WO2012043302A1 - 流体伝動装置 - Google Patents

流体伝動装置 Download PDF

Info

Publication number
WO2012043302A1
WO2012043302A1 PCT/JP2011/071369 JP2011071369W WO2012043302A1 WO 2012043302 A1 WO2012043302 A1 WO 2012043302A1 JP 2011071369 W JP2011071369 W JP 2011071369W WO 2012043302 A1 WO2012043302 A1 WO 2012043302A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid transmission
transmission device
centrifugal pendulum
damper
vibration absorber
Prior art date
Application number
PCT/JP2011/071369
Other languages
English (en)
French (fr)
Inventor
由浩 滝川
数人 丸山
伊藤 和広
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45888848&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012043302(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE112011100632.2T priority Critical patent/DE112011100632B4/de
Priority to CN201180037449.XA priority patent/CN103038545B/zh
Publication of WO2012043302A1 publication Critical patent/WO2012043302A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0205Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type two chamber system, i.e. without a separated, closed chamber specially adapted for actuating a lock-up clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • F16H2045/0231Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0247Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means having a turbine with hydrodynamic damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0263Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means the damper comprising a pendulum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0294Single disk type lock-up clutch, i.e. using a single disc engaged between friction members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2121Flywheel, motion smoothing-type
    • Y10T74/2128Damping using swinging masses, e.g., pendulum type, etc.

Definitions

  • the present invention relates to a fluid transmission device including a dynamic damper and a centrifugal pendulum vibration absorber.
  • this type of fluid transmission device includes a pump impeller connected to an input member coupled to a prime mover, a turbine runner that can rotate together with the pump impeller, an input element, the input element, and a first elastic body.
  • a damper mechanism having an intermediate element to be engaged, an output element that is engaged with the intermediate element via a second elastic body, and is coupled to the input shaft of the transmission, and the input member and the input element of the damper mechanism are engaged.
  • a lockup clutch mechanism capable of executing lockup and releasing the lockup, a dynamic damper including an elastic body (coil spring) and a turbine runner engaged with the elastic body, a support member, and the support member And a centrifugal pendulum type vibration absorber including a plurality of mass bodies each capable of swinging are proposed (for example, Patent reference 1).
  • a dynamic damper is formed by engaging the turbine runner and an intermediate element of the damper mechanism via an elastic body, and the support member of the centrifugal pendulum vibration absorber is substantially fixed to the turbine runner.
  • the elastic body of the dynamic damper exists upstream of the centrifugal pendulum vibration absorber.
  • the main purpose of the fluid transmission device of the present invention is to enable the vibration transmitted to the input member to be effectively damped by the dynamic damper and the centrifugal pendulum type vibration absorber.
  • the fluid transmission device of the present invention employs the following means in order to achieve the main object.
  • the fluid transmission device of the present invention is A pump impeller connected to an input member coupled to a prime mover; a turbine runner rotatable with the pump impeller; an input element; an intermediate element engaged with the input element via a first elastic body; and the intermediate element A damper mechanism having an output element engaged via a second elastic body; and a lockup for connecting the input member and the input shaft of the transmission via the damper mechanism, and releasing the lockup.
  • Lockup clutch mechanism capable of rotating, a dynamic damper including a mass body and a third elastic body engaged with the mass body, and a centrifugal pendulum including a support member and a plurality of mass bodies swingable with respect to the support member
  • a fluid transmission device comprising a vibration absorber
  • the third elastic body of the dynamic damper is engaged with one of the intermediate element and the output element of the damper mechanism, and the support member of the centrifugal pendulum vibration absorber is the intermediate element of the damper mechanism and the It is connected to one or the other of the output elements.
  • This fluid transmission device includes a dynamic damper and a centrifugal pendulum type vibration absorber in order to attenuate the vibration transmitted to the input member.
  • the third elastic body constituting the dynamic damper is engaged with one of the intermediate element and the output element of the damper mechanism, and the support member of the centrifugal pendulum vibration absorber is the intermediate element and the output element of the damper mechanism. Connected to one or the other.
  • the dynamic damper is connected to one of the intermediate element and the output element of the damper mechanism and the centrifugal pendulum type vibration absorber is connected to the one of the intermediate element and the output element, or the other of the intermediate element and the output element of the damper mechanism is connected.
  • the dynamic damper and the centrifugal pendulum absorber are connected, the dynamic damper and the centrifugal pendulum absorber are connected independently (in parallel) to the damper mechanism. It is possible to effectively cancel the vibration transmitted to the input member by the dynamic damper and the centrifugal pendulum vibration absorber while suppressing the cancellation of the vibration damping effect by the vibration absorber.
  • the third elastic body may be engaged with the output element of the damper mechanism, and the support member of the centrifugal pendulum vibration absorber may be connected to the intermediate element of the damper mechanism.
  • the dynamic damper By connecting the dynamic damper to the output element of the damper mechanism, the mass of the damper mechanism becomes larger as a whole, and the resonance frequency of the damper mechanism decreases.
  • the resonance point of the damper mechanism can be shifted to a lower rotational speed side and away from the resonance point of the dynamic damper, so that the dynamic damper can input from the prime mover in the region where the rotational speed of the front cover (prime mover) is low.
  • the vibration transmitted to the member can be damped more effectively.
  • the intermediate element that is most vibrated among the elements of the damper mechanism is interposed between the first elastic body and the second elastic body. Since the vibration can be suppressed by the centrifugal pendulum type vibration absorber, the resonance of the entire damper mechanism can be suppressed more effectively. Therefore, the resonance of the dynamic damper, that is, the vibration generated when the vibration is attenuated by the dynamic damper is also suppressed. be able to. Therefore, according to such a configuration, the vibration transmitted to the input member can be attenuated very effectively by the dynamic damper and the centrifugal pendulum vibration absorber.
  • the mass body of the dynamic damper may be the turbine runner that engages with the third elastic body.
  • the support member of the centrifugal pendulum vibration absorber may be fixed to the intermediate element of the damper mechanism via a connection member, and the connection member may be the first and second elastic bodies of the damper mechanism. May be fixed to the intermediate element on the outer peripheral side rather than the one arranged on the inner peripheral side.
  • the connecting member for fixing the support member of the centrifugal pendulum vibration absorber to the intermediate element of the damper mechanism is more outer than the one disposed on the inner peripheral side of the first and second elastic bodies of the damper mechanism.
  • a sufficient space can be secured on the inner peripheral side of the centrifugal pendulum type vibration absorber, and for example, a third elastic body constituting a dynamic damper is arranged in this space to transfer the fluid.
  • the apparatus can be made more compact.
  • each of the plurality of mass bodies of the centrifugal pendulum type vibration absorber may be supported by a support shaft, and each of the mass bodies with respect to the support member may be supported by the support member of the centrifugal pendulum type vibration absorber.
  • a plurality of guide holes for guiding the support shaft to swing may be formed, and the guide holes are formed when the connecting member is fixed to the support member of the centrifugal pendulum vibration absorber. You may form in the said supporting member so that it may overlap with the fixing
  • the guide hole of the support member of the centrifugal pendulum vibration absorber can be used as an opening for fixing work. It is possible to reduce the number of work openings to be formed in the support member or the like and to ensure good rigidity of the support member or the like.
  • the elastic body of the dynamic damper may be arranged on an inner peripheral side of the centrifugal pendulum vibration absorber, and the elastic body of the dynamic damper and the centrifugal pendulum vibration absorber are the same as those of the fluid transmission device. You may arrange
  • the third elastic body constituting the dynamic damper and the centrifugal pendulum-type vibration absorber overlap in the axial direction as viewed from the radial direction of the fluid transmission device, so the axial length of the fluid transmission device is shortened and the entire device is made compact. It becomes possible to do.
  • the third elastic body constituting the dynamic damper is arranged on the inner peripheral side of the centrifugal pendulum type vibration absorber, a sufficient space for the centrifugal pendulum type vibration absorber is ensured, and the mass of the centrifugal pendulum type vibration absorber is reduced.
  • the degree of freedom in selecting the size (length in the radial direction) can be increased.
  • the third elastic body and the centrifugal pendulum type vibration absorber are disposed between the turbine runner and the damper mechanism as viewed from the radial direction of the fluid transmission device, thereby suppressing the increase in the axial length of the fluid transmission device and the third elasticity.
  • the body can be engaged with one of the intermediate element and the output element, and the support member of the centrifugal pendulum vibration absorber can be connected to one or the other of the intermediate element and the output element of the damper mechanism.
