WO2012046802A1 - 格子歪を有するリチウムイオン二次電池負極用黒鉛材料及びリチウムイオン二次電池 - Google Patents

格子歪を有するリチウムイオン二次電池負極用黒鉛材料及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2012046802A1
WO2012046802A1 PCT/JP2011/073095 JP2011073095W WO2012046802A1 WO 2012046802 A1 WO2012046802 A1 WO 2012046802A1 JP 2011073095 W JP2011073095 W JP 2011073095W WO 2012046802 A1 WO2012046802 A1 WO 2012046802A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
negative electrode
oil
carbon
powder
Prior art date
Application number
PCT/JP2011/073095
Other languages
English (en)
French (fr)
Inventor
鈴木 貴志
紀代 石丸
大山 隆
保 田野
敏幸 小田
逸平 藤永
智明 浦井
精二 岡崎
克彰 蔵田
敏章 平本
亜季乃 伊藤
亙 小田
Original Assignee
Jx日鉱日石エネルギー株式会社
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社, 戸田工業株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to CN201180048751.5A priority Critical patent/CN103155244B/zh
Priority to KR1020137011252A priority patent/KR20140017496A/ko
Priority to EP11830734.7A priority patent/EP2626933A4/en
Publication of WO2012046802A1 publication Critical patent/WO2012046802A1/ja
Priority to US13/858,375 priority patent/US9214666B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a graphite material used for a negative electrode of a lithium ion secondary battery and a manufacturing method thereof. Specifically, the present invention relates to a graphite material used for a negative electrode of a highly durable lithium ion secondary battery in which capacity deterioration is suppressed, a negative electrode using the graphite material, and a lithium ion secondary battery including the negative electrode.
  • lithium secondary batteries are lighter and have higher input / output characteristics than nickel cadmium batteries, nickel metal hydride batteries, and lead batteries, which are conventional secondary batteries.
  • this type of battery is configured by a positive electrode containing lithium capable of reversible intercalation of lithium and a negative electrode made of a carbon material facing each other with a non-aqueous electrolyte interposed therebetween. Therefore, this type of battery is assembled in a discharged state and cannot be discharged unless it is charged.
  • the charge / discharge reaction will be described by taking as an example a case where a lithium cobaltate (LiCoO 2 ) is used as the positive electrode, a carbon material as the negative electrode, and a non-aqueous electrolyte containing a lithium salt as the electrolyte.
  • a lithium cobaltate LiCoO 2
  • a carbon material as the negative electrode
  • a non-aqueous electrolyte containing a lithium salt as the electrolyte.
  • Carbon materials used as negative electrode materials for lithium secondary batteries are generally divided roughly into graphite and amorphous materials.
  • the graphite-based carbon material has an advantage that the energy density per unit volume is higher than that of the amorphous carbon material. Accordingly, graphite-based carbon materials are generally used as negative electrode materials in lithium ion secondary batteries for mobile phones and notebook computers that are compact but require a large charge / discharge capacity.
  • Graphite has a structure in which hexagonal network surfaces of carbon atoms are regularly stacked, and lithium ion insertion / extraction reaction proceeds at the edge of the hexagonal network surface during charge / discharge.
  • this type of battery has been actively studied as a power storage device for automobiles, industrial use, and power supply infrastructure in recent years. Higher reliability is required than when it is used for personal computers.
  • reliability is a characteristic related to the lifetime, even when the charge / discharge cycle is repeated, stored in a state charged to a predetermined voltage, or charged continuously at a constant voltage (floating). Even when charged), the charge / discharge capacity and internal resistance hardly change (are not easily deteriorated).
  • the life characteristics of lithium ion secondary batteries that have been used in conventional mobile phones and notebook computers are largely dependent on the anode material.
  • One reason for this is that, because the charge / discharge efficiency of the negative electrode is low, it is theoretically impossible to make the charge / discharge efficiency of the positive electrode reaction (Formula 1) and the negative electrode reaction (Formula 2) exactly the same. Can be mentioned.
  • the charge / discharge efficiency is the ratio of the electric capacity that can be discharged to the electric capacity consumed for charging. Below, the reaction mechanism in which a lifetime characteristic deteriorates because the charge / discharge efficiency of a negative electrode reaction is lower is explained in full detail.
  • the positive electrode potential in the end-of-discharge state shifts in a more noble direction than the original potential before charge / discharge, while the negative electrode potential also has a more noble direction than the original potential before charge / discharge. Will be transferred to. This is because all of the lithium released during the charging process of the positive electrode is not occluded (does not return) during discharging, so the potential that has shifted in the noble direction during the charging process shifts in the naive direction during the discharging process.
  • the discharge of the lithium secondary battery is completed when the battery voltage (that is, the difference between the positive electrode potential and the negative electrode potential) reaches a predetermined value (discharge end voltage). This is because if the potential becomes noble, the negative electrode potential also shifts in the noble direction accordingly.
  • this type of battery can be obtained within a predetermined voltage range (within a discharge end voltage and a charge end voltage range) by changing the operating region of the positive / negative electrode capacity when the charge / discharge cycle is repeated.
  • a reaction mechanism of capacity degradation has also been reported by academic societies and the like (for example, Non-Patent Document 1 and Non-Patent Document 2).
  • the positive and negative potentials once changed in the operating region are irreversible, cannot be restored in principle, and lack of capacity recovery means also exacerbates this problem.
  • the reaction mechanism of capacity deterioration that occurs when the above-described charge / discharge cycle is repeated is basically the same as each reaction mechanism of capacity deterioration when the battery is stored in the charged state or capacity deterioration when the battery is floating charged. The same is true.
  • the capacity lost due to side reactions / competitive reactions occurring in the charged state that is, the self-discharge amount is larger in the negative electrode than in the positive electrode.
  • the battery capacity after storage deteriorates when the operating region changes before and after storage (for example, Non-Patent Document 3).
  • the difference in the self-discharge rate between the positive and negative electrodes in the charged state is similar to the difference in the charge and discharge efficiency between the positive and negative electrodes described above. This is due to the higher rate of side reactions and competitive reactions that occur.
  • the leakage current on the negative electrode side becomes larger than the leakage current on the positive electrode side, so that the negative electrode potential shifts to a direction in which the leakage current decreases, that is, a noble direction. Shifts in the direction of increasing, that is, the noble direction. Even when floating charging is performed in this manner, the operating areas of the positive and negative electrode capacities change irreversibly, resulting in a problem that the battery capacity deteriorates.
  • Patent Document 1 it is described that the crystal structure of the particle surface can be disturbed by pulverizing and classifying the raw carbon composition and then performing a mechanochemical treatment. Such disorder of the crystal structure remains as unstructured carbon even after graphitization, which is the final step, and it is described that the initial charge and discharge efficiency of the negative electrode can be improved (paragraph of Patent Document 1). [0024]).
  • the disorder of the crystal structure introduced by the mechanochemical treatment is a so-called isotropic state in which crystallites of unstructured carbon are randomly oriented, and it is considered that many edge portions are exposed on the particle surface.
  • a large number of dangling bonds that is, many localized electron states that do not saturate a valence bond and exist without a bonding partner exist at the crystallite edge.
  • the present invention is to improve the capacity deterioration of the lithium secondary battery as described above, and its purpose is to reduce the capacity deterioration due to repeated charge / discharge cycles, storage in a charged state, and floating charge.
  • the present invention intends to provide a negative electrode material for lithium secondary batteries for automobiles, industrial use, and power storage infrastructure that requires high reliability.
  • the present inventors provide a graphite material that introduces lattice strain into graphite crystallites, reduces the parallelism of the hexagonal network surface, and provides a graphite material with less exposure of crystallite edges on the particle surface, thereby reducing the charge / discharge efficiency of the negative electrode.
  • the present invention has been reached. That is, in order to solve the above-mentioned problem, the first aspect according to the present invention is the ratio of hydrogen atoms H to carbon atoms C, H / C atomic ratio, obtained by coking a heavy oil composition by a delayed coking process.
  • a second aspect according to the present invention is a lithium ion secondary battery using the graphite material for a negative electrode of the lithium ion secondary battery described in the first aspect as a negative electrode material.
  • a lithium ion secondary battery having high life characteristics can be provided by using a graphite material having an appropriate lattice strain for the negative electrode of the lithium ion secondary battery.
  • lattice strain refers to a hexagonal network that occurs when the growth of crystallites is limited to the particle shape in the process of carbonization or graphitization, or by mutual inhibition due to growth between adjacent crystallites. It is an area where the parallelism of the surface is low. In such a lattice strain region, since the parallelism of the hexagonal mesh surface is low, it is difficult for the electrolytic solution to be co-inserted between the graphite layers.
  • the inventors of the present invention conducted a coking process on a heavy oil composition by a delayed coking process, the ratio of hydrogen atom H to carbon atom C, the H / C atomic ratio is 0.30 to 0.50, and the micro strength is 7 to After pulverizing and classifying 17% by mass of the raw coal composition, a compressive stress and a shear stress are applied, and a surface treatment is performed so that the average circularity is in the range of 0.91 to 0.97. A lattice strain within a predetermined range is generated.
  • the present inventors consider the relationship between the step of applying compressive stress and shear stress before graphitization and the generation of lattice strain after graphitization as follows.
  • Coking coal of heavy oil composition by delayed coking process ratio of hydrogen atom H to carbon atom C, H / C atom ratio of 0.30 to 0.50, and micro strength of 7 to 17% by mass It is possible to graphitize the circular powder obtained by pulverizing and classifying the composition and then applying a compressive stress and a shearing stress to the surface treatment so that the average circularity is in the range of 0.91 to 0.97.
  • the growth of crystallites occurring during graphitization is equivalent to that occurring in a circular powder having a high average circularity, that is, in a particle having a high surface curvature, that is, in a mold. Will grow while being restricted. That is, crystallite growth varies depending on the shape of the particles.
  • crystallites can grow widely and freely along the long axis direction of the particles, whereas in the case of particles having a high surface curvature, the shape of the crystallites increases with respect to the growth direction of the crystallites. Because of the spatial restrictions that are derived, crystallites cannot grow freely. Spatial restriction means that the growth of crystallites is hindered by the energy to maintain the particle shape, and the higher the average circularity of the circular powder, that is, the surface curvature, the more spatial the crystal growth is. The limit is great.
  • the effect of the particle shape on the growth of crystallites is collectively expressed as a shape effect.
  • the crystallites on the particle surface are oriented along the particle shape, the crystallites arranged on the particle surface have an effect of giving a spatial restriction to the growth of the crystallite inside the particle.
  • the graphite is in an antagonistic state between the energy that the crystallites want to grow and the energy that tries to maintain the orientation of the crystallites located closer to the surface.
  • lattice strain is introduced into the graphite. That is, even within the particle, the shape effect of the particle is imparted sufficiently and sufficiently.
  • the average circularity of the circular powder is less than 0.91, the crystallites can grow freely without being hindered by the particle shape, and the shape effect cannot be imparted. It will not be introduced. On the other hand, it was impossible to make the average circularity of the circular powder more than 0.97 by surface treatment that imparts compressive stress and shear stress to the raw coal composition.
  • the crystal structure of the graphite material is strongly dependent on the crystal structure (physical properties) of the raw coal composition that is the precursor raw material.
  • Physical properties as described in the first aspect of the present application that is, the ratio of hydrogen atom H to carbon atom C, H / C atomic ratio is 0.30 to 0.50, and the micro strength is 7 to 17 mass.
  • the characteristics of the graphite material obtained by graphitizing is that it has a region where the parallelism of the hexagonal network surface is locally low while orderly arranging the crystallites, and that the edge portion on the particle surface is less exposed. is there.
  • a graphite material having such characteristics is used as a negative electrode material, so the decomposition of the electrolyte due to the co-insertion with the solvent and the decomposition of the electrolyte at the edge of the particle surface are suppressed, so the leakage of the negative electrode The current is extremely small, and high life characteristics can be realized.
  • H / C of the raw coal composition is a value obtained by dividing the total hydrogen content (TH (mass%)) by the atomic weight of hydrogen, and a value obtained by dividing the total carbon content (TC (mass%)) by the atomic weight of carbon. Is the ratio.
  • the total hydrogen is measured by completely burning the sample in an oxygen stream at 750 ° C. and determining the amount of water generated from the combustion gas by the coulometric titration method (Karl Fischer method).
  • Karl Fischer method an electrolyte containing iodide ions, sulfur dioxide, base (RN) and alcohol as main components is placed in the titration cell in advance, and the sample is placed in the titration cell.
  • a sample is measured, for example after cooling in a dry atmosphere after a caulking process.
  • the iodine necessary for this reaction can be obtained by electrochemically reacting iodide ions (two-electron reaction) as shown in the following formula (5). 2I ⁇ ⁇ 2e ⁇ ⁇ I 2 ...
  • the micro-strength is as follows: 2 g of 20-30 mesh sample and 12 steel balls with a diameter of 5/16 inch (7.9 mm) are placed in a steel cylinder (inner diameter 25.4 mm, length 304.8 mm), and the vertical surface is tubed. Rotate 800 rpm at 25 rpm in the direction perpendicular to the axis (ie, rotate the rotating shaft horizontally so that the top and bottom can be switched from the upright position, rotate as if the propeller is rotating), and screen with 48 mesh. It is the value which showed the mass on the sieve with respect to the percentage.
  • the H / C atomic ratio in the raw coal composition exceeds 0.50, the structure formation of the carbon skeleton is insufficient, and the crystallite growth is extremely small even when graphitized.
  • a lithium ion secondary battery using such a graphite material as a negative electrode is not preferable because the capacity becomes small.
  • the H / C of the raw coal composition is limited to 0.30 to 0.50.
  • a circular powder obtained by applying a compressive stress and a shear stress to a raw material carbon composition having physical properties within this range and subjecting it to a surface treatment so as to have an average circularity of 0.91 to 0.97 is obtained from graphite. In this case, a graphite material having a moderately grown crystallite and an appropriate lattice strain can be obtained.
  • the first invention according to the present application also prescribes that the micro strength of the raw coal composition is 7 to 17% by mass.
  • This micro strength is an index indicating the bond strength between adjacent crystallites.
  • unstructured carbon having a structure other than a benzene ring serving as a structural unit of a hexagonal network plane exists between adjacent crystallites, and has a function of bonding the adjacent crystallites.
  • This unstructured carbon remains after the raw carbon composition is carbonized and graphitized, and plays a similar role.
  • Unstructured carbon refers to carbon that is not incorporated into the carbon hexagonal network plane, and its characteristics are that the carbon hexagon gradually increases with increasing processing temperature while interfering with the growth and selective orientation of adjacent carbon crystallites. It is a carbon atom that is incorporated into the mesh plane.
  • the micro strength of the raw carbon composition When the micro strength of the raw carbon composition is less than 7% by mass, it means that the bond strength between adjacent crystallites is extremely weak.
  • the micro strength of the raw coal composition is limited to 7 to 17% by mass.
  • a graphite material having an extremely small lattice strain and an appropriate lattice strain can be obtained.
  • compressive stress and shear stress are imparted to the raw coal composition characterized in that the H / C atomic ratio is 0.30 to 0.50 and the micro strength is 7 to 17% by mass, and the average circularity As long as the circular powder obtained by subjecting the surface treatment to a degree of 0.91 to 0.97 is graphitized, the crystallites develop appropriately and have an appropriate lattice strain, In addition, a graphite material with very few edge portions exposed on the particle surface can be obtained.
  • the reason why a circular powder having an average circularity in the range of 0.91 to 0.97 is obtained by applying compressive stress and shear stress to the raw coal composition is as follows.
  • the degree of circularity is less than 91, the energy for maintaining the particle shape is extremely small compared to the energy for crystallites to grow in the graphitization step, and a state in which both energies cannot be formed is not formed. . Even if graphitization proceeds in such a state, it is not preferable because it is impossible to introduce lattice strain.
  • a circular powder having an average circularity higher than 0.97 could not be obtained.
  • the graphite material has an Lc (112) calculated from (112) diffraction lines obtained by X-ray wide-angle diffraction of 4 nm to 30 nm, and (004) diffraction lines and (006).
  • Lc (112) calculated from (112) diffraction lines obtained by X-ray wide-angle diffraction of 4 nm to 30 nm, and (004) diffraction lines and (006).
  • the reason why the lattice strain calculated from the diffraction line is defined to be in the range of 0.001 to 0.085 will be described.
  • a graphite material having Lc (112) of less than 4 nm is not preferable because the crystal structure is insufficiently developed, and a lithium ion secondary battery using such a graphite material has a small capacity.
  • Lc (112) never exceeded 30 nm, so the upper limit was set to 30 nm.
  • the degree of graphitization is higher and the parallelism of the hexagonal mesh surface is higher, so that the lattice strain tends to be smaller.
  • the graphite material obtained by the conventional manufacturing method could not introduce a lattice strain of 0.001 or more when Lc (112) is in the range of 4 nm to 30 nm. Such a graphite material is not preferable because the parallelism of the hexagonal mesh surface is high, and the electrolyte is easily inserted between graphite layers and decomposed.
  • the production method of the present invention that applies compressive stress and shear stress to the raw coal composition introduces a lattice strain of 0.001 or more even in a graphite material having Lc (112) in the range of 4 nm to 30 nm. enable.
  • a graphite material is a graphite material with moderately developed crystallites and moderate strain, and in a lithium ion secondary battery in which these graphite materials are used as a negative electrode, an electrolyte solution by co-insertion with a solvent is used. Therefore, the leakage current of the negative electrode is extremely small, and high life characteristics can be realized. Further, in the production method of the present invention, it was impossible to introduce a lattice strain exceeding 0.085 into a graphite material having Lc (112) in the range of 4 nm to 30 nm. It was.
  • the raw coal composition used in the present invention can be obtained by coking a heavy oil composition by a delayed coking process.
  • Components of heavy oil composition include bottom oil of fluid catalytic cracking equipment (fluid catalytic cracking residual oil, FCC DO), aromatics extracted from fluid catalytic cracking residual oil, and advanced hydrodesulfurization treatment for heavy oil Hydrodesulfurized oil, vacuum residue (VR), desulfurized desulfurized oil, coal liquefied oil, coal solvent extract oil, atmospheric residual oil, shell oil, tar sand bitumen, naphtha tar pitch, ethylene bottom oil Coal tar pitch and heavy oil obtained by hydrorefining these.
  • FCC DO fluid catalytic cracking residual oil
  • VR vacuum residue
  • desulfurized desulfurized oil coal liquefied oil
  • coal solvent extract oil atmospheric residual oil, shell oil, tar sand bitumen, naphtha tar pitch, ethylene bottom oil Coal tar pitch and heavy oil obtained by hydrorefining these.
  • the physical properties of the raw coal composition obtained after coking the heavy oil composition by a delayed coking process are expressed as H / C atoms. What is necessary is just to adjust a compounding ratio suitably according to the property of the raw material oil used so that ratio may be 0.30-0.50 and micro strength may be 7-17 mass%.
  • the properties of the raw material oil vary depending on the type of crude oil and the processing conditions until the raw material oil is obtained from the crude oil.
  • the bottom oil of the fluid catalytic cracking unit is a bottom of the fluidized bed type fluid catalytic cracking unit that uses a vacuum gas oil as a raw material oil and selectively performs a cracking reaction using a catalyst to obtain a high octane FCC gasoline.
  • Oil used as the raw material oil is preferably a desulfurized vacuum gas oil obtained by directly desulfurizing atmospheric distillation residue oil (preferably a sulfur content of 500 mass ppm or less, a density of 0.8 / cm 3 or more at 15 ° C. ).
  • the aromatic content extracted from the fluid catalytic cracking residual oil is the aromatic content when selectively extracted using dimethylformamide or the like and separated into an aromatic content and a saturated content.
  • Hydrodesulfurized oil obtained by subjecting heavy oil to advanced hydrodesulfurization treatment is, for example, sulfur content obtained by hydrodesulfurization treatment of heavy oil having a sulfur content of 1% by mass or more at a hydrogen partial pressure of 10 MPa or more. It is a heavy oil with 0% by mass or less, nitrogen content of 0.5% by mass or less, and aromatic carbon fraction (fa) of 0.1 or more.
  • the hydrodesulfurized oil is preferably a hydrodesulfurized oil obtained by hydrodesulfurizing an atmospheric distillation residue in the presence of a catalyst so that the hydrocracking rate is 25% or less.
  • the vacuum residue (VR) is obtained by subjecting crude oil to an atmospheric distillation apparatus to obtain gas, light oil, and atmospheric residue, and then removing the atmospheric residue from the heating furnace at a reduced pressure of 10 to 30 Torr, for example.
  • This is a bottom oil of a vacuum distillation apparatus obtained by changing the temperature in the range of 320 to 360 ° C.
  • Desulfurized desulfurized oil is obtained by, for example, treating oil such as vacuum distillation residue oil with a solvent desulfurization apparatus using propane, butane, pentane, or a mixture thereof as a solvent, and removing the asphaltenes.
  • desulfurized oil is preferably desulfurized using an indirect desulfurization apparatus (Isomax) or the like to a sulfur content of 0.05 to 0.40 mass%.
  • Atmospheric residual oil is obtained by subjecting crude oil to an atmospheric distillation apparatus, for example, heating under normal pressure, and depending on the boiling point of the contained fraction, gas / LPG, gasoline fraction, kerosene fraction, light oil fraction, ordinary oil fraction, One of the fractions obtained when divided into pressure residue oil, the fraction with the highest boiling point.
  • the heating temperature varies depending on the production area of the crude oil and is not limited as long as it can be fractionated into these fractions. For example, the crude oil is heated to 320 ° C.
  • Examples of particularly preferred heavy oil compositions include (1) aromatic fraction (aromatic index) fa of 0.3 to 0.65, and (2) normal paraffin content of 5 to 20% by mass. And (3) a heavy oil composition satisfying the three conditions of containing desulfurized dewaxed oil in the range of 7 to 15% by mass.
  • a heavy oil component that produces a good bulk mesophase and (2) when the bulk mesophase is polycondensed and carbonized and solidified, the size of the hexagonal mesh plane laminate constituting the mesophase is It is particularly preferable to use a raw oil composition containing a heavy oil component capable of generating a gas having a function of limiting to a small size, and (3) a component that binds the cut hexagonal mesh plane laminates together.
  • a heavy oil component that produces a good bulk mesophase is a component that gives an aromatic index fa of 0.3 to 0.65
  • a heavy oil component that can generate gas contains normal paraffin It is a component corresponding to 5 to 20% by mass of the ratio
  • a desulfurized dewaxed oil containing a component for bonding hexagonal net plane laminates in the range of 7 to 15% by mass is a component that gives an aromatic index fa of 0.3 to 0.65
  • a heavy oil component that can generate gas contains normal paraffin It is a component corresponding to 5 to 20% by mass of the ratio
  • a desulfurized dewaxed oil containing a component for bonding hexagonal net plane laminates in the range of 7 to 15% by mass.
  • the reason why such a heavy oil composition is preferably used as a raw material of the raw coal composition of the present invention is that the hexagonal mesh plane formed by the heavy oil component that produces a good bulk mesophase is relatively small. This is because, by being limited by the size, in addition to facilitating the improvement of the average circularity, the desulfurized dewaxed oil appropriately bonds the adjacent hexagonal mesh plane laminates. In order to make the average circularity in the range of 0.91 to 0.97, by reducing the crystallite size, the internal stress of the particles against the compressive stress and shear stress can be relaxed, and the particles can be easily deformed. There is a need to.
  • the aromatic carbon fraction (aromatic index) (fa) can be determined by the Knight method.
  • the carbon distribution is divided into three components (A 1 , A 2 , A 3 ) as an aromatic carbon spectrum by the 13 C-NMR method.
  • a 1 is the number of carbon atoms inside the aromatic ring, half of the substituted aromatic carbon and half of the unsubstituted aromatic carbon (corresponding to a peak of about 40-60 ppm of 13 C-NMR), and A 2 is substituted
  • the remaining half of the aromatic carbon corresponding to about 60-80 ppm peak of 13 C-NMR
  • a 3 is the number of aliphatic carbon (corresponding to about 130-190 ppm peak of 13 C-NMR)
  • the 13 C-NMR method is the best method for quantitatively determining fa, which is the most basic amount of chemical structural parameters of pitches, as described in the literature ("Pitch Characterization II. Chemical Structure” Yokono, Sanada, (Carbon, 1981 (No. 105), p73-81).
  • the content of normal paraffin in the raw material oil composition means a value measured by a gas chromatograph equipped with a capillary column. Specifically, after testing with a normal paraffin standard substance, the sample of the non-aromatic component separated by the elution chromatography method is passed through a capillary column and measured. The content rate based on the total mass of the raw material oil composition can be calculated from this measured value.
  • the aromatic index fa of the heavy oil composition When the aromatic index fa of the heavy oil composition is less than 0.3, the yield of coke from the heavy oil composition becomes extremely low, and a good bulk mesophase cannot be formed. Even if graphitized, it is difficult to develop a crystal structure. On the other hand, if it exceeds 0.65, a large number of mesophases are suddenly generated in the matrix in the production process of raw coke, and abrupt coalescence of mesophases is mainly repeated rather than single growth of mesophases. For this reason, the rate of coalescence between the mesophases is faster than the rate of gas generation due to the normal paraffin-containing component, which makes it impossible to limit the hexagonal mesh plane of the bulk mesophase to a small size.
  • the aromatic index fa of the heavy oil composition is particularly preferably in the range of 0.3 to 0.6.
  • fa can be calculated from the density D and the viscosity V of the heavy oil composition.
  • the density D is 0.91 to 1.02 g / cm 3 and the viscosity V is 10 to 220 mm 2 / sec.
  • Particularly preferred are heavy oil compositions having a fa of 0.3 to 0.6.
  • the normal paraffin component appropriately contained in the heavy oil composition plays an important role in limiting the size of the bulk mesophase to a small size by generating gas during the coking process as described above. ing.
  • This gas generation also has a function of uniaxially orienting adjacent mesophases limited to a small size and selectively orienting the entire system.
  • the content of the normal paraffin-containing component is less than 5% by mass, the mesophase grows more than necessary and a huge carbon hexagonal plane is formed, which is not preferable.
  • gas generation from normal paraffin becomes excessive, and it tends to work in a direction that disturbs the orientation of the bulk mesophase.
  • the normal paraffin content is particularly preferably in the range of 5 to 20% by mass.
  • the desulfurized dewaxed oil plays a role of appropriately bonding adjacent hexagonal mesh plane laminates, but the content in the heavy oil composition is in the range of 5 to 20% by mass. It is particularly preferred. In the case of less than 5% by mass or in the case of exceeding 20% by mass, the micro strength of the raw coal composition obtained after coking is less than 7% by mass or may exceed 17% by mass, which is not preferable.
  • the heavy oil composition having such characteristics is coked to form the raw coal composition of the present invention.
  • a delayed coking method is preferable. More specifically, a method of obtaining raw coke by heat-treating a heavy oil composition with a delayed coker under conditions where the coking pressure is controlled is preferable.
  • preferable operating conditions of the delayed coker are a pressure of 0.1 to 0.8 MPa and a temperature of 400 to 600 ° C. The reason why a preferable range is set for the operating pressure of the coker is that the release rate of the gas generated from the component containing normal paraffin to the outside of the system can be limited by the pressure.
  • the residence time of the generated gas in the system is an important control for determining the size of the hexagonal mesh plane. It becomes a parameter.
  • the reason why a preferable range is set for the operating temperature of the coker is that the temperature is necessary for growing the mesophase from the heavy oil adjusted to obtain the effect of the present invention.
  • the raw coal composition obtained in this manner was pulverized and classified with a mechanical pulverizer (for example, Super Rotor Mill / Nisshin Engineering Co., Ltd.) to obtain a raw coal composition powder.
  • a mechanical pulverizer for example, Super Rotor Mill / Nisshin Engineering Co., Ltd.
  • powder of the raw coal composition having an average particle size of 5 to 30 ⁇ m was obtained.
  • the average particle size is based on measurement by a laser diffraction particle size distribution meter.
  • the reason for setting the average particle size to 5 to 30 ⁇ m is that when the particle size is smaller than 5 ⁇ m, sufficient compressive stress and shear stress cannot be applied to the powder of the raw coal composition, so the average circularity is 0.91 to This is because it is impossible to obtain a circular powder having a range of 0.97.
  • the reason why the particle size is 30 ⁇ m or less is that the particle size is generally and preferably used as a negative electrode carbon material for a lithium ion secondary battery.
  • the treatment for improving the average circularity of the circular powder is preferably carried out to such an extent that the apparent particle diameter does not substantially change. Also includes potato-like surfaces with bumpy surfaces. Specifically, the surface treatment is performed so that the average circularity of the circular powder is preferably 0.91 to 0.97.
  • the average circularity can be measured using a circularity measuring device (for example, a flow type particle image analyzer FPIA-3000 manufactured by Sysmex Corporation).
  • the average circularity was calculated from the following formula, and the average value of the circularity of the circular powder was calculated.
  • Average circularity L 0 / L (In the formula, L o represents the perimeter of a circle having the same projected area as the particle image, and L represents the perimeter of the particle projected image.)
  • a ball-type kneader such as a rotary ball mill
  • a wheel-type kneader such as an edge runner
  • a hybridization system manufactured by Nara Machinery Co., Ltd.
  • Mechano-Fusion manufactured by Hosokawa Micron
  • Nobilta manufactured by Hosokawa Micron
  • COMPOSI Joint-I Coke industry
  • the manufacturing conditions in the process of applying the compressive stress and the shear stress vary depending on the apparatus to be used.
  • the blade blade 3 and the housing 5 are rotated relatively, preferably in opposite directions (
  • the mechano-fusion apparatus 1 having a structure in which the powder P is compressed and compressive stress is applied to the powder P through the gap 7 between the rotation directions R1 and R2).
  • the blade rotation speed is 1500 to 5000 rpm and the processing time is 10 to 180 minutes.
  • the rotational speed is less than 1500 rpm, or when the treatment time is less than 10 minutes, sufficient compressive stress and shear stress cannot be applied to the powder of the raw coal composition.
  • a treatment longer than 180 minutes is not preferable because excessive compression stress and shear stress are applied to the powder of the raw coal composition, and the particle shape is significantly deformed.
  • the processing time is 10 to 180 minutes at a peripheral speed of 50 to 80 m / s.
  • the peripheral speed is less than 50 m / s, or when the treatment time is less than 10 minutes, sufficient compressive stress and shear stress cannot be imparted to the powder of the raw coal composition.
  • a treatment longer than 180 minutes is not preferable because excessive compression stress and shear stress are applied to the powder of the raw coal composition, and the particle shape is significantly deformed.
  • the blade rotation speed is 500 to 3000 rpm and the treatment time is 10 to 300 minutes.
  • the rotational speed is less than 500 rpm, or when the treatment time is less than 10 minutes, sufficient compressive stress and shear stress cannot be applied to the powder of the raw coal composition.
  • the treatment is performed for longer than 300 minutes, an excessive compressive stress and shear stress are applied to the powder of the raw coal composition, and the particle shape is significantly deformed.
  • the processing time is 5 to 180 minutes at a peripheral speed of 40 to 60 m / s.
  • the graphite precursor having a higher average circularity is preferably performed at 60 to 250 ° C. as the control temperature during the surface treatment for applying compressive stress and shear stress. Is obtained. In particular, operation at a control temperature of 120 to 200 ° C. during the surface treatment is desirable.
