WO2014057875A1 - 被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品 - Google Patents

被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品 Download PDF

Info

Publication number
WO2014057875A1
WO2014057875A1 PCT/JP2013/077048 JP2013077048W WO2014057875A1 WO 2014057875 A1 WO2014057875 A1 WO 2014057875A1 JP 2013077048 W JP2013077048 W JP 2013077048W WO 2014057875 A1 WO2014057875 A1 WO 2014057875A1
Authority
WO
WIPO (PCT)
Prior art keywords
cast steel
resistant cast
heat
machinability
content
Prior art date
Application number
PCT/JP2013/077048
Other languages
English (en)
French (fr)
Inventor
進 桂木
將秀 川畑
智則 作田
佳奈 森下
謙一 井上
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201380052871.1A priority Critical patent/CN104718304B/zh
Priority to EP13844899.8A priority patent/EP2907885B1/en
Priority to US14/434,606 priority patent/US9758851B2/en
Priority to JP2014540828A priority patent/JP6160625B2/ja
Priority to KR1020157011966A priority patent/KR102087129B1/ko
Publication of WO2014057875A1 publication Critical patent/WO2014057875A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr

Definitions

  • the present invention relates to a heat-resistant cast steel suitable for an exhaust system part of an automobile gasoline engine and a diesel engine, and more particularly to a ferritic heat-resistant cast steel excellent in machinability and an exhaust system part composed thereof.
  • Heat-resistant cast iron such as Si spheroidal graphite cast iron and Ni-resist cast iron (Ni-Cr austenitic cast iron), ferritic heat-resistant cast steel, austenitic heat-resistant cast steel and the like are used.
  • Ferritic high-Si spheroidal graphite cast iron shows relatively good heat resistance up to around 800 ° C, but is inferior in durability at temperatures above that.
  • Heat-resistant cast iron such as Ni-resist cast iron and austenitic heat-resistant cast steel containing a large amount of rare metals (rare metals) such as Ni, Cr, and Co simultaneously satisfy oxidation resistance and heat crack resistance at 800 ° C or higher.
  • Ni-resist cast iron is not only expensive because of its high Ni content, but also has a high coefficient of linear expansion due to the austenitic matrix structure, and the presence of graphite that is the starting point of fracture in the microstructure. Inferior to sex.
  • Austenitic heat-resistant cast steel has no graphite as a starting point of fracture, but has a high coefficient of linear expansion, and therefore has insufficient heat cracking resistance near 900 ° C.
  • it since it contains a lot of rare metals, it is expensive, easily affected by the global economic situation, and there is concern about the stable supply of raw materials.
  • heat-resistant cast steel for exhaust system parts it is desirable for heat-resistant cast steel for exhaust system parts to ensure necessary heat-resistant characteristics by suppressing the rare metal content as much as possible from the viewpoints of economy and stable supply of raw materials as well as effective utilization of resources.
  • low-cost and high-performance exhaust system parts can be obtained, and fuel-saving technology can be applied to low-priced passenger cars, contributing to the reduction of CO 2 gas emissions.
  • the ferritic heat-resistant cast steel has a smaller linear expansion coefficient than the austenitic heat-resistant cast steel, the thermal stress generated upon starting and starting of the engine is small, and the heat-resistant crack resistance is excellent.
  • the exhaust system parts are assembled to the automobile after machining such as cutting on the connecting parts such as the mounting surface of the engine and peripheral parts, the mounting holes, and parts that require high dimensional accuracy after casting, It is necessary to have high machinability.
  • heat-resistant cast steel used for exhaust system parts is generally a difficult-to-cut material with poor machinability, and in particular, ferritic heat-resistant cast steel contains a large amount of Cr and has high strength, and therefore has poor machinability.
  • ferritic heat-resistant cast steel contains a large amount of Cr and has high strength, and therefore has poor machinability.
  • the cutting efficiency is low because cutting at a low speed is forced and a long time is required for cutting.
  • the machining of exhaust system parts made of ferritic heat-resistant cast steel has a problem that productivity and economy are low.
  • Japanese Patent Application Laid-Open No. 7-197209 describes the weight ratios of C: 0.15 to 1.20%, C-Nb / 8: 0.05 to 0.45%, Si: 2% or less, Mn: 2% or less, Contains Cr: 16.0-25.0%, W and / or Mo: 1.0-5.0%, Nb: 0.40-6.0%, Ni: 0.1-2.0%, and N: 0.01-0.15%, with the remainder from Fe and inevitable impurities
  • ⁇ phase ⁇ ferrite phase
  • it has a phase transformed from ⁇ phase (austenite phase) to ⁇ + carbide (hereinafter referred to as “ ⁇ ′ phase”), and the area ratio of ⁇ ′ phase
  • ⁇ ′ phase phase transformed from ⁇ phase
  • ⁇ + carbide hereinafter referred to as “ ⁇ ′ phase”
  • this ferritic heat-resistant cast steel contains more C (austenite element) than is necessary for the formation of NbC, ⁇ phase is generated during solidification by C dissolved in the matrix structure, and during cooling the ⁇ phase is ⁇ ' It transforms into a phase and thus has improved ductility and oxidation resistance. Therefore, this ferritic heat-resistant cast steel is suitable for exhaust system parts used at 900 ° C. or higher.
  • the transformation from the ⁇ phase to the ⁇ ′ phase does not proceed sufficiently, and the transformation from the ⁇ phase to the martensite phase occurs.
  • the martensite phase has a high hardness, the toughness and machinability at room temperature are significantly deteriorated.
  • heat treatment generally increases the production cost, the economic advantage of ferritic heat-resistant cast steel that the content of rare metals is low is impaired.
  • WO 2012/043860 has the following weight ratios: C: 0.32 to 0.45%, Si: 0.85% or less, Mn: 0.15 to 2%, Ni: 1.5% or less, Cr: 16 to 23 %, Nb: 3.2 to 4.5%, Nb / C: 9 to 11.5, N: 0.15% or less, S: (Nb / 20-0.1) to 0.2%, W and / or Mo: total 3.2% or less,
  • the balance is Fe and inevitable impurities, the area ratio of eutectic ( ⁇ + NbC) phase of ⁇ ferrite and Nb carbide (NbC) is 60-80%, and the area of manganese chromium sulfide (MnCr) S
  • a ferritic heat-resistant cast steel having a structure with a rate of 0.2 to 1.2% and having excellent hot metal flow, gas defect resistance, toughness and machinability.
  • WO 2012/043860 contains alloy elements that worsen the machinability due to actions such as crystallization of ⁇ phase transformed into martensite, increased precipitation of carbides, and increased solid solution in the matrix structure. Although it has been proposed to suppress the deterioration of machinability by regulating the amount, it does not disclose a means for positively improving machinability.
  • the ferritic heat-resistant cast steel disclosed in JP-A-7-197209 and WO 2012/043860 has room for improving machinability, so a ferritic heat-resistant cast steel having higher machinability is desired.
  • an object of the present invention is to provide a ferritic heat-resistant cast steel having excellent machinability while securing excellent heat-resistant characteristics at around 900 ° C., and an exhaust system part made of such ferritic heat-resistant cast steel. .
  • the present inventors added a predetermined amount of Al and S to the ferritic heat-resistant cast steel of JP-A-7-197209 and WO 2012/043860, and C, Mn, Ni, Cr The inventors have discovered that when the Nb and N contents are limited to an appropriate range, the machinability can be improved while securing excellent heat resistance at around 900 ° C., and the present invention has been conceived.
  • the ferritic heat-resistant cast steel of the present invention with excellent machinability is based on mass, C: 0.32 to 0.48%, Si: 0.85% or less, Mn: 0.1-2% Ni: 1.5% or less, Cr: 16-23%, Nb: 3.2-5% Nb / C: 9 to 11.5 N: 0.15% or less, S: 0.05-0.2%, and Al: 0.01 to 0.08% contained, The remainder consists of Fe and inevitable impurities.
  • the ferritic heat-resistant cast steel of the present invention may further contain 0.8 to 3.2 mass% of W and / or Mo in total.
  • Nb and Al are further represented by the following formula (1): 0.35 ⁇ 0.1Nb + Al ⁇ 0.53 (1) (However, the element symbol indicates the content (% by mass) of each element).
  • the structure of the ferritic heat-resistant cast steel of the present invention preferably contains 20 or more sulfide particles per visual field area of 14000 ⁇ m 2 .
  • the exhaust system part of the present invention is characterized by comprising the above-mentioned ferritic heat-resistant cast steel.
  • Preferred examples of such exhaust system parts include an exhaust manifold, a turbine housing, a turbine housing integrated exhaust manifold, a catalyst case, a catalyst case integrated exhaust manifold, and an exhaust outlet.
  • the ferritic heat-resistant cast steel of the present invention has excellent machinability while ensuring excellent heat resistance properties near 900 ° C, so that it can not only have a long life but also increase the cutting speed when used in a cutting tool. It is also possible to improve the productivity and economic efficiency of the cutting process. In addition, since the content of rare metals is suppressed, it contributes not only to reducing raw material costs but also to effective use and stable supply of resources. Furthermore, since heat treatment for improving machinability is not required, it contributes to energy saving without causing an increase in manufacturing cost. By using the ferritic heat-resistant cast steel of the present invention having such characteristics, exhaust system parts for automobiles can be efficiently manufactured at low cost. Contributes to reducing CO 2 gas emissions.
  • 6 is a micrograph showing the microstructure of a ferritic heat-resistant cast steel of Example 67. 6 is a photomicrograph showing the microstructure of a cast steel of Comparative Example 47.
  • Ferritic heat-resistant cast steel The composition and structure of the ferritic heat-resistant cast steel of the present invention will be described in detail below. In addition, content of each element is shown by the mass% unless there is particular notice.
  • C carbon: 0.32 to 0.48%
  • C lowers the solidification start temperature of the molten metal for ferritic heat-resistant cast steel and improves fluidity (molten metal flowability and castability).
  • C contributes to the formation of the primary crystal ⁇ phase, but the primary crystal ⁇ phase further lowers the solidification start temperature and improves the hot water flowability.
  • C combines with Nb to form a eutectic ( ⁇ + NbC) phase of ⁇ phase and Nb carbide (NbC), increasing the high temperature strength of ferritic heat-resistant cast steel.
  • the ferritic heat-resistant cast steel of the present invention needs to contain 0.32% or more of C.
  • the C content is set to 0.32 to 0.48%.
  • the upper limit of the C content is preferably 0.45%, more preferably 0.44%, and most preferably 0.42%.
  • Si acts as a deoxidizer for molten metal and improves oxidation resistance. However, if it exceeds 0.85%, Si dissolves in the ferrite of the base structure, and the base structure becomes extremely brittle. Therefore, the Si content is 0.85% or less (excluding 0%).
  • the lower limit of the Si content is preferably 0.2%, more preferably 0.3%.
  • the upper limit of Si content is preferably 0.6%.
  • Mn manganese sulfide
  • MnCr manganese chromium sulfide
  • MnCr expands the solidification temperature range of ferritic heat-resistant cast steel and acts as a path for hydrogen to escape to the outside of the material, thus contributing to the improvement of gas resistance.
  • the Mn content needs to be 0.1% or more.
  • the Mn content is set to 0.1 to 2%.
  • the lower limit of the Mn content is preferably 0.15%, more preferably 0.2%.
  • the upper limit of the Mn content is preferably 1.85%, more preferably 1.5%.
  • Ni nickel
  • Ni forms an ⁇ phase with an austenite stabilizing element. Austenite transforms into martensite that significantly deteriorates toughness and machinability while being cooled to room temperature. Therefore, it is desirable that the Ni content is as low as possible.
  • Ni is contained in a scrap material of stainless steel scrap which is a normal raw material, there is a high possibility that it is inevitably mixed in ferritic heat-resistant cast steel.
  • the upper limit of the Ni content with substantially no adverse effect on toughness and machinability is 1.5%. Therefore, the Ni content is 1.5% or less (including 0%).
  • the Ni content is preferably 0 to 1.25%, more preferably 0 to 1.0%, and most preferably 0 to 0.9%.
  • Cr 16-23% Cr not only stabilizes the ferrite structure and improves oxidation resistance, but also forms (MnCr) S by bonding with Mn and S to improve machinability and gas defect resistance.
  • MnCr manganese-Cobalt
  • the Cr content is 16-23%.
  • the lower limit of the Cr content is preferably 17%, more preferably 17.5%.
  • the upper limit of the Cr content is preferably 22.5%, more preferably 22%.
  • the crystal grain of the primary crystal ⁇ phase and the crystal grain of the eutectic ( ⁇ + NbC) phase are refined to significantly improve toughness.
  • Nb improves the high-temperature strength by forming a eutectic ( ⁇ + NbC) phase, and lowers the solidification start temperature to ensure good hot water flowability.
  • the NbC formation increases the cutting temperature during cutting, and the machinability is improved by suppressing the constituent cutting edges, and the tool life is improved.
  • Nb needs to be 3.2% or more.
  • the eutectic ( ⁇ + NbC) phase containing hard carbide (NbC) becomes too much, and not only the machinability is deteriorated but also the toughness is remarkably lowered due to embrittlement.
  • the Nb content is set to 3.2 to 5%.
  • the lower limit of the Nb content is preferably 3.4%.
  • the upper limit of the Nb content is preferably 4.5%, more preferably 4.2%, and most preferably 3.8%.
  • Nb / C 9 to 11.5
  • the balance between the C and Nb contents is important. Specifically, by regulating the ratio of Nb and C content (Nb / C) to a predetermined range, the crystal grains of the primary crystal ⁇ phase and the eutectic ( ⁇ + NbC) phase are refined, and surplus C is crystallized as Nb carbide (NbC).
  • NbC Nb carbide
