WO2009104792A1 - オーステナイト系耐熱鋳鋼及びそれからなる排気系部品 - Google Patents

オーステナイト系耐熱鋳鋼及びそれからなる排気系部品 Download PDF

Info

Publication number
WO2009104792A1
WO2009104792A1 PCT/JP2009/053195 JP2009053195W WO2009104792A1 WO 2009104792 A1 WO2009104792 A1 WO 2009104792A1 JP 2009053195 W JP2009053195 W JP 2009053195W WO 2009104792 A1 WO2009104792 A1 WO 2009104792A1
Authority
WO
WIPO (PCT)
Prior art keywords
cast steel
resistant cast
heat
austenitic heat
exhaust system
Prior art date
Application number
PCT/JP2009/053195
Other languages
English (en)
French (fr)
Inventor
將秀 川畑
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US12/918,782 priority Critical patent/US8388889B2/en
Priority to JP2009554421A priority patent/JP5353716B2/ja
Priority to EP09712485.3A priority patent/EP2258883B1/en
Priority to CN2009801057428A priority patent/CN101946018B/zh
Publication of WO2009104792A1 publication Critical patent/WO2009104792A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/02Corrosion resistive metals
    • F01N2530/04Steel alloys, e.g. stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00

Definitions

  • the present invention relates to a heat-resistant cast steel suitable for exhaust system parts of gasoline engines and diesel engines for automobiles, and in particular, austenitic heat-resistant cast steel excellent in heat resistance and weldability such as oxidation resistance and thermal fatigue life, and an exhaust system comprising the same. Regarding parts.
  • technologies for improving the performance and fuel efficiency of the engine itself include direct fuel injection, high-pressure fuel injection, increased compression ratio, and boost pressure of turbochargers (superchargers).
  • the engine is lighter and more compact (downsizing) due to the increase, engine displacement reduction, and supercharging.
  • These technologies have been introduced not only in luxury cars but also in popular cars.
  • the engine tends to burn at a higher temperature and pressure, and accordingly, the temperature of the exhaust gas discharged from the engine combustion chamber to the exhaust system parts also tends to increase.
  • the temperature of exhaust gas may be 1000 ° C. or higher, which is the same level as that of a luxury sports car.
  • exhaust system parts such as exhaust manifolds and turbine housings, which are components of automobile gasoline engines and diesel engines, have been manufactured from castings with a high degree of freedom due to their complicated shapes. Because it is harsh at high temperatures, it has excellent heat resistance and oxidation resistance, such as high-Si spheroidal graphite cast iron, Ni-resist cast iron (Ni-Cr austenitic cast iron) and other heat-resistant cast iron, ferritic heat-resistant cast steel, austenitic heat-resistant cast steel, etc. It is used.
  • conventional heat-resistant cast irons such as high-Si spheroidal graphite cast iron and Ni-resist cast iron have a relatively high strength up to about 900 ° C as the exhaust gas temperature and about 850 ° C as the temperature of exhaust system parts. In an exposed environment, the strength decreases, and the heat resistance such as oxidation resistance and thermal fatigue life decreases.
  • Ni-resist cast iron has a problem that it is expensive because it contains a large amount of Ni which is a rare metal (rare metal) at around 35%.
  • Ferritic heat-resistant cast steel also has a problem that it is generally inferior in high-temperature strength at 900 ° C. or higher.
  • Austenitic heat-resistant cast steel is a material that can withstand higher temperatures than heat-resistant cast iron and ferritic heat-resistant cast steel.
  • Japanese Patent Application Laid-Open No. 7-228948 discloses an austenitic heat-resistant cast steel suitable for automobile engine exhaust system parts and the like in terms of mass ratio, C: 0.2 to 1.0%, C-Nb / 8: 0.05 to 0.6%, Si: 2 %, Mn: 2% or less, Cr: 15-30%, Ni: 8-20%, W: 1-6%, Nb: 0.5-6%, N: 0.01-0.3%, S: 0.01-0.5% An austenitic heat-resistant cast steel comprising the balance Fe and inevitable impurities is disclosed.
  • JP-A-7-228948 discloses a heat-resistant cast steel obtained by adding an appropriate amount of Nb, W, N and S to a 20Cr-10Ni austenitic heat-resistant cast steel, which has an improved high-temperature strength of 900 ° C. or more, and castability and It describes that it is suitable for exhaust system parts because of excellent machinability.
  • the 20Cr-10Ni austenitic heat-resistant cast steel described in JP-A-7-228948 has been proposed on the assumption that the temperature of exhaust system parts is about 900 to 950 ° C. At temperatures around 1000 ° C, The oxidation resistance and thermal fatigue life are not sufficient, and the heat resistance and durability are inferior. In particular, the thermal fatigue life is not satisfactory and there is room for improvement. Therefore, it cannot be used for exhaust system parts whose surface temperature reaches around 1000 ° C. (for example, a turbocharger turbine housing in which a high boost pressure is set).
  • JP-A-2000-291430 describes an exhaust system part made of austenitic heat-resistant cast steel with improved durability under high temperature use conditions, by mass ratio, C: 0.2 to 1.0%, Si: 2% or less, Mn : 2% or less, P: 0.04% or less, S: 0.05 to 0.25%, Cr: 20 to 30%, Ni: 16 to 30%, the balance containing Fe and inevitable impurities, and W: 1 to 4 And / or Nb: Exhaust system parts made of high Cr high Ni austenitic heat-resistant cast steel containing more than 1% and less than 4% and a Cr / Ni mass ratio of 1.0 to 1.5 are disclosed.
  • 2000-291430 is a 25Cr-20Ni austenitic heat-resistant cast steel in which the contents of Cr and Ni, which are the main alloy elements, are increased compared to the 20Cr-10Ni austenitic heat-resistant cast steel. Based on the above, the composition range and structure of the material are controlled to significantly improve not only the high-temperature strength but also the oxidation resistance. It is suitable for exhaust system parts.
  • the 25Cr-20Ni austenitic heat-resistant cast steel described in JP-A No. 2000-291430 contains a large amount of expensive rare metals such as Cr and Ni in order to ensure high temperature characteristics and heat resistance. Since these rare metals are produced only in small amounts in uneven countries and regions, they are not only expensive but also susceptible to the global economic situation, and are concerned about stable supply. Have such problems. 25Cr-20Ni austenitic heat-resistant cast steel described in JP-A-2000-291430 contains about 25% by mass and 20% by mass of Cr and Ni, respectively. There are problems in terms of economy and supply stability.
  • Exhaust system parts have various technical problems to be improved in addition to the heat resistance and durability described above in order to achieve exhaust gas purification and fuel efficiency improvement of automobiles.
  • the catalyst is heated and activated early when the engine is started, It is necessary to improve the purification performance by uniformly supplying the catalyst and the entire filter.
  • the temperature drop of the exhaust gas passing through the exhaust system parts that is, to prevent the exhaust gas from being deprived of heat as much as possible. Therefore, in order to reduce the heat capacity (heat mass) of the exhaust passage, the exhaust system parts are required to be thin.
  • automobiles are also required to reduce the weight of vehicles for the purpose of reducing fuel consumption, reduce the air resistance of vehicle bodies, and improve safety.
  • hood height directly above the engine room as a device for improving the aerodynamic characteristics
  • shock absorbing (crash bull) zone in the engine room to ensure safety during a collision, etc.
  • Measures are being taken.
  • the degree of freedom of layout design in the engine room is decreasing, and the exhaust system parts are also required to be reduced in weight and volume and save space.
  • the exhaust system parts it is necessary for the exhaust system parts to cope with weight reduction, compactness, smooth exhaust passage, and the like.
  • the tubular portion of the branch pipe which is the exhaust passage in the exhaust manifold, is made of a thin sheet metal or pipe member, and a counterpart member such as a cylinder head or a turbine housing.
  • a long exhaust manifold with a thin and light exhaust manifold with a small heat capacity in the exhaust passage. Is divided into a plurality of casting members, and the casting members are welded to each other with a bellows-like pipe member to form an exhaust manifold that prevents cracks due to thermal expansion.
  • C Exhaust manifold and turbine housing When both are cast members, they are usually fastened with bolts. As unnecessary the thickness tool insertion space for the meat of the flange and the fastening work for fastening, proposed such a lightweight, compact exhaust system components to reduce the heat capacity have been made.
  • sheet metal members, pipe members, and castings are required to cope with the high heat resistance and durability required for exhaust system parts, as well as thinning, lightening, compactness, and smoothing of the exhaust passage. It is effective to join members or cast members together by welding.
  • Exhaust system parts that tend to be complex shapes include a cast member having a high degree of freedom in shape and can be molded by welding, so that the design freedom and ease of manufacture are improved, and fastening bolts and gaskets Etc. can be reduced.
  • the object of the present invention is excellent in heat resistance and weldability such as oxidation resistance and thermal fatigue life at around 1000 ° C., and also has a low content of rare metals, economical efficiency, effective utilization of resources, stable supply capability, etc. Is to provide an austenitic heat-resistant cast steel having a good quality and an exhaust system component suitable as a component part of an automobile engine made of this austenitic heat-resistant cast steel.
  • the Si content is increased, the heat resistance equivalent to that of the 25Cr-20Ni system can be obtained even in the 20Cr-10Ni system with low Cr and Ni, but a large amount of Si content significantly deteriorates the weldability. I understood. Therefore, as a result of further earnest research to find a composition range that can impart heat resistance and durability without deteriorating weldability even if Si is increased, (a) high temperature strength, oxidation resistance, etc.
  • the content of main alloy elements such as C, Mn, Cr, Ni, W, Mo, Nb, N and S is limited to an appropriate range while increasing Si.
  • the austenitic heat-resistant cast steel of the present invention is % By mass C: 0.3-0.6% Si: 1.1-2% Mn: 1.5% or less, Cr: 17.5-22.5%, Ni: 8-13% At least one of W and Mo: (W + 2Mo) 1.5-4%, Nb: 1-4% N: 0.01-0.3% S: 0.01-0.5% It consists of the remainder Fe and inevitable impurities, and satisfies the following formulas (1), (2), (3) and (4).
  • the austenitic heat-resistant cast steel of the present invention preferably has an oxidation weight loss of 20 mg / cm 2 or less when held in the atmosphere at 1000 ° C. for 200 hours.
  • the austenitic heat-resistant cast steel of the present invention preferably has a thermal fatigue life of 800 cycles or more as measured by a thermal fatigue test in which the heating upper limit temperature is 1000 ° C., the temperature amplitude is 850 ° C. or more, and the constraint is 0.25.
  • the exhaust system component of the present invention is characterized by comprising the austenitic heat-resistant cast steel described above.
  • the exhaust system component is preferably an exhaust manifold, a turbine housing, a turbine housing integrated exhaust manifold, a catalyst case, a catalyst case integrated exhaust manifold, or an exhaust outlet.
  • the austenitic heat-resistant cast steel of the present invention has excellent weldability in addition to heat resistance such as oxidation resistance and thermal fatigue life in the vicinity of 1000 ° C., and relatively expensive rare metals such as Cr and Ni. Since heat resistance is given instead of the above, it contributes not only to the economic effect of reducing raw material costs but also to the effective use and stable supply of rare metal resources.
  • the material made of the austenitic heat-resistant cast steel of the present invention is suitable as a material for exhaust system parts for automobiles.
  • the exhaust system parts made of the austenitic heat-resistant cast steel of the present invention have high heat resistance and durability required for exhaust gas purification, fuel efficiency improvement and safety improvement of automobiles, and also have excellent weldability. It is possible to cope with thinning, weight reduction, compactness, smooth exhaust passage, and the like. Moreover, since rare metals can be manufactured at low cost, it can be applied to popular vehicles and is suitable as a component part of an automobile engine.
  • FIG. 3 is a schematic diagram showing a thermal analysis result by differential scanning calorimetry (DSC) of austenitic heat-resistant cast steel. It is a graph which shows the relationship between the composition of Si and (W + 2Mo), and the thermal fatigue life of austenitic heat-resistant cast steel.
  • DSC differential scanning calorimetry
  • Austenitic heat-resistant cast steel The structure of the austenitic heat-resistant cast steel of the present invention will be described in detail below. In addition, content of each element which comprises an alloy is shown by the mass% unless there is particular notice.
  • C forms (a) the fluidity of the molten metal, that is, the castability is improved, (b) the effect of solid-solution strengthening by dissolving in a part of the base, and (c) the formation of Cr crystallized carbides and precipitated carbides.
  • the C content needs to be 0.3% or more.
