WO2011125901A1 - 常温靭性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品 - Google Patents

常温靭性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品 Download PDF

Info

Publication number
WO2011125901A1
WO2011125901A1 PCT/JP2011/058331 JP2011058331W WO2011125901A1 WO 2011125901 A1 WO2011125901 A1 WO 2011125901A1 JP 2011058331 W JP2011058331 W JP 2011058331W WO 2011125901 A1 WO2011125901 A1 WO 2011125901A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
cast steel
resistant cast
nbc
heat
Prior art date
Application number
PCT/JP2011/058331
Other languages
English (en)
French (fr)
Inventor
將秀 川畑
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201180016272.5A priority Critical patent/CN102822370B/zh
Priority to EP11765801.3A priority patent/EP2554703B8/en
Priority to US13/637,927 priority patent/US8900510B2/en
Priority to JP2012509611A priority patent/JP5626338B2/ja
Priority to KR1020127028477A priority patent/KR101745927B1/ko
Publication of WO2011125901A1 publication Critical patent/WO2011125901A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings

Definitions

  • the present invention relates to exhaust system parts for automobile gasoline engines and diesel engines, in particular, ferritic heat-resistant cast steels having excellent room temperature toughness suitable for exhaust manifolds, etc., and exhaust system parts comprising the same.
  • heat-resistant cast iron such as high-Si spheroidal graphite cast iron and Ni-resist cast iron (Ni-Cr austenitic cast iron), ferritic heat-resistant cast steel, and austenitic heat-resistant cast steel Etc.
  • Ferritic 4% Si-0.5% Mo spheroidal graphite cast iron shows relatively good heat resistance up to around 800 ° C, but is inferior in durability at temperatures above that.
  • Heat-resistant cast iron such as Ni-resist cast iron and austenitic heat-resistant cast steel containing a large amount of rare metals such as Ni, Cr, and Co simultaneously satisfy oxidation resistance and heat crack resistance at 800 ° C or higher.
  • Ni-resist cast iron is not only expensive because of its high Ni content, but also has a high coefficient of linear expansion due to the austenitic matrix structure, and the presence of graphite that is the starting point of fracture in the microstructure. Inferior to sex. Austenitic heat-resistant cast steel has no graphite as a starting point of fracture, but has a high coefficient of linear expansion, and therefore has insufficient heat cracking resistance near 900 ° C. In addition, since it contains a lot of rare metals, it is expensive, easily affected by the global economic situation, and there is concern about the stable supply of raw materials.
  • heat-resistant cast steel for exhaust system parts it is desirable for heat-resistant cast steel for exhaust system parts to ensure necessary heat-resistant characteristics by suppressing the rare metal content as much as possible from the viewpoints of economy and stable supply of raw materials as well as effective utilization of resources.
  • low-cost and high-performance exhaust system parts can be obtained, and fuel-saving technology can be applied to low-priced passenger cars, contributing to the reduction of CO 2 gas emissions.
  • the ferritic heat-resistant cast steel has a smaller coefficient of linear expansion than the austenitic heat-resistant cast steel, the thermal stress generated upon starting and starting of the engine is small, and the heat-resistant crack resistance is excellent.
  • Ferritic heat-resistant cast steel has poor toughness at room temperature because it contains a large amount of Cr for oxidation resistance. Exhaust system parts are subjected to mechanical vibrations and shocks during the production process and assembly process to the engine. Therefore, ferritic heat-resistant cast steel used for exhaust system parts needs to have sufficient room temperature toughness so that cracks and cracks do not occur even when mechanical vibrations and impacts occur.
  • Japanese Patent Laid-Open No. 2007-254885 is mainly composed of Fe, 0.10 to 0.50 mass% C, 1.00 to 4.00 mass% Si, 0.10 to 3.00 mass% Mn, 8.0 to 30.0 mass% Cr, and 0.1 to 5.0 It is made of ferritic stainless cast steel containing Nb and / or V of mass%, has a thin part with a thickness of 1-5 mm, and the average crystal grain size of the ferrite phase in the structure of the thin part is 50-400 ⁇ m Discloses thin-walled cast parts with improved high-temperature strength. In the thin cast part, the thin part of 5 mm or less is rapidly cooled after casting, so that the average crystal grain size of the ferrite phase becomes small, and the yield strength at high temperature, tensile strength and elongation at break are high.
  • the ferritic heat-resistant cast steel disclosed in JP 2007-254885 improves the fluidity of the melt by lowering the melting point due to the inclusion of a large amount of Si, as well as improving high-temperature strength, oxidation resistance, carburization resistance and machinability.
  • Si since it contains a large amount of Si of 1.00 to 4.00 mass% (about 2% or more in the examples), Si dissolves in the ferrite matrix structure, and the room temperature toughness decreases.
  • Japanese Patent Application Laid-Open No. 7-197209 describes 0.1 to 1.20% C by weight, 0.05 to 0.45% C-Nb / 8, 2% or less Si, 2% or less Mn, 16.0 to 25.0% Cr, 1.0 to It has a composition consisting of 5.0% W and / or Mo, 0.40 to 6.0% Nb, 0.1 to 2.0% Ni, 0.01 to 0.15% N, the balance Fe and inevitable impurities, and a normal ⁇ phase ( ⁇ ferrite) In addition to the phase), it has a phase ( ⁇ ′ phase) transformed from ⁇ phase (austenite phase) to ⁇ + carbide, and the area ratio ⁇ ′ / ( ⁇ + ⁇ ′) ⁇ of the ⁇ ′ phase is 20 to 70%.
  • a ferritic heat-resistant cast steel having improved castability is disclosed. Since this ferritic heat-resistant cast steel contains more C (austenite element) than is necessary for the formation of NbC, a ⁇ phase is produced during solidification by C dissolved in the matrix structure, and during the cooling process the ⁇ phase becomes ⁇ ' It transforms into a phase, thereby improving ductility and oxidation resistance. Therefore, this ferritic heat-resistant cast steel is suitable for exhaust system parts used at 900 ° C. or higher.
  • JP-A-11-61343 describes 0.05 to 1.00% C, 2% or less Si, 2% or less Mn, 16.0 to 25.0% Cr, 4.0 to 20.0% Nb, 1.0 to 5.0% W by weight ratio. And / or Mo, 0.1 to 2.0% Ni, 0.01 to 0.15% N, and the balance Fe and inevitable impurities, and having a Laves phase (Fe 2 M) in addition to the normal ⁇ phase
  • a ferritic heat-resistant cast steel having excellent high-temperature strength, particularly creep rupture strength, is disclosed.
  • This ferritic heat-resistant cast steel has a Laves phase due to the combination of Nb, W, Mo, Ni and N, thereby improving high-temperature strength, especially creep rupture strength. Toughness is not always sufficient.
  • an object of the present invention is to provide an exhaust system component such as a ferritic heat resistant cast steel excellent in room temperature toughness and an exhaust manifold made of this ferritic heat resistant cast steel while ensuring oxidation resistance and heat cracking resistance near 900 ° C. Is to provide.
  • the casting material When producing a thin and complex-shaped casting such as an exhaust system part, the casting material is required to have good hot water flowability.
  • increasing the C content to lower the solidification start temperature is effective for improving the flow of molten metal, but simply increasing C increases the amount of Cr carbide precipitated or transforms into martensite. Toughness deteriorates due to phase crystallization.
  • Nb needs to be increased together with C in order to improve the molten metal flowability while suppressing the decrease in toughness.
  • the ⁇ phase consisting of a body-centered cubic (BCC) structure decreases the toughness when an alloying element is dissolved in the base structure for the purpose of improving the strength, etc., or a crystallized product or precipitate is formed.
  • BCC body-centered cubic
  • the content of C, Si, Nb, etc. is controlled within the desired range, and the optimal proportion of primary crystal ⁇ phase ( ⁇ ferrite phase) and eutectic ( ⁇ + NbC) phase of ⁇ phase and Nb carbide (NbC)
  • ferritic heat-resistant cast steel having excellent room temperature toughness while ensuring oxidation resistance and heat cracking resistance near 900 ° C. can be obtained.
  • the ferritic heat-resistant cast steel having excellent room temperature toughness has a mass ratio of 0.32 to 0.48% C, 0.85% or less of Si, Mn below 2%, Up to 1.5% Ni, 16 to 19.8% Cr, 3.2-5% Nb, 9 to 11.5 Nb / C, N of 0.15% or less, 0.002 to 0.2% S, and a total of 0.8% or less W and / or Mo And having a composition comprising the balance Fe and inevitable impurities, and having a structure in which the area ratio of the eutectic ( ⁇ + NbC) phase of ⁇ phase and Nb carbide (NbC) is 60 to 90% .
  • the exhaust system part of the present invention is characterized by comprising the above-mentioned ferritic heat-resistant cast steel.
  • the exhaust system parts include exhaust manifold, turbine housing, turbine housing integrated exhaust manifold, catalyst case, catalyst case integrated exhaust manifold, or exhaust outlet, especially exhaust manifold, catalyst case, catalyst case integrated exhaust manifold, exhaust outlet. Is preferred.
  • the ferritic heat-resistant cast steel of the present invention has excellent room temperature toughness while ensuring oxidation resistance and heat cracking resistance near 900 ° C. without heat treatment, it is high performance and inexpensive. In addition, since the content of rare metals is suppressed, it contributes not only to reducing raw material costs but also to effective use and stable supply of resources. Exhaust system parts made of the ferritic heat-resistant cast steel of the present invention having such characteristics can be manufactured at low cost, thereby expanding the scope of application of fuel efficiency reduction technology and contributing to the reduction of CO 2 gas emissions from automobiles, etc. .
  • FIG. 6 is an optical micrograph (100 ⁇ ) showing the microstructure of the ferritic heat-resistant cast steel of Example 8.
  • 1 is a schematic diagram showing an ingot A of 1 inch Y block for cutting out a test piece.
  • FIG. It is the schematic which shows the ingot B of the stepped Y block which cuts out a test piece.
  • It is a graph which shows the relationship between Nb content and a normal temperature impact value.
  • It is a graph which shows the relationship between Nb content and the area ratio of a eutectic ((delta) + NbC) phase.
  • Ferritic heat-resistant cast steel The composition and structure of the ferritic heat-resistant cast steel of the present invention will be described in detail below. Note that “%” indicating the content of each element is “% by mass” unless otherwise specified.
  • C (carbon): 0.32 to 0.48% C has an action of lowering the solidification start temperature to improve the fluidity of the molten metal, that is, the molten metal flowability (castability).
  • C combines with Nb to form a eutectic ( ⁇ + NbC) phase of ⁇ phase and Nb carbide (NbC), and has the effect of increasing the high temperature strength.
  • the C content needs to be 0.32% or more.