  • Nb / C When Nb / C is too small, excess C that does not bind to Nb dissolves in the base structure, destabilizes the ⁇ phase and crystallizes the ⁇ phase. The ⁇ phase transforms into a martensite phase that reduces toughness and machinability before reaching room temperature. Further, if Nb / C is small, the amount of primary ⁇ phase crystallized becomes too large and the growth thereof is promoted, so that the crystal grains of the primary ⁇ phase are not fine and the toughness is not improved. Nb / C needs to be 9 or more to suppress the crystallization of the ⁇ phase and to refine the crystal grains of the primary crystal ⁇ phase and the crystal grains of the eutectic ( ⁇ + NbC) phase.
  • Nb / C when Nb / C is too large, Nb dissolves in the ⁇ phase, gives lattice distortion to the ⁇ phase, and lowers the toughness of the ⁇ phase. Also, if Nb / C is too large, the amount of eutectic ( ⁇ + NbC) phase crystallized will increase and the growth will be promoted, so the crystal grains of the eutectic ( ⁇ + NbC) phase will be insufficiently refined, Toughness is not improved. In order to suppress solid solution of Nb in the ⁇ phase and to refine the crystal grains of the primary ⁇ phase and the eutectic ( ⁇ + NbC) phase, Nb / C needs to be 11.5 or less. From the above, Nb / C is set to 9 to 11.5. The lower limit of Nb / C is preferably 9.3, more preferably 9.5. The upper limit of Nb / C is preferably 11.3, more preferably 11, and most preferably 10.5.
  • N nitrogen
  • N is a strong austenite stabilizing element and forms a ⁇ phase. While the ⁇ phase is cooled to room temperature, it becomes martensite and deteriorates toughness and machinability. Therefore, it is desirable that N is as small as possible. However, since N is originally contained in raw materials such as steel scrap (scrap), it is mixed as an inevitable impurity. Since the upper limit of N that does not substantially deteriorate toughness and machinability is 0.15%, the N content is 0.15% or less (including 0%). The upper limit of the N content is preferably 0.13%, more preferably 0.11%, and most preferably 0.10%.
  • S (sulfur): 0.05-0.2%
  • S is an important element for improving machinability in the ferritic heat-resistant cast steel of the present invention.
  • S combines with Mn and Cr to form spherical or massive sulfides such as MnS and (MnCr) S, thereby improving machinability.
  • MnS and MnCr spherical or massive sulfide particles
  • a combination of S and Al can provide a greater machinability improvement effect than the case of sulfide alone. This is an important feature of the present invention.
  • S combines with Mn and Cr to form manganese chromium sulfide (MnCr) S, which expands the solidification temperature range and improves gas defect resistance.
  • MnCr manganese chromium sulfide
  • S needs to be 0.05% or more.
  • the S content is 0.05 to 0.2%.
  • the lower limit of the S content is preferably 0.08%, more preferably 0.1%, and most preferably 0.12%.
  • the upper limit of the S content is preferably 0.18%.
  • Al (aluminum) 0.01 to 0.08% Al is also an important element for improving machinability. Al is inevitably mixed into ferritic heat-resistant cast steel from raw materials such as steel scrap (scrap) and deoxidizers used in the melting process and the hot water process. In the present invention, in order to obtain a remarkable machinability improving effect when used in combination with S, the critical content of Al is specified. For example, when cutting heat-resistant cast steel with a tool, Al dissolved in the base of the heat-resistant cast steel reacts with oxygen in the atmosphere by the heat generated by the cutting process, and Al 2 which is a high melting point oxide on the surface of the heat-resistant cast steel O 3 is formed.
  • Al 2 O 3 functions as a protective coating and prevents seizure of heat-resistant cast steel to the tool.
  • the machinability of the heat-resistant cast steel is improved and the tool life is extended.
  • the effect of improving the machinability cannot be obtained by adding Al alone, but is achieved only by the combined use with a predetermined amount of S.
  • Al refines the sulfide particles uniformly and suppresses the constituent cutting edges to improve the machinability of the heat-resistant cast steel.
  • Al In order to realize the machinability improvement effect by Al, Al needs to be 0.01% or more as a critical content. Therefore, when the Al content contained as an inevitable impurity is less than 0.01%, Al must be positively added to obtain the above effect. However, if Al exceeds 0.08%, a large amount of inclusions composed of oxides such as Al 2 O 3 and nitrides such as AlN are produced when heat-resistant cast steel is melted. When Al 2 O 3 and AlN, which are hard and brittle inclusions, are produced in large quantities, they not only lower the machinability but also lower the high-temperature strength and ductility as starting points for cracks and cracks.
  • the Al content is set to 0.01 to 0.08%.
  • the lower limit of the Al content is preferably 0.02%, more preferably 0.03%, and most preferably 0.035%.
  • the upper limit of the Al content is preferably 0.07%, more preferably 0.06%, and most preferably 0.055%.
  • the improvement of machinability in the ferritic heat-resistant cast steel of the present invention is not achieved only by containing one of S and Al, but is achieved when both are contained.
  • sulfide particles, such as MnS formed in the heat-resistant cast steel is rich in ductility, having a lubricating effect, also Al 2 O 3 formed by the increase in the cutting temperature at the time of cutting Has a protective effect on the tool.
  • MnS and Al 2 O 3 which are easy to adjust to each other, form a good composite film with lubrication and protection, reduce adhesion due to direct contact between the tool and the work material, reduce cutting resistance and wear of the tool Therefore, it is presumed that the machinability is greatly improved and the tool life is extended.
  • the ferritic heat-resistant cast steel of the present invention in which the composite lubricating protective film is sufficiently formed by limiting the contents of S, Al and Mn to the above range exhibits excellent machinability.
  • W and Mo tungsten and / or Mo (molybdenum): preferably 0.8 to 3.2% in total Both W and Mo generate carbides and lower the machinability, but improve the high-temperature strength by dissolving in the ⁇ phase of the matrix structure.
  • W and / or Mo may be additionally contained.
  • W and Mo mixed from raw materials such as steel scrap (scrap) are usually inevitably contained in ferritic heat-resistant cast steels in an amount of less than 0.5%, but in order to make the high temperature strength improvement effect obvious, W and / or Mo It is preferable to contain 0.8% or more in total.
  • the total content of W and / or Mo is 0.8 to 3.2%.
  • the lower limit of the total content of W and / or Mo is preferably 1.0%.
  • the upper limit of the total content of W and / or Mo is preferably 3.0%, and more preferably 2.5%.
  • the component cutting edge is a hard deposit with a part of the work material softened by the frictional heat generated during the cutting process adhering to the cutting edge of the tool, and it becomes a secondary cutting edge and participates in cutting instead of the cutting edge.
  • it greatly affects the tool life. If the generation amount is small, the cutting edge of the tool is protected and the tool life is extended, but it is usually not easy to control the generation amount of the constituent cutting edge.
  • the ferrite composed of the ⁇ phase constituting the base structure of the ferritic heat-resistant cast steel is sticky and easily adheres to the tool, so that the formed cutting edge does not easily fall off and tends to grow and become coarse. Since the cutting edge of the tool is greatly chipped (chipping) when the coarse component cutting edge is dropped during cutting, not only the machinability is deteriorated but also the tool life is shortened.
  • the methods for suppressing the cutting edge include (A-1) forming an appropriate amount of eutectic carbide (NbC) to increase the cutting temperature, and (A-2) adding sulfide particles. It is effective to disperse uniformly and finely.
  • the mechanism of suppression of the constituent cutting edges by the above methods (A-1) and (A-2) is not necessarily clear, but is assumed to be as follows.
  • tissue of a eutectic carbide is 20% or more.
  • the content of C and Nb and the Nb / C ratio are regulated within the above ranges.
  • A-2) Uniform refinement of sulfide particles Heat-resistant cast steel due to lubrication and chip breaking when cutting with sulfide particles such as MnS and (MnCr) S that are uniformly and finely formed in heat-resistant cast steel
  • the machinability of is improved. The more uniformly and finely dispersed the sulfide particles, the greater the effect of extending the tool life.
  • the sulfide particles serve as a generation site of minute cracks in the work material during cutting, that is, the starting point of embrittlement, and improve the machinability by the lubricating action and the cutting action of the chips.
  • the component cutting edge is small and easy to fall off due to the cutting action of the chips due to the microcracks, so that generation and growth thereof are suppressed.
  • the sulfide particles are preferably uniformly and finely dispersed.
  • the inclusion of Al is effective.
  • Al oxides such as Al 2 O 3 formed by Al content mainly disperse along the grain boundary of ⁇ phase and act as crystallization nuclei of sulfides to promote the formation of sulfides.
  • the sulfide particles are crystallized uniformly and finely.
  • the Al content is low, the sulfide particles become coarse and become non-uniformly dispersed, so that the cutting action of the chips is not exhibited and the constituent cutting edges grow coarsely.
  • the cause of coarse and uneven dispersion of sulfide particles is due to the oxidation of Al 2 O 3 and the like that cause crystallization nuclei of sulfides due to insufficient Al content and a decrease in oxygen concentration in molten steel due to deoxidation of Si and Mn. This is thought to be due to a decrease in goods.
  • the action of uniform miniaturization of the sulfide particles of Al oxide, refractory of Al 2 O 3 is formed of Al which is dissolved in the matrix by the heat generated in the cutting process is different from the action to protect the tool.
  • Hard carbide is thought to reduce the machinability and shorten the tool life, but with the ferritic heat-resistant cast steel of the present invention, conversely, (A-1) ⁇ Increased cutting temperature due to the formation of hard eutectic carbide (NbC) And (A-2)
  • the synergistic effect of uniform refinement of sulfide particles by Al makes it possible to suppress the constituent cutting edges and improve the machinability, thereby improving the tool life. This is a remarkable effect that is not expected from conventional technical common sense.
  • the value of equation (1) ⁇ is preferably 0.35 or more.
  • eutectic carbide (NbC) not only does the effect of suppressing the constituent cutting edges saturate as the amount of crystallization increases, but also the friction that occurs between the tool and the work material due to its increase due to its hardness. Increases and shortens tool life due to wear.
  • the area ratio of the eutectic carbide (NbC) to the entire structure is preferably 40% or less.
  • the content of C and Nb and the Nb / C ratio are regulated within the above ranges.
  • Al oxide that has the effect of suppressing the constituent cutting edge by contributing to uniform fine dispersion of sulfide particles saturates the suppression effect of the constituent cutting edge when the amount of crystallization increases.
  • inclusions such as Al 2 O 3 and AlN generated by the Al content are hard, the machinability is lowered as the amount of the inclusion increases.
  • Al 2 O 3 tends to agglomerate and coarsen in the molten steel, so if the amount of its formation increases, the sulfide particles that crystallize out of it become coarse and disperse unevenly. The suppression effect is reduced.
  • the value of equation (1) needs to be 0.53 or less.
  • Sulfide particles 20 or more per 14000 ⁇ m 2 field area
  • the number of sulfide particles crystallized in the heat-resistant cast steel structure is preferably 20 or more per viewing area 14000 ⁇ m 2, more preferably 30 or more, Most preferred is 40 or more.
  • the number of sulfide particles is obtained by counting, by image analysis, sulfide particles having a particle size of 1 ⁇ m or more (equivalent circle diameter) in a 500 ⁇ magnification microphotograph (field of view: 140 ⁇ m ⁇ 100 ⁇ m). .
  • the finer the sulfide particles are dispersed the shorter the distance between the sulfide particles that are present independently, so cracks that originated from the sulfide particles during cutting propagate efficiently through the chip, The division of the powder is promoted to suppress the formation and growth of the constituent cutting edges.
  • the sulfide particles are coarse and unevenly dispersed, cracks do not propagate efficiently inside the chip, so that the chip is not divided and the generation and growth of the constituent cutting edge are promoted.
  • the ferritic heat-resistant cast steel of the present invention containing both S and Al is (a) lubrication of sulfide particles and (b) protection of tools by high melting point Al oxide formed during cutting.
  • the machinability is greatly improved due to the action and (c) the increase in cutting temperature due to eutectic carbide (NbC) formed by adding Nb and the suppression effect of the constituent edge due to uniform fine dispersion of sulfide particles due to Al oxide.
  • exhaust system parts of the present invention manufactured using the above-mentioned ferritic heat-resistant cast steel include any cast exhaust system parts, and preferred examples include an exhaust manifold, a turbine housing, a turbine housing, an exhaust manifold, Are an exhaust manifold integrated with a turbine housing, a catalyst case, a catalyst case integrated exhaust manifold, an exhaust outlet, etc., in which a catalyst case and an exhaust manifold are integrally cast.
  • the exhaust system component of the present invention is not limited to these, and includes, for example, a cast component welded to a sheet metal or pipe member.
