WO2012046420A1 - 電子素子、面発光レーザ、面発光レーザアレイ、光源、および光モジュール - Google Patents

電子素子、面発光レーザ、面発光レーザアレイ、光源、および光モジュール Download PDF

Info

Publication number
WO2012046420A1
WO2012046420A1 PCT/JP2011/005506 JP2011005506W WO2012046420A1 WO 2012046420 A1 WO2012046420 A1 WO 2012046420A1 JP 2011005506 W JP2011005506 W JP 2011005506W WO 2012046420 A1 WO2012046420 A1 WO 2012046420A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
emitting laser
surface emitting
refractive index
index layer
Prior art date
Application number
PCT/JP2011/005506
Other languages
English (en)
French (fr)
Inventor
清水 均
泰雅 川北
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2012507756A priority Critical patent/JP5075292B2/ja
Priority to DE112011102431.2T priority patent/DE112011102431B4/de
Priority to CN2011800194139A priority patent/CN102844945A/zh
Publication of WO2012046420A1 publication Critical patent/WO2012046420A1/ja
Priority to US13/855,353 priority patent/US8638832B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/04MOCVD or MOVPE
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06226Modulation at ultra-high frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18358Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] containing spacer layers to adjust the phase of the light wave in the cavity

Definitions

  • the present invention relates to an electronic device, a surface emitting laser, a surface emitting laser array, a light source, and an optical module.
  • a surface emitting laser having an intra-cavity structure is disclosed as a light source for optical interconnection (see Patent Documents 1 and 2).
  • the intra-cavity structure means a structure in which current is injected from the inside of two reflectors (for example, Distributed Bragg Reflector (DBR) mirrors) constituting an optical resonator into the active layer without passing through one or both reflectors.
  • DBR Distributed Bragg Reflector
  • the surface emitting laser disclosed in Patent Document 1 has a lower DBR mirror formed on a substrate. Then, an n-type contact layer and an active layer are sequentially formed on the lower DBR mirror, and an n-side electrode is formed on the n-type contact layer. Further, a p-side electrode is formed on the upper side of the active layer, and an upper DBR mirror is formed on the upper side of the p-side electrode.
  • the surface emitting laser disclosed in Patent Document 1 has a double intra-cavity structure capable of injecting current into the active layer without passing through both the upper and lower DBR mirrors. The surface emitting laser disclosed in Patent Document 1 achieves low threshold current and high power efficiency by having an intra-cavity structure.
  • Patent Document 1 US Patent No. 6750071 Specification
  • Patent Document 2 Japanese Patent Application Publication No. 2004-103754
  • the cutoff frequency of the electronic element is reduced by parasitic capacitance, or when the electronic element is formed in an array Problems such as an increase in crosstalk of the In particular, while high frequency characteristics of a cutoff frequency of 20 GHz or more are required in recent years, there is a strong demand for electronic devices with reduced parasitic capacitance.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide an electronic device, a surface emitting laser, a surface emitting laser array, a light source, and an optical module in which parasitic capacitance is reduced.
  • an electronic device is an electronic device provided with a semiconductor multilayer structure including a periodic structure of a first semiconductor layer and a second semiconductor layer, In at least a part of the semiconductor multilayer structure, the first semiconductor layer and the second semiconductor layer have different conductivity types.
  • the first semiconductor layer and the second semiconductor layer have different refractive indexes, and the semiconductor multilayer structure functions as a multilayer reflector. It is characterized by
  • the surface emitting laser according to the present invention is a lower semiconductor multilayer film configured to have a periodic structure of a first low refractive index layer and a first high refractive index layer having a refractive index higher than that of the first low refractive index layer.
  • An upper multilayer reflector comprising a periodic structure of a mirror, a second low refractive index layer, and a second high refractive index layer having a refractive index higher than that of the second low refractive index layer, and the lower semiconductor multilayer film reflection
  • An active layer provided between the mirror and the upper multilayer reflector, and a lower electrode provided between the active layer and the lower semiconductor multilayer reflector for supplying a current to the active layer;
  • the p-type and n-type carrier concentrations in the first low refractive index layer and the first high refractive index layer having the different conductivity types are all any of the above. It is characterized in that it is smaller than 1 ⁇ 10 17 cm ⁇ 3 .
  • the surface emitting laser according to the present invention is characterized in that, in the above invention, the lower semiconductor multilayer reflector includes an element having a property of taking in the carbon.
  • the surface emitting laser according to the present invention is characterized in that in the above invention, the element having the property of taking in the carbon is aluminum (Al).
  • the first low refractive index layer is made of AlGaAs
  • the first high refractive index layer is made of (Al) GaAs. It is characterized by becoming.
  • the first low refractive index layer is made of AlGaInP
  • the first high refractive index layer is made of (Al) GaInP. It is characterized by becoming.
  • the first low refractive index layer is made of InP
  • the first high refractive index layer is made of AlGaInAs. It features.
  • the surface emitting laser is provided between the upper multilayer reflector and the active layer, and Al 1-x Ga x As (0 ⁇ x ⁇ 0.2).
  • a high conductivity layer is provided between the upper multilayer reflector and the active layer, and Al 1-x Ga x As (0 ⁇ x ⁇ 0.2).
  • the surface emitting laser according to the present invention is characterized in that, in the above invention, the cutoff frequency is 20 GHz or more.
  • a surface emitting laser array according to the present invention is characterized in that the surface emitting lasers according to any one of the above inventions are arrayed in a one-dimensional or two-dimensional array.
  • a light source applies a modulation signal to the surface emitting laser according to any one of the above inventions or the surface emitting laser array according to the above invention, and the surface emitting laser or the surface emitting laser array And a controller.
  • An optical module according to the present invention includes the surface emitting laser according to any one of the above inventions, the surface emitting laser array according to the above inventions, or the light source according to the above inventions.
  • FIG. 1 is a view schematically showing the configuration of the light source according to the first embodiment.
  • FIG. 2 is a cross-sectional view of an essential part of the surface emitting laser shown in FIG.
  • FIG. 3 is a diagram showing the relationship between the calculated carrier concentration and capacity of the DBR mirror.
  • FIG. 4 is a schematic cross-sectional view of a sample in which a DBR mirror is manufactured on a substrate.
  • FIG. 5 is a diagram showing the measurement results of the relationship between the p-type carrier concentration and the capacity of the DBR mirror.
  • FIG. 6 is a diagram showing the relationship between the formation conditions of undoped GaAs and the conductivity.
  • FIG. 7 is a schematic perspective view of the surface emitting laser array according to the second embodiment.
  • FIG. 7 is a schematic perspective view of the surface emitting laser array according to the second embodiment.
  • FIG. 8 is a schematic plan view of the surface emitting laser array shown in FIG.
  • FIG. 9 is a schematic cross-sectional view of a surface emitting laser package according to the third embodiment.
  • FIG. 10 is a schematic partial cross-sectional view of the optical pickup according to the fourth embodiment.
  • FIG. 11 is a schematic plan view showing a state in which two optical transmission / reception modules according to the fifth embodiment are connected via two optical waveguides.
  • FIG. 12 is a side view showing an example of an optical coupling portion between the surface emitting laser and the optical waveguide in the optical transceiver module shown in FIG.
  • FIG. 13 is a side view showing another example of the light coupling portion between the surface emitting laser and the optical waveguide.
  • FIG. 14 is a partially sectioned side view showing still another example of the light coupling portion between the surface emitting laser and the optical waveguide.
  • FIG. 15 is a side view showing still another example of the light coupling portion between the surface emitting laser and the optical waveguide.
  • FIG. 16 is a schematic configuration diagram of a wavelength multiplexing transmission system according to a sixth embodiment.
  • FIG. 1 is a view schematically showing a configuration of a light source 100 according to Embodiment 1 of the present invention.
  • the light source 100 includes a surface emitting laser 101 which is an example of an electronic device, and a controller 102 which controls the surface emitting laser 101.
  • FIG. 2 is a cross-sectional view of an essential part of the surface-emitting laser 101 shown in FIG.
  • the surface emitting laser 101 is a lower DBR mirror 2 which functions as a lower semiconductor multilayer film reflecting mirror stacked on an n-type GaAs substrate 1 of plane orientation (001), and a lower contact layer.
  • the n-side lead electrode 17 and the p-side lead electrode 18 are provided.
  • the lower DBR mirror 2 and the upper DBR mirror 16 form an optical resonator.
  • the active layer 6 is provided between the lower DBR mirror 2 and the upper DBR mirror 16.
  • the current confinement layer 9 is provided between the upper DBR mirror 16 and the active layer 6.
  • the p-type contact layer 14 is provided between the upper DBR mirror 16 and the current confinement layer 9.
  • the n-type contact layer 3 is provided between the lower DBR mirror 2 and the active layer 6.
  • Upper composition graded layer 10 and lower composition graded layer 8 are formed to sandwich current narrowing layer 9, upper composition graded layer 10 is disposed on p-type contact layer 14 side, and lower composition graded layer 8 is active layer It is arranged on the 6 side.
  • the p-type high conductivity layer 12 is provided between the p-type contact layer 14 and the current confinement layer 9.
  • the laminated structure from the n-type cladding layer 5 to the p-type contact layer 14 is formed as a mesa post M formed in a columnar shape by an etching process or the like.
  • the mesa post diameter is, for example, 30 ⁇ m in diameter.
  • the n-type contact layer 3 is extended to the outer peripheral side of the mesa post M.
  • the p-side electrode 15 is formed on the p-type contact layer 14, and the n-side electrode 4 is formed on the n-type contact layer 3.
  • the lower DBR mirror 2 is formed on the n-type GaAs substrate 1 via an undoped GaAs buffer layer.
  • the lower DBR mirror 2 is a low refractive index layer 2a, which is a first low refractive index layer made of p-type Al 0.9 Ga 0.1 As, and a high, which is a first high refractive index layer made of n-type GaAs.
  • the semiconductor multilayer film mirror is formed as a periodic structure with the refractive index layer 2b.
  • Lower DBR mirror 2 is formed of, for example, 40.5 pairs, where one pair of low refractive index layer 2 a and high refractive index layer 2 b is one.
  • the thicknesses of the low refractive index layer 2a and the high refractive index layer 2b are ⁇ / 4n ( ⁇ : oscillation wavelength, n: refractive index).
  • the p-type carrier concentration of the low refractive index layer 2 a and the n-type carrier concentration of the high refractive index layer 2 b are both 5 ⁇ 10 16 cm ⁇ 3 .
  • the n-type contact layer 3 and the n-type cladding layer 5 are formed using n-type GaAs as a material.
  • the p-type cladding layer 7 is formed using p-type AlGaAs as a material (for example, Al 0.3 Ga 0.7 As is desirable).
  • the n-type cladding layer 5 and the p-type cladding layer 7 are formed to sandwich the active layer 6 to form a separate confinement (SCH: Separate Confinement Heterostructure) structure.
  • SCH Separate Confinement Heterostructure
  • the p-type spacer layer 11 is formed using p-type AlGaAs as a material.
  • the p-type high conductivity layer 12 is formed using p-type AlGaAs as a material.
  • the p-type spacer layer 13 is formed using p-type AlGaAs as a material.
  • the p-type contact layer 14 is formed using p-type GaAs as a material.
  • a p-type or n-type dopant is added to n-type cladding layer 5, p-type cladding layer 7 and p-type spacer layers 11 and 13 so that the carrier concentration is, for example, about 1 ⁇ 10 18 cm ⁇ 3.
  • the p-type or n-type conductivity type is assured.
  • the carrier concentrations of the n-type contact layer 3 and the p-type contact layer 14 are, for example, about 2 ⁇ 10 18 cm ⁇ 3 and 3 ⁇ 10 19 cm ⁇ 3 , respectively.
  • the carrier concentration of the p-type high conductivity layer 12 is 3 ⁇ 10 19 cm ⁇ 3 , which is higher than the p-type spacer layers 11 and 13 and higher than the p-type contact layer 14.
  • the p-type high conductivity layer 12 serves as a path in the lateral direction of the drawing of the current injected from the p-side electrode 15, and functions to inject the current into the active layer 6 more efficiently.
  • the carrier concentration of the p-type high conductivity layer 12 is preferably 3 ⁇ 10 19 cm ⁇ 3 or more from the viewpoint of high conductivity and low resistance, and 1 ⁇ 10 21 cm ⁇ 3 or less from the easiness of production. Is preferred. Also, two or more p-type high conductivity layers may be provided.
  • the current confinement layer 9 is composed of an opening 9a as a current injection portion and a selective oxidation layer 9b as a current confinement portion.
  • the opening 9 a is made of Al 1 -x Ga x As (0 ⁇ x ⁇ 0.2)
  • the selective oxide layer 9 b is made of (Al 1 -x Ga x ) 2 O 3 .
  • x is, for example, 0.02.
  • the current confinement layer 9 has a thickness of, for example, 30 nm, and is formed by selectively oxidizing an Al-containing layer made of Al 1-x Ga x As.
  • the selective oxidation layer 9 b is formed in a ring shape on the outer periphery of the opening 9 a by oxidizing the Al-containing layer from the outer peripheral portion to a predetermined range along the lamination surface.
  • the selective oxidation layer 9b has an insulating property, and narrows the current injected from the p-side electrode 15 to concentrate it in the opening 9a, thereby increasing the current density in the active layer 6 immediately below the opening 9a.
  • the diameter of the opening 9a is, for example, 6 ⁇ m, preferably 4 ⁇ m to 15 ⁇ m, and more preferably 5 ⁇ m to 10 ⁇ m.
  • the active layer 6 has a multiple quantum well structure (MQW: Multiple Quantum Well) in which three quantum well layers 6 a and two barrier layers 6 b are alternately stacked.
  • the quantum well layer 6a is made of, for example, a GaInAs-based semiconductor material such as Ga 0.75 In 0.25 As.
  • Barrier layer 6b is made of, for example, GaAs.
  • the active layer 6 has a composition and a thickness of its semiconductor material so as to emit spontaneous emission light including light of a wavelength of at least 850 nm or more by the current injected from the p-side electrode 15 and narrowed by the current confinement layer 9. It is set.
  • the upper DBR mirror 16 is formed as a dielectric multilayer film mirror having a periodic structure of an SiO 2 layer functioning as a second low refractive index layer and an SiN layer functioning as a second high refractive index layer.
  • the upper DBR mirror 16 is composed of, for example, nine pairs, where one pair is a pair of the SiO 2 layer and the SiN layer.
  • the thicknesses of the SiO 2 layer and the SiN layer are respectively set to ⁇ / 4n as in the lower DBR mirror 2. Since the diameter of the upper DBR mirror 16 is smaller than the diameter of the p-type contact layer 14, the p-type contact layer 14 is extended to the outer peripheral side of the upper DBR mirror 16.
  • the p-side electrode 15 is for injecting a current into the active layer 6, and is formed in a ring shape on the surface of the extended portion of the p-type contact layer 14 so as to surround the upper DBR mirror 16. . That is, the p-side electrode 15 is formed on the p-type contact layer 14 without the upper DBR mirror 16.
  • the n-side electrode 4 is formed on the surface of the extended portion of the n-type contact layer 3 extended to the outer peripheral side of the mesa post M and is for injecting a current into the active layer 6. It is formed in a C shape so as to surround. That is, the n-side electrode 4 is formed on the n-type contact layer 3 without the lower DBR mirror 2.
  • the surface emitting laser 101 has a double intra-cavity structure capable of injecting a current into the active layer 6 without passing through both the lower DBR mirror 2 and the upper DBR mirror 16.
  • the controller 102 is also electrically connected to the p-side electrode 15 and the n-side electrode 4 via the n-side lead electrode 17 and the p-side lead electrode 18.
  • the controller 102 applies a predetermined bias voltage between the p-side electrode 15 and the n-side electrode 4 and a modulation voltage as a modulation signal having substantially the same amplitude in the positive and negative directions centering on the bias voltage. It is configured as, for example, realized by a known IC driver for laser driving.
