WO2012043860A1 - 優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品 - Google Patents

優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品 Download PDF

Info

Publication number
WO2012043860A1
WO2012043860A1 PCT/JP2011/072811 JP2011072811W WO2012043860A1 WO 2012043860 A1 WO2012043860 A1 WO 2012043860A1 JP 2011072811 W JP2011072811 W JP 2011072811W WO 2012043860 A1 WO2012043860 A1 WO 2012043860A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
cast steel
heat
toughness
nbc
Prior art date
Application number
PCT/JP2011/072811
Other languages
English (en)
French (fr)
Inventor
將秀 川畑
秀雄 栗林
淳二 早川
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US13/877,104 priority Critical patent/US9046029B2/en
Priority to EP11829412.3A priority patent/EP2623623B1/en
Priority to JP2012536610A priority patent/JP5862570B2/ja
Priority to CN201180047534.4A priority patent/CN103140595B/zh
Priority to KR1020137005969A priority patent/KR101799844B1/ko
Publication of WO2012043860A1 publication Critical patent/WO2012043860A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/02Corrosion resistive metals
    • F01N2530/04Steel alloys, e.g. stainless steel

Definitions

  • the present invention is a ferritic heat-resistant cast steel having excellent hot-water flow, gas defect resistance, toughness and machinability, and suitable for exhaust parts of automobile gasoline engines and diesel engines, particularly exhaust manifolds, turbine housings, etc. And an exhaust system component comprising the same.
  • heat-resistant cast iron such as high-Si spheroidal graphite cast iron and Ni-resist cast iron (Ni-Cr austenitic cast iron) and ferritic heat-resistant cast steel Austenitic heat-resistant cast steel has been used.
  • ferritic 4% Si-0.5% Mo spheroidal graphite cast iron shows relatively good heat-resistant properties up to around 800 ° C, but is inferior in durability at temperatures above that. .
  • heat-resistant cast iron such as Ni-resist cast iron and austenitic heat-resistant cast steel containing a large amount of rare metals such as Ni, Cr and Co are exhaust system parts. Is used.
  • Ni-resist cast iron not only has a high content of expensive Ni, but also has a poor thermal crack resistance because the base structure is austenite, the linear expansion coefficient is large, and graphite is the starting point of fracture in the microstructure.
  • Austenitic heat-resistant cast steel does not contain graphite as a starting point of fracture, but has a high coefficient of linear expansion, and therefore has insufficient heat cracking resistance near 900 ° C.
  • austenitic heat-resistant cast steel contains not only expensive and inferior cost because it contains a lot of rare metals, but also has problems such as being susceptible to the global economic situation and uneasy about the stable supply of raw materials. .
  • the heat-resistant material used for the exhaust system parts can ensure necessary heat-resistant characteristics with a rare metal as little as possible from the viewpoint of economical efficiency and stable supply of raw materials as well as effective utilization of earth resources.
  • the base structure is ferrite rather than austenite.
  • the ferrite-based material has a smaller linear expansion coefficient than the austenitic material, the thermal stress generated at the start and start of the engine is small, and the thermal crack resistance is excellent.
  • general ferritic cast steel has a high melting point because it has a low C content of about 0.2% by mass or less and does not contain alloy elements such as Ni that lower the melting point unlike austenitic cast steel. Therefore, general ferritic cast steel has poor meltability due to low melt fluidity (hereinafter referred to as “molten fluid flow”), and casting defects such as poor hot water, hot water boundaries and shrinkage cavities are likely to occur during casting. In particular, in exhaust system parts having complicated and / or thin shapes, if the C content is low, good hot water flowability cannot be ensured, casting defects such as hot water runoff and hot water boundaries occur, and production yield is low. .
  • ferritic cast steel has a drawback that gas defects due to hydrogen are likely to occur because it hardly contains interstitial solid solution elements.
  • the gas defect means that hydrogen contained in the molten metal cannot be dissolved in the molten metal (liquid phase) as the molten metal temperature decreases during casting, and solidifies without being dissolved in the solid phase. It is a defect caused by remaining as a void in the cast product.
  • C which is an austenitizing element, dissolves in the base structure by containing more C than is consumed for the formation of NbC, which is a carbide of Nb and C.
  • NbC which is a carbide of Nb and C.
  • a ⁇ phase is generated at a high temperature during solidification, and an ⁇ ′ phase transformed from the ⁇ phase is generated in the process of cooling to room temperature, thereby improving ductility and oxidation resistance.
  • the transformation from the ⁇ phase to the ⁇ ′ phase does not proceed sufficiently, and the transformation from the ⁇ phase to martensite. Martensite has a high hardness, so it significantly deteriorates toughness and machinability at room temperature.
  • JP 2007-254885 C 0.10 to 0.50 mass%, Si: 1.00 to 4.00 mass%, Mn: 0.10 to 3.00
  • the average crystal grain size of the ferrite phase is reduced by increasing the cooling rate during casting at a thin part with a thickness of 5 mm or less. Strength, tensile strength and elongation at break are increased.
  • the ferritic stainless cast steel disclosed in Japanese Patent Laid-Open No. 2007-254885 contains a large amount of Si (1.00 to 4.00% by mass (about 2% by mass or more in the examples)), thereby lowering the melting point and improving the fluidity of the melt.
  • high temperature strength, oxidation resistance, carburization resistance and machinability are also improved.
  • this ferritic stainless cast steel is inferior in toughness at room temperature because a large amount of Si is dissolved in the ferritic matrix.
  • Si dissolved in the ferrite matrix structure lowers the hydrogen solubility limit, thereby increasing the amount of hydrogen released during solidification and promoting the generation of gas defects.
  • ferritic heat-resistant cast steel having a C content higher than that of a general ferritic cast steel the present applicant is disclosed in Japanese Patent Application Laid-Open No. 11-61343, and by weight ratio, C: 0.05 to 1.00%, Si: 2% or less, Mn: 2% or less, Cr: 16.0-25.0%, Nb: 4.0-20.0%, W and / or Mo: 1.0-5.0%, Ni: 0.1-2.0%, and N: 0.01-0.15%, balance: Fe And a ferritic heat-resistant cast steel having a high temperature strength (especially creep rupture strength) because it has a Labes phase (Fe 2 M) in addition to an ⁇ phase.
  • this ferritic heat-resistant cast steel has excellent high-temperature strength and good molten metal flow properties, it has been found that when a large amount of Nb is contained, gas defects are remarkably generated. For this reason, this ferritic heat-resistant cast steel has not been used for exhaust system parts until now.
  • the conventional ferritic heat-resistant cast steel has good molten metal flowability but is inferior in toughness and machinability and easily generates gas defects, so it is not necessarily suitable for use in exhaust system parts.
  • toughness and machinability can be improved by heat treatment, heat treatment causes an increase in manufacturing costs. Further, since it is difficult to remove the gas defect, the casting part having the gas defect must be discarded as a defective product, and the production yield is deteriorated.
  • the object of the present invention is to ensure excellent hot water flow, gas defect resistance, toughness, and machinability while ensuring heat resistance such as oxidation resistance near 900 ° C, high temperature strength, heat distortion resistance, and heat crack resistance. It is providing the ferritic heat-resistant cast steel which has the property.
  • Another object of the present invention is to provide automotive exhaust system parts such as an exhaust manifold and a turbine housing made of such ferritic heat-resistant cast steel.
  • the casting material When producing a thin and complex-shaped casting such as an exhaust system part, the casting material is required to have good hot water flowability. It is known that increasing the C content and lowering the solidification start temperature is effective in ensuring the flow of molten metal, but simply increasing the C content will reduce the amount of Cr carbide precipitated. Not only does it increase and the toughness decreases, but the toughness and machinability deteriorate due to the crystallization of the ⁇ phase that transforms into martensite. However, the present inventor has discovered that by increasing Nb together with C, the molten metal flowability can be improved by lowering the solidification start temperature of cast steel while suppressing the decrease in toughness and machinability.
  • the solidification start temperature can be further lowered as the amount of Nb increases.
  • the reason why the solidification start temperature of the cast steel is lowered is that the solidification start temperature of the primary crystal ⁇ phase ( ⁇ ferrite phase) is lowered due to an increase in Nb.
  • the solidification temperature range is widened, more hydrogen can move from the solid phase to the liquid phase via the solid-liquid coexisting phase and escape to the atmosphere through the breathable mold.
  • the solidification temperature range is narrow, the liquid phase disappears rapidly, so that hydrogen cannot sufficiently escape, and it is assumed that gas defects are generated by being confined inside the casting. Therefore, it is necessary to regulate the upper limit of the Nb content in order to suppress gas defects.
  • the solidification process of the ferritic heat-resistant cast steel of the present invention determined by differential scanning calorimetry (DSC) is schematically shown in FIG. Solidification starts at point A, first crystal ⁇ phase crystallizes (point B), then eutectic crystal ( ⁇ + NbC) phase crystallizes (point C), and finally manganese chromium sulfide (MnCr) S crystallizes. Out (point D) and solidification ends at point E.
  • DSC differential scanning calorimetry
  • manganese chromium sulfide (MnCr) S crystallizes in the late stage of solidification after eutectic ( ⁇ + NbC) phase crystallization, thereby lowering the solidification end temperature and expanding the solidification temperature range. ing. For this reason, the solid-liquid coexisting phase which becomes the escape route to the outside of hydrogen was increased, and the gas defect resistance was improved.
  • Ferritic heat-resistant cast steel of the present invention having excellent hot water flow, gas defect resistance, toughness and machinability, C: 0.32 to 0.45%, Si: 0.85% or less, Mn: 0.15-2%, Ni: 1.5% or less, Cr: 16-23%, Nb: 3.2-4.5%, Nb / C: 9 to 11.5 N: 0.15% or less, S: (Nb / 20-0.1) -0.2% W and / or Mo: 3.2% or less in total (W + Mo) Having a composition consisting of the balance Fe and unavoidable impurities,
  • the eutectic ( ⁇ + NbC) phase of ⁇ phase and Nb carbide (NbC) has an area ratio of 60 to 80%, and manganese chromium sulfide (MnCr) S has a structure with an area ratio of 0.2 to 1.2%. It is characterized by.
  • the exhaust system component of the present invention is characterized by comprising the above-mentioned ferritic heat-resistant cast steel.
  • Specific examples of the exhaust system parts are an exhaust manifold, a turbine housing, a turbine housing integrated exhaust manifold, a catalyst case, a catalyst case integrated exhaust manifold, and an exhaust outlet.
  • the ferritic heat-resistant cast steel of the present invention has excellent hot-water flow and gas-defect resistance while ensuring heat resistance such as oxidation resistance, heat crack resistance and heat distortion resistance near 900 ° C without heat treatment.
  • heat resistance such as oxidation resistance, heat crack resistance and heat distortion resistance near 900 ° C without heat treatment.
  • it has not only toughness and machinability, but also economical efficiency such as cost reduction by suppressing the content of rare metals, and also has an advantage that raw materials can be obtained stably. Furthermore, since no heat treatment is required, manufacturing costs can be reduced and energy saving can be achieved.
  • the ferritic heat-resistant cast steel of the present invention having such characteristics is suitable for automobile exhaust system parts.
  • Such exhaust system parts are not only inexpensive, but also contribute to fuel efficiency reduction and CO 2 reduction due to excellent heat resistance.
  • Ferritic heat resistant cast steel The composition and structure of the ferritic heat resistant cast steel of the present invention will be described in detail below. Unless otherwise specified, the content of each alloy element is indicated by mass%.
  • C (carbon): 0.32 to 0.45% C not only lowers the solidification start temperature and improves the fluidity of the molten metal, that is, the flowability (castability) of the molten metal, but also the solidification start temperature is further lowered by the primary ⁇ phase and the molten metal flowability is improved. It is desirable that the solidification start temperature is less than about 1440 ° C in order to ensure the flowability of molten metal, which is one of the important characteristics when producing castings with thin and complex shapes such as exhaust system parts. In order to have such a low solidification start temperature, the ferritic heat-resistant cast steel of the present invention needs to contain 0.32% or more of C.