  • Cr crystallized carbides and precipitated carbides become too much and become brittle, ductility is lowered and workability is deteriorated. Further, if there is too much Cr crystallized carbide, weldability deteriorates. Therefore, the C content is specified to be 0.3 to 0.6%.
  • a preferable content of C is 0.4 to 0.55%.
  • Si silicon
  • the oxidation resistance is closely related to the composition of the oxide layer near the surface of the casting.
  • the Si content is low, the fastest growing Fe-rich Oxidation resistance is inferior because an oxide layer is formed, but when the Si content is high, a Cr oxide layer is formed on the outermost layer, and an Si oxide phase is formed in a lump on the inner side.
  • the growth of the Cr and Si oxide layers is slow and shows good oxidation resistance.
  • a Si content of at least 1.1% is required.
  • the Si content is set to 2% or less. For this reason, the Si content is specified to be 1.1 to 2%.
  • the Si content is preferably 1.25 to 1.8%, more preferably 1.3 to 1.6%.
  • Mn manganese: 1.5% or less Mn is effective as a deoxidizer for molten metal, just like Si, but if it is contained excessively, the oxidation resistance deteriorates, so the Mn content is 1.5% or less. To do.
  • Cr chromium
  • 17.5-22.5% Cr is an extremely important element that increases the high temperature strength and oxidation resistance by austenitizing the structure of heat-resistant cast steel together with Ni described later, and also increases the high temperature strength by forming crystallized carbides and precipitated carbides.
  • it is necessary to contain 17.5% or more of Cr.
  • Cr exceeds 22.5%, ferrite crystallizes in the structure. Slightly crystallized ferrite of about several percent suppresses the occurrence of weld cracks and improves weldability, but when ferrite increases, the high-temperature strength decreases.
  • the Cr content is specified to be 17.5 to 22.5%.
  • Ni nickel
  • Ni nickel
  • the austenitic heat-resistant cast steel of the present invention has a Si content of 1.1% or more and imparts heat resistance in the vicinity of 1000 ° C. equivalent to 25Cr-20Ni austenitic heat-resistant cast steel, the Ni content is 13%. The following can be suppressed. Therefore, the Ni content is specified as 8-13%. The preferred Ni content is 9-12%.
  • Nb (niobium) 1-4% Nb combines with C to form fine carbides and improves the high temperature strength and thermal fatigue life of heat-resistant cast steel. It also improves oxidation resistance and machinability by suppressing the formation of Cr crystallized carbides. Furthermore, since Nb produces eutectic carbide, it improves the castability, which is important when manufacturing thin-walled and complex-shaped castings such as exhaust system parts. For this purpose, the Nb content must be 1% or more. However, when Nb is contained in a large amount, eutectic carbides generated at the grain boundaries increase and become brittle, and the strength and ductility are significantly reduced. Therefore, the Nb content is 1 to 4%.
  • N nitrogen
  • N nitrogen
  • 0.01-0.3% N is a strong austenite-forming element, stabilizes the austenite base of heat-resistant cast steel and improves high-temperature strength.
  • the N content is set to 0.01 to 0.3%.
  • the main inevitable impurity contained in the austenitic heat-resistant cast steel of the present invention is P mixed from raw materials.
  • P is preferably as small as possible because it segregates at the grain boundaries and significantly reduces the toughness, and is preferably 0.04% or less.
  • the austenitic heat-resisting cast steel of the present invention improves the castability by generating eutectic carbide of Nb, and obtains high strength by precipitating an appropriate amount of carbide.
  • Eutectic carbide (NbC) is formed by mass ratio of C and Nb 8 times that of C.
  • eutectic carbide can be obtained by forming eutectic carbide. It is necessary to secure an amount of C that exceeds the amount consumed.
  • (C-Nb / 8) represented by the formula (1) is required to be 0.05 or more. However, if (C-Nb / 8) exceeds 0.6, the carbides become excessive and hard and brittle, and ductility and machinability deteriorate. Therefore, (C-Nb / 8) in equation (1) is set to 0.05 to 0.6. In particular, thin cast products require high castability, and the proportion of eutectic carbide is important. A preferable range of (C-Nb / 8) in the formula (1) is 0.1 to 0.3.
  • Equation (3) It is necessary to satisfy both the formula (2) and the formula (3) in order to ensure 17.5 ⁇ 17.5Si ⁇ (W + 2Mo) represented by the formula (2) is a necessary condition for suppressing the increase of the precipitated carbide in the austenite base, and 5.6Si + (W + 2Mo) ⁇ 13.7 represented by the formula (3) This is a necessary condition for suppressing the formation of ferrite with low high-temperature strength. In order to improve the thermal fatigue life and provide heat resistance and durability, it is necessary to satisfy the formulas (2) and (3).
  • the value on the left side of Equation (3) is preferably 12.7 or less.
  • Equation (4) is a condition necessary to ensure weldability even if the amount of Si is increased.By satisfying Equation (4), the temperature range of a specific solidification temperature range is reduced, and weld cracking occurs. Can be effectively suppressed.
  • the susceptibility to weld cracking has a correlation with the solidification temperature range ⁇ T from the start to the end of solidification of the material, and it is said that weld cracking is less likely to occur as ⁇ T is smaller.
  • the weld crack susceptibility is higher than ⁇ T until solidification of about 70% is completed from the start of solidification. It was found that there is a correlation with the solidification temperature range of ⁇ T 0.7, and welding cracks can be suppressed by reducing ⁇ T 0.7 .
  • FIG. 1 schematically shows the result of thermal analysis of the solidification process of austenitic heat-resistant cast steel by differential scanning calorimetry (DSC).
  • the heat-resistant cast steel of the present invention starts solidification at point A, first austenite crystallizes (point B), then eutectic of Nb carbide (NbC) and austenite crystallizes (point C), then Nb carbide At the end of crystallization of austenite, MnS crystallizes (D point). Finally, a eutectic of Cr carbide and austenite crystallizes (E point), and solidification ends at F point.
  • ⁇ T shown in FIG.
  • ⁇ T 0.7 is 70% of solidification from the start of solidification (point A). Temperature range up to. Here, the temperature until the completion of 70% solidification is the area indicated by the diagonal line in FIG. Is the total (100%). On the other hand, the heat flow area is accumulated for each unit temperature starting from the start of solidification (point A), and the accumulated area reaches 70%.
  • the present inventor investigated the relationship between the thermal analysis results of heat-resistant cast steels with various composition ranges and the occurrence of weld cracks, and found that heat-resistant cast steel with a small heat flow value at the peak (valley depth) at point E shown in FIG. Compared to several heat-resistant cast steels that have less cracking and that have different compositions but have the same ⁇ T and different peak heat flow values at point E, the heat-resistant cast steels with smaller heat flow values are more solidified. It was found that the range ⁇ T 0.7 was reduced and welding cracks were less likely to occur.
  • welding cracks are generally caused by thermal stress acting on the remaining liquid phase in the late stage of solidification, but if the solidification temperature range is reduced, solidification proceeds rapidly after the start of solidification. It seems that weld cracking is reduced because solidification is completed before cracking occurs even if the amount is reduced and subjected to thermal stress. In addition, the rapid progress of solidification promotes the generation of a large number of solidified nuclei, while the growth of the generated solidified nuclei is suppressed, the solidified structure is refined and the strength is improved, and crystals of low melting point impurity elements such as P are crystallized.
  • weld cracking such as the remaining amount of liquid phase described above are due to the composition of the cast steel, and the composition is the solidification temperature until the end of solidification when the last liquid phase disappears and solidification is completed. It is not reflected in the range ⁇ T, but is significantly reflected in the solidification temperature range ⁇ T 0.7 from the start of solidification to the end of 70% solidification. Therefore, if ⁇ T is almost the same, the smaller ⁇ T 0.7 is less likely to cause weld cracking. Guessed.
  • Point E is the change in heat flow that occurs as the eutectic of Cr carbide and austenite crystallizes in the late stage of solidification. Therefore, if the crystallization amount of Cr carbide and austenite eutectic can be reduced, it is considered that ⁇ T 0.7 can be reduced by reducing the heat flow value at the peak of the E point.
  • the present inventor further examined the content of the basic component in order to improve the weldability, and found the component parameter for controlling the crystallization amount of Cr carbide and austenite eutectic. It was. In other words, if the content of Si, Cr, Ni, W and Mo is reduced and (C-Nb / 8) in the above formula (1) is controlled to be small, the coexistence of Cr carbide and austenite generated in the latter stage of solidification. The amount of crystallized crystals decreases, the heat flow value at the peak of point E shown in FIG. 1 decreases, ⁇ T 0.7 decreases, and the susceptibility to weld cracking decreases.
  • Equation (4) is a component parameter for controlling eutectic crystallization of Cr carbide and austenite, found from the above study, and is an index for improving the weldability by reducing the susceptibility to occurrence of weld cracks. It is. Specifically, if the value of the left side given by the formula (4) is 0.96 or less from the contents of C, Si, Cr, Ni, W, Mo and Nb, the sensitivity of the occurrence of weld cracks is reduced, and Si Even if the amount is increased, an austenitic heat-resistant cast steel having good weldability can be obtained.
  • the content of the alloying element should be specified so that the value on the left side of the formula (4) is as small as possible so that the eutectic of Cr carbide and austenite is not crystallized.
  • the eutectic crystallization of Cr carbide and austenite is extremely reduced, the high temperature strength and oxidation resistance are insufficient, and the heat resistance and durability, which are the original functions of the austenitic heat-resistant cast steel of the present invention, cannot be secured. Therefore, the lower limit of the value on the left side given by Equation (4) is limited according to the above-described contents of Si, Cr, Ni, W, and Mo and the value of (C-Nb / 8).
  • the austenitic heat-resistant cast steel of the present invention preferably has an oxidation loss of 20 mg / cm 2 or less when held in an atmosphere at 1000 ° C. for 200 hours.
  • An exhaust system part made of austenitic heat-resistant cast steel becomes high temperature due to exhaust gas from the engine, and is exposed to an oxidizing gas such as sulfur oxide and nitrogen oxide to form an oxide film on the surface of the member.
  • an oxidizing gas such as sulfur oxide and nitrogen oxide
  • the oxidation weight loss of the austenitic heat-resistant cast steel of the present invention is more preferably 15 mg / cm 2 or less, and most preferably 10 mg / cm 2 or less.
  • Thermal fatigue life 800 cycles or more
  • the austenitic heat-resistant cast steel of the present invention has a thermal fatigue life measured by a thermal fatigue test in which the heating upper limit temperature is 1000 ° C., the temperature amplitude is 850 ° C. or more, and the restraint ratio is 0.25. Is preferably 800 cycles or more. Exhaust system parts are required to have a long thermal fatigue life against repeated engine operation (heating) and stopping (cooling).
  • the thermal fatigue life is one of the indexes representing superiority or inferiority of heat resistance and durability. As the number of cycles until thermal fatigue failure is increased due to cracks and deformation caused by repeated heating and cooling in the thermal fatigue test, the thermal fatigue life is longer and the heat resistance and durability are superior.
  • the thermal fatigue life is, for example, a smooth round bar test piece with a distance between gauge points of 25 mm and a diameter of 10 mm, in which the upper heating limit temperature is 1000 ° C, the lower cooling limit temperature is 150 ° C, the temperature amplitude is 850 ° C or more Repeat the heating / cooling cycle with one cycle of heating time 2 minutes, holding time 1 minute, and cooling time 4 minutes in total 7 minutes, mechanically restraining expansion and contraction due to heating and cooling, and causing thermal fatigue failure Can be evaluated.
  • the criteria for determining the thermal fatigue life is that each cycle with the maximum tensile load (generated at the cooling lower limit temperature) of the second cycle as the reference (100%) in the load-temperature diagram obtained from the load change with repeated heating and cooling.
  • the degree of mechanical restraint is expressed by a restraint ratio defined by (free thermal expansion elongation ⁇ elongation under mechanical restraint) / (free thermal expansion elongation).
  • a restraint factor of 1.0 refers to a mechanical restraint condition that does not allow elongation at all when a test piece is heated from 150 ° C. to 1000 ° C., for example.
  • the restraint ratio of 0.5 means a mechanical restraint condition that allows only 1 mm of elongation where the free expansion and elongation extends, for example, 2 mm.