  • the C content is set to 0.32 to 0.48%.
  • the C content is preferably 0.32 to 0.45%, more preferably 0.32 to 0.44%, and most preferably 0.32 to 0.42%.
  • Si 0.85% or less Si not only acts as a deoxidizer for molten metal but also improves oxidation resistance. However, when Si exceeds 0.85%, it dissolves in the ferrite of the base structure and causes the base structure to become brittle. Therefore, the Si content is 0.85% or less (excluding 0%).
  • the Si content is preferably 0.2 to 0.85%, more preferably 0.3 to 0.85%, and most preferably 0.35 to 0.85%.
  • Mn (manganese) 2% or less Mn is effective as a deoxidizer for molten metal, just like Si, but if it exceeds 2%, it degrades the oxidation resistance of ferritic heat-resistant cast steel. Therefore, the Mn content is 2% or less (excluding 0%). The Mn content is preferably 0.1 to 2%, more preferably 0.1 to 1.5%, and most preferably 0.2 to 1.2%.
  • Ni is an austenite stabilizing element and forms a ⁇ phase. Austenite is transformed into martensite while it is cooled to room temperature, and martensite deteriorates room temperature toughness. Therefore, it is desirable that the Ni content is as low as possible. However, since Ni is usually contained in the raw material scrap material, it is inevitably mixed in the ferritic heat-resistant cast steel. Since the limit of Ni content that can prevent adverse effects on room temperature toughness is 1.5% or less, the Ni content is set to 0 to 1.5%. The Ni content is preferably 0 to 1.25%, more preferably 0 to 1.0%, and most preferably 0 to 0.9%.
  • Cr 16 to 19.8% Cr is an element that improves oxidation resistance and stabilizes the ferrite structure. In order to ensure oxidation resistance near 900 ° C, Cr needs to be at least 16%. On the other hand, when the Cr content exceeds 19.8% in the ferrite base, sigma brittleness is likely to occur, the toughness is lowered, and the machinability is also deteriorated. Therefore, the Cr content is 16 to 19.8%.
  • the Cr content is preferably 17 to 19.8%, more preferably 17 to 19.5%, and most preferably 17.5 to 19.0%.
  • Nb (Niobium): 3.2-5% Nb combines with C to form a eutectic ( ⁇ + NbC) phase, improving the high-temperature strength and lowering the solidification start temperature.
  • the decrease in the solidification start temperature improves the flowability of the hot water, which is important for the production of a thin and complex-shaped casting such as an exhaust system part.
  • Nb also fixes C as crystallized carbide (NbC) during solidification, thus preventing C, a strong austenite stabilizing element, from dissolving in the ferrite of the base structure and crystallizing the ⁇ phase. Prevent toughness loss.
  • Nb remarkably improves the room temperature toughness by refining the crystal grains of the primary crystal ⁇ phase and the eutectic ( ⁇ + NbC) phase.
  • the Nb content needs to be 3.2% or more.
  • the Nb content is set to 3.2 to 5%.
  • the improvement effect of high temperature strength, molten metal flow and toughness by Nb can be almost achieved at about 4%, and since Nb is an expensive rare metal, the Nb content is preferably 3.2. It is ⁇ 4.0%.
  • the Nb content is more preferably 3.2 to 3.9%, and most preferably 3.3 to 3.9%.
  • Nb / C 9 to 11.5
  • the regulation of the content ratio of Nb and C is most important for obtaining excellent room temperature toughness while ensuring oxidation resistance and thermal crack resistance near 900 ° C.
  • Nb forms carbides with C, but if C is excessive (Nb / C ratio is small), excess C that did not form Nb carbides is dissolved in the base structure and the ⁇ phase is unstable. The ⁇ phase crystallizes out. The crystallized ⁇ phase transforms into martensite that lowers the room temperature toughness before reaching room temperature. If the Nb / C ratio is small, the growth of the primary ⁇ phase is promoted, so that the crystal grains of the primary ⁇ phase are not sufficiently refined and the toughness is not improved.
  • An Nb / C ratio of 9 or more is required to refine the crystal grains of the primary crystal ⁇ phase and the eutectic ( ⁇ + NbC) phase while suppressing the crystallization of the ⁇ phase.
  • the Nb / C ratio is 9 to 11.5.
  • the Nb / C ratio is preferably 9 to 11.3, more preferably 9.3 to 11, and most preferably 9.5 to 10.5.
  • N nitrogen
  • N is a strong austenite stabilizing element and forms a ⁇ phase. While the ⁇ phase is cooled to room temperature, it becomes martensite and deteriorates room temperature toughness. Therefore, it is desirable that the N content is as low as possible, but N is inevitably mixed in the raw material scrap. Since the limit of N that does not adversely affect room temperature toughness is 0.15% or less, the N content is set to 0 to 0.15%.
  • the N content is preferably 0 to 0.13%, more preferably 0 to 0.11%, and most preferably 0 to 0.10%.
  • S produces spherical or massive sulfides in cast steel and improves the machinability by the lubricating action of the sulfides. To obtain this effect, S must be 0.002% or more. However, if S exceeds 0.2%, the room temperature toughness of the ferritic heat-resistant cast steel decreases. Therefore, the S content is set to 0.002 to 0.2%.
  • the S content is preferably 0.005 to 0.2%, more preferably 0.008 to 0.2%, and most preferably 0.01 to 0.2%.
  • the total content of W and / or Mo is preferably 0 to 0.6%, more preferably 0 to 0.5%, and most preferably 0 to 0.3%.
  • controlling the crystallization amount of the eutectic ( ⁇ + NbC) phase of ⁇ phase and Nb carbide (NbC) is important for ensuring excellent room temperature toughness.
  • a relatively large amount of eutectic ( ⁇ + NbC) phase solidifies after a relatively short time after the ⁇ phase first solidifies as a primary crystal.
  • the primary crystal ⁇ phase is suppressed by the solidified eutectic ( ⁇ + NbC) phase, and growth of the eutectic ( ⁇ + NbC) phase is also suppressed by the solidified primary crystal ⁇ phase.
  • the primary ⁇ phase and the eutectic ( ⁇ + NbC) phase suppress the growth of each other, so it is assumed that the crystal grains of the primary ⁇ phase and the eutectic ( ⁇ + NbC) phase are both refined and the toughness is significantly improved Is done.
  • the area ratio of the eutectic ( ⁇ + NbC) phase needs to be 60 to 90%, assuming that the area of the entire structure is 100%.
  • the area ratio of the eutectic ( ⁇ + NbC) phase is less than 60%, the crystal grains of the primary crystal ⁇ phase become coarse, and a significant improvement effect of room temperature toughness cannot be obtained.
  • the area ratio of the eutectic ( ⁇ + NbC) phase exceeds 90%, the eutectic ( ⁇ + NbC) phase becomes excessive, the crystal grains become coarse and become brittle, and the toughness of the ferritic heat-resistant cast steel decreases.
  • the area ratio of the eutectic ( ⁇ + NbC) phase is preferably 60 to 87%, more preferably 60 to 85%, and most preferably 60 to 80%.
  • Exhaust system parts Preferred examples of the exhaust system parts of the present invention made of the above ferritic heat-resistant cast steel include an exhaust manifold, a turbine housing, a turbine housing integrated exhaust manifold in which the turbine housing and the exhaust manifold are integrally cast, a catalyst case,
  • the catalyst case-integrated exhaust manifold and the exhaust outlet, which are integrally casted from the catalyst case and the exhaust manifold, are not limited to these, and include, for example, a cast member that is used by welding to a sheet metal or pipe member.
  • Exhaust system parts of the present invention are exposed to exhaust gas at a high temperature of 1000 ° C or higher, and the surface temperature reaches around 900 ° C. However, high oxidation resistance and thermal crack resistance are maintained, and excellent heat resistance and durability are achieved. Demonstrate. Therefore, it is particularly suitable for an exhaust manifold, a catalyst case, a catalyst case integrated exhaust manifold, and an exhaust outlet that require oxidation resistance and heat crack resistance. Furthermore, since it has excellent room temperature toughness, cracks and cracks do not occur even when subjected to mechanical vibrations and impacts in the production process of exhaust system parts, the assembly process to the engine and the like. Moreover, since the content of rare metals is suppressed, it is inexpensive. In other words, the exhaust system parts of the present invention can be used for mass-produced vehicles that have high heat resistance and durability, and can be expanded in fuel efficiency technology because they are inexpensive, thereby reducing CO 2 gas emissions. It is expected to contribute greatly.
  • Examples 1 to 20 and Comparative Examples 1 to 21 Table 1 shows the chemical compositions of the cast steels of Examples 1 to 20 and Comparative Examples 1 to 21.
  • Examples 1 to 20 are ferritic heat-resistant cast steels within the composition range of the present invention, and Comparative Examples 1 to 18 are cast steels outside the composition range of the present invention.
  • the cast steel of Comparative Example 19 is an example of a ferritic stainless cast steel described in JP-A-2007-254885
  • the cast steel of Comparative Example 20 is an example of a ferritic heat-resistant cast steel described in JP-A-7-197209
  • the cast steel 21 is an example of a ferritic heat-resistant cast steel described in JP-A-11-61343.
  • each cast steel was melted in the atmosphere using a high-frequency melting furnace (basic lining) with a capacity of 100kg, it was poured out at 1600-1650 ° C and immediately poured into two molds at 1530-1560 ° C.
  • a 1-inch Y block ingot A shown in FIG. 3 and a stepped Y block ingot B shown in FIG. 3 were cast.
  • the dimensions of each ingot are shown in FIGS.
  • a test piece was cut from a portion of about 30 mm from the bottom of the ingot A, and a test piece was cut from a portion of the ingot B having a thickness of 10 mm, and used for the following evaluation tests.
  • a test piece with a width of 7.5 mm was cut out from a 10 mm thick part of ingot B to obtain a JIS ZZ2242 Charpy impact test piece without a notch.
  • a Charpy impact tester with a capacity of 50 J an impact test was performed on three test pieces under the same conditions at 23 ° C. according to JIS Z 2242, and the measured impact values were averaged. Table 2 shows the impact test results.
  • the room temperature impact value is preferably 15 ⁇ 10 4 J / m 2 or more in order to have excellent toughness so that cracks and cracks do not occur during the production process of exhaust system parts. All of Examples 1 to 20 had a normal temperature impact value of 15 ⁇ 10 4 J / m 2 or more.
  • FIG. 4 shows the relationship between the Nb content and the room temperature impact value ( ⁇ 10 4 J / m 2 ) for the test pieces of Examples 4 to 7 and Comparative Examples 1 to 4 having an Nb / C ratio of about 10. As is apparent from FIG. 4, the impact temperature at room temperature was 15 ⁇ 10 4 J / m 2 or more when the Nb content was 3.2 to 5%. As is clear from FIG.
  • the area ratio of the eutectic ( ⁇ + NbC) phase is 60 to 60% when the Nb content is 3.2 to 5%. 90%.
  • the primary ⁇ phase and the eutectic ( ⁇ + NbC) phase coexist in an optimal ratio, so that the primary ⁇ phase and It is considered that the crystal grains of the eutectic ( ⁇ + NbC) phase are all refined and have a high normal temperature impact value.