  • the C content is set to 0.32 to 0.45%.
  • the C content is preferably 0.32 to 0.44%, more preferably 0.32 to 0.42%, and most preferably 0.34 to 0.40%.
  • Si acts as a deoxidizer for molten metal and improves oxidation resistance. However, if it exceeds 0.85%, Si not only dissolves in the ferritic matrix structure, but not only makes the matrix structure brittle, but also reduces the solid solubility limit of hydrogen in the ferrite, which reduces the gas resistance of ferritic heat-resistant cast steel. Defects are worsened. Therefore, the Si content is 0.85% or less (excluding 0%). The Si content is preferably 0.2 to 0.85%, more preferably 0.3 to 0.85%, and most preferably 0.3 to 0.6%.
  • Mn (manganese) 0.15-2% Mn not only acts as a deoxidizer for molten metal, like Si, but is an element effective for ensuring gas defect resistance. Although details will be described later, Mn combines with Cr and S at the end of solidification to form manganese chromium sulfide (MnCr) S, which serves as a path for hydrogen to escape to the outside, contributing to the improvement of gas defect resistance To do. To form (MnCr) S, Mn needs to be at least 0.15%. However, Mn exceeding 2% deteriorates the oxidation resistance and toughness of ferritic heat-resistant cast steel. Therefore, the Mn content is set to 0.15 to 2%. The Mn content is preferably 0.15 to 1.85%, more preferably 0.15 to 1.25%, and most preferably 0.15 to 1.0%.
  • Ni is an austenite stabilizing element and forms a ⁇ phase. Austenite transforms into martensite that significantly deteriorates toughness and machinability while being cooled to room temperature. Therefore, it is desirable that the Ni content is as low as possible, but since Ni is contained in the stainless steel scrap as a raw material, there is a high possibility that it will be mixed as an inevitable impurity.
  • the upper limit of the Ni content with substantially no adverse effect on toughness and machinability is 1.5%. Therefore, the Ni content is 1.5% or less (including 0%).
  • the Ni content is preferably 0 to 1.25%, more preferably 0 to 1.0%, and most preferably 0 to 0.9%.
  • Cr 16-23%
  • Cr is an element that improves oxidation resistance and stabilizes the ferrite structure. In order to ensure oxidation resistance near 900 ° C, Cr needs to be at least 16%.
  • Cr combines with Mn and S to form manganese chromium sulfide (MnCr) S that serves as a path for hydrogen to escape to the outside, contributing to the improvement of gas defect resistance.
  • MnCr manganese chromium sulfide
  • the Cr content is 16-23%.
  • the Cr content is preferably 17-23%, more preferably 17-22.5%, and most preferably 17.5-22%.
  • Nb has a strong carbide forming ability.
  • Nb fixes C to carbide (NbC) during solidification and prevents C, which is a strong austenite stabilizing element, from solid-dissolving in the ferrite base structure to crystallize the ⁇ phase, which reduces toughness and machinability. To do.
  • high temperature strength is improved by the formation of a eutectic ( ⁇ + NbC) phase.
  • Nb lowers the solidification start temperature and ensures good hot water flow.
  • Nb refines the crystal grain of the primary crystal ⁇ phase and the crystal grain of the eutectic ( ⁇ + NbC) phase and remarkably improves toughness. In order to exert such actions, the Nb content needs to be 3.2% or more.
  • the eutectic ( ⁇ + NbC) phase has a narrow solidification temperature range of about 30 ° C, and solidification progresses quickly. For this reason, as the Nb content increases, the crystallization amount of the eutectic ( ⁇ + NbC) phase having a narrow solidification temperature range increases, and the solidification temperature range narrows. In addition, a decrease in the solidification start temperature of the primary ⁇ phase also contributes to narrowing the solidification temperature range. Eventually, the increase in Nb content has two causes: (a) the solidification start temperature of primary ⁇ phase decreases, and (b) the crystallization amount of eutectic ( ⁇ + NbC) phase with a narrow solidification temperature range increases. This greatly narrows the solidification temperature range.
  • the Nb content is set to 3.2 to 4.5%.
  • the Nb content is preferably 3.3 to 4.4%, more preferably 3.4 to 4.2%, and most preferably 3.4 to 4.0%.
  • Nb / C 9 to 11.5 Restricting the content ratio of Nb and C (Nb / C) to a predetermined range is the most important requirement for obtaining a good balance of properties that the ferritic heat-resistant cast steel of the present invention should have.
  • C is excessive, that is, when Nb / C is too small, excess C that could not be bound to Nb is dissolved in the base structure, destabilizes the ⁇ phase, and crystallizes the ⁇ phase.
  • the crystallized ⁇ phase transforms into martensite that lowers toughness and machinability before reaching room temperature.
  • Nb / C needs to be 9 or more to suppress the crystallization of the ⁇ phase and to refine the crystal grains of the primary crystal ⁇ phase and the crystal grains of the eutectic ( ⁇ + NbC) phase.
  • Nb / C when Nb is excessive, that is, when Nb / C is too large, Nb dissolves in the ⁇ phase, gives lattice strain to the ⁇ phase, and lowers the toughness of the ⁇ phase. Also, if Nb / C is too large, the amount of eutectic ( ⁇ + NbC) phase crystallized will increase and the growth will be promoted, so the crystal grains of the eutectic ( ⁇ + NbC) phase will be insufficiently refined, Toughness is not improved. In order to suppress solid solution of Nb in the ⁇ phase and to refine the crystal grains of the primary ⁇ phase and the eutectic ( ⁇ + NbC) phase, Nb / C needs to be 11.5 or less. From the above, Nb / C is set to 9 to 11.5. Nb / C is preferably 9 to 11.3, more preferably 9.3 to 11, and most preferably 9.5 to 10.5.
  • N nitrogen
  • N is a strong austenite stabilizing element and forms a ⁇ phase.
  • the formed ⁇ phase becomes martensite while being cooled to room temperature, and deteriorates toughness and machinability. Therefore, it is desirable that N is as small as possible.
  • the N content is 0.15% or less (including 0%).
  • the N content is preferably 0 to 0.13%, more preferably 0 to 0.11%, and most preferably 0 to 0.10%.
  • S (sulfur): (Nb / 20-0.1) to 0.2% S is an important element for imparting sufficient gas defect resistance to the ferritic heat-resistant cast steel of the present invention.
  • S combines with Mn and Cr to form manganese chromium sulfide (MnCr) S, improving the gas defect resistance.
  • MnCr manganese chromium sulfide
  • (MnCr) S crystallizes out as eutectic sulfide ( ⁇ + (MnCr) S) of (MnCr) S and ⁇ phase after solidification of the eutectic ( ⁇ + NbC) phase.
  • the eutectic sulfide ( ⁇ + (MnCr) S) solidifies after the eutectic ( ⁇ + NbC) phase, so that the solidification end temperature is lowered and the solidification temperature range is expanded.
  • the eutectic sulfide ( ⁇ + (MnCr) S) which solidifies more slowly than the eutectic ( ⁇ + NbC) phase, crystallizes, so that the hydrogen discharged from the liquid phase during the eutectic ( ⁇ + NbC) phase crystallization It is presumed that gas defects are suppressed through escape from the mold through the liquid phase of the solid-liquid coexisting phase of eutectic sulfide ( ⁇ + (MnCr) S).
  • the crystallization amount of the eutectic ( ⁇ + NbC) phase depends on the Nb content
  • the crystallization amount of the eutectic sulfide ( ⁇ + (MnCr) S) depends on the S content.
  • the lower limit of the S content is 0.06% when Nb is 3.2%, and 0.125% when Nb is 4.5%, so the S content falls within the range of 0.06 to 0.2%. It becomes.
  • the S content is preferably 0.125 to 0.2%, more preferably 0.13 to 0.2%, and most preferably 0.13 to 0.17%.
  • the addition effect of W and Mo is saturated when the content of each element is about 3%, and even when both are added, the total content of both elements is saturated at about 3%.
  • W and Mo alone when the content of each element exceeds 3.2%, and when adding both, if the total amount (W + Mo) exceeds 3.2%, coarse carbides are generated. Remarkably deteriorate toughness and machinability. Therefore, the total content of W and / or Mo (W + Mo) is 3.2% or less (including 0%).
  • the total content of W and / or Mo is preferably 0 to 3.0%, more preferably 0 to 2.5%. Particularly when toughness is required, the total content of W and / or Mo is preferably 0 to 1.0%, more preferably 0 to 0.5%, and most preferably 0 to 0.3%. In particular, when high temperature strength is required, the total content of W and / or Mo is preferably 0.8 to 3.2%, more preferably 1.0 to 3.2%, and most preferably 1.0 to 2.5%. is there.
  • both the primary ⁇ phase and the eutectic ( ⁇ + NbC) phase suppress the growth of crystal grains and refine each crystal grain, thereby greatly improving toughness. It is estimated that In order to obtain this effect, the area ratio (area ratio) of the eutectic ( ⁇ + NbC) phase needs to be 60 to 80% when the total area of the structure is 100%.
  • the area ratio of the eutectic ( ⁇ + NbC) phase is less than 60%, the crystal grains of the primary ⁇ phase become coarse, and the effect of improving toughness cannot be obtained.
  • the area ratio of the eutectic ( ⁇ + NbC) phase exceeds 80%, not only will the amount of crystallization of the eutectic ( ⁇ + NbC) phase be excessive, but the crystal grains will also become coarser, resulting in embrittlement and toughness. It drops significantly. Therefore, the area ratio of the eutectic ( ⁇ + NbC) phase is controlled to 60 to 80%.
  • the area ratio of the eutectic ( ⁇ + NbC) phase is preferably 60 to 78%, more preferably 60 to 76%, and most preferably 60 to 74%.
  • Manganese chromium sulfide (MnCr) S area ratio 0.2-1.2%
  • controlling the crystallization amount of manganese chromium sulfide (MnCr) S is important for ensuring the gas defect resistance.
  • a suitable amount of eutectic sulfide ( ⁇ + (MnCr) S) that solidifies later than the eutectic ( ⁇ + NbC) phase and ⁇ phase is crystallized to lower the solidification end temperature and expand the solidification temperature range.
  • the area ratio (area ratio) of manganese chromium sulfide (MnCr) S must be 0.2% or more when the total area of the structure is 100%. .
  • the area ratio of (MnCr) S exceeds 1.2%, the amount of eutectic sulfide ( ⁇ + (MnCr) S) crystallized becomes excessive and the toughness is impaired by embrittlement. Therefore, the area ratio of manganese chromium sulfide (MnCr) S is controlled to 0.2 to 1.2%.
  • the S content is restricted to the above-described range.
  • the area ratio of manganese chromium sulfide (MnCr) S is preferably 0.2 to 1.0%, more preferably 0.3 to 1.0%, and most preferably 0.5 to 1.0%.
  • exhaust system parts of the present invention manufactured using the above-mentioned ferritic heat-resistant cast steel include any cast exhaust system parts, and preferred examples include an exhaust manifold, a turbine housing, a turbine housing, an exhaust manifold, Are an exhaust manifold integrated with a turbine housing, a catalyst case, a catalyst case integrated exhaust manifold, an exhaust outlet, etc., in which a catalyst case and an exhaust manifold are integrally cast.
  • the exhaust system component of the present invention is not limited to these, and includes, for example, a cast component welded to a sheet metal or pipe member.
  • Exhaust system parts of the present invention are exposed to high-temperature exhaust gas of 1000 ° C or higher and have sufficient heat resistance characteristics such as oxidation resistance, heat crack resistance, heat distortion resistance even when their surface temperature reaches around 900 ° C. Therefore, it is suitable as an exhaust manifold, turbine housing, turbine housing integrated exhaust manifold, catalyst case, catalyst case integrated exhaust manifold, and exhaust outlet, and exhibits high heat resistance and durability.
  • it has excellent hot water flow, gas defect resistance, toughness, and machinability, suppresses the content of rare metals, and does not require heat treatment, so that it can be manufactured at high product yield and at low cost. This contributes to lower fuel consumption, and allows inexpensive exhaust parts with high heat resistance and durability to be used in low-priced automobiles such as popular cars, contributing to CO 2 reduction. It is expected.
  • Examples 1-39 and Comparative Examples 1-34 Table 1-1 and Table 1-2 show the chemical compositions of the test materials of each cast steel.
  • Examples 1 to 39 are ferritic heat-resistant cast steels of the present invention, and Comparative Examples 1 to 30 are cast steels outside the scope of the present invention.
  • Comparative Example 1 is cast steel with too little content of C and Nb
  • Comparative Examples 2-6, 16 and 17 are cast steels with too little S
  • Comparative Examples 7-9 are cast steels with too much C and Nb content
  • Comparative Example 10 is a cast steel with too little S and too much Cr
  • Comparative Example 11 is cast steel with too little C
  • Comparative Example 12 is cast steel with too much C
  • Comparative Example 13 is cast steel with too much Si
  • Comparative Example 14 is cast steel with too little Mn
  • Comparative Example 15 is cast steel with too much Mn
  • Comparative Examples 18 and 19 are cast steel with too much S
  • Comparative Example 20 is cast steel with too much Ni
  • Comparative Example 21 is cast steel with too little Cr
  • Comparative Example 22 is cast steel with too much Cr