  • the austenitic heat-resistant cast steel of the present invention is defined by a restraint rate of 0.25.
  • Austenitic heat-resistant cast steel can be said to have excellent thermal fatigue life if the thermal fatigue life is 800 cycles or more under the conditions of heating upper limit temperature 1000 ° C, temperature amplitude 850 ° C or higher, and restraint ratio 0.25, As described above, it is suitable for exhaust system parts exposed to high-temperature exhaust gas.
  • the exhaust system parts made of the austenitic heat-resistant cast steel of the present invention have excellent heat resistance and durability even in an environment exposed to exhaust gas of 1000 ° C. or higher, and have a long life until thermal fatigue failure.
  • the thermal fatigue life measured by a thermal fatigue test under the same conditions as described above is more preferably 850 cycles or more, and most preferably 900 cycles or more.
  • exhaust system parts of the present invention are manufactured using the 20Cr-10Ni system austenitic heat-resistant cast steel of the present invention.
  • Preferred examples of the exhaust system parts include an exhaust manifold, a turbine housing, a turbine housing integrated exhaust manifold in which the turbine housing and the exhaust manifold are integrally cast, a catalyst case, and a catalyst case integrated exhaust manifold in which the catalyst case and the exhaust manifold are integrally cast.
  • Any exhaust system part made of austenitic heat-resistant cast steel of the present invention including, but not limited to, a cast member that is welded to a sheet metal or pipe member. Is also targeted.
  • the exhaust system parts of the present invention are excellent in heat resistance such as high oxidation resistance and thermal fatigue life even if the exhaust system parts themselves are exposed to high temperature exhaust gas of 1000 ° C or higher and the surface temperature of the exhaust system parts itself reaches around 950 to 1000 ° C. And demonstrates durability. Furthermore, since it also has excellent weldability, weld cracks do not occur in welded joints between sheet metal members, pipe members and cast members, between cast members, or in welding repair of casting defects. In addition, since the rare metal can be reduced and manufactured at a low cost, it is excellent in economy. In other words, the exhaust system parts of the present invention have high heat resistance and durability required for the parts, and can cope with weight reduction and downsizing, and can be easily applied to popular cars. It is expected to contribute to exhaust gas purification, fuel efficiency improvement and safety improvement.
  • Tables 1 and 2 show the chemical compositions of the heat-resistant cast steel specimens of Examples 1-28 and Comparative Examples 1-22.
  • the value of the formula (1) to the value of the formula (4) are the values of the formulas in the formulas (1) to (4) defined in the present invention, respectively.
  • Equation (1) is the value of (C-Nb / 8)
  • the value of equation (2) is the value of [17.5Si- (W + 2Mo)]
  • the value of equation (3) is [5.6Si + (W + 2Mo) )]
  • (4) are the values of [0.08Si + (C-Nb / 8) + 0.015Cr + 0.011Ni + 0.03W + 0.02Mo] The content (% by mass) of each element contained in is shown.)
  • Examples 1 to 28 are austenitic heat-resistant cast steels within the composition range defined in the present invention.
  • Comparative Examples 1, 2, 8 to 17 the composition range in which the content of one or more elements of C, Ni, Mn, Cr, W, Mo, (W + 2Mo) and Nb is defined in the present invention Out of these, the comparative examples 2 and 16 are cast steels in which the value of the formula (4) is too large.
  • Comparative Examples 3 to 5 are cast steels in which the value of the formula (2) is too small.
  • Comparative Example 4 is a cast steel having an excessively low Si content
  • Comparative Example 5 is a 20Cr- described in JP-A-7-228948. This is an example of a 10Ni austenitic heat-resistant cast steel.
  • Comparative Examples 6 and 7 are cast steels in which the value of the formula (3) is too large, and Comparative Example 7 is a cast steel in which the Si content is too large. Comparative Examples 18 to 21 are cast steels in which the value of formula (4) is too large. Comparative Example 22 is an example of a 25Cr-20Ni high Cr high Ni austenitic heat-resistant cast steel described in JP-A-2000-291430.
  • the cast steels of Examples 1 to 28 and Comparative Examples 1 to 22 were melted in the air using a 100 kg kg high-frequency melting furnace (basic lining), then heated at 1550 to 1600 ° C and immediately JIS standard at 1500 to 1550 ° C.
  • a test material was prepared by pouring the mold into a mold to be a Y-shaped B test material and a mold to be a cylindrical test piece for weldability evaluation. The following evaluation tests were performed on each sample material.
  • Table 1 (continued) Value of formula (1): (C-Nb / 8) Value of formula (2): 17.5Si- (W + 2Mo) Value of formula (3): 5.6Si + (W + 2Mo) Value of formula (4): 0.08Si + (C-Nb / 8) + 0.015Cr + 0.011Ni + 0.03W + 0.02Mo
  • the high temperature proof stress of the test pieces of Examples 1 to 28 of the present invention is 50 MPa or more, and particularly when the C content is 0.40% or more, the high temperature proof stress is stable and 60 MPa or more. It can be seen that the increase in the C content contributes to the improvement of the high temperature strength.
  • the oxidation weight loss is 20 mg / kg, which is the preferred oxidation weight loss of the austenitic heat-resistant cast steel of the present invention. cm 2 or less and less, it can be seen that comparable oxidation resistance and Comparative example 22, high-Cr, high-Ni, austenitic cast steel of 25Cr-20Ni-based.
  • the comparative material 16 with a small amount has a high oxidation weight loss exceeding 20 mg / cm 2 . From these results, it was confirmed that the heat-resistant cast steel of the present invention has sufficient oxidation resistance for exhaust system parts exposed to exhaust gas at 1000 ° C. or higher, though it is a 20Cr-10Ni system.
  • Thermal fatigue life is the same electro-hydraulic servo-type material testing machine as the above high temperature proof stress test. After mounting with a restraint ratio of 0.25, each test piece in the atmosphere is cooled at a lower limit temperature of 150 ° C., heated upper limit temperature of 1000 ° C., temperature amplitude of 850 ° C. The heating and cooling cycle was repeatedly evaluated with a total cooling time of 4 minutes and 7 minutes. Based on the maximum tensile load in the load-temperature diagram of the second cycle as a reference (100%), the number of heating / cooling cycles when the maximum tensile load decreased to 75% was counted as the thermal fatigue life. The evaluation results are shown in Tables 3 and 4.
  • Comparative Material 1 with a low C content Comparative Examples 3 to 5 in which the value of Formula (2) is too small, Comparative Examples 6 and 7 in which the value of Formula (3) is too large, Comparative Example 8 with a low Ni content
  • the thermal fatigue life is short with less than 800 cycles.
  • Comparative Example 5 corresponding to a conventional 20Cr-10Ni austenitic heat-resistant cast steel the value of the formula (2) was smaller than 17.5 defined in the present invention, and the thermal fatigue life was less than 800 cycles. From these results, it was confirmed that the heat-resistant cast steel of the present invention has a sufficient thermal fatigue life for exhaust system parts exposed to exhaust gas at 1000 ° C. or higher, although it is a 20Cr-10Ni system.
  • Figure 2 shows the relationship between the composition of Si and (W + 2Mo) and the thermal fatigue life of austenitic heat-resistant cast steel.
  • FIG. 2 shows the values of Examples 1 to 28, Si, W, Mo, (W + 2Mo), the values of Formula (2) and the values of Formula (3) and other compositions and relational expressions. Comparative examples 3 to 7 and Comparative examples 12 to 15 within the specified range are plotted.
  • the shape of each point represents the thermal fatigue life (number of cycles), diamond marks ( ⁇ ) for those less than 800, triangle marks ( ⁇ ) for those less than 800 and less than 850, square marks for those that are 850 and less than 900 ( ⁇ ), 900 or more items are indicated by circles ( ⁇ ).
  • the solid line bold frame indicates the Si: 1.1 to 2 range, (W + 2Mo): 1.5 to 4 range, 17.5 ⁇ 17.5 Si- (W + 2Mo) range represented by Formula (2), Formula (3 ),
  • Each boundary line for the region of 5.6Si + (W + 2Mo) ⁇ 13.7 is shown, and the region surrounded by the solid thick frame is a region satisfying the composition range of Si and (W + 2Mo) defined in the present invention. is there.
  • FIG. 2 shows that the austenitic heat-resistant cast steel of the present invention has a thermal fatigue life of 800 cycles or more if Si and (W + 2Mo) are in this region.
  • the composition is not based on the composition range based on the individual contents of Si and W and / or Mo, but based on the relationship between Si and (W + 2Mo), which exhibits excellent thermal fatigue life. It means that a range exists.
  • Weldability was determined by manufacturing a pair of cylindrical specimens with an outer diameter of 50 mm, a wall thickness of 5 mm, and a groove shape of the welded part I from each specimen. After butt welding under welding conditions, evaluation was performed by cutting the 7 places except the welding start part and welding end part and confirming the occurrence of cracks. Tables 3 and 4 show the weldability evaluation results.
  • Solidification temperature range ⁇ T 0.7 is a temperature of up to 900 ° C in an argon atmosphere by using a differential scanning calorimeter (DSC (manufactured by SETARAM)) with a 2 mm diameter and 2 mm long test piece cut out from each specimen. From the thermal analysis curve obtained by heating at a rate of 15 ° C / min and a rate of temperature increase from 900 to 1600 ° C at 5 ° C / min, image analysis processing is performed as follows using an image analyzer (IP1000 type manufactured by Asahi Kasei). And asked. That is, as described above with reference to FIG. 1, the area indicated by the diagonal lines in FIG.
  • Comparative Example 7 Since the crack occurrence location of Comparative Example 7 is not a bead but a base material, Comparative Example 7 has an excessive Si content alone, so low melting point Si concentrated at the crystal grain boundary of the cast steel base material is welded. It is considered that cracking occurred due to local melting due to heat input.
  • Example 29 Using the austenitic heat-resistant cast steel of Example 15, an exhaust manifold (main wall thickness: 4.0 to 5.0 mm) for automobile exhaust system parts was cast and then machined as-cast. The obtained exhaust manifold was free from casting defects such as shrinkage cavities, poor hot water and gas defects, and there were no cutting defects in machining or abnormal wear or damage of cutting tools.
  • the exhaust simulator of this example was assembled in an exhaust simulator equivalent to an inline 4-cylinder high-performance gasoline engine with a displacement of 2000 cc, and an endurance test was conducted to examine the life until cracks occurred and the occurrence of cracks and oxidation.
  • the exhaust gas temperature at full load is about 1050 ° C at the outlet of the exhaust section downstream of the exhaust manifold
  • the upper limit heating temperature of the exhaust manifold surface is about 1000 ° C
  • the lower limit cooling temperature is the central section.
  • a heating / cooling cycle consisting of heating for 10 minutes and cooling for 10 minutes was performed as one cycle.
  • the target of the heating / cooling cycle was 1500 cycles.
  • the exhaust manifold of this example cleared the endurance test of 1500 cycles without causing leakage or cracking of exhaust gas.
  • visual and penetrant testing after the endurance test, it was confirmed in the penetrant test that a very small crack occurred in a part of the branch pipe, but it was confirmed by visual inspection as well as through cracks. There were no cracks that could occur, and there was less oxidation of the entire part. As a result, it was confirmed that the exhaust manifold of this example had excellent heat resistance and durability.
  • Comparative Example 23 When an exhaust manifold having the same shape was manufactured under the same conditions as in Example 29 using the cast steel of Comparative Example 5, there were no casting defects or defects in machining. The obtained exhaust manifold was assembled in an exhaust simulator, and an endurance test was conducted under the same conditions as in Example 29 with a target of 1500 cycles. The surface temperature of the aggregate part of the exhaust manifold in the durability test was almost the same as in Example 29.
  • the exhaust system parts manufactured using the austenitic heat-resistant cast steel of the present invention have high oxidation resistance and thermal fatigue life around 1000 ° C as the temperature of the exhaust system parts. It was confirmed to be excellent. Since the exhaust system parts of the present invention are made of austenitic heat-resistant cast steel that has a low content of rare metals and is economical in terms of cost and resource saving, it is suitable as a component part of an automobile engine.
  • the austenitic heat-resistant cast steel of the present invention is, for example, a combustion engine such as a construction machine, a ship, an aircraft, High oxidation resistance, thermal fatigue life, etc. for various equipment such as furnaces, heat treatment furnaces, incinerators, kilns, boilers, cogeneration equipment, and other plant equipment such as petrochemical plants, gas plants, thermal power plants, nuclear power plants It can also be used for casting parts that require excellent heat resistance and durability as well as weldability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