  • FIG. 1 is a schematic configuration diagram of a fluid transmission device 1.
  • FIG. 1 is explanatory drawing which illustrates the relationship between the rotation speed of the engine as a motor
  • FIG. 1 is a configuration diagram showing a fluid transmission device 1 according to an embodiment of the present invention.
  • a fluid transmission device 1 shown in the figure is a torque converter mounted as a starting device on a vehicle including an engine (internal combustion engine) as a prime mover, and is a front cover (input member) connected to a crankshaft of the engine (not shown). 3, a pump impeller (input side fluid transmission element) 4 fixed to the front cover 3, a turbine runner (output side fluid transmission element) 5 that can rotate coaxially with the pump impeller 4, and a pump impeller 4 from the turbine runner 5.
  • damper hub (output member) 7 fixed to an input shaft of a transmission which is an automatic transmission (AT) or a continuously variable transmission (CVT) (not shown).
  • a damper mechanism 8 connected to the damper hub 7, and a lockup piston 90 connected to the damper mechanism 8. And a lock-up clutch mechanism 9 of the friction type.
  • the pump impeller 4 includes a pump shell 40 that is tightly fixed to the front cover 3 and a plurality of pump blades 41 that are disposed on the inner surface of the pump shell 40.
  • the turbine runner 5 includes a turbine shell 50 and a plurality of turbine blades 51 disposed on the inner surface of the turbine shell 50.
  • the turbine shell 50 is fixed to the turbine hub 52 through rivets, and the turbine hub 52 is rotatably fitted to a hub support portion 7a formed at the left end (end portion on the transmission side) of the damper hub 7 in the figure.
  • the pump impeller 4 and the turbine runner 5 face each other, and a stator 6 that can rotate coaxially with the pump impeller 4 and the turbine runner 5 is disposed between the pump impeller 4 and the turbine runner 5.
  • the stator 6 has a plurality of stator blades 60, and the rotation direction of the stator 6 is set in only one direction by the one-way clutch 61.
  • the pump impeller 4, the turbine runner 5, and the stator 6 form a torus (annular flow path) for circulating hydraulic oil.
  • the damper mechanism 8 includes a drive member 80 as an input element, an intermediate member (intermediate element) 83 engaged with the drive member 80 via a plurality of first coil springs (first elastic bodies) 81, and a first coil spring.
  • a driven plate (output element) 84 that engages with the intermediate member 83 via a plurality of second coil springs (second elastic bodies) 82 that are spaced apart from 81 in the radial direction of the fluid transmission device 1.
  • the drive member 80 is fixed to the lockup piston 90 of the lockup clutch mechanism 9 via a rivet, and is disposed in an outer peripheral region inside the housing defined by the front cover 3 and the pump shell 40 of the pump impeller 4. .
  • the drive member 80 has a plurality of spring contact portions that contact one end of the corresponding first coil spring 81.
  • the plurality of first coil springs 81 are slidably held at predetermined intervals in the circumferential direction by an outer peripheral portion of the lockup piston 90 and a support portion formed on the drive member 80.
  • Each of the plurality of second coil springs 82 has higher rigidity (spring constant) than the first coil spring 81 and has a predetermined interval in the circumferential direction by the intermediate member 83 on the inner peripheral side of the first coil spring 81. And is slidably held in the chamber.
  • the intermediate member 83 of the damper mechanism 8 includes an annular first intermediate plate 83a and an annular second intermediate plate 83b fixed to the first intermediate plate 83a via a rivet.
  • the first intermediate plate 83a has a plurality of first spring contact portions that contact the other end of the corresponding first coil spring 81 on the outer peripheral side, and a plurality of second springs for holding the second coil spring 82.
  • a spring support is provided on the inner peripheral side.
  • the second intermediate plate 83b has a second spring support portion that holds the second coil spring 82 facing the second spring support portion of the first intermediate plate 83a.
  • a plurality of spring contact portions that contact one end of the corresponding second coil spring 82 are formed on at least one of the first and second intermediate plates 83a and 83b.
  • the driven plate 84 is disposed between the first intermediate plate 83 a and the second intermediate plate 83 b and is fixed to the damper hub 7.
  • the driven plate 84 is connected to the plate fixing portion 7b extending from the central portion in the axial direction of the damper hub 7 (the right side of the hub support portion 7a in the drawing) to the outside in the radial direction of the fluid transmission device 1 via a rivet. Fixed.
  • the driven plate 84 is formed with a centering portion 84a that contacts the inner periphery of the first intermediate plate 83a and aligns the intermediate member 83.
  • the lock-up clutch mechanism 9 is capable of performing lock-up for connecting the front cover 3 and the damper hub 7 via the damper mechanism 8 and releasing the lock-up.
  • the lockup piston 90 of the lockup clutch mechanism 9 is disposed inside the front cover 3 and in the vicinity of the inner wall surface of the front cover 3 on the engine side (right side in the drawing).
  • a piston support portion 7c formed on the damper hub 7 (right end in the figure) is positioned so as to be located on the opposite side of the hub support portion 7a via the fixing portion 7b, and is slidable and rotatable in the axial direction.
  • a friction material 91 is attached to the outer peripheral side of the lockup piston 90 and the surface on the front cover 3 side.
  • lock-up piston 90 And between the back surface (right side surface in the figure) of the lock-up piston 90 and the front cover 3, it is connected to a hydraulic control unit (not shown) via a hydraulic oil supply hole (not shown) and an oil passage formed in the input shaft.
  • a lock-up chamber 95 is defined.
  • the hydraulic oil supplied to the pump impeller 4 and the turbine runner 5 is supplied to the lock-up chamber 95.
  • the lockup chamber 95 is filled with hydraulic oil. Accordingly, at this time, the lock-up piston 90 does not move to the front cover 3 side, and the lock-up piston 90 does not frictionally engage with the front cover 3. Further, when the pressure in the lockup chamber 95 is reduced by a hydraulic control unit (not shown), the lockup piston 90 moves toward the front cover 3 due to the pressure difference and frictionally engages with the front cover 3.
  • the front cover 3 is connected to the damper hub 7 via the damper mechanism 8, whereby the power from the engine is transmitted to the input shaft of the transmission via the front cover 3, the damper mechanism 8 and the damper hub 7.
  • the lock-up piston 90 is separated from the front cover 3 due to a decrease in the pressure difference accompanying the inflow of hydraulic oil into the lock-up chamber 95, thereby releasing the lock-up. Will be.
  • the fluid transmission device 1 if the lockup is executed when the engine speed connected to the front cover 3 reaches an extremely low lockup speed Nluup of about 1000 rpm, for example, the engine, the transmission, The power transmission efficiency between the two can be improved, and thereby the fuel consumption of the engine can be further improved.
  • the fluid transmission device 1 according to the embodiment has a damper hub (output) from the front cover (input member) 3 when the rotational speed (engine rotational speed) of the front cover 3 is in the vicinity of the lockup rotational speed Nlup determined to be extremely low.
  • a dynamic damper 10 including a turbine runner 5 as a mass body and a plurality of coil springs (third elastic bodies) 100, and a centrifugal pendulum type And a vibration absorber 20.
  • the plurality of coil springs 100 constituting the dynamic damper 10 are spaced apart from each other at a predetermined interval in the circumferential direction by a spring support member 11 fixed to a turbine hub 52 through a rivet together with a turbine shell 50. Each is held slidably and is disposed in an inner peripheral region between the turbine runner 5 and the damper mechanism 8 when viewed from the radial direction of the fluid transmission device 1.
  • the spring support member 11 supports the first member 11 a that supports the turbine runner 5 side and outer peripheral portion of each coil spring 100, and the inner peripheral side portion of the side portion of each coil spring 100 on the damper mechanism 8 side.
  • a second member 11b having a plurality of spring contact portions that contact one end of the corresponding coil spring 100.
  • each of the engagement members 12 is extended outward toward the turbine runner 5. It has a plurality of contact parts. The other end of each coil spring 100 held by the spring support member 11 comes into contact with a corresponding contact portion of the engagement member 12. That is, in the embodiment, the plurality of coil springs 100 constituting the dynamic damper 10 are engaged with the driven plate 84 and the damper hub 7 of the damper mechanism 8, respectively.
  • the centrifugal pendulum vibration absorber 20 includes an annular support member 21 connected to the damper mechanism 8 and a plurality of mass bodies that can swing with respect to the support member 21. 22.
  • a plurality of guide holes 21a which are arc-shaped elongated holes, are formed in the support member 21 of the embodiment at equal intervals.
