WO2012043860A1 - 優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品 - Google Patents
優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品 Download PDFInfo
- Publication number
- WO2012043860A1 WO2012043860A1 PCT/JP2011/072811 JP2011072811W WO2012043860A1 WO 2012043860 A1 WO2012043860 A1 WO 2012043860A1 JP 2011072811 W JP2011072811 W JP 2011072811W WO 2012043860 A1 WO2012043860 A1 WO 2012043860A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- cast steel
- heat
- toughness
- nbc
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/16—Selection of particular materials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2530/00—Selection of materials for tubes, chambers or housings
- F01N2530/02—Corrosion resistive metals
- F01N2530/04—Steel alloys, e.g. stainless steel
Definitions
- the present invention is a ferritic heat-resistant cast steel having excellent hot-water flow, gas defect resistance, toughness and machinability, and suitable for exhaust parts of automobile gasoline engines and diesel engines, particularly exhaust manifolds, turbine housings, etc. And an exhaust system component comprising the same.
- heat-resistant cast iron such as high-Si spheroidal graphite cast iron and Ni-resist cast iron (Ni-Cr austenitic cast iron) and ferritic heat-resistant cast steel Austenitic heat-resistant cast steel has been used.
- ferritic 4% Si-0.5% Mo spheroidal graphite cast iron shows relatively good heat-resistant properties up to around 800 ° C, but is inferior in durability at temperatures above that. .
- heat-resistant cast iron such as Ni-resist cast iron and austenitic heat-resistant cast steel containing a large amount of rare metals such as Ni, Cr and Co are exhaust system parts. Is used.
- Ni-resist cast iron not only has a high content of expensive Ni, but also has a poor thermal crack resistance because the base structure is austenite, the linear expansion coefficient is large, and graphite is the starting point of fracture in the microstructure.
- Austenitic heat-resistant cast steel does not contain graphite as a starting point of fracture, but has a high coefficient of linear expansion, and therefore has insufficient heat cracking resistance near 900 ° C.
- austenitic heat-resistant cast steel contains not only expensive and inferior cost because it contains a lot of rare metals, but also has problems such as being susceptible to the global economic situation and uneasy about the stable supply of raw materials. .
- the heat-resistant material used for the exhaust system parts can ensure necessary heat-resistant characteristics with a rare metal as little as possible from the viewpoint of economical efficiency and stable supply of raw materials as well as effective utilization of earth resources.
- the base structure is ferrite rather than austenite.
- the ferrite-based material has a smaller linear expansion coefficient than the austenitic material, the thermal stress generated at the start and start of the engine is small, and the thermal crack resistance is excellent.
- general ferritic cast steel has a high melting point because it has a low C content of about 0.2% by mass or less and does not contain alloy elements such as Ni that lower the melting point unlike austenitic cast steel. Therefore, general ferritic cast steel has poor meltability due to low melt fluidity (hereinafter referred to as “molten fluid flow”), and casting defects such as poor hot water, hot water boundaries and shrinkage cavities are likely to occur during casting. In particular, in exhaust system parts having complicated and / or thin shapes, if the C content is low, good hot water flowability cannot be ensured, casting defects such as hot water runoff and hot water boundaries occur, and production yield is low. .
- ferritic cast steel has a drawback that gas defects due to hydrogen are likely to occur because it hardly contains interstitial solid solution elements.
- the gas defect means that hydrogen contained in the molten metal cannot be dissolved in the molten metal (liquid phase) as the molten metal temperature decreases during casting, and solidifies without being dissolved in the solid phase. It is a defect caused by remaining as a void in the cast product.
- C which is an austenitizing element, dissolves in the base structure by containing more C than is consumed for the formation of NbC, which is a carbide of Nb and C.
- NbC which is a carbide of Nb and C.
- a ⁇ phase is generated at a high temperature during solidification, and an ⁇ ′ phase transformed from the ⁇ phase is generated in the process of cooling to room temperature, thereby improving ductility and oxidation resistance.
- the transformation from the ⁇ phase to the ⁇ ′ phase does not proceed sufficiently, and the transformation from the ⁇ phase to martensite. Martensite has a high hardness, so it significantly deteriorates toughness and machinability at room temperature.
- JP 2007-254885 C 0.10 to 0.50 mass%, Si: 1.00 to 4.00 mass%, Mn: 0.10 to 3.00
- the average crystal grain size of the ferrite phase is reduced by increasing the cooling rate during casting at a thin part with a thickness of 5 mm or less. Strength, tensile strength and elongation at break are increased.
- the ferritic stainless cast steel disclosed in Japanese Patent Laid-Open No. 2007-254885 contains a large amount of Si (1.00 to 4.00% by mass (about 2% by mass or more in the examples)), thereby lowering the melting point and improving the fluidity of the melt.
- high temperature strength, oxidation resistance, carburization resistance and machinability are also improved.
- this ferritic stainless cast steel is inferior in toughness at room temperature because a large amount of Si is dissolved in the ferritic matrix.
- Si dissolved in the ferrite matrix structure lowers the hydrogen solubility limit, thereby increasing the amount of hydrogen released during solidification and promoting the generation of gas defects.
- ferritic heat-resistant cast steel having a C content higher than that of a general ferritic cast steel the present applicant is disclosed in Japanese Patent Application Laid-Open No. 11-61343, and by weight ratio, C: 0.05 to 1.00%, Si: 2% or less, Mn: 2% or less, Cr: 16.0-25.0%, Nb: 4.0-20.0%, W and / or Mo: 1.0-5.0%, Ni: 0.1-2.0%, and N: 0.01-0.15%, balance: Fe And a ferritic heat-resistant cast steel having a high temperature strength (especially creep rupture strength) because it has a Labes phase (Fe 2 M) in addition to an ⁇ phase.
- this ferritic heat-resistant cast steel has excellent high-temperature strength and good molten metal flow properties, it has been found that when a large amount of Nb is contained, gas defects are remarkably generated. For this reason, this ferritic heat-resistant cast steel has not been used for exhaust system parts until now.
- the conventional ferritic heat-resistant cast steel has good molten metal flowability but is inferior in toughness and machinability and easily generates gas defects, so it is not necessarily suitable for use in exhaust system parts.
- toughness and machinability can be improved by heat treatment, heat treatment causes an increase in manufacturing costs. Further, since it is difficult to remove the gas defect, the casting part having the gas defect must be discarded as a defective product, and the production yield is deteriorated.
- the object of the present invention is to ensure excellent hot water flow, gas defect resistance, toughness, and machinability while ensuring heat resistance such as oxidation resistance near 900 ° C, high temperature strength, heat distortion resistance, and heat crack resistance. It is providing the ferritic heat-resistant cast steel which has the property.
- Another object of the present invention is to provide automotive exhaust system parts such as an exhaust manifold and a turbine housing made of such ferritic heat-resistant cast steel.
- the casting material When producing a thin and complex-shaped casting such as an exhaust system part, the casting material is required to have good hot water flowability. It is known that increasing the C content and lowering the solidification start temperature is effective in ensuring the flow of molten metal, but simply increasing the C content will reduce the amount of Cr carbide precipitated. Not only does it increase and the toughness decreases, but the toughness and machinability deteriorate due to the crystallization of the ⁇ phase that transforms into martensite. However, the present inventor has discovered that by increasing Nb together with C, the molten metal flowability can be improved by lowering the solidification start temperature of cast steel while suppressing the decrease in toughness and machinability.
- the solidification start temperature can be further lowered as the amount of Nb increases.
- the reason why the solidification start temperature of the cast steel is lowered is that the solidification start temperature of the primary crystal ⁇ phase ( ⁇ ferrite phase) is lowered due to an increase in Nb.
- the solidification temperature range is widened, more hydrogen can move from the solid phase to the liquid phase via the solid-liquid coexisting phase and escape to the atmosphere through the breathable mold.
- the solidification temperature range is narrow, the liquid phase disappears rapidly, so that hydrogen cannot sufficiently escape, and it is assumed that gas defects are generated by being confined inside the casting. Therefore, it is necessary to regulate the upper limit of the Nb content in order to suppress gas defects.
- the solidification process of the ferritic heat-resistant cast steel of the present invention determined by differential scanning calorimetry (DSC) is schematically shown in FIG. Solidification starts at point A, first crystal ⁇ phase crystallizes (point B), then eutectic crystal ( ⁇ + NbC) phase crystallizes (point C), and finally manganese chromium sulfide (MnCr) S crystallizes. Out (point D) and solidification ends at point E.
- DSC differential scanning calorimetry
- manganese chromium sulfide (MnCr) S crystallizes in the late stage of solidification after eutectic ( ⁇ + NbC) phase crystallization, thereby lowering the solidification end temperature and expanding the solidification temperature range. ing. For this reason, the solid-liquid coexisting phase which becomes the escape route to the outside of hydrogen was increased, and the gas defect resistance was improved.