  • the surface treatment that applies compressive stress and shear stress to the particles of the raw coal composition is a process in which the corners of the particles are sharpened, but the sharpened portion instantly adheres to the particles and rounds the particles. It is better to carry out with almost no change. Therefore, it is not pulverization that generates fine powder and reduces the particle size.
  • the raw coal composition has adhesiveness because it contains a volatile component, but this adhesiveness preferably works because it facilitates that the shaved portion adheres to the particles instantaneously.
  • the method of graphitization treatment is not particularly limited.
  • the carbonization (preliminary) is performed in an inert gas atmosphere such as nitrogen, argon or helium with a maximum temperature of 900 to 1500 ° C. and a maximum temperature holding time of 0 to 10 hours.
  • an inert gas atmosphere such as nitrogen, argon or helium with a maximum temperature of 900 to 1500 ° C. and a maximum temperature holding time of 0 to 10 hours.
  • a heat treatment in a similar inert gas atmosphere at a maximum temperature of 2500 to 3200 ° C. and a maximum temperature holding time of 0 to 100 hours.
  • the crystallite size Lc (112) calculated from the (112) diffraction line obtained by the X-ray wide angle diffraction is 4 nm to 30 nm, and is calculated from the (004) diffraction line and the (006) diffraction line.
  • a graphite material having a lattice strain in the range of 0.001 to 0.085 is obtained.
  • the crystal size L is determined by using the half width ⁇ of X-ray diffraction.
  • ⁇ / L ⁇ cos ⁇ (Formula 7) Is required.
  • is the X-ray wavelength
  • is the Bragg angle.
  • 1 / L ⁇ ⁇ cos ⁇ / ⁇ (Formula 8) Is obtained.
  • is the sum of ⁇ (0) based on the true size of the crystallite and the width ⁇ due to lattice distortion (Carbon, 1968, Vol. 52, pages 9-12).
  • ⁇ (0) + ⁇ (Formula 9) It is expressed.
  • is attributed to the non-uniformity of the lattice spacing d, and the variation width of the lattice spacing is ⁇ d.
  • the X-ray diffractometer was D8 ADVANCE (encapsulated tube type) manufactured by Bruker-AXS, the X-ray source was CuK ⁇ ray (using K ⁇ filter Ni), and the applied voltage and current to the X-ray tube were 40 kV and 40 mA.
  • the obtained diffraction pattern was also analyzed by a method based on the method (carbon 2006, No. 221, P52-60) defined by the Japan Society for the Promotion of Science 117.
  • the measurement data is subjected to smoothing processing, background removal, absorption correction, polarization correction, and Lorentz correction, and using the (422) diffraction line peak position and value width of the Si standard sample, the graphite powder (112)
  • the diffraction line was corrected and the crystallite size was calculated.
  • the crystallite size was calculated from the half width of the corrected peak using the following Scherrer equation. Measurement and analysis were performed three times each, and the average value was defined as Lc (112).
  • the method for producing a negative electrode for a lithium secondary battery is not particularly limited.
  • a method in which (negative electrode mixture) is pressure-molded to a predetermined size is exemplified.
  • a carbon material to which the invention according to the present application is applied, a binder (binder), a conductive auxiliary agent, and the like are kneaded and slurried in an organic solvent, and the slurry is a current collector such as a copper foil.
  • a method in which a coated and dried (negative electrode mixture) is rolled and cut into a predetermined size.
  • the graphite material for a lithium ion battery of the present invention can be mixed with a binder (binder) to form a negative electrode mixture and applied to a metal foil to form a negative electrode.
  • a binder binder
  • various binders can be used without particular limitation as long as they are conventionally used binders.
  • the binder include polyacrylonitrile (PAN), polyethylene terephthalate, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl fluoride, and SBR (styrene-butadiene rubber).
  • the binder is usually used in an amount of 1 to 40 parts by weight, preferably 2 to 25 parts by weight, particularly preferably 5 to 15 parts by weight with respect to 100 parts by weight of the graphite material for the lithium ion battery of the present invention.
  • the conductive aid include carbon black, graphite, acetylene black, conductive indium-tin oxide, or conductive polymers such as polyaniline, polythiophene, and polyphenylene vinylene.
  • the amount of the conductive aid used is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the carbon material.
  • the negative electrode mixture is mixed with a solvent to form a slurry.
  • the solvent is not particularly limited as long as it is a conventionally used solvent, and various solvents can be used.
  • a solvent for example, N-methylpyrrolidone (NMP), pyrrolidone, N-methylthiopyrrolidone, dimethylformamide (DMF), dimethylacetamide, hexamethylphosphoamide, isopropanol, toluene, etc. may be used alone or in combination.
  • NMP N-methylpyrrolidone
  • DMF dimethylformamide
  • dimethylacetamide dimethylacetamide
  • hexamethylphosphoamide isopropanol, toluene, etc.
  • Can do The solvent is generally used in an amount of 15 to 90 parts by mass, preferably 30 to 60 parts by mass with respect to 100 parts by mass in total of the negative electrode mixture.
  • the mixture for the negative electrode needs to be appropriately dispersed as long as the graphite material for the lithium ion battery is not destroyed, and is appropriately mixed and dispersed using a planetary mixer, a ball mill, a screw kneader, or the like.
  • the negative electrode mixture and the solvent slurry mixture are applied to a metal foil.
  • the metal foil material there are no particular limitations on the metal foil material, and various metal materials can be used. For example, copper, aluminum, titanium, stainless steel, nickel, iron, etc. are mentioned.
  • the mixture can be applied to one side or both sides of the metal foil and dried to form an electrode.
  • the coating method can be carried out by a conventionally known method. Examples thereof include an extrusion coat, a gravure coat, a curtain coat, a reverse roll coat, a dip coat, a doctor coat, a knife coat, a screen printing, a metal mask printing method, and an electrostatic coating method. After coating, it is common to perform a rolling process using a flat plate press, a calender roll, or the like as necessary.
  • the electrode can be produced by applying it to a metal foil and then drying it at a temperature of 50 to 250 ° C.
  • a metal foil When applying the mixture to both sides of the metal foil, it is particularly preferable to apply one side, dry at 50 to 250 ° C., and then wash the other side to be applied with water or the like. This cleaning operation can greatly improve the adhesiveness.
  • the mixture is applied to one side or both sides of the metal foil, and the paste on the dried metal foil is pressed together with the metal foil to form an electrode.
  • the shape of the negative electrode used in the present invention can take various shapes such as a plate shape, a film shape, a columnar shape, or a metal foil depending on the intended battery.
  • one formed on a metal foil can be applied to various batteries as a current collector integrated negative electrode.
  • the lithium ion secondary battery When the graphite material of the present invention is used as a negative electrode, the lithium ion secondary battery has a negative electrode manufactured as described above and a positive electrode for a lithium ion secondary battery, facing each other with a separator interposed therebetween, It can be obtained by injecting a liquid.
  • the active material used for the positive electrode is not particularly limited.
  • a metal compound, metal oxide, metal sulfide, or conductive polymer material that can be doped or inserted with lithium ions may be used.
  • lithium cobaltate LiCoO 2
  • lithium nickelate LiNiO 2
  • lithium manganese acid LiMn 2 O 4
  • lithium vanadium compounds V 2 O 5 , V 6 O 13 , VO 2 , MnO 2
  • polyacetylene polyaniline
  • polypyrrole polythiophene
  • electrically conductive polymers such as polyacene, porous carbon or the like and mixtures thereof.
  • the separator for example, a nonwoven fabric, a cloth, a microporous film, or a combination thereof having a polyolefin such as polyethylene or polypropylene as a main component can be used.
  • a separator when it is set as the structure where the positive electrode and negative electrode of a lithium ion secondary battery to manufacture do not contact directly, it is not necessary to use a separator.
  • organic electrolytes As the electrolyte and electrolyte used for the lithium ion secondary battery, known organic electrolytes, inorganic solid electrolytes, and polymer solid electrolytes can be used. Preferably, an organic electrolyte is preferable from the viewpoint of electrical conductivity.
  • organic electrolyte examples include dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, and ethylene glycol phenyl ether; N-methylformamide, N, N-dimethylformamide, N Amides such as ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide and N, N-diethylacetamide; sulfur-containing compounds such as dimethylsulfoxide and sulfolane; methyl ethyl ketone; Dialkyl ketones such as methyl isobutyl ketone; Cyclic ethers such as tetrahydrofuran and 2-methoxytetrahydrofuran; Ethylene carbonate Cyclic carbonates such as butylene carbonate, propylene carbonate and vinylene carbonate
  • Lithium salts are used as solutes (electrolytes) for these solvents.
  • Commonly known lithium salts include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and the like.
  • the polymer solid electrolyte include a polyethylene oxide derivative and a polymer containing the derivative, a polypropylene oxide derivative and a polymer containing the derivative, a phosphate ester polymer, a polycarbonate derivative and a polymer containing the derivative.
  • Raw coal composition and production method thereof (1) Raw coal composition A The atmospheric distillation residue having a sulfur content of 3.1% by mass was hydrodesulfurized in the presence of a catalyst so that the hydrocracking rate was 25% or less to obtain a hydrodesulfurized oil.
  • the hydrodesulfurization conditions are a total pressure of 180 MPa, a hydrogen partial pressure of 160 MPa, and a temperature of 380 ° C.
  • desulfurized vacuum gas oil (sulfur content: 500 mass ppm, density: 0.88 g / cm 3 at 15 ° C.) was subjected to fluid catalytic cracking to obtain fluid catalytic cracking residual oil.
  • the fluid catalytic cracking residual oil was selectively extracted with dimethylformamide, separated into an aromatic component and a saturated component, and the aromatic component was extracted.
  • This extracted aromatic component and hydrodesulfurized oil were mixed at a mass ratio of 8: 1, and desulfurized desulfurized oil was added so as to be 19% by mass (100% by mass in the entire mixture including desulfurized desulfurized oil) ),
  • a coke raw material oil composition was obtained.
  • This raw material oil composition was introduced into a delayed coker apparatus and subjected to coking treatment at 550 ° C. in an inert gas atmosphere to obtain raw material charcoal composition A.
  • Raw coal composition B The raw material composition of the raw coal composition A is a mixture of extracted aromatics and hydrodesulfurized oil mixed at a mass ratio of 8: 1, and desulfurized desulfurized oil is added so as to be 11% by mass. An oil composition was obtained. This raw material oil composition was introduced into a delayed coker apparatus and subjected to coking treatment at 550 ° C. in an inert gas atmosphere to obtain a raw material carbon composition B.
  • Raw coal composition C The raw material composition of raw coal composition A is a mixture of extracted aromatics and hydrodesulfurized oil mixed at a mass ratio of 8: 1, and desulfurized desulfurized oil is added so as to be 4% by mass. An oil composition was obtained. This raw material oil composition was introduced into a delayed coker apparatus and subjected to coking treatment at 550 ° C. in an inert gas atmosphere to obtain a raw material carbon composition C.
  • Raw coal composition D The raw material oil composition of raw material carbon composition A is a mixture of extracted aromatics and hydrodesulfurized oil mixed at a mass ratio of 6: 1, and desulfurized desulfurized oil is added so as to be 17% by mass, and the raw material of coke An oil composition was obtained.
  • This raw material oil composition was introduced into a delayed coker apparatus, and coking was performed at 550 ° C. in an inert gas atmosphere to obtain a raw material carbon composition D.
  • Raw coal composition E The raw material composition of raw carbon composition A is a mixture of extracted aromatics and hydrodesulfurized oil mixed at a mass ratio of 6: 1, and desulfurized desulfurized oil is added so that the mass becomes 11% by mass. An oil composition was obtained. This raw material oil composition was introduced into a delayed coker apparatus and subjected to a coking treatment at 550 ° C. in an inert gas atmosphere to obtain a raw material carbon composition E.
  • Raw coal composition F The raw material composition of the raw coal composition A is a mixture of extracted aromatics and hydrodesulfurized oil mixed at a mass ratio of 6: 1, and desulfurized desulfurized oil is added so as to be 6% by mass. An oil composition was obtained. This raw material oil composition was introduced into a delayed coker apparatus, and coking was performed at 550 ° C. in an inert gas atmosphere to obtain a raw carbon composition F.
  • Raw coal composition G The desulfurized dewaxed oil is mixed with the hydrodesulfurized oil and the fluid catalytic cracking residual oil, which are the raw materials of the raw oil composition of the raw coal composition A, in a mass ratio of 1: 5 so that the desulfurized desulfurized oil becomes 15% by mass.
  • a coke feedstock composition was obtained.
  • This raw material oil composition was introduced into a delayed coker apparatus, and coking was performed at 550 ° C. in an inert gas atmosphere to obtain a raw material carbon composition G.
  • Raw coal composition H The desulfurized dewaxed oil is mixed with the hydrodesulfurized oil and the fluid catalytic cracking residual oil, which are the raw materials of the raw oil composition of the raw coal composition A, in a mass ratio of 1: 5 so that the desulfurized desulfurized oil becomes 7% by mass.
  • a coke feedstock composition was obtained.
  • This raw material oil composition was introduced into a delayed coker apparatus, and coking was performed at 550 ° C. in an inert gas atmosphere to obtain a raw material carbon composition H.
  • Raw coal composition I A hydrodesulfurized oil and a fluid catalytic cracking residual oil which are raw materials of the raw material oil composition of the raw coal composition A are mixed at a mass ratio of 1: 4, and desulfurized dewaxed oil is added so as to be 19% by mass. In addition, a coke feedstock composition was obtained. This raw material oil composition was introduced into a delayed coker apparatus, and coking was performed at 550 ° C. in an inert gas atmosphere to obtain a raw material charcoal composition I.
  • Coking coal composition J The desulfurized dewaxed oil is mixed with the hydrodesulfurized oil and the fluid catalytic cracking residual oil that are the raw materials of the raw oil composition of the raw coal composition A at a mass ratio of 1: 4 so that the desulfurized desulfurized oil becomes 16% by mass.
  • a coke feedstock composition was obtained.
  • This raw material oil composition was introduced into a delayed coker apparatus, and coking was performed at 550 ° C. in an inert gas atmosphere to obtain a raw material carbon composition J.
  • Raw coal composition K The desulfurized dewaxed oil is mixed with the hydrodesulfurized oil and the fluid catalytic cracking residual oil, which are the raw materials of the raw oil composition of the raw coal composition A, in a mass ratio of 1: 4 so as to be 11% by mass.
  • a coke feedstock composition was obtained.
  • This raw material oil composition was introduced into a delayed coker apparatus and subjected to coking treatment at 550 ° C. in an inert gas atmosphere to obtain a raw material carbon composition K.
  • Raw coal composition L A hydrodesulfurized oil and a fluid catalytic cracking residual oil which are raw materials of the raw material oil composition of the raw coal composition A are mixed at a mass ratio of 1: 4, and desulfurized dewaxed oil is added so as to be 5% by mass.
  • a coke feedstock composition was obtained.
  • This raw material oil composition was introduced into a delayed coker apparatus and subjected to a coking process at 550 ° C. in an inert gas atmosphere to obtain a raw material carbon composition L.
  • Raw coal composition M The hydrodesulfurized oil used as the raw material of the raw material oil composition of the raw coal composition A and the fluid catalytic cracking residual oil are mixed at a mass ratio of 1: 4, and the desulfurized dewaxed oil is added to 3% by mass. In addition, a coke feedstock composition was obtained. This raw material oil composition was introduced into a delayed coker apparatus, and coking was performed at 550 ° C. in an inert gas atmosphere to obtain a raw material carbon composition M.
  • Raw coal composition N The desulfurized dewaxed oil is mixed with the hydrodesulfurized oil and the fluid catalytic cracking residual oil, which are the raw materials of the raw oil composition of the raw coal composition A, in a mass ratio of 1: 3 so that the desulfurized desulfurized oil becomes 14% by mass.
  • a coke feedstock composition was obtained.
  • This raw material oil composition was introduced into a delayed coker apparatus and subjected to coking treatment at 550 ° C. in an inert gas atmosphere to obtain a raw material carbon composition N.
  • Raw coal composition O The desulfurized dewaxed oil is mixed with the hydrodesulfurized oil and the fluid catalytic cracking residual oil, which are the raw materials of the raw oil composition of the raw coal composition A, in a mass ratio of 1: 3 so that the desulfurized desulfurized oil becomes 7% by mass.
  • a coke feedstock composition was obtained.
  • This raw material oil composition was introduced into a delayed coker apparatus, and coking was performed at 550 ° C. in an inert gas atmosphere to obtain a raw material carbon composition O.
  • Raw coal composition P After adding and mixing the same volume of n-heptane to the fluid catalytic cracking residual oil that was the raw material of the raw oil composition of raw coal composition A, it was selectively extracted with dimethylformamide and separated into aromatic and saturated components. Of these, the saturated content was selectively extracted. Desulfurized and desulfurized oil was added to a mixture of the fluid catalytic cracking residual oil and the extracted saturated component at a mass ratio of 1: 1 so as to be 16% by mass to obtain a coke raw material oil composition. This raw material oil composition was introduced into a delayed coker apparatus, and coking was performed at 550 ° C. in an inert gas atmosphere to obtain a raw material carbon composition P.
  • Raw coal composition Q A desulfurized dewaxed oil is added to a mixture of the fluid catalytic cracking residual oil, which is a raw material of the raw material oil composition of the raw coal composition P, and the extraction saturated component in a mass ratio of 1: 1 so that the mass becomes 11% by mass.
  • a coke feedstock composition was obtained.
  • This raw material oil composition was introduced into a delayed coker apparatus and subjected to coking treatment at 550 ° C. in an inert gas atmosphere to obtain a raw material carbon composition Q.
  • Raw coal composition R Desulfurized and desulfurized oil is added to a mixture obtained by mixing the fluid catalytic cracking residual oil that is the raw material of the raw material oil composition of the raw coal composition P and the extraction saturated component at a mass ratio of 1: 1 so as to be 6% by mass.
  • a coke feedstock composition was obtained.
  • This raw material oil composition was introduced into a delayed coker apparatus and subjected to coking treatment at 550 ° C. in an inert gas atmosphere to obtain a raw material carbon composition R.
  • Coking coal composition S Desulfurized and desulfurized oil is added to a mixture obtained by mixing the fluid catalytic cracking residual oil that is the raw material of the raw material oil composition of the raw coal composition P and the extraction saturated component in a mass ratio of 1: 2, so that the mass becomes 19% by mass.
  • a coke feedstock composition was obtained.
  • This raw material oil composition was introduced into a delayed coker apparatus and subjected to a coking process at 550 ° C. in an inert gas atmosphere to obtain a raw material charcoal composition S.
  • Raw coal composition T Desulfurized and desulfurized oil is added to a mixture of the fluid catalytic cracking residual oil that is the raw material of the raw material oil composition of the raw coal composition P and the extraction saturated component in a mass ratio of 1: 2, so that the mass becomes 10% by mass.
  • a coke feedstock composition was obtained.
  • This raw material oil composition was introduced into a delayed coker apparatus and subjected to coking treatment at 550 ° C. in an inert gas atmosphere to obtain a raw material carbon composition T.
  • Raw coal composition U Desulfurized and desulfurized oil is added to a mixture obtained by mixing fluid catalytic cracking residual oil, which is a raw material of the raw material oil composition of the raw coal composition P, and extraction saturated component in a mass ratio of 1: 2, so that the mass becomes 4% by mass.
  • a coke feedstock composition was obtained.
  • This raw material oil composition was introduced into a delayed coker apparatus and subjected to a coking treatment at 550 ° C. in an inert gas atmosphere to obtain a raw material carbon composition U.
  • the obtained raw coal composition A was pulverized with a mechanical pulverizer (Super Rotor Mill / Nisshin Engineering) and classified by a precision air classifier (Turbo Classifier / Nisshin Engineering).
  • a raw material carbon composition powder having a particle size of 10 ⁇ m was obtained.
  • the powder was subjected to compressive stress and shear stress using Nobilta 130 manufactured by Hosokawa Micron. At this time, the rotation speed was 3500 rpm, the treatment time was 60 minutes, and the treatment temperature was 130 ° C. After the circularity of the carbon material after treatment was measured using a flow type particle image analyzer FPIA-3000 manufactured by Sysmex Corporation, the maximum temperature reached 1200 ° C.
  • Table 1 lists Examples 1 to 14 and Comparative Examples 1 to 22.
  • Table 1 shows the raw coal composition, H / C of the raw coal composition, micro strength, average particle size after pulverization / classification, conditions for applying compressive stress and shear stress to the raw coal composition (equipment, rotational speed). Or peripheral speed, treatment time), average circularity of circular powder after applying compressive stress and shear stress, and crystallite size Lc (112) and lattice strain obtained by X-ray wide angle diffraction method of graphite powder The value of ⁇ is shown.
  • Example 2 to 14 and Comparative Examples 1 to 17 and 19 to 22 the raw coal composition described in Table 1 was pulverized and classified to the average particle size described in the same table, and described in the same table.
  • Surface treatment was performed with the apparatus and conditions (apparatus, rotation speed or peripheral speed, treatment time) to obtain a circular powder having an average circularity described in the same table, and then carbonized / graphite as in Example 1.
  • Graphite material was obtained.
  • the same apparatus as that described in Example 1 was used for all apparatuses other than the surface treatment apparatus.
  • Comparative Example 18 the raw coal composition described in Table 1 was pulverized and classified to the average particle size described in the same table, and carbonized and graphitized in the same manner as in Example 1 without performing surface treatment. A graphite material was obtained. All the devices used were the same as those described in Example 1.
  • FIG. 2 shows a cross-sectional view of the battery 20 manufactured.
  • the positive electrode 21 is made of lithium nickel oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 manufactured by Toda Kogyo Co., Ltd.) having an average particle size of 6 ⁇ m and a polyvinylidene fluoride binder (KF # manufactured by Kureha Co., Ltd.). 1320), acetylene black (Denka Black manufactured by Denka) was mixed at a weight ratio of 89: 6: 5, kneaded after adding N-methyl-2-pyrrolidinone, and pasted into aluminum having a thickness of 30 ⁇ m.
  • the sheet electrode is applied to one side of the foil, dried and rolled, and cut so that the size of the application part is 30 mm wide and 50 mm long. At this time, the coating amount per unit area was set to 10 mg / cm 2 as the mass of lithium nickelate. A part of this sheet electrode is scraped off the positive electrode mixture perpendicularly to the longitudinal direction of the sheet, and the exposed aluminum foil is integrally connected to the current collector (aluminum foil) of the coating part, and the positive electrode lead It plays a role as a board.
  • the negative electrode 23 is composed of graphite powder obtained in the following Examples or Comparative Examples, which are negative electrode materials, polyvinylidene fluoride as a binder (KF # 9310, manufactured by Kureha), and acetylene black (Denka black, manufactured by Denka). After mixing at a weight ratio of 90: 2: 8, adding N-methyl-2-pyrrolidinone and kneading, paste it, apply it to one side of a 18 ⁇ m thick copper foil, perform drying and rolling operations, The sheet electrode is cut so that the size of the application part is 32 mm in width and 52 mm in length. At this time, the coating amount per unit area was set to 6 mg / cm 2 as the mass of the graphite powder.
  • the battery 20 was fabricated by sufficiently drying the positive electrode 21, the negative electrode 23, the separator 25, the outer package 27, and other parts, and introducing them into a glove box filled with argon gas having a dew point of ⁇ 100 ° C. The drying conditions are such that the positive electrode 21 and the negative electrode 23 are under reduced pressure at 150 ° C. for 12 hours or more, and the separator 25 and other members are under reduced pressure at 70 ° C. for 12 hours or more.
  • the positive electrode 21 and the negative electrode 23 thus dried were laminated with the positive electrode application portion and the negative electrode application portion facing each other with a microporous film made of polypropylene (Celgard # 2400) facing each other, and polyimide Fixed with tape.
  • the positive electrode and the negative electrode were positioned so that the peripheral edge of the positive electrode application part projected on the negative electrode application part was surrounded by the inner side of the peripheral part of the negative electrode application part.
  • the obtained single-layer electrode body is embedded with an aluminum laminate film, an electrolyte solution is injected, and the laminate film is heat-sealed in a state where the positive and negative electrode lead plates are protruded.
  • a layer laminate battery was prepared.
  • the electrolyte used was one in which lithium hexafluorophosphate (LiPF 6 ) was dissolved in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7 so as to have a concentration of 1 mol / L. .
  • the obtained battery was placed in a constant temperature room at 25 ° C., and the following charge / discharge test was performed. First, it was charged with a constant current at a current of 1.5 mA until the battery voltage reached 4.2V. After a 10-minute pause, a charge / discharge cycle of discharging at a constant current until the battery voltage reached 3.0 V at the same current was repeated 10 times. Since this charge / discharge cycle is for detecting an abnormality of the battery, it was not included in the number of cycles of the charge / discharge cycle test. It was confirmed that all the batteries manufactured in this example were not abnormal. The battery was placed in a constant temperature room at 60 ° C. and left for 5 hours to start a charge / discharge test.
  • the first cycle after the start is set as the initial cycle. Charging at a constant current at a current of 75 mA until the battery voltage reaches 4.2 V, setting a charge / discharge cycle for discharging at a constant current until the battery voltage reaches 3.0 V at the same current after resting for 1 minute, This cycle was repeated 1000 times. As a capacity retention rate of the charge / discharge cycle, a ratio (%) of the discharge capacity at the 1000th cycle to the initial discharge capacity was calculated.
  • a battery was prepared using the graphite materials described in the examples and comparative examples in Table 1, and the discharge capacity (mAh) of the first cycle, the discharge capacity (mAh) of the 1000th cycle when the battery characteristics were evaluated, The capacity retention rate (%) after 1000 cycles is shown.
  • the raw coal composition was within the scope of the present invention, that is, the H / C value was 0.3 to 0.5 and the micro strength was 7 to 17% by mass (G, H,
  • a graphite material obtained by graphitizing a circular powder obtained by subjecting K, N, O) as a raw material to a surface treatment so as to have an average circularity of 0.91 to 0.97 is the scope of the present invention.
  • the crystallite size Lc (112) calculated from the (112) diffraction line obtained by X-ray wide-angle diffraction satisfied 4 nm to 30 nm, and the lattice strain ⁇ satisfied 0.001 to 0.085. It has been found that the capacity maintenance rate of the charge / discharge cycle of the battery using these graphite materials as the negative electrode is 91% or more, and a lithium ion secondary battery having excellent life characteristics can be realized.
  • Example 14 As the surface treatment apparatus, Nobilta was used in Examples 1 to 11, COMPOSI was used in Examples 12 and 13, and Mechanofusion was used in Example 14. As a result, in any surface treatment apparatus, the Lc (112) and lattice strain values of the obtained graphite material satisfy the claims, and the charge / discharge cycle of the battery using these as negative electrodes It was found that the capacity retention rate showed a high value. By using these surface treatment apparatuses, it is possible to introduce an appropriate lattice strain into the graphite material.
  • Lc (112) was less than 4 nm. It can be seen that the smaller the crystallite size Lc (112) of these graphite materials, the smaller the discharge capacity. In order to ensure a capacity of 16 mAh as a battery of this size, it can be understood that the crystallite size Lc (112) of the graphite material used for the negative electrode must be at least 4 nm. In Comparative Examples 1 to 7, the capacity retention rate after 1000 cycles is 91% or more, and can be regarded as a negative electrode graphite material capable of realizing a battery with extremely high cycle stability. However, since the crystallite size is small, only a battery with a small capacity can be realized.
  • Lc (112) was 4 nm or more, but the lattice strain ⁇ was less than 0.001.
  • the discharge capacity is 17 mAh or more, and can be regarded as a negative electrode material capable of realizing an extremely high discharge capacity.
  • the lattice strain ⁇ is small, the capacity retention rate of the charge / discharge cycle is lowered, so it can be determined that it is not preferable.
  • the obtained graphite material is within the scope of the present invention, that is, Lc (112) is 4 nm to 30 nm and the lattice strain ⁇ is 0.001 to 0.085, and has a high capacity of 16 mAh or more. It can be said that this is an indispensable condition for achieving a high capacity retention rate of 91% or more.
  • a raw carbon composition having a hydrogen atom H to carbon atom C ratio, an H / C atomic ratio of 0.30 to 0.50, and a micro strength of 7 to 17% by mass is used. This can be said to be an indispensable condition for achieving a high capacity maintenance rate of 91% or more.
  • Comparative Example 18 was carbonized and graphitized without subjecting the raw carbon composition within the scope of the present invention to surface treatment. Since this graphite material was not subjected to surface treatment, graphitization was likely to proceed, and Lc (112) was as large as 25 nm. However, it was found that the lattice strain ⁇ was a very small value of 0.0002 and no lattice strain was introduced. It was found that the charge / discharge cycle of a battery using this graphite material as a negative electrode was a very low value of 63.3%.
  • the raw material charcoal composition within the scope of the present invention was pulverized and classified to an average particle diameter of 4 ⁇ m, and the raw material charcoal composition powder was treated for 90 minutes at a rotational speed of 4000 rpm using a surface treatment apparatus Nobilta.
  • the obtained circular powder was graphitized.
  • the lattice strain ⁇ was 0.0005, which was smaller than the claims of the present invention.
  • the capacity retention rate of the charge / discharge cycle of the lithium ion secondary battery using this graphite material as the negative electrode is 67.2%, which is not preferable because it is a low value.
  • Comparative Example 20 the raw coal composition powder obtained by pulverizing and classifying the raw coal composition within the scope of the present invention to an average particle size of 15 ⁇ m was treated with a surface treatment apparatus Nobilta for 120 minutes at a rotational speed of 1450 rpm.
  • the obtained circular powder was graphitized.
  • the surface treatment could not be sufficiently performed, and thus the lattice strain ⁇ was 0.0007, which was smaller than the claims of the present invention.
  • the capacity retention rate of the charge / discharge cycle of the lithium ion secondary battery using this graphite material as the negative electrode is 69.4%, which is not preferable because it is a low value.
  • a raw coal composition powder obtained by pulverizing and classifying a raw coal composition within the scope of the present invention to an average particle size of 15 ⁇ m was treated for 90 minutes at a peripheral speed of 45 m / s using a surface treatment apparatus COMPOSI.
  • the circular powder obtained was graphitized.
  • the lattice strain ⁇ was 0.0009, which was smaller than the claims of the present invention.
  • the capacity maintenance rate of the charge / discharge cycle of the lithium ion secondary battery using this graphite material as the negative electrode is 81.9%, which is not preferable because it is a low value.
  • Comparative Example 22 a raw material coal composition powder obtained by pulverizing and classifying the raw material coal composition within the scope of the present invention to an average particle size of 15 ⁇ m was treated with a surface treatment apparatus Nobilta for 9 minutes at a rotational speed of 5000 rpm.
  • the obtained circular powder was graphitized.
  • the surface treatment could not be performed sufficiently, so that the lattice strain ⁇ was 0.0009, which was smaller than the claims of the present invention.
  • the capacity retention rate of the charge / discharge cycle of the lithium ion secondary battery using this graphite material as the negative electrode is 79.9%, which is not preferable because it is a low value.
  • a raw carbon composition having a hydrogen atom H to carbon atom C ratio, an H / C atom ratio of 0.30 to 0.50, and a micro strength of 7 to 17% by mass, which has been coked by a delayed coking process. Crushing and classification to obtain a raw material coal composition powder, and applying a compressive stress and a shear stress to the raw material carbon composition powder so that the average circularity is 0.91 to 0.97.
  • a graphite material obtained by a manufacturing method comprising a step of obtaining a circular powder, a step of heating the circular powder to obtain a carbide, and a step of graphitizing the carbide,
  • the crystallite size Lc (112) calculated from the (112) diffraction line obtained by diffraction is 4 nm to 30 nm, and the lattice strain calculated from the (004) diffraction line and the (006) diffraction line is 0.001.
  • Lithium ion secondary battery using a negative electrode graphite material for negative electrode of lithium ion secondary battery as a negative electrode can secure a capacity of 16 mAh or more and has a capacity retention rate of 91% after 1000 cycles at 60 ° C. charge / discharge The above has been achieved.
  • the lithium secondary battery using the graphite material according to the invention of the present application can ensure a high degree of reliability as compared with a lithium secondary battery using a conventional graphite material. Specifically, it can be used for industrial purposes such as for hybrid vehicles, plug-in hybrid vehicles, electric vehicles, and power storage for grid infrastructure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 充放電サイクルの繰り返し、充電状態での保存、及びフローティング充電などに伴う容量劣化が抑制可能となる負極炭素材料を提供する。 重質油組成物をディレードコーキングプロセスによってコーキング処理した、水素原子Hと炭素原子Cの比率、H/C原子比が0.30~0.50、且つマイクロ強度が7~17質量%の原料炭組成物を粉砕・分級し、原料炭組成物の粉体を得る工程と、当該原料炭組成物の粉体を平均円形度が0.91~0.97となるように圧縮応力と剪断応力を付与し、円形粉体を得る工程と、当該円形粉体を加熱して炭化物を得る工程と、当該炭化物を黒鉛化する工程とを含んだ製造法により得られた黒鉛材料であって、X線広角回折によって得られた(112)回折線から算出される結晶子の大きさLc(112)が4nm~30nm、且つ(004)回折線および(006)回折線から算出される格子歪が0.001~0.085の範囲である、格子歪みを有するリチウムイオン二次電池負極用黒鉛材料。