 質量%で、C:0.3~0.6%、Si:1.1~2%、Mn:1.5%以下、Cr:17.5~22.5%、Ni:8~13%、W及びMoの少なくとも1種:(W+2Mo)で1.5~4%、Nb:1~4%、N:0.01~0.3%、S:0.01~0.5%、残部Fe及び不可避不純物からなり、かつ下記式(1)、(2)、(3)及び(4)を満足することを特徴とするオーステナイト系耐熱鋳鋼。 0.05≦(C-Nb/8)≦0.6 ・・・(1) 17.5≦17.5Si-(W+2Mo) ・・・(2) 5.6Si+(W+2Mo)≦13.7 ・・・(3) 0.08Si+(C-Nb/8)+0.015Cr+0.011Ni+0.03W+0.02Mo≦0.96 ・・・(4) ここで、各式中の元素記号は鋳鋼中に含まれる各元素の含有量(質量%)を示す。

Description

オーステナイト系耐熱鋳鋼及びそれからなる排気系部品
 本発明は、自動車用のガソリンエンジン及びディーゼルエンジンの排気系部品等に適する耐熱鋳鋼に関し、特に耐酸化性、熱疲労寿命等の耐熱性及び溶接性に優れたオーステナイト系耐熱鋳鋼とそれからなる排気系部品に関する。
 近年、地球規模での環境負荷の低減や環境保全が叫ばれ、自動車における環境保全への対応として、大気汚染物質の排出を削減するための排ガスの浄化と、地球温暖化の一因であるCO2の排出抑制のための省エネルギーや燃費性能の向上(低燃費化)とが強く求められている。自動車の排ガス浄化や燃費改善には、エンジン自体の高性能化や低燃費化、エンジンから排出される大気汚染物質の後処理での浄化、車両の軽量化、車体の空気抵抗の低減、エンジンから駆動系へのロスの少ない効率的な動力伝達等、様々な対策技術が開発及び採用されてきている。
 このうち、エンジン自体の高性能化や低燃費化のための対応技術としては、燃料噴射方式の直噴化、燃料の高圧噴射、圧縮比の増大、ターボチャージャー(過給機)のブースト圧の上昇、排気量削減、過給化よるエンジンの軽量コンパクト化(ダウンサイジング)等が挙げられ、これらの技術が高級車に限らず大衆車にも導入されてきている。その結果、エンジンをより高温及び高圧で燃焼させる傾向にあり、これに伴ってエンジンの燃焼室から排気系部品に排出される排ガスの温度も上昇傾向にある。例えば、大衆車においても排ガスの温度が高級スポーツカー並みの1000℃以上となり、排気系部品自体の温度が表面温度で950℃を超える場合もある。排気系部品はこのような高温域で酸化性のガスや大気中の酸素に曝され従来よりもさらに厳しい酸化環境におかれることとなり、さらにはエンジンの運転及び停止によって加熱及び冷却の繰り返し熱サイクルを受けることとなる。従って、排気系部品には従来にも増して耐酸化性、熱疲労寿命等の耐熱性や耐久性の向上が求められている。
 従来、自動車用のガソリンエンジン及びディーゼルエンジンの構成部材であるエキゾーストマニホルド、タービンハウジング等の排気系部品は、形状が複雑であることから形状自由度の高い鋳物により製造されており、しかも使用条件が高温で過酷であることから、耐熱性及び耐酸化性に優れた、高Si球状黒鉛鋳鉄、ニレジスト鋳鉄(Ni-Cr系オーステナイト鋳鉄)等の耐熱鋳鉄、フェライト系耐熱鋳鋼、オーステナイト系耐熱鋳鋼等が用いられている。
 しかし、高Si球状黒鉛鋳鉄やニレジスト鋳鉄といった従来の耐熱鋳鉄は、排ガス温度で900℃以下、排気系部品の温度として850℃程度以下までは比較的高い強度を有するが、900℃を超える排ガスに曝される環境下では強度が低下し、また耐酸化性及び熱疲労寿命等の耐熱性が低下する。さらにニレジスト鋳鉄は希少金属(レアメタル)であるNiを質量比で35%前後と多く含有するため高価となる等の問題がある。またフェライト系耐熱鋳鋼も通常900℃以上での高温強度に劣るという問題がある。
 耐熱鋳鉄やフェライト系耐熱鋳鋼より高温に耐える材料として、オーステナイト系耐熱鋳鋼がある。特開平7-228948号は、自動車用エンジンの排気系部品等に好適なオーステナイト系耐熱鋳鋼として、質量比で、C:0.2~1.0%、C-Nb/8:0.05~0.6%、Si:2%以下、Mn:2%以下、Cr:15~30%、Ni:8~20%、W:1~6%、Nb:0.5~6%、N:0.01~0.3%、S:0.01~0.5%、残部Fe及び不可避不純物からなるオーステナイト系耐熱鋳鋼を開示している。特開平7-228948号は、20Cr-10Ni系のオーステナイト系耐熱鋳鋼に、Nb、W、N及びSを適量添加してなる耐熱鋳鋼は、900℃以上の高温強度が向上し、しかも鋳造性及び被削性が優れるため排気系部品に好適であると記載している。
 しかしながら、特開平7-228948号に記載の20Cr-10Niオーステナイト系耐熱鋳鋼は、排気系部品の温度が900~950℃程度での使用を想定して提案されたもので、1000℃付近の温度では、耐酸化性や熱疲労寿命が十分ではなく耐熱性や耐久性に劣る。特に熱疲労寿命は満足のゆくものではなく改良の余地がある。従って、表面温度が1000℃付近に達するような排気系部品(例えば、高いブースト圧が設定されたターボチャージャーのタービンハウジング)には使用できない。
 特開2000-291430号は、高温の使用条件下での耐久性をより向上したオーステナイト系耐熱鋳鋼製の排気系部品として、質量比で、C:0.2~1.0%、Si:2%以下、Mn:2%以下、P:0.04%以下、S:0.05~0.25%、Cr:20~30%、Ni:16~30%、残部Fe及び不可避的不純物を含む組成からなり、さらにW:1~4%及び/又はNb:1%を超え4%以下を含み、Cr/Niの質量比を1.0~1.5とした高Cr高Niオーステナイト系耐熱鋳鋼からなる排気系部品を開示している。特開2000-291430号に記載の高Cr高Niオーステナイト系耐熱鋳鋼は、20Cr-10Niオーステナイト系耐熱鋳鋼よりも主要合金元素であるCr及びNi含有量を増加した25Cr-20Ni系のオーステナイト系耐熱鋳鋼をベースに、材料の組成範囲や組織形態を制御して高温強度のみならず耐酸化性を大幅に改良したもので、1000℃を超える(特に1050℃付近、さらに1100℃付近)排ガスに曝される排気系部品に好適である。
 しかしながら、特開2000-291430号に記載の25Cr-20Niオーステナイト系耐熱鋳鋼は、高温特性や耐熱性を確保するために高価な希少金属であるCr及びNiを多量に含有している。これらの希少金属は偏った国や地域において少量しか産出しないことから、高価であるだけでなく世界経済情勢の影響を受けやすく安定供給に不安があり、さらには投資対象とされて価格が高騰する等の問題を抱えている。特開2000-291430号に記載の25Cr-20Niオーステナイト系耐熱鋳鋼は、Cr及びNiをそれぞれ25質量%及び20質量%程度含有しているため製造コストが嵩み、大衆車向けエンジンの排気系部品に用いるには経済性・供給安定性の点で問題がある。
 排気系部品には、自動車の排ガス浄化や燃費改善を達成するために、上述した耐熱性や耐久性以外にも様々な改良すべき技術的課題がある。例えば、後処理での排ガス浄化処理[排ガス浄化装置に内蔵した触媒やフィルタにより排ガス中の有害物質等を除去する処理]においては、エンジン始動時に触媒を早期に昇温し活性化させたり、排ガスを触媒やフィルタ全体に均等に供給したりして浄化性能を向上する必要がある。触媒の早期活性化のためには、排気系部品を通過する排ガスの温度低下を少なく、すなわち排ガスの熱が極力奪われないようにしなければならない。従って、排気通路の熱容量(ヒートマス)を小さくするため、排気系部品には薄肉化が要求されている。また、触媒等の浄化性能の向上だけでなく、エンジンの出力低下防止、過給機の効率向上等のためには、排ガスの流れを円滑にしたり圧力損失を減少したりすることが求められている。そのためには、排ガスの流動抵抗の低減、排気分配の改善、乱流や排気干渉の防止等が有効であり、例えば、排気系部品の排気通路の短縮や急激な方向変更の防止等を配慮した設計が要求されている。
 さらに、自動車には、低燃費化を目的とした車両の軽量化や車体の空気抵抗の低減、加えて安全性の向上も求められている。例えば、空力特性を改善するための車体形状の工夫としてエンジンルーム直上のボンネット高さを低くする、衝突時の安全性を確保するためにエンジンルーム内に衝撃吸収(クラッシュブル)ゾーンを設ける等の施策が図られている。これらの施策によりエンジンルーム内のレイアウト設計の自由度は減少しつつあり、排気系部品にも重量や容積の低減及び省スペースが求められている。このように、自動車の軽量化や安全性の向上への要求の見地からも、排気系部品には軽量化、コンパクト化、排気通路の円滑化等への対応が必要となる。
 上述した排気系部品への要求に応えるため、例えば、(a)エキゾーストマニホルドにおいて排気通路である分岐管の管状部を薄肉の板金製又はパイプ製の部材とし、シリンダヘッドやタービンハウジング等相手部材との締結部である取り付けフランジや集合ケースを鋳物製の部材として、両者を溶接接合して成形することで、排気通路の熱容量の小さい薄肉軽量のエキゾーストマニホルドとする、(b)長尺なエキゾーストマニホルドを複数の鋳物部材に分割して、該鋳物部材同士を蛇腹状のパイプ部材で溶接接合することで、熱膨張に起因する亀裂を防止したエキゾーストマニホルドとする、(c)エキゾーストマニホルドとタービンハウジングとをいずれも鋳物部材とする場合に、通常、ボルトで締結されるところ、両者を溶接接合として、ボルト締結のための厚肉のフランジや締結作業のための工具挿入スペースを不要として、熱容量を削減した軽量コンパクトな排気系部品とする等の提案がなされている。
 上記例示したように、排気系部品に要求される高い耐熱性や耐久性、さらには薄肉化、軽量化、コンパクト化、排気通路の円滑化等に対応するには、板金部材やパイプ部材と鋳物部材、又は鋳物部材同士を溶接により接合することが有効である。複雑形状となり易い排気系部品は、高い形状自由度を有する鋳物部材を構成部材に含み、かつ溶接により成形できるようにすることで、その設計自由度や製作容易性が向上し、締結ボルトやガスケット等の部品を削減できる。
 溶接接合して排気系部品を成形するためには、溶接割れを生じることがない十分な溶接性が必要である。また溶接性は、部材同士の接合だけでなく鋳物部材の鋳造欠陥の溶接補修においても、その優劣が生産歩留りや生産性に影響を与える重要な特性である。このように排気系部品を構成する材料には、耐熱性や耐久性に加えて溶接性を有することが望まれる。特開平7-228948号及び特開2000-291430号に記載のオーステナイト系耐熱鋳鋼は、いずれも経済性に配慮しつつ耐熱性や耐久性を確保し、さらに溶接性を改善する見地からの検討は十分でない。
 従って本発明の目的は、1000℃付近での耐酸化性や熱疲労寿命といった耐熱性及び溶接性に優れ、しかも希少金属の含有量が少なく、経済性、資源の有効活用性、安定供給性等が良好なオーステナイト系耐熱鋳鋼と、このオーステナイト系耐熱鋳鋼からなる、自動車用エンジンの構成部品として好適な排気系部品を提供することにある。
 特開平7-228948号に記載の20Cr-10Ni系は1000℃付近での耐熱性や耐久性に劣るものの、希少金属であるCr及びNiの含有量が比較的少なく、一方、特開2000-291430号に記載の25Cr-20Ni系は1000℃を超えての耐熱性や耐久性に優れるものの、Cr及びNiの含有量が多いことから、本発明者は、20Cr-10Niオーステナイト系耐熱鋳鋼をベースに耐熱性や耐久性に寄与しているCr及びNiを削減しても25Cr-20Ni系と同等の1000℃付近での耐熱性や耐久性を付与することができないかを、合金元素や組成範囲を種々変更して検討した。
 その結果、Si含有量を増加すれば、Cr及びNiの少ない20Cr-10Ni系であっても25Cr-20Ni系と同等の耐熱性が得られるが、多量のSi含有は溶接性を著しく悪化させることがわかった。そこで、本発明者は、Siを増加しても溶接性を悪化させることなく、耐熱性と耐久性を付与できる組成範囲を見出すべくさらに鋭意研究した結果、(a)高温強度、耐酸化性等基本的な耐熱性を確保するためには、Siを増加しつつ、C、Mn、Cr、Ni、W、Mo、Nb、N及びS等主要合金元素の個々の含有量を適正範囲に限定し、(b)熱疲労寿命を向上するには、SiとW及び/又はMoとを特定の関係のもとで含有し、(c)Siを増加しつつ良好な溶接性を確保するためには、C、Si、Cr、Ni、W、Mo及びNbについての個々の含有量だけでなく、その総量が特定の関係となるように規定すればよいという新たな知見を得、本発明に想到した。
 すなわち、本発明のオーステナイト系耐熱鋳鋼は、
質量%で、
C:0.3~0.6%、
Si:1.1~2%、
Mn:1.5%以下、
Cr:17.5~22.5%、
Ni:8~13%、
W及びMoの少なくとも1種:(W+2Mo)で1.5~4%、
Nb:1~4%、
N:0.01~0.3%、
S:0.01~0.5%、