  • the modulation frequency of the modulation voltage is, for example, 10 GHz or more.
  • the controller 102 applies a bias voltage and a modulation voltage between the p-side electrode 15 and the n-side electrode 4 to inject a current.
  • the p-side electrode 15 passes through the p-type contact layer 14 and the p-type spacer layer 13 as indicated by the path P in FIG. In the rate layer 12, it flows in the lateral direction of the drawing in the layer, then passes through the p-type spacer layer 11 and the upper composition gradient layer 10, and is concentrated in the opening 9a of the current confinement layer 9 to increase the density.
  • the lower composition gradient layer 8 is injected into the active layer 6.
  • the n-side carriers are injected from the n-side electrode 4 into the active layer 6 through the n-type contact layer 3 and the n-type cladding layer 5.
  • the active layer 6 injected with the carrier generates spontaneous emission light.
  • the generated spontaneous emission light lases at a wavelength of 850 nm or more, for example, a wavelength of 1000 nm band by the light amplification action of the active layer 6 and the action of the optical resonator.
  • the surface emitting laser 101 outputs laser signal light corresponding to the modulation signal from the upper side of the upper DBR mirror 16.
  • the surface emitting laser 101 has a double intra cavity structure. As a result, the surface emitting laser 101 has low threshold current characteristics and high power efficiency characteristics because the number of hetero interfaces existing between the p-side electrode 15 and the n-side electrode 4 and the active layer 6 is small. Have.
  • the lower DBR mirror 2 is configured to have a periodic structure of a p-type low refractive index layer 2a and an n-type high refractive index layer 2b.
  • the capacity of the lower DBR mirror 2 is reduced.
  • the parasitic capacitance is reduced, the surface emitting laser 101 is prevented from reducing the cutoff frequency, and operates at a higher speed.
  • TMGa trimethylgallium
  • TMAl trimethylaluminum
  • AsH 3 arsine
  • an n-type semiconductor layer for example, silicon (Si), which is an n-type dopant, is doped to form a p-type semiconductor layer, for example, zinc (p-type dopant) is formed. Zn) is doped.
  • the high refractive index layer 2b of the lower DBR mirror 2 is formed by intentionally doping an n-type dopant.
  • the low refractive index layer 2a is formed by intentionally doping a p-type dopant.
  • Non-Patent Document 1 When growing an undoped lower DBR mirror by MOCVD as in the conventional surface emitting laser, carbon (C) in the organometallic material is in the semiconductor layer as shown in Non-Patent Document 1
  • the lower DBR mirror which is unintentionally auto-doped, tends to be a p-type conductivity type with a carrier concentration of 1 ⁇ 10 17 cm ⁇ 3 or more.
  • the p-type carrier concentration tends to be high because Al has a property of taking C together in the semiconductor layer.
  • the phenomenon that the lower DBR mirror tends to become a p-type conductivity as described above also occurs when the MBE method using an organometallic material is used. Thus, when the lower DBR mirror becomes p-type conductivity, the capacitance of the lower DBR mirror increases.
  • the lower DBR mirror 2 of the first embodiment when growing the high refractive index layer 2b, an n-type dopant is obtained so that it becomes an n-type conductivity type even if C is auto-doped. Dope. Then, by forming a periodic structure of the n-type high refractive index layer 2 b and the p-type low refractive index layer 2 a, the depletion layer is made to spread in the lower DBR mirror 2. Therefore, the problem of the increase in capacitance as in the conventional undoped lower DBR mirror does not occur.
  • the concentration of C doped in the semiconductor layer can be reduced by auto doping by increasing the flow rate of AsH 3 .
  • the manufacturing cost becomes high.
  • adopting the configuration of the lower DBR mirror 2 of the first embodiment is preferable because the capacitance of the lower DBR mirror can be reduced without increasing the manufacturing cost.
  • the p-side electrode 15 is formed on the p-type contact layer 14 using the lift-off method.
  • the p-side electrode 15 is covered with a SiN film, and etched to a depth reaching the n-type cladding layer 5 using an acidic etching solution or the like to form a cylindrical mesa post M.
  • heat treatment is performed in a water vapor atmosphere to selectively oxidize the Al-containing layer from the outer peripheral side of the mesa post M to form a current confinement layer 9.
  • the current confinement layer 9 can be formed into a desired shape easily and with high accuracy by selective oxidation of the Al-containing layer.
  • the n-side electrode 4 is formed on the surface of the n-type contact layer 3 on the outer peripheral side of the mesa post M, and the n-side lead electrode 17 and the p-side lead electrode 18 are formed.
  • the back surface of the n-type GaAs substrate 1 is polished to a desired thickness, and element separation is performed to complete the surface emitting laser 101. Then, the surface emitting laser 101 and a controller 102 having a known IC driver for laser driving are connected to complete the light source 100.
  • FIG. 3 is a diagram showing the relationship between the calculated carrier concentration and capacity of the DBR mirror.
  • Lines l1 and l2 indicate the results of Calculation 1 and Calculation 2, respectively.
  • a line 13 indicates a value in the case where the capacitance of the DBR mirror is not affected by the carriers contained in the DBR mirror but is simply determined by the dielectric constant of GaAs. This value is 0.12 pF. That is, the line L3 indicates the lower limit of the substantial capacity of the DBR mirror.
  • FIG. 3 shows that Calculation 1 has a smaller capacity than Calculation 2. That is, it was confirmed that the capacitance of the DBR mirror can be reduced by adopting a configuration in which the conductivity types of the low refractive index layer and the high refractive index layer are different from each other as in the first embodiment. In particular, by setting the carrier concentration to be smaller than 1 ⁇ 10 17 cm -3 in this configuration, the capacity can be reduced to such a value that there is no influence of the carriers in the DBR mirror, which is preferable.
  • FIG. 4 is a schematic cross-sectional view of a sample S in which a DBR mirror is manufactured on a substrate.
  • the prepared sample S is 40.5 of a low refractive index layer of Al 0.9 Ga 0.1 As and a high refractive index layer of GaAs on an n-type GaAs substrate S 2 having an ohmic electrode S 1 formed on the back surface.
  • a DBR mirror S3 having a periodic structure of pairs is stacked by MOCVD, and an ohmic electrode S4 is formed on the DBR mirror S3 and cut into a size of 600 ⁇ m ⁇ 600 ⁇ m.
  • sample groups 1 and 2 were produced in the case of preparation.
  • the low refractive index layer is p-type and the high refractive index layer is n-type, and the carrier concentration is changed for each sample.
  • both the low refractive index layer and the high refractive index layer are p-type, and the carrier concentration is changed for each sample.
  • the carrier concentration was set to the same carrier concentration in the low refractive index layer and the high refractive index layer to be paired.
  • the wavelength ⁇ was set to 1100 nm, and ⁇ / 4n was set.
  • FIG. 5 is a diagram showing the measurement results of the relationship between the p-type carrier concentration and the capacity of the DBR mirror.
  • shaft it has converted into the value of the size of 80 micrometers x 80 micrometers for comparison with calculation.
  • E is a symbol representing a power of 10, for example, "1.E + 01" means "1.0 ⁇ 10 1 ".
  • lines l1 and l2 show the results of Calculation 1 and Calculation 2, respectively, and a line l3 shows 0.12 pF, which is the value of the capacitance of the DBR mirror determined by the dielectric constant of GaAs.
  • black triangle indicates the measurement result of sample group 1
  • black circle indicates the measurement result of sample group 2.
  • the light source 100 according to the first embodiment has a reduced parasitic capacitance and operates at higher speed.
  • the light source 100 according to the first embodiment can realize a high frequency characteristic having a cutoff frequency of 20 GHz or more, which is required in recent years.
  • a light source 100 according to a modification of the first embodiment has the configuration shown in FIG. 1 and FIG. 2 and has the same configuration as the light source 100 according to the first embodiment except for the lower DBR mirror 2.
  • the lower DBR mirror 2 of the light source 100 according to the modification of the first embodiment is formed on the n-type GaAs substrate 1 via an undoped GaAs buffer layer.
  • the lower DBR mirror 2 is formed of a semiconductor multilayer film mirror.
  • the semiconductor multilayer mirror forming the lower DBR mirror 2 is a low refractive index layer 2a which is a first low refractive index layer formed of p-type Al 0.9 Ga 0.1 As, and n-type GaAs It is formed by the periodic structure of the high refractive index layer 2b which is the formed first high refractive index layer.
  • the lower DBR mirror 2 has, for example, 40.5 pairs of a low refractive index layer 2a and a high refractive index layer 2b, where one pair is a low refractive index layer 2a and a high refractive index layer 2b.
  • the thicknesses of the low refractive index layer 2a and the high refractive index layer 2b are both ⁇ / 4n ( ⁇ : oscillation wavelength, n: refractive index).
  • the p-type carrier concentration of the low refractive index layer 2a is 1 ⁇ 10 16 cm ⁇ 3 and the n-type carrier concentration of the high refractive index layer 2 b is 1 ⁇ 10 15 cm ⁇ 3 .
  • Each of the low refractive index layer 2 a and the high refractive index layer 2 b is formed without intentionally doping a p-type dopant and an n-type dopant.
  • FIG. 6 is a diagram showing the relationship between the formation conditions of undoped GaAs and the conductivity. That is, in FIG. 6, when forming the undoped GaAs none of p-type dopant and n-type dopant is not intentionally added by the MOCVD method, the horizontal axis the growth temperature (° C.), the AsH 3 flow rate (ccm ) Is shown on the vertical axis. Circles in the graph of FIG. 6 indicate experimental results. As shown in the experimental results, when the flow rate of AsH 3 is set to 210 ccm at a growth temperature of 710 ° C.
  • GaAs is formed intentionally without adding either a p-type dopant or an n-type dopant
  • p-type carrier GaAs with a concentration of 1 ⁇ 10 15 cm -3 is formed.
  • the n-type carrier concentration is 1 ⁇ 10 15.
  • a cm -3 of GaAs is formed.
  • GaAs formed without intentional addition becomes n-type. That is, in the upper right region of FIG. 6, n-type GaAs is formed.
  • the growth temperature of GaAs is low or the flow rate of AsH 3 decreases, as shown in the lower left region of FIG. 6, neither p-type dopant nor n-type dopant is intentionally added.
  • the GaAs formed on is p-type.
  • the formed GaAs has a p-type or n-type conductivity depending on the remaining impurities.
  • the conductivity type of the dopant having a large total amount determines the conductivity type of GaAs.
  • the p-type dopant is, for example, carbon (C), zinc (Zn) or the like
  • the n-type dopant is, for example, silicon (Si), tin (Sn) or the like.
  • GaAs becomes n-type. Also, if the total amount of p-type dopants is larger than the total amount of n-type dopants contained in the remaining impurities, GaAs will be p-type.
  • AlGaAs of high aluminum composition is formed by MOCVD method without intentionally doping either p-type dopant or n-type dopant
  • the formed AlGaAs is n-type regardless of the forming conditions. It does not become. This is due to the high binding energy of the aluminum group and the methyl group contained in TMA.
  • AlGaAs with a high aluminum composition means Al 1-x Ga x As (x ⁇ 0.5).
  • n-type dopants such as silicon (Si) and tin (Sn) may be doped.
  • the lower DBR mirror 2 of the light source 100 is formed without intentionally doping any of the p-type dopant and the n-type dopant. That is, the low refractive index layer 2a, which is the first low refractive index layer, and the high refractive index layer 2b, which is the first high refractive index layer, are intentionally both p-type dopant and n-type dopant. Formed by MOCVD without doping. As an example, the low refractive index layer 2a which is the first low refractive index layer is made of p-type Al 0.9 Ga 0.1 As without intentionally doping any of the p-type dopant and the n-type dopant.
  • the high refractive index layer 2b which is formed and is the first high refractive index layer is formed of n-type GaAs.
  • the formation temperature is 710 ° C.
  • the flow rate of AsH 3 is 840 ccm.
  • the p-type carrier concentration of the low refractive index layer 2a becomes 1 ⁇ 10 16 cm ⁇ 3
  • the n-type carrier concentration of the high refractive index layer 2 b becomes 1 ⁇ 10 15 cm ⁇ 3 .
  • the lower DBR mirror 2 is formed of a periodic structure of the p-type low refractive index layer 2a and the n-type high refractive index layer 2b. There is. As a result, since the depletion layer spreads at the interface of the pn junction between the low refractive index layer 2 a and the high refractive index layer 2 b, the capacity of the lower DBR mirror 2 is reduced. As a result, since the parasitic capacitance is reduced, the surface emitting laser 101 is prevented from reducing the cutoff frequency, and operates at a higher speed.
  • FIG. 7 is a schematic perspective view of the surface emitting laser array device according to the second embodiment.
  • a surface emitting laser array chip 210 is mounted on a known flat package 201 called a ceramic leaded chip carrier (CLCC).
  • CLCC ceramic leaded chip carrier
  • the surface emitting laser array chip 210 is connected to the metal caster (electrode) 202 by a wire (not shown).
  • FIG. 8 is a schematic plan view of the surface emitting laser array chip 210 shown in FIG.
  • the surface emitting laser array chip 210 is provided at the central portion, and includes a surface emitting laser array portion 205 formed by two-dimensionally arranging 40 surface emitting lasers 206 of the present invention;
  • the plurality of electrode pads 203 are provided around the surface emitting laser array unit 205 and connected to the electrodes of the surface emitting lasers 206 of the surface emitting laser array unit 205 by wiring (not shown).
  • each electrode pad 203 is connected to the metal caster 202 of the flat package 201.
  • the metal caster 202 is electrically connected to an external control circuit (not shown) for controlling the light emission of each surface emitting laser 206.
  • the surface emitting laser 206 for example, the surface emitting laser 101 according to the first embodiment can be used.
  • Each surface emitting laser 206 of the surface emitting laser array unit 205 is applied with a bias voltage and a modulation voltage from an external control circuit via the metal caster 202 and the electrode pad 203, and a laser signal of a predetermined wavelength from the top Emit light.
  • the surface emitting laser array device 200 is capable of high speed operation because parasitic capacitance is reduced and electrical crosstalk between the surface emitting lasers 206 is also suppressed, and jitter during modulation is also suppressed. It becomes.
  • the surface emitting laser array part 205 of this surface emitting laser array apparatus 200 arranges the surface emitting lasers 206 two-dimensionally, you may arrange them one-dimensionally.
  • the number of surface emitting lasers 206 constituting the surface emitting laser array unit 205 is not particularly limited.
  • a signal light source for optical interconnection one in which 4 to 15 surface emitting lasers are one-dimensionally arrayed is suitably used in the current optical module.
  • FIG. 9 is a schematic cross-sectional view of a surface emitting laser package according to the third embodiment.
  • the surface emitting laser package 300 includes the surface emitting laser 312 of the present invention, a substrate 311 on which the surface emitting laser 312 is mounted, an electrode 313 provided on the substrate 311, and the surface emitting laser 312 and electrodes.
  • a surface emitting laser module 310 having a wire 314 connecting the optical fiber 313, a housing 320 for housing the surface emitting laser module 310, and a lens 323 provided above the surface emitting laser module 310 and held in the housing 320 by an arm 324. And an optical fiber mount 321 provided on the top of the housing 320, and an optical fiber 322 inserted and held in the optical fiber mount 321.
  • the electrode 313 is electrically connected to an external control circuit (not shown) for controlling the light emission state of the surface emitting laser module 310.
  • surface emitting laser 312 for example, surface emitting laser 101 according to the first embodiment can be used.
  • the surface emitting laser 312 is applied with a bias voltage and a modulation voltage from an external control circuit via the electrode 313 and the wire 314, and emits laser signal light L1 of a predetermined wavelength from the top.
  • the lens 323 condenses the laser signal light L 1 and couples it to the optical fiber 322.
  • the optical fiber 322 transmits the coupled laser signal light L1.
  • the surface emitting laser package 300 can operate at high speed because parasitic capacitance is reduced.