Description

格子歪を有するリチウムイオン二次電池負極用黒鉛材料及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池の負極に用いる黒鉛材料及びその製造方法に関するものである。詳しくは、容量劣化を抑制した耐久性の高いリチウムイオン二次電池の負極に用いる黒鉛材料、それを用いた負極、及び該負極を備えるリチウムイオン二次電池に関する。
 リチウム二次電池は、従来の二次電池であるニッケルカドミウム電池、ニッケル水素電池、鉛電池に比較し、軽量であり且つ高い入出力特性を有することから、近年、電気自動車やハイブリッド車用の電源として期待されている。通常、この種の電池は、リチウムの可逆的なインターカレーションが可能なリチウムを含んだ正極と、炭素材料から成る負極とが、非水電解質を介して対向することにより構成されている。従って、この種の電池は放電状態で組み立てられ、充電しなければ放電可能状態とはならない。以下、正極としてコバルト酸リチウム(LiCoO)、負極として炭素材料、電解質としてリチウム塩を含んだ非水電解液が使用された場合を例に取り、その充放電反応について説明する。
 先ず、第一サイクル目の充電を行うと、正極に含まれたリチウムが電解液に放出され(下式1)、その正極電位は貴な方向へ移行する。負極では、正極から放出されたリチウムが炭素材料に吸蔵され(下式2)、その負極電位が卑な方向へ移行する。通常は、正・負極電位の差、即ち電池電圧が、所定の値に到達した時点で充電終止となる。この値は、充電終止電圧と呼称されている。そして放電させると、負極に吸蔵されたリチウムが放出され、負極電位は貴な方向へ移行し、そのリチウムは再び正極に吸蔵され、正極電位は卑な方向へ移行する。放電も、充電の場合と同様に、正・負極電位の差、即ち電池電圧が、所定の値に到達した時点で終止とされる。その値は、放電終止電圧と呼称されている。以上のような充電及び放電の全反応式は、下式3のように示される。その後に続く第二サイクル以降は、リチウムが正極と負極との間を行き来することで充放電反応(サイクル)が進行する。
Figure JPOXMLDOC01-appb-C000001