残部Fe及び不可避不純物からなり、かつ下記式(1)、(2)、(3)及び(4)を満足することを特徴とする。
0.05≦(C-Nb/8)≦0.6 ・・・(1)
17.5≦17.5Si-(W+2Mo) ・・・(2)
5.6Si+(W+2Mo)≦13.7 ・・・(3)
0.08Si+(C-Nb/8)+0.015Cr+0.011Ni+0.03W+0.02Mo≦0.96 ・・・(4)
ここで、各式中の元素記号は鋳鋼中に含まれる各元素の含有量(質量%)を示す。
 本発明のオーステナイト系耐熱鋳鋼は、1000℃において200時間大気中に保持したときの酸化減量が20 mg/cm2以下であるのが好ましい。
 本発明のオーステナイト系耐熱鋳鋼は、加熱上限温度1000℃、温度振幅850℃以上、及び拘束率0.25の条件で加熱冷却する熱疲労試験により測定した熱疲労寿命が800サイクル以上であるのが好ましい。
 本発明の排気系部品は、前記したオーステナイト系耐熱鋳鋼からなることを特徴とする。この排気系部品としては、エキゾーストマニホルド、タービンハウジング、タービンハウジング一体エキゾーストマニホルド、触媒ケース、触媒ケース一体エキゾーストマニホルド、又はエキゾーストアウトレットであるのが好ましい。
 本発明のオーステナイト系耐熱鋳鋼は、1000℃付近での耐酸化性及び熱疲労寿命等の耐熱性に加えて優れた溶接性を有するとともに、Cr及びNi等高価な希少金属を比較的安価なSiに代替して耐熱性を付与しているので、原材料コストを抑制できるという経済的効果のみならず、希少金属資源の有効活用や安定供給にも貢献する。本発明のオーステナイト系耐熱鋳鋼からなる材料は、自動車用の排気系部品用の材料として好適である。
 本発明のオーステナイト系耐熱鋳鋼からなる排気系部品は、自動車の排ガス浄化、燃費改善及び安全性向上のために要求される高い耐熱性や耐久性を有し、さらには優れた溶接性を有するため、薄肉化、軽量化、コンパクト化、排気通路の円滑化等に対応可能である。しかも、希少金属を削減して安価に製造できることから、大衆車への適用も可能であり、自動車用エンジンの構成部品として好適である。
オーステナイト系耐熱鋳鋼の示差走査熱量測定(DSC)による熱分析結果を示す模式図である。 Si及び(W+2Mo)の組成とオーステナイト系耐熱鋳鋼の熱疲労寿命との関係を示すグラフである。
[1]オーステナイト系耐熱鋳鋼
 本発明のオーステナイト系耐熱鋳鋼の構成について以下詳細に説明する。なお、合金を構成する各元素の含有量は、特に断りのない限り質量%で示す。
(1)C(炭素):0.3~0.6%
 Cは、(a)溶湯の流動性、すなわち鋳造性を良くする作用、(b)一部基地に固溶して固溶強化する作用、(c)Crの晶出炭化物や析出炭化物を形成し、高温強度を高める作用、及び(d)Nbと共晶炭化物を形成し、鋳造性を高めるとともに高温強度を向上させる作用がある。このような作用を有効に発揮するために、Cの含有量は0.3%以上必要である。しかし、Cが0.6%を超えるとCrの晶出炭化物や析出炭化物が多くなり過ぎて脆化し、延性が低下するとともに加工性が劣化する。また、Crの晶出炭化物が多すぎると溶接性が劣化する。従って、Cの含有量は0.3~0.6%に規定する。Cの好ましい含有量は0.4~0.55%である。
(2)Si(ケイ素):1.1~2%
 Siは、溶湯の脱酸剤としての役割を有するほか、耐酸化性の向上と、これに起因する熱疲労寿命の改善に有効な元素である。耐酸化性は、鋳物の表面付近の酸化層の組成と密接に関係している。本発明の20Cr-10Ni系の耐熱鋳鋼において、1000℃付近に加熱されたときの表面付近の酸化層に着目すると、Si含有量が少ない場合は、表面直下の最表層に成長の早いFeリッチの酸化層が形成するため耐酸化性は劣るが、Si含有量が多いと最表層にはCrの酸化層が、その内側にはSiの酸化相が塊状に形成される。Cr及びSiの酸化層の成長は遅く、良好な耐酸化性を示す。最表層にCrの酸化層、その内側にSiの酸化相を形成するためには、少なくとも1.1%以上の含有量のSiが必要である。しかし、Siは過剰に加えるとオーステナイト組織が不安定になり、鋳造性の劣化を招く。また、ある程度のSiの増加は溶接性を改善するものの、Siが過剰になると溶接性が著しく悪化して溶接割れが発生し易くなるため、Siの含有量は2%以下とする。このため、Siの含有量は1.1~2%に規定する。Siの含有量は、好ましくは1.25~1.8%であり、より好ましくは1.3~1.6%である。
(3)Mn(マンガン):1.5%以下
 Mnは、Siと同様に溶湯の脱酸剤として有効であるが、過剰に含有すると耐酸化性が劣化するので、Mnの含有量は1.5%以下とする。
(4)Cr(クロム):17.5~22.5%
 Crは、後述のNiとともに耐熱鋳鋼の組織をオーステナイト化することで高温強度や耐酸化性を高めるほか、晶出炭化物や析出炭化物を形成して高温強度を高める極めて重要な元素である。特に1000℃付近の高温域でこれらの効果を発揮させるためには、Crを17.5%以上含有する必要がある。しかし、Crは、22.5%を超えて含有すると組織中にフェライトが晶出する。数%程度の僅かな晶出フェライトは溶接割れの発生を抑制して溶接性を向上させるが、フェライトが増加すると高温強度が低下してしまう。また、Crが過剰に含有すると晶出炭化物が多くなり過ぎて脆化し、延性を低下させる。さらに、Crは希少金属のため経済性の観点から過剰な含有は抑制すべきである。このため、Cr含有量は17.5~22.5%に規定する。
(5)Ni(ニッケル):8~13%
 Niは、前述のCrとともに耐熱鋳鋼をオーステナイト組織とし、その組織を安定にするとともに、一般に薄肉で複雑形状である排気系部品の鋳造性を高めるのに有効な元素である。このような作用を発揮するためには、Niは8%以上含有することが必要である。しかし、NiはCrと同様、希少金属のため価格のみならず資源の有効活用や安定供給等経済性の観点から、過剰な含有は避けるべきである。本発明のオーステナイト系耐熱鋳鋼は、Siの含有量を1.1%以上として、25Cr-20Niオーステナイト系耐熱鋳鋼と同等の1000℃付近での耐熱性を付与しているので、Niの含有量は13%以下に抑制できる。そのため、Ni含有量は8~13%に規定する。Niの好ましい含有量は9~12%である。
(6)W(タングステン)及びMo(モリブデン)の少なくとも1種:(W+2Mo)で1.5~4%
 W及びMoは、いずれも耐熱鋳鋼の高温強度を改善する。この効果は少なくとも一方を含有させることにより得られるが、両者とも多量に含有すると耐酸化性を劣化させる。従って、Wを単独で添加する場合、Wの含有量は1.5~4%とし、好ましくは2~3.5%である。Moは、質量比でW = 2Moの割合でWとほぼ同様の効果を発揮するので、Wの一部又は全量をMoに置換することも可能である。Moを単独で含有する場合、Moの含有量は0.75~2%とし、好ましくは1~1.75%である。両者を複合添加する場合には、(W+2Mo)として1.5~4%とし、好ましくは2~3.5%である。
(7)Nb(ニオブ):1~4%
 Nbは、Cと結合して微細な炭化物を形成し、耐熱鋳鋼の高温強度と熱疲労寿命を向上させる。また、Crの晶出炭化物の生成を抑制することによって耐酸化性と被削性を向上させる。さらに、Nbは共晶炭化物を生成するため、排気系部品のような薄肉で複雑形状の鋳物を製造する際に重要な鋳造性を向上させる。このような目的でNbの含有量は1%以上必要である。しかし、Nbが多量に含有すると、結晶粒界に生成する共晶炭化物が多くなって脆化し、強度と延性が著しく低下する。従って、Nbの含有量は、1~4%とする。
(8)N(窒素):0.01~0.3%
 Nは、強力なオーステナイト生成元素であり、耐熱鋳鋼のオーステナイト基地を安定にして高温強度を向上させる。しかし、Nは多量に含有すると、室温付近の衝撃値を低下させ、また鋳造時にピンホールやブローホール等のガス欠陥の発生を助長して鋳造歩留りを悪化させる。そのため、Nの含有量は0.01~0.3%とする。
(9)S(硫黄):0.01~0.5%
 Sは、鋳鋼においては球状又は塊状の硫化物を生成し、この硫化物は潤滑効果を有するため被削性を向上させる。この効果を得るには、Sは0.01%以上必要である。しかし、Sが0.5%を超えて含有すると、室温付近の衝撃値が低下する。そのため、Sの含有量は0.01~0.5%とする。Sの好ましい含有量は0.05~0.2%である。
(10)不可避的不純物
 本発明のオーステナイト系耐熱鋳鋼に含有される不可避的不純物の主なものは、原材料から混入するPである。Pは結晶粒界に偏析して靭性を著しく低下させるので少ないほど好ましく、0.04%以下とするのが望ましい。
 以上、基本成分の適正な含有範囲について説明したが、本発明では各合金元素が上記の組成範囲を単に満足しているだけでは不十分で、下記式(1)、(2)、(3)及び(4)の関係も、それぞれ併せて満足する必要がある。なお、(1)~(4)の各式中の元素記号は耐熱鋳鋼中に含まれる各元素の含有量(質量%)を示す。
(11)式(1):0.05≦(C-Nb/8)≦0.6
 本発明のオーステナイト系耐熱鋳鋼は、Nbの共晶炭化物を生成させて鋳造性を高めるとともに、適当量の炭化物を析出させて高い強度を得ている。共晶炭化物(NbC)は、質量比率でCとCの8倍のNbとで形成されるが、共晶炭化物(NbC)のほかに析出炭化物を適当量得るには、共晶炭化物の形成により消費される量を超える量のCを確保することが必要となる。優れた鋳造性と高温強度とを得るためには、式(1)で表される(C-Nb/8)が0.05以上必要である。しかし、(C-Nb/8)が0.6を超えると、炭化物が過剰となって硬く脆くなり、延性と被削性が劣化する。従って、式(1)の(C-Nb/8)は0.05~0.6とする。特に薄肉鋳物では高い鋳造性を要し、共晶炭化物の割合は重要である。式(1)の(C-Nb/8)の好ましい範囲は0.1~0.3である。
(12)式(2):17.5≦17.5Si-(W+2Mo)、及び式(3):5.6Si+(W+2Mo)≦13.7
 前述したように、本発明者は、本発明のオーステナイト系耐熱鋳鋼において、SiとW及び/又はMoとの含有量の関係が、熱疲労寿命に影響を及ぼすことを見出した。本発明のオーステナイト系耐熱鋳鋼は、Si含有量を増加して良好な耐酸化性を付与しているが、本発明で規定する基本成分の範囲において、Siが少ない又は多い範囲で、W及び/又はMoを増量すると、耐酸化性には大きな影響はないものの、熱疲労寿命が悪化するという新たな知見を得た。すなわち、本発明の基本成分の範囲内で、Siを減量してW及び/又はMoを増量すると、オーステナイト基地中の析出炭化物が増加し、一方、Siを増量してW及び/又はMoを増量すると、高温強度の低いフェライトが生成する。オーステナイト基地中の析出炭化物が増加すると延性が低下するために、また高温強度の低いフェライトが生成すると基地中の強度の弱い相に応力が集中するために、いずれも熱疲労寿命が悪化する。
 優れた熱疲労寿命を有する本発明のオーステナイト系耐熱鋳鋼を得るためには、単にSiとW及び/又はMoの個々の含有量を限定するだけでなく、各々同様の効果を発揮するW及びMoを(W+2Mo)として、Siと(W+2Mo)との関係を勘案する必要がある。式(2)及び式(3)は、上記知見に基づき、SiとW及び/又はMoの含有量と、熱疲労寿命との関係を調査、検討した結果から規定したもので、長い熱疲労寿命を確保するには、式(2)及び式(3)をいずれも満足する必要がある。式(2)で表す17.5≦17.5Si-(W+2Mo)は、オーステナイト基地中の析出炭化物の増加を抑制するために必要な条件であり、式(3)で表す5.6Si+(W+2Mo)≦13.7は、高温強度の低いフェライトの生成を抑制するために必要な条件である。熱疲労寿命を向上して耐熱性と耐久性を付与するためには、式(2)及び式(3)を満足させる必要がある。式(3)の左辺の値は12.7以下とするのが好ましい。
(13)式(4):0.08Si+(C-Nb/8)+0.015Cr+0.011Ni+0.03W+0.02Mo≦0.96
 本発明の20Cr-10Ni系のオーステナイト系耐熱鋳鋼は、耐熱性を得るため単にSiを増量しただけでは溶接性が悪化する。そこで、本発明者は、C、Si、Cr、Ni、W、Mo及びNbの総量が、溶接性に影響を及ぼすとの知見を得て、溶接性を損なうことのないC、Si、Cr、Ni、W、Mo及びNbからなる上記式(4)で規定される成分パラメータを見出した。式(4)は、Siを増量しても溶接性を確保するために必要な条件で、式(4)を満足させることによって特定の凝固温度範囲の温度幅が縮小して、溶接割れの発生を効果的に抑制することができる。
 一般に、鉄鋼材料においては、溶接割れ発生の感受性は、材料の凝固開始から終了までの凝固温度範囲ΔTと相関があり、ΔTが小さいほど溶接割れが発生し難くいといわれている。これに対して、本発明者が熱分析も含めて調査、検討した結果、本発明のオーステナイト系耐熱鋳鋼では、溶接割れ感受性は、ΔTよりも、凝固開始から約70%の凝固が終了するまでの凝固温度範囲ΔT0.7と相関があり、ΔT0.7を小さくすることによって、溶接割れを抑制できることがわかった。