  • the mass body 22 of the embodiment is inserted into the two metal plates 22a formed in a disk shape and the guide holes 21a of the support member 21 so as to be freely rotatable, and the metal plates 22a are fixed to both ends. And a shaft 23.
  • a plurality of (four in the embodiment) minute protrusions 22b are supported on the surface of each metal plate 22a facing the support member 21 in order to prevent the entire surface and the support member 21 from slidingly contacting each other. It extends to the member 21 side.
  • the centrifugal pendulum vibration absorber 20 of the embodiment is fixed to the intermediate member 83 of the damper mechanism 8 via the connecting member 24 and is disposed on the outer peripheral side of each coil spring 100 constituting the dynamic damper 10.
  • the connecting member 24 includes an annular portion 24a and a plurality of projecting pieces 24b having a substantially L-shaped cross section extending from the inner peripheral portion of the annular portion 24a in the axial direction and further to the inner peripheral side. As shown in FIGS. 1 and 3, each protruding piece 24 b of the connecting member 24 is fixed to the inner peripheral portion of the support member 21 via a rivet between the guide holes 21 a adjacent to each other. Further, as can be seen from FIG.
  • the annular portion 24 a of the connecting member 24 has an intermediate member 83 (first and second intermediate plates 83 a, 83) via a rivet on the outer peripheral side of the second coil spring 82 of the damper mechanism 8. 83b).
  • the connecting member 24 is fixed to the intermediate member 83 on the outer peripheral side of the second coil spring 82 disposed on the inner peripheral side of the first and second coil springs 81 and 82 of the damper mechanism 8,
  • the fluid transmission device 1 can be made compact.
  • the support member 21 and the connection member 24 are positioned when the centrifugal pendulum vibration absorber 20 in which the connection member 24 is fixed to the support member 21 is positioned with respect to the intermediate member 83 of the damper mechanism 8.
  • the guide hole 21 a of the support member 21 and the rivet hole of the annular portion 24 a are formed so as to overlap in the radial direction when viewed from the axial direction of the fluid transmission device 1. That is, as shown in FIG. 2, the guide hole 21 a is an intermediate member of the connecting member 24 when viewed from the axial direction of the fluid transmission device 1 when the connecting member 24 is fixed to the support member 21 of the centrifugal pendulum vibration absorber 20. It is formed on the support member 21 so as to overlap the fixing portion for 83.
  • the mass member 22 can be appropriately moved to guide the support member 21 of the centrifugal pendulum vibration absorber 20. Since the hole 21a can be used as a rivet caulking work opening, it is possible to reduce the number of work openings to be formed in the support member 21 or the like and to ensure good rigidity of the support member 21 or the like. Become.
  • the plurality of coil springs 100 constituting the dynamic damper 10 according to the embodiment are arranged on the inner peripheral side of the centrifugal pendulum vibration absorber 20, and together with the centrifugal pendulum vibration absorber 20, from the radial direction of the fluid transmission device 1. Seen between the turbine runner 5 and the damper mechanism 8. As a result, the coil spring 100 of the dynamic damper 10 and the centrifugal pendulum-type vibration absorber 20 overlap in the axial direction as viewed from the radial direction of the fluid transmission device 1, so that the axial length of the fluid transmission device 1 is shortened and the entire device is compact. Can be realized.
  • the coil spring 100 of the dynamic damper 10 is arranged on the inner peripheral side of the centrifugal pendulum type vibration absorber 20, a sufficient space for arranging the centrifugal pendulum type vibration absorber 20 on the outer peripheral side is ensured, and the centrifugal pendulum type vibration absorber 20.
  • the degree of freedom in selecting the size of the mass body 22, particularly the length in the radial direction can be increased.
  • the coil spring 100 of the dynamic damper 10 and the centrifugal pendulum type vibration absorber 20 between the turbine runner 5 and the damper mechanism 8 when viewed from the radial direction of the fluid transmission apparatus 1, the axial length of the fluid transmission apparatus 1 is increased.
  • a plurality of coil springs 100 that engage with the turbine runner 5 and the driven plate 84 of the damper mechanism 8 are connected to the front cover 3 (input member), the damper hub (output member) 7, at the time of lock-up.
  • the dynamic damper 10 is configured together with the turbine runner 5 and the spring support member 11 that do not contribute to torque transmission between the engine and the damper 10 and the vibration transmitted from the engine side to the front cover 3 by the dynamic damper 10. It is possible to effectively absorb (attenuate) from the driven plate 84.
  • the damper mechanism 8 when the damper mechanism 8 connected to the front cover 3 by the lock-up piston 90 rotates together with the front cover 3 along with the lock-up, the damper mechanism 8 is connected to the intermediate member 83 of the damper mechanism 8.
  • the support member 21 also rotates around the axis of the fluid transmission device 1 together with the intermediate member 83, and the support shaft 23 of each mass body 22 constituting the centrifugal pendulum type vibration absorber 20 is guided by the support member 21 as the support member 21 rotates.
  • Each mass body 22 swings with respect to the support member 21 by being guided by the hole 21a and rolling between one end and the other end of the guide hole 21a.
  • the vibration transmitted from the centrifugal pendulum vibration absorber 20 to the front cover 3 by applying vibration having a phase opposite to the vibration (resonance) of the intermediate member 83 to the intermediate member 83 is centrifugal pendulum type. It can also be absorbed (attenuated) by the vibration absorber 20.
  • the rigidity (spring constant) of the coil spring 100 that defines the vibration damping characteristics (resonance frequency) of the dynamic damper 10, the weight (inertia) of the turbine runner 5, etc., the centrifugal pendulum type vibration absorber The above-described lock-up rotation in which the number of cylinders of the engine as a prime mover and lock-up are executed based on the size (particularly radial length) and weight of the mass body 22 that defines the vibration damping characteristics of 20 and the shape and dimensions of the guide hole 21a.
  • the engine is transmitted from the engine as the prime mover to the fluid transmission device 1, that is, the front cover 3. Is effectively absorbed (damped) by the dynamic damper 10 and the centrifugal pendulum vibration absorber 20.
  • the vibration can be satisfactorily suppressed from being transmitted to the damper hub 7 via the driven plate 84 and.
  • lockup is executed when the engine speed reaches a relatively low lockup speed Nluup, for example, about 1000 rpm, thereby improving power transmission efficiency and thus fuel efficiency of the engine. It becomes possible.
  • FIG. 5 is an explanatory diagram illustrating the relationship between the rotational speed of the engine as the prime mover and the vibration level of the fluid transmission device 1 and the like described above.
  • This figure shows a plurality of torsional vibration systems obtained in order to obtain a fluid transmission device suitable for combination with a small cylinder (small cylinder) engine that generates relatively large vibrations such as 3 cylinders or 4 cylinders.
  • the relationship between the rotation speed of the engine (front cover 3) in the fluid transmission device and the vibration level between the front cover 3 and the damper hub 7 of the fluid transmission device is illustrated.
  • the specifications of the engine as the prime mover, the specifications of the pump impeller 4, the turbine runner 5, the damper mechanism 8 and the lockup clutch mechanism 9 are basically the same, and the turbine runner 5 constituting the dynamic damper 10, etc.
  • the mass (inertia) of the coil, the rigidity of the coil spring 100, and the size and weight of the support member 21 and the mass body 22 of the centrifugal pendulum vibration absorber 20 are basically the same.
  • the vibration input to the front cover 3 from the engine is transmitted to the input element (drive member 80) of the damper mechanism 8 with almost no attenuation, so that the cylinder saving is achieved.
  • the dynamic damper 10 and the centrifugal pendulum vibration absorber 20 are sufficient. May not be able to obtain a sufficient vibration damping effect. For this reason, here, the above simulation was performed with the intermediate member (intermediate element) 83 and the driven plate (output element) 84 of the damper mechanism 8 being connected to the dynamic damper 10 and the centrifugal pendulum vibration absorber 20.
  • the solid line indicates the vibration level of the fluid transmission device 1 according to the above embodiment.
  • the alternate long and short dash line indicates that the coil spring 100 of the dynamic damper 10 is engaged with the driven plate 84 (and the damper hub 7) of the damper mechanism 8 and the support member of the centrifugal pendulum type vibration absorber 20 as shown in FIG.
  • Reference numeral 21 denotes a vibration level of the fluid transmission device 1B connected to the driven plate 84 (and the damper hub 7) of the damper mechanism 8. Further, in FIG.