  • FIG. 10 is a schematic partial cross-sectional view of the optical pickup according to the fourth embodiment.
  • the optical pickup 301 includes a surface emitting laser 332, a substrate 331 on which the surface emitting laser 332 is mounted, an electrode 333 provided on the substrate 331, and a driving IC 334 mounted on the substrate 331.
  • a surface emitting laser module 330 made of a wire 335 which sequentially connects the surface emitting laser 332, the driving IC 334 and the electrode 333 and a resin 336 sealing these elements, and a half provided above the surface emitting laser module 330
  • an optical sensor 350 provided on the opposite side to the optical storage medium 360.
  • the surface emitting laser 332 for example, the surface emitting laser 101 according to the first embodiment can be used.
  • the upper portion of the resin 336 is processed into a convex shape to form a lens 336a.
  • the electrode 333 is electrically connected to an external control circuit (not shown) (not shown) for controlling the light emitting state of the optical pickup 301.
  • the surface emitting laser 332 is applied with a bias voltage and a modulation voltage by a drive IC 334 supplied with power and an electrical signal from an external control circuit via an electrode 333 and a wire 335, and the laser signal light L2 is applied from the top Emit
  • the lens 336a of the resin 336 converts the laser signal light L2 into parallel light (laser signal light L3).
  • the half mirror 340 condenses the laser signal light L 3 on a predetermined position of the optical storage medium 360.
  • the laser signal light L3 is reflected by the optical storage medium 360, and the reflected signal light L4 including the information recorded in the optical storage medium 360 is generated.
  • the reflected signal light L4 sequentially passes through the lens 342 and the half mirror 340.
  • the light sensor 350 receives the reflected signal light L4.
  • the optical sensor 350 converts the reflected signal light L4 into an electric signal, and the converted electric signal is transmitted to a personal computer or the like connected to the writing / reading device to read out the recorded information.
  • the optical pickup 301 can operate at high speed because parasitic capacitance is reduced.
  • each surface emitting laser may be replaced with, for example, a surface emitting laser array device as in the second embodiment.
  • the surface emitting laser of the present invention is applied to a surface emitting laser package for communication or an optical pickup used for an optical storage medium writing / reading device.
  • the surface emitting laser is not limited to this, and may also be used as a surveying instrument, an optical instrument such as a laser pointer, an optical mouse, or a printer, a light source for scanning exposure of a photoresist, a light source for laser pumping, or a light source for processing fiber laser. it can.
  • FIG. 11 is a schematic plan view showing a state in which two optical transmission / reception modules 400A and 400B according to the fifth embodiment are connected via two optical waveguides 410A and 410B.
  • a light transmitting / receiving module 400A includes a holding member 401A and elements provided on the holding member 401A, that is, spacers for mounting the optical waveguides 410A and 410B such as optical fibers and positioning them.
  • the surface emitting laser 402A of the present invention transmits an optical signal through the optical waveguide 410A, the light receiving element 403A receives the optical signal transmitted through the optical waveguide 410B and converts it into an electrical signal, and the surface emitting laser 402A.
  • the surface emitting laser 402A is controlled to emit light through a drive circuit 404A by a control signal from an external control unit (not shown). Further, the electric signal converted by the light receiving element 403A is transmitted to the control unit via the amplifier circuit 405A.
  • the wire bonding of the drive circuit 404A and the surface emitting laser 402A, and the amplifier circuit 405A and the light receiving element 403A is omitted.
  • the optical transmission / reception module 400B has the same configuration as the optical transmission / reception module 400A, but the configuration related to transmission and the configuration related to reception are replaced with those of the optical transmission / reception module 400A. That is, the optical transmission / reception module 400B transmits an optical signal through the holding member 401B, the respective elements provided on the holding member 401B, that is, the spacer 406B for positioning the optical waveguides 410A and 410B, and the optical waveguide 410B.
  • Surface-emitting laser 402B according to the present invention, a light-receiving element 403B for receiving an optical signal transmitted through the optical waveguide 410A and converting it into an electric signal, a drive circuit 404B for controlling the light emission state of the surface-emitting laser 402B, and the light-receiving element
  • the amplifier circuit 405B is configured to amplify the electrical signal converted by the 403B.
  • the surface emitting laser 402B is controlled to emit light through a drive circuit 404B by a control signal from an external control unit (not shown). Further, the electric signal converted by the light receiving element 403B is transmitted to the control unit via the amplification circuit 405B.
  • the light transmitting / receiving modules 400A and 400B use the surface emitting lasers 402A and 402B of the present invention with reduced parasitic capacitance, they can operate at high speed.
  • the light coupling portion between the surface emitting lasers 402A and 402B and the optical waveguides 410A and 410B in the light transmitting and receiving modules 400A and 400B shown in FIG. 11 will be specifically described.
  • the optical coupling portion will be described using the optical transceiver module 400A, the surface emitting laser 402A, and the optical waveguide 410A, but these optical coupling portions are the optical transceiver module 400B, the surface emitting laser 402B, and the optical waveguide 410B.
  • the invention is also applicable to the combination of
  • FIG. 12 is a side view showing an example of an optical coupling portion between the surface emitting laser 402A and the optical waveguide 410A in the optical transceiver module 400A shown in FIG.
  • the end face of the optical waveguide 410A is processed so as to be inclined at about 45 degrees with respect to the optical axis, and a reflection film 411A as an optical coupling means is formed on the end face and mirror finished ing.
  • the relative position between the surface emitting laser 402A and the reflecting film 411A is positioned by the spacer 406A, and the surface emitting laser 402A is adjusted to be positioned below the reflecting film 411A.
  • the light signal L6 emitted from the surface emitting laser 402A is reflected by the reflective film 411A, coupled to the optical waveguide 410A, and propagates in the optical waveguide 410A.
  • FIG. 13 is a side view showing another example of the light coupling portion between the surface emitting laser 402A and the optical waveguide 410A.
  • the light coupling means is on the surface emitting laser 402A and on the side of the end face of the optical waveguide 410A, the incident face 420a facing the surface emitting laser 402A and the outgoing face facing the end face of the optical waveguide 410A.
  • a mirror assembly 420 provided with a reflective surface 421 therein.
  • the light signal L6 emitted from the surface emitting laser 402A enters the mirror assembly 420 from the incident surface 420a, is reflected by the reflecting surface 421, is emitted from the emission surface 420b, and is coupled at the end face of the optical waveguide 410A. It propagates in 410A.
  • a micro lens (array) for collimating or condensing may be provided on the incident surface 420 a and / or the emitting surface 420 b of the mirror assembly 420.
  • FIG. 14 is a side view with a part in cross section showing still another example of the light coupling portion between the surface emitting laser 402A and the optical waveguide 410A.
  • the optical waveguide 410A which is an optical fiber
  • the optical fiber core wire 431 is bent smoothly as one of the optical coupling means.
  • the end face is connected to the optical waveguide 410A and the other end face is held so as to face the surface emitting laser 402A.
  • the optical signal L6 emitted from the surface emitting laser 402A is incident from the end face of the optical fiber core 431, propagates the optical fiber core 431, and then is coupled and propagated in the optical waveguide 410A.
  • FIG. 15 is a side view showing still another example of the light coupling portion between the surface emitting laser 402A and the optical waveguide 410A.
  • a wedge-shaped groove 412A having an inclined inner surface inclined at approximately 45 degrees with respect to the optical axis is formed.
  • a reflective film 411A is formed on the inclined inner surface, and is mirror-finished.
  • the groove 412A and the reflective film 411A constitute an optical coupling means.
  • the surface emitting laser 402A is directly attached to the optical waveguide 410A at a position on the groove 412A.
  • the surface emitting laser 402A is configured to emit the light signal L6 to the substrate side, that is, the lower side. Then, the light signal L6 emitted from the surface emitting laser 402A is reflected by the reflection film 411A formed on the inclined inner surface of the groove 412A, is coupled to the optical waveguide 410A, and propagates in the optical waveguide 410A.
  • FIG. 16 is a schematic configuration diagram of a wavelength multiplexing transmission system according to the sixth embodiment. As shown in FIG.
  • the wavelength multiplexing transmission system 500 is connected with signal generation processing means 501 such as a computer, board or chip, etc., signal generation processing means 501 and electrical wiring 508A, 508B, and CPU, MPU, wavelength A communication control circuit 502 comprising a control circuit, etc., and a surface emitting laser array 503 and a light receiving element integration unit 504 connected to the communication control circuit 502 by electric wires 509A and 509B, a surface emitting laser array 503 and an optical fiber array 510A.
  • a wavelength multiplexing optical multiplexer 506 connected with the light receiving element integration unit 504 and the optical fiber array 510B, and the wavelength multiplexing optical multiplexer 505 and the wavelength multiplexing optical demultiplexer 506, respectively.
  • the surface emitting laser array 503 is one in which the surface emitting lasers of the present invention having different oscillation wavelengths are one-dimensionally or two-dimensionally arranged.
  • the signal generation processing unit 501 generates an electric signal to be transmitted to the communication target 507, and transmits the electric signal to the communication control circuit 502 through the electric wiring 508A.
  • the communication control circuit 502 supplies driving power to the surface emitting laser array 503 through the electrical wiring 509A, and also supplies different signals to the surface emitting lasers constituting the surface emitting laser array 503 to generate optical signals.
  • the optical fibers constituting the optical fiber array 510A are optically coupled to the surface emitting lasers constituting the surface emitting laser array 503, and the generated optical signals are wavelength multiplexed by an optical fiber different for each signal light. Transmit to the transmitter 505.
  • the wavelength multiplexing optical multiplexer 505 wavelength multiplexes each transmitted optical signal and couples it to one optical fiber 511A.
  • the optical fiber 511 ⁇ / b> A transmits the wavelength-multiplexed optical signal to the communication target 507.
  • the wavelength division multiplexing optical demultiplexer 506 demultiplexes the wavelength-multiplexed optical signal transmitted from the communication target 507 via the optical fiber 511B for each wavelength to construct each optical fiber array 510B.
  • the fiber is coupled to each optical signal.
  • the optical fiber array 510 B transmits each light signal to the light receiving element integration unit 504.
  • the respective optical fibers constituting the optical fiber array 510B are optically coupled to the respective optical fibers constituting the optical fiber array 510B, and the respective light receiving elements constituting the light receiving element integration unit 504 It is converted into an electrical signal, and each electrical signal is transmitted to the communication control circuit 502 through the electrical wiring 509B.
  • the communication control circuit 502 transmits each electrical signal to the signal generation processing means 501 via the electrical wiring 508B.
  • Signal generation processing means 501 performs signal processing of each electrical signal.
  • this wavelength multiplexing transmission system 500 uses the surface emitting laser array 503 of the present invention with reduced parasitic capacitance, high speed, large capacity wavelength multiplexing transmission is possible.
  • each optical signal from each surface emitting laser constituting the surface emitting laser array 503 is coupled to one optical fiber 511A by the wavelength multiplexing optical multiplexer 505, high throughput can be achieved with one fiber. Can transmit a large amount of signals.
  • each of the surface emitting laser array 503 and the light receiving element integration unit 504 is directly connected to the communication target 507 by the optical fiber array to form a parallel transmission system. It can also be done. Furthermore, since the surface emitting laser array of the present invention is excellent in high frequency modulation characteristics, long distance communication exceeding 200 m can be realized at a transmission speed exceeding 50 Gbit / s.
  • the entire lower DBR mirror is configured of the first low refractive index layer and the first high refractive index layer having different conductivity types, but the present invention is not limited to this.
  • the first low refractive index layer and the first high refractive index layer may have different conductivity types at least in part.
  • the first low refractive index layer is p-type and the first high refractive index layer is n-type, but it is sufficient if they have different conductivity types, so the first low refractive index layer is n-type
  • the first high refractive index layer may be p-type.
  • the entire upper DBR mirror is formed of a dielectric multilayer film, but at least a part of the upper DBR mirror may be a dielectric multilayer film, and the other part may be a semiconductor multilayer film.
  • the upper DBR mirror may be formed of a semiconductor multilayer film, and the upper electrode may be formed on the upper DBR mirror. That is, the upper part of the active layer may not necessarily have the intra-cavity structure.
  • the semiconductor material constituting the surface emitting laser is not limited to AlGaAs type and GaInAs type, and other semiconductor materials such as InP type can be used according to the laser oscillation wavelength.
  • the present invention has been described with the embodiment using a GaAs substrate, it may be an InP substrate.
  • the layer to be oxidized is AlGaInAs or AlInAs.
  • the semiconductor material of the lower semiconductor multilayer reflector is appropriately selected according to the laser oscillation wavelength.
  • the first low refractive index layer may be made of AlGaAs, and the first high refractive index layer may be made of (Al) GaAs.
  • the first low refractive index layer may be made of AlGaInP, and the first high refractive index layer may be made of (Al) GaInP.
  • the first low refractive index layer may be made of InP, and the first high refractive index layer may be made of AlGaInAs.
  • (Al) GaAs and (Al) GaInP are meant to include cases where the composition of Al is zero.
  • the n-type semiconductor layer is formed between the substrate and the active layer, and the p-type semiconductor layer is formed above the active layer.
  • the n-type semiconductor layer is formed above the active layer. May be formed.
  • the present invention is not limited to this, and may be applied to other electronic elements such as a semiconductor modulator. That is, the semiconductor multi-layer structure includes a periodic structure of the first semiconductor layer and the second semiconductor layer, and at least a part of the semiconductor multi-layer structure, the first semiconductor layer and the second semiconductor layer have different conductivity types. If it is an electronic device having a depletion layer spreads at the interface of the pn junction between the first semiconductor layer and the second semiconductor layer, the parasitic capacitance can be reduced, which is suitable for high-speed operation.
  • the present invention is not limited by the above embodiment.
  • the present invention also includes those configured by appropriately combining the components of the above-described embodiments. It is apparent to those skilled in the art that various changes or modifications can be added to the above embodiment. It is also apparent from the scope of the claims that the embodiments added with such alterations or improvements can be included in the technical scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 第1半導体層と第2半導体層との周期構造で構成される半導体多層構造を備える電子素子であって、前記半導体多層構造の少なくとも一部において、前記第1半導体層と前記第2半導体層とが互いに異なる導電型を有する。前記第1半導体層と前記第2半導体層とが互いに異なる屈折率を有しており、前記半導体多層構造は多層膜反射鏡として機能する。これにより、寄生容量が低減された電子素子、面発光レーザ、面発光レーザアレイ、光源、および光モジュールを提供する。