- Ferritic heat-resistant cast steel of the present invention having excellent hot water flow, gas defect resistance, toughness and machinability, C: 0.32 to 0.45%, Si: 0.85% or less, Mn: 0.15-2%, Ni: 1.5% or less, Cr: 16-23%, Nb: 3.2-4.5%, Nb / C: 9 to 11.5 N: 0.15% or less, S: (Nb / 20-0.1) -0.2% W and / or Mo: 3.2% or less in total (W + Mo) Having a composition consisting of the balance Fe and unavoidable impurities,
- the eutectic ( ⁇ + NbC) phase of ⁇ phase and Nb carbide (NbC) has an area ratio of 60 to 80%, and manganese chromium sulfide (MnCr) S has a structure with an area ratio of 0.2 to 1.2%. It is characterized by.
- the exhaust system component of the present invention is characterized by comprising the above-mentioned ferritic heat-resistant cast steel.
- Specific examples of the exhaust system parts are an exhaust manifold, a turbine housing, a turbine housing integrated exhaust manifold, a catalyst case, a catalyst case integrated exhaust manifold, and an exhaust outlet.
- the ferritic heat-resistant cast steel of the present invention has excellent hot-water flow and gas-defect resistance while ensuring heat resistance such as oxidation resistance, heat crack resistance and heat distortion resistance near 900 ° C without heat treatment.
- heat resistance such as oxidation resistance, heat crack resistance and heat distortion resistance near 900 ° C without heat treatment.
- it has not only toughness and machinability, but also economical efficiency such as cost reduction by suppressing the content of rare metals, and also has an advantage that raw materials can be obtained stably. Furthermore, since no heat treatment is required, manufacturing costs can be reduced and energy saving can be achieved.
- the ferritic heat-resistant cast steel of the present invention having such characteristics is suitable for automobile exhaust system parts.
- Such exhaust system parts are not only inexpensive, but also contribute to fuel efficiency reduction and CO 2 reduction due to excellent heat resistance.
- Ferritic heat resistant cast steel The composition and structure of the ferritic heat resistant cast steel of the present invention will be described in detail below. Unless otherwise specified, the content of each alloy element is indicated by mass%.
- C (carbon): 0.32 to 0.45% C not only lowers the solidification start temperature and improves the fluidity of the molten metal, that is, the flowability (castability) of the molten metal, but also the solidification start temperature is further lowered by the primary ⁇ phase and the molten metal flowability is improved. It is desirable that the solidification start temperature is less than about 1440 ° C in order to ensure the flowability of molten metal, which is one of the important characteristics when producing castings with thin and complex shapes such as exhaust system parts. In order to have such a low solidification start temperature, the ferritic heat-resistant cast steel of the present invention needs to contain 0.32% or more of C.
- the C content is set to 0.32 to 0.45%.
- the C content is preferably 0.32 to 0.44%, more preferably 0.32 to 0.42%, and most preferably 0.34 to 0.40%.
- Si acts as a deoxidizer for molten metal and improves oxidation resistance. However, if it exceeds 0.85%, Si not only dissolves in the ferritic matrix structure, but not only makes the matrix structure brittle, but also reduces the solid solubility limit of hydrogen in the ferrite, which reduces the gas resistance of ferritic heat-resistant cast steel. Defects are worsened. Therefore, the Si content is 0.85% or less (excluding 0%). The Si content is preferably 0.2 to 0.85%, more preferably 0.3 to 0.85%, and most preferably 0.3 to 0.6%.
- Mn (manganese) 0.15-2% Mn not only acts as a deoxidizer for molten metal, like Si, but is an element effective for ensuring gas defect resistance. Although details will be described later, Mn combines with Cr and S at the end of solidification to form manganese chromium sulfide (MnCr) S, which serves as a path for hydrogen to escape to the outside, contributing to the improvement of gas defect resistance To do. To form (MnCr) S, Mn needs to be at least 0.15%. However, Mn exceeding 2% deteriorates the oxidation resistance and toughness of ferritic heat-resistant cast steel. Therefore, the Mn content is set to 0.15 to 2%. The Mn content is preferably 0.15 to 1.85%, more preferably 0.15 to 1.25%, and most preferably 0.15 to 1.0%.
- Ni is an austenite stabilizing element and forms a ⁇ phase. Austenite transforms into martensite that significantly deteriorates toughness and machinability while being cooled to room temperature. Therefore, it is desirable that the Ni content is as low as possible, but since Ni is contained in the stainless steel scrap as a raw material, there is a high possibility that it will be mixed as an inevitable impurity.
- the upper limit of the Ni content with substantially no adverse effect on toughness and machinability is 1.5%. Therefore, the Ni content is 1.5% or less (including 0%).
- the Ni content is preferably 0 to 1.25%, more preferably 0 to 1.0%, and most preferably 0 to 0.9%.
- Cr 16-23%
- Cr is an element that improves oxidation resistance and stabilizes the ferrite structure. In order to ensure oxidation resistance near 900 ° C, Cr needs to be at least 16%.
- Cr combines with Mn and S to form manganese chromium sulfide (MnCr) S that serves as a path for hydrogen to escape to the outside, contributing to the improvement of gas defect resistance.
- MnCr manganese chromium sulfide
- the Cr content is 16-23%.
- the Cr content is preferably 17-23%, more preferably 17-22.5%, and most preferably 17.5-22%.
- Nb has a strong carbide forming ability.
- Nb fixes C to carbide (NbC) during solidification and prevents C, which is a strong austenite stabilizing element, from solid-dissolving in the ferrite base structure to crystallize the ⁇ phase, which reduces toughness and machinability. To do.
- high temperature strength is improved by the formation of a eutectic ( ⁇ + NbC) phase.
- Nb lowers the solidification start temperature and ensures good hot water flow.
- Nb refines the crystal grain of the primary crystal ⁇ phase and the crystal grain of the eutectic ( ⁇ + NbC) phase and remarkably improves toughness. In order to exert such actions, the Nb content needs to be 3.2% or more.
- the eutectic ( ⁇ + NbC) phase has a narrow solidification temperature range of about 30 ° C, and solidification progresses quickly. For this reason, as the Nb content increases, the crystallization amount of the eutectic ( ⁇ + NbC) phase having a narrow solidification temperature range increases, and the solidification temperature range narrows. In addition, a decrease in the solidification start temperature of the primary ⁇ phase also contributes to narrowing the solidification temperature range. Eventually, the increase in Nb content has two causes: (a) the solidification start temperature of primary ⁇ phase decreases, and (b) the crystallization amount of eutectic ( ⁇ + NbC) phase with a narrow solidification temperature range increases. This greatly narrows the solidification temperature range.
- the Nb content is set to 3.2 to 4.5%.
- the Nb content is preferably 3.3 to 4.4%, more preferably 3.4 to 4.2%, and most preferably 3.4 to 4.0%.
- Nb / C 9 to 11.5 Restricting the content ratio of Nb and C (Nb / C) to a predetermined range is the most important requirement for obtaining a good balance of properties that the ferritic heat-resistant cast steel of the present invention should have.
- C is excessive, that is, when Nb / C is too small, excess C that could not be bound to Nb is dissolved in the base structure, destabilizes the ⁇ phase, and crystallizes the ⁇ phase.
- the crystallized ⁇ phase transforms into martensite that lowers toughness and machinability before reaching room temperature.
- Nb / C needs to be 9 or more to suppress the crystallization of the ⁇ phase and to refine the crystal grains of the primary crystal ⁇ phase and the crystal grains of the eutectic ( ⁇ + NbC) phase.
- Nb / C when Nb is excessive, that is, when Nb / C is too large, Nb dissolves in the ⁇ phase, gives lattice strain to the ⁇ phase, and lowers the toughness of the ⁇ phase. Also, if Nb / C is too large, the amount of eutectic ( ⁇ + NbC) phase crystallized will increase and the growth will be promoted, so the crystal grains of the eutectic ( ⁇ + NbC) phase will be insufficiently refined, Toughness is not improved. In order to suppress solid solution of Nb in the ⁇ phase and to refine the crystal grains of the primary ⁇ phase and the eutectic ( ⁇ + NbC) phase, Nb / C needs to be 11.5 or less. From the above, Nb / C is set to 9 to 11.5. Nb / C is preferably 9 to 11.3, more preferably 9.3 to 11, and most preferably 9.5 to 10.5.
- N nitrogen
- N is a strong austenite stabilizing element and forms a ⁇ phase.
- the formed ⁇ phase becomes martensite while being cooled to room temperature, and deteriorates toughness and machinability. Therefore, it is desirable that N is as small as possible.