  • a two-dot chain line indicates that the coil spring 100 of the dynamic damper 10 is engaged with the intermediate member (intermediate element) 83 of the damper mechanism 8 and the support member of the centrifugal pendulum type vibration absorber 20 as shown in FIG.
  • Reference numeral 21 denotes a vibration level of the fluid transmission device 1 ⁇ / b> C connected to the intermediate member 83 of the damper mechanism 8.
  • the broken line indicates that the coil spring 100 of the dynamic damper 10 is engaged with the intermediate member (intermediate element) 83 of the damper mechanism 8 and the support member 21 of the centrifugal pendulum vibration absorber 20 is shown in FIG.
  • the vibration level of the fluid transmission device 1D connected to the driven plate 84 (and the damper hub 7) of the damper mechanism 8 is shown. Further, in FIG. 5, the dotted line indicates the vibration level of the fluid transmission device in which the dynamic damper 10 and the centrifugal pendulum vibration absorber 20 are omitted from the fluid transmission device 1 of the above embodiment.
  • the first coil spring 81 and the second coil spring 82 are used.
  • the vibration of the intermediate member 83 that vibrates most among the elements of the damper mechanism 8 is suppressed by the centrifugal pendulum vibration absorber 20 and the resonance of the entire damper mechanism 8 is more effectively suppressed.
  • the vibration of the dynamic damper 10 corresponding to the suppression of the resonance of the entire damper mechanism 8, that is, the vibration generated after the vibration is attenuated by the dynamic damper 10 (after vibration attenuation) Can be suppressed.
  • the dynamic damper 10 can be as much as the resonance of the entire damper mechanism 8 cannot be suppressed compared to the fluid transmission device 1.
  • the vibration generated by the dynamic damper 10 is slightly increased.
  • the resonance of the dynamic damper 10 can be quickly converged by the centrifugal pendulum vibration absorber 20, the fluid transmission device 1 As compared with the above, the convergence of the vibration of the entire system including the damper mechanism 8, the dynamic damper 10, and the centrifugal pendulum vibration absorber 20 from the front cover 3 to the damper hub 7 can be accelerated.
  • the centrifugal pendulum vibration absorber 20 is compared to the fluid transmission devices 1 and 1B in which the dynamic pendulum vibration absorber 20 is connected to the intermediate member 83 of the damper mechanism 8.
  • the resonance level of the damper mechanism 8 as a whole is high, but the resonance point of the dynamic damper 10 is shifted to the lower rotational speed side by connecting the dynamic damper 10 to the intermediate member 83 of the damper mechanism 8. Convergence of the vibration of the entire system including the damper mechanism 8, the dynamic damper 10, and the centrifugal pendulum vibration absorber 20 from the front cover 3 to the damper hub 7 can be accelerated.
  • the first coil spring 81 and the second coil spring 82 are used in the fluid transmission device 1C in which the centrifugal pendulum vibration absorber 20 is connected to the intermediate member 83 of the damper mechanism 8.
  • the vibration of the intermediate member 83 that vibrates most among the elements of the damper mechanism 8 is suppressed by the centrifugal pendulum vibration absorber 20 and the resonance of the entire damper mechanism 8 is more effectively suppressed.
  • the vibration of the dynamic damper 10 that is, the vibration (vibration generated when the vibration is attenuated by the dynamic damper 10) by the amount that the resonance of the entire damper mechanism 8 is suppressed.
  • the dynamic damper 10 is as much as the resonance of the entire damper mechanism 8 cannot be suppressed compared to the fluid transmission device 1C.
  • the vibration generated by the dynamic damper is slightly increased.
  • the resonance of the dynamic damper 10 can be quickly converged by the centrifugal pendulum vibration absorber 20, the fluid transmission device 1C In comparison, the convergence of the vibration of the entire system including the damper mechanism 8, the dynamic damper 10, and the centrifugal pendulum vibration absorber 20 from the front cover 3 to the damper hub 7 can be accelerated.
  • the fluid transmission device 1 is transmitted from the engine to the front cover 3 in the vicinity of the lock-up rotation speed Nlup that is set to a lower value in terms of efficiency based on the simulation result shown in FIG.
  • the coil spring 100 constituting the dynamic damper 10 is engaged with the driven plate 84 (and the damper hub 7) of the damper mechanism 8 and supports the centrifugal pendulum vibration absorber 20 so that vibration can be damped more effectively.
  • the member 21 is connected to the intermediate member 83 of the damper mechanism 8.
  • the resonance point of the damper mechanism 8 can be shifted to a lower rotational speed side and away from the resonance point of the dynamic damper 10, and thereby the region where the rotational speed of the engine (front cover 3) is low by the dynamic damper 10.
  • the vibration transmitted from the engine to the front cover 3 can be damped more effectively.
  • the intermediate mechanism 83 is interposed between the first coil spring 81 and the second coil spring 82. Since the vibration of the intermediate member 83 that vibrates most can be suppressed by the centrifugal pendulum vibration absorber 20, the resonance of the entire damper mechanism 8 can be more effectively suppressed.
  • the resonance of the dynamic damper 10, that is, the vibration is attenuated by the dynamic damper 10. It is possible to suppress vibrations that occur as a result. Therefore, in the fluid transmission device 1 of the embodiment, the vibration transmitted to the front cover 3 can be attenuated very effectively by the dynamic damper 10 and the centrifugal pendulum vibration absorber 20.
  • the dynamic damper 10 and the centrifugal pendulum vibration absorber 20 are independent (in parallel) with respect to the damper mechanism 8 also by the fluid transmission devices 1B, 1C, and 1D shown in FIGS.
  • the vibration damping effect by the dynamic damper 10 and the vibration damping effect by the centrifugal pendulum type vibration absorber 20 are prevented from canceling each other, and the vibration transmitted to the front cover 3 is reduced to the dynamic damper. 10 and the centrifugal pendulum vibration absorber 20 can be effectively attenuated.
  • the dynamic damper 10 is connected to one of the intermediate member 83 and the driven plate 84 of the damper mechanism 8 and the centrifugal pendulum vibration absorber 20 is connected to one of the intermediate member 83 and the driven plate 84 or the intermediate member of the damper mechanism 8 is connected. If the dynamic damper 10 and the centrifugal pendulum vibration absorber 20 are connected to the other of 83 and the driven plate 84, a fluid transmission device suitable for combination with a cylinder-saving engine can be obtained.
  • the dynamic runner 10 is configured while engaging the turbine runner 5 as a mass body with the coil spring 100 to reduce the number of components while reducing the size of the entire fluid transmission device 1. It becomes possible to do.
  • the present invention can be applied to a fluid transmission device including a dynamic damper using a member other than the turbine runner 5 as a mass body.
  • the support member 21 of the centrifugal pendulum vibration absorber 20 of the embodiment is fixed to the intermediate member 83 of the damper mechanism 8 via the connecting member 24, and the connecting member 24 is the first and second coil springs of the damper mechanism 8.
  • the intermediate member 83 is fixed to the outer peripheral side of the second coil spring 82 disposed on the inner peripheral side of 81, 82.
  • the plurality of mass bodies 22 of the centrifugal pendulum vibration absorber 20 of the embodiment are respectively supported by the support shafts 23, and the mass bodies 22 are respectively connected to the support member 21 of the centrifugal pendulum vibration absorber 20 with respect to the support member 21.
  • a plurality of guide holes 21a for guiding the support shaft 23 are formed so as to swing.
  • the guide hole 21a of the support member 21 of the centrifugal pendulum vibration absorber 20 is used as an opening for fixing work. Since it can be utilized, the number of working openings to be formed in the support member 21 and the like can be reduced, and the rigidity of the support member 21 and the like can be ensured satisfactorily.
  • the coil spring 100 of the dynamic damper 10 of the embodiment is disposed on the inner peripheral side of the centrifugal pendulum vibration absorber 20, and the coil spring 100 of the dynamic damper 10 and the centrifugal pendulum vibration absorber 20 are the same as those of the fluid transmission device 1. It is arranged between the turbine runner 5 and the damper mechanism 8 when viewed from the radial direction. As a result, the coil spring 100 of the dynamic damper 10 and the centrifugal pendulum-type vibration absorber 20 overlap in the axial direction as viewed from the radial direction of the fluid transmission device 1, so that the axial length of the fluid transmission device 1 is shortened and the entire device is compact. Can be realized.
  • the axial length of the fluid transmission device 1 is determined by arranging the coil spring 100 of the dynamic damper 10 and the centrifugal pendulum vibration absorber 20 between the turbine runner 5 and the damper mechanism 8 when viewed from the radial direction of the fluid transmission device 1.