  • Comparative Example 9 is a solidification of the matrix structure in which the strong austenitizing element C is excessive and excessive C is dissolved. This is because the austenite produced sometimes transformed into martensite with low toughness during cooling to room temperature.
  • Comparative Example 11 Nb with a large atomic radius is excessive, and excess Nb is dissolved in the ferrite matrix.
  • Comparative Example 12 the Nb / C ratio was too large, and Nb was excessive as in Comparative Example 11.
  • Comparative Examples 13 and 14 are because the Nb / C ratio was too small, and the strong austenitizing element C was surplus as in Comparative Example 9, and (9) Comparative Examples 15 and 16 were This is because the ferrite in the base structure has become brittle due to too much Si.
  • Comparative Examples 17 and 18 there are too many W or Mo having a large atomic radius, and W or Mo is dissolved in the ferrite of the base structure. This is probably due to lattice distortion.
  • Comparative Example 19 which is a ferritic stainless cast steel described in Japanese Patent Application Laid-Open No. 2007-254885 contains Si in a large amount of 2.8%, Si embrittles the ferrite of the base structure and has a low impact value.
  • Comparative Example 20 which is a ferritic heat-resistant cast steel described in JP-A-7-197209, has a Nb / C ratio that is too small, so that the eutectic ( ⁇ + NbC) phase is insufficient and, as in Comparative Example 9, it is strong austenite. Element C is excessive and impact value is low.
  • Comparative Example 21 which is a ferritic heat-resistant cast steel described in JP-A No.
  • Comparative Example 5 with a low Cr content has a sufficient impact value, but has a large amount of oxidation loss and insufficient oxidation resistance.
  • FIG. 1 shows the microstructure (100 times) of the ferritic heat-resistant cast steel of Example 8.
  • the microstructure consists of a primary ⁇ phase 2 and a lamellar eutectic ( ⁇ + NbC) phase 1.
  • the area ratio of the eutectic ( ⁇ + NbC) phase was 62%.
  • Oxidation loss Exhaust system parts are exposed to oxidizing high-temperature exhaust gas containing nitrogen oxides and so on, so oxidation resistance is required.
  • the temperature of the exhaust gas exhausted from the engine is about 1000 ° C, and the temperature of exhaust system parts such as the exhaust manifold and the catalyst case reaches nearly 900 ° C, so the oxidation resistance at 900 ° C was evaluated.
  • As oxidation resistance a round bar-shaped test piece with a diameter of 10 mm and a length of 20 mm cut out from a portion of about 30 mm from the bottom of the ingot A was held at 900 ° C. for 200 hours in the atmosphere, and then shot blasted. Then, the oxidation scale was removed, and the mass change per unit area before and after the oxidation test, that is, the oxidation loss (mg / cm 2 ) was determined. Table 2 shows the measurement results of the weight loss.
  • the oxidation loss of ferritic heat-resistant cast steel used for exhaust system parts that reach temperatures near 900 ° C. is 20 mg / cm 2 or less.
  • the oxidation weight loss exceeds 20 mg / cm 2 the generation of an oxide film as a starting point of cracks increases, resulting in insufficient oxidation resistance.
  • the ferritic heat-resistant cast steels of Examples 1 to 20 contain 16% or more of Cr, which is important for ensuring oxidation resistance. Therefore, the oxidation weight loss is all 20 mg / cm 2.
  • High temperature strength and heat distortion resistance In general, the strength of metal materials decreases as the temperature rises, and thermal deformation easily occurs.
  • Ferritic heat-resistant cast steel having a body-centered cubic (BCC) structure has lower high-temperature strength and heat-deformability than austenitic heat-resistant cast steel having a face-centered cubic (FCC) structure.
  • the main factor affecting the high temperature strength and heat distortion resistance is the high temperature strength in addition to the shape and dimensions.
  • the 0.2% proof stress at 900 ° C. is preferably 20 MPa or more.
  • the 0.2% proof stress (high temperature proof stress) at 900 ° C. of Examples 1 to 20 was as high as 20 mm MPa or more.
  • the high-temperature proof stress of Comparative Examples 1, 2, 8 and 10 having a low C and / or Nb content and Comparative Examples 13 and 14 having a small Nb / C ratio was less than 20 MPa.
  • the area ratio of the eutectic ( ⁇ + NbC) phase Examples 1 to 20 were 60% or more, while Comparative Examples 1, 2, 8, 10, 13, and 14 were less than 60%. From this, it was found that not only toughness but also high temperature strength and heat distortion resistance are improved by crystallizing a relatively large amount of eutectic ( ⁇ + NbC) phase.
  • Comparative Example 19 Since Comparative Example 19 has a low C content, the high temperature yield strength is high despite the lack of the eutectic ( ⁇ + NbC) phase. The reason for this is considered that Comparative Example 19 contains a large amount of Si. In addition, Comparative Example 20 has a high Nb content, so that the high-temperature proof stress is high despite the lack of the eutectic ( ⁇ + NbC) phase. The reason for this is considered that Comparative Example 20 contains a large amount of W.
  • the ferritic heat-resistant cast steel of the present invention in which a large amount of eutectic ( ⁇ + NbC) phase is crystallized has a high-temperature strength equivalent to that of Comparative Examples 19 and 20 in which high-temperature strength is improved by containing a large amount of Si or W. .
  • Thermal fatigue life Exhaust system parts are required to be resistant to thermal cracking (long thermal fatigue life) due to repeated operation (heating) and stop (cooling) of the engine. It can be said that the greater the number of cycles until thermal fatigue failure is caused by cracks and deformation caused by repeated heating and cooling, the longer the thermal fatigue life, and the better the heat resistance (heat crack resistance) and durability.
  • thermal fatigue life After attaching a smooth round bar test piece (diameter: 10 mm, distance between gauge points: 20 mm) cut from a portion of approximately 30 mm from the bottom of ingot A to an electro-hydraulic servo type testing machine, Heating / cooling cycle in air, with a minimum cooling temperature of 150 ° C, a maximum heating temperature of 900 ° C, and a temperature amplitude of 750 ° C.
  • the thermal fatigue life was measured by mechanically constraining the expansion and contraction accompanying heating and cooling to cause thermal fatigue failure. Thermal fatigue life is the cycle until the maximum tensile load drops to 75% with the maximum tensile load of the second cycle as the reference (100%) in the load-temperature diagram obtained from the load change due to repeated heating and cooling. It was a number. Table 2 shows the measurement results of the thermal fatigue life.
  • the degree of mechanical restraint is expressed by a restraint rate defined by (free thermal expansion elongation ⁇ elongation under mechanical restraint) / (free thermal expansion elongation).
  • the constraint ratio of 1.0 refers to a mechanical constraint condition that does not allow elongation at all when the test piece is heated from 150 ° C. to 900 ° C., for example.
  • the restraint ratio of 0.5 means a mechanical restraint condition that allows only 1 mm of elongation when the free expansion and elongation is 2 mm, for example. Therefore, at a restraint factor of 0.5, a compressive load is applied during temperature rise, and a tensile load is applied during temperature drop. Since the restraint rate of exhaust system parts of an actual automobile engine is about 0.1 to 0.5 that allows a certain degree of elongation, the restraint rate is set to 0.5 here.
  • the thermal fatigue life is 1000 cycles or more under the conditions of a heating upper limit temperature of 900 ° C, a temperature amplitude of 750 ° C or higher, and a constraint factor of 0.5. Is preferred. If the thermal fatigue life is 1000 cycles or more, it can be said that the ferritic heat resistant cast steel has excellent heat crack resistance. As can be seen from Table 2, the thermal fatigue lives of Examples 1 to 20 were all sufficiently long at 1400 cycles or more. From this, it can be seen that the ferritic heat resistant cast steel of the present invention has sufficient heat cracking resistance necessary for exhaust system parts reaching a temperature of around 900 ° C.
  • the ferritic heat-resistant cast steel of the present invention has excellent heat resistance characteristics (oxidation resistance, high-temperature strength, heat distortion resistance, and heat crack resistance) required for exhaust system parts that reach temperatures near 900 ° C. Has room temperature toughness.
  • Example 21 After casting an automotive exhaust manifold (main wall thickness: 4.0 to 6.0 mm) using the ferritic heat-resistant cast steel of Example 6, the mold release (unframe) process, casting design part (without heat treatment) Machine processing was performed through a cutting process of the weir part), a cleaning process by shot blasting, and a casting finishing process such as casting burr.
  • the resulting exhaust manifold was free of cracks and cracks, and no casting defects such as shrinkage cavities, poor hot water, and gas defects were observed. In addition, there were no cutting defects in machining and abnormal wear and damage of the cutting tool.
  • This exhaust manifold was assembled in an exhaust simulator equivalent to an inline 4-cylinder high-performance gasoline engine with a displacement of 2000 cc.
  • Exhaust gas temperature at full load is about 1000 ° C at the exhaust manifold outlet (downstream of exhaust gas), exhaust manifold surface to investigate the life until through-crack generation and crack and oxidation occurrence
  • An endurance test was conducted.
  • the target for the heating and cooling cycle is 1200 cycles.
  • the exhaust system part made of the ferritic heat-resistant cast steel of the present invention has high oxidation resistance and heat cracking resistance even near 900 ° C., and has excellent room temperature toughness.
  • the exhaust system parts of the present invention are inexpensive because they are made of ferritic heat-resistant cast steel with a low content of rare metals, and contribute to the reduction of CO 2 gas emissions by expanding the scope of application of low fuel consumption technology.
  • ferritic heat-resistant cast steel of the present invention is not limited to this, for example, combustion engines such as construction machines, ships, and aircraft, melting furnaces, etc. , Heat treatment furnaces, incinerators, kilns, boilers, cogeneration equipment and other thermal equipment, petrochemical plants, gas plants, thermal power plants, nuclear power plants, etc. It can also be used for various casting parts that require room temperature toughness as well as high performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 質量比で0.32~0.48%のC、0.85%以下のSi、2%以下のMn、1.5%以下のNi、16~19.8%のCr、3.2~5%のNb、9~11.5のNb/C、0.15%以下のN、0.002~0.2%のS、及び合計0.8%以下のW及び/又はMoを含有し、残部Fe及び不可避的不純物からなる組成を有し、δ相とNb炭化物(NbC)との共晶(δ+NbC)相の面積率が60~90%である組織を有する常温靭性に優れたフェライト系耐熱鋳鋼、及びそれからなる排気系部品。