  • Comparative Example 23 is cast steel with too much W
  • Comparative Example 24 is cast steel with too much Mo
  • Comparative Examples 25 and 26 are cast steels with too little Nb
  • Comparative Example 27 is cast steel with too much Nb
  • Comparative Example 31 is a general ferritic cast steel corresponding to CB-30
  • Comparative Example 32 is an example of a ferritic heat-resistant cast steel described in JP-A-7-197209
  • Comparative Example 33 is an example of a ferritic stainless cast steel described in JP2007-254885
  • Comparative Example 34 is an example of a ferritic heat-resistant cast steel described in JP-A-11-61343.
  • Each of the cast steels of Examples 1 to 39 and Comparative Examples 1 to 34 was melted in the air using a 100 kg kg high-frequency melting furnace (basic lining), then hot water was discharged at 1600 to 1650 ° C, and solidification started immediately at about 1550 ° C.
  • Each of the cylindrical block molds was poured into a sample material.
  • Each cast steel as-cast (no heat treatment) was evaluated for solidification start temperature, molten metal flow length, microstructure, number of gas defects, normal temperature impact value, tool life, oxidation loss, high temperature strength and thermal fatigue life. . Evaluation methods and results are shown below.
  • Solidification start temperature The solidification start temperature was measured by pouring into a shell cup mold with R thermocouple. The results are shown in Table 2-1 and Table 2-2. As described above, the solidification start temperature is preferably less than 1440 ° C., but all of Examples 1 to 39 satisfied this condition. On the other hand, all of Comparative Examples 1, 11, 25 and 31 to 33 had a solidification start temperature of 1440 ° C. or higher. This is because the C or Nb content is outside the scope of the present invention. The solidification start temperature of Comparative Example 33 with a high Nb content was 1430 ° C. and less than 1440 ° C., but Comparative Example 33 had many gas defects as described later, and was inferior in gas defect resistance.
  • the hot water flow length was as short as 1100 mm or less. Comparing Example 14 and Comparative Example 32 with the same C content but different Nb content, the hot water flow length of Example 14 with an Nb content of 4.4% was 1275 mm, whereas the Nb content was The hot water flow length of Comparative Example 32 with an amount of 2.0% is 1012 mm, which is only about 80% of Example 14, indicating that the hot water flow property is inferior. Although the comparative example 33 has a low C content of 0.25%, the hot water flow length is 1247 mm and shows good hot water flow properties.
  • the area ratio of the eutectic ( ⁇ + NbC) phase was determined by taking a photo of any five fields of view of the optical microscope (100x magnification) on the observation surface that had been mirror-polished and then etched by corrosion etching, and the eutectic ( ⁇ + NbC) in each field of view. After the phase portion was painted in black, the area ratio of the black portion was measured using an image analysis device and averaged.
  • Table 2-1 and Table 2-2 show the measurement results of the area ratio of manganese chromium sulfide (MnCr) S, and Table 3-1 and Table 3-2 show the measurement results of the eutectic ( ⁇ + NbC) phase area ratio. Show.
  • the normal temperature impact value is preferably 7 ⁇ 10 4 J / m 2 or more, and more preferably 10 ⁇ 10 4 J / m 2 or more.
  • the normal temperature impact values of Examples 1 to 32 were all 7 ⁇ 10 4 J / m 2 or more.
  • the ferritic heat-resistant cast steel of the present invention contains a desired amount of C and Nb, and the primary ⁇ phase and the eutectic ( ⁇ + NbC) phase coexist in an optimum ratio that can obtain the effect of refining crystal grains. It is considered to have a high normal temperature impact value, that is, excellent toughness.
  • Comparative Example 10 is excessive in Cr
  • Comparative Example 11 is low in C
  • the area ratio of the eutectic ( ⁇ + NbC) phase is small
  • Comparative Examples 13 and 33 are excessive in Si.
  • Comparative Example 20 is excessive in Ni
  • Comparative Examples 23 and 24 are excessive in W or Mo
  • Comparative Examples 25 and 26 are low in Nb
  • the area of the eutectic ( ⁇ + NbC) phase Since the ratio is small, Comparative Example 28 has a small Nb / C, and since the area ratio of the eutectic ( ⁇ + NbC) phase is small
  • Comparative Example 30 has an excess of N, so both have low room temperature impact values and poor toughness. It was.
  • Oxidation loss Exhaust system parts are required to have high oxidation resistance because they are exposed to high-temperature oxidizing exhaust gas containing sulfur oxides, nitrogen oxides, etc. discharged from the engine. Since the temperature of the gas exhausted from the combustion chamber of the engine is close to 1000 ° C, the exhaust system parts have also reached around 900 ° C. Therefore, the evaluation temperature for oxidation resistance was set to 900 ° C. Oxidation resistance was evaluated by holding a 10 mm diameter and 20 mm long round bar specimen cut from each 1-inch Y-block specimen for 200 hours at 900 ° C in the atmosphere and then shot blasting. The oxidation scale was removed, and the mass change per unit area before and after the oxidation test, that is, the oxidation loss (mg / cm 2 ) was obtained. The measurement results of oxidation loss are shown in Table 3-1 and Table 3-2.
  • the oxidation weight loss when kept in an air atmosphere at 900 ° C for 200 hours is 20 mg / cm 2 or less .
  • the oxidation weight loss exceeds 20 mg / cm 2 the generation of an oxide film as a starting point of cracks increases, resulting in insufficient oxidation resistance.
  • Table 3-1 and Table 3-2 all of Examples 1 to 39 had a weight loss of 20 mg / cm 2 or less. This means that the ferritic heat-resistant cast steel of the present invention has sufficient oxidation resistance for use in exhaust system parts that reach temperatures near 900 ° C.
  • the ferritic heat-resistant cast steel of the present invention has sufficient oxidation resistance because it contains 16% or more of Cr.
  • Comparative Example 15 had an excessive amount of Mn, and Comparative Example 21 had a small amount of Cr. Therefore, the oxidation loss was more than 20 mg / cm 2 , and the oxidation resistance was poor.
  • ferritic heat-resistant cast steel having a body-centered cubic (bcc) structure has lower high-temperature strength than austenitic heat-resistant cast steel having a face-centered cubic (fcc) structure.
  • the main factor affecting the thermal deformation other than the shape and thickness is the high temperature yield strength.
  • the high-temperature proof stress at 900 ° C is preferably 20 ⁇ MPa or more, more preferably 25 MPa or more.
  • the high-temperature proof stress at 900 ° C. of Examples 1 to 39 was as high as 20 kg MPa or more.
  • Examples 17 to 39 containing 0.9% or more of W and / or Mo had a high-temperature proof stress at 900 ° C. of 25 MPa or more, and were excellent in high-temperature strength and heat distortion resistance.
  • the high-temperature proof stress of Comparative Examples 1 and 31 with a low C and Nb content was less than 20 MPa. From this, it was found that increasing C and Nb improves not only toughness but also high-temperature strength. Note that Comparative Example 32 had high high-temperature proof stress despite the low Nb content.
  • Comparative Example 33 had high high-temperature proof stress despite the low C content. The reason for this is thought to be because it contains a large amount of Si.
  • the ferritic heat-resistant cast steel of the present invention containing a large amount of C and Nb has a high temperature strength equivalent to that of Comparative Examples 32 and 33 containing W or Si and increasing the high temperature strength.
  • Thermal fatigue life Exhaust system parts are required to have a property (thermal crack resistance) that does not cause thermal cracks even when the engine is operated (heating) and stopped (cooling) repeatedly, that is, a long thermal fatigue life.
  • thermal crack resistance a property that does not cause thermal cracks even when the engine is operated (heating) and stopped (cooling) repeatedly, that is, a long thermal fatigue life.
  • the thermal fatigue life as an index of heat cracking resistance was measured by the following method.
  • a smooth round bar-shaped test piece with a distance of 20 mm between the gauge points and a diameter of 10 mm cut from each sample material of 1 inch Y block was applied to the same electro-hydraulic servo type material testing machine as the high temperature strength test.
  • the heating time is 2 minutes
  • the holding time is 1 minute
  • the cooling time is 4 minutes. The heating and cooling cycle was repeated as a cycle.
  • thermal fatigue life can be determined from the number of cycles.
  • the evaluation results of thermal fatigue life are shown in Table 3-1 and Table 3-2.
  • the degree of mechanical restraint is expressed by (free thermal expansion / elongation ⁇ elongation under mechanical restraint) / (free thermal expansion / elongation).
  • a restraint ratio of 1.0 is a mechanical restraint condition that does not allow any elongation when the test piece is heated from 150 ° C. to 900 ° C., for example.
  • the restraint rate of 0.5 is a mechanical restraint condition that allows only 1 mm of elongation when the free expansion and elongation is 2 mm, for example. Therefore, at a restraint factor of 0.5, a compressive load is applied during temperature rise, and a tensile load is applied during temperature drop. Since the actual restraint rate of the exhaust system parts of an automobile engine is about 0.1 to 0.5 which allows a certain degree of elongation, the restraint rate in the thermal fatigue life test was set to 0.5.
  • the thermal fatigue life under the above conditions is 1000 cycles or more. That is, if the thermal fatigue life is 1000 cycles or more, it can be said that the ferritic heat-resistant cast steel has excellent heat cracking resistance.
  • the thermal fatigue lives of Examples 1 to 39 were all sufficiently long at 1400 cycles or more. This means that the ferritic heat-resistant cast steel of the present invention exhibits sufficient heat cracking resistance even when used in exhaust system parts that reach temperatures near 900 ° C.
  • the ferritic heat-resistant cast steel of the present invention has high heat-resistant characteristics (oxidation resistance, high-temperature strength, heat-resistant deformation and heat-cracking resistance) required for exhaust system parts that reach temperatures near 900 ° C. Also, it has excellent hot-water flow, gas defect resistance, toughness and machinability.
  • Example 40 After casting the turbine housing of automotive exhaust system parts (wall thickness 4.0 to 6.0 mm) using the ferritic heat-resistant cast steel of Example 18, the mold is released as it is without heat treatment (open frame) Then, cutting of the casting plan portion (weir portion), shot blasting, casting finishing to remove casting burrs, and the like were performed. No cracks or cracks occurred in the obtained turbine housing, and no casting defects such as shrinkage cavities, poor hot water and gas defects were observed. In addition, there were no cutting defects in machining, abnormal wear or damage of the cutting tool.
  • This turbine housing was assembled in an exhaust simulator equivalent to an inline 4-cylinder high-performance gasoline engine with a displacement of 2000 cc.
  • the exhaust gas temperature at full load is 1000 ° C at the inlet of the turbine housing, and the upper limit heating temperature on the surface of the turbine housing is the waste gate (exhaust)
  • the target for the heating and cooling cycle is 1200 cycles.
  • this turbine housing cleared the endurance test of 1200 cycles without causing leakage or cracking of exhaust gas.
  • cracks and cracks occurred not only in through cracks but also in any part including the waste gate part through which high-temperature exhaust gas passes and the thinnest scroll part. There was also little oxidation of the whole part. Thereby, it was confirmed that the turbine housing of the present invention is excellent in oxidation resistance and thermal crack resistance in the vicinity of 900 ° C.
  • the exhaust system parts made of the ferritic heat-resistant cast steel of the present invention have high heat resistance and durability near 900 ° C., and also have excellent hot water flow, gas defect resistance, toughness and machinability. is doing.
  • Exhaust system component of the present invention is inexpensive since a rare metal heat-resistant, ferritic cast steel containing a small amount of the application range of the low fuel consumption technologies can also be extended to low-cost automobile, CO 2 gas Contributes to reducing emissions.
  • ferritic heat-resistant cast steel of the present invention is not limited to this, for example, combustion engines such as construction machines, ships, and aircraft, melting furnaces, etc. , Thermal equipment such as heat treatment furnace, incinerator, kiln, boiler, cogeneration equipment, petrochemical plant, gas plant, thermal power plant, nuclear power plant, etc. with excellent oxidation resistance, heat crack resistance, heat deformation resistance, etc. It can also be used for various cast parts that require hot water flow, gas defect resistance, toughness and machinability as well as heat resistance and durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)
  • Heat Treatment Of Steel (AREA)
  • Supercharger (AREA)