Description

電子素子、面発光レーザ、面発光レーザアレイ、光源、および光モジュール
 本発明は、電子素子、面発光レーザ、面発光レーザアレイ、光源、および光モジュールに関するものである。
 たとえば光インターコネクション用の光源として、イントラキャビティ構造を有する面発光レーザが開示されている(特許文献1、2参照)。イントラキャビティ構造とは、光共振器を構成する2つの反射鏡(たとえばDBR(Distributed Bragg Reflector)ミラー)の内側から、一方または両方の反射鏡を介さずに活性層に電流を注入する構造を意味する。
 特許文献1に開示される面発光レーザは、基板上に下部DBRミラーが形成されている。そして、この下部DBRミラー上にn型コンタクト層と活性層とが順次形成され、かつn型コンタクト層上にn側電極が形成されている。また、活性層の上側には、p側電極が形成されており、このp側電極より上側に上部DBRミラーが形成されている。特許文献1に開示される面発光レーザは、上部および下部DBRミラーの両方を介さずに活性層に電流を注入できるダブルイントラキャビティ構造を有している。特許文献1に開示される面発光レーザは、イントラキャビティ構造を有することによって、低しきい値電流および高電力効率を実現している。
 ここで、下部DBRミラーを介さずに活性層に電流を注入するイントラキャビティ構造の場合は、通常は、寄生容量の低減等のために、下部DBRミラーはアンドープの半導体からなる。
 特許文献1 米国特許第6750071号明細書
 特許文献2 特開2004-103754号公報
 非特許文献1 S.Sekiguchi, et al., Jpn. J. Appl. Phys., Vol.36, pp.2638-2639 (1997)
 ところで、面発光レーザに限らず、変調した電気信号を印加して動作させる電子素子の場合、寄生容量によって電子素子のカットオフ周波数が低減したり、電子素子をアレイ状に構成した場合に素子間のクロストークが増大したりする等の問題が発生する。特に、近年、20GHz以上のカットオフ周波数の高周波特性が要求される中、寄生容量が低減された電子素子が強く望まれている。
 本発明は、上記に鑑みてなされたものであって、寄生容量が低減された電子素子、面発光レーザ、面発光レーザアレイ、光源、および光モジュールを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る電子素子は、第1半導体層と第2半導体層との周期構造で構成される半導体多層構造を備える電子素子であって、前記半導体多層構造の少なくとも一部において、前記第1半導体層と前記第2半導体層とが互いに異なる導電型を有することを特徴とする。
 また、本発明に係る電子素子は、上記の発明において、前記第1半導体層と前記第2半導体層とが互いに異なる屈折率を有しており、前記半導体多層構造は多層膜反射鏡として機能することを特徴とする。
 また、本発明に係る面発光レーザは、第1低屈折率層と該第1低屈折率層より高い屈折率を有する第1高屈折率層との周期構造で構成される下部半導体多層膜反射鏡と、第2低屈折率層と該第2低屈折率層より高い屈折率を有する第2高屈折率層との周期構造で構成される上部多層膜反射鏡と、前記下部半導体多層膜反射鏡と前記上部多層膜反射鏡との間に設けられた活性層と、前記活性層と前記下部半導体多層膜反射鏡との間に設けられ、前記活性層に電流を供給するための下部電極が形成された下部コンタクト層と、を備え、前記下部半導体多層膜反射鏡の少なくとも一部において、前記第1低屈折率層と前記第1高屈折率層とが互いに異なる導電型を有することを特徴とする。
 また、本発明に係る面発光レーザは、上記の発明において、前記互いに異なる導電型を有する第1低屈折率層と第1高屈折率層とにおけるp型およびn型のキャリア濃度が、いずれも1×1017cm-3より小さいことを特徴とする。
 また、本発明に係る面発光レーザは、上記の発明において、前記下部半導体多層膜反射鏡は、前記炭素を取り込む性質を有する元素を含むことを特徴とする。
 また、本発明に係る面発光レーザは、上記の発明において、前記炭素を取り込む性質を有する元素はアルミニウム(Al)であることを特徴とする。
 また、本発明に係る面発光レーザは、上記の発明において、前記下部半導体多層膜反射鏡において、前記第1低屈折率層がAlGaAsからなり、前記第1高屈折率層が(Al)GaAsからなることを特徴とする。
 また、本発明に係る面発光レーザは、上記の発明において、前記下部半導体多層膜反射鏡において、前記第1低屈折率層がAlGaInPからなり、前記第1高屈折率層が(Al)GaInPからなることを特徴とする。
 また、本発明に係る面発光レーザは、上記の発明において、前記下部半導体多層膜反射鏡において、前記第1低屈折率層がInPからなり、前記第1高屈折率層がAlGaInAsからなることを特徴とする。
 また、本発明に係る面発光レーザは、上記の発明において、前記上部多層膜反射鏡と前記活性層との間に設けられ、Al1-xGaAs(0≦x<0.2)からなる電流注入部と選択酸化によって形成された(Al1-xGaからなる電流狭窄部とを有する電流狭窄層と、前記上部多層膜反射鏡と前記電流狭窄層との間に設けられ、前記活性層に電流を供給するための上部電極が形成された上部コンタクト層と、前記上部コンタクト層と前記電流狭窄層との間に設けられ、前記上部コンタクト層より高い導電率を有する高導電率層と、を備えることを特徴とする。
 また、本発明に係る面発光レーザは、上記の発明において、カットオフ周波数が20GHz以上であることを特徴とする。
 また、本発明に係る面発光レーザアレイは、上記の発明のいずれか一つに記載の面発光レーザが1次元または2次元のアレイ状に配列されたものであることを特徴とする。
 また、本発明に係る光源は、上記の発明のいずれか一つに記載の面発光レーザまたは上記の発明の面発光レーザアレイと、前記面発光レーザまたは前記面発光レーザアレイに変調信号を印加する制御器と、を備えることを特徴とする。
 また、本発明に係る光モジュールは、上記の発明のいずれか一つに記載の面発光レーザ、上記の発明の面発光レーザアレイ、または上記の発明の光源を備えることを特徴とする。
 本発明によれば、よりいっそう寄生容量が低減された電子素子、面発光レーザ、面発光レーザアレイ、光源、および光モジュールを実現できるという効果を奏する。
図1は、実施の形態1に係る光源の構成を模式的に示した図である。 図2は、図1に示す面発光レーザのA-A線要部断面図である。 図3は、計算したDBRミラーのキャリア濃度と容量との関係を示す図である。 図4は、基板上にDBRミラーを作製したサンプルの模式的な断面図である。 図5は、DBRミラーのp型キャリア濃度と容量との関係の測定結果を示す図である。 図6は、アンドープのGaAsの形成条件と、導電性との関係を示す図である。 図7は、実施の形態2に係る面発光レーザアレイの模式的な斜視図である。 図8は、図7に示す面発光レーザアレイの模式的な平面図である。 図9は、実施の形態3に係る面発光レーザパッケージの模式的な断面図である。 図10は、実施の形態4に係る光ピックアップの模式的な一部断面図である。 図11は、実施の形態5に係る2つの光送受信モジュールが、2本の光導波路を介して接続している状態を示す模式的な平面図である。 図12は、図11に示す光送受信モジュールにおける面発光レーザと光導波路との光結合部分の一例を示す側面図である。 図13は、面発光レーザと光導波路との光結合部分の他の一例を示す側面図である。 図14は、面発光レーザと光導波路との光結合部分のさらに他の一例を示す一部断面側面図である。 図15は、面発光レーザと光導波路との光結合部分のさらに他の一例を示す側面図である。 図16は、実施の形態6に係る波長多重伝送システムの模式的な構成図である。
 以下に、図面を参照して本発明に係る電子素子、面発光レーザ、面発光レーザアレイ、光源、および光モジュールの実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。また、図面において、同一または対応する要素には、適宜同一符号を付している。また、図面は模式的なものであり、各層の厚みと幅との関係、各層の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている。
(実施の形態1)
 図1は、本発明の実施の形態1に係る光源100の構成を模式的に示した図である。図1に示すように、この光源100は、電子素子の一例である面発光レーザ101と、面発光レーザ101を制御する制御器102とを備える。図2は、図1に示す面発光レーザ101のA-A線要部断面図である。
 図1、2に示すように、この面発光レーザ101は、面方位(001)のn型GaAs基板1上に積層された下部半導体多層膜反射鏡として機能する下部DBRミラー2、下部コンタクト層であるn型コンタクト層3、下部電極であるn側電極4、n型クラッド層5、活性層6、p型クラッド層7、下部組成傾斜層8、電流狭窄層9、上部組成傾斜層10、p型スペーサ層11、p型高導電率層12、p型スペーサ層13、上部コンタクト層であるp型コンタクト層14、上部電極であるp側電極15、上部多層膜反射鏡として機能する上部DBRミラー16、n側引出電極17、およびp側引出電極18を備える。
 下部DBRミラー2と上部DBRミラー16とは、光共振器を形成している。活性層6は、下部DBRミラー2と上部DBRミラー16との間に設けられている。電流狭窄層9は、上部DBRミラー16と活性層6との間に設けられている。p型コンタクト層14は、上部DBRミラー16と電流狭窄層9との間に設けられている。n型コンタクト層3は、下部DBRミラー2と活性層6との間に設けられている。上部組成傾斜層10および下部組成傾斜層8は、電流狭窄層9を挟むように形成されており、上部組成傾斜層10はp型コンタクト層14側に配置され、下部組成傾斜層8は活性層6側に配置されている。p型高導電率層12は、p型コンタクト層14と電流狭窄層9との間に設けられている。
 また、n型クラッド層5からp型コンタクト層14までの積層構造は、エッチング処理等によって柱状に成形されたメサポストMとして形成されている。メサポスト径はたとえば直径30μmである。また、n型コンタクト層3はメサポストMの外周側に延設している。そして、p側電極15はp型コンタクト層14上に形成され、n側電極4はn型コンタクト層3上に形成されている。
 つぎに、各構成要素について具体的に説明する。下部DBRミラー2は、n型GaAs基板1上にアンドープGaAsバッファ層を介して形成される。下部DBRミラー2は、p型のAl0.9Ga0.1Asからなる第1低屈折率層である低屈折率層2aと、n型のGaAsからなる第1高屈折率層である高屈折率層2bとの周期構造で構成された半導体多層膜ミラーとして形成されている。下部DBRミラー2は、低屈折率層2aと高屈折率層2bとのペアを1ペアとすると、たとえば40.5ペアからなる。また、低屈折率層2aおよび高屈折率層2bの厚さは、λ/4n(λ:発振波長、n:屈折率)とされている。低屈折率層2aのp型キャリア濃度および高屈折率層2bのn型キャリア濃度は、いずれも5×1016cm-3である。
 n型コンタクト層3およびn型クラッド層5は、n型GaAsを材料として形成される。p型クラッド層7は、p型AlGaAsを材料として形成される(たとえば、Al0.3Ga0.7Asが望ましい。)。n型クラッド層5とp型クラッド層7とは活性層6を挟むように形成されており、分離閉じ込め(SCH:Separate Confinement Heterostructure)構造を形成している。
 また、p型スペーサ層11は、p型AlGaAsを材料として形成される。p型高導電率層12は、p型AlGaAsを材料として形成される。p型スペーサ層13は、p型AlGaAsを材料として形成される。そして、p型コンタクト層14は、p型GaAsを材料として形成される。
 また、n型クラッド層5、p型クラッド層7、p型スペーサ層11、13には、キャリア濃度がたとえば1×1018cm-3程度となるようにp型またはn型ドーパントが添加されており、確実にp型またはn型の導電型とされている。また、n型コンタクト層3、p型コンタクト層14のキャリア濃度はたとえばそれぞれ2×1018cm-3、3×1019cm-3程度である。また、p型高導電率層12のキャリア濃度は3×1019cm-3であり、p型スペーサ層11、13よりも高く、p型コンタクト層14より高い導電率とされている。このp型高導電率層12は、p側電極15から注入される電流の紙面横方向における経路となり、より効率的に活性層6に電流を注入するように機能している。
 なお、p型高導電率層12のキャリア濃度は、高導電率、低抵抗の点からは3×1019cm-3以上が好ましく、製造上の容易さからは1×1021cm-3以下が好ましい。また、p型高導電率層は2層以上設けてもよい。
