206の軸線(垂直軸)の周りに回転自在に支持されている。その結果、風導ケース200に形成された風向フィン202が風向きに沿うように、言い換えれば風車3の回転面が常に風向きと正対するように、風車3及び風導ケース200がフリーな状態に保持されることとなる。
 図24は風車3と風導ケース200を含む部分の側面断面図(透視図)であり、風導ケース200の内部に、風車3の回転軸2が風導ケース200の中心線と同心的に配置され、また図17又は図18に示した発電ケース体100がその回転軸2に同心的に組み付けられる。さらに、図2~図11で説明した風車3の角度調整機構300もこの風導ケース200内に収容される。
 なお、図19、図22及び図24に示すように、風車3の中心部(ブレード30の基端部)は、円形断面の筒状部212が占めるようにされ、この筒状部212の中心部から前記風導ケース200とは反対側(風下側)へコーン状に突出するコーン状中心部214が形成され、このコーン状中心部214と筒状部212(風下側へややテーパ状に縮径されたほぼ円筒部)との間には、円環状でかつ底部側ほど幅が狭くなるコーン付き環状凹部216が形成され、それらの内部にハブ22やブレード固定部33が配置されている。仮に、風向きが大きく変わって、風導ケース200の後方から風が吹くようになっても、そのコーン付き環状凹部216が後方からの風を受けて回転モーメントを生じ、その結果、フリー状態の風導ケース200及び空車3が姿勢(向き)を例えば180度近く変え、風導ケース200の先端が風上を向く(風に正対する)ように姿勢変更することができる。
 1 風力発電装置
 2 回転軸
 21 ナセル
 221A 軸固定部の前端部
 221B 軸固定部の後端部
 221h 貫通孔
 22 ハブ
 221 軸固定部
 2x 回転軸線
 2w 受風方向
 3 風車
 30 ブレード(翼)
 30w 受風面
 31 筒状風洞部(ダクト)
 300 角度調整機構(翼角度調整機構)
 33 ブレード固定部(翼固定部)
 33A,33B 固定部
 33Z 回転支軸
 34 付勢手段
 35 錘部材
 36 連結部材
 362 押付部材
 37 リンク機構
 371 第一リンク部材
 371A 第一リンク部材の一方の端部
 371B 第一リンク部材の他方の端部
 371C 第一リンク部材の屈曲部
 371y 回転軸線
 372 第二リンク部材
 372A 第二リンク部材の一方の端部
 372B 第二リンク部材の他方の端部
 372y 回転軸線
 373y 回転軸線
 38 当接部材
 39 可動構造体
 51,91 ロータ(発電機回転子)
 52,92 磁性部材
 53,93 ステータ(発電機固定子)
 54,94 ステータコイル
 100 発電ケース体
 W ブレードの幅方向
 θ ブレードの幅方向と回転軸の軸線方向とのなす角度
 X 風平行方向
 Y 風直交面
 A 初期回転用角度位置
 B 高速回転用角度位置
 FW 風力によりブレードに加えられる押圧力
 FA 遠心力(リンク機構37により遠心力を回転軸線2x方向に変換させた力)
 FB 付勢手段の付勢力
                         

Claims (10)