- the N content is 0.15% or less (including 0%).
- the N content is preferably 0 to 0.13%, more preferably 0 to 0.11%, and most preferably 0 to 0.10%.
- S (sulfur): (Nb / 20-0.1) to 0.2% S is an important element for imparting sufficient gas defect resistance to the ferritic heat-resistant cast steel of the present invention.
- S combines with Mn and Cr to form manganese chromium sulfide (MnCr) S, improving the gas defect resistance.
- MnCr manganese chromium sulfide
- (MnCr) S crystallizes out as eutectic sulfide ( ⁇ + (MnCr) S) of (MnCr) S and ⁇ phase after solidification of the eutectic ( ⁇ + NbC) phase.
- the eutectic sulfide ( ⁇ + (MnCr) S) solidifies after the eutectic ( ⁇ + NbC) phase, so that the solidification end temperature is lowered and the solidification temperature range is expanded.
- the eutectic sulfide ( ⁇ + (MnCr) S) which solidifies more slowly than the eutectic ( ⁇ + NbC) phase, crystallizes, so that the hydrogen discharged from the liquid phase during the eutectic ( ⁇ + NbC) phase crystallization It is presumed that gas defects are suppressed through escape from the mold through the liquid phase of the solid-liquid coexisting phase of eutectic sulfide ( ⁇ + (MnCr) S).
- the crystallization amount of the eutectic ( ⁇ + NbC) phase depends on the Nb content
- the crystallization amount of the eutectic sulfide ( ⁇ + (MnCr) S) depends on the S content.
- the lower limit of the S content is 0.06% when Nb is 3.2%, and 0.125% when Nb is 4.5%, so the S content falls within the range of 0.06 to 0.2%. It becomes.
- the S content is preferably 0.125 to 0.2%, more preferably 0.13 to 0.2%, and most preferably 0.13 to 0.17%.
- the addition effect of W and Mo is saturated when the content of each element is about 3%, and even when both are added, the total content of both elements is saturated at about 3%.
- W and Mo alone when the content of each element exceeds 3.2%, and when adding both, if the total amount (W + Mo) exceeds 3.2%, coarse carbides are generated. Remarkably deteriorate toughness and machinability. Therefore, the total content of W and / or Mo (W + Mo) is 3.2% or less (including 0%).
- the total content of W and / or Mo is preferably 0 to 3.0%, more preferably 0 to 2.5%. Particularly when toughness is required, the total content of W and / or Mo is preferably 0 to 1.0%, more preferably 0 to 0.5%, and most preferably 0 to 0.3%. In particular, when high temperature strength is required, the total content of W and / or Mo is preferably 0.8 to 3.2%, more preferably 1.0 to 3.2%, and most preferably 1.0 to 2.5%. is there.
- both the primary ⁇ phase and the eutectic ( ⁇ + NbC) phase suppress the growth of crystal grains and refine each crystal grain, thereby greatly improving toughness. It is estimated that In order to obtain this effect, the area ratio (area ratio) of the eutectic ( ⁇ + NbC) phase needs to be 60 to 80% when the total area of the structure is 100%.
- the area ratio of the eutectic ( ⁇ + NbC) phase is less than 60%, the crystal grains of the primary ⁇ phase become coarse, and the effect of improving toughness cannot be obtained.
- the area ratio of the eutectic ( ⁇ + NbC) phase exceeds 80%, not only will the amount of crystallization of the eutectic ( ⁇ + NbC) phase be excessive, but the crystal grains will also become coarser, resulting in embrittlement and toughness. It drops significantly. Therefore, the area ratio of the eutectic ( ⁇ + NbC) phase is controlled to 60 to 80%.
- the area ratio of the eutectic ( ⁇ + NbC) phase is preferably 60 to 78%, more preferably 60 to 76%, and most preferably 60 to 74%.
- Manganese chromium sulfide (MnCr) S area ratio 0.2-1.2%
- controlling the crystallization amount of manganese chromium sulfide (MnCr) S is important for ensuring the gas defect resistance.
- a suitable amount of eutectic sulfide ( ⁇ + (MnCr) S) that solidifies later than the eutectic ( ⁇ + NbC) phase and ⁇ phase is crystallized to lower the solidification end temperature and expand the solidification temperature range.
- the area ratio (area ratio) of manganese chromium sulfide (MnCr) S must be 0.2% or more when the total area of the structure is 100%. .
- the area ratio of (MnCr) S exceeds 1.2%, the amount of eutectic sulfide ( ⁇ + (MnCr) S) crystallized becomes excessive and the toughness is impaired by embrittlement. Therefore, the area ratio of manganese chromium sulfide (MnCr) S is controlled to 0.2 to 1.2%.
- the S content is restricted to the above-described range.
- the area ratio of manganese chromium sulfide (MnCr) S is preferably 0.2 to 1.0%, more preferably 0.3 to 1.0%, and most preferably 0.5 to 1.0%.
- exhaust system parts of the present invention manufactured using the above-mentioned ferritic heat-resistant cast steel include any cast exhaust system parts, and preferred examples include an exhaust manifold, a turbine housing, a turbine housing, an exhaust manifold, Are an exhaust manifold integrated with a turbine housing, a catalyst case, a catalyst case integrated exhaust manifold, an exhaust outlet, etc., in which a catalyst case and an exhaust manifold are integrally cast.
- the exhaust system component of the present invention is not limited to these, and includes, for example, a cast component welded to a sheet metal or pipe member.
- Exhaust system parts of the present invention are exposed to high-temperature exhaust gas of 1000 ° C or higher and have sufficient heat resistance characteristics such as oxidation resistance, heat crack resistance, heat distortion resistance even when their surface temperature reaches around 900 ° C. Therefore, it is suitable as an exhaust manifold, turbine housing, turbine housing integrated exhaust manifold, catalyst case, catalyst case integrated exhaust manifold, and exhaust outlet, and exhibits high heat resistance and durability.
- it has excellent hot water flow, gas defect resistance, toughness, and machinability, suppresses the content of rare metals, and does not require heat treatment, so that it can be manufactured at high product yield and at low cost. This contributes to lower fuel consumption, and allows inexpensive exhaust parts with high heat resistance and durability to be used in low-priced automobiles such as popular cars, contributing to CO 2 reduction. It is expected.
- Examples 1-39 and Comparative Examples 1-34 Table 1-1 and Table 1-2 show the chemical compositions of the test materials of each cast steel.
- Examples 1 to 39 are ferritic heat-resistant cast steels of the present invention, and Comparative Examples 1 to 30 are cast steels outside the scope of the present invention.
- Comparative Example 1 is cast steel with too little content of C and Nb
- Comparative Examples 2-6, 16 and 17 are cast steels with too little S
- Comparative Examples 7-9 are cast steels with too much C and Nb content
- Comparative Example 10 is a cast steel with too little S and too much Cr
- Comparative Example 11 is cast steel with too little C
- Comparative Example 12 is cast steel with too much C
- Comparative Example 13 is cast steel with too much Si
- Comparative Example 14 is cast steel with too little Mn
- Comparative Example 15 is cast steel with too much Mn
- Comparative Examples 18 and 19 are cast steel with too much S
- Comparative Example 20 is cast steel with too much Ni
- Comparative Example 21 is cast steel with too little Cr
- Comparative Example 22 is cast steel with too much Cr
- Comparative Example 23 is cast steel with too much W
- Comparative Example 24 is cast steel with too much Mo
- Comparative Examples 25 and 26 are cast steels with too little Nb
- Comparative Example 27 is cast steel with too much Nb
- Comparative Example 31 is a general ferritic cast steel corresponding to CB-30
- Comparative Example 32 is an example of a ferritic heat-resistant cast steel described in JP-A-7-197209
- Comparative Example 33 is an example of a ferritic stainless cast steel described in JP2007-254885
- Comparative Example 34 is an example of a ferritic heat-resistant cast steel described in JP-A-11-61343.
- Each of the cast steels of Examples 1 to 39 and Comparative Examples 1 to 34 was melted in the air using a 100 kg kg high-frequency melting furnace (basic lining), then hot water was discharged at 1600 to 1650 ° C, and solidification started immediately at about 1550 ° C.
- Each of the cylindrical block molds was poured into a sample material.
- Each cast steel as-cast (no heat treatment) was evaluated for solidification start temperature, molten metal flow length, microstructure, number of gas defects, normal temperature impact value, tool life, oxidation loss, high temperature strength and thermal fatigue life. . Evaluation methods and results are shown below.