 電流狭窄層9は、電流注入部としての開口部9aと電流狭窄部としての選択酸化層9bとから構成されている。開口部9aはAl1-xGaAs(0≦x<0.2)からなり、選択酸化層9bは(Al1-xGaからなる。なお、xはたとえば0.02である。この電流狭窄層9は、たとえば厚さ30nmであり、Al1-xGaAsからなるAl含有層を選択酸化することによって形成される。すなわち、選択酸化層9bは、このAl含有層が外周部から積層面に沿って所定範囲だけ酸化されることで開口部9aの外周に輪帯状に形成されている。選択酸化層9bは、絶縁性を有し、p側電極15から注入される電流を狭窄して開口部9a内に集中させることで、開口部9a直下における活性層6内の電流密度を高めている。なお、開口部9aの開口径はたとえば6μmであるが、4μm~15μmが好ましく、5μm~10μmがさらに好ましい。
 活性層6は、3層の量子井戸層6aと2層の障壁層6bとが交互に積層した多重量子井戸構造(MQW:Multiple Quantum Well)を有する。なお、量子井戸層6aはたとえばGa0.75In0.25As等のGaInAs系の半導体材料からなる。障壁層6bはたとえばGaAsからなる。この活性層6は、p側電極15から注入されて電流狭窄層9によって狭窄された電流により、少なくとも850nm以上の波長の光を含む自然放出光を発するようにその半導体材料の組成および膜厚が設定されている。
 上部DBRミラー16は、第2低屈折率層として機能するSiO2層と、第2高屈折率層として機能するSiN層との周期構造で構成された誘電体多層膜ミラーとして形成されている。上部DBRミラー16は、SiO2層とSiN層とのペアを1ペアとすると、たとえば9ペアからなる。SiO2層およびSiN層の厚さはそれぞれ、下部DBRミラー2と同様にλ/4nとされている。なお、上部DBRミラー16の直径は、p型コンタクト層14の直径よりも小さいため、p型コンタクト層14は上部DBRミラー16の外周側に延設している。
 p側電極15は、活性層6に電流を注入するためのものであり、p型コンタクト層14の上記延設した部分の表面に、上部DBRミラー16を取り囲むようにリング状に形成されている。すなわち、p側電極15は、上部DBRミラー16を介さずにp型コンタクト層14上に形成されている。一方、n側電極4は、メサポストMの外周側に延設したn型コンタクト層3の延設部分の表面に形成され、活性層6に電流を注入するためのものであり、メサポストMの周囲を取り囲むようにC字状に形成されている。すなわち、n側電極4は、下部DBRミラー2を介さずにn型コンタクト層3上に形成されている。また、n側引出電極17およびp側引出電極18は、それぞれn側電極4およびp側電極15に接続している。このように、この面発光レーザ101は、下部DBRミラー2および上部DBRミラー16の両方を介さずに活性層6に電流を注入できるダブルイントラキャビティ構造を有している。
 また、制御器102は、n側引出電極17およびp側引出電極18を介してp側電極15およびn側電極4に電気的に接続している。この制御器102は、p側電極15とn側電極4との間に所定のバイアス電圧と、このバイアス電圧を中心として正負方向にほぼ同一の振幅を有する変調信号としての変調電圧とを印加するように構成されており、たとえばレーザ駆動用の公知のICドライバーにより実現される。変調電圧の変調周波数はたとえば10GHz以上である。
 つぎに、この光源100の動作について説明する。はじめに、制御器102が、p側電極15とn側電極4との間にバイアス電圧および変調電圧を印加し電流を注入する。p側のキャリア(ホール)については、主に図2の経路Pが示すように、p側電極15からp型コンタクト層14、p型スペーサ層13を通過し、高導電率のp型高導電率層12においては層内を紙面横方向に流れ、その後p型スペーサ層11、上部組成傾斜層10を通過し、電流狭窄層9の開口部9a内に集中して密度が高められた状態で、下部組成傾斜層8を介して活性層6に注入される。一方、n側のキャリア(電子)については、n側電極4からn型コンタクト層3、n型クラッド層5を通過して、活性層6に注入される。
 キャリアが注入された活性層6は、自然放出光を発生する。発生した自然放出光は、活性層6の光増幅作用と光共振器の作用とによって、850nm以上の波長、たとえば1000nm帯の波長においてレーザ発振する。その結果、この面発光レーザ101は、上部DBRミラー16上側から変調信号に対応するレーザ信号光を出力する。
 ここで、面発光レーザ101は、ダブルイントラキャビティ構造を有している。その結果、この面発光レーザ101は、p側電極15およびn側電極4と、活性層6との間に存在するヘテロ界面の数が少ないため、低しきい値電流特性および高電力効率特性を有する。
 さらに、この面発光レーザ101は、下部DBRミラー2が、p型の低屈折率層2aと、n型の高屈折率層2bとの周期構造で構成されている。その結果、低屈折率層2aと高屈折率層2bとのpn接合の界面で空乏層が広がるため、下部DBRミラー2の容量は低減する。その結果、この面発光レーザ101は寄生容量が低減するため、カットオフ周波数の低減が防止され、より高速で動作するものとなる。
(製造方法)
 つぎに、本実施の形態1に係る光源100の製造方法の一例について説明する。まず、MBE、ガスソースMBE、MOCVD等の公知の成長方法を用いて、表面にアンドープGaAsバッファ層を積層したn型GaAs基板1上に、下部DBRミラー2、n型コンタクト層3、n型クラッド層5、活性層6、p型クラッド層7、下部組成傾斜層8、電流狭窄層9を形成するためのAl1-xGaAsからなるAl含有層、上部組成傾斜層10、p型スペーサ層11、p型高導電率層12、p型スペーサ層13、p型コンタクト層14を順次積層形成する。
 なお、MOCVD法を用いる場合は、原料ガスとして、有機金属材料としてはトリメチルガリウム(TMGa)やトリメチルアルミニウム(TMAl)を用い、As材料としてはアルシン(AsH)などを用いる。また、n型の半導体層を形成する場合には、n型のドーパントであるたとえば珪素(Si)をドープし、p型の半導体層を形成する場合には、p型のドーパントであるたとえば亜鉛(Zn)をドープする。下部DBRミラー2の高屈折率層2bは、n型のドーパントを意図的にドープして形成される。低屈折率層2aは、p型のドーパントを意図的にドープして形成される。
 ところで、従来の面発光レーザのように、MOCVD法を用いてアンドープの下部DBRミラーを成長する場合に、非特許文献1で示されるように、有機金属材料中の炭素(C)が半導体層中に意図せずオートドープされ、下部DBRミラーが、キャリア濃度1×1017cm-3以上のp型の導電型になりやすい。特に、低屈折率層のように構成元素としてアルミニウム(Al)を含ませる場合、Alは半導体層中に一緒にCを取り込む性質を有するため、p型のキャリア濃度が高くなりやすい。このように下部DBRミラーがp型の導電型になりやすい現象は、有機金属材料を用いたMBE法を用いた場合にも発生する。このように下部DBRミラーがp型の導電型になった場合は、下部DBRミラーの容量が増大する。
 これに対して、本実施の形態1の下部DBRミラー2は、高屈折率層2bを成長する際には、Cがオートドープされたとしてもn型の導電型となるようにn型のドーパントをドープする。そして、このn型の高屈折率層2bとp型の低屈折率層2aとの周期構造を形成することによって、下部DBRミラー2内に空乏層が広がるようにしている。したがって、従来のアンドープの下部DBRミラーのような容量の増大の問題は発生しない。
 また、AsHを用いる場合、AsHの流量を増加させることによって、オートドープにより半導体層にドープされるCの濃度を減少させることができる。ただし、この方法によれば、AsHの使用量が非常に多くなるので、製造コストが高くなる。これに対して、本実施の形態1の下部DBRミラー2の構成を採用すれば、製造コストを高めることなく下部DBRミラーの容量を低減できるので好ましい。
 つぎに、リフトオフ法を用いて、p型コンタクト層14上にp側電極15を形成する。つぎに、p側電極15をSiN膜で覆い、酸性エッチング液等を用いてn型クラッド層5に到る深さまでエッチングして円柱状のメサポストMを形成する。
 つぎに、水蒸気雰囲気中において熱処理を行って、Al含有層をメサポストMの外周側から選択酸化し、電流狭窄層9を形成する。このように、電流狭窄層9はAl含有層の選択酸化によって簡易かつ高精度に所望の形状に形成できる。
 つぎに、メサポストMの外周側のn型コンタクト層3の表面にn側電極4を形成し、さらにn側引出電極17およびp側引出電極18を形成する。
 つぎに、上部DBRミラー16を形成した後に、n型GaAs基板1の裏面を研磨して所望の厚さとし、素子分離を行って、面発光レーザ101が完成する。そして、この面発光レーザ101と、レーザ駆動用の公知のICドライバーを備える制御器102とを接続し、光源100が完成する。
(DBRミラーの容量)
 つぎに、DBRミラーの容量についてより具体的に説明する。まず、Al0.9Ga0.1Asからなる低屈折率層とGaAsからなる高屈折率層との40.5ペアの周期構造で構成された、80μm×80μmのサイズのDBRミラーの容量を、キャリア濃度の設定値を変えながら計算した。この計算の際には、計算1として低屈折率層および高屈折率層の導電型が互いに異なる場合(すなわちいずれか一方がp型、もう一方がn型)と、計算2として低屈折率層および高屈折率層がいずれもp型である場合と、を計算した。なお、キャリア濃度については、ペアとなる低屈折率層および高屈折率層で同じキャリア濃度としている。また、各屈折率層の厚さについては、波長λを1100nmとして、λ/4nとしている。
 図3は、計算したDBRミラーのキャリア濃度と容量との関係を示す図である。線l1、l2はそれぞれ計算1、計算2の結果を示している。また、線l3は、DBRミラーの容量が、これに含まれるキャリアの影響を受けず、単にGaAsの誘電率で決まる容量となる場合の値を示している。この値は0.12pFである。すなわち、線L3は、DBRミラーの実質的な容量の下限を示している。
 図3は、計算1の方が計算2よりも容量が小さいことを示している。すなわち、実施の形態1のように、低屈折率層および高屈折率層の導電型が互いに異なる構成を採用することによって、DBRミラーの容量を低減できることが確認された。特に、本構成においてキャリア濃度を1×1017cm-3より小さくすることによって、DBRミラー内のキャリアの影響が全くない程度の値まで容量を低減できるので好ましい。
 つぎに、基板上にDBRミラーを作製し、その容量を測定した実験について説明する。図4は、基板上にDBRミラーを作製したサンプルSの模式的な断面図である。作製したサンプルSは、裏面にオーミック電極S1を形成したn型GaAs基板S2上に、Al0.9Ga0.1Asからなる低屈折率層とGaAsからなる高屈折率層との40.5ペアの周期構造で構成されたDBRミラーS3をMOCVD法によって積層形成し、さらにDBRミラーS3上にオーミック電極S4を形成し、600μm×600μmのサイズにカットしたものである。
 なお、作製の際には、以下のサンプル群1、2を作製した。サンプル群1は、低屈折率層がp型、高屈折率層がn型であり、サンプルごとにキャリア濃度を変えたものである。また、サンプル群2は、低屈折率層および高屈折率層がいずれもp型であり、サンプルごとにキャリア濃度を変えたものである。なお、各サンプル群において、キャリア濃度については、ペアとなる低屈折率層および高屈折率層で同じキャリア濃度とした。また、各屈折率層の厚さについては、波長λを1100nmとして、λ/4nとした。
 図5は、DBRミラーのp型キャリア濃度と容量との関係の測定結果を示す図である。なお、縦軸の容量については、計算との比較のため、80μm×80μmのサイズの値に換算している。また、縦軸および横軸において、「E」は10のべき乗を表す記号であり、たとえば「1.E+01」は「1.0×10」を意味する。また、図3と同様に、線l1、l2はそれぞれ計算1、計算2の結果を示し、線l3は、GaAsの誘電率で決まるDBRミラーの容量の値である0.12pFを示している。また、「黒三角」はサンプル群1の測定結果を示し、「黒丸」はサンプル群2の測定結果を示している。
 図5に示すように、各サンプル群の測定結果は対応する計算と良く一致しており、低屈折率層および高屈折率層の導電型が互いに異なる構成によってDBRミラーの容量を低減できることが実験的にも確認された。
 以上説明したように、本実施の形態1に係る光源100は、寄生容量が低減され、より高速で動作するものとなる。特に、本実施の形態1に係る光源100は、近年要求されている、カットオフ周波数が20GHz以上という高周波特性を実現できる。
(実施の形態1の変形例)
 つぎに、実施の形態1の変形例に係る光源100を説明する。実施の形態1の変形例に係る光源100は、図1及び図2に示した構成を有し、下部DBRミラー2以外は、実施の形態1に係る光源100と同じ構成を有する。実施の形態1の変形例に係る光源100の下部DBRミラー2は、n型GaAs基板1上にアンドープGaAsバッファ層を介して形成される。下部DBRミラー2は、半導体多層膜ミラーで形成される。下部DBRミラー2を形成する半導体多層膜ミラーは、p型のAl0.9Ga0.1Asで形成された第1低屈折率層である低屈折率層2a、及び、n型のGaAsで形成された第1高屈折率層である高屈折率層2bの、周期構造で形成される。下部DBRミラー2は、低屈折率層2aと高屈折率層2bとのペアを1ペアとすると、例えば、40.5ペアの低屈折率層2aと高屈折率層2bとを有する。また、低屈折率層2aおよび高屈折率層2bの厚さは、いずれも、λ/4n(λ:発振波長、n:屈折率)である。一例として、低屈折率層2aのp型キャリア濃度は1×1016cm-3であり、高屈折率層2bのn型キャリア濃度は1×1015cm-3である。低屈折率層2a及び高屈折率層2bは、いずれも、p型のドーパント及びn型のドーパントを意図的にドープせずに形成される。