Abstract

 質量比で、C:0.32~0.45%、Si:0.85%以下、Mn:0.15~2%、Ni:1.5%以下、Cr:16~23%、Nb:3.2~4.5%、Nb/C:9~11.5、N:0.15%以下、S:(Nb/20-0.1)~0.2%、W及び/又はMo:合計(W+Mo)で3.2%以下を含有し、残部Fe及び不可避的不純物からなる組成を有し、δフェライトとNb炭化物(NbC)との共晶(δ+NbC)相の面積率が60~80%であり、マンガンクロム硫化物(MnCr)Sの面積率が0.2~1.2%である組織を有し、優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品。

Description

優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品
 本発明は、優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有し、自動車用ガソリンエンジン及びディーゼルエンジンの排気系部品、特にエキゾーストマニホールド、タービンハウジング等に適するフェライト系耐熱鋳鋼、及びそれからなる排気系部品に関する。
 地球温暖化を防止するために、自動車から排出されるCO2の量の削減が強く求められている。CO2排出量の削減のためには、主に自動車の燃費性能の向上(低燃費化)が必要である。低燃費化技術としては、燃料の直噴化、圧縮比の増大、過給化によるエンジンの軽量コンパクト化(ダウンサイジング)、過給器のブースト圧の上昇等が挙げられる。これらの技術の導入にともなって、自動車用エンジンでの燃料の燃焼はより高温及び高圧となる傾向にあり、その結果エンジンから排出される排出ガスの温度は1000℃近くまで上昇し、エキゾーストマニホールド、触媒ケース、タービンハウジング等の排気系部品の温度は約900℃に達する。このように高温の排出ガスに曝される排気系部品には優れた耐熱特性(耐酸化性、高温強度、耐熱変形性及び耐熱亀裂性)が求められている。
 高温で過酷な使用条件に曝される自動車のエキゾーストマニホールド等の排気系部品には、従来から高Si球状黒鉛鋳鉄、ニレジスト鋳鉄(Ni-Cr系オーステナイト鋳鉄)等の耐熱鋳鉄や、フェライト系耐熱鋳鋼、オーステナイト系耐熱鋳鋼等が用いられてきた。
 従来の耐熱鋳鉄及び耐熱鋳鋼のうち、フェライト系の4%Si-0.5%Moの球状黒鉛鋳鉄は、800℃付近までは比較的良好な耐熱特性を示すが、それを超す温度では耐久性に劣る。800℃以上での耐酸化性及び耐熱亀裂性の条件を同時に満たすため、Ni、Cr、Co等の希少金属(レアメタル)を多く含有するニレジスト鋳鉄等の耐熱鋳鉄やオーステナイト系耐熱鋳鋼が排気系部品に使用されている。
 しかし、ニレジスト鋳鉄は高価なNiの含有量が多いだけでなく、基地組織がオーステナイトで線膨張率が大きくミクロ組織に破壊の起点となる黒鉛が存在するために、耐熱亀裂性に劣る。また、オーステナイト系耐熱鋳鋼は、破壊の起点となる黒鉛を含有しないが、線膨張率が大きいため900℃付近での耐熱亀裂性が不十分である。その上、オーステナイト系耐熱鋳鋼は希少金属を多く含有するため高価で経済性に劣るだけでなく、世界の経済情勢の影響を受けやすく、原材料の安定供給に不安がある等の問題を抱えている。
 排気系部品に使用される耐熱材料は、経済性及び原材料の安定供給の観点に加え、地球資源の有効活用の観点からも極力少量の希少金属で必要な耐熱特性を確保できることが望ましい。これにより安価な排気系部品の提供が可能となり、低燃費化のための技術を大衆車等にも適用することが可能となり、CO2削減に貢献できる。希少金属の含有量を極力抑えるためには、基地組織をオーステナイトよりフェライトとした方が有利である。その上、フェライト系の材料はオーステナイト系の材料より線膨張率が小さいので、エンジンの始動及び発進時に発生する熱応力が小さく、耐熱亀裂性に優れている。
 しかし、一般のフェライト系鋳鋼は、Cが約0.2質量%以下と少なく、またオーステナイト系鋳鋼のように融点を低下させるNi等の合金元素を含有しないために、高融点である。従って、一般のフェライト系鋳鋼は溶湯の流動性(以下「湯流れ性」という)が低いために鋳造性が悪く、鋳造時に湯回り不良、湯境、引け巣等の鋳造欠陥が発生しやすい。とりわけ、複雑及び/又は薄肉の形状を有する排気系部品では、C含有量が少ないと良好な湯流れ性が確保できず、湯回り不良や湯境等の鋳造欠陥を生じて、生産歩留りが低い。さらにオーステナイト系鋳鋼と異なり、フェライト系鋳鋼は侵入型固溶元素をほとんど含有しないため、水素によるガス欠陥が発生しやすいという欠点がある。なお、ガス欠陥とは、溶湯に含有されている水素が、鋳造時の溶湯温度の低下にともなって溶湯中(液相)に溶解できなくなり、また固相にも固溶されずに、凝固した鋳造品に空孔として残存するために起こる欠陥である。
 鋳造性の改善等を狙って、本出願人は特開平7-197209号で、重量比率で、C:0.15~1.20%、C-Nb/8:0.05~0.45%、Si:2%以下、Mn:2%以下、Cr:16.0~25.0%、W及び/又はMo:1.0~5.0%、Nb:0.40~6.0%、Ni:0.1~2.0%、及びN:0.01~0.15%を含有し、残部:Fe及び不可避不純物からなる組成を有し、通常のα相(αフェライト相)のほかにγ相(オーステナイト相)からα+炭化物に変態した相(以下「α’相」という)を有し、α’相の面積率{α’/(α+α’)}が20~70%で、鋳造性に優れたフェライト系耐熱鋳鋼を提案した。このフェライト系耐熱鋳鋼は、900℃以上での耐熱特性に優れているため排気系部品に適し、C含有量を多くしているので良好な湯流れ性を有し、鋳造性が改善されている。
 特開平7-197209号のフェライト系耐熱鋳鋼では、NbとCの炭化物であるNbCの形成に消費される量以上のCを含有することにより、オーステナイト化元素であるCが基地組織に固溶し、凝固時に高温でγ相が生成し、常温に冷却する過程でγ相から変態したα’相が生成し、もって延性及び耐酸化性が向上する。しかし、鋳放しのままではγ相からα’相への変態は十分に進行せず、γ相からマルテンサイトへ変態する。マルテンサイトは高硬度のため常温での靭性及び被削性を著しく悪化させる。良好な靭性及び被削性を得るにはマルテンサイトを消滅させてα’相を析出させる熱処理が必要であるが、熱処理は製造コストを上昇させるので、経済性を低下させる。また熱処理は多くのエネルギーを要し、省エネルギーの観点でも問題がある。
 一般のフェライト系鋳鋼よりC含有量の多いフェライト系ステンレス鋳鋼からなる鋳造部品として、特開2007-254885号は、C:0.10~0.50質量%、Si:1.00~4.00質量%、Mn:0.10~3.00質量%、Cr:8.0~30.0質量%、及びNb及び/又はV:合計で0.1~5.0質量%を含有するフェライト系ステンレス鋳鋼からなり、厚さ1~5 mmの薄肉部を有するとともに、薄肉部の組織におけるフェライト相の平均結晶粒径が50~400μmであるために高温強度が向上した薄肉鋳造部品を開示している。特開2007-254885号のフェライト系ステンレス鋳鋼からなる鋳造部品では、厚さ5 mm以下の薄肉部で鋳造時の冷却速度を高めてフェライト相の平均結晶粒径を小さくし、もって薄肉部の高温での耐力、引張強度及び破断伸びを高めている。
 しかし、排気系部品には、シリンダーヘッド取り付けフランジ、遮熱板取り付けボス、ボルト締結部、肉厚交差部等のように5 mm以上の肉厚となる部分が多く、また厚さ5 mm以下の薄肉部でも、引け巣を防止するための押湯に近い部分所や、製品キャビティが隣接して砂型が過熱し易い部分では、溶湯の冷却速度が遅い。排気系部品のうち、そのような部分では、平均結晶粒径が大きくなり、靭性(特に常温での靭性)が低くなる。特開2007-254885号は、形状、肉厚変動、鋳造方案等に起因する靭性の低下を抑制するための施策を開示していない。
 また、特開2007-254885号のフェライト系ステンレス鋳鋼は、Siを1.00~4.00質量%(実施例では約2質量%以上)と多量に含有することにより、融点を下げて溶湯の流動性を改善し、また高温強度、耐酸化性、耐侵炭性及び被削性も改善している。しかし、このフェライト系ステンレス鋳鋼は、多量のSiがフェライト系基地組織に固溶しているので常温での靭性に劣る。また、フェライト系基地組織に固溶したSiは水素の固溶限を低下させるため、凝固の際の水素放出量を多くし、ガス欠陥の発生を助長する。
 また、一般のフェライト系鋳鋼よりC含有量の多いフェライト系耐熱鋳鋼として、本出願人は特開平11-61343号で、重量比率で、C:0.05~1.00%、Si:2%以下、Mn:2%以下、Cr:16.0~25.0%、Nb:4.0~20.0%、W及び/又はMo:1.0~5.0%、Ni:0.1~2.0%、及びN:0.01~0.15%を含有し、残部:Fe及び不可避不純物からなる組成を有し、α相のほかにラーベス相(Fe2M)を有するために優れた高温強度(特にクリープ破断強度)を有するフェライト系耐熱鋳鋼を提案した。しかし、このフェライト系耐熱鋳鋼は優れた高温強度及び良好な湯流れ性を有するものの、多量のNbを含有する場合にガス欠陥の発生が著しいことが分った。このためこのフェライト系耐熱鋳鋼は排気系部品に現在まで使用されていない。
 上記の通り、従来のフェライト系耐熱鋳鋼は、湯流れ性は良好なものの靭性及び被削性に劣っており、ガス欠陥も発生しやすいので、排気系部品に使用するには必ずしも適さない。靭性及び被削性は熱処理により改善できるが、熱処理は製造コストの増加を招く。また、ガス欠陥は除去が困難なため、ガス欠陥を有する鋳造部品は不良品として廃棄せざるを得ず、生産歩留りが悪化する。
 従って本発明の目的は、900℃付近での耐酸化性、高温強度、耐熱変形性、耐熱亀裂性等の耐熱特性を確保しつつ、優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼を提供することである。
 本発明のもう一つの目的は、かかるフェライト系耐熱鋳鋼からなるエキゾーストマニホールドやタービンハウジング等の自動車用排気系部品を提供することである。
 上記目的に鑑み、15~20Crフェライト系耐熱鋳鋼をベースにして、耐熱特性、湯流れ性、耐ガス欠陥性、靭性及び被削性と、合金元素、組成範囲、金属組織(ミクロ組織)及び凝固形態との関係について鋭意研究した結果、以下の知見を得た。本発明はかかる知見に基づき完成したものである。
(1) 排気系部品のような薄肉で複雑形状の鋳物を製造する場合、鋳造材料には良好な湯流れ性が求められる。湯流れ性を確保するには、C含有量を増加して凝固開始温度を低下させるのが有効であることが知られているが、単にC含有量を増加しただけではCr炭化物の析出量が増加して靭性が低下するだけでなく、マルテンサイトに変態するγ相の晶出により靭性及び被削性が悪化する。しかし、本発明者はCとともにNbを増加することにより、靭性及び被削性の低下を抑制しつつ、鋳鋼の凝固開始温度の低下による湯流れ性の改善が得られることを発見した。同じC量なら、Nb量が多い方が凝固開始温度を一層低下できる。鋳鋼の凝固開始温度が低下する理由は、Nbの増加により初晶のδ相(δフェライト相)の凝固開始温度が低下するためである。
(2) 一般に、強度を向上させる合金元素が基地組織に固溶したり、晶出物や析出物が形成されたりすると、靭性が低下する。本発明のフェライト系耐熱鋳鋼でもC及びNbをともに多量に含有させると、炭化物が増加して靭性が著しく低下すると予想されたが、靭性は逆に大幅に向上した。この理由は、C及びNbの含有量が増加すると、初晶δ相の凝固開始温度が低下して共晶(δ+NbC)相の凝固温度範囲に接近するために、初晶δ相の結晶粒の成長と共晶(δ+NbC)相の結晶粒の成長とが相互に抑制されるからである。結晶粒の微細化により靭性は向上する。初晶δ相の結晶粒と共晶(δ+NbC)相の結晶粒が微細化するように、両者の晶出量を制御する必要があり、このためには、C及びNbの添加量を調整する必要がある。
(3) 初晶δ相の結晶粒と共晶(δ+NbC)相の結晶粒の微細化に加えて、靭性に有害なγ相の晶出の阻止、及びδ相へのNbの固溶の抑制のためにも、CとNbの含有量のバランスは重要である。NbとCとの含有量の比(Nb/C)を所望の範囲とすることにより、余剰のCはNb炭化物(NbC)として晶出し、C及びNbはフェライト系基地組織にほとんど固溶せず、γ相は晶出せず、δ相へのNbの固溶も最低限となり、もって靭性及び被削性の劣化を抑制できることが分った。
(4) Nbが多くなると、初晶のδ相の凝固開始温度が低下して湯流れ性が改善するものの、ガス欠陥が増加する。Nbの増加にともなってガス欠陥が増加するのは、初晶δ相の晶出が漸減する一方で、凝固温度範囲が狭い共晶(δ+NbC)相が漸増することにより、溶湯の凝固温度範囲が狭まるためである。液相に対する水素の溶解度より固相に対する水素の固溶限の方がはるかに小さいので、凝固の際に水素は固相から液相に排出される。凝固温度範囲が広くなれば、より多くの水素が固相から固液共存相を介して液相に移動し、通気性鋳型を通って大気中に逃散することができる。しかし、凝固温度範囲が狭いと、液相が急速に消失するために水素が十分に逃散できず、鋳物内部に閉じ込められてガス欠陥を発生させると推察される。従って、ガス欠陥を抑制するためにNb含有量の上限を規制する必要がある。