Description

常温靭性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
 本発明は、自動車用ガソリンエンジン及びディーゼルエンジンの排気系部品、特にエキゾーストマニホールド等に適する常温靭性に優れたフェライト系耐熱鋳鋼、及びそれからなる排気系部品に関する。
 地球温暖化を防止するために、自動車から排出されるCO2ガスの排出量の削減が強く求められている。CO2ガスの排出量の削減のためには、主に自動車の燃費性能の向上(低燃費化)が必要である。低燃費化のための対応技術としては、燃料直噴方式の採用、圧縮比の増大、過給化によるエンジンの軽量コンパクト化(ダウンサイジング)、過給器のブースト圧の上昇等が挙げられる。これらの技術の導入にともなって、エンジンでの燃料の燃焼はより高温及び高圧となる傾向にあり、その結果、エンジンの燃焼室からエキゾーストマニホールドや触媒ケース等の排気系部品に排出される排気ガスの温度は1000℃近くまで上昇するようになってきた。このように高温の排気ガスに曝される排気系部品には優れた耐熱特性(耐酸化性、耐熱亀裂性、耐熱変形性)が求められている。排気系部品の中でもエキゾーストマニホールド等には、特に耐酸化性及び耐熱亀裂性が重要である。
 従来、使用条件が高温で過酷なエキゾーストマニホールド等の排気系部品には、高Si球状黒鉛鋳鉄、ニレジスト鋳鉄(Ni-Cr系オーステナイト鋳鉄)等の耐熱鋳鉄や、フェライト系耐熱鋳鋼、オーステナイト系耐熱鋳鋼等が使用されている。フェライト系の4%Si-0.5%Moの球状黒鉛鋳鉄は、800℃付近まで比較的良好な耐熱特性を示すが、それを超える温度では耐久性に劣る。Ni、Cr、Co等の希少金属を多く含有するニレジスト鋳鉄等の耐熱鋳鉄やオーステナイト系耐熱鋳鋼は800℃以上での耐酸化性及び耐熱亀裂性を同時に満足させる。しかし、ニレジスト鋳鉄はNi含有量が多いので高価であるだけでなく、オーステナイト系基地組織のために線膨張率が大きく、かつミクロ組織に破壊の起点となる黒鉛が存在しているため、耐熱亀裂性に劣る。またオーステナイト系耐熱鋳鋼は、破壊の起点となる黒鉛はないが、線膨張率が大きいため900℃付近での耐熱亀裂性が不十分である。加えて、希少金属を多く含有するため高価であり、世界経済情勢の影響を受けやすく、原料の安定供給に不安がある。
 排気系部品用耐熱鋳鋼は、経済性及び原料の安定供給のみならず資源の有効活用の観点から、希少金属の含有量を極力抑えて必要な耐熱特性を確保するのが望ましい。これにより安価で高性能な排気系部品が得られ、低燃費化の技術を安価な大衆車にも適用することができ、CO2ガスの排出量の削減に貢献できる。希少金属の含有量を極力抑えるためには、合金の基地組織をオーステナイトよりフェライトにした方が有利である。加えてフェライト系耐熱鋳鋼はオーステナイト系耐熱鋳鋼よりも線膨張率が小さいので、エンジンの始動及び発進にともない発生する熱応力が小さく、耐熱亀裂性に優れている。
 フェライト系耐熱鋳鋼は、耐酸化性のためにCrを多く含有するので、常温での靭性に乏しい。排気系部品には、生産過程やエンジンへの組み付け過程等で機械的振動及び衝撃が加わる。そのため、排気系部品に用いるフェライト系耐熱鋳鋼は、機械的振動及び衝撃でも亀裂及び割れが生じないように、十分な常温靭性を有する必要がある。
 特開2007-254885号は、Feを主成分とし、0.10~0.50質量%のC、1.00~4.00質量%のSi、0.10~3.00質量%のMn、8.0~30.0質量%のCr、及び0.1~5.0質量%のNb及び/又はVを含有するフェライト系ステンレス鋳鋼からなり、厚さ1~5 mmの薄肉部を有するとともに、薄肉部の組織におけるフェライト相の平均結晶粒径が50~400μmであるために高温強度が向上した薄肉鋳物部品を開示している。この薄肉鋳物部品における5 mm以下の薄肉部は、鋳造後に急冷するためにフェライト相の平均結晶粒径が小さくなり、高温での耐力、引張強度及び破断伸びが高い。
 しかし、排気系部品には、シリンダーヘッド取り付けフランジ、遮熱板取り付けボス、ボルト締結部位等、肉厚が5 mm以上で冷却速度が遅い部位が多い。また肉厚が5 mm以下でも、引け巣を防止するための押湯近傍の部位や、砂型内で隣接するキャビティで形成されるために過熱し易い部位でも、冷却速度は遅い。そのような冷却速度が遅い部位では平均結晶粒径が大きく、常温靭性が低い。しかし、特開2007-254885号には靭性の低下を抑制する手段が開示されていない。また特開2007-254885号のフェライト系耐熱鋳鋼では、多量のSiの含有により融点を下げて溶湯の流動性を改善するとともに、高温強度、耐酸化性、耐侵炭性及び被削性を改善しているが、1.00~4.00質量%(実施例では約2%以上)と多量のSiを含有するので、フェライト基地組織にSiが固溶し、常温靭性が低下する。高い常温靭性を得るために薄肉部以外でも平均結晶粒径を小さくするとともに、脆化防止のために基地組織への合金元素の固溶量を最小限に抑制する必要があるが、特開2007-254885号はこれらの点を解決していない。
 特開平7-197209号は、重量比率で0.15~1.20%のC、0.05~0.45%のC-Nb/8、2%以下のSi、2%以下のMn、16.0~25.0%のCr、1.0~5.0%のW及び/又はMo、0.40~6.0%のNb、0.1~2.0%のNi、0.01~0.15%のN、及び残部Fe及び不可避不純物からなる組成を有し、通常のα相(αフェライト相)の他に、γ相(オーステナイト相)からα+炭化物に変態した相(α’相)を有するとともに、α’相の面積率{α’/(α+α’)}を20~70%とすることにより鋳造性が改善されたフェライト系耐熱鋳鋼を開示している。このフェライト系耐熱鋳鋼はNbCの形成に必要な量以上のC(オーステナイト化元素)を含有するので、基地組織に固溶したCにより凝固時にγ相が生成し、冷却過程でγ相はα’相に変態し、もって延性及び耐酸化性が向上する。そのため、このフェライト系耐熱鋳鋼は900℃以上で使用される排気系部品に適する。
 しかし、鋳放しのままではγ相からα’相への変態は十分に進行せず、γ相からマルテンサイト相に変態する。マルテンサイト相は高硬度であるため、常温での靭性や被削性を著しく悪化させる。靭性及び被削性を確保するためには、昇温してマルテンサイト相を消滅させ、α’相を析出する熱処理が必要である。熱処理は一般に製造コストを上昇させるので、希少金属の含有量が少ないというフェライト系耐熱鋳鋼の経済的利点を損なう。
 特開平11-61343号は、重量比率で0.05~1.00%のC、2%以下のSi、2%以下のMn、16.0~25.0%のCr、4.0~20.0%のNb、1.0~5.0%のW及び/又はMo、0.1~2.0%のNi、0.01~0.15%のN、及び残部Fe及び不可避不純物からなる組成を有し、通常のα相の他にラーベス相(Fe2M)を有することにより高温強度、特にクリープ破断強度に優れたフェライト系耐熱鋳鋼を開示している。このフェライト系耐熱鋳鋼は、Nb、W、Mo、Ni及びNの組合せによりラーベス相を有し、もって高温強度、特にクリープ破断強度を向上させているが、合金元素を多量に含有するために常温靭性は必ずしも十分でない。
 従って本発明の目的は、900℃付近での耐酸化性及び耐熱亀裂性を確保しつつ、常温靭性に優れたフェライト系耐熱鋳鋼、及びこのフェライト系耐熱鋳鋼からなるエキゾーストマニホールド等の排気系部品を提供することである。
 上記目的に鑑み、約15~20質量%のCrを含有するフェライト系耐熱鋳鋼をベースに、耐熱特性を劣化させることなく鋳放しで常温靭性を向上させることについて鋭意検討した結果、以下のことが分った。
(1) 排気系部品のような薄肉で複雑形状の鋳物を製造する場合、鋳造材料には良好な湯流れ性が求められる。湯流れ性の向上には一般にC含有量を増加して凝固開始温度を低下させることが有効であるが、単にCを増加しただけではCr炭化物の析出量の増加や、マルテンサイトに変態するγ相の晶出により靭性が悪化する。靭性の低下を抑制しつつ湯流れ性を向上させるためには、CとともにNbを増加する必要があることが分った。一般に体心立方晶(BCC)構造からなるδ相は、強度向上等を目的として合金元素を基地組織に固溶させたり、晶出物又は析出物を形成させたりすると靭性が低下するので、フェライト系耐熱鋳鋼にC及びNbをともに多量に含有させると靭性が低下すると予想されたが、予想に反して靭性が大幅に向上した。靭性の向上の理由は、C及びNbが増加するとδ相とNb炭化物(NbC)との共晶(δ+NbC)相が増加する一方、初晶のδ相が減少するので、初晶δ相の成長の前に共晶(δ+NbC)相が晶出し始め、両者が成長を抑制しあった結果、初晶δ相及び共晶(δ+NbC)相の両方の結晶粒が微細化したためであると推測される。初晶δ相及び共晶(δ+NbC)相の結晶粒を微細化させるためには、両者の晶出量を最適に制御する必要がある。
(2) 初晶δ相及び共晶(δ+NbC)相の結晶粒の微細化の他に、靭性に有害なγ相の晶出の阻止及びδ相へのNbの固溶の抑制のために、CとNbの含有量のバランスが重要である。NbとCの含有量の比(Nb/C)を所望の範囲に規制すると、Nb及びCは基地組織のフェライトにほとんど固溶せず、また余剰のCも生成せずにNb炭化物(NbC)として晶出することが分かった。その結果、γ相が晶出せず、Nbのδ相への固溶が最小化され、靭性の劣化が抑制される。