 図6は、アンドープのGaAsの形成条件と、導電性との関係を示す図である。すなわち、図6において、p型のドーパント及びn型のドーパントのいずれも意図的に添加しないアンドープのGaAsをMOCVD法で形成するときの、成長温度(℃)を横軸、AsHの流量(ccm)を縦軸に示す。図6のグラフ中の丸印は、実験結果を示す。実験結果に示されるように、710℃の成長温度で、AsHの流量を210ccmとして、p型のドーパント及びn型のドーパントのいずれも意図的に添加せずにGaAsを形成すると、p型キャリア濃度が1×1015cm-3のGaAsが形成される。また、710℃の成長温度で、AsHの流量を840ccmとして、p型のドーパント及びn型のドーパントのいずれも意図的に添加せずにGaAsを形成すると、n型キャリア濃度が1×1015cm-3のGaAsが形成される。
 GaAsが形成されるときの成長温度が高くなるか、あるいは、AsHの流量が多くなると、TMGに含まれるメチル基の分解が促進されるので、p型のドーパント及びn型のドーパントのいずれも意図的に添加せずに形成されたGaAsはn型となる。すなわち、図6の右上の領域では、n型のGaAsが形成される。一方、GaAsの成長温度が低いか、あるいは、AsHの流量が少なくなると、図6の左下の領域に示されるように、p型のドーパント及びn型のドーパントのいずれも意図的に添加せずに形成されたGaAsはp型となる。以上のように、p型のドーパント及びn型のドーパントのいずれも意図的にドープしなくても、形成されるGaAsは、残留する不純物によって、p型またはn型の導電型を有する。GaAsに残留する不純物に含まれるp型のドーパントの総量と、n型のドーパントの総量とを比較したときに、総量が多いドーパントの導電型で、GaAsの導電型が決まる。p型のドーパントは、例えば、炭素(C)、亜鉛(Zn)などであり、n型のドーパントは、例えば、珪素(Si)、錫(Sn)などである。すなわち、残留する不純物中に含まれるp型のドーパントの総量より、n型のドーパントの総量が多ければ、GaAsはn型となる。また、残留する不純物中に含まれるn型のドーパントの総量より、p型のドーパントの総量が多ければ、GaAsはp型となる。
 これに対して、p型のドーパント及びn型のドーパントのいずれも意図的にドープせずに、MOCVD法で高アルミ組成のAlGaAsを形成すると、形成条件にかかわらず、形成されるAlGaAsはn型にはならない。これは、TMAに含まれるメチル基と、アルミ原子の結合エネルギーが高いことによる。ここで、高アルミ組成のAlGaAsとは、Al1-xGaAs(x≧0.5)をいう。n型の高アルミ組成のAlGaAsを形成するには、珪素(Si)、錫(Sn)などのn型のドーパントをドープすればよい。
 実施の形態1の変形例に係る光源100の下部DBRミラー2は、p型のドーパント及びn型のドーパントをいずれも意図的にドープせずに形成される。すなわち、第1低屈折率層である低屈折率層2a、及び、第1高屈折率層である高屈折率層2bが、交互に、p型のドーパント及びn型のドーパントをいずれも意図的にドープすることなくMOCVD法で形成される。一例として、p型のドーパント及びn型のドーパントをいずれも意図的にドープすることなく、第1低屈折率層である低屈折率層2aがp型のAl0.9Ga0.1Asで形成され、第1高屈折率層である高屈折率層2bがn型のGaAsで形成される。このとき、例えば、形成温度を710℃、AsHの流量を840ccmとする。これにより、低屈折率層2aのp型キャリア濃度は1×1016cm-3となり、高屈折率層2bのn型キャリア濃度は1×1015cm-3となる。
 実施の形態1の変形例に係る光源100の面発光レーザ101は、下部DBRミラー2が、p型の低屈折率層2aと、n型の高屈折率層2bとの周期構造で構成されている。その結果、低屈折率層2aと高屈折率層2bとのpn接合の界面で空乏層が広がるため、下部DBRミラー2の容量は低減する。その結果、この面発光レーザ101は寄生容量が低減するため、カットオフ周波数の低減が防止され、より高速で動作するものとなる。
(実施の形態2)
 つぎに、本発明の実施の形態2として、本発明の面発光レーザを用いた、光インターコネクション用の信号光源等に用いられる面発光レーザアレイ装置について説明する。図7は、実施の形態2に係る面発光レーザアレイ装置の模式的な斜視図である。図7に示すように、この面発光レーザアレイ装置200は、CLCC(Ceramic Leaded Chip Carrier)と呼ばれる周知のフラットパッケージ201に、面発光レーザアレイチップ210が実装されたものである。なお、面発光レーザアレイチップ210は、不図示の配線によって金属キャスター(電極)202と接続している。
 図8は、図7に示す面発光レーザアレイチップ210の模式的な平面図である。図8に示すように、面発光レーザアレイチップ210は、中央部に設けられ、本発明の面発光レーザ206を40個だけ2次元的に配列して構成された面発光レーザアレイ部205と、面発光レーザアレイ部205の周囲に設けられ、面発光レーザアレイ部205の各面発光レーザ206の電極と不図示の配線で接続した複数の電極パッド203とを有している。さらに、各電極パッド203はフラットパッケージ201の金属キャスター202と接続している。さらに、金属キャスター202は、各面発光レーザ206の発光を制御するための外部の制御回路(図示しない)に電気的に接続している。なお、面発光レーザ206としては、たとえば実施の形態1に係る面発光レーザ101を使用することができる。
 つぎに、この面発光レーザアレイ装置200の動作を説明する。面発光レーザアレイ部205の各面発光レーザ206は、外部の制御回路から金属キャスター202と電極パッド203とを介してバイアス電圧と変調電圧とを印加され、それぞれの上部から所定の波長のレーザ信号光を出射する。
 この面発光レーザアレイ装置200は、寄生容量が低減されており、かつ面発光レーザ206間の電気的クロストークも抑制されるために変調時のジッタも抑制されるため、高速動作が可能なものとなる。
 なお、この面発光レーザアレイ装置200の面発光レーザアレイ部205は、面発光レーザ206を2次元的に配列したものであるが、1次元的に配列してもよい。また、面発光レーザアレイ部205を構成する面発光レーザ206の数も特に限定はされない。たとえば、光インターコネクション用の信号光源としては、4~15個の面発光レーザを1次元的に配列したものが、現状の光モジュールでは好適に使用されている。
(実施の形態3)
 本発明の実施の形態3として、本発明の面発光レーザを備えた光源であり、光インターコネクション用の信号光源等に用いられる面発光レーザパッケージについて説明する。図9は、本実施の形態3に係る面発光レーザパッケージの模式的な断面図である。図9に示すように、この面発光レーザパッケージ300は、本発明の面発光レーザ312、面発光レーザ312を載置する基板311、基板311に設けられた電極313、および面発光レーザ312と電極313とを接続するワイヤ314を備える面発光レーザモジュール310と、面発光レーザモジュール310を収容するハウジング320と、面発光レーザモジュール310の上方に設けられ、アーム324によってハウジング320に保持されたレンズ323と、ハウジング320上部に設けられた光ファイバマウント321と、光ファイバマウント321に挿通保持された光ファイバ322とを備えている。電極313は、面発光レーザモジュール310の発光状態を制御するための外部の制御回路(図示しない)に電気的に接続している。なお、面発光レーザ312としては、たとえば実施の形態1に係る面発光レーザ101を使用することができる。
 つぎに、この面発光レーザパッケージ300の動作を説明する。面発光レーザ312は、外部の制御回路から電極313とワイヤ314とを介してバイアス電圧と変調電圧とを印加され、その上部から所定の波長のレーザ信号光L1を出射する。レンズ323はレーザ信号光L1を集光し、光ファイバ322に結合する。光ファイバ322は結合されたレーザ信号光L1を伝送する。
 この面発光レーザパッケージ300は、寄生容量が低減されているため、高速動作が可能なものとなる。
(実施の形態4)
 つぎに、本発明の実施の形態4として、本発明の面発光レーザを備えた光源であり、光記憶媒体の書き込み/読み出し装置に用いられる光ピックアップについて説明する。図10は、本実施の形態4に係る光ピックアップの模式的な一部断面図である。図10に示すように、この光ピックアップ301は、本発明の面発光レーザ332、面発光レーザ332を載置する基板331、基板331に設けられた電極333、基板331に載置された駆動IC334、面発光レーザ332と駆動IC334と電極333とを順次接続するワイヤ335、およびこれらの要素を封止する樹脂336からなる面発光レーザモジュール330と、面発光レーザモジュール330の上方に設けられたハーフミラー340と、面発光レーザモジュール330とハーフミラー340との間に設けられた回折格子341と、ハーフミラー340と光記憶媒体360との間に設けられたレンズ342と、ハーフミラー340を挟んで光記憶媒体360とは反対側に設けられた光センサ350とを備えている。
 なお、面発光レーザ332としては、たとえば実施の形態1に係る面発光レーザ101を使用することができる。また、樹脂336の上部は凸状に加工され、レンズ336aを構成している。また、電極333は、光ピックアップ301の発光状態を制御するための不図示の外部の制御回路(図示しない)に電気的に接続している。
 つぎに、この光ピックアップ301の動作を、光記憶媒体360に記録された情報の読み出しを行なう場合について説明する。面発光レーザ332は、外部の制御回路から電極333とワイヤ335とを介して電力と電気信号とを供給された駆動IC334によって、バイアス電圧と変調電圧とを印加され、その上部からレーザ信号光L2を出射する。樹脂336のレンズ336aはレーザ信号光L2を平行光(レーザ信号光L3)とする。ハーフミラー340はレーザ信号光L3を光記憶媒体360の所定の箇所に集光させる。すると、レーザ信号光L3は光記憶媒体360によって反射され、光記憶媒体360に記録された情報を含む反射信号光L4が発生する。反射信号光L4は、レンズ342、ハーフミラー340を順次通過する。そして、光センサ350は反射信号光L4を受光する。その後、光センサ350は反射信号光L4を電気信号に変換し、変換された電気信号は書き込み/読み出し装置に接続されたパーソナルコンピュータ等に送信され、記録された情報の読み出しが行なわれる。
 この光ピックアップ301は、寄生容量が低減されているため、高速動作が可能なものとなる。
 なお、上記実施の形態3、4において、各面発光レーザをたとえば実施の形態2のような面発光レーザアレイ装置に適宜置き換えてもよい。
 また、上記実施の形態3、4では、本発明の面発光レーザを通信用の面発光レーザパッケージ、あるいは光記憶媒体の書き込み/読み出し装置に用いられる光ピックアップに適用したものであるが、本発明の面発光レーザはこれに限らず、測量機器、レーザーポインター、光学マウスなどの光学機器、あるいはプリンタ、フォトレジストの走査露光用光源、レーザポンピング用光源や、加工用ファイバレーザの光源として用いることもできる。
(実施の形態5)
 本発明の面発光レーザおよび面発光レーザアレイは、光導波路と組み合わせて様々な光モジュールを構成することができる。以下では、本発明の実施の形態5として、本発明の面発光レーザを用いた光モジュールである光送受信モジュールについて説明する。図11は、本実施の形態5に係る2つの光送受信モジュール400A、400Bが、2本の光導波路410A、410Bを介して接続している状態を示す模式的な平面図である。図11において、光送受信モジュール400Aは、保持部材401Aと、保持部材401A上に設けられた各要素、すなわち、光ファイバ等の光導波路410A、410Bを載置してこれらの位置決めを行うためのスペーサ406A、光導波路410Aを介して光信号を送信する本発明の面発光レーザ402A、光導波路410Bを介して送信されてきた光信号を受信し電気信号に変換する受光素子403A、面発光レーザ402Aの発光状態を制御する駆動回路404A、および受光素子403Aが変換した電気信号を増幅する増幅回路405Aとで構成されている。面発光レーザ402Aは外部の制御部(図示しない)からの制御信号によって駆動回路404Aを介して発光制御される。また、受光素子403Aが変換した電気信号は増幅回路405Aを介して制御部へ送信される。なお、煩雑さを避けるために、駆動回路404Aと面発光レーザ402Aおよび増幅回路405Aと受光素子403Aのワイヤボンディングは記載を省略している。