 
 リチウム二次電池の負極材料として使用される炭素材料は、一般に黒鉛系と非晶質系に大別される。黒鉛系炭素材料は、非晶質系炭素材料と比較し、単位体積あたりのエネルギー密度が高いという利点がある。従って、コンパクトでありながら大きい充電放電容量が要求される携帯電話やノート型パソコン用のリチウムイオン二次電池においては、負極材料として黒鉛系炭素材料が一般に用いられている。黒鉛は炭素原子の六角網面が規則正しく積層した構造を有しており、充放電の際には六角網面のエッジ部でリチウムイオンの挿入離脱反応が進行する。
 前述の通り、この種の電池は、近年、自動車用、産業用、電力供給インフラ用の蓄電装置としても盛んに検討されているが、これら用途に利用される場合には、携帯電話やノート型パソコン用として利用される場合より、極めて高度な信頼性が要求される。ここで信頼性とは寿命に関する特性であり、充放電サイクルが繰り返された場合でも、又は所定の電圧に充電された状態で保存された場合でも、あるいは一定の電圧で充電され続けた場合(フローティング充電された場合)でも、充放電容量や内部抵抗が変化し難い(劣化し難い)特性を指す。
 一方、従来の携帯電話やノート型パソコンに利用されてきたリチウムイオン二次電池の寿命特性は、負極材料にも大きく依存することが一般的に知られている。その理由の一つとして、負極の充放電効率が低いために、正極反応(式1)と負極反応(式2)の充放電効率を全く同じにすることが原理的に不可能であることが挙げられる。ここで充放電効率とは、充電に消費された電気容量に対する、放電が可能な電気容量の割合である。以下に、負極反応の充放電効率の方が低いことに起因して寿命特性が劣化する反応機構について詳述する。
 充電過程では、前述の通り、正極の中のリチウムが放出され(式1)、負極に吸蔵される(式2)が、その充電に消費される電気容量は、正・負極反応とも同一である。しかしながら、充放電効率は負極の方が低いので、その後に続く放電反応では、正極側に吸蔵可能なリチウム量、即ち充電する前の正極側に吸蔵されていたリチウム量よりも、負極から放出されるリチウム量の方が少ない状態で放電が終止する事態が生ずることとなる。その理由は、負極で充電に消費された電気容量のうちの一部が副反応及び競争反応に消費され、リチウムが吸蔵される反応、即ち放電可能な容量として吸蔵される反応に消費されなかったからである。
 このような充放電反応が生ずる結果、放電終止状態の正極電位は、充放電前の元の電位よりも貴な方向へ移行する一方、負極電位も充放電前の元の電位よりも貴な方向へ移行することとなる。この原因は、正極の充電過程で放出されたリチウムの全てが放電のときに吸蔵されない(戻らない)ため、充電過程で貴な方向へ移行した電位が、放電過程で卑な方向へ移行するときも、正・負極の充放電効率の差に相当する分だけ、元の正極電位に戻ることが不可能となり、元の正極電位より貴な電位で放電が終止することとなる。前述の通りリチウム二次電池の放電は、電池電圧(即ち、正極電位と負極電位との差)が所定の値(放電終止電圧)に達した時点で完了するため、放電終止時点での正極の電位が貴になれば、その分負極電位も同様に貴な方向へ移行することになるからである。
 以上の通り、この種の電池は充放電サイクルを繰り返すと、正・負極の容量の作動領域が変化することで、所定の電圧範囲内(放電終止電圧と充電終止電圧の範囲内)で得られる容量が低下する問題が生じていた。このような容量劣化の反応機構は学会等でも報告されている(例えば、非特許文献1及び非特許文献2)。また、いったん作動領域が変化した正・負極電位は不可逆であり、原理的に元に戻ることはあり得ず、容量回復の手段が無いことも、この問題を深刻化させている。
 なお、前述の充放電サイクルが繰り返されたときに生ずる容量劣化の反応機構は、充電状態で電池が保存されたときの容量劣化、又はフローティング充電されたときの容量劣化の各々の反応機構と基本的には同様である。先ず電池が充電状態で保存された場合であるが、充電状態で生ずる副反応・競争反応によって失われる容量、即ち自己放電量は、正極よりも負極の方が大きいため、正・負極の容量の作動領域は、保存前後で変化することにより、保存後の電池容量は劣化することが知られている(例えば、非特許文献3)。充電状態における正・負極の自己放電速度の差も、前述の正・負極の充放電効率の差と同様に、充電状態の負極で生ずる副反応・競争反応の速度が、同じく充電状態の正極で生ずる副反応・競争反応の速度よりも高いことに起因している。
 次にフローティング充電された場合であるが、充電初期には正・負極電位とも各々所定の電位で充電され続けることとなる。しかし、正極電位を、その電位に保持させておくために必要な電流値(正極側の漏れ電流)と、負極電位を、その電位に保持させておくために必要な電流値(負極側の漏れ電流)は異なるのが実情である。その原因は、前述の通り、充電状態での正極及び負極の自己放電速度が異なり、負極の自己放電速度の方が大きいからである。従ってフローティング充電時は、負極側の漏れ電流の方が、正極側の漏れ電流よりも大きくなることにより、負極電位は漏れ電流が小さくなる方向、即ち貴な方向へ移行し、正極電位は漏れ電流が大きくなる方向、即ち貴な方向へ移行する。このようにフローティング充電された場合も、正・負極の容量の作動領域は不可逆的に変化し、電池容量が劣化する問題が生じていた。
 高度に結晶を発達させた黒鉛負極を用いて作製されたリチウムイオン電池では、高い電気容量が得られる。しかしながら、このような黒鉛材料を用いた場合、黒鉛結晶へのリチウムの挿入と同時に、電解液が結晶子のエッジ部から平行度の高い六角網平面から成る黒鉛層間に共挿入し分解される現象が起こりやすいと言われている(Besenhardの溶媒共挿入モデル、非特許文献4)。電解液が黒鉛層間で分解されることに起因する副反応・競争反応により、負極の充放電効率が低下し容量劣化の原因となる。また、溶媒共挿入は黒鉛結晶が発達するほど起こりやすくなると言われている。そこで、溶媒共挿入による電解液の分解を抑制するために、粒子表面に結晶構造の乱れを導入する手法が報告されている。特許文献1によれば、原料炭組成物を粉砕・分級した後、メカノケミカル処理を施すことにより、粒子表面の結晶構造を乱すことができると記載されている。このような結晶構造の乱れは、最終工程となる黒鉛化後にも未組織炭素として残存するため、負極の初期充放電効率を向上させることは可能であると記載されている(特許文献1の段落[0024])。しかしながら、メカノケミカル処理により導入した結晶構造の乱れは、未組織炭素の結晶子がランダムに配向した、いわゆる等方的な状態であり、エッジ部が多く粒子表面に露出していると考えられる。
 一般的に、結晶子エッジには、多数のダングリングボンド、即ち価電子結合が飽和せず結合の相手無しに存在する局在電子の状態が多く存在する。充電過程での負極炭素材料の表面、即ち電解液と炭素材料が接触している界面では、リチウムが黒鉛結晶に挿入する本来の充電反応の他に、この局在電子が触媒的に作用し、電解液が還元分解されることに起因した副反応・競争反応が生じることによって、負極の充放電効率が低下すると考えられる。つまり、粒子表面に未組織炭素を導入することにより、溶媒共挿入による電解液の分解は抑制できたとしても、導入された未組織炭素の結晶子が等方的な状態であるためにエッジが表面に露出することにより、電解液の還元分解が増大し容量劣化が起こるという課題が残る。
特許第4171259号
第48回電池討論会要旨集1A11(2007年11月13日) 第76回電気化学会大会要旨集1P29(2009年3月26日) 第71回電気化学会大会要旨集2I07(2004年3月24日) J. O. Besenhard, M. Winter, J. Yang, W. Biberacher, J. Power Sources, 54, 228(1995)
 本発明は、以上のようなリチウム二次電池の容量劣化を改良するためのものであって、その目的は、充放電サイクルの繰り返し、充電状態での保存、及びフローティング充電などに伴う容量劣化が抑制可能となる負極炭素材料を開発することにより、高度な信頼性が要求される自動車用、産業用、電力貯蔵インフラ用のリチウム二次電池の負極材料を提供しようとするものである。
 本発明者らは、黒鉛結晶子に格子歪を導入し六角網面の平行度を低下させ、且つ粒子表面に結晶子エッジの露出が少ない黒鉛材料を提供することにより、負極の充放電効率が改善され、リチウム二次電池の信頼性を向上させることが可能となると考え、鋭意検討した結果、本発明に到達した。
 すなわち、前述した課題を解決するために、本発明に係る第一の態様は、重質油組成物をディレードコーキングプロセスによってコーキング処理した、水素原子Hと炭素原子Cの比率、H/C原子比が0.30~0.50、且つマイクロ強度が7~17質量%の原料炭組成物を粉砕・分級し、原料炭組成物の粉体を得る工程と、当該原料炭組成物の粉体を平均円形度が0.91~0.97となるように圧縮応力と剪断応力を付与し、円形粉体を得る工程と、当該円形粉体を加熱して炭化物を得る工程と、当該炭化物を黒鉛化する工程と、を含んだ製造法により得られた黒鉛材料であって、X線広角回折によって得られた(112)回折線から算出される結晶子の大きさLc(112)が4nm~30nm、且つ(004)回折線および(006)回折線から算出される格子歪εが0.001~0.085の範囲である、格子歪みを有するリチウムイオン二次電池負極用黒鉛材料である。
 上記の課題を解決するために、本発明に係る第二の態様は、第一の態様に記載されたリチウムイオン二次電池負極用黒鉛材料を負極材料として使用したリチウムイオン二次電池である。
 本発明によれば、適度な格子歪を有した黒鉛材料をリチウムイオン二次電池の負極に用いて、寿命特性の高いリチウムイオン二次電池を提供できる。
メカノフュージョン装置の一例を示す図である。 本願実施例の電池評価試験で使用したセルの模式的断面図である。
 六角網面の平行度が高い黒鉛の層間にLiが挿入したとき、電解液が同時に黒鉛層間に共挿入し分解される。このような溶媒共挿入モデルによって説明される電解液の分解を抑制するためには、粒子内部に格子歪を導入し溶媒共挿入を抑制する処置が必要である。ここで言う格子歪とは、炭化または黒鉛化の過程において、結晶子の成長が粒子形状に制限されることにより、もしくは隣接する結晶子間の成長などで相互に阻害しあうことにより生じる六角網面の平行度が低い領域のことである。このような格子歪の領域では、六角網面の平行度が低いために電解液が黒鉛層間に溶媒共挿入しにくい。
 まず、本発明に係る第一の態様について説明する。
 本発明者らは、重質油組成物をディレードコーキングプロセスによってコーキング処理した、水素原子Hと炭素原子Cの比率、H/C原子比が0.30~0.50、且つマイクロ強度が7~17質量%の原料炭組成物を粉砕・分級した後、圧縮応力と剪断応力を付与し平均円形度が0.91~0.97の範囲となるように表面処理を施すことによって、黒鉛化後に所定の範囲の格子歪を発生させている。黒鉛化前に圧縮応力と剪断応力を付与する工程と、黒鉛化後の格子歪の発生との関係を、本発明者らは次のように考えている。
 重質油組成物をディレードコーキングプロセスによってコーキング処理した、水素原子Hと炭素原子Cの比率、H/C原子比が0.30~0.50、且つマイクロ強度が7~17質量%の原料炭組成物を粉砕・分級した後、圧縮応力と剪断応力を付与し平均円形度が0.91~0.97の範囲となるように表面処理を施して得られる円形粉体を黒鉛化することは、黒鉛化途中に起こる結晶子の成長が、平均円形度の高い円形粉体中、すなわち表面の曲率が高い粒子中、言わば鋳型の中で起こることに等しく、結晶子は粒子形状によりその成長方向を制限されながら成長することになる。すなわち、結晶子の成長は、粒子の形状に依存して異なる。
 たとえば、扁平状の粒子では、粒子の長軸方向に沿って、結晶子が広く自由に成長できるのに対し、表面の曲率が高い粒子においては、結晶子の成長方向に対して、粒子形状に由来する空間的な制限が付与されるために、結晶子が自由に成長することができない。空間的な制限とは、結晶子の成長が、粒子形状を維持しようとするエネルギーにより阻害されることであり、円形粉体の平均円形度、すなわち表面の曲率が高いほど結晶成長に対する空間的な制限は大きい。ここでは、粒子形状が結晶子の成長に与える効果を総括して形状効果と表現する。
 ここで、形状効果が、黒鉛材料への格子歪導入に関係する理由を説明する。
 平均円形度が0.91~0.97の範囲である円形粉体の表面部分では、結晶子が成長しようとするエネルギーと、粒子形状を維持しようとするエネルギーとの拮抗状態の中で黒鉛化が進行する。このことは、粒子形状を維持しようとするエネルギーにより結晶子の成長が部分的に阻害されることでもあり、その阻害された部分には六角網面の平行度の低い領域、すなわち格子歪が導入される。このような状態下では、結晶子中に局所的に格子歪が蓄えられながら黒鉛化が進行していく。
 一般的に、粒子表面の結晶子の方が、粒子内部の結晶子よりも速く黒鉛化が進行する。粒子表面の結晶子は粒子形状に沿って配向しているため、これら粒子表面に配列した結晶子は、より粒子内部の結晶子の成長に対して空間的な制限を付与する効果を有する。換言すれば、粒子内部の結晶子に対しても、結晶子が成長しようとするエネルギーと、より表面に近い位置に存在する結晶子の配向を維持しようとするエネルギーとの拮抗状態の中で黒鉛化が進行することにより、黒鉛に格子歪が導入される。すなわち、粒子内部であっても粒子の形状効果は波及的且つ十分に付与されるものである。
 円形粉体の平均円形度が0.91より小さい場合は、結晶子が粒子形状に阻害されることなく自由に成長することができ、形状効果を付与することができないため、黒鉛に格子歪が導入されることはない。一方、原料炭組成物に圧縮応力と剪断応力を付与する表面処理によって、円形粉体の平均円形度が0.97を超える値にすることは不可能であった。
 要するに、粒子に歪を導入するためには、結晶子が成長しようとするエネルギーと、粒子形状を維持しようとするエネルギーとの拮抗状態において黒鉛化を進行させる製造法を用いることが好ましく、そのような状態を形成するための製造法として、原料炭組成物を粉砕・分級後、圧縮応力と剪断応力を付与し、平均円形度が0.91~0.97の範囲となるように表面処理を施して得られる円形粉体を黒鉛化することが好ましい。
 本発明にかかる第一の態様において、黒鉛材料の結晶構造は、その前駆体原料となる原料炭組成物の結晶組織(物性)に強く依存される。本出願に係る第一の態様に記載されたような物性、即ち、水素原子Hと炭素原子Cの比率、H/C原子比が0.30~0.50、且つマイクロ強度が7~17質量%を有した原料炭組成物を粉砕・分級した後、圧縮応力と剪断応力を付与し、平均円形度0.91~0.97の範囲となるように表面処理を施して得られる円形粉体を黒鉛化して得られた黒鉛材料の特徴は、結晶子が整然と配列しながら局所的に六角網面の平行度が低い領域を有しており、且つ粒子表面におけるエッジ部の露出が少ないことにある。
 このような特徴を有する黒鉛材料が負極材料として使用されたリチウムイオン二次電池では、溶媒共挿入による電解液の分解および粒子表面のエッジ部における電解液の分解が抑制されるため、負極の漏れ電流が極めて小さく、高い寿命特性を実現することが可能となる。
 ここで原料炭組成物のH/Cは、全水素分(TH(質量%))を水素の原子量を除した値と、全炭素分(TC(質量%))を炭素の原子量を除した値の比率である。
 全水素の測定は、試料を酸素気流中750℃で完全燃焼させ、燃焼ガスより生成した水分量を電量滴定法(カール・フィッシャー法)で求められる。電量滴定式のカール・フィッシャー法では、予め滴定セルにヨウ化物イオン、二酸化硫黄、塩基(RN)及びアルコールを主成分とする電解液を入れておき、滴定セルに試料を入れることで試料中の水分は、下式(4)の通り反応する。なお、試料は、例えばコーキング処理後、乾燥雰囲気下で冷却した後に測定される。
  HO+I+SO+CHOH+3RN
     → 2RN・HI+RN・HSOCH ・・(式4)
 この反応に必要なヨウ素は、下式(5)の通りヨウ化物イオンを電気化学的に反応(2電子反応)させることにより得られる。
  2I - 2e → I ・・(式5)
 水1モルとヨウ素1モルとが反応することから、水1mgを滴定するのに必要な電気量が、下式(6)の通りファラデーの法則により求められる。
  (2×96478)/(18.0153×103)=10.71クーロン ・・(式6)
 ここで、定数96478はファラデー常数、18.0153は水の分子量である。
 ヨウ素の発生に要した電気量を測定することで、水分量が求められる。さらに得られた水分量から、水素量に換算し、これを測定に供した試料質量で除することにより、全水素分(TH(質量%))が算出される。
 全炭素の測定は、試料を1150℃の酸素気流中で燃焼させ、二酸化炭素(一部一酸化炭素)に変換され過剰の酸素気流に搬送されてCO+CO赤外線検出器により、全炭素分(TC(質量%))が算出される。
 またマイクロ強度は、鋼製シリンダー(内径25.4mm、長さ304.8mm)に20~30メッシュの試料2gと直径5/16inch(7.9mm)の鋼球12個を入れ、鉛直面を管と直角方向に25rpmで800回転させたのち(すなわち、シリンダーを立てた状態から上下が入れ替わるように、回転軸を水平にして、あたかもプロペラが回転するように回転させる)、48メッシュでふるい分け、試料に対するふるい上の質量をパーセントで示した値である。
 原料炭組成物のH/C原子比が0.30未満の場合は、黒鉛化した場合に結晶子が著しく成長し易い。そのため、このような原料炭組成物に圧縮応力と剪断応力を付与し、平均円形度が0.91~0.97の範囲となるように表面処理を施して得られる円形粉体を黒鉛化した場合であっても、粒子形状を維持しようとするエネルギーよりも結晶子が成長しようとするエネルギーが極端に大きいため、円形粉体の平均円形度を低下させながら黒鉛化が進行する。このような状態で黒鉛化が進行した場合、粒子に適度な格子歪を有した黒鉛材料を得ることは不可能であるため好ましくない。
 原料炭組成物中のH/C原子比が0.50を超える場合、その炭素骨格の構造形成が不十分であり、黒鉛化した場合においても、結晶子の成長は極端に小さい。このような黒鉛材料を負極として使用したリチウムイオン二次電池では容量が小さくなるため好ましくない。
 以上の通り原料炭組成物のH/Cは0.30~0.50に限定される。この範囲内の物性を有する原料炭組成物に圧縮応力と剪断応力を付与し、平均円形度0.91~0.97の範囲となるように表面処理を施して得られた円形粉体を黒鉛化した場合、結晶子が適度に発達し、且つ適度な格子歪を有する黒鉛材料が得られる。このような特徴を有する黒鉛材料が負極として使用されたリチウムイオン二次電池では、溶媒共挿入による電解液の分解および粒子表面のエッジ部における電解液の分解が抑制されるため、負極の漏れ電流が極めて小さく、高い寿命特性を実現することが可能となる。
 一方、本出願に係る第一の発明には、原料炭組成物のマイクロ強度が7~17質量%であることも規定されている。このマイクロ強度は、隣接する結晶子間の結合強さを示す指標である。一般に、隣接する結晶子の間には、六角網平面の構成単位となるベンゼン環以外の構造を有した未組織炭素が存在し、その隣接する結晶子間を結合させる機能を有している。この未組織炭素は、原料炭組成物が炭素化及び黒鉛化された後も残存し、同様な役割を演じている。ここで未組織炭素とは、炭素六角網平面に組み込まれない炭素を指し、その特徴は、隣接する炭素結晶子の成長や選択的な配向を妨害しながら、処理温度の上昇と共に徐々に炭素六角網平面中に取り込まれる炭素原子のことである。
 原料炭組成物のマイクロ強度が7質量%未満である場合には、隣接する結晶子間の結合強さが極めて弱いことを意味する。このような原料炭組成物に圧縮応力と剪断応力を付与し、平均円形度が0.91~0.97の範囲となるように表面処理を施すことにより得られる円形粉体を黒鉛化した場合、結晶子間の結合が弱いため、原料炭組成物の粉体の粒子形状を維持できなくなり、粒子表面の曲率を低減させながら黒鉛化が進行する。このような状態で黒鉛化が進行した場合、適度な格子歪を有した黒鉛材料を得ることは不可能であるため好ましくない。
 原料炭組成物のマイクロ強度が17質量%を超える場合には、隣接する結晶子間の結合強さが極端に大きくなる。その理由は、隣接した結晶子間に存在する未組織炭素が、その隣接する結晶子と強固な三次元的化学結合を構築するからである。このような原料炭組成物に圧縮応力と剪断応力を付与し、平均円形度を0.91~0.97の範囲になるように表面処理して得られた円形粉体を黒鉛化した場合に、未組織炭素が、結晶子の選択的な配向を妨害するエネルギーが大きいために、粒子の形状効果を十分に付与することができない。そのため、粒子表面の曲率を低減させながら黒鉛化が進行する。このような状態で黒鉛化が進行した場合、適度な格子歪を有した黒鉛材料を得ることは不可能であるため好ましくない。
 以上の通り原料炭組成物のマイクロ強度は7~17質量%に限定される。この範囲内の物性を有する原料炭組成物に圧縮応力と剪断応力を付与し、平均円形度が0.91~0.97の範囲となるように表面処理を施して得られた円形粉体を黒鉛化した場合、粒子表面に露出するエッジ部が極めて少なく、且つ適度な格子歪を有する黒鉛材料が得られる。このような特徴を有する黒鉛材料が負極として使用されたリチウムイオン二次電池では、溶媒共挿入による電解液の分解および粒子表面のエッジ部における電解液の分解が抑制されるため、負極の漏れ電流が極めて小さく、高い寿命特性を実現することが可能となる。
 このように、H/C原子比が0.30~0.50、且つマイクロ強度が7~17質量%であることを特徴とする原料炭組成物に圧縮応力と剪断応力を付与し、平均円形度0.91~0.97の範囲となるように表面処理を施して得られた円形粉体を黒鉛化したときに限り、結晶子が適度に発達し、且つ適度な格子歪を有し、且つ粒子表面に露出するエッジ部が極めて少ない黒鉛材料が得られる。このような黒鉛材料を負極として用いたリチウムイオン二次電池では、負極における溶媒共挿入による電解液の分解および結晶子エッジ部における電解液分解が抑制され、極めて高い寿命特性を得ることが可能となる。
 本発明にかかる第一の発明において、原料炭組成物に、圧縮応力と剪断応力を付与し、平均円形度が0.91~0.97の範囲となる円形粉体を得る理由は、0.91未満の円形度では、黒鉛化工程において、粒子形状を維持しようとするエネルギーが、結晶子が成長しようとするエネルギーに比べて極端に小さく、両者のエネルギーが拮抗する状態を形成できないためである。このような状態で黒鉛化を進行させても、格子歪を導入することは不可能であるため好ましくない。
 一方、原料炭組成物に、圧縮応力と剪断応力を付与するという本発明の製造法において、平均円形度が0.97より高い円形粉体を得ることはできなかった。理由は、平均円形度が0.97より高い円形粉体を得るために、原料炭組成物の粉体に非常に強い圧縮応力と剪断応力を付与した場合、粒子表面に大きな亀裂が導入され粒子が崩壊するためである。粒子が崩壊した場合、表面処理後に得られる粉体は、粒径が極端に小さく、大量の微粉を含んだ状態となる。このような粉体を炭化・黒鉛化した場合、比表面積が極端に大きな黒鉛材料が得られる。このような黒鉛材料を負極として用いたリチウムイオン二次電池では、黒鉛と電解液の接触面積が極端に大きく、電解液の分解が増大し、負極の漏れ電流が増大するため好ましくない。
 本発明にかかる第一の発明において、黒鉛材料が、X線広角回折によって得られた(112)回折線から算出されるLc(112)が4nm~30nm、且つ(004)回折線および(006)回折線から算出される格子歪が0.001~0.085の範囲であると規定された理由について説明する。
 まず、Lc(112)が4nm未満の黒鉛材料は結晶組織の発達が不十分であり、このような黒鉛材料を用いたリチウムイオン二次電池では容量が小さくなるため好ましくない。また、本発明における原料炭組成物を高温で長時間黒鉛化した場合においても、Lc(112)が30nmを超える大きさになることはなかったため、上限を30nmとした。
 Lc(112)は大きいほど、黒鉛化度は高く、六角網面の平行度が高くなるために、格子歪は小さくなる傾向にある。従来の製造法で得られた黒鉛材料は、Lc(112)が4nm~30nmの範囲である場合、0.001以上の格子歪を導入することはできなかった。このような黒鉛材料では、六角網面の平行度が高いために、電解液が黒鉛層間に共挿入し分解され易いため好ましくない。