 従ってC、Si、Nb等の含有量を所望の範囲に制御し、初晶δ相(δフェライト相)と、δ相とNb炭化物(NbC)との共晶(δ+NbC)相とを最適な割合で共存させると、900℃付近での耐酸化性及び耐熱亀裂性を確保しつつ、優れた常温靭性を有するフェライト系耐熱鋳鋼が得られる。
 すなわち、本発明の常温靭性に優れたフェライト系耐熱鋳鋼は、質量比で
0.32~0.48%のC、
0.85%以下のSi、
2%以下のMn、
1.5%以下のNi、
16~19.8%のCr、
3.2~5%のNb、
9~11.5のNb/C、
0.15%以下のN、
0.002~0.2%のS、及び
合計で0.8%以下のW及び/又はMo
を含有し、残部Fe及び不可避不純物からなる組成を有し、δ相とNb炭化物(NbC)との共晶(δ+NbC)相の面積率が60~90%である組織を有することを特徴とする。
 本発明の排気系部品は、上記フェライト系耐熱鋳鋼からなることを特徴とする。この排気系部品としては、エキゾーストマニホールド、タービンハウジング、タービンハウジング一体エキゾーストマニホールド、触媒ケース、触媒ケース一体エキゾーストマニホールド、又はエキゾーストアウトレットが挙げられ、特にエキゾーストマニホールド、触媒ケース、触媒ケース一体エキゾーストマニホールド、エキゾーストアウトレットが好ましい。
 本発明のフェライト系耐熱鋳鋼は、熱処理をしなくても900℃付近での耐酸化性及び耐熱亀裂性を確保しつつ優れた常温靭性を有するので、高性能かつ安価である。その上、希少金属の含有量を抑制しているので、原料コストの抑制のみならず、資源の有効活用や安定供給にも貢献する。このような特徴を有する本発明のフェライト系耐熱鋳鋼からなる排気系部品は安価に製造できるので、低燃費化技術の適用範囲を拡大させ、自動車等のCO2ガスの排出量の削減に貢献する。
実施例8のフェライト系耐熱鋳鋼のミクロ組織を示す光学顕微鏡写真(100倍)である。 試験片を切り出す1インチYブロックのインゴットAを示す概略図である。 試験片を切り出す段付きYブロックのインゴットBを示す概略図である。 Nb含有量と常温衝撃値との関係を示すグラフである。 Nb含有量と共晶(δ+NbC)相の面積率との関係を示すグラフである。
[1] フェライト系耐熱鋳鋼
 本発明のフェライト系耐熱鋳鋼の組成及び組織を以下詳細に説明する。なお、各元素の含有量を示す「%」は特に断りのない限り「質量%」である。
(A) 組成
(1) C(炭素):0.32~0.48%
 Cは、凝固開始温度を降下させて溶湯の流動性、すなわち湯流れ性(鋳造性)を良くする作用を有する。またCはNbと結合してδ相とNb炭化物(NbC)との共晶(δ+NbC)相を形成し、高温強度を高める作用を有する。このような作用を有効に発揮するために、C含有量は0.32%以上必要である。しかし、C含有量が0.48%を超えると共晶(δ+NbC)相が多くなり過ぎて、フェライト系耐熱鋳鋼は脆化し、常温靭性が低下する。このため、C含有量は0.32~0.48%とする。C含有量は好ましくは0.32~0.45%であり、より好ましくは0.32~0.44%であり、最も好ましくは0.32~0.42%である。
(2) Si(ケイ素):0.85%以下
 Siは溶湯の脱酸剤としての作用する他、耐酸化性を改善する作用を有する。しかし、Siは0.85%を超えると基地組織のフェライトに固溶し、基地組織を著しく脆化させる。このため、Siの含有量は0.85%以下(0%を含まず)とする。Si含有量は好ましくは0.2~0.85%であり、より好ましくは0.3~0.85%であり、最も好ましくは0.35~0.85%である。
(3) Mn(マンガン):2%以下
 Mnは、Siと同様に溶湯の脱酸剤として有効であるが、2%を超えるとフェライト系耐熱鋳鋼の耐酸化性を劣化させる。このため、Mn含有量は2%以下(0%を含まず)とする。Mn含有量は好ましくは0.1~2%であり、より好ましくは0.1~1.5%であり、最も好ましくは0.2~1.2%である。
(4) Ni(ニッケル):1.5%以下
 Niはオーステナイト安定化元素でγ相を形成し、オーステナイトは常温まで冷却される間にマルテンサイトに変態し、マルテンサイトは常温靭性を悪化させる。従って、Ni含有量は極力少ないのが望ましいが、Niは通常原料スクラップ材に含有されているので、不可避的にフェライト系耐熱鋳鋼に混入する。常温靭性への悪影響を防止し得るNi含有量の限界は1.5%以下であるので、Ni含有量を0~1.5%とする。Ni含有量は好ましくは0~1.25%であり、より好ましくは0~1.0%であり、最も好ましくは0~0.9%である。
(5) Cr(クロム):16~19.8%
 Crは耐酸化性を改善し、フェライト組織を安定にする元素である。900℃付近での耐酸化性を確保するために、Crは少なくとも16%必要である。一方、フェライト基地においてCrが19.8%超になると、シグマ脆性が発生しやすくなって靭性が低下し、被削性も悪化する。そのため、Cr含有量は16~19.8%とする。Cr含有量は好ましくは17~19.8%であり、より好ましくは17~19.5%であり、最も好ましくは17.5~19.0%である。
(6) Nb(ニオブ):3.2~5%
 NbはCと結合して共晶(δ+NbC)相を形成し、高温強度を向上させるとともに、凝固開始温度を低下させる。凝固開始温度の低下により、排気系部品のような薄肉で複雑形状の鋳物の製造に重要な湯流れ性が向上する。またNbは、凝固時に晶出炭化物(NbC)としてCを固定するので、強力なオーステナイト安定化元素であるCが基地組織のフェライトに固溶してγ相を晶出するのを防止し、もって靭性の低下を防止する。またNbは、初晶δ相及び共晶(δ+NbC)相の結晶粒の微細化により、常温靭性を著しく向上させる。Nbの上記効果を発揮するために、Nb含有量は3.2%以上が必要である。しかし、Nbが5%を超えると、共晶(δ+NbC)相の晶出量が過剰となり、フェライト系耐熱鋳鋼は脆化する。従って、Nb含有量は3.2~5%とする。なお、本発明のフェライト系耐熱鋳鋼においてNbによる高温強度、湯流れ性及び靭性の向上効果は約4%でほぼ達成でき、またNbは高価な希少金属であるので、Nb含有量は好ましくは3.2~4.0%である。Nb含有量はより好ましくは3.2~3.9%であり、最も好ましくは3.3~3.9%である。
(7) Nb/C:9~11.5
 NbとCの含有量比(Nb/C)の規制は、900℃付近での耐酸化性及び耐熱亀裂性を確保しつつ優れた常温靭性を得るために最も重要である。NbはCと炭化物を形成するが、Cが過剰であると(Nb/C比が小さいと)、Nb炭化物を形成しなかった余剰のCは基地組織に固溶し、δ相が不安定となってγ相が晶出する。晶出したγ相は常温に達するまでに常温靭性を低下させるマルテンサイトに変態する。またNb/C比が小さいと、初晶δ相の成長が促進されるので、初晶δ相の結晶粒の微細化が不十分となり、靭性が向上しない。γ相の晶出を抑制しつつ初晶δ相と共晶(δ+NbC)相の結晶粒を微細化するには、Nb/C比は9以上必要である。
 一方、Nbが過剰であると(Nb/C比が大きいと)、Nbはδ相に固溶して、δ相に格子歪みを与え、δ相の常温靭性を低下させる。またNb/C比が大きいと、共晶(δ+NbC)相の成長が促進されるので、共晶(δ+NbC)相の結晶粒の微細化が不十分となり、靭性が向上しない。Nbのδ相への固溶を抑制しつつ初晶δ相と共晶(δ+NbC)相の結晶粒を微細化するには、Nb/C比は11.5以下である必要がある。以上のことから、Nb/C比は9~11.5とする。Nb/C比は好ましくは9~11.3であり、より好ましくは9.3~11であり、最も好ましくは9.5~10.5である。
(8) N(窒素):0.15%以下
 Nは強力なオーステナイト安定化元素であり、γ相を形成する。γ相は常温まで冷却される間にマルテンサイト化して、常温靭性を悪化させる。そのため、N含有量は極力少ない方が望ましいが、Nは原料スクラップに不可避的に混入している。常温靭性への悪影響が出ないNの限界は0.15%以下であるので、N含有量を0~0.15%とする。N含有量は好ましくは0~0.13%であり、より好ましくは0~0.11%であり、最も好ましくは0~0.10%である。
(9) S(硫黄):0.002~0.2%
 Sは鋳鋼中で球状又は塊状の硫化物を生成し、硫化物の潤滑作用により被削性を向上させる。この効果を得るには、Sは0.002%以上必要である。しかし、Sが0.2%を超えると、フェライト系耐熱鋳鋼の常温靭性が低下する。そのため、S含有量は0.002~0.2%とする。S含有量は好ましくは0.005~0.2%であり、より好ましくは0.008~0.2%であり、最も好ましくは0.01~0.2%である。
(10) W(タングステン)及び/又はMo(モリブデン):合計で0.8%以下