  • Exhaust system parts of the present invention are exposed to high-temperature exhaust gas of 1000 ° C or higher and have sufficient heat resistance characteristics such as oxidation resistance, heat distortion resistance, and heat crack resistance even when their surface temperature reaches around 900 ° C. Therefore, it is suitable as an exhaust manifold, turbine housing, turbine housing integrated exhaust manifold, catalyst case, catalyst case integrated exhaust manifold, and exhaust outlet, and exhibits high heat resistance and durability.
  • it since it has excellent machinability, it can be manufactured with improved productivity and economic efficiency in machining, and it can be manufactured at low cost with a high product yield because it suppresses the rare metal content and does not require heat treatment. This contributes to lower fuel consumption, and allows inexpensive exhaust parts with high heat resistance and durability to be used in low-priced automobiles such as popular cars, contributing to CO 2 reduction. It is expected.
  • Tables 1-1 and 1-2 show the chemical compositions of the cast steels of Examples 1 to 42 and values of the formula (1)
  • Tables 2-1 show the chemical compositions of the cast steels of the comparative examples 1 to 26 and the values of the formula (1).
  • Tables 3-1 and 3-2 show the chemical compositions of the cast steels of Examples 43 to 88 and the values of the formula (1).
  • Tables 3-1 and 3-2 show the chemical compositions of the cast steels of the comparative examples 27 to 55 and the formula (1) Values are shown in Tables 4-1 and 4-2, respectively.
  • Examples 1 to 88 are ferritic heat-resistant cast steels within the composition range of the present invention
  • Comparative Examples 1 to 55 are cast steels outside the composition range of the present invention.
  • the cast steel of Comparative Examples 1 and 27 has too little C content
  • the cast steels of Comparative Examples 2 and 28 have too much C content
  • the cast steel of Comparative Examples 3 and 29 has too much Si content
  • the cast steels of Comparative Examples 4 and 30 have too little Mn content
  • the cast steels of Comparative Examples 5 and 31 have too much Mn content
  • the cast steels of Comparative Examples 6 and 32 have too little S content
  • the cast steel of Comparative Examples 7 and 33 has too much S content
  • the cast steels of Comparative Examples 8 and 34 have too much Ni content
  • the cast steels of Comparative Examples 9 and 35 have too little Cr content
  • the cast steels of Comparative Examples 10 and 36 have too much Cr content
  • the cast steels of Comparative Examples 11 and 37 has too much N content
  • the cast steels of Comparative Examples 12-14 and 38-40 have too little Nb content
  • the cast steels of Comparative Examples 15-17 and 41-43 have too much Nb content
  • the cast steels of Comparative Examples 18 and 44 have Nb
  • Examples 1 to 88 and Comparative Examples 1 to 55 were melted in the atmosphere using a 100 kg high-frequency melting furnace (basic lining), then heated at 1600 to 1650 ° C., and immediately 1 inch at about 1550 ° C.
  • the Y block mold and the cylindrical test piece mold used for machinability evaluation were poured to obtain specimens for each cast steel. Test pieces were cut out from the as-cast (no heat treatment) specimens and evaluated as follows.
  • Tool life improvement rate is the value obtained by dividing the tool life A of the cast steel of each example by the longest tool life B of the tool life of the cast steel of the comparative example whose Al content is less than the lower limit (0.01%) of the present invention. (A / B).
  • Tables 1-3, 2-3, 3-3, and 4-3 show the tool life improvement rates (times) of Examples 1 to 88 and Comparative Examples 1 to 55.
  • the tool life improvement rate of the ferritic heat-resistant cast steel of the present invention is more preferably 1.3 times or more, more preferably 1.35 times or more, even more preferably 1.4 times or more, and more preferably 1.5 times or more. Is most preferred.
  • the tool life improvement rate of each of Examples 43 to 88 was 1.2 times or more of the tool life (62 minutes) of 47 cast steels. In contrast, in Comparative Examples 28, 30, 32, 34 to 44, and 46 to 55, the tool life improvement rate was less than 1.2 times. From these results, it can be seen that the ferritic heat-resistant cast steel of the present invention has good machinability.
  • Example 1 The results of Examples 1-42 are shown in Table 1-3, the results of Comparative Examples 1-26 are shown in Table 2-3, the results of Examples 43-88 are shown in Table 3-3, and Comparative Examples 27-55 The results are shown in Table 4-3.
  • the sulfide particles were analyzed by using an energy dispersive X-ray analyzer (FE-SEM EDS: S-4000, EDX KEVEX DELTA system manufactured by Hitachi, Ltd.) attached to a field emission scanning electron microscope. Identified.
  • FE-SEM EDS S-4000, EDX KEVEX DELTA system manufactured by Hitachi, Ltd.
  • FIG. 1 shows the microstructure of the ferritic heat resistant cast steel of Example 67 containing Al within the scope of the present invention
  • FIG. 2 shows the microstructure of the cast steel of Comparative Example 47 in which the Al content is too small.
  • the white portion is the ferrite phase 1
  • the gray portion is lamellar Nb eutectic carbide (NbC) 2
  • the black particles are sulfide particles 3.
  • Example 67 fine sulfide particles are dispersed as shown in FIG. 1, and there are few large sulfide particles.
  • the number of sulfide particles per field area of 14000 ⁇ m 2 was 54 on average over 5 fields, the tool life was as long as 102 minutes, and the tool life improvement rate was as high as 1.65 times. From this, it can be seen that the ferritic heat-resistant cast steel of Example 67 has excellent machinability.
  • Comparative Example 47 as shown in FIG. 2, the sulfide particles are aggregated and coarsened, and the fine sulfide particles are not dispersed.
  • Comparative Example 47 there were 12 sulfide particles per field area of 14000 ⁇ m 2 with an average of 5 fields, the tool life was as short as 62 minutes, and the tool life improvement rate was 1.0 times.
  • Oxidation weight loss An oxide film is formed on the surface of exhaust system parts exposed to high-temperature exhaust gas (containing oxidizing gases such as sulfur oxides and nitrogen oxides) near 1000 ° C exhausted from the engine. Is done. As oxidation progresses, cracks start from the oxide film and oxidation progresses to the interior of the exhaust system parts. Finally, cracks penetrate from the front surface to the back surface of the exhaust system parts, causing exhaust gas leakage and exhaust system part cracks. Invite. When the temperature of exhaust gas exhausted from the engine rises close to 1000 ° C, the temperature of exhaust system parts may reach 900 ° C. To evaluate the oxidation resistance at 900 ° C, Oxidation loss was determined.
  • the oxidation weight loss when kept in an atmosphere of 900 ° C for 200 hours is 20 mg / cm It is preferably 2 or less, and more preferably 10 mg / cm 2 or less.
  • the oxidation weight loss exceeds 20 mg / cm 2 the generation of an oxide film as a starting point of cracks increases, resulting in insufficient oxidation resistance.
  • the ferritic heat-resistant cast steel of the present invention is excellent in oxidation resistance and exhibits sufficient oxidation resistance when used in exhaust system parts that reach temperatures near 900 ° C. This means that the ferritic heat-resistant cast steel of the present invention has sufficient oxidation resistance for use in exhaust system parts that reach temperatures near 900 ° C.
  • High-temperature proof stress Exhaust system parts are required to have heat-deformability that is unlikely to cause thermal deformation even when the engine is operated (heating) and stopped (cooling) repeatedly. In order to ensure sufficient heat distortion resistance, it is preferable to have high high-temperature strength.
  • High temperature strength can be evaluated by 0.2% yield strength (high temperature yield strength) at 900 ° C. Cut a test piece with a smooth round bar with a distance of 50 mm and a diameter of 10 mm from each 1-inch Y-block specimen and cut it into an electro-hydraulic servo material testing machine (trade name, manufactured by Shimadzu Corporation) Servo pulsar EHF-ED10T-20L) and 0.2% proof stress (MPa) at 900 ° C.
  • Table 1-4 shows the measurement results of the high temperature proof stress in Examples 1 to 42
  • Table 2-4 shows the measurement results of the high temperature proof stress in Comparative Examples 1 to 26, and shows the measurement results of the high temperature proof stress in Examples 43 to 88
  • Table 4-4 shows the measurement results of the high temperature proof stress in Comparative Examples 27 to 55. Table 4-4 shows the results.
  • Ferritic heat-resistant cast steel having a body-centered cubic (BCC) structure has lower high-temperature strength and heat-deformability than austenitic heat-resistant cast steel having a face-centered cubic (FCC) structure.
  • the main factor affecting high temperature strength and heat distortion resistance is high temperature strength.
  • the 0.2% proof stress at 900 ° C. is preferably 20 MPa or more, and more preferably 25 MPa or more.
  • the 0.2% proof stress (high temperature proof stress) at 900 ° C. of Examples 1 to 88 was all 20 MPa or more.
  • Examples 43 to 88 containing 0.8% or more of W and / or Mo had a high temperature strength of 25 MPa or more and excellent high temperature strength and heat distortion resistance. From these results, it can be seen that the ferritic heat-resistant cast steel of the present invention is excellent in high-temperature proof stress and exhibits sufficient high-temperature strength when used in exhaust system parts that reach temperatures near 900 ° C.
  • Comparative Examples 1, 12-14, 27 and 38-40 with too little C and / or Nb content, Comparative Example 18 with too low Nb / C ratio, and Comparative Examples 23-25 with too much Al content The high temperature proof stress was less than 20 MPa.
  • the normal temperature impact value is preferably 10 ⁇ 10 4 J / m 2 or more, and more preferably 15 ⁇ 10 4 J / m 2 or more.
  • all of the room temperature impact values of Examples 1 to 88 were 10 ⁇ 10 4 J / m 2 or more.
  • the ferritic heat-resistant cast steel of the present invention contains a desired amount of C and Nb, and the primary ⁇ phase and the eutectic ( ⁇ + NbC) phase coexist in an optimum ratio that can obtain the effect of refining crystal grains. It is considered to have a high normal temperature impact value (excellent toughness).
  • Comparative Examples 1 and 27 have too little C
  • Comparative Examples 2 and 28 have too much C
  • Comparative Examples 3 and 29 have too much Si
  • Comparative Examples 5 and 31 have too much Mn
  • Examples 7 and 33 have too much S
  • Comparative Examples 8 and 34 have too much Ni
  • Comparative Examples 10 and 36 have too much Cr
  • Comparative Examples 11 and 37 have too much N
  • Comparative Examples 12-14 and 38 ⁇ 40 has too little Nb
  • Comparative Examples 15-17 and 41-43 have too much Nb
  • Comparative Examples 18 and 44 have too little Nb / C
  • Comparative Examples 19 and 45 have too much Nb / C
  • comparison Examples 23 to 25 and 50 to 52 contained too much Al
  • Comparative Examples 54 and 55 contained too much W or Mo, both of which had low room temperature impact values and poor toughness.
  • Thermal fatigue life Exhaust system parts are required to have heat cracking resistance that prevents thermal cracking even when the engine is operated (heating) and stopped (cooling) repeatedly. Thermal crack resistance can be evaluated by the thermal fatigue life.
  • the thermal fatigue life is the same electro-hydraulic servo type material test as that of the high temperature proof stress test.
  • the degree of mechanical restraint is expressed by a restraint rate defined by [(free thermal expansion / elongation ⁇ elongation under mechanical restraint) / (free thermal expansion / elongation)].
  • a restraint ratio of 1.0 refers to a mechanical restraint condition that does not allow elongation at all when a test piece is heated from 150 ° C. to 900 ° C.
  • the restraint ratio of 0.5 means a mechanical restraint condition that allows only 1 mm of elongation where the free expansion and elongation extends, for example, 2 mm. Therefore, at a restraint factor of 0.5, a compressive load is applied during temperature rise and a tensile load is applied during temperature drop. Since the restraint rate of exhaust system parts of an actual automobile engine is about 0.1 to 0.5 that allows a certain degree of elongation, the thermal fatigue life was evaluated at a restraint rate of 0.5.
  • the thermal fatigue life is 75% of the maximum tensile load measured in each cycle, with the maximum tensile load of the second cycle as the reference (100%) in the load-temperature diagram obtained from the change in load with repeated heating and cooling. It was set as the number of heating / cooling cycles until the temperature decreased.
  • Table 1-4 shows the thermal fatigue life in Examples 1-42, Table 2-4 shows the thermal fatigue life in Comparative Examples 1-26, and Table 3-4 shows the thermal fatigue life in Examples 43-88.
  • the thermal fatigue life in Comparative Examples 27 to 55 is shown in Table 4-4.
  • the thermal fatigue life measured by the thermal fatigue test with heating upper limit temperature of 900 ° C, temperature amplitude of 750 ° C or higher, and restraint factor of 0.5 is 1000 cycles or more. Is preferred. Exhaust system parts made of heat-resistant cast steel with a thermal fatigue life of 1000 cycles or more are excellent in heat crack resistance and have a long life until thermal fatigue failure due to cracks and deformation caused by repeated heating and cooling of the engine. In the ferritic heat-resistant cast steel of the present invention, the thermal fatigue life measured by the thermal fatigue test is more preferably 1400 cycles or more, and most preferably 1500 cycles or more.
  • the thermal fatigue lives of Examples 1 to 88 were all 1400 cycles or more. From this result, it can be seen that the ferritic heat-resistant cast steel of the present invention has excellent thermal fatigue life and exhibits sufficient heat cracking resistance when used for exhaust system parts that repeatedly heat and cool to a temperature close to 900 ° C. .
  • the ferritic heat-resistant cast steel of the present invention has the heat-resistant characteristics (oxidation resistance, high-temperature strength, heat-resistant deformation and heat-cracking resistance) required for exhaust system parts that reach temperatures near 900 ° C. Excellent machinability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Exhaust Silencers (AREA)
  • Powder Metallurgy (AREA)