 オーステナイト系耐熱鋳鋼の凝固過程を、示差走査熱量測定(DSC)により熱分析した結果を図1に模式的に示す。本発明の耐熱鋳鋼は、A点で凝固を開始し、最初にオーステナイトが晶出し(B点)、次にNb炭化物(NbC)とオーステナイトとの共晶が晶出し(C点)、次いでNb炭化物とオーステナイトの晶出末期にMnSが晶出し(D点)、最後にCr炭化物とオーステナイトとの共晶が晶出して(E点)、F点で凝固が終了する。図1に示したΔTは凝固開始(A点)から、全ての凝固が終了(F点)するまでの温度範囲であり、ΔT0.7は、凝固開始(A点)から70%の凝固が終了するまでの温度範囲である。ここで、70%の凝固が終了するまでの温度とは、熱分析で得られた温度と熱流の関係についての熱分析曲線を画像解析処理して、得られた図1の斜線で示した面積を総計(100%)とし、これに対して、凝固開始(A点)を起点として単位温度毎に熱流の面積を累積して、その累積面積が70%に達したときの温度である。
 本発明者が、種々の組成範囲の耐熱鋳鋼の熱分析結果と溶接割れ発生の関係について調査したところ、図1に示すE点のピーク(谷の深さ)の熱流値が小さな耐熱鋳鋼では溶接割れの発生が少ないこと、及び組成は異なるがΔTがほぼ同一で、E点のピークの熱流値が相違するいくつかの耐熱鋳鋼を比較すると、この熱流値が小さな耐熱鋳鋼の方が、凝固温度範囲ΔT0.7が小さくなり、溶接割れの発生が少ないことがわかった。
 溶接割れは、一般に凝固後期の残存した液相に熱応力が作用して生じるとされているが、凝固温度範囲が縮小すれば、凝固開始後に速やかに凝固が進行するので、残存する液相の量を減じ、熱応力を受けても割れを生ずる前に凝固が完了するので溶接割れが減少するものと思われる。また、速やかな凝固の進行は、多数の凝固核の発生を促進する一方、発生した凝固核の成長が抑制されて凝固組織が微細化して強度が向上し、P等の低融点不純物元素の結晶粒界への偏析を防止して粒界の延性低下を抑止し、これらの作用により溶接割れを抑制する効果もあると考えられる。上述した液相の残存量等の溶接割れに影響を及ぼす因子は、鋳鋼の組成に起因しており、その組成は、最後の液相が消滅して凝固が全て終了する凝固終了までの凝固温度範囲ΔTではなく、凝固開始から70%の凝固が終了するまでの凝固温度範囲ΔT0.7に顕著に反映されるため、ΔTがほぼ同一な場合、ΔT0.7の小さい方が溶接割れを生じ難いものと推測される。
 上述したように図1に示すE点のピークの熱流値を小さくすればΔT0.7が小さくなる。E点は、凝固後期のCr炭化物とオーステナイトの共晶が晶出することにともなって生ずる熱流の変化である。従って、Cr炭化物とオーステナイトの共晶の晶出量を減少できれば、E点のピークの熱流値を小さくして、ΔT0.7を小さくできると考えられる。
 この調査結果に基づいて、本発明者は、溶接性を改善するために基本成分の含有量についてさらに検討して、Cr炭化物とオーステナイトの共晶の晶出量を制御するための成分パラメータを見出した。すなわち、Si、Cr、Ni、W及びMoの含有量を少なくし、前記式(1)の(C-Nb/8)が小さくなるように制御すれば、凝固後期に生ずるCr炭化物とオーステナイトの共晶の晶出量が減少し、図1に示すE点のピークの熱流値が小さくなってΔT0.7が小さくなり、溶接割れ発生の感受性が低くなる。
 式(4)は、上記検討から見出された、Cr炭化物とオーステナイトとの共晶の晶出を制御するための成分パラメータであり、溶接割れ発生の感受性を低減して溶接性を改善する指標である。具体的には、C、Si、Cr、Ni、W、Mo及びNbの含有量から式(4)で与えられる左辺の値を0.96以下とすれば、溶接割れ発生の感受性を低減して、Siを増量しても溶接性の良好なオーステナイト系耐熱鋳鋼とできる。一方、式(4)の左辺の値が0.96を超えると、個々の元素の含有量が上述した本発明の範囲内であっても、Cr炭化物とオーステナイトの共晶の晶出量が多くなり、E点のピークの熱流値が大きくなってΔT0.7が拡大して、溶接割れの発生を招く。このため、本発明においては、溶接性を改善するために、上述のC、Si、Cr、Ni、W、Mo及びNbの個々の含有量の限定に加えて、式(4)の左辺の値を0.96以下に限定した。
 凝固温度範囲ΔT0.7と式(4)の左辺の値、及び溶接割れ発生の関係について調査した結果、本発明の組成範囲内において、式(4)の左辺の値が0.96以下であれば、ΔT0.7は70℃以下となって溶接割れの発生はなく、一方、式(4)の左辺の値が0.96を超えると、ΔT0.7が70℃を超えて溶接割れが発生することがわかった。
 溶接性の見地のみからすれば、凝固において、図1に示すE点を生じなければ、ΔT0.7のみならず、ΔTも小さくなって溶接性は大幅に向上する。E点を生じないためには、Cr炭化物とオーステナイトの共晶を晶出させないように式(4)の左辺の値ができる限り小さくなるよう関係する合金元素の含有量を規定すればよい。しかし、Cr炭化物とオーステナイトの共晶の晶出が極端に減少すると、高温強度や耐酸化性が不足して本発明のオーステナイト系耐熱鋳鋼の本来機能である耐熱性と耐久性を確保できない。従って、式(4)で与えられる左辺の値の下限は、上述のSi、Cr、Ni、W及びMoの含有量及び(C-Nb/8)の値に応じて制限される。
 このように、C、Si、Cr、Ni、W、Mo及びNbについての個々の含有量だけでなく、その総量を上記式(4)の範囲内に制限することによって、Cr炭化物とオーステナイトとの共晶による晶出量を減少させ、凝固温度範囲ΔT0.7を縮小できる。その結果、凝固開始後に速やかに凝固が進行するので、結果として溶接割れ感受性が大幅に低下する。
[2]特性
(14)酸化減量:20 mg/cm2以下
 本発明のオーステナイト系耐熱鋳鋼は、1000℃の大気中に200時間保持したときの酸化減量が20 mg/cm2以下であるのが好ましい。オーステナイト系耐熱鋳鋼からなる排気系部品は、エンジンからの排ガスにより高温となり、硫黄酸化物、窒素酸化物等の酸化性ガスに曝されて部材表面に酸化膜を生成する。さらに酸化が進行すると、生成した酸化膜を起点に亀裂が入り部材内部まで酸化が進展する。最終的には部材の表面から裏面まで亀裂が貫通して排ガスの漏洩や部材の割れを招く。
 オーステナイト系耐熱鋳鋼を、1000℃を超える温度の排ガスに曝される排気系部品に使用する場合、排気系部品の表面温度は950~1000℃付近に到達する。1000℃の大気雰囲気に200時間保持したときの酸化減量が20 mg/cm2を超えると、亀裂の起点となる酸化膜の生成が多くなり、耐酸化性が不十分となる。この条件での酸化減量が20 mg/cm2以下ならば、酸化膜の生成及び亀裂の発生が抑制されるので、耐酸化性に優れ、高い耐熱性及び耐久性と長い寿命を有するオーステナイト系耐熱鋳鋼が得られる。本発明のオーステナイト系耐熱鋳鋼の酸化減量は15 mg/cm2以下であるのがより好ましく、10 mg/cm2以下であるのが最も好ましい。
(15)熱疲労寿命:800サイクル以上
 本発明のオーステナイト系耐熱鋳鋼は、加熱上限温度1000℃、温度振幅850℃以上、及び拘束率0.25の条件で加熱冷却する熱疲労試験により測定した熱疲労寿命が800サイクル以上であるのが好ましい。排気系部品には、エンジンの運転(加熱)と停止(冷却)の繰り返しに対する熱疲労寿命が長いことが要求される。熱疲労寿命は、耐熱性及び耐久性の優劣を表す指標の1つである。熱疲労試験での加熱冷却の繰り返しで生じる亀裂や変形により、熱疲労破壊に至るまでのサイクル数が多いほど熱疲労寿命が長く、耐熱性及び耐久性に優れている。
 熱疲労寿命は、例えば、標点間距離25 mm、及び直径10 mmの平滑丸棒試験片に、大気中で加熱上限温度を1000℃、冷却下限温度を150℃、温度振幅を850℃以上、1サイクルを昇温時間2分、保持時間1分、及び冷却時間4分の合計7分として、加熱冷却サイクルを繰り返し、加熱冷却に伴う伸縮を機械的に拘束して熱疲労破壊を起こさせることにより評価できる。熱疲労寿命の判定基準は、加熱冷却の繰り返しに伴う荷重の変化から求まる荷重-温度線図において、2サイクル目の最大引張荷重(冷却下限温度で発生)を基準(100%)として、各サイクルで測定される最大引張荷重が75%に低下したときのサイクル数とした。機械的な拘束の程度は、(自由熱膨張伸び-機械的拘束下での伸び)/(自由熱膨張伸び)で定義される拘束率で表す。例えば、拘束率1.0とは、試験片が例えば150℃から1000℃まで加熱されたときに、全く伸びを許さない機械的拘束条件をいう。また拘束率0.5とは、自由膨張伸びが例えば2 mm伸びるところを1 mmの伸びしか許さない機械的拘束条件をいう。従って拘束率0.5では、昇温中には圧縮荷重がかかり、降温中には引張荷重がかかる。実際の自動車エンジン用の排気系部品の拘束率は、ある程度伸びを許容する0.1~0.5程度であることから、本発明のオーステナイト系耐熱鋳鋼は拘束率0.25で規定した。
 加熱上限温度1000℃、温度振幅850℃以上、及び拘束率0.25の条件での熱疲労寿命が800サイクル以上であれば、オーステナイト系耐熱鋳鋼は優れた熱疲労寿命を有するということができ、1000℃以上と高温の排ガスに曝される排気系部品に好適である。本発明のオーステナイト系耐熱鋳鋼からなる排気系部品は、1000℃以上の排ガスに曝される環境下でも耐熱性及び耐久性に優れ、熱疲労破壊に至るまでの寿命が長い。本発明のオーステナイト系耐熱鋳鋼は、上述したと同一の条件の熱疲労試験により測定した熱疲労寿命が850サイクル以上であるのがより好ましく、900サイクル以上であるのが最も好ましい。
[3]排気系部品
 本発明の排気系部品は、上記20Cr-10Ni系の本発明のオーステナイト系耐熱鋳鋼を用いて製造される。排気系部品の好ましい例は、エキゾーストマニホルド、タービンハウジング、タービンハウジングとエキゾーストマニホルドとを一体に鋳造したタービンハウジング一体エキゾーストマニホルド、触媒ケース、触媒ケースとエキゾーストマニホルドとを一体に鋳造した触媒ケース一体エキゾーストマニホルド、又はエキゾーストアウトレットであるが、これに限定されず、板金製又はパイプ製の部材と溶接接合して使用される鋳物部材を含み、本発明のオーステナイト系耐熱鋳鋼からなる鋳造製のいかなる排気系部品も対象とされる。
 本発明の排気系部品は、1000℃以上の高温の排ガスに曝されて、排気系部品自体の表面温度が950~1000℃付近に達しても高い耐酸化性と熱疲労寿命等優れた耐熱性と耐久性を発揮する。さらに、優れた溶接性も有することから、板金部材やパイプ部材と鋳物部材、鋳物部材同士の溶接接合、又は鋳造欠陥の溶接補修において溶接割れを生ずることがない。しかも、希少金属を削減して安価に製造できるため経済性にも優れる。つまり本発明の排気系部品は、当該部品に要求される高い耐熱性や耐久性を有し、さらに軽量化やコンパクト化等に対応可能で、大衆車にも適用が容易なことから、自動車の排ガス浄化、燃費改善及び安全性向上に貢献することが期待される。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。ここでも特に断りがない限り、合金を構成する各元素の含有量は質量%で表す。
実施例1~28及び比較例1~22
 実施例1~28及び比較例1~22の耐熱鋳鋼供試材の化学組成を表1及び表2に示す。表1及び表2において、式(1)の値~式(4)の値とは、それぞれ本発明で規定する式(1)~式(4)中の式の値であり、具体的には式(1)の値とは(C-Nb/8)の値、式(2)の値とは[17.5Si-(W+2Mo)]の値、式(3)の値とは[5.6Si+(W+2Mo)]の値、式(4)の値とは[0.08Si+(C-Nb/8)+0.015Cr+0.011Ni+0.03W+0.02Mo]の値である(ここで、各式中の元素記号は鋳鋼中に含まれる各元素の含有量(質量%)を示す。)。
 実施例1~28は本発明で規定する組成範囲内のオーステナイト系耐熱鋳鋼である。比較例1、2、8~17は、C、Ni、Mn、Cr、W、Mo、(W+2Mo)及びNbのうちのいずれか1つ以上の元素の含有量が、本発明で規定する組成範囲外の鋳鋼であり、このうち比較例2及び16は式(4)の値が大きすぎる鋳鋼である。比較例3~5は式(2)の値が小さすぎる鋳鋼で、このうち比較例4はSiの含有量が少なすぎる鋳鋼であり、比較例5は特開平7-228948号に記載の20Cr-10Ni系のオーステナイト系耐熱鋳鋼の一例である。比較例6及び7は式(3)の値が大きすぎる鋳鋼で、このうち比較例7はSiの含有量が多すぎる鋳鋼である。比較例18~21は式(4)の値が大きすぎる鋳鋼である。比較例22は特開2000-291430号に記載の25Cr-20Ni系の高Cr高Niオーステナイト系耐熱鋳鋼の一例である。