 W及びMoは基地組織のδ相に固溶して、フェライト基地に格子歪みを与え、常温靭性を悪化させるので、極力少ない方が望ましい。しかし、W及びMoは通常原料スクラップに含有されている。W及びMoがともに含有されている場合、それらの合計(W+Mo)含有量が0.8%を超えると、粗大な炭化物が生成し、常温靭性が低下する。従って、W及び/又はMoの含有量を合計で0~0.8%とする。W及び/又はMoの含有量は合計で好ましくは0~0.6%であり、より好ましくは0~0.5%であり、最も好ましくは0~0.3%である。
(B) 共晶(δ+NbC)相の面積率:60~90%
 本発明のフェライト系耐熱鋳鋼においてδ相とNb炭化物(NbC)との共晶(δ+NbC)相の晶出量を制御することは、優れた常温靭性を確保するうえで重要である。本発明のフェライト系耐熱鋳鋼の鋳造時の凝固では、δ相が先に初晶として凝固した後比較的短時間後に、比較的多量の共晶(δ+NbC)相が凝固する。凝固した共晶(δ+NbC)相により初晶δ相の成長は抑制され、また共晶(δ+NbC)相の成長も凝固した初晶δ相により抑制される。このように初晶δ相及び共晶(δ+NbC)相が相互に成長を抑制し合うので、初晶δ相と共晶(δ+NbC)相の結晶粒はいずれも微細化し、靭性が著しく向上すると推測される。この効果を得るには、組織全体の面積を100%として、共晶(δ+NbC)相の面積率は60~90%である必要がある。共晶(δ+NbC)相の面積率が60%未満では、初晶δ相の結晶粒が粗大となり、常温靭性の大幅な向上効果が得られない。共晶(δ+NbC)相の面積率が90%を超えると、共晶(δ+NbC)相が過剰となり、その結晶粒が粗大するとともに脆化し、フェライト系耐熱鋳鋼の靭性は低下する。共晶(δ+NbC)相の面積率を60~90%に制御するには、C及びNbの含有量及びNb/C比を上記範囲に規制する必要がある。共晶(δ+NbC)相の面積率は好ましくは60~87%であり、より好ましくは60~85%であり、最も好ましくは60~80%である。
[2] 排気系部品
 上記フェライト系耐熱鋳鋼からなる本発明の排気系部品の好ましい例は、エキゾーストマニホールド、タービンハウジング、タービンハウジングとエキゾーストマニホールドとを一体に鋳造したタービンハウジング一体エキゾーストマニホールド、触媒ケース、触媒ケースとエキゾーストマニホールドとを一体に鋳造した触媒ケース一体エキゾーストマニホールド、及びエキゾーストアウトレットであるが、これらに限定されず、例えば板金製又はパイプ製の部材と溶接して使用される鋳物部材も含む。
 本発明の排気系部品は1000℃以上と高温の排気ガスに曝されて、表面温度が900℃付近に達するが、高い耐酸化性及び耐熱亀裂性は維持され、優れた耐熱性と耐久性を発揮する。このため、特に耐酸化性及び耐熱亀裂性が要求されるエキゾーストマニホールド、触媒ケース、触媒ケース一体エキゾーストマニホールド、及びエキゾーストアウトレットに好適である。さらに優れた常温靭性を有するので、排気系部品の生産過程、エンジンへの組み付け過程等で機械的振動及び衝撃等を受けても、亀裂及び割れが生じない。しかも希少金属の含有量を抑制しているので安価である。つまり本発明の排気系部品は、高い耐熱性及び耐久性を有しつつ、安価なために低燃費化技術を拡大し得る大衆車にも使用可能であり、CO2ガスの排出量の削減に大いに貢献することが期待される。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されない。特に断りがない限り各元素の含有量は質量%で表す。
実施例1~20及び比較例1~21
 実施例1~20及び比較例1~21の鋳鋼の化学組成を表1に示す。実施例1~20は本発明の組成範囲内のフェライト系耐熱鋳鋼であり、比較例1~18は本発明の組成範囲外の鋳鋼である。比較例1及び2ではC及びNbの含有量が少なすぎ、比較例3及び4の鋳鋼はC及びNbの含有量が多すぎ、比較例5の鋳鋼はCr含有量が少なすぎ、比較例6及び7の鋳鋼はCr含有量が多すぎ、比較例8の鋳鋼はC含有量が少なすぎ、比較例9の鋳鋼はC含有量が多すぎ、比較例10の鋳鋼はNb含有量が少なすぎ、比較例11の鋳鋼はNb含有量が多すぎ、比較例12の鋳鋼はNb/C比が大きすぎ、比較例13及び14の鋳鋼はNb/C比が小さすぎ、比較例15及び16の鋳鋼はSi含有量が多すぎ、比較例17の鋳鋼はW含有量が多すぎ、比較例18の鋳鋼はMo含有量が多すぎる。比較例19の鋳鋼は特開2007-254885号に記載のフェライト系ステンレス鋳鋼の一例であり、比較例20の鋳鋼は特開平7-197209号に記載のフェライト系耐熱鋳鋼の一例であり、比較例21の鋳鋼は特開平11-61343号に記載のフェライト系耐熱鋳鋼の一例である。
Figure JPOXMLDOC01-appb-T000001
注:(1) 残部はFe及び不可避的不純物である。
  (2) 「-」の記号はW及びMoが0.1質量%未満であることを意味する。
 各鋳鋼を容量100 kgの高周波溶解炉(塩基性ライニング)を用いて大気中で溶解した後、1600~1650℃で出湯し、直ちに1530~1560℃で二種類の鋳型に注湯し、図2に示す1インチYブロックのインゴットA、及び図3に示す段付きYブロックのインゴットBを鋳造した。各インゴットの寸法は図2及び図3に示す。インゴットAの底部から約30 mmの部分から試験片を切り出し、インゴットBの肉厚10 mmの部分から試験片を切り出し、以下の評価試験に用いた。
(1) 衝撃試験
 常温靭性を評価するため、シャルピー衝撃試験による衝撃値を測定した。靭性の評価に引張伸び(延性)を測定することもあるが、機械的振動及び衝撃に対する抵抗力(亀裂及び割れの発生しにくさ)を評価するには、伸びではなく亀裂の進展速度が速い割れに対する感受性を評価した方が実態に則している。従って、引張試験より亀裂の進展速度が速いシャルピー衝撃試験により、靭性を評価した。
 インゴットBの肉厚10 mmの部分から幅7.5 mmの試験片を切り出し、ノッチのないJIS Z 2242のシャルピー衝撃試験片とした。容量50 Jのシャルピー衝撃試験機を使用し、JIS Z 2242に従って、23℃で同一条件で3個の試験片に対して衝撃試験を行い、測定された衝撃値を平均した。衝撃試験結果を表2に示す。
 排気系部品の生産過程等で亀裂及び割れを発生しないように優れた靭性を有するためには、常温衝撃値は15×104 J/m2以上が好ましい。実施例1~20の常温衝撃値は全て15×104 J/m2以上であった。図4は、Nb/C比が10程度の実施例4~7及び比較例1~4の試験片について、Nb含有量と常温衝撃値(×104 J/m2)との関係を示す。図4から明らかなように、Nb含有量が3.2~5%の範囲で常温衝撃値は15×104J/m2以上であった。またNb含有量と共晶(δ+NbC)相の面積率との関係を示す図5から明らかなように、Nb含有量が3.2~5%の範囲で共晶(δ+NbC)相の面積率は60~90%であった。C及びNbの含有量及びNb/C比の要件を満たす本発明のフェライト系耐熱鋳鋼では、初晶δ相と共晶(δ+NbC)相が最適な割合で共存することにより、初晶δ相及び共晶(δ+NbC)相の結晶粒がいずれも微細化し、高い常温衝撃値を有すると考えられる。
 一方、本発明の組成範囲外の比較例1~4及び6~21の鋳鋼はいずれも常温衝撃値が低い。常温衝撃値が低い理由は、(1) 比較例1及び2は、C及びNbが少なすぎて、共晶(δ+NbC)相が不足したためであり、(2) 比較例3及び4は、C及びNbが多すぎて、共晶(δ+NbC)相が過剰となり、脆化したためであり、(3) 比較例6及び7は、Crが多すぎためであり、(4) 比較例8及び10は、C又はNbが少なすぎて、共晶(δ+NbC)相が不足したためであり、(5) 比較例9は、強力なオーステナイト化元素のCが過剰で、余剰のCが固溶した基地組織の凝固時に生成されたオーステナイトが常温まで冷却する間に靭性の低いマルテンサイトに変態したためであり、(6) 比較例11は、原子半径が大きいNbが過剰で、余剰のNbがフェライト基地に固溶する際に格子歪みをもたらしためであり、(7) 比較例12は、Nb/C比が大きすぎて、比較例11と同様にNbが余剰となったためであり、(8) 比較例13及び14は、Nb/C比が小さすぎて、比較例9と同様に強力なオーステナイト化元素のCが余剰となったためであり、(9) 比較例15及び16は、Siが多すぎて基地組織のフェライトが脆化したためであり、(10) 比較例17及び18はそれぞれ原子半径が大きいW又はMoが多すぎて、W又はMoが基地組織のフェライトに固溶する際に格子歪みをもたらしたためであると考えられる。
 特開2007-254885号に記載のフェライト系ステンレス鋳鋼である比較例19は、Siを2.8%と多量に含有しているため、Siが基地組織のフェライトを脆化させて衝撃値が低い。特開平7-197209号に記載のフェライト系耐熱鋳鋼である比較例20は、Nb/C比が小さすぎるため、共晶(δ+NbC)相が不足するとともに、比較例9と同様に強力なオーステナイト化元素のCが過剰であり、衝撃値が低い。特開平11-61343号に記載のフェライト系耐熱鋳鋼である比較例21は、原子半径が大きいWが多すぎるため、Wがフェライト基地に固溶する際に格子歪みをもたらし、衝撃値が低い。なお、Cr含有量が少ない比較例5は、十分な衝撃値を有するものの酸化減量が多く、耐酸化性が不十分である。
(2) ミクロ組織