- Solidification start temperature The solidification start temperature was measured by pouring into a shell cup mold with R thermocouple. The results are shown in Table 2-1 and Table 2-2. As described above, the solidification start temperature is preferably less than 1440 ° C., but all of Examples 1 to 39 satisfied this condition. On the other hand, all of Comparative Examples 1, 11, 25 and 31 to 33 had a solidification start temperature of 1440 ° C. or higher. This is because the C or Nb content is outside the scope of the present invention. The solidification start temperature of Comparative Example 33 with a high Nb content was 1430 ° C. and less than 1440 ° C., but Comparative Example 33 had many gas defects as described later, and was inferior in gas defect resistance.
- the hot water flow length was as short as 1100 mm or less. Comparing Example 14 and Comparative Example 32 with the same C content but different Nb content, the hot water flow length of Example 14 with an Nb content of 4.4% was 1275 mm, whereas the Nb content was The hot water flow length of Comparative Example 32 with an amount of 2.0% is 1012 mm, which is only about 80% of Example 14, indicating that the hot water flow property is inferior. Although the comparative example 33 has a low C content of 0.25%, the hot water flow length is 1247 mm and shows good hot water flow properties.
- the area ratio of the eutectic ( ⁇ + NbC) phase was determined by taking a photo of any five fields of view of the optical microscope (100x magnification) on the observation surface that had been mirror-polished and then etched by corrosion etching, and the eutectic ( ⁇ + NbC) in each field of view. After the phase portion was painted in black, the area ratio of the black portion was measured using an image analysis device and averaged.
- Table 2-1 and Table 2-2 show the measurement results of the area ratio of manganese chromium sulfide (MnCr) S, and Table 3-1 and Table 3-2 show the measurement results of the eutectic ( ⁇ + NbC) phase area ratio. Show.
- the normal temperature impact value is preferably 7 ⁇ 10 4 J / m 2 or more, and more preferably 10 ⁇ 10 4 J / m 2 or more.
- the normal temperature impact values of Examples 1 to 32 were all 7 ⁇ 10 4 J / m 2 or more.
- the ferritic heat-resistant cast steel of the present invention contains a desired amount of C and Nb, and the primary ⁇ phase and the eutectic ( ⁇ + NbC) phase coexist in an optimum ratio that can obtain the effect of refining crystal grains. It is considered to have a high normal temperature impact value, that is, excellent toughness.
- Comparative Example 10 is excessive in Cr
- Comparative Example 11 is low in C
- the area ratio of the eutectic ( ⁇ + NbC) phase is small
- Comparative Examples 13 and 33 are excessive in Si.
- Comparative Example 20 is excessive in Ni
- Comparative Examples 23 and 24 are excessive in W or Mo
- Comparative Examples 25 and 26 are low in Nb
- the area of the eutectic ( ⁇ + NbC) phase Since the ratio is small, Comparative Example 28 has a small Nb / C, and since the area ratio of the eutectic ( ⁇ + NbC) phase is small
- Comparative Example 30 has an excess of N, so both have low room temperature impact values and poor toughness. It was.
- Oxidation loss Exhaust system parts are required to have high oxidation resistance because they are exposed to high-temperature oxidizing exhaust gas containing sulfur oxides, nitrogen oxides, etc. discharged from the engine. Since the temperature of the gas exhausted from the combustion chamber of the engine is close to 1000 ° C, the exhaust system parts have also reached around 900 ° C. Therefore, the evaluation temperature for oxidation resistance was set to 900 ° C. Oxidation resistance was evaluated by holding a 10 mm diameter and 20 mm long round bar specimen cut from each 1-inch Y-block specimen for 200 hours at 900 ° C in the atmosphere and then shot blasting. The oxidation scale was removed, and the mass change per unit area before and after the oxidation test, that is, the oxidation loss (mg / cm 2 ) was obtained. The measurement results of oxidation loss are shown in Table 3-1 and Table 3-2.
- the oxidation weight loss when kept in an air atmosphere at 900 ° C for 200 hours is 20 mg / cm 2 or less .
- the oxidation weight loss exceeds 20 mg / cm 2 the generation of an oxide film as a starting point of cracks increases, resulting in insufficient oxidation resistance.
- Table 3-1 and Table 3-2 all of Examples 1 to 39 had a weight loss of 20 mg / cm 2 or less. This means that the ferritic heat-resistant cast steel of the present invention has sufficient oxidation resistance for use in exhaust system parts that reach temperatures near 900 ° C.
- the ferritic heat-resistant cast steel of the present invention has sufficient oxidation resistance because it contains 16% or more of Cr.
- Comparative Example 15 had an excessive amount of Mn, and Comparative Example 21 had a small amount of Cr. Therefore, the oxidation loss was more than 20 mg / cm 2 , and the oxidation resistance was poor.
- ferritic heat-resistant cast steel having a body-centered cubic (bcc) structure has lower high-temperature strength than austenitic heat-resistant cast steel having a face-centered cubic (fcc) structure.
- the main factor affecting the thermal deformation other than the shape and thickness is the high temperature yield strength.
- the high-temperature proof stress at 900 ° C is preferably 20 ⁇ MPa or more, more preferably 25 MPa or more.
- the high-temperature proof stress at 900 ° C. of Examples 1 to 39 was as high as 20 kg MPa or more.
- Examples 17 to 39 containing 0.9% or more of W and / or Mo had a high-temperature proof stress at 900 ° C. of 25 MPa or more, and were excellent in high-temperature strength and heat distortion resistance.
- the high-temperature proof stress of Comparative Examples 1 and 31 with a low C and Nb content was less than 20 MPa. From this, it was found that increasing C and Nb improves not only toughness but also high-temperature strength. Note that Comparative Example 32 had high high-temperature proof stress despite the low Nb content.
- Comparative Example 33 had high high-temperature proof stress despite the low C content. The reason for this is thought to be because it contains a large amount of Si.
- the ferritic heat-resistant cast steel of the present invention containing a large amount of C and Nb has a high temperature strength equivalent to that of Comparative Examples 32 and 33 containing W or Si and increasing the high temperature strength.
- Thermal fatigue life Exhaust system parts are required to have a property (thermal crack resistance) that does not cause thermal cracks even when the engine is operated (heating) and stopped (cooling) repeatedly, that is, a long thermal fatigue life.
- thermal crack resistance a property that does not cause thermal cracks even when the engine is operated (heating) and stopped (cooling) repeatedly, that is, a long thermal fatigue life.
- the thermal fatigue life as an index of heat cracking resistance was measured by the following method.
- a smooth round bar-shaped test piece with a distance of 20 mm between the gauge points and a diameter of 10 mm cut from each sample material of 1 inch Y block was applied to the same electro-hydraulic servo type material testing machine as the high temperature strength test.
- the heating time is 2 minutes
- the holding time is 1 minute
- the cooling time is 4 minutes. The heating and cooling cycle was repeated as a cycle.
- thermal fatigue life can be determined from the number of cycles.
- the evaluation results of thermal fatigue life are shown in Table 3-1 and Table 3-2.
- the degree of mechanical restraint is expressed by (free thermal expansion / elongation ⁇ elongation under mechanical restraint) / (free thermal expansion / elongation).
- a restraint ratio of 1.0 is a mechanical restraint condition that does not allow any elongation when the test piece is heated from 150 ° C. to 900 ° C., for example.
- the restraint rate of 0.5 is a mechanical restraint condition that allows only 1 mm of elongation when the free expansion and elongation is 2 mm, for example. Therefore, at a restraint factor of 0.5, a compressive load is applied during temperature rise, and a tensile load is applied during temperature drop. Since the actual restraint rate of the exhaust system parts of an automobile engine is about 0.1 to 0.5 which allows a certain degree of elongation, the restraint rate in the thermal fatigue life test was set to 0.5.
- the thermal fatigue life under the above conditions is 1000 cycles or more. That is, if the thermal fatigue life is 1000 cycles or more, it can be said that the ferritic heat-resistant cast steel has excellent heat cracking resistance.
- the thermal fatigue lives of Examples 1 to 39 were all sufficiently long at 1400 cycles or more. This means that the ferritic heat-resistant cast steel of the present invention exhibits sufficient heat cracking resistance even when used in exhaust system parts that reach temperatures near 900 ° C.
- the ferritic heat-resistant cast steel of the present invention has high heat-resistant characteristics (oxidation resistance, high-temperature strength, heat-resistant deformation and heat-cracking resistance) required for exhaust system parts that reach temperatures near 900 ° C. Also, it has excellent hot-water flow, gas defect resistance, toughness and machinability.
- Example 40 After casting the turbine housing of automotive exhaust system parts (wall thickness 4.0 to 6.0 mm) using the ferritic heat-resistant cast steel of Example 18, the mold is released as it is without heat treatment (open frame) Then, cutting of the casting plan portion (weir portion), shot blasting, casting finishing to remove casting burrs, and the like were performed. No cracks or cracks occurred in the obtained turbine housing, and no casting defects such as shrinkage cavities, poor hot water and gas defects were observed. In addition, there were no cutting defects in machining, abnormal wear or damage of the cutting tool.