Abstract

 質量基準で、C:0.32~0.48%、Si:0.85%以下、Mn:0.1~2%、Ni:1.5%以下、Cr:16~23%、Nb:3.2~5%、Nb/C:9~11.5、N:0.15%以下、S:0.05~0.2%、及びAl:0.01~0.08%を含有し、残部がFe及び不可避的不純物からなる被削性に優れたフェライト系耐熱鋳鋼、及びそれからなる排気系部品。

Description

被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
 本発明は、自動車用ガソリンエンジン及びディーゼルエンジンの排気系部品等に適する耐熱鋳鋼に関し、特に被削性に優れたフェライト系耐熱鋳鋼、及びそれからなる排気系部品に関する。
 近年、地球規模での環境負荷の低減や環境保全が叫ばれ、自動車に対して、大気汚染物質の排出量を削減するための排ガスの浄化と、地球温暖化の一因であるCO2の排出量抑制のための燃費性能の向上(低燃費化)とが強く求められている。自動車の排ガス浄化及び燃費改善の対策のために、車体の軽量化及び空気抵抗低減、エンジンの高性能化及び低燃費化、エンジンから駆動系への動力伝達の効率化、排ガスの浄化等の様々な技術が採用されてきた。
 なかでも、エンジンの高性能化及び低燃費化の技術として、燃料の直噴化、燃料噴射の高圧化、圧縮比の増大、ターボチャージャー(過給機)の採用によるエンジン排気量の低減、エンジンの小型軽量化(ダウンサイジング)等が挙げられ、高級車に限らず大衆車にも導入されてきている。その結果、燃料をより高温高圧で燃焼させる傾向にあり、これに伴ってエンジンから排気系部品に排出される排ガスの温度も上昇傾向にある。例えば、大衆車でも排ガス温度は1000℃近くまで上昇し、排気系部品の表面温度も900℃に達することがある。このように高温の排ガスに曝される排気系部品は、従来にも増して耐酸化性、高温強度、耐熱変形性、耐熱亀裂性等の耐熱特性の向上が求められる。
 従来、自動車のガソリンエンジン及びディーゼルエンジンに用いるエキゾーストマニホルド、タービンハウジング等の複雑形状の排気系部品は、形状自由度の高い鋳物により製造されており、しかも使用条件が高温で過酷であるので、高Si球状黒鉛鋳鉄、ニレジスト鋳鉄(Ni-Cr系オーステナイト鋳鉄)等の耐熱鋳鉄、フェライト系耐熱鋳鋼、オーステナイト系耐熱鋳鋼等が用いられている。
 フェライト系の高Si球状黒鉛鋳鉄は、800℃付近まで比較的良好な耐熱特性を示すが、それを超える温度では耐久性に劣る。Ni、Cr、Co等の希少金属(レアメタル)を多く含有するニレジスト鋳鉄等の耐熱鋳鉄やオーステナイト系耐熱鋳鋼は800℃以上での耐酸化性及び耐熱亀裂性を同時に満足させる。しかし、ニレジスト鋳鉄はNi含有量が多いので高価であるだけでなく、オーステナイト系基地組織のために線膨張率が大きく、かつミクロ組織に破壊の起点となる黒鉛が存在しているため、耐熱亀裂性に劣る。またオーステナイト系耐熱鋳鋼は、破壊の起点となる黒鉛はないが、線膨張率が大きいため900℃付近での耐熱亀裂性が不十分である。加えて、希少金属を多く含有するため高価であり、世界経済情勢の影響を受けやすく、原料の安定供給に不安がある。
 排気系部品用耐熱鋳鋼は、経済性及び原料の安定供給のみならず資源の有効活用の観点から、希少金属の含有量を極力抑えて必要な耐熱特性を確保するのが望ましい。これにより安価で高性能な排気系部品が得られ、低燃費化の技術を安価な大衆車にも適用することができ、CO2ガスの排出量の削減に貢献できる。希少金属の含有量を極力抑えるためには、合金の基地組織をオーステナイトよりフェライトにした方が有利である。加えてフェライト系耐熱鋳鋼はオーステナイト系耐熱鋳鋼より線膨張率が小さいので、エンジンの始動及び発進にともない発生する熱応力が小さく、耐熱亀裂性に優れている。
 また、排気系部品は、鋳造後にエンジン及び周辺部品との取付け面、取付け孔等の連結部位や、高い寸法精度を要する部位等に切削等の機械加工を施した後、自動車に組み付けられるので、高い被削性を有する必要がある。ところが、排気系部品に用いられる耐熱鋳鋼は一般的に被削性の悪い難削材料であり、特にフェライト系耐熱鋳鋼は、Crを多く含有して高強度を有するので、被削性に劣る。このため、フェライト系耐熱鋳鋼からなる排気系部品を切削する場合、高い硬度及び強度を有する比較的高価な切削工具を必要とし、工具寿命も短いために工具交換の頻度が多く、加工コストが上昇し、さらに低速での切削を余儀なくされ、切削に長時間を要するため加工能率が低い。このようにフェライト系耐熱鋳鋼からなる排気系部品の機械加工には、生産性及び経済性が低いという問題点がある。
 鋳造性の改善のために、特開平7-197209号は、重量比率で、C:0.15~1.20%、C-Nb/8:0.05~0.45%、Si:2%以下、Mn:2%以下、Cr:16.0~25.0%、W及び/又はMo:1.0~5.0%、Nb:0.40~6.0%、Ni:0.1~2.0%、及びN:0.01~0.15%を含有し、残部がFe及び不可避不純物からなる組成を有し、通常のα相(αフェライト相)のほかにγ相(オーステナイト相)からα+炭化物に変態した相(以下「α’相」という)を有し、α’相の面積率[α’/(α+α’)]が20~70%で、鋳造性に優れたフェライト系耐熱鋳鋼を提案している。このフェライト系耐熱鋳鋼はNbCの形成に必要な量以上のC (オーステナイト化元素)を含有するので、基地組織に固溶したCにより凝固時にγ相が生成し、冷却過程でγ相はα’相に変態し、もって延性及び耐酸化性が向上している。そのため、このフェライト系耐熱鋳鋼は900℃以上で使用される排気系部品に適する。
 しかし、鋳放しのままではγ相からα’相への変態が十分に進行せず、γ相からマルテンサイト相に変態する。マルテンサイト相は高硬度であるため、常温での靭性及び被削性を著しく悪化させる。十分な靭性及び被削性を確保するためには、昇温によりマルテンサイト相を消滅させてα’相を析出させる熱処理が必要なことがある。しかし、熱処理は一般に製造コストを上昇させるので、希少金属の含有量が少ないというフェライト系耐熱鋳鋼の経済的利点を損なう。
 被削性の改善のために、WO 2012/043860は、重量比率で、C:0.32~0.45%、Si:0.85%以下、Mn:0.15~2%、Ni:1.5%以下、Cr:16~23%、Nb:3.2~4.5%、Nb/C:9~11.5、N:0.15%以下、S:(Nb/20-0.1)~0.2%、W及び/又はMo:合計3.2%以下を含有し、残部がFe及び不可避的不純物からなる組成を有し、δフェライトとNb炭化物(NbC)との共晶(δ+NbC)相の面積率が60~80%で、マンガンクロム硫化物(MnCr)Sの面積率が0.2~1.2%である組織を有し、優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼を提案している。
 WO 2012/043860のフェライト系耐熱鋳鋼は、C及びNbの含有量を増加するとともに両者の含有量のバランスを最適化することにより、凝固開始温度が低下して湯流れ性が改善され、かつ初晶δ相と共晶(δ+NbC)相の結晶粒の微細化により靭性が大幅に向上している。さらに適量のSを含有することによりマンガンクロム硫化物(MnCr)Sが晶出し、凝固終了温度が低下するとともに凝固温度範囲が拡大し、耐ガス欠陥性が改善している。しかし、WO 2012/043860のフェライト系耐熱鋳鋼は、専ら湯流れ性、耐ガス欠陥性及び靭性を改善することを狙ったもので、被削性を改善する見地からの検討は十分でない。即ち、WO 2012/043860は、マルテンサイトに変態するγ相の晶出、炭化物の析出量の増加、及び基地組織への固溶量の増加等の作用により被削性を悪化させる合金元素の含有量を規制することにより被削性の低下を抑制することを提案しているが、積極的に被削性を改善する手段を開示している訳ではない。
 上記の通り特開平7-197209号及びWO 2012/043860のフェライト系耐熱鋳鋼には被削性を改善する余地があるので、より高い被削性を有するフェライト系耐熱鋳鋼が望まれる。
 従って本発明の目的は、900℃付近での優れた耐熱特性を確保しつつ、優れた被削性を有するフェライト系耐熱鋳鋼、及びかかるフェライト系耐熱鋳鋼からなる排気系部品を提供することである。
 上記目的に鑑み鋭意研究の結果、本発明者等は、特開平7-197209号及びWO 2012/043860のフェライト系耐熱鋳鋼に所定量のAl及びSを添加するとともに、C、Mn、Ni、Cr、Nb及びNの含有量を適正範囲に限定すると、900℃付近での優れた耐熱特性を確保しつつ被削性を改善できることを発見し、本発明に想到した。
 すなわち、被削性に優れた本発明のフェライト系耐熱鋳鋼は質量基準で、
C:0.32~0.48%、
Si:0.85%以下、
Mn:0.1~2%、
Ni:1.5%以下、
Cr:16~23%、
Nb:3.2~5%、
Nb/C:9~11.5、
N:0.15%以下、
S:0.05~0.2%、及び
Al:0.01~0.08%を含有し、
残部がFe及び不可避的不純物からなることを特徴とする。
 本発明のフェライト系耐熱鋳鋼はさらにW及び/又はMoを合計で0.8~3.2質量%含有してもよい。
 本発明のフェライト系耐熱鋳鋼はさらにNb及びAlが下記式(1):
  0.35≦0.1Nb+Al≦0.53・・・(1)
(ただし、元素記号は各元素の含有量(質量%)を示す。)を満たすのが好ましい。
 本発明のフェライト系耐熱鋳鋼の組織は、視野面積14000μm2当たり20個以上の硫化物粒子を含有するのが好ましい。
 本発明の排気系部品は、上記フェライト系耐熱鋳鋼からなることを特徴とする。このような排気系部品の好ましい例として、エキゾーストマニホルド、タービンハウジング、タービンハウジング一体化エキゾーストマニホルド、触媒ケース、触媒ケース一体化エキゾーストマニホルド、及びエキゾーストアウトレットが挙げられる。
 本発明のフェライト系耐熱鋳鋼は、900℃付近での優れた耐熱特性を確保しつつ、良好な被削性を有するので、切削工具に用いたときに長寿命にできるだけでなく切削速度を高めることもでき、切削加工の生産性及び経済性を向上できる。その上、希少金属の含有量を抑制しているので、原料コストの抑制のみならず、資源の有効活用や安定供給にも貢献する。さらに被削性を改善するための熱処理が不要なので製造コストの上昇を招くことなく、省エネルギーにも寄与する。このような特徴を有する本発明のフェライト系耐熱鋳鋼を用いると、自動車用の排気系部品を低コストで効率よく製造することができるので、低燃費化技術の適用範囲を拡大させ、自動車等のCO2ガスの排出量の削減に貢献する。
実施例67のフェライト系耐熱鋳鋼のミクロ組織を示す顕微鏡写真である。 比較例47の鋳鋼のミクロ組織を示す顕微鏡写真である。
[1] フェライト系耐熱鋳鋼
 本発明のフェライト系耐熱鋳鋼の組成及び組織を以下詳細に説明する。なお、各元素の含有量は特に断りのない限り質量%で示す。
[A] 組成
(1) C(炭素):0.32~0.48%
 Cはフェライト系耐熱鋳鋼用溶湯の凝固開始温度を降下させて流動性(湯流れ性、鋳造性)を高める。また、Cは初晶δ相の形成に寄与するが、初晶δ相によりさらに凝固開始温度が低下し、湯流れ性が向上する。その上、CはNbと結合してδ相とNb炭化物(NbC)との共晶(δ+NbC)相を形成し、フェライト系耐熱鋳鋼の高温強度を高める。このような作用を有効に発揮するために、本発明のフェライト系耐熱鋳鋼は、0.32%以上のCを含有する必要がある。しかし、C含有量が0.48%を超えると、共晶(δ+NbC)相が多くなり過ぎて、フェライト系耐熱鋳鋼は脆化し、常温靭性が低下するとともに、被削性が劣化する。このため、C含有量は0.32~0.48%とする。C含有量の上限は好ましくは0.45%であり、より好ましくは0.44%であり、最も好ましくは0.42%である。
(2) Si(ケイ素):0.85%以下
 Siは溶湯の脱酸剤として作用するとともに耐酸化性を改善する。しかし、0.85%を超えると、Siは基地組織のフェライトに固溶して、基地組織を著しく脆化させる。このため、Siの含有量は0.85%以下(0%を含まず)とする。Si含有量の下限は好ましくは0.2%であり、より好ましくは0.3%である。また、Si含有量の上限は好ましくは0.6%である。
(3) Mn(マンガン):0.1~2%