(5) ガス欠陥を抑制するために凝固温度範囲を広げる方法として、(a) 共晶(δ+NbC)相の晶出温度を低くする方法、(b) 初晶δ相の晶出温度を高くする方法、及び(c) 共晶(δ+NbC)相の晶出後に共晶(δ+NbC)相とは別の相を晶出させる方法を検討した。(a) の方法は合金元素の種類及び含有量の大幅な変更を必要とし、15~20Crのフェライト系耐熱鋳鋼から逸脱する。(b) の方法はC及びNbの含有量の低減により可能であるが、凝固開始温度を上昇させるので湯流れ性が悪化する。従って、(a) 及び(b) の方法はいずれも本発明の目的に適さない。
 共晶(δ+NbC)相の晶出後に別の晶出相を晶出させる(c) の方法を検討するにあたり、良好な耐ガス欠陥性を有する特開平7-197209号のフェライト系耐熱鋳鋼の凝固過程を示差走査熱量測定(DSC)により調べたところ、初晶δ相及び共晶(δ+NbC)相が順に晶出した後、γ相が晶出して凝固が終了し、凝固温度範囲も広いことが分かった。この結果から、特開平7-197209号のフェライト系耐熱鋳鋼は、共晶(δ+NbC)相の晶出後に晶出するγ相により凝固温度範囲が拡大し、耐ガス欠陥性が向上したものと推測される。γ相は靭性及び被削性を悪化させるので、共晶(δ+NbC)相の晶出後にγ相の代わりに靭性及び被削性を悪化させない相を晶出させる合金元素について研究した結果、適量のSを含有させると、共晶(δ+NbC)相の晶出後にCrを固溶した硫化物であるマンガンクロム硫化物(MnCr)Sが晶出し、凝固終了温度が低下するとともに凝固温度範囲が拡大し、良好な耐ガス欠陥性が得られることが分かった。
(6) Nb含有量の増加にともなって共晶(δ+NbC)相の晶出量が多くなると、固相から液相への水素の排出量が多くなり、ガス欠陥の発生傾向が高まる。より多くの水素を材料内部から大気へ逃散させるには、水素の逃散経路となる固液共存相を多くする必要がある。凝固後期のマンガンクロム硫化物(MnCr)Sの晶出量が多くなると固液共存相が増加するので、S含有量は多い方が良い。一方、湯流れ性及び靭性を確保できる範囲でNbを減少できれば、水素の排出量も減るので、S含有量も低減できる。従って、耐ガス欠陥性を向上するには、Nb含有量に応じてS含有量を調整(増減)する必要がある。
(7) 耐ガス欠陥性の向上のために添加するSの含有量が多くなりすぎると、靭性が損なわれる傾向がある。従って、靭性を劣化させないようにS含有量の上限を規制する必要がある。
 示差走査熱量測定(DSC)により求めた本発明のフェライト系耐熱鋳鋼の凝固過程を図1に模式的に示す。A点で凝固が開始し、最初に初晶δ相が晶出し(B点)、次に共晶(δ+NbC)相が晶出し(C点)、最後にマンガンクロム硫化物(MnCr)Sが晶出して(D点)、E点で凝固が終了する。本発明のフェライト系耐熱鋳鋼では、共晶(δ+NbC)相晶出後の凝固後期にマンガンクロム硫化物(MnCr)Sが晶出することにより、凝固終了温度が低下して凝固温度範囲が拡大している。このため、水素の外部への逃散経路となる固液共存相を増加し、耐ガス欠陥性が向上した。
 優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有する本発明のフェライト系耐熱鋳鋼は、質量比で、
C:0.32~0.45%、
Si:0.85%以下、
Mn:0.15~2%、
Ni:1.5%以下、
Cr:16~23%、
Nb:3.2~4.5%、
Nb/C:9~11.5、
N:0.15%以下、
S:(Nb/20-0.1)~0.2%、
W及び/又はMo:合計(W+Mo)で3.2%以下、
を含有し、残部Fe及び不可避的不純物からなる組成を有し、
δ相とNb炭化物(NbC)との共晶(δ+NbC)相が面積率で60~80%であり、かつマンガンクロム硫化物(MnCr)Sが面積率で0.2~1.2%である組織を有することを特徴とする。
 本発明の排気系部品は前記フェライト系耐熱鋳鋼からなることを特徴とする。排気系部品の具体例は、エキゾーストマニホールド、タービンハウジング、タービンハウジング一体エキゾーストマニホールド、触媒ケース、触媒ケース一体エキゾーストマニホールド、及びエキゾーストアウトレットである。
 本発明のフェライト系耐熱鋳鋼は、熱処理をしなくても900℃付近での耐酸化性、耐熱亀裂性、耐熱変形性等の耐熱特性を確保しつつ、優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有し、かつ希少金属の含有量の抑制によるコスト抑制といった経済性も有するのみならず、原料が安定的に入手できるという利点も有する。さらに熱処理が不要であるので製造コストを低減できて、かつ省エネルギーにも寄与する。
 このような特徴を有する本発明のフェライト系耐熱鋳鋼は自動車の排気系部品に好適である。かかる排気系部品は安価であるのみならず、優れた耐熱特性のために低燃費化及びCO2の削減に貢献する。
フェライト系耐熱鋳鋼の示差走査熱量測定(DSC)による熱分析結果を示すグラフである。
[1] フェライト系耐熱鋳鋼
 本発明のフェライト系耐熱鋳鋼の組成及び組織について以下詳細に説明する。各合金元素の含有量は、特に断りのない限り質量%で示す。
(A) 組成
(1) C(炭素):0.32~0.45%
 Cにより凝固開始温度が降下して溶湯の流動性、すなわち湯流れ性(鋳造性)が向上するだけでなく、初晶δ相によりさらに凝固開始温度が低下して湯流れ性が向上する。排気系部品のような薄肉で複雑形状の鋳物を製造する際に重要な特性の一つである湯流れ性を確保するために、凝固開始温度は約1440℃未満であるのが望ましいが、このような低い凝固開始温度を有するために、本発明のフェライト系耐熱鋳鋼は、0.32%以上のCを含有する必要がある。しかし、C含有量が0.45%を超えると、δ相とNb炭化物との共晶(δ+NbC)相が多くなり過ぎて脆化し、常温靭性が低下する。このため、C含有量は0.32~0.45%とする。C含有量は好ましくは0.32~0.44%であり、より好ましくは0.32~0.42%であり、最も好ましくは0.34~0.40%である。
(2) Si(ケイ素):0.85%以下
 Siは溶湯の脱酸剤として作用するとともに、耐酸化性を改善する。しかし、0.85%を超えると、Siはフェライト系基地組織に固溶して、基地組織を著しく脆化させるだけでなく、フェライトへの水素の固溶限を低下させ、フェライト系耐熱鋳鋼の耐ガス欠陥性を悪化させる。このため、Siの含有量は0.85%以下(0%を含まず)とする。Si含有量は好ましくは0.2~0.85%であり、より好ましくは0.3~0.85%であり、最も好ましくは0.3~0.6%である。
(3) Mn(マンガン):0.15~2%
 Mnは、Siと同様に溶湯の脱酸剤として作用するのみならず、耐ガス欠陥性を確保するのに有効な元素である。詳細は後述するが、Mnは、凝固の末期にCr及びSと結合して、水素を外部へ逃散させる経路となるマンガンクロム硫化物(MnCr)Sを形成して耐ガス欠陥性の向上に寄与する。(MnCr)Sを形成するには、Mnは少なくとも0.15%必要である。しかし、2%を超えるMnはフェライト系耐熱鋳鋼の耐酸化性及び靭性を劣化させる。このため、Mnの含有量は0.15~2%とする。Mn含有量は好ましくは0.15~1.85%であり、より好ましくは0.15~1.25%であり、最も好ましくは0.15~1.0%である。
(4) Ni(ニッケル):1.5%以下
 Niはオーステナイト安定化元素でγ相を形成する。オーステナイトは、常温まで冷却される間に靭性及び被削性を著しく悪化させるマルテンサイトに変態する。従って、Ni含有量は極力少ないのが望ましいが、Niは原料となるステンレス系スクラップに含有されているため、不可避的不純物として混入する可能性が高い。靭性及び被削性への悪影響が実質的にないNi含有量の上限は1.5%である。そのため、Ni含有量は1.5%以下(0%を含む)とする。Ni含有量は好ましくは0~1.25%であり、より好ましくは0~1.0%であり、最も好ましくは0~0.9%である。
(5) Cr(クロム):16~23%
 Crは耐酸化性を改善し、フェライト組織を安定化する元素である。900℃付近での耐酸化性を確保するために、Crは少なくとも16%必要である。また、CrはMn及びSと結合して、水素を外部へ逃散させる経路となるマンガンクロム硫化物(MnCr)Sを形成し、耐ガス欠陥性の向上に寄与する。しかし、Crが23%を超えると、シグマ脆性が発生しやすくなり、靭性及び被削性が著しく悪化する。そのため、Cr含有量は16~23%とする。Cr含有量は好ましくは17~23%であり、より好ましくは17~22.5%であり、最も好ましくは17.5~22%である。
(6) Nb(ニオブ):3.2~4.5%
 Nbは強い炭化物形成能を有する。Nbは凝固時にCを炭化物(NbC)に固定し、強力なオーステナイト安定化元素であるCがフェライト系基地組織に固溶して靭性及び被削性を低下させるγ相を晶出させるのを防止する。また共晶(δ+NbC)相の形成により高温強度を向上させる。さらにNbは凝固開始温度を低下させて、良好な湯流れ性を確保する。その上、Nbは初晶δ相の結晶粒と共晶(δ+NbC)相の結晶粒を微細化し、靭性を著しく向上させる。このような作用を発揮するために、Nbの含有量は3.2%以上必要である。
 しかし、共晶(δ+NbC)相は約30℃と狭い凝固温度範囲を有し、凝固の進行が早い。このため、Nb含有量の増加により、凝固温度範囲の狭い共晶(δ+NbC)相の晶出量が増加し、凝固温度範囲は狭まる。その上、初晶δ相の凝固開始温度の低下も凝固温度範囲の狭化に寄与する。結局、Nb含有量の増加により、(a) 初晶δ相の凝固開始温度が低下するとともに、(b) 凝固温度範囲の狭い共晶(δ+NbC)相の晶出量が増加するという2つの原因により、凝固温度範囲は大きく狭まる。
 Nbが4.5%を超えると、凝固温度範囲の縮小にともなって、凝固時に液相から排出される水素が外部へ逃散しにくくなり、ガス欠陥の発生傾向が高まって耐ガス欠陥性の悪化が顕著となる。またNb含有量が4.5%を超えると、共晶(δ+NbC)相が過剰となりすぎて、フェライト系耐熱鋳鋼は脆化する。さらにNbが5.0%を超えると、もはや初晶δ相の晶出はなく、共晶(δ+NbC)相のみが晶出して、約30℃と狭い凝固温度範囲で短時間に凝固が終了する。こうなると液相から排出される水素が外部へ逃散する機会はほとんどなくなり、ガス欠陥の発生は著しくなる。従って、Nbの含有量は3.2~4.5%とする。Nb含有量は好ましくは3.3~4.4%であり、より好ましくは3.4~4.2%であり、最も好ましくは3.4~4.0%である。
(7) Nb/C:9~11.5
 NbとCとの含有量比(Nb/C)を所定の範囲に規制することは、本発明のフェライト系耐熱鋳鋼が兼備すべき特性をバランス良く得るために最も重要な要件である。Cが過剰な場合、即ちNb/Cが小さすぎる場合、Nbに結合できなかった余剰のCは基地組織に固溶し、δ相を不安定化して、γ相を晶出させる。晶出したγ相は常温に達するまでに靭性及び被削性を低下させるマルテンサイトに変態する。また、Nb/Cが小さいと初晶δ相の晶出量が多くなりすぎ、その成長が促進されるので、初晶δ相の結晶粒が微細でなくなり、靭性が向上しない。γ相の晶出を抑制するとともに、初晶δ相の結晶粒及び共晶(δ+NbC)相の結晶粒を微細化するには、Nb/Cは9以上である必要がある。
 一方、Nbが過剰な場合、即ちNb/Cが大きすぎる場合、Nbはδ相に固溶して、δ相に格子歪みを与え、δ相の靭性を低下させる。また、Nb/Cが大きすぎると、共晶(δ+NbC)相の晶出量が多くなりすぎ、その成長が促進されるので、共晶(δ+NbC)相の結晶粒の微細化が不十分となり、靭性が向上しない。Nbのδ相への固溶を抑制するとともに、初晶δ相の結晶粒及び共晶(δ+NbC)相の結晶粒を微細化するには、Nb/Cは11.5以下である必要がある。以上から、Nb/Cは9~11.5とする。Nb/Cは好ましくは9~11.3であり、より好ましくは9.3~11であり、最も好ましくは9.5~10.5である。
(8) N(窒素):0.15%以下
 Nは強力なオーステナイト安定化元素であり、γ相を形成する。形成されたγ相は常温まで冷却される間にマルテンサイト化して、靭性及び被削性を劣化させる。そのため、Nは極力少ない方が望ましいが、Nはもともと溶解材料(スクラップ)に含有されているため、不可避的不純物として混入する。靭性及び被削性を実質的に悪化させないNの上限は0.15%であるので、N含有量は0.15%以下(0%を含む)とする。N含有量は好ましくは0~0.13%であり、より好ましくは0~0.11%であり、最も好ましくは0~0.10%である。
(9) S(硫黄):(Nb/20-0.1)~0.2%