- This turbine housing was assembled in an exhaust simulator equivalent to an inline 4-cylinder high-performance gasoline engine with a displacement of 2000 cc.
- the exhaust gas temperature at full load is 1000 ° C at the inlet of the turbine housing, and the upper limit heating temperature on the surface of the turbine housing is the waste gate (exhaust)
- the target for the heating and cooling cycle is 1200 cycles.
- this turbine housing cleared the endurance test of 1200 cycles without causing leakage or cracking of exhaust gas.
- cracks and cracks occurred not only in through cracks but also in any part including the waste gate part through which high-temperature exhaust gas passes and the thinnest scroll part. There was also little oxidation of the whole part. Thereby, it was confirmed that the turbine housing of the present invention is excellent in oxidation resistance and thermal crack resistance in the vicinity of 900 ° C.
- the exhaust system parts made of the ferritic heat-resistant cast steel of the present invention have high heat resistance and durability near 900 ° C., and also have excellent hot water flow, gas defect resistance, toughness and machinability. is doing.
- Exhaust system component of the present invention is inexpensive since a rare metal heat-resistant, ferritic cast steel containing a small amount of the application range of the low fuel consumption technologies can also be extended to low-cost automobile, CO 2 gas Contributes to reducing emissions.
- ferritic heat-resistant cast steel of the present invention is not limited to this, for example, combustion engines such as construction machines, ships, and aircraft, melting furnaces, etc. , Thermal equipment such as heat treatment furnace, incinerator, kiln, boiler, cogeneration equipment, petrochemical plant, gas plant, thermal power plant, nuclear power plant, etc. with excellent oxidation resistance, heat crack resistance, heat deformation resistance, etc. It can also be used for various cast parts that require hot water flow, gas defect resistance, toughness and machinability as well as heat resistance and durability.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Silencers (AREA)
- Supercharger (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
C:0.32~0.45%、
Si:0.85%以下、
Mn:0.15~2%、
Ni:1.5%以下、
Cr:16~23%、
Nb:3.2~4.5%、
Nb/C:9~11.5、
N:0.15%以下、
S:(Nb/20-0.1)~0.2%、
W及び/又はMo:合計(W+Mo)で3.2%以下、
を含有し、残部Fe及び不可避的不純物からなる組成を有し、
δ相とNb炭化物(NbC)との共晶(δ+NbC)相が面積率で60~80%であり、かつマンガンクロム硫化物(MnCr)Sが面積率で0.2~1.2%である組織を有することを特徴とする。
本発明のフェライト系耐熱鋳鋼の組成及び組織について以下詳細に説明する。各合金元素の含有量は、特に断りのない限り質量%で示す。
(1) C(炭素):0.32~0.45%
Cにより凝固開始温度が降下して溶湯の流動性、すなわち湯流れ性(鋳造性)が向上するだけでなく、初晶δ相によりさらに凝固開始温度が低下して湯流れ性が向上する。排気系部品のような薄肉で複雑形状の鋳物を製造する際に重要な特性の一つである湯流れ性を確保するために、凝固開始温度は約1440℃未満であるのが望ましいが、このような低い凝固開始温度を有するために、本発明のフェライト系耐熱鋳鋼は、0.32%以上のCを含有する必要がある。しかし、C含有量が0.45%を超えると、δ相とNb炭化物との共晶(δ+NbC)相が多くなり過ぎて脆化し、常温靭性が低下する。このため、C含有量は0.32~0.45%とする。C含有量は好ましくは0.32~0.44%であり、より好ましくは0.32~0.42%であり、最も好ましくは0.34~0.40%である。
Siは溶湯の脱酸剤として作用するとともに、耐酸化性を改善する。しかし、0.85%を超えると、Siはフェライト系基地組織に固溶して、基地組織を著しく脆化させるだけでなく、フェライトへの水素の固溶限を低下させ、フェライト系耐熱鋳鋼の耐ガス欠陥性を悪化させる。このため、Siの含有量は0.85%以下(0%を含まず)とする。Si含有量は好ましくは0.2~0.85%であり、より好ましくは0.3~0.85%であり、最も好ましくは0.3~0.6%である。
Mnは、Siと同様に溶湯の脱酸剤として作用するのみならず、耐ガス欠陥性を確保するのに有効な元素である。詳細は後述するが、Mnは、凝固の末期にCr及びSと結合して、水素を外部へ逃散させる経路となるマンガンクロム硫化物(MnCr)Sを形成して耐ガス欠陥性の向上に寄与する。(MnCr)Sを形成するには、Mnは少なくとも0.15%必要である。しかし、2%を超えるMnはフェライト系耐熱鋳鋼の耐酸化性及び靭性を劣化させる。このため、Mnの含有量は0.15~2%とする。Mn含有量は好ましくは0.15~1.85%であり、より好ましくは0.15~1.25%であり、最も好ましくは0.15~1.0%である。
Niはオーステナイト安定化元素でγ相を形成する。オーステナイトは、常温まで冷却される間に靭性及び被削性を著しく悪化させるマルテンサイトに変態する。従って、Ni含有量は極力少ないのが望ましいが、Niは原料となるステンレス系スクラップに含有されているため、不可避的不純物として混入する可能性が高い。靭性及び被削性への悪影響が実質的にないNi含有量の上限は1.5%である。そのため、Ni含有量は1.5%以下(0%を含む)とする。Ni含有量は好ましくは0~1.25%であり、より好ましくは0~1.0%であり、最も好ましくは0~0.9%である。
Crは耐酸化性を改善し、フェライト組織を安定化する元素である。900℃付近での耐酸化性を確保するために、Crは少なくとも16%必要である。また、CrはMn及びSと結合して、水素を外部へ逃散させる経路となるマンガンクロム硫化物(MnCr)Sを形成し、耐ガス欠陥性の向上に寄与する。しかし、Crが23%を超えると、シグマ脆性が発生しやすくなり、靭性及び被削性が著しく悪化する。そのため、Cr含有量は16~23%とする。Cr含有量は好ましくは17~23%であり、より好ましくは17~22.5%であり、最も好ましくは17.5~22%である。
Nbは強い炭化物形成能を有する。Nbは凝固時にCを炭化物(NbC)に固定し、強力なオーステナイト安定化元素であるCがフェライト系基地組織に固溶して靭性及び被削性を低下させるγ相を晶出させるのを防止する。また共晶(δ+NbC)相の形成により高温強度を向上させる。さらにNbは凝固開始温度を低下させて、良好な湯流れ性を確保する。その上、Nbは初晶δ相の結晶粒と共晶(δ+NbC)相の結晶粒を微細化し、靭性を著しく向上させる。このような作用を発揮するために、Nbの含有量は3.2%以上必要である。
NbとCとの含有量比(Nb/C)を所定の範囲に規制することは、本発明のフェライト系耐熱鋳鋼が兼備すべき特性をバランス良く得るために最も重要な要件である。Cが過剰な場合、即ちNb/Cが小さすぎる場合、Nbに結合できなかった余剰のCは基地組織に固溶し、δ相を不安定化して、γ相を晶出させる。晶出したγ相は常温に達するまでに靭性及び被削性を低下させるマルテンサイトに変態する。また、Nb/Cが小さいと初晶δ相の晶出量が多くなりすぎ、その成長が促進されるので、初晶δ相の結晶粒が微細でなくなり、靭性が向上しない。γ相の晶出を抑制するとともに、初晶δ相の結晶粒及び共晶(δ+NbC)相の結晶粒を微細化するには、Nb/Cは9以上である必要がある。