  • the coil spring 100 of the dynamic damper 10 can be engaged with one of the driven plates 84 of the damper mechanism 8 and the support member 21 of the centrifugal pendulum vibration absorber 20 can be connected to the intermediate member 83 of the damper mechanism 8. It becomes possible.
  • the fluid transmission devices 1, 1B, 1C, and 1D described above are configured as a torque converter including the pump impeller 4, the turbine runner 5, and the stator 6.
  • the fluid transmission device of the present invention does not have a stator. It may be configured as a fluid coupling.
  • the fluid transmission devices 1, 1 ⁇ / b> B, 1 ⁇ / b> C, and 1 ⁇ / b> D described above may include a multi-plate friction type lock-up clutch mechanism instead of the single-plate friction type lock-up clutch mechanism 9.
  • the configuration of the centrifugal pendulum vibration absorber in the present invention is not limited to the configuration of the centrifugal pendulum vibration absorber 20 described above.
  • the front cover 3 connected to the engine as the prime mover corresponds to the “input member”
  • the pump impeller 4 connected to the front cover 3 corresponds to the “pump impeller”
  • the pump impeller 4 The turbine runner 5 that can rotate with the drive member 80 corresponds to a “turbine runner”, and the drive member 80 as an input element, the intermediate member 83 that engages with the drive member 80 via the first coil spring 81, the intermediate member 83, and the second coil.
  • a damper mechanism 8 having a driven plate 84 as an output element engaged via a spring 82 corresponds to a “damper mechanism”, and a damper hub 7 connected to the front cover 3 and the input shaft of the transmission via the damper mechanism 8.
  • the latch mechanism 9 corresponds to a “lock-up clutch mechanism”, and a dynamic damper 10 composed of a coil spring 100 as a third elastic body and a turbine runner 5 as a mass body engaged with the coil spring 100 is “dynamic”.
  • the centrifugal pendulum vibration absorber 20 that corresponds to a “damper” and includes a plurality of mass bodies 22 that can swing relative to the support member 21 and the support member 21 corresponds to a “centrifugal pendulum vibration absorber”.
  • the present invention can be used in the field of manufacturing fluid transmission devices.

Abstract

流体伝動装置1は、ドライブ部材80、第1コイルスプリング81を介してドライブ部材80と係合する中間部材83および第2コイルスプリング82を介して中間部材83と係合するドリブンプレート84を有するダンパ機構8と、コイルスプリング100および質量体としてのタービンランナ5により構成されるダイナミックダンパ10と、支持部材21および支持部材21に対してそれぞれ揺動可能な複数の質量体22を含む遠心振子式吸振装置20とを備え、ダイナミックダンパ10のコイルスプリング100は、ダンパ機構8のドリブンプレート84と係合し、遠心振子式吸振装置20の支持部材21は、ダンパ機構8の中間部材83に接続される。

Description

流体伝動装置
 本発明は、ダイナミックダンパおよび遠心振子式吸振装置を備えた流体伝動装置に関する。
 従来、この種の流体伝動装置としては、原動機に連結される入力部材に接続されたポンプインペラと、ポンプインペラと共に回転可能なタービンランナと、入力要素、当該入力要素と第1弾性体を介して係合する中間要素および当該中間要素と第2弾性体を介して係合すると共に変速装置の入力軸に連結される出力要素を有するダンパ機構と、入力部材とダンパ機構の入力要素とを係合させるロックアップを実行すると共にロックアップを解除することができるロックアップクラッチ機構と、弾性体(コイルスプリング)と当該弾性体と係合するタービンランナとからなるダイナミックダンパと、支持部材および当該支持部材に対してそれぞれ揺動可能な複数の質量体を含む遠心振子式吸振装置とを備えるものが提案されている(例えば、特許文献1参照)。この流体伝動装置では、弾性体を介してタービンランナとダンパ機構の中間要素とを係合させることによりダイナミックダンパが構成されると共に、遠心振子式吸振装置の支持部材が実質的にタービンランナに固定され、遠心振子式吸振装置の上流側にダイナミックダンパの弾性体が存在する。
国際公開第2010/043194号
 しかしながら、上記従来の流体伝動装置のように、遠心振子式吸振装置の上流側にダイナミックダンパの弾性体が存在すると、遠心振子式吸振装置からダンパ機構に付与される振動とダイナミックダンパからダンパ機構に付与される振動とが逆位相になることから、ダイナミックダンパによる振動減衰効果と遠心振子式吸振装置による振動減衰効果とが互いに打ち消されてしまい、全体として良好な振動減衰効果を得ることができなくなるおそれがある。
 そこで、本発明の流体伝動装置は、入力部材に伝達された振動をダイナミックダンパと遠心振子式吸振装置とにより効果的に減衰可能とすることを主目的とする。
 本発明の流体伝動装置は、上記主目的を達成するために以下の手段を採っている。
 本発明の流体伝動装置は、
 原動機に連結される入力部材に接続されたポンプインペラと、該ポンプインペラと共に回転可能なタービンランナと、入力要素、該入力要素と第1弾性体を介して係合する中間要素および該中間要素と第2弾性体を介して係合する出力要素を有するダンパ機構と、該ダンパ機構を介して前記入力部材と変速装置の入力軸とを連結するロックアップを実行すると共に該ロックアップを解除することができるロックアップクラッチ機構と、質量体および該質量体と係合する第3弾性体を含むダイナミックダンパと、支持部材および該支持部材に対してそれぞれ揺動可能な複数の質量体を含む遠心振子式吸振装置とを備える流体伝動装置であって、
 前記ダイナミックダンパの前記第3弾性体は、前記ダンパ機構の前記中間要素および前記出力要素の一方と係合し、前記遠心振子式吸振装置の前記支持部材は、前記ダンパ機構の前記中間要素および前記出力要素の一方または他方に接続されることを特徴とする。