 一方、原料炭組成物に圧縮応力と剪断応力を付与するという本発明の製造法は、Lc(112)が4nm~30nmの範囲である黒鉛材料においても、0.001以上の格子歪の導入を可能にする。このような黒鉛材料は、結晶子が適度に発達し、且つ適度な歪を持った黒鉛材料であり、これらの黒鉛材料が負極として使用されたリチウムイオン二次電池では、溶媒共挿入による電解液の分解が抑制されるため、負極の漏れ電流が極めて小さく、高い寿命特性を実現することが可能となる。
 また、本発明の製造法では、Lc(112)が4nm~30nmの範囲である黒鉛材料に対して、0.085を超える格子歪を導入することが不可能であったため、上限を0.085とした。
 本発明で用いる原料炭組成物は、重質油組成物をディレードコーキングプロセスによってコーキング処理することで得ることができる。
 重質油組成物の成分としては、流動接触分解装置のボトム油(流動接触分解残油、FCC DO)、流動接触分解残油から抽出した芳香族分、重質油に高度な水添脱硫処理を施した水素化脱硫油、減圧残油(VR)、脱硫脱瀝油、石炭液化油、石炭の溶剤抽出油、常圧残浚油、シェルオイル、タールサンドビチューメン、ナフサタールピッチ、エチレンボトム油、コールタールピッチ及びこれらを水素化精製した重質油等が挙げられる。これらの重質油を二種類以上ブレンドして重質油組成物を調製する場合、重質油組成物をディレードコーキングプロセスによってコーキング処理した後に得られる原料炭組成物の物性として、H/C原子比が0.30~0.50、且つマイクロ強度が7~17質量%となるように、使用する原料油の性状に応じて配合比率を適宜調整すればよい。なお、原料油の性状は、原油の種類、原油から原料油が得られるまでの処理条件等によって変化する。
 流動接触分解装置のボトム油は、原料油として減圧軽油を使用し、触媒を使用して分解反応を選択的に行わせ、高オクタン価のFCCガソリンを得る流動床式の流動接触分解する装置のボトム油である。原料油として使用される減圧軽油は、好ましくは、常圧蒸留残渣油を直接脱硫して得られる脱硫減圧軽油(好ましくは、硫黄分500質量ppm以下、15℃における密度0.8/cm以上)である。
 流動接触分解残油から抽出した芳香族分は、ジメチルホルムアミド等を用いて選択抽出し、芳香族分と飽和分に分離させたときの芳香族分である。
 重質油に高度な水添脱硫処理を施した水素化脱硫油は、例えば、硫黄分1質量%以上の重質油を水素分圧10MPa以上で水素化脱硫処理して得られる硫黄分1.0質量%以下、窒素分0.5質量%以下、芳香族炭素分率(fa)0.1以上の重質油である。水素化脱硫油は、好ましくは、常圧蒸留残油を触媒存在下、水素化分解率が25%以下となるように水素化脱硫して得られる水素化脱硫油である。
 減圧残油(VR)は、原油を常圧蒸留装置にかけて、ガス・軽質油・常圧残油を得た後、この常圧残浚油を、例えば、10~30Torrの減圧下、加熱炉出口温度320~360℃の範囲で変化させて得られる減圧蒸留装置のボトム油である。
 脱硫脱瀝油は、例えば、減圧蒸留残渣油等の油を、プロパン、ブタン、ペンタン、又はこれらの混合物等を溶剤として使用する溶剤脱瀝装置で処理し、そのアスファルテン分を除去し、得られた脱瀝油(DAO)を、間接脱硫装置(Isomax)等を用いて、好ましくは硫黄分0.05~0.40質量%の範囲までに脱硫したものである。
 常圧残浚油は、原油を常圧蒸留装置にかけて、例えば、常圧下、加熱して、含まれる留分の沸点により、ガス・LPGやガソリン留分、灯油留分、軽質油留分、常圧残浚油に分けられる際に得られる留分の一つで、最も沸点高い留分である。加熱温度は、原油の産地等により変動し、これらの留分に分留できるものであれば限定されないが、例えば原油を320℃に加熱する。
 特に好ましい重質油組成物の例としては、(1)芳香族分率(芳香族指数)faが0.3~0.65であること、(2)ノルマルパラフィン含有率が5~20質量%であること、(3)脱硫処理された脱瀝油が7~15質量%の範囲で含有されていること、の3つの条件が満たされた重質油組成物を挙げることができる。
 重質油は高温処理されることによって、熱分解及び重縮合反応が起こり、メソフェーズと呼ばれる大きな液晶が中間生成物として生成する過程を経て生コークスが製造される。このとき、(1)良好なバルクメソフェーズを生成する重質油成分と、(2)このバルクメソフェーズが重縮合して炭化及び固化する際に、メソフェーズを構成する六角網平面積層体の大きさを小さく制限する機能を有したガスを生じ得る重質油成分と、更に(3)その切断された六角網平面積層体どうしを結合させる成分が全て含有された原料油組成物を用いることが特に好ましい。(1)良好なバルクメソフェーズを生成する重質油成分が、芳香族指数faとして0.3~0.65を与える成分であり、(2)ガスを生じ得る重質油成分が、ノルマルパラフィン含有率の5~20質量%に相当する成分であり、(3)六角網平面積層体どうしを結合させる成分が7~15質量%の範囲で含有された脱硫脱瀝油である。
 このような重質油組成物が本発明の原料炭組成物の原料として好ましく使用される理由は、良好なバルクメソフェーズを生成する重質油成分により形成された六角網平面が、相対的に小さなサイズに制限されることで、平均円形度の向上を容易にすることに加え、脱硫脱瀝油が、隣接する六角網平面積層体を適度に結合させるからである。平均円形度を0.91~0.97の範囲とするためには、結晶子を小さなサイズにすることで、圧縮応力と剪断応力に対する粒子の内部応力を緩和せしめ、粒子が変形しやすい状態にする必要がある。
 芳香族炭素分率(芳香族指数)(fa)は、Knight法により求めることができる。Knight法では、炭素の分布を13C-NMR法による芳香族炭素のスペクトルとして3つの成分(A,A,A)に分割する。ここで、Aは芳香族環内部炭素数、置換されている芳香族炭素と置換されていない芳香族炭素の半分(13C-NMRの約40~60ppmのピークに相当)、Aは置換していない残りの半分の芳香族炭素(13C-NMRの約60~80ppmのピークに相当)Aは脂肪族炭素数(13C-NMRの約130~190ppmのピークに相当)であり、これらから、faは
  fa=(A+A)/(A+A+A
により求められる。13C-NMR法が、ピッチ類の化学構造パラメータの最も基本的な量であるfaを定量的に求められる最良の方法であることは、文献(「ピッチのキャラクタリゼーション II. 化学構造」横野、真田、(炭素、1981(No.105)、p73~81)に示されている。
 また原料油組成物のノルマルパラフィンの含有率は、キャピラリーカラムが装着されたガスクロマトグラフによって測定した値を意味する。具体的には、ノルマルパラフィンの標準物質によって検定した後、上記溶出クロマトグラフィー法によって分離された非芳香族成分の試料をキャピラリーカラムに通して測定する。この測定値から原料油組成物の全質量を基準とした含有率が算出可能である。
 重質油組成物の芳香族指数faが0.3未満では、重質油組成物からのコークスの収率が極端に低くなるほか、良好なバルクメソフェーズを形成することが出来ず、炭素化・黒鉛化しても結晶組織が発達し難いため好ましくない。また0.65を超えると、生コークスの製造過程においてマトリックス中に急激にメソフェーズが多数発生し、主としてメソフェーズのシングル成長よりも、メソフェーズどうしの急激な合体が繰り返される。このためノルマルパラフィン含有成分によるガスの発生速度よりも、メソフェーズどうしの合体速度の方が速くなるため、バルクメソフェーズの六角網平面を小さなサイズに制限することが不可能となり好ましくない。
 このように重質油組成物の芳香族指数faは0.3~0.6の範囲が特に好ましい。faは重質油組成物の密度Dと粘度Vから算出可能であるが、密度Dは0.91~1.02g/cm、粘度Vは10~220mm/sec.の範囲の重質油組成物で、faが0.3~0.6となるようなものが特に好ましい。
 一方、重質油組成物の中に適度に含まれるノルマルパラフィン成分は、前述の通り、コーキング処理時にガスを発生することで、バルクメソフェーズの大きさを、小さなサイズに制限する重要な役割を演じている。また、このガス発生は、小さなサイズに制限された隣接するメソフェーズどうしを一軸配向させ、系全体を選択的に配向させる機能も有している。ノルマルパラフィン含有成分の含有率が5質量%未満になると、メソフェーズが必要以上に成長し、巨大な炭素六角網平面が形成されてしまうため好ましくない。また20質量%を超えると、ノルマルパラフィンからのガス発生が過多となり、バルクメソフェーズの配向を逆に乱す方向に働く傾向があるため、炭素化・黒鉛化しても結晶組織が発達し難いため好ましくない。以上の通り、ノルマルパラフィン含有率は5~20質量%の範囲であることが特に好ましい。
 脱硫脱瀝油は、前述の通り、隣接する六角網平面積層体を適度に結合させる役割を演じているが、重質油組成物の中の含有率として、5~20質量%の範囲であることが特に好ましい。5質量%未満の場合、又は20質量%を超える場合には、コーキング後に得られる原料炭組成物のマイクロ強度が7質量%未満となる場合、又は17質量%を超える場合があるため好ましくない。
 このような特徴を有した重質油組成物は、コークス化され、本発明の原料炭組成物が形成される。所定の条件を満たす重質油組成物をコークス化する方法としては、ディレードコーキング法が好ましい。より具体的には、コーキング圧力が制御された条件の下、ディレードコーカーによって重質油組成物を熱処理して生コークスを得る方法が好ましい。このときディレードコーカーの好ましい運転条件としては、圧力が0.1~0.8MPa、温度が400~600℃である。
 コーカーの運転圧力に好ましい範囲が設定されている理由は、ノルマルパラフィン含有成分より発生するガスの系外への放出速度を、圧力で制限することができるからである。前述の通り、メソフェーズを構成する炭素六角網平面のサイズは、発生するガスで制御するため、発生ガスの系内への滞留時間は、前記六角網平面の大きさを決定するための重要な制御パラメータとなる。また、コーカーの運転温度に好ましい範囲が設定されている理由は、本発明の効果を得るために調整された重質油から、メソフェーズを成長させるために必要な温度だからである。
 このようにして得られた原料炭組成物を機械式粉砕機(例えば、スーパーローターミル/日清エンジニアリング製)等で粉砕・分級して原料炭組成物の粉体を得た。精密空気分級機(例えば、ターボクラシファイヤー/日清エンジニアリング製)等で分級することにより、平均粒径5~30μmの原料炭組成物の粉体を得た。平均粒径は、レーザー回折式粒度分布計による測定に基づく。平均粒径を5~30μmとした理由は、5μmより小さな粒径では、原料炭組成物の粉体に十分な圧縮応力と剪断応力を付与することができないため、平均円形度が0.91~0.97の範囲となる円形粉体を得ることが不可能であるからである。また30μm以下とした理由は、リチウムイオン二次電池の負極炭素材料として、一般的且つ好適に使用されている粒径だからである。
 原料炭組成物を粉砕・分級した後、圧縮応力と剪断応力を付与し、円形粉体を得た。円形粉体の平均円形度を向上させる処理は、見かけ上の粒径はほぼ変化がない程度で行うことがよい。表面がでこぼこするポテト状になるものも含む。具体的には、円形粉体の平均円形度が好ましくは0.91~0.97となるように表面処理を施す。
 平均円形度は、円形度測定器(例えば、シスメックス社製フロー式粒子像分析装置FPIA-3000)を用いて測定できる。平均円形度は以下の式から算出し、円形粉体の円形度の平均値を算出した。
  平均円形度=L/L
 (式中、Lは、粒子像と同じ投影面積を持つ円の周囲長を表し、Lは粒子投影像の周囲長を表す。)
 原料炭組成物に圧縮応力と剪断応力を付与する際には、圧縮応力と剪断応力のほか、衝突、摩擦、ずり応力等も発生する。これらの応力が与える機械的エネルギーは、一般的な攪拌により得られるエネルギーより大きく、それらのエネルギーが、粒子表面に与えられることで、粒子形状の球形化や、粒子の複合化といったメカノケミカル現象と称される効果が発現する。原料炭組成物にメカノケミカル現象を起こさせるための機械的エネルギーを与えるには、剪断、圧縮、衝突等の応力を同時にかけることができる装置を用いればよく、特に装置の構造及び原理に限定されるものではない。たとえば、回転式のボールミルなどのボール型混練機、エッジランナー等のホイール型混練機、ハイブリダイゼーションシステム(奈良機械製作所製)、メカノフージョン(ホソカワミクロン社製)、ノビルタ(ホソカワミクロン社製)、COMPOSI(日本コークス工業社製)などがある。
 圧縮応力と剪断応力を付与する工程における製造条件は、使用する装置によっても異なるが、例えば、図1のように、ブレードの羽根3とハウジング5とを相対的に回転、好ましくは互いに逆方向(回転方向R1、R2)に回転させ、それらの間隙7で、粉体Pに圧密、圧縮応力を加える構造のメカノフュージョン装置1を用いることができる。
 ノビルタ(ホソカワミクロン社製)を用いる場合には、ブレードの回転数が1500~5000rpm、処理時間を10~180分とするのが好ましい。回転数が1500rpmより小さいとき、もしくは処理時間が10分未満では原料炭組成物の粉体に十分な圧縮応力と剪断応力を付与することができない。一方、180分より長い処理を行うと、原料炭組成物の粉体に過多な圧縮応力と剪断応力が付与され、粒子形状が著しく変形するため好ましくない。
 COMPOSI(日本コークス工業社製)を用いる場合には、周速度50~80m/sで処理時間を10~180分とするのが好ましい。周速度が50m/sより小さいとき、もしくは処理時間が10分未満では原料炭組成物の粉体に十分な圧縮応力と剪断応力を付与することができない。一方、180分より長い処理を行うと、原料炭組成物の粉体に過多な圧縮応力と剪断応力が付与され、粒子形状が著しく変形するため好ましくない。
 メカノフュージョン(ホソカワミクロン社製)を用いる場合には、ブレードの回転数が500~3000rpm、処理時間を10~300分とするのが好ましい。回転数が500rpmより小さいとき、もしくは処理時間が10分未満では原料炭組成物の粉体に十分な圧縮応力と剪断応力を付与することができない。一方、300分より長い処理を行うと、原料炭組成物の粉体に過多な圧縮応力と剪断応力が付与され、粒子形状が著しく変形するため好ましくない。
 ハイブリダイゼーションシステム(奈良機械製作所製)を用いる場合には、周速度40~60m/sで処理時間を5~180分とするのが好ましい。
 また、本出願における原料炭組成物を使用する場合、圧縮応力と剪断応力を付与する表面処理時の制御温度として、好ましくは60~250℃で行うことにより、より平均円形度の高い黒鉛前駆体が得られる。特に、表面処理時の制御温度が120~200℃での運転が望ましい。
 原料炭組成物の粒子に圧縮応力と剪断応力をかける表面処理は、粒子の角を削るが、削られた部分が瞬時に粒子に付着して粒子を丸くする処理であり、見かけ上の粒径はほぼ変化がない程度で行うことがよい。したがって、微粉を発生させ、粒径を小さくする粉砕ではない。原料炭組成物は、揮発分を含んでいるため粘着性を有するが、この粘着性は、削られた部分が瞬時に粒子に付着することを容易にするため好ましく作用する。
 黒鉛化処理の方法は、特に限定されないが、通常は、窒素、アルゴン又はヘリウム等の不活性ガス雰囲気下で最高到達温度900~1500℃、最高到達温度の保持時間0~10時間で炭化(予備焼成)され、次いで同様な不活性ガス雰囲気下、最高到達温度2500~3200℃、最高到達温度保持時間0~100時間の加熱処理する方法を挙げることができる。
 一般に、2800℃以上の黒鉛化温度で加熱処理された黒鉛材料は、結晶化が進行しており、負極として使用したリチウムイオン二次電池の容量は大きいが、溶媒共挿入による電解液の分解が生じ易いため、寿命特性が劣化する。高い容量と高い寿命特性を両立できる本発明の存在意義は大きい。
 このようにして、X線広角回折によって得られた(112)回折線から算出される結晶子の大きさLc(112)が4nm~30nm、且つ(004)回折線および(006)回折線から算出される格子歪が0.001~0.085の範囲である黒鉛材料が得られる。
 X線広角回折によって得られた(004)回折線および(006)回折線から格子歪を求める手法について述べる。
 一般に、結晶サイズLは、X線回折の半価幅βを用いて、
     β=λ/L・cosθ   (式7)
で求められる。ここで、λはX線の波長、θはブラッグ角である。
式7を変形することにより、
     1/L=β・cosθ/λ   (式8)
が得られる。
 ここで、βは結晶子の真の大きさに基づくβ(0)と格子の歪による幅Δθの和であることが論じられており(炭素、1968年 第52巻第9~12頁)、
     β=β(0)+Δθ   (式9)
と表される。
 β(0)は、結晶子の真の大きさL(0)を用いて、
     β(0)=λ/L(0)・cosθ (式10)
と表される。
 Δθは、格子面間隔dの不均一性に起因するとされ、格子面間隔の変動幅をΔdとして、
     Δθ=(Δd/d)・tanθ=ε・tanθ (式11)
     (式中、ε=Δd/d)
で表わされる。このときのεを格子歪という。
 式9、式10、式11から、βは以下のように表される。
  β=λ/L(0)・cosθ+ε・tanθ   (式12)
 式12を式8のβに代入することにより、以下の式が得られる。
  1/L=1/L(0)+n(ε/2d)  (n=1,2,3・・)  (式13)
 従って、1/L対回折次数nのプロットを取ると直線となり、その直線の傾きが格子歪εに値する。このようにして格子歪を求める方法は、文献(炭素、No.52、P9-12)に示されている。
 具体的には、X線解析において、Lc(004)、Lc(006)を求め、それぞれの逆数(1/Lc)を算出する。その値を回折次数に対してプロットした直線の勾配から格子歪εを算出した。回折次数は、(004)ではn=2、(006)ではn=3である。
 黒鉛粉末の結晶子の大きさLc(112)の算出について述べる。
 得られた黒鉛粉末に、内部標準としてSi標準試料を10質量%混合し、ガラス製回転試料ホルダー(25mmφ×0.2mmt)に詰め、日本学術振興会117委員会が定めた方法(炭素2006,No.221,P52-60)に基づき、X線広角回折法で測定を行い、黒鉛粉末の結晶子の大きさLc(112)を算出した。X線回折装置は、Bruker-AXS社製 D8 ADVANCE(封入管型)、X線源はCuKα線(KβフィルターNiを使用)、X線管球への印可電圧及び電流は40kV及び40mAとした。
 得られた回折図形についても、日本学術振興会117委員会が定めた方法(炭素2006,No.221,P52-60)に準拠した方法で解析を行った。具体的には、測定データにスムージング処理、バックグラウンド除去の後、吸収補正、偏光補正、Lorentz補正を施し、Si標準試料の(422)回折線のピーク位置、及び値幅を用いて、黒鉛粉末の(112)回折線に対して補正を行い、結晶子サイズを算出した。なお、結晶子サイズは、補正ピークの半値幅から以下のScherrerの式を用いて計算した。測定・解析は3回ずつ実施し、その平均値をLc(112)とした。
  L=K×λ/(β×cosθ) ・・Scherrerの式
 ここで、L:結晶サイズ(nm)
     K:形状因子定数(=1.0)
     λ:X線の波長(=0.15406nm)
     θ:ブラッグ角
     β:半値幅(補正値)
 黒鉛粉末のLc(112)が測定された結果は、表1に示された通りである。
 リチウム二次電池用負極の製造方法としては特に限定されず、例えば、本出願に係る発明が適用された炭素材料、バインダー(結着剤)、必要に応じて導電助剤、有機溶媒を含む混合物(負極合剤)を、所定寸法に加圧成形する方法が挙げられる。また他の方法としては、本出願に係る発明が適用された炭素材料、バインダー(結着剤)、導電助剤等を有機溶媒中で混練・スラリー化し、当該スラリーを銅箔等の集電体上に塗布・乾燥したもの(負極合剤)を圧延し、所定の寸法に裁断する方法も挙げることができる。
 本発明のリチウムイオン電池用の黒鉛材料は、バインダー(結着剤)と混合して負極用混合物とし、金属箔に塗布して負極とすることができる。
 バインダーとしては、従来より使用されているバインダーであれば、特に制限なく各種のバインダーを使用することができる。例えば、バインダーとして、ポリアクリロニトリル(PAN)、ポリエチレンテレフタレート、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル、SBR(スチレンーブタジエンラバー)等が挙げられる。
 バインダーは、本発明のリチウムイオン電池用の黒鉛材料100質量部に対して、通常、1~40質量部、好ましくは2~25質量部、特に好ましくは5~15質量部の量で使用される。
 前記導電助剤としては、カーボンブラック、グラファイト、アセチレンブラック、又は導電性を示すインジウム-錫酸化物、又は、ポリアニリン、ポリチオフェン、ポリフェニレンビニレン等の導電性高分子を挙げることができる。導電助剤の使用量は、炭素材料100質量部に対して1~15質量部が好ましい。
 負極用混合物は、溶剤と混合されスラリー状にされる。
 溶剤としては、従来より使用されている溶剤であれば特に制限なく、各種の溶剤を使用することができる。このような溶剤としては、例えば、N-メチルピロリドン(NMP)、ピロリドン、N-メチルチオピロリドン、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、ヘキサメチルホスホアミド、イソプロパノール、トルエン等を単独あるいは混合して用いることができる。
 溶剤は、負極用混合物の合計100質量部に対して、一般的には、15~90質量部、好ましくは30~60質量部となるように使用される。
 負極用混合物は、リチウムイオン電池用の黒鉛材料が破壊されない範囲で適度に分散されている必要があり、プラネタリーミキサーや、ボールミル、スクリュー型ニーダー等を用いて、適宜混合・分散される。
 負極用混合物と溶剤のスラリー状混合物は、金属箔に塗布される。金属箔材料としては、特に制限なく、各種の金属材料を使用することができる。例えば、銅、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄等が挙げられる。金属箔の片面又は両面に混合物が塗布され、乾燥されることによって、電極とすることができる。
 塗布の方法は、従来公知の方法によって実施することができる。例えば、エクストルージョンコート、グラビアコート、カーテンコート、リバースロールコート、ディップコート、ドクターコート、ナイフコート、スクリーン印刷、メタルマスク印刷法、静電塗装法等が挙げられる。塗布後は、必要に応じて平板プレス、カレンダーロール等による圧延処理を行うのが一般的である。
 電極は、金属箔に塗布のあと、50~250℃の温度で乾燥することにより製造することができる。金属箔の両面に混合物を塗布する場合、片面を塗布し、50~250℃で乾燥した後、塗布しようとする他方の面を水等によって洗浄することが特に好ましい。この洗浄操作によって、接着性を大幅に改善することができる。
 金属箔の片面又は両面に混合物が塗布され、乾燥された金属箔上のペーストを金属箔とともにプレスして電極とする。
 本発明に用いる負極形状は、目的とする電池により、板状、フィルム状、円柱状、あるいは、金属箔上に成形するなど、種々の形状をとることが出来る。特に、金属箔上に成形したものは集電体一体負極として、種々の電池に応用できる。
 本発明の黒鉛材料を負極として用いる場合、リチウムイオン二次電池は、上述のようにして製造した負極と、リチウムイオン二次電池用の正極とを、セパレータを介して対向して配置し、電解液を注入することにより得ることができる。
 正極に用いる活物質としては、特に制限はなく、例えば、リチウムイオンをドーピング又は挿入可能な金属化合物、金属酸化物、金属硫化物、又は導電性高分子材料を用いればよく、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、リチウム複合酸化物(LiCoNi、X+Y+Z=1、MはMn、Al等を示す)、及びこれらの遷移金属の一部が他の元素により置換されたもの、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(MはCo、Ni、Mn又はFeを表す)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素等及びこれらの混合物を挙げることができる。