 Sは本発明のフェライト系耐熱鋳鋼に十分な耐ガス欠陥性を付与するのに重要な元素である。SはMn及びCrと結合してマンガンクロム硫化物(MnCr)Sを形成し、耐ガス欠陥性を向上させる。(MnCr)Sは、共晶(δ+NbC)相の凝固の後に、(MnCr)Sとδ相との共晶硫化物(δ+(MnCr)S)として晶出する。共晶硫化物(δ+(MnCr)S)は、共晶(δ+NbC)相より遅れて凝固することにより、凝固終了温度が降下して凝固温度範囲が拡大する。共晶(δ+NbC)相より凝固の遅い共晶硫化物(δ+(MnCr)S)が晶出することにより、共晶(δ+NbC)相の晶出時に液相より排出された水素は、凝固前の共晶硫化物(δ+(MnCr)S)の固液共存相の液相を通って鋳型から外部へと逃散され、ガス欠陥が抑制されると推察される。
 共晶(δ+NbC)相の晶出量が増加すると水素の排出量も多くなるので、水素の逃散経路となる固液共存相の量を多く確保するために、共晶硫化物(δ+(MnCr)S)の晶出量を増大させる必要がある。本発明の組成範囲では、共晶(δ+NbC)相の晶出量はNb含有量に依存し、共晶硫化物(δ+(MnCr)S)の晶出量はS含有量に依存する。ガス欠陥を抑制するためには、共晶(δ+NbC)相の晶出量に応じて共晶硫化物(δ+(MnCr)S)の晶出量を確保する必要があり、そのためにNb含有量に比例してSの必要量(下限量)を増大させる必要がある。NbとSの含有量とガス欠陥の発生状況との関係を調べたところ、ガス欠陥を抑制するのに必要なSの量は(Nb/20-0.1)%以上であることが分った。しかし、Sが0.2%を超えて過剰に含有すると、靭性の低下が顕著となる。そのため、Sの含有量は(Nb/20-0.1)~0.2%とする。本発明においては、S含有量の下限値は、Nbが3.2%のときに0.06%となり、Nbが4.5%のときに0.125%となるので、S含有量は0.06~0.2%の範囲におさまることとなる。S含有量は好ましくは0.125~0.2%であり、より好ましくは0.13~0.2%であり、最も好ましくは0.13~0.17%である。
(10) W(タングステン)及び/又はMo(モリブデン):合計(W+Mo)で3.2%以下
 W及びMoは基地組織のδ相に固溶することにより高温強度を改善する。W及びMoの添加効果は、いずれか一方を添加する場合には各元素の含有量が約3%で飽和し、両者を添加した場合でも両者の合計含有量が約3%で飽和する。さらに、W及びMoを単独で添加する場合は各元素の含有量が3.2%を超えると、また両者を添加する場合は合計量(W+Mo)が3.2%を超えると、粗大な炭化物を生成して靱性及び被削性を著しく劣化させる。従って、W及び/又はMoの含有量は合計(W+Mo)で3.2%以下(0%を含む)とする。W及び/又はMoの含有量は合計で好ましくは0~3.0%であり、より好ましくは0~2.5%である。特に靭性が必要とされる場合、W及び/又はMoの含有量は合計で好ましくは0~1.0%であり、より好ましくは0~0.5%であり、最も好ましくは0~0.3%である。また、特に高温強度が必要とされる場合、W及び/又はMoの含有量は合計で好ましくは0.8~3.2%であり、より好ましくは1.0~3.2%であり、最も好ましくは1.0~2.5%である。
(B) 組織
(1) 共晶(δ+NbC)相の面積率:60~80%
 本発明のフェライト系耐熱鋳鋼において、δ相とNb炭化物(NbC)との共晶(δ+NbC)相の晶出量を制御することは靭性を確保する上で重要である。本発明のフェライト系耐熱鋳鋼では、鋳造時の凝固において、初晶δ相が凝固した後短時間で比較的多量の共晶(δ+NbC)相が凝固する結果、共晶(δ+NbC)の凝固相により初晶δ相の成長が妨害、抑制され、初晶δ相の結晶粒は微細になる。一方、共晶(δ+NbC)相の成長も初晶δ相の凝固相により妨害、抑制され、共晶(δ+NbC)相の結晶粒も細かくなる。このように、本発明のフェライト系耐熱鋳鋼では、初晶δ相と共晶(δ+NbC)相の双方が互いに結晶粒の成長を抑制していずれの結晶粒も微細化し、もって靭性が大幅に向上していると推定される。この効果を得るためには、組織の全面積を100%としたときに、共晶(δ+NbC)相の面積割合(面積率)は60~80%である必要がある。共晶(δ+NbC)相の面積率が60%未満では、初晶δ相の結晶粒が粗大となり、靭性の向上効果が得られない。一方、共晶(δ+NbC)相の面積率が80%を超えると、共晶(δ+NbC)相の晶出量が過剰となるだけでなく、その結晶粒も粗大化するので、脆化し、靭性が著しく低下する。従って、共晶(δ+NbC)相の面積率は60~80%に制御する。共晶(δ+NbC)相の面積率を60~80%に制御するために、C及びNbの含有量、及びNb/Cの比を前述した範囲に規制する。共晶(δ+NbC)相の面積率は好ましくは60~78%であり、より好ましくは60~76%であり、最も好ましくは60~74%である。
(2) マンガンクロム硫化物(MnCr)Sの面積率:0.2~1.2%
 本発明のフェライト系耐熱鋳鋼において、マンガンクロム硫化物(MnCr)Sの晶出量を制御することは耐ガス欠陥性を確保する上で重要である。共晶(δ+NbC)相より遅れて凝固する(MnCr)Sとδ相との共晶硫化物(δ+(MnCr)S)を適量晶出させて、凝固終了温度を降下させて凝固温度範囲を拡大し、十分な耐ガス欠陥性を得るためには、組織の全面積を100%としたときに、マンガンクロム硫化物(MnCr)Sの面積割合(面積率)は0.2%以上である必要がある。しかし、(MnCr)Sの面積率が1.2%を超えると共晶硫化物(δ+(MnCr)S)の晶出量が過剰となり、脆化により靭性を損なう。従って、マンガンクロム硫化物(MnCr)Sの面積率は0.2~1.2%に制御する。(MnCr)Sの面積率を制御するためには、S含有量を前述した範囲に規制する。マンガンクロム硫化物(MnCr)Sの面積率は好ましくは0.2~1.0%であり、より好ましくは0.3~1.0%であり、最も好ましくは0.5~1.0%である。
[2] 排気系部品
 上記フェライト系耐熱鋳鋼を用いて製造される本発明の排気系部品はいかなる鋳造排気系部品も含むが、その好ましい例は、エキゾーストマニホールド、タービンハウジング、タービンハウジングとエキゾーストマニホールドとを一体に鋳造したタービンハウジング一体エキゾーストマニホールド、触媒ケース、触媒ケースとエキゾーストマニホールドとを一体に鋳造した触媒ケース一体エキゾーストマニホールド、エキゾーストアウトレット等である。勿論、本発明の排気系部品はこれらに限定されず、例えば板金製又はパイプ製の部材と溶接される鋳造部品も含む。
 本発明の排気系部品は、1000℃以上の高温の排出ガスに曝され、自身の表面温度が900℃付近に達しても十分な耐酸化性、耐熱亀裂性、耐熱変形性等の耐熱特性を確保しているので、エキゾーストマニホールド、タービンハウジング、タービンハウジング一体エキゾーストマニホールド、触媒ケース、触媒ケース一体エキゾーストマニホールド、及びエキゾーストアウトレットとして好適であり、高い耐熱性及び耐久性を発揮する。また優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を兼備しているとともに、希少金属の含有量を抑制し、熱処理が不要であるので、高い製品歩留りで安価に製造できる。このため、低燃費化に寄与するとともに、高い耐熱性及び耐久性を有する安価な排気系部品を、大衆車のような低価格の自動車にも使用することが可能となり、CO2削減に貢献することが期待される。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。ここでも特に断りがない限り、合金を構成する各元素の含有量は質量%で表す。
 実施例1~39、及び比較例1~34
 各鋳鋼の供試材の化学組成を表1-1及び表1-2に示す。実施例1~39は本発明のフェライト系耐熱鋳鋼であり、比較例1~30は本発明の範囲外の鋳鋼である。具体的には、
 比較例1はC及びNbの含有量が少なすぎる鋳鋼であり、
 比較例2~6、16及び17はSが少なすぎる鋳鋼であり、
 比較例7~9はC及びNbの含有量が多すぎる鋳鋼であり、
 比較例10はSが少なすぎ、かつCrが多すぎる鋳鋼であり、
 比較例11はCが少なすぎる鋳鋼であり、
 比較例12はCが多すぎる鋳鋼であり、
 比較例13はSiが多すぎる鋳鋼であり、
 比較例14はMnが少なすぎる鋳鋼であり、
 比較例15はMnが多すぎる鋳鋼であり、
 比較例18及び19はSが多すぎる鋳鋼であり、
 比較例20はNiが多すぎる鋳鋼であり、
 比較例21はCrが少なすぎる鋳鋼であり、
 比較例22はCrが多すぎる鋳鋼であり、
 比較例23はWが多すぎる鋳鋼であり、
 比較例24はMoが多すぎる鋳鋼であり、
 比較例25及び26はNbが少なすぎる鋳鋼であり、
 比較例27はNbが多すぎる鋳鋼であり、
 比較例28はNb/Cが小さすぎる鋳鋼であり、
 比較例29はNb/Cが大きすぎる鋳鋼であり、
 比較例30はNが多すぎる鋳鋼である。
 比較例31はCB-30に相当する一般的なフェライト系鋳鋼であり、
 比較例32は特開平7-197209号に記載のフェライト系耐熱鋳鋼の一例であり、
 比較例33は特開2007-254885号に記載のフェライト系ステンレス鋳鋼の一例であり、
 比較例34は特開平11-61343号に記載のフェライト系耐熱鋳鋼の一例である。
Figure JPOXMLDOC01-appb-T000001
注:(1) 残部はFe及び不可避的不純物。
  (2) (Nb/20-0.1)の式により算出されたSの量。
  (3) W及びMoの欄における「-」は0.1質量%未満を意味する。
Figure JPOXMLDOC01-appb-T000002
注:(1) 残部はFe及び不可避的不純物。
  (2) (Nb/20-0.1)の式により算出されたSの量。
  (3) W及びMoの欄における「-」は0.1質量%未満を意味する。
 実施例1~39及び比較例1~34の各鋳鋼を、100 kg高周波溶解炉(塩基性ライニング)を用いて大気溶解した後、1600~1650℃で出湯し、直ちに約1550℃で、凝固開始温度測定用のR熱電対付きシェルカップ鋳型、渦巻形湯流れ性試験片鋳型、耐ガス欠陥性評価用の平板試験片鋳型、1インチYブロック鋳型、段付きYブロック鋳型及び被削性評価用の円柱状ブロック鋳型にそれぞれ注湯し、供試材を作製した。鋳放しのままの(熱処理なし)の各鋳鋼を、凝固開始温度、湯流れ長さ、ミクロ組織、ガス欠陥の数、常温衝撃値、工具寿命、酸化減量、高温強度及び熱疲労寿命について評価した。評価方法及び結果を以下に示す。
(1) 凝固開始温度
 R熱伝対付きシェルカップ鋳型に注湯することにより、凝固開始温度を測定した。結果を表2-1及び表2-2に示す。前述したように凝固開始温度は1440℃未満が望ましいが、実施例1~39はいずれもこの条件を満たした。一方、比較例1、11、25及び31~33の凝固開始温度はいずれも1440℃以上であった。これは、C又はNbの含有量が本発明の範囲外であるためである。Nb含有量が多い比較例33の凝固開始温度は1430℃で1440℃未満であるが、比較例33は後述するようにガス欠陥が多く、耐ガス欠陥性に劣っていた。
(2) 湯流れ長さ
 渦巻形湯流れ性試験片の湯道内に形成された鋳物の長さ、即ち湯口から溶湯が到達した先端までの距離(mm)を測定し、湯流れ長さとした。湯流れ長さの測定結果を表2-1及び表2-2に示す。湯流れ長さが長い方が湯流れ性が良いので、湯流れ長さの長短により湯流れ性を評価した。表2-1及び表2-2から明らかなように、実施例1~39のいずれも1100 mm以上と長い湯流れ長さを有していた。一方、C及び/又はNb含有量が本発明の範囲より少ない比較例1、11、25、31及び32では、湯流れ長さは1100 mm以下と短かった。C含有量が同じで、Nb含有量が異なる実施例14と比較例32とを比較すると、Nb含有量が4.4%の実施例14の湯流れ長さは1275 mmであるのに対し、Nb含有量が2.0%の比較例32の湯流れ長さは1012 mmで、実施例14の約80%しかなく、湯流れ性に劣ることが分る。比較例33はC含有量が0.25%と少ないにも関わらず、湯流れ長さが1247 mmで良好な湯流れ性を示す。この理由は、溶湯の流動性を改善する作用のあるSiを2.80%含有するためと考えられる。しかし、比較例33は、湯流れ性が改善されているものの、常温衝撃値が小さく靭性が不十分である。これらの結果から、C及びNbを多く含有する本発明のフェライト系耐熱鋳鋼は良好な湯流れ性を有することが分かる。
(3) ミクロ組織
 1インチYブロックの各供試材から組織観察用の試験片を切り出し、マンガンクロム硫化物(MnCr)S及び共晶(δ+NbC)相の面積率を測定した。マンガンクロム硫化物(MnCr)Sの面積率は、腐食なしの試験片に対して光学顕微鏡(倍率100倍)の任意の5視野を観察し、各視野における面積率を画像解析装置を用いて測定し、平均することにより求めた。共晶(δ+NbC)相の面積率は、鏡面研磨した後腐食エッチング処理した観察面に対して、光学顕微鏡(倍率100倍)の任意の5視野を写真撮影し、各視野における共晶(δ+NbC)相の部分を黒く塗りつぶした後、画像解析装置を用いて黒い部分の面積率を測定し、平均することにより求めた。マンガンクロム硫化物(MnCr)Sの面積率の測定結果を表2-1及び表2-2に示し、共晶(δ+NbC)相の面積率の測定結果を表3-1及び表3-2に示す。