  1.  風力を受けて所定の回転軸周りを一定回転方向に回転する風力発電装置の風車であって、
     前記回転軸の回転軸線方向からの風力を受けて回転するよう該回転軸周りに2以上設けられ、該回転軸に対し径方向外向きに延出する翼と、
     前記翼を、前記風力を受けた場合にその受風面の幅方向が風平行寄りとなるよう押圧力を受ける形で、なおかつその受風面の幅方向と前記回転軸の回転軸線方向とのなす角度が可変可能となる形で、前記回転軸に対し固定される翼固定部と、
     前記風力が所定の微風レベルを下回る場合に、その風力を受ける前記翼を前記幅方向が最も風平行寄りとなる所定の初期回転用角度位置に付勢保持する付勢手段と、前記風力が前記微風レベルを上回った場合に、遠心力が前記翼に加わるその風力による前記押圧力と前記付勢手段の付勢力とに打ち勝つことにより自らを外方に変位させつつ前記翼が風直交寄りに可変するようリンク機構を介して前記翼に連結する錘部材と、を備え、前記風力が所定の強風レベルに達した場合には、前記翼を前記幅方向が最も風直交寄りとなる所定の高速回転用角度位置に到達させるとともに、前記風力がその強風レベルをさらに上回った場合には、その風力による前記押圧力と前記付勢手段の付勢力とが前記遠心力に打ち勝って前記錘部材を内方に押し戻すことにより、前記翼を前記幅方向が風平行寄りとなるよう復帰させる翼角度調整機構と、
     を備えることを特徴とする風力発電装置の風車。
  2.  前記翼固定部は、前記翼の延出方向に延びる回転支軸と、該回転支軸の軸線周りにおいて互いのなす角度を可変可能とされた2つの固定板部とを有した蝶番部材であり、一方の固定板部が前記翼に固定され、他方の固定板部が前記回転軸側と一体回転可能に固定され、前記回転支軸は、前記翼が前記幅方向における第一側の端部側を中心に他方の第二側の端部側が回転するよう、前記第一側の端部側に設けられている請求の範囲第1項に記載の風力発電装置の風車。
  3.  前記錘部材は、前記翼の前記幅方向における外周側の端部側に対しリンク結合されている請求の範囲第2項に記載の風力発電装置の風車。
  4.  前記錘部材は、複数ある前記翼ごとに設けられ、それぞれが前記回転軸と一体回転可能に設けられる一方で、それら錘部材は、内外への変位に応じて前記回転軸に対しスライド移動するよう前記リンク機構を介して共通の連結部材に対し連結することにより、各前記翼の前記角度は、それら錘部材の内外への移動に伴いスライド移動する前記連結部材の前記回転軸上の位置に応じて、互いに同期して同角度となる形で変化するようになっている請求の範囲第1項ないし第3項のいずれか1項に記載の風力発電装置の風車。
  5.  各前記翼固定部は、前記回転軸と一体回転可能に固定された共通の固定部材を介して前記回転軸に対し固定されており、前記付勢手段は、前記固定部材と前記連結部材との間で前記回転軸船方向に付勢力を生じさせるよう設けられている請求の範囲第4項に記載の風力発電装置の風車。
  6.  前記翼角度調整機構は、前記風力が前記微風レベルを下回る場合に、その風力を受ける前記翼を、前記幅方向が前記風平行寄り側となるよう前記付勢手段により付勢しつつ、前記翼を含む該翼の前記角度の変化に連動して動作する可動構造体に当接部材を当接させてその動作を止めることにより、前記初期回転用角度位置に位置保持するものである一方、前記風力が前記強風レベルをさらに上回った場合には、前記可動構造体が前記当接部材に当接する前記初期回転用角度位置まで位置復帰可能とされている請求の範囲第1項ないし第5項のいずれか1項に記載の風力発電装置の風車。
  7.  前記当接部材及び前記可動構造体の当接面のうち少なくとも一方には、弾性部材が設けられている請求の範囲第6項に記載の風力発電装置の風車。
  8.  請求の範囲第4項に記載の要件を備え、
     各前記翼固定部は、前記回転軸と一体回転可能に固定された共通の固定部材を介して前記回転軸に対し固定され、前記当接部材として機能する一方、前記連結部材は、前記翼の前記幅方向が風平行寄りとなるに従い前記固定部材に接近するよう前記リンク機構と接続し、前記構造体として機能し、前記固定部材及び前記連結部材のいずれか又は双方には他方の部材に向けて延出する延出部が形成され、その延出部における前記他方の部材側の先端がその他方の部材に対し当接することにより、前記翼が前記初期回転用角度位置に位置保持される請求の範囲第6項又は第7項に記載の風力発電装置の風車。
  9.  請求の範囲第1項ないし第8項のいずれか1項に記載の風車と、
     前記回転軸と同軸をなし、かつ前記一定回転方向において、前記回転軸が増速している場合には該回転軸と一体回転状態となって自身も増速回転し、前記回転軸が減速している場合には該回転軸から切り離されて慣性回転するように1方向クラッチを介して配置されるフライホイールと、
     前記フライホイールと同軸をなして一体回転するよう配置されたロータを有し、前記フライホイールの回転に伴う該ロータの回転により電力を生成する発電手段と、
     前記発電手段により生成された双方又はいずれかの電力を外部出力する出力手段と、
     を備えることを特徴とする風力発電装置。
  10.  前記発電手段を第2の発電手段とし、
     前記風車の回転軸と同軸をなして一体回転するよう配置されたロータを有し、前記回転軸の回転に伴う該ロータの回転により電力を生成する前記第2の発電手段とは異なる第1の発電手段を備え、
     前記出力手段は、前記第1の発電手段と前記第2の発電手段により生成された双方又はいずれかの電力を外部出力するものである請求の範囲第9項に記載の風力発電装置。
PCT/JP2010/069962 2010-10-14 2010-11-09 風力発電装置の風車及び風力発電装置 WO2012049783A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/379,089 US8258648B2 (en) 2010-10-14 2010-11-09 Windmill for wind power generator and wind power generator
KR1020127003073A KR101205483B1 (ko) 2010-10-14 2010-11-09 풍력 발전 장치의 풍차 및 풍력 발전 장치
CN201080062757.3A CN102762854B (zh) 2010-10-14 2010-11-09 风力发电装置之风车及风力发电装置
HK13101009.2A HK1174080A1 (en) 2010-10-14 2013-01-23 Wind turbine for wind power generation apparatus, and wind power generation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010231793A JP4749504B1 (ja) 2010-10-14 2010-10-14 風力発電装置の風車及び風力発電装置
JP2010-231793 2010-10-14