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微多孔性フィルム又はそれらを組み合わせたものを使用することができる。なお、製造するリチウムイオン二次電池の正極と負極が直接接触しない構造にした場合は、セパレータを使用する必要はない。
 リチウムイオン二次電池に使用する電解液及び電解質としては公知の有機電解液、無機固体電解質、高分子固体電解質が使用できる。好ましくは、電気伝導性の観点から有機電解液が好ましい。
 有機電解液としては、ジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールフェニルエーテル等のエーテル;N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-エチルアセトアミド、N,N-ジエチルアセトアミド等のアミド;ジメチルスルホキシド、スルホラン等の含硫黄化合物;メチルエチルケトン、メチルイソブチルケトン等のジアルキルケトン;テトラヒドロフラン、2-メトキシテトラヒドロフラン等の環状エーテル;エチレンカーボネート、ブチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート等の環状カーボネート;ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート等の鎖状カーボネート;γ-ブチロラクトン、γ-バレロラクトン等の環状炭酸エステル;酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル等の鎖状炭酸エステル;N-メチル-2-ピロリドン;アセトニトリル、ニトロメタン等の有機溶媒を挙げることができる。これらの溶媒は、単独で又は2種以上を混合して使用することができる。
 これらの溶媒の溶質(電解質)には、リチウム塩が使用される。一般的に知られているリチウム塩にはLiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCl、LiCFSO、LiCFCO、LiN(CFSO、LiN(CSO等がある。
 高分子固体電解質としては、ポリエチレンオキサイド誘導体及び該誘導体を含む重合体、ポリプロピレンオキサイド誘導体及び該誘導体を含む重合体、リン酸エステル重合体、ポリカーボネート誘導体及び該誘導体を含む重合体等が挙げられる。
 以下、実施例及び比較例に基づき本出願に係る発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
1.原料炭組成物とその製造方法
(1)原料炭組成物A
 硫黄分3.1質量%の常圧蒸留残油を、触媒存在下、水素化分解率が25%以下となるように水素化脱硫し、水素化脱硫油を得た。水素化脱硫条件は、全圧180MPa、水素分圧160MPa、温度380℃である。また、脱硫減圧軽油(硫黄分500質量ppm、15℃における密度0.88g/cm)を流動接触分解し、流動接触分解残油を得た。この流動接触分解残油を、ジメチルホルムアミドで選択抽出し、芳香族分と飽和分に分離させ、このうちの芳香族分を抽出した。この抽出芳香族分と水素化脱硫油とを質量比8:1で混合したものに、19質量%となるように脱硫脱瀝油を加え(脱硫脱瀝油を含めた混合物全体で100質量%)、コークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Aを得た。
(2)原料炭組成物B
 原料炭組成物Aの原料油組成物が、抽出芳香族分と水素化脱硫油とを質量比8:1で混合したものに、11質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Bを得た。
(3)原料炭組成物C
 原料炭組成物Aの原料油組成物が、抽出芳香族分と水素化脱硫油とを質量比8:1で混合したものに、4質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Cを得た。
(4)原料炭組成物D
 原料炭組成物Aの原料油組成物が、抽出芳香族分と水素化脱硫油とを質量比6:1で混合したものに、17質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Dを得た。
(5)原料炭組成物E
 原料炭組成物Aの原料油組成物が、抽出芳香族分と水素化脱硫油とを質量比6:1で混合したものに、11質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Eを得た。
(6)原料炭組成物F
 原料炭組成物Aの原料油組成物が、抽出芳香族分と水素化脱硫油とを質量比6:1で混合したものに、6質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Fを得た。
(7)原料炭組成物G
 原料炭組成物Aの原料油組成物の原料となった水素化脱硫油と流動接触分解残油とを質量比1:5で混合したものに、15質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Gを得た。
(8)原料炭組成物H
 原料炭組成物Aの原料油組成物の原料となった水素化脱硫油と流動接触分解残油とを質量比1:5で混合したものに、7質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Hを得た。
(9)原料炭組成物I
 原料炭組成物Aの原料油組成物の原料となった水素化脱硫油と流動接触分解残油とを質量比1:4で混合したものに、19質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Iを得た。
(10)原料炭組成物J
 原料炭組成物Aの原料油組成物の原料となった水素化脱硫油と流動接触分解残油とを質量比1:4で混合したものに、16質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Jを得た。
(11)原料炭組成物K
 原料炭組成物Aの原料油組成物の原料となった水素化脱硫油と流動接触分解残油とを質量比1:4で混合したものに、11質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Kを得た。
(12)原料炭組成物L
 原料炭組成物Aの原料油組成物の原料となった水素化脱硫油と流動接触分解残油とを質量比1:4で混合したものに、5質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Lを得た。
(13)原料炭組成物M
 原料炭組成物Aの原料油組成物の原料となった水素化脱硫油と流動接触分解残油とを質量比1:4で混合したものに、3質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Mを得た。
(14)原料炭組成物N
 原料炭組成物Aの原料油組成物の原料となった水素化脱硫油と流動接触分解残油とを質量比1:3で混合したものに、14質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Nを得た。
(15)原料炭組成物O
 原料炭組成物Aの原料油組成物の原料となった水素化脱硫油と流動接触分解残油とを質量比1:3で混合したものに、7質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Oを得た。
(16)原料炭組成物P
 原料炭組成物Aの原料油組成物の原料となった流動接触分解残油に、同体積のn-ヘプタンを加え混合した後、ジメチルホルムアミドで選択抽出し、芳香族分と飽和分に分離させ、このうちの飽和分を選択抽出した。流動接触分解残油と、この抽出飽和分とを質量比1:1で混合したものに、16質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Pを得た。
(17)原料炭組成物Q
 原料炭組成物Pの原料油組成物の原料となった流動接触分解残油と、抽出飽和分とを質量比1:1で混合したものに、11質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Qを得た。
(18)原料炭組成物R
 原料炭組成物Pの原料油組成物の原料となった流動接触分解残油と、抽出飽和分とを質量比1:1で混合したものに、6質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Rを得た。
(19)原料炭組成物S
 原料炭組成物Pの原料油組成物の原料となった流動接触分解残油と、抽出飽和分とを質量比1:2で混合したものに、19質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Sを得た。
(20)原料炭組成物T
 原料炭組成物Pの原料油組成物の原料となった流動接触分解残油と、抽出飽和分とを質量比1:2で混合したものに、10質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Tを得た。
(21)原料炭組成物U
 原料炭組成物Pの原料油組成物の原料となった流動接触分解残油と、抽出飽和分とを質量比1:2で混合したものに、4質量%となるように脱硫脱瀝油を加えコークスの原料油組成物を得た。この原料油組成物をディレードコーカー装置に導入して、不活性ガス雰囲気下、550℃でコーキング処理し、原料炭組成物Uを得た。
 得られた原料炭組成物Aを機械式粉砕機(スーパーローターミル/日清エンジニアリング社製)で粉砕し、精密空気分級機(ターボクラシファイヤー/日清エンジニアリング社製)で分級することにより、平均粒径10μmの原料炭組成物の粉体を得た。この粉体にホソカワミクロン社製ノビルタ130型を用いて圧縮応力と剪断応力を付与した。このとき回転数を3500rpm、処理時間を60分、処理温度を130℃とした。処理後の炭素材料の円形度をシスメックス社製フロー式粒子像分析装置FPIA-3000を用いて測定した後、高砂工業社製のローラーハースキルンで、窒素ガス気流下、最高到達温度が1200℃、最高到達温度保持時間が5時間となるように炭素化した。得られた炭素材料を坩堝に投入し、電気炉に設置して、80L/分の窒素ガス気流中、最高到達温度2800℃で黒鉛化した。このとき昇温速度は200℃/時間、最高到達温度の保持時間は3時間、降温速度は1000℃までが100℃/時間とし、その後窒素気流を保持させた状態で室温まで放冷させた。
 表1に、実施例1~14、比較例1~22を記載する。表1には、原料炭組成物、原料炭組成物のH/C、マイクロ強度、粉砕・分級後の平均粒径、原料炭組成物に圧縮応力と剪断応力を付与する条件(装置、回転数または周速度、処理時間)、圧縮応力と剪断応力を付与した後の円形粉体の平均円形度および黒鉛粉末のX線広角回折法によって得られた結晶子の大きさLc(112)および格子歪εの値を示す。
 実施例2~14、比較例1~17、19~22では、表1に記載された原料炭組成物を、同表に記載された平均粒径に粉砕・分級し、同表に記載された装置および条件(装置、回転数または周速度、処理時間)で表面処理を施して、同表に記載された平均円形度の円形粉体を得た後、実施例1と同様にして炭化・黒鉛化し黒鉛材料を得た。表面処理装置以外の装置は全て実施例1に記載したものと同じ装置を使用した。
 比較例18では、表1に記載された原料炭組成物を、同表に記載された平均粒径に粉砕・分級し、表面処理を施さずに、実施例1と同様にして炭化・黒鉛化し黒鉛材料を得た。使用した装置は全て実施例1に記載したものと同じ装置を使用した。
<電池の作製と特性の評価方法>
(1)電池の作製方法
 図2に作製した電池20の断面図を示す。正極21は、正極材料である平均粒子径6μmのニッケル酸リチウム(戸田工業社製LiNi0.8Co0.15Al0.05)と結着剤のポリフッ化ビニリデン(クレハ社製KF#1320)、アセチレンブラック(デンカ社製のデンカブラック)を重量比で89:6:5に混合し、N-メチル-2-ピロリジノンを加えて混練した後、ペースト状にして、厚さ30μmのアルミニウム箔の片面に塗布し、乾燥及び圧延操作を行い、塗布部のサイズが、幅30mm、長さ50mmとなるように切断されたシート電極である。このとき単位面積当たりの塗布量は、ニッケル酸リチウムの質量として、10mg/cmとなるように設定した。
 このシート電極の一部はシートの長手方向に対して垂直に正極合剤が掻き取られ、その露出したアルミニウム箔が塗布部の集電体(アルミニウム箔)と一体化して繋がっており、正極リード板としての役割を担っている。
 負極23は、負極材料である下記実施例又は比較例で得られた黒鉛粉末と結着剤のポリフッ化ビニリデン(クレハ社製KF#9310)と、アセチレンブラック(デンカ社製のデンカブラック)とを重量比で90:2:8に混合し、N-メチル-2-ピロリジノンを加えて混練した後、ペースト状にして、厚さ18μmの銅箔の片面に塗布し、乾燥及び圧延操作を行い、塗布部のサイズが、幅32mm、長さ52mmとなるように切断されたシート電極である。このとき単位面積当たりの塗布量は、黒鉛粉末の質量として、6mg/cmとなるように設定した。
 このシート電極の一部はシートの長手方向に対して垂直に負極合剤が掻き取られ、その露出した銅箔が塗布部の集電体(銅箔)と一体化して繋がっており、負極リード板としての役割を担っている。
 電池20の作製は、正極21、負極23、セパレータ25、外装27及びその他部品を十分に乾燥させ、露点-100℃のアルゴンガスが満たされたグローブボックス内に導入して組み立てた。乾燥条件は、正極21及び負極23が減圧状態の下150℃で12時間以上、セパレータ25及びその他部材が減圧状態の下70℃で12時間以上である。
 このようにして乾燥された正極21及び負極23を、正極の塗布部と負極の塗布部とが、ポリポロピレン製のマイクロポーラスフィルム(セルガード社製#2400)を介して対向させる状態で積層し、ポリイミドテープで固定した。なお、正極及び負極の積層位置関係は、負極の塗布部に投影される正極塗布部の周縁部が、負極塗布部の周縁部の内側で囲まれるように対向させた。得られた単層電極体を、アルミラミネートフィルムで包埋させ、電解液を注入し、前述の正・負極リード板がはみ出した状態で、ラミネートフィルムを熱融着することにより、密閉型の単層ラミネート電池を作製した。使用した電解液は、エチレンカーボネートとエチルメチルカーボネートが体積比で3:7に混合された溶媒にヘキサフルオロリン酸リチウム(LiPF)が1mol/Lの濃度となるように溶解されたものである。
(2)電池の評価方法
 得られた電池を25℃の恒温室内に設置し、以下に示す充放電試験を行った。先ず1.5mAの電流で、電池電圧が4.2Vとなるまで定電流で充電した。10分間休止の後、同じ電流で電池電圧が3.0Vとなるまで定電流で放電する充放電サイクルを10回繰り返した。この充放電サイクルは、電池の異常を検知するためのものであるため、充放電サイクル試験のサイクル数には含まなかった。本実施例で作製された電池は、全て異常がないことを確認した。
 この電池を60℃の恒温室内に設置し5時間放置し、充放電試験を開始した。開始後第1サイクルを初期サイクルとする。75mAの電流で、電池電圧が4.2Vとなるまで定電流で充電し、1分間休止の後、同じ電流で電池電圧が3.0Vとなるまで定電流で放電する充放電サイクルを設定し、このサイクルを1000回繰り返した。充放電サイクルの容量維持率として、初期放電容量に対する第1000サイクル目の放電容量の割合(%)を算出した。
 表1に実施例および比較例に記載した黒鉛材料を用いて電池を作製し、電池特性を評価した際の第1サイクル目の放電容量(mAh)、第1000サイクル目の放電容量(mAh)、1000サイクル後の容量維持率(%)を示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1~14において、原料炭組成物が本発明の範囲内、即ちH/C値として0.3~0.5、且つマイクロ強度として7~17質量%となったもの(G,H,K,N,O)を原料として、平均円形度が0.91~0.97となるように表面処理を施して得られた円形粉体を黒鉛化した黒鉛材料は、本発明の請求の範囲内、すなわちX線広角回折によって得られた(112)回折線から算出される結晶子の大きさLc(112)が4nm~30nm、且つ格子歪εが0.001~0.085を満たした。これらの黒鉛材料を負極として使用した電池の充放電サイクルの容量維持率が91%以上となり、寿命特性に極めて優れたリチウムイオン二次電池を実現できることが分かった。
 また、表面処理装置として、実施例1~11ではノビルタ、実施例12,13ではCOMPOSI、実施例14ではメカノフュージョンを使用した。その結果、いずれの表面処理装置を用いた場合においても、得られた黒鉛材料のLc(112)および格子歪の値は本請求の範囲を満たし、これらを負極として使用した電池の充放電サイクルの容量維持率が高い値を示すことがわかった。これらの表面処理装置を使用することにより、黒鉛材料に適度な格子歪を導入することが可能である。
 比較例1~7の製造法で得られた黒鉛材料の場合、Lc(112)が4nm未満であった。これらの黒鉛材料の結晶子の大きさLc(112)が小さいほど、放電容量が小さくなったことが分かる。このサイズの電池として、16mAhの容量を確保するためには、負極に使用される黒鉛材料の結晶子の大きさLc(112)が少なくとも4nm以上でなければならないことが理解できる。比較例1~7とも、1000サイクル後の容量維持率は91%以上となり、極めてサイクル安定性の高い電池を実現できる負極黒鉛材料と見なすことができる。しかし、その結晶子の大きさが小さいため小さな容量の電池しか実現できないため好ましくないと判断できる。
 比較例8~22の製造法で得られた黒鉛材料の場合、Lc(112)が4nm以上であるものの、格子歪εが0.001未満であった。これらの黒鉛材料をリチウムイオン二次電池の負極として使用した場合、放電容量が17mAh以上であり、極めて高い放電容量を実現できる負極材料と見なすことができる。しかし、その格子歪εが小さいために、充放電サイクルの容量維持率が低下するため、好ましくないと判断できる。
 これらの結果から、得られた黒鉛材料が本発明の範囲内、即ちLc(112)が4nm~30nm、格子歪εが0.001~0.085を満たすことは、16mAh以上の高容量、且つ91%以上の高い容量維持率を達成するために必要不可欠な条件であると言える。
 また、これらの黒鉛材料のうち、比較例8~13では、原料炭組成物のH/Cが0.30未満であるために、結晶子が発達し易い状態であるため、格子歪みが導入されにくい。そのため、請求の範囲内の格子歪を有する黒鉛材料を得ることができなかった。これらの黒鉛材料は、結晶子の大きさLc(112)が4nm以上であるため、極めて高い放電容量を実現できる負極材料とみなすことができる。しかし、その格子歪が小さく充放電サイクルの容量維持率が低いため、好ましくないと判断できる。
 比較例14、15では、原料炭組成物のH/Cが請求の範囲内であるものの、マイクロ強度が17質量%よりも高い。このような原料炭組成物では、未組織炭素の結合力が強く、結晶子が粒子形状に依存せずに成長し続けるため、前述したような粒子の形状効果を付与することができず、格子歪εが0.001以上の歪を有した黒鉛材料を得ることができないため好ましくない。
 比較例16、17では、原料炭組成物のH/Cが請求の範囲内であるものの、マイクロ強度が7質量%未満である。このような原料炭組成物では、結晶子間の結合が極めて弱いため、粒子形状を維持することができず、粒子表面の曲率を低減させながら黒鉛化が進行する。そのため、黒鉛材料に適度な格子歪を導入することができず、充放電サイクルの容量維持率が低下するため、好ましくない。
 これらの結果から、原料炭組成物として水素原子Hと炭素原子Cの比率、H/C原子比が0.30~0.50、且つマイクロ強度が7~17質量%の範囲のものを使用することは、91%以上の高い容量維持率を達成するために必要不可欠な条件であると言える。
 比較例18では、本発明の範囲内の原料炭組成物に表面処理を施すこと無く、炭化・黒鉛化した。この黒鉛材料は、表面処理を施していないため、黒鉛化が進行しやすく、Lc(112)が25nmと大きな値となった。しかし、格子歪εは0.0002と非常に小さい値となり格子歪が導入されていないことが分かった。この黒鉛材料を負極として用いた電池の充放電サイクルは63.3%と非常に低い値となることがわかった。比較例18と同じ原料炭組成物を使用し、表面処理を施して得られた円形粉体を黒鉛化して得られた黒鉛材料(実施例10、12、14)の場合、格子歪εは0.043以上となった。これらの黒鉛材料を負極として使用した電池の充放電サイクルの容量維持率は91%以上の値であった。これらの結果から、91%以上の高い容量維持率を達成する黒鉛材料の製造法において、原料炭組成物に表面処理を施す工程は必要不可欠な工程であると言える。
 比較例19では、本発明の範囲内の原料炭組成物を平均粒径4μmに粉砕・分級した原料炭組成物の粉末に、表面処理装置ノビルタを使用し、回転数4000rpmで90分処理して得られた円形粉体を黒鉛化した。このとき、原料炭組成物の粉末の粒径が小さいために、表面処理を十分に施すことができなかったため、格子歪εが0.0005となり、本発明の請求の範囲より小さい値となった。この黒鉛材料を負極として用いたリチウムイオン二次電池の充放電サイクルの容量維持率は67.2%となり、低い値となったため好ましくない。
 比較例20では、本発明の範囲内の原料炭組成物を平均粒径15μmに粉砕・分級した原料炭組成物の粉末に、表面処理装置ノビルタを使用し、回転数1450rpmで120分処理して得られた円形粉体を黒鉛化した。このとき、ノビルタの回転数が小さいために、表面処理を十分に施すことができなかったため、格子歪εが0.0007となり、本発明の請求の範囲より小さい値となった。この黒鉛材料を負極として用いたリチウムイオン二次電池の充放電サイクルの容量維持率は69.4%となり、低い値となったため好ましくない。
 比較例21では、本発明の範囲内の原料炭組成物を平均粒径15μmに粉砕・分級した原料炭組成物の粉末に、表面処理装置COMPOSIを使用し、周速度45m/sで90分処理して得られた円形粉体を黒鉛化した。このとき、回転数が小さいために、表面処理を十分に施すことができなかったため、格子歪εが0.0009となり、本発明の請求の範囲より小さい値となった。この黒鉛材料を負極として用いたリチウムイオン二次電池の充放電サイクルの容量維持率は81.9%となり、低い値となったため好ましくない。
 比較例22では、本発明の範囲内の原料炭組成物を平均粒径15μmに粉砕・分級した原料炭組成物の粉末に、表面処理装置ノビルタを使用し、回転数5000rpmで9分処理して得られた円形粉体を黒鉛化した。このとき、ノビルタの処理時間が短いために、表面処理を十分に施すことができなかったため、格子歪εが0.0009となり、本発明の請求の範囲より小さい値となった。この黒鉛材料を負極として用いたリチウムイオン二次電池の充放電サイクルの容量維持率は79.9%となり、低い値となったため好ましくない。
 以上の通り、ディレードコーキングプロセスによってコーキング処理した、水素原子Hと炭素原子Cの比率、H/C原子比が0.30~0.50、且つマイクロ強度が7~17質量%の原料炭組成物を粉砕・分級し、原料炭組成物の粉体を得る工程と、当該原料炭組成物の粉体を平均円形度が0.91~0.97となるように圧縮応力と剪断応力を付与し、円形粉体を得る工程と、当該円形粉体を加熱して炭化物を得る工程と、当該炭化物を黒鉛化する工程と、を含んだ製造法により得られた黒鉛材料であって、X線広角回折によって得られた(112)回折線から算出される結晶子の大きさLc(112)が4nm~30nm、且つ(004)回折線および(006)回折線から算出される格子歪が0.001~0.085の範囲である、歪みを有するリチウムイオン二次電池負極用黒鉛材料を負極として使用したリチウムイオン二次電池は、16mAh以上の容量が確保可能で、且つ充放電60℃における第1000サイクル後の容量維持率が91%以上を達成することができた。
 本出願の発明に係る黒鉛材料を用いたリチウム二次電池は、従来の黒鉛材料を用いたリチウム二次電池と比較して、高度な信頼性を確保することが可能となるため、自動車用、具体的にはハイブリッド自動車用、プラグインハイブリッド自動車用、電気自動車用や、系統インフラの電力貯蔵用など産業用として利用することができる。
1 メカノフュージョン装置
3 ブレードの羽根
5 ハウジング
7 ブレードとハウジングとの間隙
20 電池
21 対極(正極)
22 正極集電体
23 作用極(負極)
24 負極集電体
25 セパレータ
27 外装
P 粉体
R1、R2 回転方向