(4) ガス欠陥の数
 ガス欠陥評価用の各鋳造平板試験片を透過X線撮影し、試験片中に存在するガス欠陥の数(個)を目視で測定した。ガス欠陥の数の測定結果を表2-1及び表2-2に示す。ガス欠陥の数が少ない方が耐ガス欠陥性に優れているので、ガス欠陥の数の多少により耐ガス欠陥性を評価した。実施例1~39はいずれもガス欠陥がなく、耐ガス欠陥性に優れていた。一方、比較例2~6、10、16、17、33及び34はいずれも、Nb含有量に対応するSの必要量よりS含有量が少ないため、ガス欠陥の数が多かった。また比較例7~9及び27はいずれも、Nb含有量が本発明の上限の4.5%を超えているため、ガス欠陥の数が多かった。さらに比較例13は、Si含有量が本発明の上限の0.85%を超えているため、ガス欠陥の数が多かった。さらに比較例14は、Mn含有量が本発明の下限の0.15%より少ないため、ガス欠陥の数が多かった。従って、これらの比較例はいずれも耐ガス欠陥性に劣っていた。
Figure JPOXMLDOC01-appb-T000003
(5) 常温衝撃値
 機械的振動や衝撃のような外力により亀裂や割れが発生するおそれがある部材に対しては、亀裂の進展速度が速いことに鑑み、引張試験より亀裂の進展速度が速いシャルピー衝撃試験の方が靭性の評価方法として相応しい。従って、常温での靭性を評価するため、シャルピー衝撃試験による常温衝撃値を測定した。
 段付きYブロックの各供試材から、JIS Z 2242に示す形状及び寸法のノッチなしのシャルピー衝撃試験片を切り出した。容量50 Jの試験機を使用し、JIS Z 2242に従って3個の試験片に対して23℃で衝撃試験を行い、得られた衝撃値を平均した。衝撃試験結果を表3-1及び表3-2に示す。
 排気系部品の生産過程等で亀裂や割れを発生しない靭性を有するためには、常温衝撃値は7×104 J/m2以上が望ましく、10×104J/m2以上がより望ましい。実施例1~32の常温衝撃値は全て7×104J/m2以上であった。本発明のフェライト系耐熱鋳鋼は、所望量のC及びNbを含有し、初晶δ相と共晶(δ+NbC)相とが結晶粒の微細化効果が得られる最適な割合で共存しているので、高い常温衝撃値、すなわち優れた靭性を有すると考えられる。
 これに対して、比較例10はCrが過剰なため、比較例11はCが少なく、共晶(δ+NbC)相の面積率が小さいため、比較例13及び33はSiが過剰なため、比較例19はSが過剰なため、比較例20はNiが過剰なため、比較例23及び24はW又はMoが過剰なため、比較例25及び26はNbが少なく、共晶(δ+NbC)相の面積率が小さいため、比較例28はNb/Cが小さく、共晶(δ+NbC)相の面積率が小さいため、比較例30はNが過剰なため、いずれも常温衝撃値が低く、靭性に劣っていた。
(6) 工具寿命
 円柱状の各供試材から切り取った試験片の端面を、工具として超硬基体にTiNをPVD被覆したチップを用いたフライス盤により、以下の条件で切削し、チップの逃げ面の最大摩耗幅が0.1 mmとなるまでの切削距離(cm)を測定し、工具寿命とした。工具寿命の測定結果を表3-1及び表3-2に示す。切削距離が長い方が試験片の被削性が良いので、試験片の被削性は切削距離の長短により評価できる。
 切削速度 :90 m/分
 回転速度 :229 rpm
 1刃送り量:0.2 mm/tooth
 送り速度 :48 mm/分
 切込み量 :1.0 mm
 切削油  :なし(乾式)
 表3-1及び表3-2から明らかなように、実施例1~39のいずれも工具寿命が1500 cm以上と長く、良好な被削性を有していた。これに対して、比較例10及び22はCrが過剰なため、比較例15はMnが過剰なため、比較例20はNiが過剰なため、比較例23及び24はW又はMoが過剰なため、比較例25、26、31及び32はNbが少ないため、比較例28はNb/Cが小さいため、比較例30はNが過剰なため、いずれも工具寿命が1500 cm未満と短く、被削性に劣っていた。
(7) 酸化減量
 排気系部品は、エンジンから排出された硫黄酸化物、窒素酸化物等を含む高温の酸化性排出ガスに曝されるため、高い耐酸化性を有することが要求される。エンジンの燃焼室から排出されるガスの温度は1000℃近いので、排気系部品も900℃付近に達するようになってきている。従って、耐酸化性の評価温度を900℃にした。耐酸化性の評価は、1インチYブロックの各供試材から切り出した直径10 mm及び長さ20 mmの丸棒状試験片を大気中900℃に200時間保持した後、ショットブラスト処理を施して酸化スケールを除去し、酸化試験前後の単位面積当たりの質量変化、すなわち酸化減量(mg/cm2)を求めることにより行った。酸化減量の測定結果を表3-1及び表3-2に示す。
 フェライト系耐熱鋳鋼を900℃付近の温度に到達する排気系部品に使用可能とするために、900℃の大気雰囲気に200時間保持したときの酸化減量が20 mg/cm2以下であるのが好ましい。酸化減量が20 mg/cm2を超えると、亀裂の起点となる酸化膜の生成が多くなり、耐酸化性が不十分となる。表3-1及び表3-2から明らかなように、実施例1~39の酸化減量は全て20 mg/cm2以下であった。これは、本発明のフェライト系耐熱鋳鋼が900℃付近の温度に到達する排気系部品に使用して十分な耐酸化性を有することを意味する。本発明のフェライト系耐熱鋳鋼が十分な耐酸化性を有するのは、16%以上のCrを含有しているためである。これに対して、比較例15はMnが過剰なため、比較例21はCrが少ないため、いずれも酸化減量が20 mg/cm2超であり、耐酸化性に劣っていた。
(8) 高温耐力
 1インチYブロックの各供試材から切り出した標点間距離50 mm、及び直径10 mmの平滑丸棒状の鍔付き試験片を、電気-油圧サーボ式材料試験機に取り付け、大気中900℃で0.2%耐力(MPa)を測定した。900℃における0.2%耐力は排気系部品の高温強度及び耐熱変形性の指標となる。900℃における0.2%耐力の測定結果を表3-1及び表3-2に示す。
 一般に金属材料は高温になると高温強度が低下し、熱変形しやすくなる。特に体心立方晶(bcc)構造のフェライト系耐熱鋳鋼は、面心立方晶(fcc)構造のオーステナイト系耐熱鋳鋼と比較して高温強度が低い。形状及び肉厚以外に熱変形に影響を及ぼす主な要因は高温耐力である。900℃付近の温度に到達する排気系部品に使用するには、900℃における高温耐力は20 MPa以上が好ましく、25 MPa以上がより好ましい。
 表3-1及び表3-2から分かるように、実施例1~39の900℃における高温耐力は20 MPa以上と高かった。なかでも、W及び/又はMoを0.9%以上含有する実施例17~39は、900℃における高温耐力が25 MPa以上で、高温強度及び耐熱変形性に優れていた。一方、C及びNbの含有量が少ない比較例1及び31の高温耐力は20 MPa未満であった。これから、C及びNbを多くすることにより靭性のみならず高温強度も向上することが分かった。なお、比較例32はNbの含有量が少ないにもかかわらず高温耐力が高かった。この理由はWを多く含有するためと考えられる。また、比較例33は、Cの含有量が少ないにもかかわらず高温耐力が高かった。この理由はSiを多く含有するためと考えられる。C及びNbを多く含有する本発明のフェライト系耐熱鋳鋼は、W又はSiを含有して高温強度を高めた比較例32及び33と同等の高温強度を有している。
(9) 熱疲労寿命
 排気系部品には、エンジンの運転(加熱)と停止(冷却)の繰り返しによっても熱亀裂を生じないという性質(耐熱亀裂性)、すなわち長い熱疲労寿命が要求される。熱疲労試験での加熱冷却サイクルの繰り返しで生じる亀裂や変形により熱疲労破壊に至るまでのサイクル数が多いほど熱疲労寿命が長く、耐熱性及び耐久性に優れている。
 そこで、耐熱亀裂性の指標としての熱疲労寿命を下記の方法により測定した。すなわち、1インチYブロックの各供試材から切り出した標点間距離20 mm、及び直径10 mmの平滑丸棒状試験片を、高温強度試験と同じ電気-油圧サーボ式材料試験機に拘束率0.5で取り付けた後、大気中で、冷却下限温度150℃、加熱上限温度900℃、及び温度振幅750℃で、昇温時間2分、保持時間1分、及び冷却時間4分の合計7分を1サイクルとして、加熱冷却サイクルを繰り返した。加熱冷却の繰り返しに伴う荷重の変化から求まる荷重-温度線図において、2サイクル目の最大引張荷重を基準(100%)とし、各サイクルで測定された最大引張荷重が75%に低下したときのサイクル数をカウントした。加熱冷却に伴う伸縮を機械的に拘束して熱疲労破壊を起こさせたので、上記サイクル数により熱疲労寿命を判定することができる。熱疲労寿命の評価結果を表3-1及び表3-2に示す。
 機械的な拘束の程度(拘束率)は、(自由熱膨張伸び-機械的拘束下での伸び)/(自由熱膨張伸び)で表される。例えば拘束率1.0は、試験片が例えば150℃から900℃まで加熱されたときに全く伸びを許さない機械的拘束条件である。また拘束率0.5は、自由膨張伸びが例えば2 mmのところを1 mmの伸びしか許さない機械的拘束条件である。従って、拘束率0.5では昇温中に圧縮荷重がかかり、降温中には引張荷重がかかる。実際の自動車エンジンの排気系部品の拘束率はある程度の伸びを許容する0.1~0.5程度であるので、熱疲労寿命試験における拘束率を0.5とした。
 フェライト系耐熱鋳鋼を900℃付近の温度に到達する排気系部品に使用するには、上記条件での熱疲労寿命が1000サイクル以上であるのが望ましい。すなわち、熱疲労寿命が1000サイクル以上であれば、フェライト系耐熱鋳鋼は優れた耐熱亀裂性を有するといえる。表3-1及び表3-2から明らかなように、実施例1~39の熱疲労寿命はいずれも1400サイクル以上と十分に長かった。これは、本発明のフェライト系耐熱鋳鋼は、900℃付近の温度に到達する排気系部品に使用しても十分な耐熱亀裂性を発揮することを意味する。
 上述のとおり、本発明のフェライト系耐熱鋳鋼は、900℃付近の温度に到達する排気系部品に要求される高い耐熱特性(耐酸化性、高温強度、耐熱変形性及び耐熱亀裂性)を有するとともに、湯流れ性、耐ガス欠陥性、靭性及び被削性にも優れている。
Figure JPOXMLDOC01-appb-T000005
注:(1) 900℃で測定。
Figure JPOXMLDOC01-appb-T000006
注:(1) 900℃で測定。
実施例40
 実施例18のフェライト系耐熱鋳鋼を用いて、自動車用排気系部品のタービンハウジング(主要部の肉厚4.0~6.0 mm)を鋳造した後、熱処理を施さず鋳放しのまま型ばらし(解枠)、鋳造方案部(堰部)の切断、ショットブラスト、鋳バリ等を除去する鋳仕上げ、及び機械加工を行った。得られたタービンハウジングには亀裂及び割れは発生しておらず、引け巣、湯廻り不良、ガス欠陥等の鋳造欠陥も認められなかった。また機械加工での切削不具合や、切削工具の異常摩耗、損傷等もなかった。
 このタービンハウジングを、排気量2000 ccの直列4気筒高性能ガソリンエンジンに相当する排気シミュレータに組み付けた。貫通亀裂発生までの寿命、及び亀裂及び酸化の発生状況を調べるため、全負荷時の排気ガス温度がタービンハウジングの入口で1000℃であり、タービンハウジングの表面の加熱上限温度がウェイストゲート部(排気ガスの下流側)で約950℃であり、冷却下限温度がウェイストゲート部で約80℃(温度振幅=約870℃)となる条件で、10分間の加熱及び10分間の冷却からなる加熱冷却サイクルを繰り返し、耐久試験を実施した。加熱冷却サイクルの目標は1200サイクルである。
 耐久試験の結果、このタービンハウジングは、排気ガスの漏洩や割れを生ずることなく、1200サイクルの耐久試験をクリアした。耐久試験後の目視観察及び浸透探傷試験の結果、高温の排気ガスが通過するウェイストゲート部や最薄肉部のスクロール部を含めたいずれの部位にも、貫通亀裂はもとより、亀裂及び割れが発生しておらず、部品全体の酸化も少なかった。これにより、本発明のタービンハウジングは、900℃付近での耐酸化性及び耐熱亀裂性に優れていることが確認された。
 上記のとおり、本発明のフェライト系耐熱鋳鋼からなる排気系部品は、900℃付近で高い耐熱性及び耐久性を有するとともに、優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を兼備している。本発明の排気系部品は、希少金属の含有量が少ないフェライト系耐熱鋳鋼からなるので安価であり、低燃費化技術の適用範囲を低価格の自動車にも拡大することができ、CO2ガスの排出量の削減に貢献する。
 以上自動車エンジン用の排気系部品について詳細に説明したが、本発明のフェライト系耐熱鋳鋼の用途はこれに限定されるものではなく、例えば、建設機械、船舶、航空機等の燃焼機関や、溶解炉、熱処理炉、焼却炉、キルン、ボイラ、コージェネ装置等の熱機器や、石油化学プラント、ガスプラント、火力発電プラント、原子力発電プラント等、優れた耐酸化性、耐熱亀裂性、耐熱変形性等の耐熱性及び耐久性とともに湯流れ性、耐ガス欠陥性、靭性及び被削性が要求される各種の鋳造部品にも使用可能である。