 この流体伝動装置は、入力部材に伝達される振動を減衰するためにダイナミックダンパと遠心振子式吸振装置とを備えている。そして、この流体伝動装置では、ダイナミックダンパを構成する第3弾性体がダンパ機構の中間要素および出力要素の一方と係合し、遠心振子式吸振装置の支持部材がダンパ機構の中間要素および出力要素の一方または他方に接続される。このように、ダンパ機構の中間要素および出力要素の一方にダイナミックダンパを繋ぐと共に中間要素および出力要素の当該一方に遠心振子式吸振装置を繋ぐか、あるいはダンパ機構の中間要素および出力要素の他方にダイナミックダンパと遠心振子式吸振装置とを繋げば、ダンパ機構に対してダイナミックダンパと遠心振子式吸振装置とが独立(並列)に連結されることになるので、ダイナミックダンパによる振動減衰効果と遠心振子式吸振装置による振動減衰効果とが互いに打ち消されてしまうのを抑制して、入力部材に伝達された振動をダイナミックダンパと遠心振子式吸振装置とにより効果的に減衰することが可能となる。
 また、前記第3弾性体は、前記ダンパ機構の前記出力要素と係合してもよく、前記遠心振子式吸振装置の前記支持部材は、前記ダンパ機構の前記中間要素に接続されてもよい。このように、ダンパ機構の出力要素にダイナミックダンパを繋ぐことにより、ダンパ機構のマスが全体に大きくなり当該ダンパ機構の共振周波数が低下する。これにより、ダンパ機構の共振点をより低回転数側にシフトしてダイナミックダンパの共振点から遠ざけることが可能となり、それによりダイナミックダンパによってフロントカバー(原動機)の回転数が低い領域で原動機から入力部材に伝達された振動をより効果的に減衰することができる。更に、ダンパ機構の中間要素に遠心振子式吸振装置を繋ぐことにより、第1弾性体と第2弾性体との間に介設されることでダンパ機構の要素の中で最も振動する中間要素の振動を遠心振子式吸振装置によって抑制してダンパ機構全体の共振をより効果的に抑えることができるので、ダイナミックダンパの共振すなわち当該ダイナミックダンパによって振動が減衰されたのに伴って生じる振動をも抑えることができる。従って、かかる構成によれば、入力部材に伝達された振動をダイナミックダンパと遠心振子式吸振装置とにより極めて効果的に減衰することが可能となる。
 更に、前記ダイナミックダンパの前記質量体は、前記第3弾性体と係合する前記タービンランナであってもよい。これにより、流体伝動装置全体のコンパクト化を図りつつ部品点数を増加を抑えつつダイナミックダンパを構成することが可能となる。
 また、前記遠心振子式吸振装置の前記支持部材は、連結部材を介して前記ダンパ機構の前記中間要素に固定されてもよく、前記連結部材は、前記ダンパ機構の前記第1および第2弾性体のうちの内周側に配置される一方よりも外周側で前記中間要素に固定されてもよい。このように、遠心振子式吸振装置の支持部材をダンパ機構の中間要素に固定するための連結部材をダンパ機構の第1および第2弾性体のうちの内周側に配置される一方よりも外周側で中間要素に固定すれば、遠心振子式吸振装置の内周側にスペースを充分に確保することが可能となり、このスペースに例えばダイナミックダンパを構成する第3弾性体を配置することにより流体伝動装置をよりコンパクト化することができる。
 更に、前記遠心振子式吸振装置の前記複数の質量体は、それぞれ支軸により支持されてもよく、前記遠心振子式吸振装置の前記支持部材には、それぞれ前記質量体が前記支持部材に対して揺動するように前記支軸をガイドする複数のガイド穴が形成されてもよく、前記ガイド穴は、前記連結部材が前記遠心振子式吸振装置の前記支持部材に固定されたときに、前記流体伝動装置の軸方向からみて前記連結部材の前記中間要素に対する固定部と重なるように前記支持部材に形成されてもよい。これにより、連結部材を介して遠心振子式吸振装置をダンパ機構の中間要素に固定する際に、遠心振子式吸振装置の支持部材のガイド穴を固定作業用の開口として利用することができるので、当該支持部材等に形成すべき作業用の開口の数を減らして支持部材等の剛性を良好に確保することが可能となる。
 また、前記ダイナミックダンパの前記弾性体は、前記遠心振子式吸振装置の内周側に配置されてもよく、前記ダイナミックダンパの前記弾性体と前記遠心振子式吸振装置とは、前記流体伝動装置の径方向からみて前記タービンランナと前記ダンパ機構との間に配置されてもよい。これにより、ダイナミックダンパを構成する第3弾性体と遠心振子式吸振装置とが流体伝動装置の径方向からみて軸方向に重なることから、流体伝動装置の軸長を短縮して装置全体をコンパクト化することが可能となる。更に、ダイナミックダンパを構成する第3弾性体を遠心振子式吸振装置の内周側に配置することで、遠心振子式吸振装置の配置スペースを充分に確保して遠心振子式吸振装置の質量体のサイズ(径方向長さ)の選択の自由度を大きくすることができる。そして、第3弾性体と遠心振子式吸振装置とを流体伝動装置の径方向からみてタービンランナとダンパ機構との間に配置することにより、流体伝動装置の軸長増を抑えつつ、第3弾性体を中間要素および出力要素の一方と係合させると共に遠心振子式吸振装置の支持部材をダンパ機構の中間要素および出力要素の一方または他方に接続することが可能となる。
本発明の実施例に係る流体伝動装置1を示す構成図である。 流体伝動装置1の遠心振子式吸振装置20を示す構成図である。 流体伝動装置1の遠心振子式吸振装置20を示す構成図である。 流体伝動装置1の概略構成図である。 原動機としてのエンジンの回転数と流体伝動装置の振動レベルとの関係を例示する説明図である。 変形例に係る流体伝動装置1Bを示す概略構成図である。 他の変形例に係る流体伝動装置1Cを示す概略構成図である。 更に他の変形例に係る流体伝動装置1Dを示す概略構成図である。
 次に、本発明を実施するための形態を実施例を用いて説明する。
 図1は、本発明の実施例に係る流体伝動装置1を示す構成図である。同図に示す流体伝動装置1は、原動機としてのエンジン(内燃機関)を備えた車両に発進装置として搭載されるトルクコンバータであり、図示しないエンジンのクランクシャフトに連結されるフロントカバー(入力部材)3と、フロントカバー3に固定されたポンプインペラ(入力側流体伝動要素)4と、ポンプインペラ4と同軸に回転可能なタービンランナ(出力側流体伝動要素)5と、タービンランナ5からポンプインペラ4への作動油(作動流体)の流れを整流するステータ6と、図示しない自動変速機(AT)あるいは無段変速機(CVT)である変速装置のインプットシャフトに固定されるダンパハブ(出力部材)7と、ダンパハブ7に接続されたダンパ機構8と、ダンパ機構8に接続されたロックアップピストン90を有する単板摩擦式のロックアップクラッチ機構9とを含む。
 ポンプインペラ4は、フロントカバー3に密に固定されるポンプシェル40と、ポンプシェル40の内面に配設された複数のポンプブレード41とを有する。タービンランナ5は、タービンシェル50と、タービンシェル50の内面に配設された複数のタービンブレード51とを有する。タービンシェル50は、リベットを介してタービンハブ52に固定され、タービンハブ52は、ダンパハブ7の図中左端(変速装置側の端部)に形成されたハブ支持部7aに回転自在に嵌合される。ポンプインペラ4とタービンランナ5とは、互いに対向し合い、両者の間には、ポンプインペラ4やタービンランナ5と同軸に回転可能なステータ6が配置される。ステータ6は、複数のステータブレード60を有し、ステータ6の回転方向は、ワンウェイクラッチ61により一方向のみに設定される。これらのポンプインペラ4、タービンランナ5およびステータ6は、作動油を循環させるトーラス(環状流路)を形成する。
 ダンパ機構8は、入力要素としてのドライブ部材80と、複数の第1コイルスプリング(第1弾性体)81を介してドライブ部材80と係合する中間部材(中間要素)83と、第1コイルスプリング81から流体伝動装置1の径方向に離間して配置される複数の第2コイルスプリング(第2弾性体)82を介して中間部材83と係合するドリブンプレート(出力要素)84とを有する。ドライブ部材80は、リベットを介してロックアップクラッチ機構9のロックアップピストン90に固定されると共にフロントカバー3やポンプインペラ4のポンプシェル40により画成されるハウジング内部の外周側領域に配置される。更に、ドライブ部材80は、それぞれ対応する第1コイルスプリング81の一端と当接する複数のスプリング当接部を有する。複数の第1コイルスプリング81は、ロックアップピストン90の外周部とドライブ部材80に形成された支持部とにより周方向に所定の間隔をおいてそれぞれ摺動自在に保持される。また、複数の第2コイルスプリング82は、それぞれ第1コイルスプリング81よりも高い剛性(バネ定数)を有すると共に第1コイルスプリング81よりも内周側で中間部材83により周方向に所定の間隔をおいて摺動自在に保持される。
 ダンパ機構8の中間部材83は、環状の第1中間プレート83aと、リベットを介して当該第1中間プレート83aに固定される環状の第2中間プレート83bとにより構成される。第1中間プレート83aは、それぞれ対応する第1コイルスプリング81の他端と当接する複数の第1スプリング当接部を外周側に有すると共に、第2コイルスプリング82を保持するための複数の第2スプリング支持部を内周側に有する。第2中間プレート83bは、それぞれ第1中間プレート83aの第2スプリング支持部と対向して第2コイルスプリング82を保持する第2スプリング支持部を有する。そして、第1および第2中間プレート83aおよび83bの少なくとも何れか一方には、それぞれ対応する第2コイルスプリング82の一端と当接する複数のスプリング当接部が形成されている。ドリブンプレート84は、第1中間プレート83aと第2中間プレート83bとの間に配置されると共にダンパハブ7に固定される。実施例において、ドリブンプレート84は、ダンパハブ7の軸方向における中央部(ハブ支持部7aの図中右側)から流体伝動装置1の径方向外側に延出されたプレート固定部7bにリベットを介して固定される。また、ドリブンプレート84には、第1中間プレート83aの内周と当接して中間部材83を調心する調心部84aが形成されている。