 なお、光送受信モジュール400Bは、光送受信モジュール400Aと同様の構成を有するが、光送受信モジュール400Aとは送信に係る構成と受信に係る構成とが入れ替わっている。すなわち、光送受信モジュール400Bは、保持部材401Bと、保持部材401B上に設けられた各要素、すなわち、光導波路410A、410Bの位置決めを行うためのスペーサ406B、光導波路410Bを介して光信号を送信する本発明の面発光レーザ402B、光導波路410Aを介して送信されてきた光信号を受信し電気信号に変換する受光素子403B、面発光レーザ402Bの発光状態を制御する駆動回路404B、および受光素子403Bが変換した電気信号を増幅する増幅回路405Bとで構成されている。面発光レーザ402Bは外部の制御部(図示しない)からの制御信号によって駆動回路404Bを介して発光制御される。また、受光素子403Bが変換した電気信号は増幅回路405Bを介して制御部へ送信される。
 この光送受信モジュール400A、400Bは、寄生容量が低減された本発明の面発光レーザ402A、402Bを使用しているため、高速動作が可能なものとなる。
 つぎに、図11に示す光送受信モジュール400A、400Bにおける面発光レーザ402A、402Bと光導波路410A、410Bとの光結合部分について具体的に説明する。なお、以下では、光送受信モジュール400Aと面発光レーザ402Aと光導波路410Aとを用いて光結合部分の説明を行うが、これらの光結合部分は光送受信モジュール400Bと面発光レーザ402Bと光導波路410Bとの組み合わせに対しても適用できるものである。
 はじめに、図12は、図11に示す光送受信モジュール400Aにおける面発光レーザ402Aと光導波路410Aとの光結合部分の一例を示す側面図である。図12に示すように、光導波路410Aの端面はその光軸に対して略45度傾斜するように加工されており、かつ端面には光結合手段としての反射膜411Aが形成され、鏡面加工されている。また、面発光レーザ402Aと反射膜411Aとの相対位置はスペーサ406Aによって位置決めされており、面発光レーザ402Aが反射膜411Aの下方に位置するように調整されている。そして、面発光レーザ402Aから出射した光信号L6は反射膜411Aによって反射されて光導波路410Aに結合し、光導波路410A内を伝播する。
 図13は、面発光レーザ402Aと光導波路410Aとの光結合部分の他の一例を示す側面図である。図13に示す例では、光結合手段として、面発光レーザ402A上であって光導波路410Aの端面側方に、面発光レーザ402Aに対向する入射面420aと光導波路410Aの端面に対向する出射面420bとを有し、内部に反射面421の設けられたミラーアセンブリ420が設置されている。そして、面発光レーザ402Aから出射した光信号L6は、ミラーアセンブリ420に入射面420aから入射し、反射面421によって反射され、出射面420bから出射されて光導波路410Aの端面で結合し、光導波路410A内を伝播する。なお、ミラーアセンブリ420の入射面420aおよび/または出射面420bに、コリメートや集光を行なうためのマイクロレンズ(アレイ)を設けてもよい。
 また、図14は、面発光レーザ402Aと光導波路410Aとの光結合部分のさらに他の一例を示す一部断面側面図である。図14に示す例では、スペーサ406Aに載置されたコネクタハウジング430内に光ファイバである光導波路410Aが保持され、さらに光結合手段として、光ファイバ心線431が、なめらかに屈曲して一方の端面が光導波路410Aに接続するとともに他方の端面が面発光レーザ402Aに対向するように保持されている。そして、面発光レーザ402Aから出射した光信号L6は、光ファイバ心線431の端面から入射して光ファイバ心線431を伝播し、その後光導波路410A内に結合されて伝播する。
 また、図15は、面発光レーザ402Aと光導波路410Aとの光結合部分のさらに他の一例を示す側面図である。図15に示す例では、スペーサ406Aに載置された光導波路410Aには、光軸に対して略45度傾斜する傾斜内面を有する楔形の溝412Aが形成されている。また、この傾斜内面には反射膜411Aが形成され、鏡面加工されている。そして、溝412Aと反射膜411Aとが光結合手段を構成している。また、面発光レーザ402Aは、この溝412A上の位置において、光導波路410Aに直接取り付けられている。なお、この面発光レーザ402Aは、その基板側すなわち下方へ光信号L6を出射するように構成されている。そして、面発光レーザ402Aから出射した光信号L6は、溝412Aの傾斜内面に形成された反射膜411Aによって反射されて光導波路410Aに結合し、光導波路410A内を伝播する。
(実施の形態6)
 つぎに、本発明の実施の形態6として、本発明の面発光レーザおよび面発光レーザアレイを用いた光通信システムについて説明する。図16は、本実施の形態6に係る波長多重伝送システムの模式的な構成図である。図16に示すように、この波長多重伝送システム500は、コンピュータ、ボードあるいはチップ等である信号生成処理手段501と、信号生成処理手段501と電気配線508A、508Bで接続し、CPU、MPU、波長制御回路等から構成される通信制御回路502と、通信制御回路502とそれぞれ電気配線509A、509Bで接続した面発光レーザアレイ503および受光素子集積部504と、面発光レーザアレイ503と光ファイバアレイ510Aで接続した波長多重光合波器505と、受光素子集積部504と光ファイバアレイ510Bで接続した波長多重光分波器506と、波長多重光合波器505および波長多重光分波器506のそれぞれと1本の光ファイバ511A、511Bで接続したネットワーク、PC、ボード、チップ等である通信対象507とを備える。なお、面発光レーザアレイ503は、発振波長が互いに異なる本発明の面発光レーザを1次元的または2次元的に配列したものである。
 つぎに、波長多重伝送システム500の動作を説明する。信号生成処理手段501は、通信対象507に送信すべき電気信号を生成し、電気配線508Aを介して通信制御回路502に送信する。通信制御回路502は電気配線509Aを介して面発光レーザアレイ503に駆動電力を与えるとともに、面発光レーザアレイ503を構成する各面発光レーザに互いに異なる信号を与えて光信号を発生させる。光ファイバアレイ510Aを構成する各光ファイバは面発光レーザアレイ503を構成する各面発光レーザに光学的に結合しており、発生した各光信号を信号光ごとに異なる光ファイバによって波長多重光合波器505に伝送する。波長多重光合波器505は伝送された各光信号を波長多重合波して1本の光ファイバ511Aに結合する。光ファイバ511Aは波長多重合波した光信号を通信対象507に伝送する。
 一方、波長多重光分波器506は、通信対象507から光ファイバ511Bを介して伝送されてきた波長多重合波された光信号を波長ごとに分波し、光ファイバアレイ510Bを構成する各光ファイバに光信号毎に結合させる。光ファイバアレイ510Bは、各光信号を受光素子集積部504に伝送する。光ファイバアレイ510Bを構成する各光ファイバは受光素子集積部504を構成する各受光素子は、光ファイバアレイ510Bを構成する各光ファイバに光学的に結合しており、各光信号を受光して電気信号に変換し、各電気信号を、電気配線509Bを介して通信制御回路502に伝送する。通信制御回路502は各電気信号を、電気配線508Bを介して信号生成処理手段501に伝送する。信号生成処理手段501は各電気信号の信号処理を行なう。
 この波長多重伝送システム500は、寄生容量が低減された本発明の面発光レーザアレイ503を使用しているため、高速で大容量の波長多重伝送が可能なものとなる。また、面発光レーザアレイ503を構成する各面発光レーザからの各光信号を波長多重光合波器505によって1本の光ファイバ511Aに結合させるようにしているので、1本のファイバで、高スループットに大容量の信号伝送ができる。
 なお、用途に応じては、この波長多重伝送システム500の構成において、面発光レーザアレイ503および受光素子集積部504のそれぞれを、光ファイバアレイによってそのまま通信対象507に接続して並列伝送システムとすることもできる。さらに、本発明の面発光レーザアレイは、高周波変調特性に優れているので、50Gbit/sを超える伝送速度で、200mを超える長距離通信を実現することができる。
 また、上記実施の形態においては、下部DBRミラーの全体が、互いに異なる導電型を有する第1低屈折率層と第1高屈折率層とで構成されているが、本発明はこれに限られず、下部DBRミラーは、少なくともその一部において、第1低屈折率層と第1高屈折率層とが互いに異なる導電型を有すればよい。また、上記実施の形態では、第1低屈折率層がp型、第1高屈折率層がn型であるが、互いに異なる導電型であればよく、したがって第1低屈折率層がn型、第1高屈折率層がp型でもよい。
 また、上記実施の形態においては、上部DBRミラーは全体が誘電体多層膜からなるが、少なくともその一部が誘電体多層膜であり、その他の部分が半導体多層膜である構成としてもよい。また、上部DBRミラーについては、半導体多層膜からなり、上部DBRミラー上に上部電極が形成されていてもよい。すなわち、活性層の上部については、必ずしもイントラキャビティ構造でなくてもよい。
 また、面発光レーザを構成する半導体材料は、AlGaAs系、GaInAs系に限らず、レーザ発振波長に応じてInP系等の他の半導体材料を使用することができる。本発明は、GaAs基板で実施例を示したが、InP基板でも良い。その際、酸化に供する層は、AlGaInAs若しくはAlInAsとする。
 また、下部半導体多層膜反射鏡の半導体材料は、レーザ発振波長に応じて適宜選択される。たとえば、第1低屈折率層がAlGaAsからなり、第1高屈折率層が(Al)GaAsからなっていてもよい。また、第1低屈折率層がAlGaInPからなり、第1高屈折率層が(Al)GaInPからなっていてもよい。また、第1低屈折率層がInPからなり、第1高屈折率層がAlGaInAsからなっていてもよい。ここで、(Al)GaAsおよび(Al)GaInPは、Alの組成がゼロである場合も含むことを意味する。
 また、上記実施の形態においては、基板と活性層との間にn型半導体層が形成され、活性層の上側にp型半導体層が形成されているが、活性層の上側にn型半導体層を形成してもよい。
 また、上記実施の形態は、本発明を面発光レーザに適用したものであるが、本発明はこれに限られず、たとえば半導体変調器等の他の電子素子に適用してもよい。すなわち、第1半導体層と第2半導体層との周期構造で構成される半導体多層構造を備え、半導体多層構造の少なくとも一部において、第1半導体層と第2半導体層とが互いに異なる導電型を有する電子素子であれば、第1半導体層と第2半導体層とのpn接合の界面で空乏層が広がるため、その寄生容量を低減することができ、高速動作に適するものとなる。
 また、上記実施の形態により本発明が限定されるものではない。上記各実施形態の各構成要素を適宜組み合わせて構成したものも本発明に含まれる。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
   1 基板
   2 下部DBRミラー
   2a 低屈折率層
   2b 高屈折率層
   3 n型コンタクト層
   4 n側電極
   5 n型クラッド層
   6 活性層
   6a 量子井戸層
   6b 障壁層
   7 p型クラッド層
   8 下部組成傾斜層
   9 電流狭窄層
   9a 開口部
   9b 選択酸化層
  10 上部組成傾斜層
  11、13 p型スペーサ層
  12 p型高導電率層
  14 p型コンタクト層
  15 p側電極
  16 上部DBRミラー
  17 n側引出電極
  18 p側引出電極
 100 光源
 101、206、312、332、402A、402B 面発光レーザ
 102 制御器
 200 面発光レーザアレイ装置
 201 フラットパッケージ
 202 金属キャスター
 203 電極パッド
 205 面発光レーザアレイ部
 210 面発光レーザアレイチップ
 300 面発光レーザパッケージ
 301 光ピックアップ
 310、330 面発光レーザモジュール
 313、333 電極
 314、335 ワイヤ
 320 ハウジング
 321 光ファイバマウント
 322、511A、511B 光ファイバ
 323、336a、342 レンズ
 324 アーム
 334 駆動IC
 336 樹脂
 340 ハーフミラー
 341 回折格子
 350 光センサ
 360 光記憶媒体
 400A、400B 光送受信モジュール
 401A、401B 保持部材
 403A、403B 受光素子
 404A、404B 駆動回路
 405A、405B 増幅回路
 406A、406B スペーサ
 410A、410B 光導波路
 411A 反射膜
 412A 溝
 420 ミラーアセンブリ
 421 反射面
 431 光ファイバ心線
 500 波長多重伝送システム
 501 信号生成処理手段
 502 通信制御回路
 503 面発光レーザアレイ
 504 受光素子集積部
 505 波長多重光合波器
 506 波長多重光分波器
 507 通信対象
 508A、508B、509A、509B 電気配線
 510A、510B 光ファイバアレイ
  l1~l3 線
  L1~L3 レーザ信号光
  L4 反射信号光
  L6 光信号
  P  経路