 MnはSiと同様に溶湯の脱酸剤として作用する。その上、MnはCr及びSと結合して、マンガン硫化物(MnS)やマンガンクロム硫化物(MnCr)S等の硫化物を形成し、耐熱鋳鋼の被削性を改善する。特にマンガンクロム硫化物(MnCr)Sはフェライト系耐熱鋳鋼の凝固温度範囲を拡大し、水素を材料の外部へ逃散させる経路として作用するので、耐ガス欠陥性の向上に寄与する。これらの効果を有効に発揮させるために、Mnの含有量は0.1%以上必要である。しかし、2%を超えるMnはフェライト系耐熱鋳鋼の耐酸化性及び靭性を劣化させる。このため、Mnの含有量は0.1~2%とする。Mn含有量の下限は好ましくは0.15%であり、より好ましくは0.2%である。また、Mn含有量の上限は好ましくは1.85%であり、より好ましくは1.5%である。
(4) Ni(ニッケル):1.5%以下
 Niは、オーステナイト安定化元素でγ相を形成する。オーステナイトは、常温まで冷却される間に靭性及び被削性を著しく悪化させるマルテンサイトに変態する。従って、Ni含有量は極力少ないのが望ましいが、Niは通常原料となるステンレス系鋼屑のスクラップ材に含有されているため、不可避的にフェライト系耐熱鋳鋼に混入する可能性が高い。靭性及び被削性への悪影響が実質的にないNi含有量の上限は1.5%である。そのため、Ni含有量は1.5%以下(0%を含む)とする。Ni含有量は好ましくは0~1.25%であり、より好ましくは0~1.0%であり、最も好ましくは0~0.9%である。
(5) Cr(クロム):16~23%
 Crはフェライト組織を安定化して耐酸化性を高めるだけでなく、Mn及びSとの結合により(MnCr)Sを形成して被削性及び耐ガス欠陥性を向上させる。特に900℃付近での耐酸化性を向上させ、かつ被削性を改善するためには、Crは16%以上含有する必要がある。一方、フェライト基地においてCrが23%超えると、シグマ脆性が発生しやすくなり、靭性及び被削性が著しく悪化する。そのため、Cr含有量は16~23%とする。Cr含有量の下限は好ましくは17%であり、より好ましくは17.5%である。また、Cr含有量の上限は好ましくは22.5%であり、より好ましくは22%である。
(6) Nb(ニオブ):3.2~5%
 強い炭化物形成能を有するNbは、凝固時にCを炭化物(NbC)に固定するので、強力なオーステナイト安定化元素であるCが基地組織のフェライトに固溶してγ相を晶出するのを抑制するだけでなく、初晶δ相の結晶粒及び共晶(δ+NbC)相の結晶粒を微細化して靭性を著しく向上させる。またNbは、共晶(δ+NbC)相の形成により高温強度を向上させるとともに、凝固開始温度を低下させて良好な湯流れ性を確保する。さらに後述するように、NbCの形成により切削時の切削温度が上昇し、もって構成刃先の抑制により被削性が向上し、工具寿命が改善する。上記効果を十分に発揮するために、Nbは3.2%以上必要である。しかし、Nbが5%を超えると、硬質炭化物(NbC)を含む共晶(δ+NbC)相が多くなりすぎ、被削性がかえって悪化するだけでなく、脆化により靭性が著しく低下する。またNbが5%を超えると、凝固開始温度が低下して湯流れ性は改善するが、凝固温度範囲が縮小して短時間に凝固が終了するため、ガス欠陥の発生傾向が著しく高まる。従って、Nb含有量は3.2~5%とする。Nb含有量の下限は好ましくは3.4%である。また、Nb含有量の上限は好ましくは4.5%であり、より好ましくは4.2%であり、最も好ましくは3.8%である。
(7) Nb/C:9~11.5
 本発明のフェライト系耐熱鋳鋼が必要な特性をバランス良く兼備するためには、CとNbの含有量のバランスが重要である。具体的には、NbとCの含有量の比(Nb/C)を所定の範囲に規制することにより、初晶δ相と共晶(δ+NbC)相の結晶粒を微細化するとともに、余剰のCをNb炭化物(NbC)として晶出させる。その結果、C及びNbはフェライト基地にほとんど固溶せず、靭性に有害なγ相の晶出を阻止し、δ相へのNbの固溶を抑制し、もって靭性及び被削性の劣化を抑制する。
 Nb/Cが小さすぎる場合、Nbに結合しない余剰のCは基地組織に固溶し、δ相を不安定化してγ相を晶出させる。γ相は常温に達するまでに靭性及び被削性を低下させるマルテンサイト相に変態する。また、Nb/Cが小さいと初晶δ相の晶出量が多くなりすぎ、その成長が促進されるので、初晶δ相の結晶粒が微細でなくなり、靭性が向上しない。γ相の晶出を抑制するとともに、初晶δ相の結晶粒及び共晶(δ+NbC)相の結晶粒を微細化するには、Nb/Cは9以上である必要がある。
 一方、Nb/Cが大きすぎる場合、Nbはδ相に固溶して、δ相に格子歪みを与え、δ相の靭性を低下させる。また、Nb/Cが大きすぎると、共晶(δ+NbC)相の晶出量が多くなりすぎ、その成長が促進されるので、共晶(δ+NbC)相の結晶粒の微細化が不十分となり、靭性が向上しない。Nbのδ相への固溶を抑制するとともに、初晶δ相の結晶粒及び共晶(δ+NbC)相の結晶粒を微細化するには、Nb/Cは11.5以下である必要がある。以上から、Nb/Cは9~11.5とする。Nb/Cの下限は好ましくは9.3であり、より好ましくは9.5である。また、Nb/Cの上限は好ましくは11.3であり、より好ましくは11であり、最も好ましくは10.5である。
(8) N(窒素):0.15%以下
 Nは強力なオーステナイト安定化元素であり、γ相を形成する。γ相は常温まで冷却される間にマルテンサイト化し、靭性及び被削性を劣化させる。そのため、Nは極力少ない方が望ましいが、Nはもともと鋼屑(スクラップ)等の原料に含有しているため、不可避的不純物として混入する。靭性及び被削性を実質的に悪化させないNの上限は0.15%であるので、N含有量は0.15%以下(0%を含む)とする。N含有量の上限は好ましくは0.13%であり、より好ましくは0.11%であり、最も好ましくは0.10%である。
(9) S(硫黄):0.05~0.2%
 Sは、本発明のフェライト系耐熱鋳鋼において被削性を改善する重要な元素である。SはMn及びCrと結合してMnS、(MnCr)S等の球状又は塊状の硫化物を形成し、被削性を向上させる。球状又は塊状の硫化物粒子は切削時に潤滑作用を有し、切粉を分断することにより被削性を向上させることが知られている。しかし、SとAlとの併用により硫化物単独の場合より大きな被削性向上効果が得られることが分った。これは本発明の重要な特徴である。また、SはMn及びCrと結合してマンガンクロム硫化物(MnCr)Sを形成し、凝固温度範囲を拡大して耐ガス欠陥性を向上する。このような効果を得るには、Sは0.05%以上必要である。しかし、Sが0.2%を超えると、靭性の低下が顕著となる。そのため、Sの含有量は0.05~0.2%とする。S含有量の下限は好ましくは0.08%であり、より好ましくは0.1%であり、最も好ましくは0.12%である。また、S含有量の上限は好ましくは0.18%である。
(10) Al(アルミニウム):0.01~0.08%
 Alも被削性を改善する重要な元素である。Alは、通常鋼屑(スクラップ)等の原料や、溶解工程及び出湯工程で使用する脱酸剤からフェライト系耐熱鋳鋼に不可避的に混入する。本発明は、Sとの併用により顕著な被削性向上効果を得るために、Alの臨界的な含有量を規定した。例えば耐熱鋳鋼を工具により切削する場合、耐熱鋳鋼の基地中に固溶したAlは、切削加工で発生する熱により大気中の酸素と反応し、耐熱鋳鋼の表面に高融点酸化物であるAl2O3を形成する。Al2O3は保護被膜として機能し、工具への耐熱鋳鋼の焼き付きを防止する。その結果、耐熱鋳鋼の被削性は向上し、工具寿命を延長させる。被削性の向上効果は、Alの単独添加では得られず、所定量のSとの併用によりはじめて達成される。さらに、Alは硫化物粒子を均一に微細化し、構成刃先を抑制して耐熱鋳鋼の被削性を向上させる。
 Alによる被削性の向上効果を顕在化させるために、Alは臨界的な含有量として0.01%以上必要である。従って不可避的不純物として含有するAl含有量が0.01%に満たない場合には、上記効果を得るためにAlを積極的に添加しなければならない。しかし、Alが0.08%を超えると、耐熱鋳鋼を溶製する際にAl2O3等の酸化物やAlN等の窒化物からなる介在物が多量に生成する。硬くて脆い介在物になるAl2O3やAlNは、多量に生成すると被削性をかえって低下させるだけでなく、亀裂及び割れの起点となって高温強度及び延性を低下させる。また、Al2O3等の酸化物は鋳造欠陥の原因になり、また溶湯の流動性を低下させて鋳造歩留りを悪化させる。そのため、Alの含有量は0.01~0.08%とする。Alの含有量の下限は好ましくは0.02%であり、より好ましくは0.03%であり、最も好ましくは0.035%である。またAlの含有量の上限は好ましくは0.07%であり、より好ましくは0.06%であり、最も好ましくは0.055%である。
 本発明のフェライト系耐熱鋳鋼における被削性の向上は、S及びAlのいずれか一方を含有するだけでは達成されず、両者をともに含有する場合に達成されることが分かった。この理由は必ずしも明確ではないが、耐熱鋳鋼中に形成されるMnS等の硫化物粒子は延性に富み、潤滑作用を有し、また切削加工時の切削温度の上昇により形成されるAl2O3は工具の保護作用を有する。相互に馴染みやすいMnS及びAl2O3は潤滑作用及び保護作用を有する良好な複合被膜を形成し、工具と被削材との直接接触による付着を緩和し、切削抵抗を低下させて工具の摩耗を抑制し、もって被削性を大幅に向上させるとともに工具の寿命を延ばすと推察される。このように、S、Al及びMnの含有量を上記範囲に限定することにより複合潤滑保護被膜が十分に形成された本発明のフェライト系耐熱鋳鋼は、優れた被削性を発揮する。
(11) W(タングステン)及び/又はMo(モリブデン):好ましくは合計で0.8~3.2%
 W及びMoはいずれも炭化物を生成して被削性を低下させるが、基地組織のδ相に固溶することにより高温強度を改善する。被削性を著しく損なわない範囲でフェライト系耐熱鋳鋼の高温強度をさらに向上させる場合、W及び/又はMoを付加的に含有させても良い。鋼屑(スクラップ)等の原料から混入するW及びMoは通常フェライト系耐熱鋳鋼にそれぞれ0.5%未満程度不可避的に含まれるが、高温強度改善効果を顕在化させるためには、W及び/又はMoを合計で0.8%以上含有させるのが好ましい。W及びMoの単独添加でも複合添加でも、3.2%を超えるとフェライト系耐熱鋳鋼に粗大な炭化物が生成し、靱性及び被削性が著しく劣化する。なお、高温強度改善効果については、W及びMoの単独添加でも複合添加でも、約3%で飽和する。従って、W及び/又はMoの含有量は合計で0.8~3.2%とする。W及び/又はMoの合計含有量の下限は好ましくは1.0%である。また、W及び/又はMoの合計含有量の上限は好ましくは3.0%であり、より好ましくは2.5%である。
(12) 式(1):0.35≦0.1Nb+Al≦0.53
 被削性をいっそう向上させるために、上記組成範囲の要件を満足した上で、式(1) を満たすのが好ましい。なお、式中の元素記号はその含有量(質量%)を示す。本発明者等は、(a) 本発明のフェライト系耐熱鋳鋼の被削性に影響を及ぼす因子として、(A) 切削加工における構成刃先の抑制、及び(B) 耐熱鋳鋼中の共晶炭化物及び介在物の制御が重要であること、及び(b) これらの因子は耐熱鋳鋼中のNb及びAlの含有量に依存し、被削性及び工具寿命に影響を与えることを発見した。より良好な被削性を本発明のフェライト系耐熱鋳鋼に付与するためには、Nb及び/又はAlの含有量だけでなく、両者の関係を式(1) に示すように規定するのが好ましい。式(1) の値を0.35以上にするのは切削加工において構成刃先を抑制するための条件(A) であり、式(1) の値を0.53以下にするのは耐熱鋳鋼中の共晶炭化物及び介在物を制御するための条件(B) である。
 構成刃先は、切削加工中に発生する摩擦熱により軟化した被削材の一部が工具の刃先に付着した硬い堆積物であり、二次的な刃先となって切れ刃の代わりに切削に関与し、工具寿命に大きな影響を及ぼす。生成量が僅かであれば工具の刃先を保護して工具寿命を延ばすが、構成刃先の生成量を制御することは通常容易ではない。特にフェライト系耐熱鋳鋼の基地組織を構成するδ相からなるフェライトは粘く工具に付着しやすいので、生成した構成刃先が脱落し難く、成長して粗大化する傾向にある。切削加工中に粗大な構成刃先が脱落するときに工具の刃先が大きく欠損(チッピング)するので、被削性を劣化させるだけでなく工具寿命を短くする。
(A) 構成刃先の抑制について
 構成刃先を抑制する手法としては、(A-1) 共晶炭化物(NbC)を適量形成して切削温度を上昇すること、及び(A-2) 硫化物粒子を均一かつ微細に分散することが有効である。上記手法(A-1) 及び(A-2) による構成刃先の抑制のメカニズムは必ずしも明らかではないが、以下の通りであると推測される。
(A-1) 共晶炭化物(NbC)の形成