Nは強力なオーステナイト安定化元素であり、γ相を形成する。形成されたγ相は常温まで冷却される間にマルテンサイト化して、靭性及び被削性を劣化させる。そのため、Nは極力少ない方が望ましいが、Nはもともと溶解材料(スクラップ)に含有されているため、不可避的不純物として混入する。靭性及び被削性を実質的に悪化させないNの上限は0.15%であるので、N含有量は0.15%以下(0%を含む)とする。N含有量は好ましくは0~0.13%であり、より好ましくは0~0.11%であり、最も好ましくは0~0.10%である。
Sは本発明のフェライト系耐熱鋳鋼に十分な耐ガス欠陥性を付与するのに重要な元素である。SはMn及びCrと結合してマンガンクロム硫化物(MnCr)Sを形成し、耐ガス欠陥性を向上させる。(MnCr)Sは、共晶(δ+NbC)相の凝固の後に、(MnCr)Sとδ相との共晶硫化物(δ+(MnCr)S)として晶出する。共晶硫化物(δ+(MnCr)S)は、共晶(δ+NbC)相より遅れて凝固することにより、凝固終了温度が降下して凝固温度範囲が拡大する。共晶(δ+NbC)相より凝固の遅い共晶硫化物(δ+(MnCr)S)が晶出することにより、共晶(δ+NbC)相の晶出時に液相より排出された水素は、凝固前の共晶硫化物(δ+(MnCr)S)の固液共存相の液相を通って鋳型から外部へと逃散され、ガス欠陥が抑制されると推察される。
W及びMoは基地組織のδ相に固溶することにより高温強度を改善する。W及びMoの添加効果は、いずれか一方を添加する場合には各元素の含有量が約3%で飽和し、両者を添加した場合でも両者の合計含有量が約3%で飽和する。さらに、W及びMoを単独で添加する場合は各元素の含有量が3.2%を超えると、また両者を添加する場合は合計量(W+Mo)が3.2%を超えると、粗大な炭化物を生成して靱性及び被削性を著しく劣化させる。従って、W及び/又はMoの含有量は合計(W+Mo)で3.2%以下(0%を含む)とする。W及び/又はMoの含有量は合計で好ましくは0~3.0%であり、より好ましくは0~2.5%である。特に靭性が必要とされる場合、W及び/又はMoの含有量は合計で好ましくは0~1.0%であり、より好ましくは0~0.5%であり、最も好ましくは0~0.3%である。また、特に高温強度が必要とされる場合、W及び/又はMoの含有量は合計で好ましくは0.8~3.2%であり、より好ましくは1.0~3.2%であり、最も好ましくは1.0~2.5%である。
(1) 共晶(δ+NbC)相の面積率:60~80%
本発明のフェライト系耐熱鋳鋼において、δ相とNb炭化物(NbC)との共晶(δ+NbC)相の晶出量を制御することは靭性を確保する上で重要である。本発明のフェライト系耐熱鋳鋼では、鋳造時の凝固において、初晶δ相が凝固した後短時間で比較的多量の共晶(δ+NbC)相が凝固する結果、共晶(δ+NbC)の凝固相により初晶δ相の成長が妨害、抑制され、初晶δ相の結晶粒は微細になる。一方、共晶(δ+NbC)相の成長も初晶δ相の凝固相により妨害、抑制され、共晶(δ+NbC)相の結晶粒も細かくなる。このように、本発明のフェライト系耐熱鋳鋼では、初晶δ相と共晶(δ+NbC)相の双方が互いに結晶粒の成長を抑制していずれの結晶粒も微細化し、もって靭性が大幅に向上していると推定される。この効果を得るためには、組織の全面積を100%としたときに、共晶(δ+NbC)相の面積割合(面積率)は60~80%である必要がある。共晶(δ+NbC)相の面積率が60%未満では、初晶δ相の結晶粒が粗大となり、靭性の向上効果が得られない。一方、共晶(δ+NbC)相の面積率が80%を超えると、共晶(δ+NbC)相の晶出量が過剰となるだけでなく、その結晶粒も粗大化するので、脆化し、靭性が著しく低下する。従って、共晶(δ+NbC)相の面積率は60~80%に制御する。共晶(δ+NbC)相の面積率を60~80%に制御するために、C及びNbの含有量、及びNb/Cの比を前述した範囲に規制する。共晶(δ+NbC)相の面積率は好ましくは60~78%であり、より好ましくは60~76%であり、最も好ましくは60~74%である。
本発明のフェライト系耐熱鋳鋼において、マンガンクロム硫化物(MnCr)Sの晶出量を制御することは耐ガス欠陥性を確保する上で重要である。共晶(δ+NbC)相より遅れて凝固する(MnCr)Sとδ相との共晶硫化物(δ+(MnCr)S)を適量晶出させて、凝固終了温度を降下させて凝固温度範囲を拡大し、十分な耐ガス欠陥性を得るためには、組織の全面積を100%としたときに、マンガンクロム硫化物(MnCr)Sの面積割合(面積率)は0.2%以上である必要がある。しかし、(MnCr)Sの面積率が1.2%を超えると共晶硫化物(δ+(MnCr)S)の晶出量が過剰となり、脆化により靭性を損なう。従って、マンガンクロム硫化物(MnCr)Sの面積率は0.2~1.2%に制御する。(MnCr)Sの面積率を制御するためには、S含有量を前述した範囲に規制する。マンガンクロム硫化物(MnCr)Sの面積率は好ましくは0.2~1.0%であり、より好ましくは0.3~1.0%であり、最も好ましくは0.5~1.0%である。
上記フェライト系耐熱鋳鋼を用いて製造される本発明の排気系部品はいかなる鋳造排気系部品も含むが、その好ましい例は、エキゾーストマニホールド、タービンハウジング、タービンハウジングとエキゾーストマニホールドとを一体に鋳造したタービンハウジング一体エキゾーストマニホールド、触媒ケース、触媒ケースとエキゾーストマニホールドとを一体に鋳造した触媒ケース一体エキゾーストマニホールド、エキゾーストアウトレット等である。勿論、本発明の排気系部品はこれらに限定されず、例えば板金製又はパイプ製の部材と溶接される鋳造部品も含む。
各鋳鋼の供試材の化学組成を表1-1及び表1-2に示す。実施例1~39は本発明のフェライト系耐熱鋳鋼であり、比較例1~30は本発明の範囲外の鋳鋼である。具体的には、
比較例1はC及びNbの含有量が少なすぎる鋳鋼であり、
比較例2~6、16及び17はSが少なすぎる鋳鋼であり、
比較例7~9はC及びNbの含有量が多すぎる鋳鋼であり、
比較例10はSが少なすぎ、かつCrが多すぎる鋳鋼であり、
比較例11はCが少なすぎる鋳鋼であり、
比較例12はCが多すぎる鋳鋼であり、
比較例13はSiが多すぎる鋳鋼であり、
比較例14はMnが少なすぎる鋳鋼であり、
比較例15はMnが多すぎる鋳鋼であり、
比較例18及び19はSが多すぎる鋳鋼であり、
比較例20はNiが多すぎる鋳鋼であり、
比較例21はCrが少なすぎる鋳鋼であり、
比較例22はCrが多すぎる鋳鋼であり、
比較例23はWが多すぎる鋳鋼であり、
比較例24はMoが多すぎる鋳鋼であり、
比較例25及び26はNbが少なすぎる鋳鋼であり、
比較例27はNbが多すぎる鋳鋼であり、
比較例28はNb/Cが小さすぎる鋳鋼であり、
比較例29はNb/Cが大きすぎる鋳鋼であり、
比較例30はNが多すぎる鋳鋼である。
比較例31はCB-30に相当する一般的なフェライト系鋳鋼であり、
比較例32は特開平7-197209号に記載のフェライト系耐熱鋳鋼の一例であり、
比較例33は特開2007-254885号に記載のフェライト系ステンレス鋳鋼の一例であり、
比較例34は特開平11-61343号に記載のフェライト系耐熱鋳鋼の一例である。
(2) (Nb/20-0.1)の式により算出されたSの量。
(3) W及びMoの欄における「-」は0.1質量%未満を意味する。
(2) (Nb/20-0.1)の式により算出されたSの量。
(3) W及びMoの欄における「-」は0.1質量%未満を意味する。
R熱伝対付きシェルカップ鋳型に注湯することにより、凝固開始温度を測定した。結果を表2-1及び表2-2に示す。前述したように凝固開始温度は1440℃未満が望ましいが、実施例1~39はいずれもこの条件を満たした。一方、比較例1、11、25及び31~33の凝固開始温度はいずれも1440℃以上であった。これは、C又はNbの含有量が本発明の範囲外であるためである。Nb含有量が多い比較例33の凝固開始温度は1430℃で1440℃未満であるが、比較例33は後述するようにガス欠陥が多く、耐ガス欠陥性に劣っていた。
渦巻形湯流れ性試験片の湯道内に形成された鋳物の長さ、即ち湯口から溶湯が到達した先端までの距離(mm)を測定し、湯流れ長さとした。湯流れ長さの測定結果を表2-1及び表2-2に示す。湯流れ長さが長い方が湯流れ性が良いので、湯流れ長さの長短により湯流れ性を評価した。表2-1及び表2-2から明らかなように、実施例1~39のいずれも1100 mm以上と長い湯流れ長さを有していた。一方、C及び/又はNb含有量が本発明の範囲より少ない比較例1、11、25、31及び32では、湯流れ長さは1100 mm以下と短かった。C含有量が同じで、Nb含有量が異なる実施例14と比較例32とを比較すると、Nb含有量が4.4%の実施例14の湯流れ長さは1275 mmであるのに対し、Nb含有量が2.0%の比較例32の湯流れ長さは1012 mmで、実施例14の約80%しかなく、湯流れ性に劣ることが分る。比較例33はC含有量が0.25%と少ないにも関わらず、湯流れ長さが1247 mmで良好な湯流れ性を示す。この理由は、溶湯の流動性を改善する作用のあるSiを2.80%含有するためと考えられる。しかし、比較例33は、湯流れ性が改善されているものの、常温衝撃値が小さく靭性が不十分である。これらの結果から、C及びNbを多く含有する本発明のフェライト系耐熱鋳鋼は良好な湯流れ性を有することが分かる。
1インチYブロックの各供試材から組織観察用の試験片を切り出し、マンガンクロム硫化物(MnCr)S及び共晶(δ+NbC)相の面積率を測定した。マンガンクロム硫化物(MnCr)Sの面積率は、腐食なしの試験片に対して光学顕微鏡(倍率100倍)の任意の5視野を観察し、各視野における面積率を画像解析装置を用いて測定し、平均することにより求めた。共晶(δ+NbC)相の面積率は、鏡面研磨した後腐食エッチング処理した観察面に対して、光学顕微鏡(倍率100倍)の任意の5視野を写真撮影し、各視野における共晶(δ+NbC)相の部分を黒く塗りつぶした後、画像解析装置を用いて黒い部分の面積率を測定し、平均することにより求めた。マンガンクロム硫化物(MnCr)Sの面積率の測定結果を表2-1及び表2-2に示し、共晶(δ+NbC)相の面積率の測定結果を表3-1及び表3-2に示す。
ガス欠陥評価用の各鋳造平板試験片を透過X線撮影し、試験片中に存在するガス欠陥の数(個)を目視で測定した。ガス欠陥の数の測定結果を表2-1及び表2-2に示す。ガス欠陥の数が少ない方が耐ガス欠陥性に優れているので、ガス欠陥の数の多少により耐ガス欠陥性を評価した。実施例1~39はいずれもガス欠陥がなく、耐ガス欠陥性に優れていた。一方、比較例2~6、10、16、17、33及び34はいずれも、Nb含有量に対応するSの必要量よりS含有量が少ないため、ガス欠陥の数が多かった。また比較例7~9及び27はいずれも、Nb含有量が本発明の上限の4.5%を超えているため、ガス欠陥の数が多かった。さらに比較例13は、Si含有量が本発明の上限の0.85%を超えているため、ガス欠陥の数が多かった。さらに比較例14は、Mn含有量が本発明の下限の0.15%より少ないため、ガス欠陥の数が多かった。従って、これらの比較例はいずれも耐ガス欠陥性に劣っていた。