Claims (2)

  1.  重質油組成物をディレードコーキングプロセスによってコーキング処理した、水素原子Hと炭素原子Cの比率、H/C原子比が0.30~0.50、且つマイクロ強度が7~17質量%の原料炭組成物を粉砕・分級し、原料炭組成物の粉体を得る工程と、
     当該原料炭組成物の粉体を平均円形度が0.91~0.97となるように圧縮応力と剪断応力を付与し、円形粉体を得る工程と、
     当該円形粉体を加熱して炭化物を得る工程と、
     当該炭化物を黒鉛化する工程とを含んだ製造法により得られた黒鉛材料であって、
     X線広角回折によって得られた(112)回折線から算出される結晶子の大きさLc(112)が4nm~30nm、且つ(004)回折線および(006)回折線から算出される格子歪が0.001~0.085の範囲である、格子歪みを有するリチウムイオン二次電池負極用黒鉛材料。
  2.  請求項1に記載のリチウムイオン二次電池負極用黒鉛材料を負極材料として使用したリチウムイオン二次電池。
PCT/JP2011/073095 2010-10-08 2011-10-06 格子歪を有するリチウムイオン二次電池負極用黒鉛材料及びリチウムイオン二次電池 WO2012046802A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180048751.5A CN103155244B (zh) 2010-10-08 2011-10-06 具有晶格应变的锂离子二次电池负极用石墨材料以及锂离子二次电池
KR1020137011252A KR20140017496A (ko) 2010-10-08 2011-10-06 격자왜곡을 가지는 리튬이온 이차전지 음극용 흑연 재료 및 리튬이온 이차전지
EP11830734.7A EP2626933A4 (en) 2010-10-08 2011-10-06 NETWORK DEFORMATION GRAPHITE MATERIAL USEFUL IN NEGATIVE LITHIUM-ION RECHARGEABLE BATTERY ELECTRODES, AND LITHIUM-ION RECHARGEABLE BATTERY
US13/858,375 US9214666B2 (en) 2010-10-08 2013-04-08 Graphite material with lattice distortion for use in lithium-ion secondary battery negative electrodes, and lithium-ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010228988A JP5612428B2 (ja) 2010-10-08 2010-10-08 格子歪を有するリチウムイオン二次電池負極用黒鉛材料及びリチウムイオン二次電池
JP2010-228988 2010-10-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/858,375 Continuation US9214666B2 (en) 2010-10-08 2013-04-08 Graphite material with lattice distortion for use in lithium-ion secondary battery negative electrodes, and lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
WO2012046802A1 true WO2012046802A1 (ja) 2012-04-12