Claims (16)

  1.  第1半導体層と第2半導体層との周期構造で構成される半導体多層構造を備える電子素子であって、前記半導体多層構造の少なくとも一部において、前記第1半導体層と前記第2半導体層とが互いに異なる導電型を有することを特徴とする電子素子。
  2.  前記第1半導体層と前記第2半導体層とが互いに異なる屈折率を有しており、前記半導体多層構造は多層膜反射鏡として機能することを特徴とする請求項1に記載の電子素子。
  3.  第1低屈折率層と該第1低屈折率層より高い屈折率を有する第1高屈折率層との周期構造で構成される下部半導体多層膜反射鏡と、第2低屈折率層と該第2低屈折率層より高い屈折率を有する第2高屈折率層との周期構造で構成される上部多層膜反射鏡と、
     前記下部半導体多層膜反射鏡と前記上部多層膜反射鏡との間に設けられた活性層と、
     前記活性層と前記下部半導体多層膜反射鏡との間に設けられ、前記活性層に電流を供給するための下部電極が形成された下部コンタクト層と、
     を備え、
     前記下部半導体多層膜反射鏡の少なくとも一部において、前記第1低屈折率層と前記第1高屈折率層とが互いに異なる導電型を有することを特徴とする面発光レーザ。
  4.  前記互いに異なる導電型を有する第1低屈折率層と第1高屈折率層とにおけるp型およびn型のキャリア濃度が、いずれも1×1017cm-3より小さいことを特徴とする請求項3に記載の面発光レーザ。
  5.  前記下部半導体多層膜反射鏡は、前記炭素を取り込む性質を有する元素を含むことを特徴とする請求項3または4に記載の面発光レーザ。
  6.  前記炭素を取り込む性質を有する元素はアルミニウム(Al)であることを特徴とする請求項5に記載の面発光レーザ。
  7.  前記下部半導体多層膜反射鏡において、前記第1低屈折率層がAlGaAsからなり、前記第1高屈折率層が(Al)GaAsからなることを特徴とする請求項3~6のいずれか一つに記載の面発光レーザ。
  8.  前記下部半導体多層膜反射鏡において、前記第1低屈折率層がAlGaInPからなり、前記第1高屈折率層が(Al)GaInPからなることを特徴とする請求項3~6のいずれか一つに記載の面発光レーザ。
  9.  前記下部半導体多層膜反射鏡において、前記第1低屈折率層がInPからなり、前記第1高屈折率層がAlGaInAsからなることを特徴とする請求項3~6のいずれか一つに記載の面発光レーザ。
  10.  前記上部多層膜反射鏡と前記活性層との間に設けられ、Al1-xGaAs(0≦x<0.2)からなる電流注入部と選択酸化によって形成された(Al1-xGaからなる電流狭窄部とを有する電流狭窄層と、
     前記上部多層膜反射鏡と前記電流狭窄層との間に設けられ、前記活性層に電流を供給するための上部電極が形成された上部コンタクト層と、
     前記上部コンタクト層と前記電流狭窄層との間に設けられ、前記上部コンタクト層より高い導電率を有する高導電率層と、
     を備えることを特徴とする請求項3~9のいずれか一つに記載の面発光レーザ。
  11.  カットオフ周波数が20GHz以上であることを特徴とする請求項3~10のいずれか一つに記載の面発光レーザ。
  12.  前記第1低屈折率層及び前記第1高屈折率層は、いずれも、p型のドーパント及びn型のドーパントを意図的にドープせずに形成された請求項4から11のいずれか一項に記載の面発光レーザ。
  13.  前記第1低屈折率層及び前記第1高屈折率層のうち、n型の導電型を有する層は、n型のドーパントを意図的にドープして形成された請求項4から11のいずれか一項に記載の面発光レーザ。
  14.  請求項3~13のいずれか一つに記載の面発光レーザが1次元または2次元のアレイ状に配列されたものであることを特徴とする面発光レーザアレイ。
  15.  請求項3~13のいずれか一つに記載の面発光レーザまたは請求項14に記載の面発光レーザアレイと、
     前記面発光レーザまたは前記面発光レーザアレイに変調信号を印加する制御器と、
     を備えることを特徴とする光源。
  16.  請求項3~13のいずれか一つに記載の面発光レーザ、請求項14に記載の面発光レーザアレイ、または請求項15に記載の光源を備えることを特徴とする光モジュール。
PCT/JP2011/005506 2010-10-04 2011-09-29 電子素子、面発光レーザ、面発光レーザアレイ、光源、および光モジュール WO2012046420A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012507756A JP5075292B2 (ja) 2010-10-04 2011-09-29 電子素子、面発光レーザ、面発光レーザアレイ、光源、および光モジュール
DE112011102431.2T DE112011102431B4 (de) 2010-10-04 2011-09-29 Elektronische Einrichtung, flächenemittierender Laser, flächenemittierendes Laser-Array, Lichtquelle, optisches Modul
CN2011800194139A CN102844945A (zh) 2010-10-04 2011-09-29 电子元件、面发光激光器、面发光激光器阵列、光源以及光模块
US13/855,353 US8638832B2 (en) 2010-10-04 2013-04-02 Electronic device, surface emitting laser, surface emitting laser array, light source, optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010225075 2010-10-04
JP2010-225075 2010-10-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/855,353 Continuation US8638832B2 (en) 2010-10-04 2013-04-02 Electronic device, surface emitting laser, surface emitting laser array, light source, optical module

Publications (1)

Publication Number Publication Date
WO2012046420A1 true WO2012046420A1 (ja) 2012-04-12

Family

ID=45927427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005506 WO2012046420A1 (ja) 2010-10-04 2011-09-29 電子素子、面発光レーザ、面発光レーザアレイ、光源、および光モジュール

Country Status (5)

Country Link
US (1) US8638832B2 (ja)
JP (1) JP5075292B2 (ja)
CN (1) CN102844945A (ja)
DE (1) DE112011102431B4 (ja)
WO (1) WO2012046420A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3206237A1 (en) * 2016-02-12 2017-08-16 Exalos AG Light emitting device with transparent conductive group-iii nitride layer
US9812609B1 (en) * 2016-04-11 2017-11-07 X Development Llc Semiconductor device including oxide current aperture
CN105977186B (zh) * 2016-05-10 2019-11-05 深圳市华星光电技术有限公司 湿法刻蚀装置及其防爆方法
US9979158B1 (en) * 2017-01-12 2018-05-22 Technische Universitaet Berlin Vertical-cavity surface-emitting laser
JP2019012721A (ja) * 2017-06-29 2019-01-24 セイコーエプソン株式会社 面発光レーザーおよびその製造方法、電子機器、ならびにプリンター
JP6954562B2 (ja) * 2017-09-15 2021-10-27 セイコーエプソン株式会社 発光装置およびその製造方法、ならびにプロジェクター
US10707195B2 (en) 2018-10-09 2020-07-07 Waymo Llc Multichannel monostatic rangefinder
CN109088309B (zh) * 2018-10-16 2024-01-26 厦门乾照半导体科技有限公司 一种高频垂直腔面发射激光器芯片及其制备方法
CN114373806A (zh) * 2020-10-14 2022-04-19 华为技术有限公司 光电器件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265124A (ja) * 1990-03-15 1991-11-26 Fujitsu Ltd 原子層ドープ半導体構造体
JP2003179308A (ja) * 2001-12-13 2003-06-27 Furukawa Electric Co Ltd:The 面発光型半導体レーザ素子
JP2006245473A (ja) * 2005-03-07 2006-09-14 Ricoh Co Ltd 垂直共振器型面発光半導体レーザ装置および光スイッチング方法および光送信モジュールおよび光伝送装置
JP2009246035A (ja) * 2008-03-28 2009-10-22 Furukawa Electric Co Ltd:The 長波長帯域面発光レーザ素子
JP2009283722A (ja) * 2008-05-22 2009-12-03 Furukawa Electric Co Ltd:The 面発光レーザ素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245622A (en) * 1992-05-07 1993-09-14 Bandgap Technology Corporation Vertical-cavity surface-emitting lasers with intra-cavity structures
US6148016A (en) * 1997-11-06 2000-11-14 The Regents Of The University Of California Integrated semiconductor lasers and photodetectors
WO2004006393A2 (en) 2002-07-06 2004-01-15 Optical Communication Products, Inc. Method of self-aligning an oxide aperture with an annular intra-cavity contact in a long wavelength vcsel
JP2004103754A (ja) 2002-09-09 2004-04-02 Ricoh Co Ltd 面発光レーザ素子および面発光レーザモジュールおよび面発光レーザアレイおよび光伝送システム
JP4069383B2 (ja) * 2003-03-18 2008-04-02 富士ゼロックス株式会社 表面発光型半導体レーザおよびその製造方法
US20050249254A1 (en) * 2004-04-14 2005-11-10 Deppe Dennis G Current-confinement heterostructure for an epitaxial mode-confined vertical cavity surface emitting laser
CN101432936B (zh) * 2004-10-01 2011-02-02 菲尼萨公司 具有多顶侧接触的垂直腔面发射激光器
US7391800B2 (en) * 2005-02-02 2008-06-24 Ricoh Company, Ltd. Vertical cavity surface-emitting semiconductor laser device, optical transmission module, optical transmission device, and optical switching method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265124A (ja) * 1990-03-15 1991-11-26 Fujitsu Ltd 原子層ドープ半導体構造体
JP2003179308A (ja) * 2001-12-13 2003-06-27 Furukawa Electric Co Ltd:The 面発光型半導体レーザ素子
JP2006245473A (ja) * 2005-03-07 2006-09-14 Ricoh Co Ltd 垂直共振器型面発光半導体レーザ装置および光スイッチング方法および光送信モジュールおよび光伝送装置
JP2009246035A (ja) * 2008-03-28 2009-10-22 Furukawa Electric Co Ltd:The 長波長帯域面発光レーザ素子
JP2009283722A (ja) * 2008-05-22 2009-12-03 Furukawa Electric Co Ltd:The 面発光レーザ素子

Also Published As

Publication number Publication date
JP5075292B2 (ja) 2012-11-21
CN102844945A (zh) 2012-12-26
DE112011102431B4 (de) 2014-03-06
US8638832B2 (en) 2014-01-28
DE112011102431T5 (de) 2013-08-22
US20130215922A1 (en) 2013-08-22
JPWO2012046420A1 (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
JP5075292B2 (ja) 電子素子、面発光レーザ、面発光レーザアレイ、光源、および光モジュール
JP5017804B2 (ja) トンネル接合型面発光半導体レーザ装置およびその製造方法
US7346089B2 (en) Surface-emitting laser diode with tunnel junction and fabrication method thereof
US7496123B2 (en) VCSEL with improved high frequency characteristics, semiconductor laser device, module, and optical transmission device
US8619831B2 (en) Vertical cavity surface emitting laser element, vertical cavity surface emitting laser array element, vertical cavity surface emitting laser device, light source device, and optical module
US8494022B2 (en) Surface emitting laser, surface emitting laser array, light source and optical module
US7391800B2 (en) Vertical cavity surface-emitting semiconductor laser device, optical transmission module, optical transmission device, and optical switching method
WO2010100738A1 (ja) 半導体レーザ、シリコン導波路基板、集積素子
US8300671B2 (en) Surface emitting laser
JP2010140967A (ja) 光モジュール
JP2012044161A (ja) 面発光レーザ、光源、および光モジュール
JP5182363B2 (ja) 半導体発光素子及びその製造方法
JP4386191B2 (ja) 光素子
JP2010003883A (ja) 半導体レーザ素子、光モジュールおよび光トランシーバ
JP2004039717A (ja) 半導体分布ブラッグ反射鏡および面発光型半導体レーザおよび面発光型半導体レーザアレイおよび光通信システムおよび光書き込みシステムおよび光ピックアップシステム
US8311073B2 (en) Semiconductor laser, semiconductor laser device, and fabrication method of semiconductor laser
JP2002252418A (ja) 光通信システム
JP4671672B2 (ja) 受発光装置、光送受信モジュール、光送信モジュールおよび光通信システム
WO2017221520A1 (ja) 半導体発光素子、光通信装置、および半導体発光素子の製造方法
JP2011228576A (ja) 半導体レーザ素子
JP2019102581A (ja) 光半導体集積装置、光半導体集積装置の製造方法および光通信システム
JP2004214311A (ja) 画発光レーザ素子、面発光レーザ素子を使用した光送信器、光送受信器および光通信システム
JP2011243650A (ja) 半導体レーザ素子
JP2002252416A (ja) 光通信システム
JP2012195477A (ja) 面発光半導体レーザ装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019413.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012507756

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830354

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112011102431

Country of ref document: DE

Ref document number: 1120111024312

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830354

Country of ref document: EP

Kind code of ref document: A1