機械的振動や衝撃のような外力により亀裂や割れが発生するおそれがある部材に対しては、亀裂の進展速度が速いことに鑑み、引張試験より亀裂の進展速度が速いシャルピー衝撃試験の方が靭性の評価方法として相応しい。従って、常温での靭性を評価するため、シャルピー衝撃試験による常温衝撃値を測定した。
円柱状の各供試材から切り取った試験片の端面を、工具として超硬基体にTiNをPVD被覆したチップを用いたフライス盤により、以下の条件で切削し、チップの逃げ面の最大摩耗幅が0.1 mmとなるまでの切削距離(cm)を測定し、工具寿命とした。工具寿命の測定結果を表3-1及び表3-2に示す。切削距離が長い方が試験片の被削性が良いので、試験片の被削性は切削距離の長短により評価できる。
切削速度 :90 m/分
回転速度 :229 rpm
1刃送り量:0.2 mm/tooth
送り速度 :48 mm/分
切込み量 :1.0 mm
切削油 :なし(乾式)
排気系部品は、エンジンから排出された硫黄酸化物、窒素酸化物等を含む高温の酸化性排出ガスに曝されるため、高い耐酸化性を有することが要求される。エンジンの燃焼室から排出されるガスの温度は1000℃近いので、排気系部品も900℃付近に達するようになってきている。従って、耐酸化性の評価温度を900℃にした。耐酸化性の評価は、1インチYブロックの各供試材から切り出した直径10 mm及び長さ20 mmの丸棒状試験片を大気中900℃に200時間保持した後、ショットブラスト処理を施して酸化スケールを除去し、酸化試験前後の単位面積当たりの質量変化、すなわち酸化減量(mg/cm2)を求めることにより行った。酸化減量の測定結果を表3-1及び表3-2に示す。
1インチYブロックの各供試材から切り出した標点間距離50 mm、及び直径10 mmの平滑丸棒状の鍔付き試験片を、電気-油圧サーボ式材料試験機に取り付け、大気中900℃で0.2%耐力(MPa)を測定した。900℃における0.2%耐力は排気系部品の高温強度及び耐熱変形性の指標となる。900℃における0.2%耐力の測定結果を表3-1及び表3-2に示す。
排気系部品には、エンジンの運転(加熱)と停止(冷却)の繰り返しによっても熱亀裂を生じないという性質(耐熱亀裂性)、すなわち長い熱疲労寿命が要求される。熱疲労試験での加熱冷却サイクルの繰り返しで生じる亀裂や変形により熱疲労破壊に至るまでのサイクル数が多いほど熱疲労寿命が長く、耐熱性及び耐久性に優れている。
実施例18のフェライト系耐熱鋳鋼を用いて、自動車用排気系部品のタービンハウジング(主要部の肉厚4.0~6.0 mm)を鋳造した後、熱処理を施さず鋳放しのまま型ばらし(解枠)、鋳造方案部(堰部)の切断、ショットブラスト、鋳バリ等を除去する鋳仕上げ、及び機械加工を行った。得られたタービンハウジングには亀裂及び割れは発生しておらず、引け巣、湯廻り不良、ガス欠陥等の鋳造欠陥も認められなかった。また機械加工での切削不具合や、切削工具の異常摩耗、損傷等もなかった。
Claims (2)
- 優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼であって、質量比で
C:0.32~0.45%、
Si:0.85%以下、
Mn:0.15~2%、
Ni:1.5%以下、
Cr:16~23%、
Nb:3.2~4.5%、
Nb/C:9~11.5、
N:0.15%以下、
S:(Nb/20-0.1)~0.2%、
W及び/又はMo:合計(W+Mo)で3.2%以下
を含有し、残部Fe及び不可避的不純物からなる組成を有し、δフェライトとNb炭化物(NbC)との共晶(δ+NbC)相の面積率が60~80%であり、マンガンクロム硫化物(MnCr)Sの面積率が0.2~1.2%である組織を有することを特徴とするフェライト系耐熱鋳鋼。 - 請求項1に記載のフェライト系耐熱鋳鋼からなる排気系部品。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137005969A KR101799844B1 (ko) | 2010-10-01 | 2011-10-03 | 우수한 탕류성, 내가스 결함성, 인성 및 피삭성을 가지는 페라이트계 내열 주강, 및 이들로 이루어지는 배기계 부품 |
US13/877,104 US9046029B2 (en) | 2010-10-01 | 2011-10-03 | Heat-resistant, ferritic cast steel having excellent melt flowability, gas defect resistance, toughness and machinability, and exhaust member made thereof |
CN201180047534.4A CN103140595B (zh) | 2010-10-01 | 2011-10-03 | 具有优异的流动性、耐气体缺陷性、韧性和被削性的铁素体系耐热铸钢和由其构成的排气系统零件 |
JP2012536610A JP5862570B2 (ja) | 2010-10-01 | 2011-10-03 | 優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品 |
EP11829412.3A EP2623623B1 (en) | 2010-10-01 | 2011-10-03 | Heat-resistant ferritic cast steel having excellent melt flowability, freedom from gas defect, toughness, and machinability, and exhaust system component comprising same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-082167 | 2010-10-01 | ||
JP2010223366 | 2010-10-01 | ||
JP2010-223366 | 2010-10-01 | ||
JP2011082167 | 2011-04-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012043860A1 true WO2012043860A1 (ja) | 2012-04-05 |
Family
ID=45893292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/072811 WO2012043860A1 (ja) | 2010-10-01 | 2011-10-03 | 優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9046029B2 (ja) |
EP (1) | EP2623623B1 (ja) |
JP (1) | JP5862570B2 (ja) |
KR (1) | KR101799844B1 (ja) |
CN (1) | CN103140595B (ja) |
WO (1) | WO2012043860A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014057875A1 (ja) | 2012-10-10 | 2014-04-17 | 日立金属株式会社 | 被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品 |
JP2020157345A (ja) * | 2019-03-27 | 2020-10-01 | 日立金属株式会社 | 通気性鋳型およびそれを用いた鋳造物品の製造方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011125901A1 (ja) * | 2010-03-31 | 2011-10-13 | 日立金属株式会社 | 常温靭性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品 |
US9499889B2 (en) | 2014-02-24 | 2016-11-22 | Honeywell International Inc. | Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same |
CN104500497A (zh) * | 2014-12-22 | 2015-04-08 | 常熟市董浜镇徐市盛峰液压配件厂 | 高可靠性油缸盖 |
US11492690B2 (en) | 2020-07-01 | 2022-11-08 | Garrett Transportation I Inc | Ferritic stainless steel alloys and turbocharger kinematic components formed from stainless steel alloys |
CN113025860B (zh) * | 2021-03-09 | 2022-07-08 | 陕西科技大学 | 一种兼具高强度、高硬度及高热稳定性的Laves相共晶合金及其制备方法 |
CN116804257A (zh) * | 2023-06-21 | 2023-09-26 | 鞍钢集团矿业有限公司 | 低成本奥氏体-铁素体双相耐热钢及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05320830A (ja) * | 1992-05-21 | 1993-12-07 | Toyota Motor Corp | フェライト系耐熱鋳鋼およびその製造方法 |
JPH07197209A (ja) | 1993-11-25 | 1995-08-01 | Hitachi Metals Ltd | 鋳造性の優れたフェライト系耐熱鋳鋼およびそれからなる排気系部品 |
JPH1161343A (ja) | 1997-08-11 | 1999-03-05 | Hitachi Metals Ltd | 高温強度とくにクリープ破断強度の優れたフェライト系耐熱鋳鋼およびそれからなる排気系部品 |
JP2000204946A (ja) * | 1998-11-11 | 2000-07-25 | Hitachi Metals Ltd | ステンレス鋳鋼製排気系複合部品及びその製造方法 |