 実施例1~28及び比較例1~22の各鋳鋼を、100 kg高周波溶解炉(塩基性ライニング)を用いて大気溶解した後、1550~1600℃で出湯し、直ちに1500~1550℃でJIS規格Y形B号供試材となる鋳型及び溶接性評価の円筒状試験片となる鋳型とに注湯して供試材を作製した。各供試材に対して以下の評価試験を行った。
Figure JPOXMLDOC01-appb-T000001
表1(続き)
Figure JPOXMLDOC01-appb-I000002
表1(続き)
Figure JPOXMLDOC01-appb-I000003
式(1)の値:(C-Nb/8)
式(2)の値:17.5Si-(W+2Mo)
式(3)の値:5.6Si+(W+2Mo)
式(4)の値:0.08Si+(C-Nb/8)+0.015Cr+0.011Ni+0.03W+0.02Mo
Figure JPOXMLDOC01-appb-T000004
表2(続き)
Figure JPOXMLDOC01-appb-I000005
表2(続き)
Figure JPOXMLDOC01-appb-I000006
式(1)の値:(C-Nb/8)
式(2)の値:17.5Si-(W+2Mo)
式(3)の値:5.6Si+(W+2Mo)
式(4)の値:0.08Si+(C-Nb/8)+0.015Cr+0.011Ni+0.03W+0.02Mo
(1)高温耐力
 排気系部品の高温強度の指標として1000℃における0.2%耐力(MPa)を評価した。各供試材から切り出した標点間距離50 mm、直径10 mmの平滑丸棒つばつき試験片を、電気-油圧サーボ式材料試験機(株式会社島津製作所製、サーボパルサーEHF-ED10T-20L)に取り付け、各試験片の高温耐力として、大気中1000℃で0.2%耐力(MPa)を測定した。評価結果を表3及び表4に示す。表3及び表4から明らかなように、本発明の実施例1~28の試験片の高温耐力は50 MPa以上であり、特にC含有量が0.40%以上では高温耐力が安定して60 MPa以上であり、C含有量の増加が高温強度の向上に寄与することがわかる。
(2)酸化減量
 排気系部品が1000℃付近の排ガスに曝されることを想定し、1000℃における耐酸化性を評価した。耐酸化性の評価は、各供試材から切り出した直径10 mm、長さ20 mmの丸棒試験片を作製し、これを大気中1000℃に200時間保持し、取り出した後ショットブラスト処理を施して酸化スケールを除去し、酸化試験前後の単位面積当たりの質量変化[酸化減量(mg/cm2)]を求めることにより行った。評価結果を表3及び表4に示す。
 表3及び4から明らかなように、実施例1~28はCr及びNiの含有量が少ないにもかかわらず、酸化減量はいずれも本発明のオーステナイト系耐熱鋳鋼の好ましい酸化減量である20 mg/cm2以下と少なく、25Cr-20Ni系の高Cr高Niオーステナイト系耐熱鋳鋼の比較例22と同等の耐酸化性を示すことがわかる。一方、Si含有量の少ない比較材4、Mn含有量の多い比較材9、Cr含有量の少ない比較材10、W含有量の多い比較材13、Mo含有量の多い比較材15、Nb含有量の少ない比較材16は、いずれも酸化減量が20 mg/cm2を超えて多い。この結果から本発明の耐熱鋳鋼は、20Cr-10Ni系でありながら、1000℃以上の排ガスに曝される排気系部品用に十分な耐酸化性を有することが確認された。
(3)熱疲労寿命
 熱疲労寿命は、各供試材から切り出した標点間距離25 mm、直径10 mmの平滑丸棒試験片を、前記高温耐力試験と同じ電気-油圧サーボ式材料試験機に拘束率0.25で取り付けた後、各試験片に大気中で、冷却下限温度150℃、加熱上限温度1000℃、温度振幅850℃で、1サイクルを昇温時間2分、保持時間1分、及び冷却時間4分の合計7分として加熱冷却サイクルを繰り返し評価した。2サイクル目の荷重-温度線図における最大引張荷重を基準(100%)に、最大引張荷重が75%に低下したときの加熱冷却サイクルの数をカウントして熱疲労寿命とした。評価結果を表3及び表4に示す。
 表3及び4から明らかなように、実施例1~28はCr及びNiの含有量が少ないにもかかわらず、熱疲労寿命はいずれも800サイクル以上と長く、25Cr-20Ni系の高Cr高Niオーステナイト系耐熱鋳鋼の比較例22と同等の熱疲労寿命を示すことがわかる。一方、C含有量の少ない比較材1、式(2)の値が小さすぎる比較例3~5、式(3)の値が大きすぎる比較例6、7、Ni含有量の少ない比較例8、Cr、W、Mo、(W+2Mo)、Nbのうちのいずれか1つ以上の含有量が本発明で規定する組成範囲外の比較例10~17は、いずれも熱疲労寿命が800サイクル未満で短い。特に、従来の20Cr-10Ni系のオーステナイト系耐熱鋳鋼に相当する比較例5は、式(2)の値が本発明で規定する17.5より小さく、熱疲労寿命が800サイクル未満であった。この結果から本発明の耐熱鋳鋼は、20Cr-10Ni系でありながら、1000℃以上の排ガスに曝される排気系部品用に十分な熱疲労寿命を有することが確認された。
 Si及び(W+2Mo)の組成とオーステナイト系耐熱鋳鋼の熱疲労寿命との関係を図2に示す。図2には、実施例1~28と、Si、W、Mo、(W+2Mo)、式(2)の値及び式(3)の値を除いてその他の組成及び関係式の値が本発明で規定する範囲内の比較例3~7及び比較例12~15とがプロットされている。各点の形状は、熱疲労寿命(サイクル数)を表し、800未満のものをダイヤ印(◆)、800以上850未満のものを三角印(△)、850以上900未満のものを四角印(□)、900以上のものを丸印(○)で表した。実線太枠は、本発明の規定範囲となるSi:1.1~2の領域、(W+2Mo):1.5~4の領域、式(2)で表す17.5≦17.5Si-(W+2Mo)の領域、式(3)で表す5.6Si+(W+2Mo)≦13.7の領域についての夫々の境界線を示し、この実線太枠で囲まれた領域内が本発明で規定するSi及び(W+2Mo)の組成範囲を満足する領域である。図2から、本発明のオーステナイト系耐熱鋳鋼は、Si及び(W+2Mo)が、この領域内にあれば熱疲労寿命として800サイクル以上を有することがわかる。このことからオーステナイト系耐熱鋳鋼においては、単にSiとW及び/又はMoの個々の含有量に基づいた組成範囲ではなく、優れた熱疲労寿命を呈するSiと(W+2Mo)との関係に基づいた組成範囲が存在することを意味している。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
(4)溶接性
 溶接性は、各供試材から外径50 mm、肉厚5 mm、溶接部の開先形状をI型とした1対の円筒状試験片を製作し、これを下記の溶接条件で突合せ溶接後、溶接開始部分及び溶接終了部分を除いた7箇所を切断して割れの発生状況を確認することで評価した。表3及び表4に溶接性の評価結果を示す。
[溶接条件]
 溶接方法:MIGパルス溶接
 ワイヤ:φ1.2 mm、JIS Z 3321 Y310ソリッドワイヤ
 平均電流:200 A
 電圧:20 V
 送り速度:110 cm/min
 ノズル-ワーク間距離:10 mm
 シールドガスの種類:Ar-2%O2
 シールドガスの流量:15 L/min
 トーチ角度:10°(前進法)
 予熱:なし
 排気系部品には、板金部材やパイプ部材と鋳物部材、又は鋳物部材同士の溶接接合、あるいは鋳物部材の鋳造欠陥の溶接補修において溶接割れを生ずることがない十分な溶接性が必要である。表3及び表4から明らかなように、実施例1~28には溶接割れは認められなかった。しかし、C含有量が多すぎ、かつ式(4)の値が大きすぎる比較例2、Si含有量が多すぎる比較例7、式(4)の値が大きすぎる比較例16、18~22は、溶接割れが発生した。割れの発生状況としては、Siが多すぎる比較例7は母材側に割れが発生し、それ以外の比較例2、16、18~22はビードの割れが発生した。この結果から本発明の耐熱鋳鋼は、排気系部品に必要な溶接性を有することが確認された。
(5)凝固温度範囲ΔT0.7
 凝固温度範囲ΔT0.7は、各供試材から切り出した直径2 mm、長さ2 mmの試験片を示差走査熱量測定装置(DSC(SETARAM製))により、アルゴン雰囲気中で900℃までの昇温速度を15℃/分、900~1600℃までの昇温速度を5℃/分で昇温して得た熱分析曲線から、画像解析装置(旭化成製IP1000型)により以下のように画像解析処理して求めた。すなわち、図1を用いて前述したとおり、凝固開始から全ての凝固が終了するまでの凝固温度範囲ΔTでの温度と熱流の関係から図1の斜線で示された面積を総計(100%)として算出し、これに対して、凝固開始を起点として単位温度毎に熱流の面積を累積して、その累積面積が70%に達したときの温度を凝固温度範囲ΔT0.7とした。得られた凝固温度範囲ΔT0.7(℃)を表3及び表4に示す。
 表3及び4から明らかなように、式(4)の値が0.96以下で、凝固温度範囲ΔT0.7が70℃以下の実施例1~28には溶接割れは認められなかった。しかし、式(4)の値が0.96を超えて、凝固温度範囲ΔT0.7が70℃を超えた比較例2、16、18~22は、溶接割れが発生した。この結果から本発明の耐熱鋳鋼は、凝固温度範囲ΔT0.7を70℃以下とすることで良好な溶接性を確保できることが確認された。なお、比較例7は、式(4)の値が0.96以下で凝固温度範囲ΔT0.7が70℃以下にも関わらず溶接割れが発生した。比較例7の割れ発生箇所がビードではなく母材であることから、比較例7はSi含有量が単独で過剰なため、鋳鋼母材の結晶粒界に濃化した低融点のSiが、溶接時の入熱により局部的に溶融して割れを生じたものと考えられる。
実施例29
 実施例15のオーステナイト系耐熱鋳鋼を用いて、自動車用排気系部品のエキゾーストマニホルド(主要肉厚4.0~5.0 mm)を鋳造した後、鋳放しのまま機械加工した。得られたエキゾーストマニホルドには引け巣、湯廻り不良、ガス欠陥等の鋳造欠陥は認められず、また機械加工での切削不具合や切削工具の異常摩耗、損傷等もなかった。
 次に、排気量2000ccの直列4気筒高性能ガソリンエンジンに相当する排気シミュレータに、本実施例のエキゾーストマニホルドを組み付け、貫通亀裂発生までの寿命、亀裂及び酸化の発生状況を調べる耐久試験を実施した。耐久試験は、全負荷時の排ガス温度がエキゾーストマニホルドの排ガス下流側となる集合部の出口で約1050℃、エキゾーストマニホルド表面の加熱上限温度が集合部で約1000℃、冷却下限温度が集合部で約90℃(温度振幅=約910℃)の条件で、10分間の加熱及び10分間の冷却からなる加熱冷却サイクルを1サイクルとして行った。なお、加熱冷却サイクルの目標は1500サイクルとした。
 耐久試験の結果、本実施例のエキゾーストマニホルドは、排ガスの漏洩や割れを生ずることなく、1500サイクルの耐久試験をクリアした。耐久試験後の詳細な観察(目視及び浸透探傷試験)の結果、浸透探傷試験において枝管の一部に極微小な亀裂が発生していることが確認されたものの、貫通亀裂はもとより目視で確認できる亀裂は発生せず、部品全体の酸化も少なかった。これにより本実施例のエキゾーストマニホルドは優れた耐熱性や耐久性を有することが確認された。
比較例23
 比較例5の鋳鋼を用いて、実施例29と同じ条件で同一形状のエキゾーストマニホルドを製造したところ、鋳造欠陥や機械加工での不具合はなかった。得られたエキゾーストマニホルドを排気シミュレータに組み付け、実施例29と同一条件で1500サイクルを目標に耐久試験を実施した。耐久試験でのエキゾーストマニホルドの集合部の表面温度は実施例29とほぼ同じであった。
 耐久試験の結果、比較例23のエキゾーストマニホルドは、排ガスの漏洩や割れを生ずることなく、1500サイクルの耐久試験をクリアした。耐久試験後の実施例29と同様の詳細な観察の結果、集合部に、貫通には至らなかったものの目視で確認できる亀裂が認められ、また浸透探傷試験において枝管に小さな亀裂が発生していることが確認された。また、部品全体の酸化は少ないものの、酸化の程度は実施例29のエキゾーストマニホルドと比較すると多かった。
 上記のとおり、本発明のオーステナイト系耐熱鋳鋼を用いて製造した排気系部品は、排気系部品の温度として1000℃付近での高い耐酸化性や熱疲労寿命を有し、耐熱性と耐久性に優れていることが確認された。本発明の排気系部品は、希少金属の含有量が少なく、価格や省資源の点で経済性が良好なオーステナイト系耐熱鋳鋼からなるので、自動車用エンジンの構成部品として好適である。
 以上、自動車エンジン用の排気系部品について説明したが、本発明はこれに限定されるものではなく、本発明のオーステナイト系耐熱鋳鋼は、例えば、建設機械、船舶、航空機等の燃焼機関や、溶解炉、熱処理炉、焼却炉、キルン、ボイラ、コージェネ装置等の熱機器や、石油化学プラント、ガスプラント、火力発電プラント、原子力発電プラント等各種プラント設備等の、高い耐酸化性や熱疲労寿命等優れた耐熱性や耐久性と同時に溶接性が要求される鋳物部品にも使用可能である。