Family

ID=45927796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073095 WO2012046802A1 (ja) 2010-10-08 2011-10-06 格子歪を有するリチウムイオン二次電池負極用黒鉛材料及びリチウムイオン二次電池

Country Status (6)

Country Link
US (1) US9214666B2 (ja)
EP (1) EP2626933A4 (ja)
JP (1) JP5612428B2 (ja)
KR (1) KR20140017496A (ja)
CN (1) CN103155244B (ja)
WO (1) WO2012046802A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2869370A4 (en) * 2012-06-29 2016-08-31 Mt Carbon Co Ltd GRAPHITE MATERIAL FOR NEGATIVE ELECTRODE OF LITHIUM ION RECHARGEABLE BATTERY, LITHIUM ION RECHARGEABLE BATTERY COMPRISING SAME, AND METHOD FOR PRODUCING GRAPHITE MATERIAL FOR LITHIUM ION RECHARGEABLE BATTERY

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5931727B2 (ja) * 2010-08-11 2016-06-08 Jxエネルギー株式会社 リチウム二次電池負極用黒鉛材料およびその製造方法、およびそれを用いたリチウム二次電池
JP5615673B2 (ja) * 2010-11-17 2014-10-29 Jx日鉱日石エネルギー株式会社 リチウムイオン二次電池負極用非晶質系炭素材料の製造方法及びリチウムイオン二次電池
TWI565654B (zh) 2014-08-08 2017-01-11 Kureha Corp Production method of carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery and carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery
TWI599092B (zh) 2014-08-08 2017-09-11 Kureha Corp Non-Aqueous Electrolyte Secondary Battery Negative Carbonaceous Material
TWI604655B (zh) * 2014-08-08 2017-11-01 Kureha Corp Non-aqueous electrolyte secondary battery negative carbonaceous material
EP3580169A2 (en) * 2017-02-08 2019-12-18 National Electrical Carbon Products, Inc. Carbon powders and methods of making same
KR101957017B1 (ko) * 2017-05-17 2019-03-12 서울과학기술대학교 산학협력단 전극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
JP6816094B2 (ja) * 2018-12-26 2021-01-20 住友化学株式会社 αアルミナ、スラリー、多孔膜、積層セパレータ、並びに非水電解液二次電池及びその製造方法
JP7178269B2 (ja) * 2019-01-15 2022-11-25 Eneos株式会社 人造黒鉛材料、人造黒鉛材料の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP7178271B2 (ja) * 2019-01-15 2022-11-25 Eneos株式会社 人造黒鉛材料、人造黒鉛材料の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池
TWI756928B (zh) * 2020-11-19 2022-03-01 台灣中油股份有限公司 人工石墨的製備方法
CN116593895B (zh) * 2023-06-16 2024-02-23 中国科学技术大学 一种基于应变的锂离子电池组电流检测方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335218A (ja) * 1994-06-07 1995-12-22 Fuji Elelctrochem Co Ltd 非水電解質二次電池
JPH10139410A (ja) * 1996-09-13 1998-05-26 Ado Kemuko Kk 炭素質材料の製造方法及び電池
JPH10326611A (ja) * 1997-03-28 1998-12-08 Nippon Steel Corp リチウム二次電池負極用炭素材料
JP2001351627A (ja) * 2000-06-06 2001-12-21 Fdk Corp リチウムイオン二次電池
WO2006109497A1 (ja) * 2005-03-30 2006-10-19 Osaka Gas Co., Ltd. メソカーボンマイクロビーズの製造方法
JP4171259B2 (ja) 2001-09-26 2008-10-22 Jfeケミカル株式会社 黒鉛質材料の製造方法、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910383A (en) 1996-09-13 1999-06-08 Adchemco Corporation Production process of carbonaceous material and battery
JP4516845B2 (ja) * 2002-10-11 2010-08-04 Fdk株式会社 非水電解質二次電池、及びこの非水電解二次電池に用いる正極の製造方法
CN100524911C (zh) * 2004-08-30 2009-08-05 三菱化学株式会社 用于非水二次电池的负极材料、用于非水二次电池的负极、和非水二次电池
WO2007000982A1 (ja) * 2005-06-27 2007-01-04 Mitsubishi Chemical Corporation 非水系二次電池用黒鉛質複合粒子、それを含有する負極活物質材料、負極及び非水系二次電池
JP5415684B2 (ja) * 2007-10-02 2014-02-12 Jx日鉱日石エネルギー株式会社 リチウムイオン二次電池負極用人造黒鉛及びその製造方法
JP5400064B2 (ja) * 2008-12-26 2014-01-29 Jx日鉱日石エネルギー株式会社 リチウムイオン二次電池負極材料用の原料油組成物
JP5728475B2 (ja) * 2010-05-31 2015-06-03 Jx日鉱日石エネルギー株式会社 リチウムイオン二次電池負極材料用原料炭組成物
US9142832B2 (en) * 2010-08-11 2015-09-22 Jx Nippon Oil & Energy Corporation Graphite material for negative electrodes of lithium ion secondary battery, manufacturing method for said material, and lithium ion secondary battery using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335218A (ja) * 1994-06-07 1995-12-22 Fuji Elelctrochem Co Ltd 非水電解質二次電池
JPH10139410A (ja) * 1996-09-13 1998-05-26 Ado Kemuko Kk 炭素質材料の製造方法及び電池
JPH10326611A (ja) * 1997-03-28 1998-12-08 Nippon Steel Corp リチウム二次電池負極用炭素材料
JP2001351627A (ja) * 2000-06-06 2001-12-21 Fdk Corp リチウムイオン二次電池
JP4171259B2 (ja) 2001-09-26 2008-10-22 Jfeケミカル株式会社 黒鉛質材料の製造方法、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
WO2006109497A1 (ja) * 2005-03-30 2006-10-19 Osaka Gas Co., Ltd. メソカーボンマイクロビーズの製造方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
J. O. BESENHARD; M. WINTER; J. YANG; W. BIBERACHER, J. POWER SOURCES, vol. 54, 1995, pages 228
PROCEEDINGS OF THE 48TH BATTERY SYMPOSIUM IN JAPAN, 13 November 2007 (2007-11-13)
PROCEEDINGS OF THE 71 ST MEETING OF THE ELECTROCHEMICAL SOCIETY OF JAPAN, 24 March 2004 (2004-03-24), pages 2107
PROCEEDINGS OF THE 76TH MEETING OF THE ELECTROCHEMICAL SOCIETY OF JAPAN, vol. 1, 26 March 2009 (2009-03-26), pages 29
See also references of EP2626933A4
TANSO, vol. 221, 2006, pages 52 - 60
TANSO, vol. 52, 1968, pages 9 - 12
TANSO, vol. 52, pages 9 - 12
YOKONO; SANADA: "Characterization of Pitch II. Chemical Structure", TANSO, vol. 105, 1981, pages 73 - 81

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2869370A4 (en) * 2012-06-29 2016-08-31 Mt Carbon Co Ltd GRAPHITE MATERIAL FOR NEGATIVE ELECTRODE OF LITHIUM ION RECHARGEABLE BATTERY, LITHIUM ION RECHARGEABLE BATTERY COMPRISING SAME, AND METHOD FOR PRODUCING GRAPHITE MATERIAL FOR LITHIUM ION RECHARGEABLE BATTERY
US9831490B2 (en) 2012-06-29 2017-11-28 Mt Carbon Co., Ltd. Graphite material for negative electrode of lithium-ion secondary battery, lithium-ion secondary battery including the graphite material, and method of manufacturing graphite material for lithium-ion secondary battery

Also Published As

Publication number Publication date
EP2626933A1 (en) 2013-08-14
JP2012084360A (ja) 2012-04-26
CN103155244A (zh) 2013-06-12
CN103155244B (zh) 2016-05-18
KR20140017496A (ko) 2014-02-11
EP2626933A4 (en) 2015-04-01
US20130302692A1 (en) 2013-11-14
US9214666B2 (en) 2015-12-15
JP5612428B2 (ja) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5612428B2 (ja) 格子歪を有するリチウムイオン二次電池負極用黒鉛材料及びリチウムイオン二次電池
JP5367521B2 (ja) リチウム二次電池の負極用炭素材料及びその製造方法
EP3131142B1 (en) Artificial graphite material for lithium ion secondary battery negative electrode, and method for producing same
JP5623262B2 (ja) リチウムイオン二次電池負極用黒鉛材料およびその製造方法、リチウムイオン二次電池
JP5728475B2 (ja) リチウムイオン二次電池負極材料用原料炭組成物
JP5931727B2 (ja) リチウム二次電池負極用黒鉛材料およびその製造方法、およびそれを用いたリチウム二次電池
US9142832B2 (en) Graphite material for negative electrodes of lithium ion secondary battery, manufacturing method for said material, and lithium ion secondary battery using same
US8802296B2 (en) Amorphous carbon material for negative electrode of lithium ion secondary battery and nonaqueous secondary battery comprising same
US9147873B2 (en) Method of producing amorphous carbon material for the negative electrode of lithium ION secondary battery, and lithium ION secondary battery
JP6030958B2 (ja) リチウムイオン二次電池負極炭素材料用石油生コークスの製造方法及び同炭素材料の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048751.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011830734

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011830734

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137011252

Country of ref document: KR

Kind code of ref document: A