 衝撃試験実施後の各試験片の端部から切り出したサンプルを鏡面研磨し、腐食エッチング処理した後、倍率100倍の光学顕微鏡により任意の5視野の写真を撮り、画像解析により共晶(δ+NbC)相の面積率を測定し、平均した。共晶(δ+NbC)相の面積率を表2に示す。図1は実施例8のフェライト系耐熱鋳鋼のミクロ組織(100倍)を示す。ミクロ組織は初晶δ相2と、ラメラー状の共晶(δ+NbC)相1とからなる。実施例8では、共晶(δ+NbC)相の面積率は62%であった。
(3) 酸化減量
 排気系部品は、窒素酸化物等を含む酸化性の高温の排気ガスに曝されるため、耐酸化性が要求される。エンジンから排出される排気ガスの温度は約1000℃であり、エキゾーストマニホールドや触媒ケース等の排気系部品の温度は900℃近くに達するので、900℃における耐酸化性を評価した。耐酸化性として、インゴットAの底面から約30 mmの部分から切り出した直径10 mm及び長さ20 mmの丸棒状の試験片を大気中で900℃に200時間保持した後、ショットブラスト処理を施して酸化スケールを除去し、酸化試験前後の単位面積当たりの質量変化、すなわち酸化減量(mg/cm2)を求めた。酸化減量の測定結果を表2に示す。
 900℃付近の温度に到達する排気系部品に使用するフェライト系耐熱鋳鋼の酸化減量(900℃の大気雰囲気に200時間保持する条件で測定)は20 mg/cm2以下であるのが好ましい。酸化減量が20 mg/cm2を超えると、亀裂の起点となる酸化膜の生成が多くなり、耐酸化性が不十分となる。表2から分かるように、実施例1~20のフェライト系耐熱鋳鋼は、耐酸化性を確保するのに重要なCrを16%以上含有しているために、酸化減量が全て20 mg/cm2以下であり、900℃付近の温度に到達する排気系部品に使用するのに十分な耐酸化性を有していた。一方、Cr含有量が15.6%と少ない比較例5では酸化減量は105 mg/cm2と多く、900℃付近の温度に到達する排気系部品に使用するには耐酸化性が不十分であった。これらの結果から、フェライト系耐熱鋳鋼が必要な耐酸化性を有するためには、Cr含有量が16%以上である必要があることが分かる。
(4) 高温強度及び耐熱変形性
 一般に金属材料は高温になるほど強度が低下し、熱変形しやすくなる。体心立方晶(BCC)構造のフェライト系耐熱鋳鋼は、面心立方晶(FCC)構造のオーステナイト系耐熱鋳鋼より高温強度及び耐熱変形性が低い。高温強度及び耐熱変形性に影響を及ぼす主な要因として、形状や寸法の他に高温耐力がある。900℃付近の温度に到達する排気系部品に使用するには、900℃における0.2%耐力が20 MPa以上であるのが好ましい。
 排気系部品の高温強度及び耐熱変形性を評価するために、インゴットAの底面から約30 mmの部分から切り出した平滑な鍔付き丸棒状の試験片(直径:10 mm、標点間距離:50 mm)を電気-油圧サーボ式試験機に取り付け、大気中900℃で0.2%耐力を測定した。0.2%耐力の測定結果を表2に示す。
 表2から分かるように、実施例1~20の900℃における0.2%耐力(高温耐力)は20 MPa以上と高かった。一方、C及び/又はNbの含有量が少ない比較例1、2、8及び10、並びにNb/C比が小さい比較例13及び14の高温耐力は20 MPa未満であった。共晶(δ+NbC)相の面積率に関して、実施例1~20は60%以上であるのに対して、比較例1、2、8、10、13及び14は60%未満であった。これから、共晶(δ+NbC)相を比較的多く晶出させることにより、靭性のみならず、高温強度及び耐熱変形性も向上することが分かった。なお、比較例19はC含有量が少ないので、共晶(δ+NbC)相の不足にも係わらず高温耐力が高い。この理由は、比較例19がSiを多く含有するためと考えられる。また比較例20は、Nb含有量が少ないので、共晶(δ+NbC)相の不足にも係わらず高温耐力が高い。この理由は、比較例20がWを多く含有するためと考えられる。共晶(δ+NbC)相を多く晶出させた本発明のフェライト系耐熱鋳鋼は、Si又はWを多く含有して高温強度を向上させた比較例19及び20の耐熱鋳鋼と同等の高温強度を有する。
(5) 熱疲労寿命
 排気系部品は、エンジンの運転(加熱)と停止(冷却)の繰り返しにより熱亀裂を生じにくい(熱疲労寿命が長い)ことが要求される。加熱冷却の繰り返しにより生じる亀裂や変形により熱疲労破壊に至るまでのサイクル数が多いほど熱疲労寿命が長く、耐熱性(耐熱亀裂性)及び耐久性に優れていると言える。
 インゴットAの底面から約30 mmの部分から切り出した平滑丸棒試験片(直径:10 mm、標点間距離:20 mm)を電気-油圧サーボ式試験機に0.5の拘束率で取り付けた後、大気中で、冷却下限温度150℃、加熱上限温度900℃、温度振幅750℃で、1サイクルを昇温時間2分、保持時間1分、及び冷却時間4分の合計7分とする加熱冷却サイクルを繰り返し、加熱冷却に伴う伸縮を機械的に拘束して熱疲労破壊を起こさせることにより、熱疲労寿命を測定した。熱疲労寿命は、加熱冷却の繰り返しに伴う荷重の変化から求められる荷重-温度線図において2サイクル目の最大引張荷重を基準(100%)とし、最大引張荷重が75%に低下するまでのサイクル数とした。熱疲労寿命の測定結果を表2に示す。
 機械的な拘束の程度は、(自由熱膨張伸び-機械的拘束下での伸び)/(自由熱膨張伸び)で定義される拘束率で表す。例えば、拘束率1.0とは、試験片が例えば150℃から900℃まで加熱されたときに、全く伸びを許さない機械的拘束条件をいう。また拘束率0.5とは、自由膨張伸びが例えば2 mmのところを1 mmの伸びしか許さない機械的拘束条件をいう。従って、拘束率0.5では昇温中に圧縮荷重がかかり、降温中に引張荷重がかかる。実際の自動車エンジンの排気系部品の拘束率はある程度伸びを許容する0.1~0.5程度であるので、ここでは拘束率を0.5とした。
 フェライト系耐熱鋳鋼を900℃付近の温度に到達する排気系部品に使用するには、加熱上限温度900℃、温度振幅750℃以上及び拘束率0.5の条件での熱疲労寿命が1000サイクル以上であるのが好ましい。熱疲労寿命が1000サイクル以上であれば、フェライト系耐熱鋳鋼は優れた耐熱亀裂性を有すると言える。表2から分かるように、実施例1~20の熱疲労寿命はいずれも1400サイクル以上と十分に長かった。これから、本発明のフェライト系耐熱鋳鋼は900℃付近の温度に到達する排気系部品に必要な耐熱亀裂性を十分に有することが分かる。
 上述のとおり、本発明のフェライト系耐熱鋳鋼は、900℃付近の温度に到達する排気系部品に要求される耐熱特性(耐酸化性、高温強度、耐熱変形性及び耐熱亀裂性)とともに、優れた常温靭性を有する。
Figure JPOXMLDOC01-appb-T000002
注:(1) 大気中900℃で測定。
  (2) 大気中900℃で測定。
実施例21
 実施例6のフェライト系耐熱鋳鋼を用いて自動車用エキゾーストマニホルド(主要肉厚4.0~6.0 mm)を鋳造した後、熱処理を施さず鋳放しのまま、型ばらし(解枠)工程、鋳造方案部(堰部)の切断工程、ショットブラストによる清浄工程、及び鋳バリ等の鋳仕上げ工程を経て、機械加工を施した。得られたエキゾーストマニホルドには、亀裂及び割れは発生しておらず、引け巣、湯廻り不良、ガス欠陥等の鋳造欠陥も認められなかた。また機械加工での切削不具合や切削工具の異常摩耗、損傷等もなかった。
 このエキゾーストマニホルドを、排気量2000 ccの直列4気筒高性能ガソリンエンジンに相当する排気シミュレータに組み付けた。貫通亀裂発生までの寿命、並びに亀裂及び酸化の発生状況を調べるため、全負荷時の排気ガス温度がエキゾーストマニホルドの集合部(排気ガスの下流側となる)の出口で約1000℃、エキゾーストマニホルド表面の上限温度が集合部で約910℃、冷却下限温度が集合部で約90℃(温度振幅=約820℃)となる条件で、10分間の加熱及び10分間の冷却からなる加熱冷却サイクルを繰り返し、耐久試験を実施した。加熱冷却サイクルの目標は1200サイクルである。
 耐久試験の結果、このエキゾーストマニホルドは、排気ガスの漏洩や割れを生ずることなく、1200サイクルの耐久試験をクリアした。耐久試験後の目視観察及び浸透探傷試験の結果、最薄肉部の枝管を含めたいずれの部位にも、貫通亀裂はもとより、亀裂及び割れが発生せず、部品全体の酸化も少なかった。これにより、本発明のエキゾーストマニホルドは耐熱性、耐久性及び靭性に優れていることが確認された。
 上記のとおり、本発明のフェライト系耐熱鋳鋼からなる排気系部品は、900℃付近でも高い耐酸化性及び耐熱亀裂性を有するとともに、優れた常温靭性を有する。本発明の排気系部品は、希少金属の含有量が少ないフェライト系耐熱鋳鋼からなるので安価であり、低燃費化技術の適用範囲を拡大させ、CO2ガスの排出量の削減に貢献する。
 以上自動車エンジン用の排気系部品について詳細に説明したが、本発明のフェライト系耐熱鋳鋼の用途はこれに限定されるものではなく、例えば、建設機械、船舶、航空機等の燃焼機関や、溶解炉、熱処理炉、焼却炉、キルン、ボイラ、コージェネ装置等の熱機器や、石油化学プラント、ガスプラント、火力発電プラント、原子力発電プラント等、優れた耐酸化性及び耐熱亀裂性等の耐熱性及び耐久性とともに常温靭性が要求される各種の鋳物部品にも使用可能である。