Claims (2)

  1. 優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼であって、質量比で
    C:0.32~0.45%、
    Si:0.85%以下、
    Mn:0.15~2%、
    Ni:1.5%以下、
    Cr:16~23%、
    Nb:3.2~4.5%、
    Nb/C:9~11.5、
    N:0.15%以下、
    S:(Nb/20-0.1)~0.2%、
    W及び/又はMo:合計(W+Mo)で3.2%以下
    を含有し、残部Fe及び不可避的不純物からなる組成を有し、δフェライトとNb炭化物(NbC)との共晶(δ+NbC)相の面積率が60~80%であり、マンガンクロム硫化物(MnCr)Sの面積率が0.2~1.2%である組織を有することを特徴とするフェライト系耐熱鋳鋼。
  2. 請求項1に記載のフェライト系耐熱鋳鋼からなる排気系部品。
PCT/JP2011/072811 2010-10-01 2011-10-03 優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品 WO2012043860A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/877,104 US9046029B2 (en) 2010-10-01 2011-10-03 Heat-resistant, ferritic cast steel having excellent melt flowability, gas defect resistance, toughness and machinability, and exhaust member made thereof
EP11829412.3A EP2623623B1 (en) 2010-10-01 2011-10-03 Heat-resistant ferritic cast steel having excellent melt flowability, freedom from gas defect, toughness, and machinability, and exhaust system component comprising same
JP2012536610A JP5862570B2 (ja) 2010-10-01 2011-10-03 優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品
CN201180047534.4A CN103140595B (zh) 2010-10-01 2011-10-03 具有优异的流动性、耐气体缺陷性、韧性和被削性的铁素体系耐热铸钢和由其构成的排气系统零件
KR1020137005969A KR101799844B1 (ko) 2010-10-01 2011-10-03 우수한 탕류성, 내가스 결함성, 인성 및 피삭성을 가지는 페라이트계 내열 주강, 및 이들로 이루어지는 배기계 부품

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010223366 2010-10-01
JP2010-223366 2010-10-01
JP2011-082167 2011-04-01
JP2011082167 2011-04-01

Publications (1)

Publication Number Publication Date
WO2012043860A1 true WO2012043860A1 (ja) 2012-04-05

Family

ID=45893292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072811 WO2012043860A1 (ja) 2010-10-01 2011-10-03 優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品

Country Status (6)

Country Link
US (1) US9046029B2 (ja)
EP (1) EP2623623B1 (ja)
JP (1) JP5862570B2 (ja)
KR (1) KR101799844B1 (ja)
CN (1) CN103140595B (ja)
WO (1) WO2012043860A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057875A1 (ja) 2012-10-10 2014-04-17 日立金属株式会社 被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
JP2020157345A (ja) * 2019-03-27 2020-10-01 日立金属株式会社 通気性鋳型およびそれを用いた鋳造物品の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2554703B8 (en) * 2010-03-31 2018-10-31 Hitachi Metals, Ltd. Ferrite heat-resistant cast steel having excellent normal-temperature toughness and exhaust system component formed from the same
US9499889B2 (en) * 2014-02-24 2016-11-22 Honeywell International Inc. Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
CN104500497A (zh) * 2014-12-22 2015-04-08 常熟市董浜镇徐市盛峰液压配件厂 高可靠性油缸盖
US11492690B2 (en) 2020-07-01 2022-11-08 Garrett Transportation I Inc Ferritic stainless steel alloys and turbocharger kinematic components formed from stainless steel alloys
CN113025860B (zh) * 2021-03-09 2022-07-08 陕西科技大学 一种兼具高强度、高硬度及高热稳定性的Laves相共晶合金及其制备方法
CN116804257A (zh) * 2023-06-21 2023-09-26 鞍钢集团矿业有限公司 低成本奥氏体-铁素体双相耐热钢及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320830A (ja) * 1992-05-21 1993-12-07 Toyota Motor Corp フェライト系耐熱鋳鋼およびその製造方法
JPH07197209A (ja) 1993-11-25 1995-08-01 Hitachi Metals Ltd 鋳造性の優れたフェライト系耐熱鋳鋼およびそれからなる排気系部品
JPH1161343A (ja) 1997-08-11 1999-03-05 Hitachi Metals Ltd 高温強度とくにクリープ破断強度の優れたフェライト系耐熱鋳鋼およびそれからなる排気系部品
JP2000204946A (ja) * 1998-11-11 2000-07-25 Hitachi Metals Ltd ステンレス鋳鋼製排気系複合部品及びその製造方法
JP2004332021A (ja) * 2003-05-01 2004-11-25 Sanyo Special Steel Co Ltd アウトガス特性に優れた非Pb快削ステンレス鋼
JP2007254885A (ja) 2006-02-23 2007-10-04 Daido Steel Co Ltd 薄肉鋳物部品及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68919606T2 (de) * 1988-09-05 1995-04-06 Hitachi Metals Ltd Hitzebeständige Gussstähle.
JPH0826438B2 (ja) * 1990-03-27 1996-03-13 日立金属株式会社 熱疲労寿命に優れたフェライト系耐熱鋳鋼
JPH05140700A (ja) * 1991-11-15 1993-06-08 Mazda Motor Corp フエライト系耐熱鋳鋼部材及びその製造法
US5582657A (en) 1993-11-25 1996-12-10 Hitachi Metals, Ltd. Heat-resistant, ferritic cast steel having high castability and exhaust equipment member made thereof
JP2002309935A (ja) * 2001-02-08 2002-10-23 Hitachi Metals Ltd 耐熱鋳鋼製排気系部品
US20040170518A1 (en) * 2001-07-05 2004-09-02 Manabu Oku Ferritic stainless steel for member of exhaust gas flow passage
JP2007254884A (ja) 2006-02-23 2007-10-04 Daido Steel Co Ltd フェライト系ステンレス鋳鋼、それを用いた鋳物部品の製造方法及び鋳物部品
EP1826288B1 (en) * 2006-02-23 2012-04-04 Daido Tokushuko Kabushiki Kaisha Ferritic stainless steel cast iron, cast part using the ferritic stainless steel cast iron, and process for producing the cast part
JP4521470B1 (ja) * 2009-04-27 2010-08-11 アイシン高丘株式会社 フェライト系耐熱鋳鋼および排気系部品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320830A (ja) * 1992-05-21 1993-12-07 Toyota Motor Corp フェライト系耐熱鋳鋼およびその製造方法
JPH07197209A (ja) 1993-11-25 1995-08-01 Hitachi Metals Ltd 鋳造性の優れたフェライト系耐熱鋳鋼およびそれからなる排気系部品
JPH1161343A (ja) 1997-08-11 1999-03-05 Hitachi Metals Ltd 高温強度とくにクリープ破断強度の優れたフェライト系耐熱鋳鋼およびそれからなる排気系部品
JP2000204946A (ja) * 1998-11-11 2000-07-25 Hitachi Metals Ltd ステンレス鋳鋼製排気系複合部品及びその製造方法
JP2004332021A (ja) * 2003-05-01 2004-11-25 Sanyo Special Steel Co Ltd アウトガス特性に優れた非Pb快削ステンレス鋼
JP2007254885A (ja) 2006-02-23 2007-10-04 Daido Steel Co Ltd 薄肉鋳物部品及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623623A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057875A1 (ja) 2012-10-10 2014-04-17 日立金属株式会社 被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
KR20150065870A (ko) 2012-10-10 2015-06-15 히타치 긴조쿠 가부시키가이샤 피삭성이 우수한 페라이트계 내열 주강 및 그것으로 이루어지는 배기계 부품
CN104718304A (zh) * 2012-10-10 2015-06-17 日立金属株式会社 切削性优异的铁素体系耐热铸钢和由其构成的排气系统部件
EP2907885A4 (en) * 2012-10-10 2016-07-13 Hitachi Metals Ltd HEAT-RESISTANT FERRITIC MOLDED STEEL WITH EXCELLENT MACHINING CAPACITY AND EXHAUST COMPONENT THEREOF
US9758851B2 (en) 2012-10-10 2017-09-12 Hitachi Metals, Ltd. Heat-resistant, cast ferritic steel having excellent machinability and exhaust member made thereof
KR102087129B1 (ko) * 2012-10-10 2020-03-10 히타치 긴조쿠 가부시키가이샤 피삭성이 우수한 페라이트계 내열 주강 및 그것으로 이루어지는 배기계 부품
JP2020157345A (ja) * 2019-03-27 2020-10-01 日立金属株式会社 通気性鋳型およびそれを用いた鋳造物品の製造方法

Also Published As

Publication number Publication date
JP5862570B2 (ja) 2016-02-16
US9046029B2 (en) 2015-06-02
EP2623623B1 (en) 2016-03-23
KR20130116239A (ko) 2013-10-23
KR101799844B1 (ko) 2017-11-22
EP2623623A4 (en) 2015-01-28
US20130195713A1 (en) 2013-08-01
JPWO2012043860A1 (ja) 2014-02-24
EP2623623A1 (en) 2013-08-07
CN103140595B (zh) 2015-05-20
CN103140595A (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5862570B2 (ja) 優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品
JP4985941B2 (ja) 高Cr高Niオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JP5353716B2 (ja) オーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JP5626338B2 (ja) 常温靭性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
JP6481692B2 (ja) 熱疲労特性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JP6160625B2 (ja) 被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
JP6098637B2 (ja) 被削性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JPH05179406A (ja) 耐熱鋳鋼及びその製造方法並びに内燃機関用部品
JPH07228948A (ja) 鋳造性および被削性の優れたオーステナイト系耐熱鋳鋼およびそれからなる排気系部品
JPH06322473A (ja) 鋳造用鉄合金及びその製造方法
JPH06322474A (ja) 鋳造用鉄合金及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047534.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012536610

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137005969

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13877104

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011829412

Country of ref document: EP