 ロックアップクラッチ機構9は、ダンパ機構8を介してフロントカバー3とダンパハブ7とを連結するロックアップを実行すると共に当該ロックアップを解除することができるものである。実施例において、ロックアップクラッチ機構9のロックアップピストン90は、図1に示すように、フロントカバー3の内部かつ当該フロントカバー3のエンジン側(図中右側)の内壁面近傍に配置され、プレート固定部7bを介してハブ支持部7aの反対側に位置するようにダンパハブ7(図中右端)に形成されたピストン支持部7cに対して軸方向に摺動自在かつ回転自在に嵌合される。また、ロックアップピストン90の外周側かつフロントカバー3側の面には、摩擦材91が貼着されている。そして、ロックアップピストン90の背面(図中右側の面)とフロントカバー3との間には、図示しない作動油供給孔やインプットシャフトに形成された油路を介して図示しない油圧制御ユニットに接続されるロックアップ室95が画成される。
 ロックアップクラッチ機構9によるロックアップを実行せずにポンプインペラ4とタービンランナ5との間で動力を伝達する際には、ポンプインペラ4およびタービンランナ5に供給される作動油がロックアップ室95内に流入し、ロックアップ室95内は作動油で満たされる。従って、この際、ロックアップピストン90は、フロントカバー3側に移動せず、ロックアップピストン90がフロントカバー3と摩擦係合することはない。また、図示しない油圧制御ユニットによりロックアップ室95内を減圧すれば、ロックアップピストン90は、圧力差によりフロントカバー3に向けて移動してフロントカバー3と摩擦係合する。これにより、フロントカバー3がダンパ機構8を介してダンパハブ7に連結され、それによりエンジンからの動力がフロントカバー3、ダンパ機構8およびダンパハブ7を介して変速装置のインプットシャフトに伝達されることになる。なお、ロックアップ室95内の減圧を停止すれば、ロックアップ室95内への作動油の流入に伴う圧力差の減少によりロックアップピストン90がフロントカバー3から離間し、それによりロックアップが解除されることになる。
 ここで、上記流体伝動装置1において、フロントカバー3に連結されるエンジンの回転数が例えば1000rpm程度と極低いロックアップ回転数Nlupに達した段階でロックアップを実行すれば、エンジンと変速装置との間の動力伝達効率を向上させ、それによりエンジンの燃費をより向上させることができる。このため、実施例の流体伝動装置1は、フロントカバー3の回転速度(エンジン回転数)が極低く定められたロックアップ回転数Nlup付近にあるときにフロントカバー(入力部材)3からダンパハブ(出力部材)7までの間で発生する振動を良好に減衰するために、質量体としてのタービンランナ5および複数のコイルスプリング(第3弾性体)100とにより構成されるダイナミックダンパ10と、遠心振子式吸振装置20とを備える。
 図1に示すように、ダイナミックダンパ10を構成する複数のコイルスプリング100は、それぞれタービンシェル50と共にリベットを介してタービンハブ52に固定されるスプリング支持部材11により周方向に所定の間隔をおいてそれぞれ摺動自在に保持され、流体伝動装置1の径方向からみてタービンランナ5とダンパ機構8との間の内周側領域に配置される。スプリング支持部材11は、各コイルスプリング100のタービンランナ5側の側部や外周部を支持する第1部材11aと、各コイルスプリング100のダンパ機構8側の側部の内周側部分を支持すると共にそれぞれ対応するコイルスプリング100の一端と当接する複数のスプリング当接部を有する第2部材11bとにより構成される。また、上述のダンパハブ7には、ダンパ機構8のドリブンプレート84と共に係合部材12がリベットを介して固定され、当該係合部材12は、それぞれタービンランナ5に向けて外方に延出された複数の当接部を有する。そして、スプリング支持部材11により保持された各コイルスプリング100の他端は、係合部材12の対応する当接部と当接する。すなわち、実施例において、ダイナミックダンパ10を構成する複数のコイルスプリング100は、それぞれダンパ機構8のドリブンプレート84およびダンパハブ7と係合する。 
 遠心振子式吸振装置20は、図1から図3に示すように、ダンパ機構8に対して連結される円環状の支持部材21と、それぞれ支持部材21に対して揺動可能な複数の質量体22とを含む。実施例の支持部材21には、図2および図3に示すように円弧状の長穴であるガイド穴21aが等間隔に複数形成されている。また、実施例の質量体22は、円盤状に形成された2枚の金属板22aと、支持部材21のガイド穴21aに転動自在に挿通されると共に両端に金属板22aが固定される支軸23とにより構成される。更に、各金属板22aの支持部材21と対向する面には、当該面の全体と支持部材21とが摺接するのを抑制するために複数(実施例では4個)の微小な突起22bが支持部材21側へと延出されている。
 そして、実施例の遠心振子式吸振装置20は、連結部材24を介してダンパ機構8の中間部材83に固定され、ダイナミックダンパ10を構成する各コイルスプリング100の外周側に配置される。連結部材24は、円環状部24aと、当該円環状部24aの内周部から軸方向かつ更に内周側に延出された断面略L字形状を有する複数の突片24bとを含む。図1および図3に示すように、連結部材24の各突片24bは、互いに隣り合うガイド穴21aの間で支持部材21の内周部にリベットを介して固定される。更に、連結部材24の円環状部24aは、図1からわかるように、ダンパ機構8の第2コイルスプリング82よりも外周側でリベットを介して中間部材83(第1および第2中間プレート83a,83b)に固定される。このように、連結部材24をダンパ機構8の第1および第2コイルスプリング81,82のうちの内周側に配置される第2コイルスプリング82よりも外周側で中間部材83に固定すれば、遠心振子式吸振装置20の内周側にスペースを充分に確保し、このスペースにダイナミックダンパ10の各コイルスプリング100を配置することにより流体伝動装置1をコンパクト化することができる。
 また、実施例において、支持部材21と連結部材24とは、当該支持部材21に連結部材24が固定されている遠心振子式吸振装置20をダンパ機構8の中間部材83に対して位置決めした際に、支持部材21のガイド穴21aと円環状部24aのリベット孔とが流体伝動装置1の軸方向からみて径方向に重なるように形成される。すなわち、図2に示すように、ガイド穴21aは、連結部材24が遠心振子式吸振装置20の支持部材21に固定されたときに、流体伝動装置1の軸方向からみて連結部材24の中間部材83に対する固定部と重なるように支持部材21に形成される。これにより、連結部材24を介して遠心振子式吸振装置20をダンパ機構8の中間部材83に固定する際、質量体22を適宜移動させれば、遠心振子式吸振装置20の支持部材21のガイド穴21aをリベットのカシメ作業用の開口として利用することができるので、支持部材21等に形成すべき作業用の開口の数を減らして支持部材21等の剛性を良好に確保することが可能となる。
 上述のように、実施例のダイナミックダンパ10を構成する複数のコイルスプリング100は、遠心振子式吸振装置20の内周側に配置され、遠心振子式吸振装置20と共に流体伝動装置1の径方向からみてタービンランナ5とダンパ機構8との間に配置される。これにより、ダイナミックダンパ10のコイルスプリング100と遠心振子式吸振装置20とが流体伝動装置1の径方向からみて軸方向に重なることから、流体伝動装置1の軸長を短縮して装置全体をコンパクト化することが可能となる。また、ダイナミックダンパ10のコイルスプリング100を遠心振子式吸振装置20の内周側に配置することで、外周側の遠心振子式吸振装置20の配置スペースを充分に確保して遠心振子式吸振装置20の質量体22のサイズ、特に径方向長さの選択の自由度を大きくすることができる。更に、ダイナミックダンパ10のコイルスプリング100と遠心振子式吸振装置20とを流体伝動装置1の径方向からみてタービンランナ5とダンパ機構8との間に配置することにより、流体伝動装置1の軸長増を抑えつつ、ダイナミックダンパ10のコイルスプリング100をダンパ機構8のドリブンプレート84と係合させると共に遠心振子式吸振装置20の支持部材21をダンパ機構8の中間部材83に接続することが可能となる。
 次に、図4を参照しながら、上述の流体伝動装置1の動作について説明する。
 図4からわかるように、ロックアップクラッチ機構9によりダンパ機構8を介してフロントカバー3とダンパハブ7とが連結されないロックアップ解除時には、原動機としてのエンジンからの動力がフロントカバー3、ポンプインペラ4、タービンランナ5、複数のコイルスプリング100および係合部材12、ダンパハブ7という経路を介して変速装置のインプットシャフトへと伝達されることになる。