Publications (1)

Publication Number Publication Date
WO2012049783A1 true WO2012049783A1 (ja) 2012-04-19

Family

ID=44597066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069962 WO2012049783A1 (ja) 2010-10-14 2010-11-09 風力発電装置の風車及び風力発電装置

Country Status (7)

Country Link
US (1) US8258648B2 (ja)
JP (2) JP4749504B1 (ja)
KR (1) KR101205483B1 (ja)
CN (1) CN102762854B (ja)
HK (1) HK1174080A1 (ja)
TW (1) TWI503478B (ja)
WO (1) WO2012049783A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541897B2 (en) * 2009-09-01 2013-09-24 University Of Southern California Generation of electric energy using cable-supported windmills
US20110109096A1 (en) * 2009-11-06 2011-05-12 Matthew Earley Fixed pitch wind (or water) turbine with centrifugal weight control (CWC)
KR101304916B1 (ko) * 2012-02-16 2013-09-05 삼성중공업 주식회사 풍력 발전기의 블레이드의 피치 제어 방법
CN102635495B (zh) * 2012-04-16 2013-03-27 江阴江顺精密机械零部件有限公司 自动变桨风轮
JP6172739B2 (ja) * 2013-04-25 2017-08-02 ウィンドソン株式会社 風力原動機
JP2015031221A (ja) * 2013-08-05 2015-02-16 株式会社ジェイテクト 風力発電装置及びこれに用いる回転伝達装置
DE102016110510A1 (de) 2016-06-07 2017-12-07 Wobben Properties Gmbh Rotorblatt einer Windenergieanlage
KR102008662B1 (ko) * 2017-12-13 2019-08-08 한국신재생에너지주식회사 소형 풍력발전기의 날개 수평각 조정장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380988B2 (ja) * 1983-04-01 1991-12-26 Yamaha Motor Co Ltd
DE4132967A1 (de) * 1991-10-04 1992-05-14 Michael Dieck Alineare, mechanische regelung fuer rotorblattverstellung von windkraftanlagen
JP2010127278A (ja) * 2008-11-25 2010-06-10 National Cheng Kung Univ ブレードピッチ制御機構およびその応用