Claims (5)

  1.  質量%で、
    C:0.3~0.6%、
    Si:1.1~2%、
    Mn:1.5%以下、
    Cr:17.5~22.5%、
    Ni:8~13%、
    W及びMoの少なくとも1種:(W+2Mo)で1.5~4%、
    Nb:1~4%、
    N:0.01~0.3%、
    S:0.01~0.5%、
    残部Fe及び不可避不純物からなり、かつ下記式(1)、(2)、(3)及び(4)を満足することを特徴とするオーステナイト系耐熱鋳鋼。
    0.05≦(C-Nb/8)≦0.6 ・・・(1)
    17.5≦17.5Si-(W+2Mo) ・・・(2)
    5.6Si+(W+2Mo)≦13.7 ・・・(3)
    0.08Si+(C-Nb/8)+0.015Cr+0.011Ni+0.03W+0.02Mo≦0.96 ・・・(4)
    ここで、各式中の元素記号は鋳鋼中に含まれる各元素の含有量(質量%)を示す。
  2.  請求項1に記載のオーステナイト系耐熱鋳鋼において、1000℃において200時間大気中に保持したときの酸化減量が20 mg/cm2以下であることを特徴とするオーステナイト系耐熱鋳鋼。
  3.  請求項1又は2に記載のオーステナイト系耐熱鋳鋼において、加熱上限温度1000℃、温度振幅850℃以上、及び拘束率0.25の条件で加熱冷却する熱疲労試験により測定した熱疲労寿命が800サイクル以上であることを特徴とするオーステナイト系耐熱鋳鋼。
  4.  請求項1~3のいずれかに記載のオーステナイト系耐熱鋳鋼からなることを特徴とする排気系部品。
  5.  請求項4に記載の排気系部品において、エキゾーストマニホルド、タービンハウジング、タービンハウジング一体エキゾーストマニホルド、触媒ケース、触媒ケース一体エキゾーストマニホルド、又はエキゾーストアウトレットであることを特徴とする排気系部品。
PCT/JP2009/053195 2008-02-22 2009-02-23 オーステナイト系耐熱鋳鋼及びそれからなる排気系部品 WO2009104792A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/918,782 US8388889B2 (en) 2008-02-22 2009-02-23 Heat-resistant, austenitic cast steel and exhaust member made thereof
JP2009554421A JP5353716B2 (ja) 2008-02-22 2009-02-23 オーステナイト系耐熱鋳鋼及びそれからなる排気系部品
EP09712485.3A EP2258883B1 (en) 2008-02-22 2009-02-23 Austenitic heat-resistant cast steel and exhaust system components made therefrom
CN2009801057428A CN101946018B (zh) 2008-02-22 2009-02-23 奥氏体系耐热铸钢及由其构成的排气系统部件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008040796 2008-02-22
JP2008-040796 2008-02-22

Publications (1)

Publication Number Publication Date
WO2009104792A1 true WO2009104792A1 (ja) 2009-08-27

Family

ID=40985665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053195 WO2009104792A1 (ja) 2008-02-22 2009-02-23 オーステナイト系耐熱鋳鋼及びそれからなる排気系部品

Country Status (6)

Country Link
US (1) US8388889B2 (ja)
EP (1) EP2258883B1 (ja)
JP (1) JP5353716B2 (ja)
KR (1) KR101576069B1 (ja)
CN (1) CN101946018B (ja)
WO (1) WO2009104792A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129877A (ja) * 2009-11-20 2011-06-30 Hitachi Kokusai Electric Inc 半導体装置の製造方法および基板処理装置
WO2011124970A1 (en) * 2010-04-07 2011-10-13 Toyota Jidosha Kabushiki Kaisha Austenitic heat-resistant cast steel
CN103060719A (zh) * 2013-02-03 2013-04-24 王达 一种防锈耐热铸造不锈钢管的生产方法
CN103060720A (zh) * 2013-02-03 2013-04-24 刘芝英 一种改进的铸造不锈钢管
CN103060721A (zh) * 2013-02-03 2013-04-24 王康 一种改进的铸造不锈钢管的生产方法
JPWO2013168770A1 (ja) * 2012-05-10 2016-01-07 日立金属株式会社 被削性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JP2019158454A (ja) * 2018-03-09 2019-09-19 三菱重工業株式会社 腐食深さ推定方法、腐食深さ推定プログラム、交換時期算出方法及び交換時期算出プログラム
US10626487B2 (en) 2013-03-22 2020-04-21 Toyota Jidosha Kabushiki Kaisha Austenitic heat-resistant cast steel and method for manufacturing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028745B2 (en) * 2011-11-01 2015-05-12 Honeywell International Inc. Low nickel austenitic stainless steel
CN102963146B (zh) * 2012-09-29 2015-12-02 深圳光韵达光电科技股份有限公司 一种smt激光模板及其制作方法
CN104651743A (zh) * 2013-11-22 2015-05-27 南红艳 一种多元素复合成分耐热钢
WO2016117731A1 (en) * 2015-01-23 2016-07-28 Keyyang Precision Co., Ltd. Austenitic heat-resistant cast steel and turbine housing for turbocharger using the same
DE102016208301A1 (de) * 2016-05-13 2017-11-16 Continental Automotive Gmbh Stahl-Werkstoff für Hochtemperatur-Anwendungen und Turbinengehäuse aus diesem Werkstoff
CN111542629A (zh) 2017-12-28 2020-08-14 株式会社Ihi 耐热铸钢及增压器部件
WO2021009807A1 (ja) * 2019-07-12 2021-01-21 ヒノデホールディングス株式会社 オーステナイト系耐熱鋳鋼および排気系部品
CN114086077B (zh) * 2022-01-11 2022-05-20 科华控股股份有限公司 铸造铁基奥氏体抗蠕变钢及其制备方法、应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228948A (ja) 1994-02-16 1995-08-29 Hitachi Metals Ltd 鋳造性および被削性の優れたオーステナイト系耐熱鋳鋼およびそれからなる排気系部品
JP2000204946A (ja) * 1998-11-11 2000-07-25 Hitachi Metals Ltd ステンレス鋳鋼製排気系複合部品及びその製造方法
JP2000291430A (ja) 1999-04-05 2000-10-17 Hitachi Metals Ltd 排気系部品、およびそれを用いた内燃機関、並びに排気系部品の製造方法
JP2002309935A (ja) * 2001-02-08 2002-10-23 Hitachi Metals Ltd 耐熱鋳鋼製排気系部品
WO2005103314A1 (ja) * 2004-04-19 2005-11-03 Hitachi Metals, Ltd. 高Cr高Niオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JP2005320606A (ja) * 2004-05-11 2005-11-17 Daido Steel Co Ltd オーステナイト系鋳鋼品及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3417636B2 (ja) * 1994-02-16 2003-06-16 日立金属株式会社 鋳造性および被削性の優れたオーステナイト系耐熱鋳鋼およびそれからなる排気系部品
JPH07228950A (ja) * 1994-02-16 1995-08-29 Hitachi Metals Ltd 高温強度および被削性の優れたオーステナイト系耐熱鋳鋼およびそれからなる排気系部品
DE69430840T2 (de) 1994-02-16 2003-01-30 Hitachi Metals Ltd Hitzebeständiger austenitischer Gussstahl und daraus hergestellte Bauteile eines Auspuffsystems
JP3458971B2 (ja) * 1994-04-14 2003-10-20 日立金属株式会社 高温強度および被削性の優れたオーステナイト系耐熱鋳鋼およびそれからなる排気系部品
JP3700977B2 (ja) * 2003-03-26 2005-09-28 三菱製鋼株式会社 安価で、鋳造性、高温強度、耐酸化性の良好なオーステナイト系耐熱鋳鋼及びそれからなる排気系部品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228948A (ja) 1994-02-16 1995-08-29 Hitachi Metals Ltd 鋳造性および被削性の優れたオーステナイト系耐熱鋳鋼およびそれからなる排気系部品
JP2000204946A (ja) * 1998-11-11 2000-07-25 Hitachi Metals Ltd ステンレス鋳鋼製排気系複合部品及びその製造方法
JP2000291430A (ja) 1999-04-05 2000-10-17 Hitachi Metals Ltd 排気系部品、およびそれを用いた内燃機関、並びに排気系部品の製造方法
JP2002309935A (ja) * 2001-02-08 2002-10-23 Hitachi Metals Ltd 耐熱鋳鋼製排気系部品
WO2005103314A1 (ja) * 2004-04-19 2005-11-03 Hitachi Metals, Ltd. 高Cr高Niオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JP2005320606A (ja) * 2004-05-11 2005-11-17 Daido Steel Co Ltd オーステナイト系鋳鋼品及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2258883A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129877A (ja) * 2009-11-20 2011-06-30 Hitachi Kokusai Electric Inc 半導体装置の製造方法および基板処理装置
WO2011124970A1 (en) * 2010-04-07 2011-10-13 Toyota Jidosha Kabushiki Kaisha Austenitic heat-resistant cast steel
JP2011219801A (ja) * 2010-04-07 2011-11-04 Toyota Motor Corp オーステナイト系耐熱鋳鋼
US9163303B2 (en) 2010-04-07 2015-10-20 Toyota Jidosha Kabushiki Kaisha Austenitic heat-resistant cast steel
JPWO2013168770A1 (ja) * 2012-05-10 2016-01-07 日立金属株式会社 被削性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
CN103060719A (zh) * 2013-02-03 2013-04-24 王达 一种防锈耐热铸造不锈钢管的生产方法
CN103060720A (zh) * 2013-02-03 2013-04-24 刘芝英 一种改进的铸造不锈钢管
CN103060721A (zh) * 2013-02-03 2013-04-24 王康 一种改进的铸造不锈钢管的生产方法
US10626487B2 (en) 2013-03-22 2020-04-21 Toyota Jidosha Kabushiki Kaisha Austenitic heat-resistant cast steel and method for manufacturing the same
JP2019158454A (ja) * 2018-03-09 2019-09-19 三菱重工業株式会社 腐食深さ推定方法、腐食深さ推定プログラム、交換時期算出方法及び交換時期算出プログラム
JP7011496B2 (ja) 2018-03-09 2022-01-26 三菱重工業株式会社 腐食深さ推定方法、腐食深さ推定プログラム、交換時期算出方法及び交換時期算出プログラム

Also Published As

Publication number Publication date
US8388889B2 (en) 2013-03-05
KR20100113520A (ko) 2010-10-21
JP5353716B2 (ja) 2013-11-27
EP2258883A4 (en) 2014-05-14
CN101946018A (zh) 2011-01-12
EP2258883A1 (en) 2010-12-08
US20110000200A1 (en) 2011-01-06
KR101576069B1 (ko) 2015-12-09
EP2258883B1 (en) 2015-04-15
JPWO2009104792A1 (ja) 2011-06-23
CN101946018B (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5353716B2 (ja) オーステナイト系耐熱鋳鋼及びそれからなる排気系部品
US8241558B2 (en) High-Cr, high-Ni, heat-resistant, austenitic cast steel and exhaust equipment members formed thereby
JP5862570B2 (ja) 優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品
JP6481692B2 (ja) 熱疲労特性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JP5626338B2 (ja) 常温靭性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
JP6160625B2 (ja) 被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品
JP3427502B2 (ja) 自動車排気系部材用フェライトステンレス鋼
JP6098637B2 (ja) 被削性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品
JP2022115553A (ja) 尿素scrシステム用ステンレス鋼製溶接部材
JP2579151B2 (ja) 耐熱鋳鋼
JPH0559978B2 (ja)
JPH0559979B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105742.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712485

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009554421

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107015874

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12918782

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6205/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009712485

Country of ref document: EP