 耐熱鋳鋼中に硬質な共晶炭化物(NbC)が適量形成されると、切削加工の際に切削抵抗が増大し、切削により発生する摩擦熱の上昇にともなって、被削材、切粉及び工具刃先の温度(切削温度)が上昇する。構成刃先は切削温度の上昇により軟化又は溶融状態になり、工具刃先から容易に脱落するので、その生成及び成長が抑制される。その結果、粗大化した構成刃先の脱落による工具刃先の欠損が防止されると考えられる。上記効果を得るには、共晶炭化物(NbC)の全組織に対する面積率は20%以上であるのが好ましい。共晶炭化物(NbC)の面積率を制御するには、C及びNbの含有量及びNb/C比を上記範囲に規制する。
(A-2) 硫化物粒子の均一微細化
 耐熱鋳鋼中に均一かつ微細に形成されたMnS、(MnCr)S等の硫化物粒子による切削時の潤滑作用や切粉の分断作用により、耐熱鋳鋼の被削性は改善される。硫化物粒子が均一かつ微細に分散しているほど、工具寿命を延長する効果が大きい。硫化物粒子は、切削時に被削材の微小なクラックの生成サイト、即ち脆化の起点となり、その潤滑作用及び切粉の分断作用により被削性を向上させる。特に微小クラックによる切粉の分断作用により構成刃先は小さくかつ脱落しやすくなるので、その生成及び成長が抑えられる。
 微小クッラクの生成サイトを多数存在させるためには、硫化物粒子は均一かつ微細に分散しているのが好ましい。硫化物粒子が均一かつ微細に分散するように制御するには、Alの含有が有効である。Al含有により形成されるAl2O3等のAlの酸化物は、主にδ相の結晶粒界に沿って分散するとともに、硫化物の晶出核として作用して硫化物の生成を促進し、硫化物粒子を均一かつ微細に晶出させる。しかし、Al含有量が少ないと硫化物粒子が粗大化するとともに不均一分散となり、切粉の分断作用が発揮されず、構成刃先が粗大に成長する。硫化物粒子の粗大不均一分散の原因は、Al含有量の不足及びSiやMn等の脱酸作用による溶鋼中の酸素濃度の低下によって硫化物の晶出核となるAl2O3等の酸化物が減少するためと考えられる。なお、Al酸化物による硫化物粒子の均一微細化の作用は、切削加工における発熱により基地に固溶したAlから形成された高融点のAl2O3が工具を保護する作用とは異なる。
 硬質炭化物は被削性を低下させて工具寿命を短縮すると考えられるが、本発明のフェライト系耐熱鋳鋼では逆に、(A-1) 硬質な共晶炭化物(NbC)の形成による切削温度の上昇、及び(A-2) Alによる硫化物粒子の均一微細化の相乗効果により、構成刃先が抑制されて被削性が向上し、もって工具寿命が改善される。これは、従来の技術常識からは予想されない顕著な効果である。手法(A-1) 及び(A-2) による上記相乗効果を得るためには、式(1) の値は0.35以上とするのが好ましい。
(B) 耐熱鋳鋼中の共晶炭化物及び介在物の制御
 被削性に影響を及ぼす共晶炭化物及び介在物の晶出を規制するのが重要である。共晶炭化物(NbC)については、その晶出量が多くなると構成刃先の抑制効果が飽和するだけでなく、硬質なためにその増加にともなって工具と被削材との間に発生する摩擦が大きくなり、摩耗により工具寿命を短くする。工具寿命の短縮を抑えるためには、共晶炭化物(NbC)の全組織に対する面積率は40%以下であるのが好ましい。共晶炭化物(NbC)の面積率を制御するには、C及びNbの含有量及びNb/C比を上記範囲に規制する。
 介在物の制御の観点でみた場合、硫化物粒子の均一微細分散に寄与することで構成刃先を抑制する効果のあるAl酸化物は、その晶出量が多くなると構成刃先の抑制効果は飽和する。一方で、Al含有によって生成するAl2O3やAlN等の介在物は硬質なため、その生成量の増加にともなって被削性を低下させる。またAl2O3は溶鋼中で凝集して粗大化しやすいので、その生成量が多くなると、それを核として晶出する硫化物粒子も粗大化して不均一に分散するようになり、構成刃先の抑制効果が低下する。本発明のフェライト系耐熱鋳鋼においては、共晶炭化物や介在物の晶出を規制することで、被削性の悪化が抑制されて工具寿命が改善される。上記の効果を得るためには式(1) の値を0.53以下とする必要がある。
[B] 組織
(1) 硫化物粒子:視野面積14000μm2当たり20個以上
 組織中に晶出する硫化物粒子が多いほど、本発明のフェライト系耐熱鋳鋼の被削性は向上し、工具寿命は延びる傾向にある。良好な被削性を得るためには、耐熱鋳鋼組織中に晶出する硫化物粒子の数は、視野面積14000μm2当たり20個以上であるのが好ましく、30個以上であるのがより好ましく、40個以上であるのが最も好ましい。ここで、硫化物粒子の数は、倍率500倍の顕微鏡写真(視野:140μm×100μm)において1μm以上の粒径(円相当径)の硫化物粒子を画像解析によりカウントして求めたものである。
 単位面積当たりの硫化物粒子の数が多いほど、換言すれば硫化物粒子の個数密度が高いほど、硫化物粒子は小さく、均一かつ微細に分散している。硫化物粒子が微細に分散しているほど、独立して存在する硫化物粒子同士の距離が短いため、切削時に硫化物粒子を起点に発生したクラックが切粉内を効率的に伝播し、切粉の分断が促進されて構成刃先の生成及び成長を抑制する。一方、硫化物粒子が粗大で不均一に分散していると、クラックが切粉内部で効率的に伝播しないので切粉の分断に至らず、構成刃先の生成及び成長が助長される。耐熱鋳鋼中の硫化物粒子の数を上記範囲内に制御すれば、切削時の潤滑作用及び切粉の分断作用による構成刃先の抑制効果が効果的に発揮されるので、被削性はいっそう向上する。
 以上の通り、S及びAlのともに含有する本発明のフェライト系耐熱鋳鋼は、(a) 硫化物粒子の潤滑作用と、(b) 切削加工時に形成された高融点のAl酸化物による工具の保護作用と、(c) Nb添加により形成された共晶炭化物(NbC)による切削温度の上昇及びAl酸化物による硫化物粒子の均一微細分散による構成刃先の抑制作用により、大幅に向上した被削性を有する。
[2] 排気系部品
 上記フェライト系耐熱鋳鋼を用いて製造される本発明の排気系部品はいかなる鋳造排気系部品も含むが、その好ましい例は、エキゾーストマニホールド、タービンハウジング、タービンハウジングとエキゾーストマニホールドとを一体に鋳造したタービンハウジング一体エキゾーストマニホールド、触媒ケース、触媒ケースとエキゾーストマニホールドとを一体に鋳造した触媒ケース一体エキゾーストマニホールド、エキゾーストアウトレット等である。勿論、本発明の排気系部品はこれらに限定されず、例えば板金製又はパイプ製の部材と溶接される鋳造部品も含む。
 本発明の排気系部品は、1000℃以上の高温の排出ガスに曝され、自身の表面温度が900℃付近に達しても十分な耐酸化性、耐熱変形性、耐熱亀裂性等の耐熱特性を確保しているので、エキゾーストマニホールド、タービンハウジング、タービンハウジング一体エキゾーストマニホールド、触媒ケース、触媒ケース一体エキゾーストマニホールド、及びエキゾーストアウトレットとして好適であり、高い耐熱性及び耐久性を発揮する。また優れた被削性を有することから、機械加工における生産性や経済性を向上して製造できるとともに、希少金属の含有量を抑制し、熱処理が不要なので、高い製品歩留りで安価に製造できる。このため、低燃費化に寄与するとともに、高い耐熱性及び耐久性を有する安価な排気系部品を、大衆車のような低価格の自動車にも使用することが可能となり、CO2削減に貢献することが期待される。
 本発明を以下の実施例によりさらに詳細に説明するが、勿論本発明はそれらに限定されるものではない。以下の実施例及び比較例においてフェライト系耐熱鋳鋼の元素含有量を表す「%」は、特に断りがなければ「質量%」を意味する。
実施例1~88、及び比較例1~55
 実施例1~42の鋳鋼の化学組成及び式(1) の値を表1-1及び1-2に、比較例1~26の鋳鋼の化学組成及び式(1) の値を表2-1及び2-2に、実施例43~88の鋳鋼の化学組成及び式(1) の値を表3-1及び3-2に、比較例27~55の鋳鋼の化学組成及び式(1) の値を表4-1及び4-2にそれぞれ示す。実施例1~88は本発明の組成範囲内のフェライト系耐熱鋳鋼であり、比較例1~55は本発明の組成範囲外の鋳鋼である。
 比較例の鋳鋼のうち、
比較例1及び27の鋳鋼はC含有量が少なすぎ、
比較例2及び28の鋳鋼はC含有量が多すぎ、
比較例3及び29の鋳鋼はSi含有量が多すぎ、
比較例4及び30の鋳鋼はMn含有量が少なすぎ、
比較例5及び31の鋳鋼はMn含有量が多すぎ、
比較例6及び32の鋳鋼はS含有量が少なすぎ、
比較例7及び33の鋳鋼はS含有量が多すぎ、
比較例8及び34の鋳鋼はNi含有量が多すぎ、
比較例9及び35の鋳鋼はCr含有量が少なすぎ、
比較例10及び36の鋳鋼はCr含有量が多すぎ、
比較例11及び37の鋳鋼はN含有量が多すぎ、
比較例12~14及び38~40の鋳鋼はNb含有量が少なすぎ、
比較例15~17及び41~43の鋳鋼はNb含有量が多すぎ、
比較例18及び44の鋳鋼はNb/Cが小さすぎ、
比較例19及び45の鋳鋼はNb/Cが大きすぎ、
比較例20~22及び46~49の鋳鋼はAl含有量が少なすぎ、
比較例23~25及び50~52の鋳鋼はAl含有量が多すぎ、
比較例26及び53の鋳鋼はS及びAl含有量が少なすぎ、
比較例54の鋳鋼はW含有量が多すぎ、
比較例55の鋳鋼はMo含有量が多すぎる。
 実施例1~88及び比較例1~55の各原料を、100 kgの高周波溶解炉(塩基性ライニング)を用いて大気溶解した後、1600~1650℃で出湯し、直ちに約1550℃で1インチYブロック用鋳型及び被削性評価に用いる円筒状試験片用鋳型に注湯し、各鋳鋼の供試材を得た。鋳放しのままの(熱処理なし)の各供試材から試験片を切り出して、以下の評価を行った。
(1) 工具寿命
 各供試材から切り出した外径96 mm、内径65 mm及び高さ120 mmの円筒状試験片の端面に対して、TiAlNをPVDコーティングした超硬インサートを用いて以下の条件でフライス切削した。
 切削速度 :150 m/分
 刃当り送り:0.2 mm/刃
 切込み量 :1.0 mm
 送り速度 :48~152 mm/分
 回転速度 :229~763 rpm
 切削液  :なし(乾式)
 各円筒状試験片のフライス切削において、超硬インサートの逃げ面の摩耗量が0.2 mmとなったときに寿命に到達したと判定し、そこに至るまでの切削時間(分)を工具寿命とした。各円筒状試験片の被削性を工具寿命により表す。言うまでもなく、工具寿命が長いほど被削性が良い。表1-3に実施例1~42の工具寿命を示し、表2-3に比較例1~26の工具寿命を示し、表3-3に実施例43~88の工具寿命を示し、表4-3に比較例27~55の工具寿命を示す。
 工具寿命はW及び/又はMoの有無に影響を受けるので、W及び/又はMoの有無に影響されない被削性改善効果の指標として「工具寿命改善率」を用いた。工具寿命改善率は、各実施例の鋳鋼の工具寿命Aを、Al含有量が本発明の下限値(0.01%)未満の比較例の鋳鋼の工具寿命のうち最も長い工具寿命Bで除した値(A/B)である。実施例1~88及び比較例1~55の工具寿命改善率(倍)を表1-3、2-3、3-3及び4-3に示す。
 工具寿命改善率が1.2倍以上であると、フェライト系耐熱鋳鋼は良好な被削性を有すると言える。本発明のフェライト系耐熱鋳鋼の工具寿命改善率は1.3倍以上であるのがより好ましく、1.35倍以上であるのがさらに好ましく、1.4倍以上であるのがよりいっそう好ましく、1.5倍以上であるのが最も好ましい。
 表1-3及び表2-3から明らかなように、W及び/又はMoの合計含有量が少ない(0.3%以下)鋳鋼では、Al含有量が0.01%未満で最も工具寿命の長い比較例21の鋳鋼の工具寿命(112分)に対して、実施例1~42のいずれも工具寿命改善率が1.2倍以上であった。これに対して、比較例2、4、6、8~18及び20~26はいずれも工具寿命改善率が1.2倍未満であった。また表3-3及び表4-3から明らかなように、W及び/又はMoの合計含有量が多い(0.8%以上)鋳鋼では、Al含有量が0.01%未満で最も工具寿命の長い比較例47の鋳鋼の工具寿命(62分)に対して、実施例43~88のいずれも工具寿命改善率が1.2倍以上であった。これに対して、比較例28、30、32、34~44、及び46~55はいずれも工具寿命改善率は1.2倍未満であった。これらの結果から、本発明のフェライト系耐熱鋳鋼は良好な被削性を有することが分かる。
(2) 組織