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044516B2 (ja) * 1977-11-30 1985-10-03 日本電信電話株式会社 風力発電機などの風車
US4239977A (en) * 1978-09-27 1980-12-16 Lisa Strutman Surge-accepting accumulator transmission for windmills and the like
US4366386A (en) * 1981-05-11 1982-12-28 Hanson Thomas F Magnus air turbine system
JPS59190978U (ja) * 1983-06-06 1984-12-18 松下精工株式会社 風力原動機
GB2275377B (en) * 1993-02-22 1997-05-28 Yang Tai Her An electric energy generation and storage apparatus
SK285701B6 (sk) * 1997-03-11 2007-06-07 Robert Bosch Gmbh Poháňací agregát na motorové vozidlá so spaľovacím motorom
EP1149251B1 (en) * 1999-01-28 2005-01-12 Gyro Holdings Limited Continuously variable transmission
DE10141098A1 (de) * 2001-08-22 2003-03-06 Gen Electric Windkraftanlage
WO2003067080A1 (en) * 2002-02-05 2003-08-14 Jae-Young Hur Wind generator
JP3451085B1 (ja) * 2002-09-20 2003-09-29 常夫 野口 風力発電用の風車
JP4125149B2 (ja) 2003-02-04 2008-07-30 株式会社 神崎高級工機製作所 風力発電装置
JP2004308498A (ja) * 2003-04-03 2004-11-04 Mie Tlo Co Ltd 風力発電装置
AT504818A1 (de) * 2004-07-30 2008-08-15 Windtec Consulting Gmbh Triebstrang einer windkraftanlage
US8128338B2 (en) * 2004-11-30 2012-03-06 Kabushiki Kaisha Bellsion Propeller and horizontal-axis wind turbine
US20070205603A1 (en) * 2006-03-03 2007-09-06 Karl Appa Methods and devices for improving efficiency of wind turbines in low wind speed sites
DE102008012957A1 (de) * 2008-03-06 2009-09-10 Repower Systems Ag Verfahren zum Betreiben einer Windenergieanlage und Windenergieanlage
CN101457744B (zh) * 2008-12-25 2011-08-31 浙江华鹰风电设备有限公司 被动变桨风力发电机
CN201339543Y (zh) * 2008-12-25 2009-11-04 浙江华鹰风电设备有限公司 被动变桨风力发电机
CN101603505A (zh) * 2009-04-22 2009-12-16 袁长铭 被动变桨距控制及多叶片风轮装置
US8147183B2 (en) * 2010-12-30 2012-04-03 General Electric Company Drivetrain for generator in wind turbine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380988B2 (ja) * 1983-04-01 1991-12-26 Yamaha Motor Co Ltd
DE4132967A1 (de) * 1991-10-04 1992-05-14 Michael Dieck Alineare, mechanische regelung fuer rotorblattverstellung von windkraftanlagen
JP2010127278A (ja) * 2008-11-25 2010-06-10 National Cheng Kung Univ ブレードピッチ制御機構およびその応用

Also Published As

Publication number Publication date
JP5689360B2 (ja) 2015-03-25
JP2014058869A (ja) 2014-04-03
US8258648B2 (en) 2012-09-04
JP4749504B1 (ja) 2011-08-17
JP2012102721A (ja) 2012-05-31
US20120153631A1 (en) 2012-06-21
CN102762854A (zh) 2012-10-31
TWI503478B (zh) 2015-10-11
KR20120052962A (ko) 2012-05-24
TW201215768A (en) 2012-04-16
HK1174080A1 (en) 2013-05-31
CN102762854B (zh) 2014-08-13
KR101205483B1 (ko) 2012-11-27

Similar Documents

Publication Publication Date Title
WO2012049783A1 (ja) 風力発電装置の風車及び風力発電装置
US8487470B2 (en) Vertical axis wind turbine and generator therefore
JP2012527864A5 (ja)
JP5521120B2 (ja) 垂直軸タービン及びこれを備える両方向積層式垂直軸タービン
WO2003040557A1 (fr) Generateur d'energie hydraulique
JP2008106622A (ja) 風力発電用羽根回転装置及び該回転装置を備えた風力発電装置
US8109732B2 (en) Horizontal-axis wind generator
JP3981143B1 (ja) 発電装置
JP2006152922A (ja) 風車
JP2016017463A (ja) 垂直軸風車
JP2005248935A (ja) 風力発電用の風車
JP2010024881A (ja) 羽根車
CN115210463A (zh) 摩擦限制涡轮发电机陀螺仪的方法和装置
JP2012233445A (ja) 風力発電装置用の風車の翼及び風力発電装置用の風車
US20150322919A1 (en) Electricity Generating Wind Turbine
US11486443B2 (en) Fluid turbine generator
JP2003120509A (ja) 風力発電装置
KR101176017B1 (ko) 그림자 효과를 최소화한 듀얼 로터블레이드 방식의 풍력 발전 장치
KR20110080946A (ko) 풍력발전기
JP2013117177A (ja) 風力発電装置
JP5823250B2 (ja) コイルリング、コイルリングの製造方法、及び発電装置
EP3460235A1 (en) Vertical axis wind turbine and pitch regulation mechanism for a vertical axis wind turbine
US20100034636A1 (en) Stabilizing Apparatus For Vertical Axis Wind Turbine
KR101505644B1 (ko) 풍력발전기
JP7085161B1 (ja) 弾性体を用いる風車ブレードの自動制御機構を有する風車

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062757.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13379089

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127003073

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858426

Country of ref document: EP

Kind code of ref document: A1