JP2004332021A (ja) * | 2003-05-01 | 2004-11-25 | Sanyo Special Steel Co Ltd | アウトガス特性に優れた非Pb快削ステンレス鋼 |
JP2007254885A (ja) | 2006-02-23 | 2007-10-04 | Daido Steel Co Ltd | 薄肉鋳物部品及びその製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0359085B1 (en) * | 1988-09-05 | 1994-11-30 | Hitachi Metals, Ltd. | Heat-resistant cast steels |
JPH0826438B2 (ja) * | 1990-03-27 | 1996-03-13 | 日立金属株式会社 | 熱疲労寿命に優れたフェライト系耐熱鋳鋼 |
JPH05140700A (ja) * | 1991-11-15 | 1993-06-08 | Mazda Motor Corp | フエライト系耐熱鋳鋼部材及びその製造法 |
US5582657A (en) * | 1993-11-25 | 1996-12-10 | Hitachi Metals, Ltd. | Heat-resistant, ferritic cast steel having high castability and exhaust equipment member made thereof |
JP2002309935A (ja) * | 2001-02-08 | 2002-10-23 | Hitachi Metals Ltd | 耐熱鋳鋼製排気系部品 |
JP4197492B2 (ja) * | 2001-07-05 | 2008-12-17 | 日新製鋼株式会社 | 排ガス流路部材用フェライト系ステンレス鋼 |
US7914732B2 (en) | 2006-02-23 | 2011-03-29 | Daido Tokushuko Kabushiki Kaisha | Ferritic stainless steel cast iron, cast part using the ferritic stainless steel cast iron, and process for producing the cast part |
JP2007254884A (ja) * | 2006-02-23 | 2007-10-04 | Daido Steel Co Ltd | フェライト系ステンレス鋳鋼、それを用いた鋳物部品の製造方法及び鋳物部品 |
JP4521470B1 (ja) * | 2009-04-27 | 2010-08-11 | アイシン高丘株式会社 | フェライト系耐熱鋳鋼および排気系部品 |
-
2011
- 2011-10-03 US US13/877,104 patent/US9046029B2/en active Active
- 2011-10-03 CN CN201180047534.4A patent/CN103140595B/zh active Active
- 2011-10-03 KR KR1020137005969A patent/KR101799844B1/ko active IP Right Grant
- 2011-10-03 WO PCT/JP2011/072811 patent/WO2012043860A1/ja active Application Filing
- 2011-10-03 JP JP2012536610A patent/JP5862570B2/ja active Active
- 2011-10-03 EP EP11829412.3A patent/EP2623623B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05320830A (ja) * | 1992-05-21 | 1993-12-07 | Toyota Motor Corp | フェライト系耐熱鋳鋼およびその製造方法 |
JPH07197209A (ja) | 1993-11-25 | 1995-08-01 | Hitachi Metals Ltd | 鋳造性の優れたフェライト系耐熱鋳鋼およびそれからなる排気系部品 |
JPH1161343A (ja) | 1997-08-11 | 1999-03-05 | Hitachi Metals Ltd | 高温強度とくにクリープ破断強度の優れたフェライト系耐熱鋳鋼およびそれからなる排気系部品 |
JP2000204946A (ja) * | 1998-11-11 | 2000-07-25 | Hitachi Metals Ltd | ステンレス鋳鋼製排気系複合部品及びその製造方法 |
JP2004332021A (ja) * | 2003-05-01 | 2004-11-25 | Sanyo Special Steel Co Ltd | アウトガス特性に優れた非Pb快削ステンレス鋼 |
JP2007254885A (ja) | 2006-02-23 | 2007-10-04 | Daido Steel Co Ltd | 薄肉鋳物部品及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2623623A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014057875A1 (ja) | 2012-10-10 | 2014-04-17 | 日立金属株式会社 | 被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品 |
KR20150065870A (ko) | 2012-10-10 | 2015-06-15 | 히타치 긴조쿠 가부시키가이샤 | 피삭성이 우수한 페라이트계 내열 주강 및 그것으로 이루어지는 배기계 부품 |
CN104718304A (zh) * | 2012-10-10 | 2015-06-17 | 日立金属株式会社 | 切削性优异的铁素体系耐热铸钢和由其构成的排气系统部件 |
EP2907885A4 (en) * | 2012-10-10 | 2016-07-13 | Hitachi Metals Ltd | HEAT-RESISTANT FERRITIC MOLDED STEEL WITH EXCELLENT MACHINING CAPACITY AND EXHAUST COMPONENT THEREOF |
US9758851B2 (en) | 2012-10-10 | 2017-09-12 | Hitachi Metals, Ltd. | Heat-resistant, cast ferritic steel having excellent machinability and exhaust member made thereof |
KR102087129B1 (ko) * | 2012-10-10 | 2020-03-10 | 히타치 긴조쿠 가부시키가이샤 | 피삭성이 우수한 페라이트계 내열 주강 및 그것으로 이루어지는 배기계 부품 |
JP2020157345A (ja) * | 2019-03-27 | 2020-10-01 | 日立金属株式会社 | 通気性鋳型およびそれを用いた鋳造物品の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5862570B2 (ja) | 2016-02-16 |
CN103140595B (zh) | 2015-05-20 |
EP2623623A1 (en) | 2013-08-07 |
EP2623623B1 (en) | 2016-03-23 |
CN103140595A (zh) | 2013-06-05 |
US9046029B2 (en) | 2015-06-02 |
JPWO2012043860A1 (ja) | 2014-02-24 |
KR20130116239A (ko) | 2013-10-23 |
EP2623623A4 (en) | 2015-01-28 |
US20130195713A1 (en) | 2013-08-01 |
KR101799844B1 (ko) | 2017-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5862570B2 (ja) | 優れた湯流れ性、耐ガス欠陥性、靭性及び被削性を有するフェライト系耐熱鋳鋼、及びそれからなる排気系部品 | |
JP4985941B2 (ja) | 高Cr高Niオーステナイト系耐熱鋳鋼及びそれからなる排気系部品 | |
JP5353716B2 (ja) | オーステナイト系耐熱鋳鋼及びそれからなる排気系部品 | |
JP6481692B2 (ja) | 熱疲労特性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品 | |
JP5626338B2 (ja) | 常温靭性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品 | |
JP6160625B2 (ja) | 被削性に優れたフェライト系耐熱鋳鋼及びそれからなる排気系部品 | |
JP6098637B2 (ja) | 被削性に優れたオーステナイト系耐熱鋳鋼及びそれからなる排気系部品 | |
JPH05179406A (ja) | 耐熱鋳鋼及びその製造方法並びに内燃機関用部品 | |
JPH07228948A (ja) | 鋳造性および被削性の優れたオーステナイト系耐熱鋳鋼およびそれからなる排気系部品 | |
JPH06322473A (ja) | 鋳造用鉄合金及びその製造方法 | |
JPH06322474A (ja) | 鋳造用鉄合金及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180047534.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11829412 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012536610 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20137005969 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13877104 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011829412 Country of ref document: EP |