 被削性評価後の各円筒状試験片の端部から切り出した組織観察用試験片におけるMnS、(Cr/Mn)S等の硫化物粒子の個数を、各試験片を鏡面研磨し、腐食なしで任意の5視野の光学顕微鏡写真を撮り、各視野について画像解析により140μm×100μmの観察領域(視野面積:14000μm2)における1μm以上の粒径(円相当径)の硫化物粒子の個数をカウントし、それを5視野について平均することにより求めた。実施例1~42の結果を表1-3に示し、比較例1~26の結果を表2-3に示し、実施例43~88の結果を表3-3に示し、比較例27~55の結果を表4-3に示す。なお、硫化物粒子は、電界放出型走査電子顕微鏡に装着されたエネルギー分散型X線分析装置(FE-SEM EDS:株式会社日立製作所製のS-4000、EDX KEVEX DELTAシステム)を用いた分析により特定した。
 表1-3及び表3-3から明らかなように、実施例1~88では視野面積14000μm2当たりの硫化物粒子は20個以上であった。これに対して、表2-3及び表4-3から明らかなように、Al含有量が少なすぎる比較例20~22、26、46~49及び53ではいずれも硫化物粒子は20個未満であった。
 図1は本発明の範囲内のAlを含有する実施例67のフェライト系耐熱鋳鋼のミクロ組織を示し、図2はAl含有量が少なすぎる比較例47の鋳鋼のミクロ組織を示す。図1及び図2において、白色部分はフェライト相1であり、灰色部分はラメラー状のNbの共晶炭化物(NbC)2であり、黒色粒子は硫化物粒子3である。
 実施例67では、図1に示すように微細な硫化物粒子が分散しており、大きな硫化物粒子が少ない。実施例67では5視野平均で視野面積14000μm2当たりの硫化物粒子は54個であり、工具寿命は102分と長く、工具寿命改善率は1.65倍と高かった。これから、実施例67のフェライト系耐熱鋳鋼は優れた被削性を有することが分かる。これに対して、比較例47では、図2に示すように硫化物粒子は凝集して粗大化し、微細な硫化物粒子が分散していない。比較例47では5視野平均で視野面積14000μm2当たりの硫化物粒子は12個であり、工具寿命は62分と短く、工具寿命改善率は1.0倍であった。
(3) 酸化減量
 エンジンから排気される1000℃近い高温の排ガス(硫黄酸化物、窒素酸化物等の酸化性ガスを含有する。)に曝される排気系部品の表面には、酸化膜が形成される。酸化が進行すると酸化膜を起点に亀裂が入り、排気系部品内部まで酸化が進展し、最終的には排気系部品の表面から裏面まで亀裂が貫通して排ガスの漏洩や排気系部品の割れを招く。エンジンから排出される排ガスの温度が1000℃近くに上昇すると、排気系部品の温度も900℃に達することがあるので、900℃における耐酸化性を評価するために、以下の方法により各鋳鋼の酸化減量を求めた。すなわち、1インチYブロックの各供試材から直径10 mm及び長さ20 mmの丸棒試験片を切り出し、これを大気中900℃に200時間保持した後、ショットブラスト処理を施して酸化スケールを除去し、酸化試験前後の単位面積当たりの質量変化[酸化減量(mg/cm2)]を求めた。実施例1~42における酸化減量を表1-4に示し、比較例1~26における酸化減量を表2-4に示し、実施例43~88における酸化減量を表3-4に示し、比較例27~55における酸化減量を表4-4に示す。
 フェライト系耐熱鋳鋼が900℃付近の温度に到達する排気系部品に使用するのに十分な耐熱性を有するためには、900℃の大気雰囲気に200時間保持したときの酸化減量が20 mg/cm2以下であるのが好ましく、10 mg/cm2以下であるのがより好ましい。酸化減量が20 mg/cm2を超えると、亀裂の起点となる酸化膜の生成が多くなり、耐酸化性が不十分となる。
 表1-4及び表3-4から明らかなように、実施例1~88の酸化減量は全て20 mg/cm2以下であった。この結果から、本発明のフェライト系耐熱鋳鋼は耐酸化性に優れ、900℃付近の温度に到達する排気系部品に使用した場合に十分な耐酸化性を発揮することが分かる。これは、本発明のフェライト系耐熱鋳鋼が900℃付近の温度に到達する排気系部品に使用して十分な耐酸化性を有することを意味する。これに対して、表2-4及び表4-4から明らかなように、Mn含有量が多すぎる比較例5及び31の鋳鋼、及びCr含有量が少なすぎる比較例9及び35の鋳鋼はいずれも、酸化減量が20 mg/cm2超であり、耐酸化性に劣っていた。
(4) 高温耐力
 排気系部品には、エンジンの運転(加熱)と停止(冷却)の繰り返しによっても熱変形を生じにくい耐熱変形性が要求される。十分な耐熱変形性を確保するためには、高い高温強度を有するのが好ましい。高温強度は、900℃における0.2%耐力(高温耐力)により評価できる。1インチYブロックの各供試材から標点間距離50 mm及び直径10 mmの平滑丸棒つばつき試験片を切り出し、これを電気-油圧サーボ式材料試験機(株式会社島津製作所製、商品名サーボパルサーEHF-ED10T-20L)に取り付け、各試験片について大気中900℃での0.2%耐力(MPa)を測定した。実施例1~42における高温耐力の測定結果を表1-4に示し、比較例1~26における高温耐力の測定結果を表2-4に示し、実施例43~88における高温耐力の測定結果を表3-4に示し、比較例27~55における高温耐力の測定結果を表4-4に示す。
 一般に金属材料は高温になるほど強度が低下し、熱変形しやすくなる。体心立方晶(BCC)構造のフェライト系耐熱鋳鋼は、面心立方晶(FCC)構造のオーステナイト系耐熱鋳鋼より高温強度及び耐熱変形性が低い。高温強度及び耐熱変形性に影響を及ぼす主な要因に高温耐力がある。900℃付近の温度に到達する排気系部品に使用するには、900℃における0.2%耐力は20 MPa以上が好ましく、25 MPa以上がより好ましい。
 表1-4及び表3-4から明らかなように、実施例1~88の900℃における0.2%耐力(高温耐力)は全て20 MPa以上であった。なかでも、表3-4に示すようにW及び/又はMoを0.8%以上含有する実施例43~88は、高温耐力が25 MPa以上で、高温強度及び耐熱変形性に優れていた。これらの結果から、本発明のフェライト系耐熱鋳鋼は高温耐力に優れ、900℃付近の温度に到達する排気系部品に使用した場合に十分な高温強度を発揮することが分かる。一方、C及び/又はNbの含有量が少なすぎる比較例1、12~14、27及び38~40、Nb/C比が小さすぎる比較例18、並びにAl含有量が多すぎる比較例23~25の高温耐力は20 MPa未満であった。なお、比較例44はNb/C比が小さいにもかかわらず、また比較例50~52はAl含有量が多いにもかかわらず高温耐力が高かった。この理由はW及び/又はMoを多く含有するためと考えられる。ただし、比較例44及び50~52は表4-4に示すように常温衝撃値が低かった。
(5) 常温衝撃値
 排気系部品には生産過程やエンジンへの組み付け過程等で機械的振動及び衝撃が加わるので、それに用いるフェライト系耐熱鋳鋼は、機械的振動及び衝撃でも亀裂及び割れが生じないように、十分な常温靭性を有する必要がある。靭性の評価に引張伸び(延性)を測定することもあるが、機械的振動及び衝撃に対する抵抗力(亀裂及び割れの発生しにくさ)を評価するには、引張試験より亀裂の進展が速いシャルピー衝撃試験による常温衝撃値を測定する方が実態に則している。
 1インチYブロックの各供試材から、JIS Z 2242に示す形状及び寸法のノッチなしのシャルピー衝撃試験片を切り出した。容量50 Jのシャルピー衝撃試験機を使用し、JIS Z 2242に従って3個の試験片に対して23℃で衝撃試験を行い、得られた衝撃値を平均した。実施例1~42における衝撃試験結果を表1-3に示し、比較例1~26における衝撃試験結果を表2-3に示し、実施例43~88における衝撃試験結果を表3-3に示し、比較例27~55における衝撃試験結果を表4-3に示す。
 排気系部品の生産過程等で亀裂や割れを発生しない靭性を有するためには、常温衝撃値は10×104 J/m2以上が望ましく、15×104 J/m2以上がより望ましい。表1-3及び表3-3から明らかなように、実施例1~88の常温衝撃値は全て10×104J/m2以上であった。本発明のフェライト系耐熱鋳鋼は、所望量のC及びNbを含有し、初晶δ相と共晶(δ+NbC)相とが結晶粒の微細化効果が得られる最適な割合で共存しているので、高い常温衝撃値(優れた靭性)を有すると考えられる。
 これに対して、比較例1及び27はCが少なすぎ、比較例2及び28はCが多すぎ、比較例3及び29はSiが多すぎ、比較例5及び31はMnが多すぎ、比較例7及び33はSが多すぎ、比較例8及び34はNiが多すぎ、比較例10及び36はCrが多すぎ、比較例11及び37はNが多すぎ、比較例12~14及び38~40はNbが少なすぎ、比較例15~17及び41~43はNbが多すぎ、比較例18及び44はNb/Cが小さすぎ、比較例19及び45はNb/Cが大きすぎ、比較例23~25及び50~52はAlが多すぎ、比較例54及び55はW又はMoが多すぎ、いずれも常温衝撃値が低く、靭性に劣っていた。
(6) 熱疲労寿命
 排気系部品には、エンジンの運転(加熱)と停止(冷却)の繰り返しによっても熱亀裂を生じにくい耐熱亀裂性が要求される。耐熱亀裂性は熱疲労寿命により評価できる。熱疲労寿命は、1インチYブロックの各供試材から標点間距離20 mm及び直径10 mmの平滑丸棒試験片を切り出し、これを前記高温耐力の試験と同じ電気-油圧サーボ式材料試験機に拘束率0.5で取り付け、各試験片に対して大気中で、冷却下限温度150℃、加熱上限温度900℃、及び温度振幅750℃で、1サイクルを昇温時間2分、保持時間1分、及び冷却時間4分の合計7分とする加熱冷却サイクルを繰り返し、加熱冷却にともなう伸縮を機械的に拘束して熱疲労破壊を起こさせる熱疲労試験により評価した。熱疲労試験での加熱冷却の繰り返しにより生じる亀裂や変形により熱疲労破壊に至るまでのサイクル数が多いほど熱疲労寿命が長く、耐熱性(耐熱亀裂性)及び耐久性に優れていると言える。
 機械的な拘束の程度は、[(自由熱膨張伸び-機械的拘束下での伸び)/(自由熱膨張伸び)]で定義される拘束率で表す。例えば拘束率1.0とは、試験片が150℃から900℃まで加熱されたときに、全く伸びを許さない機械的拘束条件をいう。また拘束率0.5とは、自由膨張伸びが例えば2 mm伸びるところを1 mmの伸びしか許さない機械的拘束条件をいう。従って拘束率0.5では、昇温中には圧縮荷重がかかり、降温中には引張荷重がかかる。実際の自動車エンジンの排気系部品の拘束率はある程度伸びを許容する0.1~0.5程度であるので、熱疲労寿命を拘束率0.5で評価した。
 熱疲労寿命は、加熱冷却の繰り返しにともなう荷重の変化から求まる荷重-温度線図において、2サイクル目の最大引張荷重を基準(100%)とし、各サイクルで測定される最大引張荷重が75%に低下するまでの加熱冷却サイクル数とした。実施例1~42における熱疲労寿命を表1-4に示し、比較例1~26における熱疲労寿命を表2-4に示し、実施例43~88における熱疲労寿命を表3-4に示し、比較例27~55における熱疲労寿命を表4-4に示す。
 900℃付近で十分な耐熱性を有するために、加熱上限温度900℃、温度振幅750℃以上、及び拘束率0.5の条件で加熱冷却する熱疲労試験により測定した熱疲労寿命は1000サイクル以上であるのが好ましい。熱疲労寿命が1000サイクル以上の耐熱鋳鋼からなる排気系部品は耐熱亀裂性に優れ、エンジンの加熱冷却の繰り返しにより生ずる亀裂及び変形によって熱疲労破壊に至るまでの寿命が長い。本発明のフェライト系耐熱鋳鋼は、上記熱疲労試験により測定した熱疲労寿命が1400サイクル以上であるのがより好ましく、1500サイクル以上であるのが最も好ましい。
 表1-4及び表3-4から明らかなように、実施例1~88の熱疲労寿命は全て1400サイクル以上であった。この結果から、本発明のフェライト系耐熱鋳鋼は熱疲労寿命に優れ、900℃付近の温度までの加熱と冷却とを繰り返す排気系部品に使用した場合に十分な耐熱亀裂性を発揮することが分かる。
 上述のとおり、本発明のフェライト系耐熱鋳鋼は、900℃付近の温度に到達する排気系部品に要求される耐熱特性(耐酸化性、高温強度、耐熱変形性及び耐熱亀裂性)の他に、優れた被削性を有する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
注:(1) 拘束率0.5。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
注:(1) 拘束率0.5。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
注:(1) 拘束率0.5。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
注:(1) 拘束率0.5。
1・・・フェライト相
2・・・共晶炭化物(NbC)
3・・・硫化物粒子