Claims (2)

  1. 質量比で、
    0.32~0.48%のC、
    0.85%以下のSi、
    2%以下のMn、
    1.5%以下のNi、
    16~19.8%のCr、
    3.2~5%のNb、
    9~11.5のNb/C、
    0.15%以下のN、
    0.002~0.2%のS、及び
    合計で0.8%以下のW及び/又はMo
    を含有し、残部Fe及び不可避的不純物からなる組成を有し、δ相とNb炭化物(NbC)との共晶(δ+NbC)相の面積率が60~90%である組織を有することを特徴とする常温靭性に優れたフェライト系耐熱鋳鋼。
  2. 請求項1に記載の常温靭性に優れたフェライト系耐熱鋳鋼からなる排気系部品。
PCT/JP2011/058331 2010-03-31 2011-03-31 常温靭性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品 WO2011125901A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180016272.5A CN102822370B (zh) 2010-03-31 2011-03-31 常温韧性优异的铁素体系耐热铸钢和由其构成的排气系统零件
EP11765801.3A EP2554703B8 (en) 2010-03-31 2011-03-31 Ferrite heat-resistant cast steel having excellent normal-temperature toughness and exhaust system component formed from the same
US13/637,927 US8900510B2 (en) 2010-03-31 2011-03-31 Heat-resistant, ferritic cast steel having excellent room-temperature toughness, and exhaust member made thereof
JP2012509611A JP5626338B2 (ja) 2010-03-31 2011-03-31 常温靭性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
KR1020127028477A KR101745927B1 (ko) 2010-03-31 2011-03-31 상온 인성이 우수한 페라이트계 내열 주강 및 그것으로 이루어진 배기계 부품

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010081710 2010-03-31
JP2010-081710 2010-03-31
JP2010-194543 2010-08-31
JP2010194543 2010-08-31

Publications (1)

Publication Number Publication Date
WO2011125901A1 true WO2011125901A1 (ja) 2011-10-13

Family

ID=44762839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058331 WO2011125901A1 (ja) 2010-03-31 2011-03-31 常温靭性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品

Country Status (6)

Country Link
US (1) US8900510B2 (ja)
EP (1) EP2554703B8 (ja)
JP (1) JP5626338B2 (ja)
KR (1) KR101745927B1 (ja)
CN (1) CN102822370B (ja)
WO (1) WO2011125901A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150065870A (ko) * 2012-10-10 2015-06-15 히타치 긴조쿠 가부시키가이샤 피삭성이 우수한 페라이트계 내열 주강 및 그것으로 이루어지는 배기계 부품
JP2018197391A (ja) * 2017-05-24 2018-12-13 大同特殊鋼株式会社 メッキ浴用フェライト系ステンレス鋼
CN112143981A (zh) * 2020-09-29 2020-12-29 泰州鑫宇精工股份有限公司 一种高强度耐热钢汽车用铸件制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103820739B (zh) * 2014-02-28 2017-10-27 中车戚墅堰机车车辆工艺研究所有限公司 铁素体耐热铸钢及其制备方法和应用
KR102255111B1 (ko) * 2019-07-31 2021-05-24 주식회사 포스코 내식성이 우수한 배기계용 페라이트계 강판

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348916A (en) * 1976-10-15 1978-05-02 Toyota Motor Corp Free cutting heat-and corrosion resistant cast steel
JPH04218645A (ja) * 1990-03-27 1992-08-10 Hitachi Metals Ltd 熱疲労寿命に優れたフェライト系耐熱鋳鋼  
JPH07197209A (ja) 1993-11-25 1995-08-01 Hitachi Metals Ltd 鋳造性の優れたフェライト系耐熱鋳鋼およびそれからなる排気系部品
JPH1161343A (ja) 1997-08-11 1999-03-05 Hitachi Metals Ltd 高温強度とくにクリープ破断強度の優れたフェライト系耐熱鋳鋼およびそれからなる排気系部品
JP2002309935A (ja) * 2001-02-08 2002-10-23 Hitachi Metals Ltd 耐熱鋳鋼製排気系部品
JP2007254885A (ja) 2006-02-23 2007-10-04 Daido Steel Co Ltd 薄肉鋳物部品及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2225730A (en) * 1939-08-15 1940-12-24 Percy A E Armstrong Corrosion resistant steel article comprising silicon and columbium
US3029171A (en) * 1959-03-23 1962-04-10 Atlas Steels Ltd Age hardening of stainless steels with niobium silicides
US3963532A (en) * 1974-05-30 1976-06-15 E. I. Du Pont De Nemours And Company Fe, Cr ferritic alloys containing Al and Nb
JPH05140700A (ja) * 1991-11-15 1993-06-08 Mazda Motor Corp フエライト系耐熱鋳鋼部材及びその製造法
US5582657A (en) 1993-11-25 1996-12-10 Hitachi Metals, Ltd. Heat-resistant, ferritic cast steel having high castability and exhaust equipment member made thereof
EP1826288B1 (en) * 2006-02-23 2012-04-04 Daido Tokushuko Kabushiki Kaisha Ferritic stainless steel cast iron, cast part using the ferritic stainless steel cast iron, and process for producing the cast part
JP5178157B2 (ja) * 2007-11-13 2013-04-10 日新製鋼株式会社 自動車排ガス経路部材用フェライト系ステンレス鋼材
CN101403073B (zh) * 2008-11-14 2010-06-02 济南济钢铁合金厂 自生碳化物粒子强化铁素体耐热钢的制造方法
JP5862570B2 (ja) * 2010-10-01 2016-02-16 日立金属株式会社 優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品
DE102012002637B4 (de) * 2012-02-10 2014-01-02 Faurecia Emissions Control Technologies, Germany Gmbh Abgasanlage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348916A (en) * 1976-10-15 1978-05-02 Toyota Motor Corp Free cutting heat-and corrosion resistant cast steel
JPH04218645A (ja) * 1990-03-27 1992-08-10 Hitachi Metals Ltd 熱疲労寿命に優れたフェライト系耐熱鋳鋼  
JPH07197209A (ja) 1993-11-25 1995-08-01 Hitachi Metals Ltd 鋳造性の優れたフェライト系耐熱鋳鋼およびそれからなる排気系部品
JPH1161343A (ja) 1997-08-11 1999-03-05 Hitachi Metals Ltd 高温強度とくにクリープ破断強度の優れたフェライト系耐熱鋳鋼およびそれからなる排気系部品
JP2002309935A (ja) * 2001-02-08 2002-10-23 Hitachi Metals Ltd 耐熱鋳鋼製排気系部品
JP2007254885A (ja) 2006-02-23 2007-10-04 Daido Steel Co Ltd 薄肉鋳物部品及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150065870A (ko) * 2012-10-10 2015-06-15 히타치 긴조쿠 가부시키가이샤 피삭성이 우수한 페라이트계 내열 주강 및 그것으로 이루어지는 배기계 부품
CN104718304A (zh) * 2012-10-10 2015-06-17 日立金属株式会社 切削性优异的铁素体系耐热铸钢和由其构成的排气系统部件
EP2907885A4 (en) * 2012-10-10 2016-07-13 Hitachi Metals Ltd HEAT-RESISTANT FERRITIC MOLDED STEEL WITH EXCELLENT MACHINING CAPACITY AND EXHAUST COMPONENT THEREOF
US9758851B2 (en) 2012-10-10 2017-09-12 Hitachi Metals, Ltd. Heat-resistant, cast ferritic steel having excellent machinability and exhaust member made thereof
KR102087129B1 (ko) 2012-10-10 2020-03-10 히타치 긴조쿠 가부시키가이샤 피삭성이 우수한 페라이트계 내열 주강 및 그것으로 이루어지는 배기계 부품
JP2018197391A (ja) * 2017-05-24 2018-12-13 大同特殊鋼株式会社 メッキ浴用フェライト系ステンレス鋼
CN112143981A (zh) * 2020-09-29 2020-12-29 泰州鑫宇精工股份有限公司 一种高强度耐热钢汽车用铸件制备方法

Also Published As

Publication number Publication date
CN102822370B (zh) 2014-09-03
JPWO2011125901A1 (ja) 2013-07-11
JP5626338B2 (ja) 2014-11-19
US8900510B2 (en) 2014-12-02
EP2554703B1 (en) 2018-08-08
US20130022489A1 (en) 2013-01-24
KR20130012957A (ko) 2013-02-05
EP2554703A4 (en) 2017-10-04
CN102822370A (zh) 2012-12-12
EP2554703B8 (en) 2018-10-31
EP2554703A1 (en) 2013-02-06
KR101745927B1 (ko) 2017-06-12

Similar Documents

Publication Publication Date Title
JP4985941B2 (ja) 高Cr高Niオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JP5353716B2 (ja) オーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JP5862570B2 (ja) 優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品
JPWO2005007914A1 (ja) オーステナイト系耐熱球状黒鉛鋳鉄
JP5626338B2 (ja) 常温靭性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
KR102453685B1 (ko) 열피로 특성이 우수한 오스테나이트계 내열 주강 및 그것으로 이루어지는 배기계 부품
JP6160625B2 (ja) 被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
JP6098637B2 (ja) 被削性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016272.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509611

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13637927

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8612/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011765801

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127028477

Country of ref document: KR

Kind code of ref document: A