Claims (5)

  1. 質量基準で、
    C:0.32~0.48%、
    Si:0.85%以下、
    Mn:0.1~2%、
    Ni:1.5%以下、
    Cr:16~23%、
    Nb:3.2~5%、
    Nb/C:9~11.5、
    N:0.15%以下、
    S:0.05~0.2%、及び
    Al:0.01~0.08%を含有し、
    残部がFe及び不可避的不純物からなることを特徴とする被削性に優れたフェライト系耐熱鋳鋼。
  2. 請求項1に記載のフェライト系耐熱鋳鋼において、さらに質量基準で、W及び/又はMoを合計で0.8~3.2%含有することを特徴とする被削性に優れたフェライト系耐熱鋳鋼。
  3. 請求項1又は2に記載のフェライト系耐熱鋳鋼において、さらにNb及びAlが下記式: 
      0.35≦0.1Nb+Al≦0.53・・・(1)
    [ただし、各元素記号はその含有量(質量%)を示す。]
    を満たすことを特徴とするフェライト系耐熱鋳鋼。
  4. 請求項1~3のいずれかに記載のフェライト系耐熱鋳鋼において、硫化物粒子が視野面積14000μm2当たり20個以上の組織を有することを特徴とするフェライト系耐熱鋳鋼。
  5. 請求項1~4のいずれかに記載のフェライト系耐熱鋳鋼からなることを特徴とする排気系部品。
PCT/JP2013/077048 2012-10-10 2013-10-04 被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品 WO2014057875A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380052871.1A CN104718304B (zh) 2012-10-10 2013-10-04 切削性优异的铁素体系耐热铸钢和由其构成的排气系统部件
EP13844899.8A EP2907885B1 (en) 2012-10-10 2013-10-04 Heat-resistant, cast ferritic steel having excellent machinability and exhaust member made thereof
US14/434,606 US9758851B2 (en) 2012-10-10 2013-10-04 Heat-resistant, cast ferritic steel having excellent machinability and exhaust member made thereof
JP2014540828A JP6160625B2 (ja) 2012-10-10 2013-10-04 被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
KR1020157011966A KR102087129B1 (ko) 2012-10-10 2013-10-04 피삭성이 우수한 페라이트계 내열 주강 및 그것으로 이루어지는 배기계 부품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012224740 2012-10-10
JP2012-224740 2012-10-10

Publications (1)

Publication Number Publication Date
WO2014057875A1 true WO2014057875A1 (ja) 2014-04-17

Family

ID=50477342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077048 WO2014057875A1 (ja) 2012-10-10 2013-10-04 被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品

Country Status (6)

Country Link
US (1) US9758851B2 (ja)
EP (1) EP2907885B1 (ja)
JP (1) JP6160625B2 (ja)
KR (1) KR102087129B1 (ja)
CN (1) CN104718304B (ja)
WO (1) WO2014057875A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957352A (zh) * 2021-09-27 2022-01-21 鹰普(中国)有限公司 一种高碳高铬耐磨耐蚀材料性能提升方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180104513A (ko) * 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
KR102364389B1 (ko) * 2017-09-27 2022-02-17 엘지전자 주식회사 공기 조화기
CN113278886B (zh) * 2021-05-14 2022-04-15 威斯卡特工业(中国)有限公司 一种含锰硫钨的铁素体耐热钢及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162818A (ja) * 1986-12-26 1988-07-06 Kawasaki Steel Corp プレス成形性のきわめて優れたフエライト系ステンレス鋼板の製造方法
JPH01197046A (ja) * 1988-02-03 1989-08-08 Nippon Steel Corp 薄肉鋳造法を用いるCr系ステンレス鋼薄板の製造方法
JPH07197209A (ja) 1993-11-25 1995-08-01 Hitachi Metals Ltd 鋳造性の優れたフェライト系耐熱鋳鋼およびそれからなる排気系部品
JPH08281380A (ja) * 1995-04-07 1996-10-29 Nippon Steel Corp 熱間圧延での表面疵の発生を防止するフェライト系ステンレス鋼の製造方法
JP2003226990A (ja) * 2002-02-05 2003-08-15 Nippon Steel Corp フェライト系ステンレス鋼板およびその製造方法
JP2011157615A (ja) * 2010-02-03 2011-08-18 Hitachi Metal Precision:Kk フェライト系ステンレス鋳鋼およびこれを用いてなる鋳造部材
WO2012043860A1 (ja) 2010-10-01 2012-04-05 日立金属株式会社 優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2890073B2 (ja) * 1991-04-30 1999-05-10 新日本製鐵株式会社 高Nb含有高窒素フェライト系耐熱鋼およびその製造方法
JPH05140700A (ja) * 1991-11-15 1993-06-08 Mazda Motor Corp フエライト系耐熱鋳鋼部材及びその製造法
JP3121478B2 (ja) 1993-07-20 2000-12-25 株式会社豊田中央研究所 フェライト系耐熱鋳鋼およびその製造方法
US5582657A (en) 1993-11-25 1996-12-10 Hitachi Metals, Ltd. Heat-resistant, ferritic cast steel having high castability and exhaust equipment member made thereof
CN1039036C (zh) 1993-12-28 1998-07-08 新日本制铁株式会社 耐热影响区软化性能优良的马氏体耐热钢及其制造方法
JP3282481B2 (ja) * 1996-01-31 2002-05-13 三菱マテリアル株式会社 耐熱鋼
JPH1161343A (ja) * 1997-08-11 1999-03-05 Hitachi Metals Ltd 高温強度とくにクリープ破断強度の優れたフェライト系耐熱鋳鋼およびそれからなる排気系部品
US7914732B2 (en) * 2006-02-23 2011-03-29 Daido Tokushuko Kabushiki Kaisha Ferritic stainless steel cast iron, cast part using the ferritic stainless steel cast iron, and process for producing the cast part
KR20090025667A (ko) * 2007-09-06 2009-03-11 현대자동차주식회사 고온 강도가 우수한 자동차용 페라이트계 내열 주강재부품의 제조방법
JP4521470B1 (ja) * 2009-04-27 2010-08-11 アイシン高丘株式会社 フェライト系耐熱鋳鋼および排気系部品
KR20110057835A (ko) * 2009-11-25 2011-06-01 현대자동차주식회사 배기매니폴드용 페라이트 내열 주강재
CN102086498A (zh) * 2009-12-04 2011-06-08 沈阳鑫火铸造有限公司 一种高Cr高Ni抗氧化耐热钢
WO2011125901A1 (ja) 2010-03-31 2011-10-13 日立金属株式会社 常温靭性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
CN102517508A (zh) * 2011-12-30 2012-06-27 钢铁研究总院 超超临界火电机组汽轮机叶片用铁素体耐热钢及制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162818A (ja) * 1986-12-26 1988-07-06 Kawasaki Steel Corp プレス成形性のきわめて優れたフエライト系ステンレス鋼板の製造方法
JPH01197046A (ja) * 1988-02-03 1989-08-08 Nippon Steel Corp 薄肉鋳造法を用いるCr系ステンレス鋼薄板の製造方法
JPH07197209A (ja) 1993-11-25 1995-08-01 Hitachi Metals Ltd 鋳造性の優れたフェライト系耐熱鋳鋼およびそれからなる排気系部品
JPH08281380A (ja) * 1995-04-07 1996-10-29 Nippon Steel Corp 熱間圧延での表面疵の発生を防止するフェライト系ステンレス鋼の製造方法
JP2003226990A (ja) * 2002-02-05 2003-08-15 Nippon Steel Corp フェライト系ステンレス鋼板およびその製造方法
JP2011157615A (ja) * 2010-02-03 2011-08-18 Hitachi Metal Precision:Kk フェライト系ステンレス鋳鋼およびこれを用いてなる鋳造部材
WO2012043860A1 (ja) 2010-10-01 2012-04-05 日立金属株式会社 優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957352A (zh) * 2021-09-27 2022-01-21 鹰普(中国)有限公司 一种高碳高铬耐磨耐蚀材料性能提升方法

Also Published As

Publication number Publication date
CN104718304A (zh) 2015-06-17
KR20150065870A (ko) 2015-06-15
CN104718304B (zh) 2017-04-12
EP2907885A4 (en) 2016-07-13
EP2907885B1 (en) 2018-06-20
JP6160625B2 (ja) 2017-07-12
US9758851B2 (en) 2017-09-12
KR102087129B1 (ko) 2020-03-10
US20150275344A1 (en) 2015-10-01
EP2907885A1 (en) 2015-08-19
JPWO2014057875A1 (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
EP1741799B1 (en) HIGH-Cr HIGH-Ni AUSTENITIC HEAT-RESISTANT CAST STEEL AND EXHAUST SYSTEM COMPONENT PRODUCED FROM SAME
KR101799844B1 (ko) 우수한 탕류성, 내가스 결함성, 인성 및 피삭성을 가지는 페라이트계 내열 주강, 및 이들로 이루어지는 배기계 부품
WO2009104792A1 (ja) オーステナイト系耐熱鋳鋼及びそれからなる排気系部品
KR102453685B1 (ko) 열피로 특성이 우수한 오스테나이트계 내열 주강 및 그것으로 이루어지는 배기계 부품
JP6160625B2 (ja) 被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
JP5626338B2 (ja) 常温靭性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
JP6098637B2 (ja) 被削性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JPH07228948A (ja) 鋳造性および被削性の優れたオーステナイト系耐熱鋳鋼およびそれからなる排気系部品
JP2022134258A (ja) オーステナイト系鋳鋼及び鋳物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540828

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14434606

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013844899

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157011966

Country of ref document: KR

Kind code of ref document: A