 一方、ロックアップクラッチ機構9によりダンパ機構8を介してフロントカバー3とダンパハブ7とが連結されるロックアップ時には、図4からわかるように、原動機としてのエンジンからの動力が、フロントカバー3、ロックアップクラッチ機構9、ドライブ部材80、第1コイルスプリング81、中間部材83、第2コイルスプリング82、ドリブンプレート84、ダンパハブ7という経路を介して変速装置のインプットシャフトへと伝達される。この際、フロントカバー3に入力されるトルクの変動は、主にダンパ機構8の第1および第2コイルスプリング81,82により吸収される。
 このようなダンパ機構8に加えて、ロックアップ時には、タービンランナ5およびダンパ機構8のドリブンプレート84と係合する複数のコイルスプリング100がフロントカバー3(入力部材)とダンパハブ(出力部材)7との間でのトルク伝達に寄与しないマスとなるタービンランナ5やスプリング支持部材11等と共にダイナミックダンパ10を構成し、かかるダイナミックダンパ10によりエンジン側からフロントカバー3へと伝達される振動をダンパ機構8のドリブンプレート84から効果的に吸収(減衰)することが可能となる。更に、実施例の流体伝動装置1では、ロックアップに伴ってロックアップピストン90によりフロントカバー3に連結されたダンパ機構8がフロントカバー3と共に回転すると、ダンパ機構8の中間部材83に連結された支持部材21も中間部材83と共に流体伝動装置1の軸周りに回転し、支持部材21の回転に伴って遠心振子式吸振装置20を構成する各質量体22の支軸23が支持部材21のガイド穴21aにガイドされて当該ガイド穴21aの一端と他端との間を転動することにより各質量体22が支持部材21に対して揺動することになる。これにより、遠心振子式吸振装置20から中間部材83に対して当該中間部材83の振動(共振)とは逆方向の位相を有する振動を付与してフロントカバー3に伝達された振動を遠心振子式吸振装置20によっても吸収(減衰)することが可能となる。
 従って、実施例の流体伝動装置1では、ダイナミックダンパ10の振動減衰特性(共振周波数)を規定するコイルスプリング100の剛性(バネ定数)やタービンランナ5等の重量(イナーシャ)、遠心振子式吸振装置20の振動減衰特性を規定する質量体22のサイズ(特に径方向長さ)や重量、ガイド穴21aの形状や寸法等を原動機としてのエンジンの気筒数やロックアップが実行される上記ロックアップ回転数Nlupに基づいて調整することで、エンジンの回転数が例えば1000rpmといったように非常に低いときにロックアップが実行されても、原動機としてのエンジンから流体伝動装置1すなわちフロントカバー3へと伝達される振動をダイナミックダンパ10と遠心振子式吸振装置20とによって効果的に吸収(減衰)して当該振動がドリブンプレート84を介してダンパハブ7に伝達されるのを良好に抑制することが可能となる。そして、流体伝動装置1によれば、エンジンの回転数が例えば1000rpm程度と比較的低いロックアップ回転数Nlupに達した段階でロックアップを実行して動力伝達効率ひいてはエンジンの燃費を向上させることが可能となる。
 図5は、原動機としてのエンジンの回転数と上述の流体伝動装置1等の振動レベルとの関係を例示する説明図である。同図は、3気筒あるいは4気筒といった比較的大きな振動を発生する省気筒(少気筒)エンジンと組み合わせるのに好適な流体伝動装置を得るために行ったねじり振動系のシミュレーションにより得られた複数の流体伝動装置におけるエンジン(フロントカバー3)の回転数と流体伝動装置のフロントカバー3からダンパハブ7までの間における振動レベルとの関係を例示するものである。かかるシミュレーションにおいて、原動機としてのエンジンの諸元、ポンプインペラ4やタービンランナ5、ダンパ機構8ならびにロックアップクラッチ機構9の諸元は基本的に同一とされ、ダイナミックダンパ10を構成するタービンランナ5等の質量(イナーシャ)やコイルスプリング100の剛性、遠心振子式吸振装置20の支持部材21や質量体22のサイズや重量も基本的に同一とした。
 ここで、ロックアップクラッチ機構9のロックアップ時には、エンジンからフロントカバー3に入力された振動が殆ど減衰されることなくダンパ機構8の入力要素(ドライブ部材80)に伝達されることから、省気筒エンジンを対象とした場合、ダンパ機構8の入力要素(ドライブ部材80)にダイナミックダンパ10および遠心振子式吸振装置20の少なくとも何れか一方を繋いでも、ダイナミックダンパ10および遠心振子式吸振装置20による充分な振動減衰効果を得られないおそれがある。このため、ここでは、ダンパ機構8の中間部材(中間要素)83およびドリブンプレート(出力要素)84をダイナミックダンパ10および遠心振子式吸振装置20の連結対象として上記シミュレーションを行った。
 図5において、実線は、上記実施例に係る流体伝動装置1の振動レベルを示す。また、図5において、一点鎖線は、図6に示すようにダイナミックダンパ10のコイルスプリング100がダンパ機構8のドリブンプレート84(およびダンパハブ7)と係合すると共に遠心振子式吸振装置20の支持部材21がダンパ機構8のドリブンプレート84(およびダンパハブ7)に接続された流体伝動装置1Bの振動レベルを示す。更に、図5において、二点鎖線は、図7に示すようにダイナミックダンパ10のコイルスプリング100がダンパ機構8の中間部材(中間要素)83と係合すると共に遠心振子式吸振装置20の支持部材21がダンパ機構8の中間部材83に接続された流体伝動装置1Cの振動レベルを示す。また、図5において、破線は、図8に示すようにダイナミックダンパ10のコイルスプリング100がダンパ機構8の中間部材(中間要素)83と係合すると共に遠心振子式吸振装置20の支持部材21がダンパ機構8のドリブンプレート84(およびダンパハブ7)に接続された流体伝動装置1Dの振動レベルを示す。更に、図5において、点線は、上記実施例の流体伝動装置1からダイナミックダンパ10および遠心振子式吸振装置20が省略された流体伝動装置の振動レベルを示す。
 図5からわかるように、ダンパ機構8の出力要素であるドリブンプレート84(およびダンパハブ7)にダイナミックダンパ10が繋がれる流体伝動装置1および1Bでは、ダンパ機構8のマスが全体に大きくなることから、ダンパ機構8の共振周波数が低下してダンパ機構8の共振点が他の流体伝動装置に比べてより低回転数側にシフトする。従って、流体伝動装置1および1Bでは、ダイナミックダンパ10の共振点をダンパ機構8の共振点から遠ざけることが可能となり、それによりダイナミックダンパ10によってエンジン(フロントカバー)の回転数が低い領域すなわち効率面からより低い値に定められるロックアップ回転数Nlup付近でエンジンからフロントカバー3に伝達された振動をより効果的に減衰することができる。
 また、流体伝動装置1と流体伝動装置1Bとを比較すると、遠心振子式吸振装置20がダンパ機構8の中間部材83に繋がれる流体伝動装置1では、第1コイルスプリング81と第2コイルスプリング82との間に介設されることでダンパ機構8の要素の中で最も振動する中間部材83の振動を遠心振子式吸振装置20によって抑制してダンパ機構8全体の共振をより効果的に抑えることが可能であり、図5において実線で示すように、ダンパ機構8全体の共振が抑えられる分だけダイナミックダンパ10の共振すなわちダイナミックダンパ10によって振動が減衰されたのに伴って生じる振動(振動減衰後の波形の山)をも抑えることができる。これに対して、遠心振子式吸振装置20がダンパ機構8のドリブンプレート84に繋がれる流体伝動装置1Bでは、流体伝動装置1に比べてダンパ機構8全体の共振が抑えられない分だけダイナミックダンパ10の共振すなわちダイナミックダンパ10によって振動が減衰されたのに伴って生じる振動が若干大きくなるが、ダイナミックダンパ10の共振を遠心振子式吸振装置20により速やかに収束させることができるので、流体伝動装置1に比べてフロントカバー3からダンパハブ7までの間すなわちダンパ機構8、ダイナミックダンパ10および遠心振子式吸振装置20からなる系全体の振動の収束を早めることができる。
 更に、ダイナミックダンパ10がダンパ機構8の中間部材83に繋がれる流体伝動装置1Cおよび1Dでは、遠心振子式吸振装置20がダンパ機構8の中間部材83に繋がれる流体伝動装置1および1Bに比べて、ダンパ機構8全体の共振レベルが高くなっているが、ダイナミックダンパ10をダンパ機構8の中間部材83に繋ぐことでダイナミックダンパ10の共振点がより低回転数側にシフトすることになるので、フロントカバー3からダンパハブ7までの間すなわちダンパ機構8、ダイナミックダンパ10および遠心振子式吸振装置20からなる系全体の振動の収束を早めることができる。
 また、流体伝動装置1Cと流体伝動装置1Dとを比較すると、遠心振子式吸振装置20がダンパ機構8の中間部材83に繋がれる流体伝動装置1Cでは、第1コイルスプリング81と第2コイルスプリング82との間に介設されることでダンパ機構8の要素の中で最も振動する中間部材83の振動を遠心振子式吸振装置20によって抑制してダンパ機構8全体の共振をより効果的に抑えることが可能であり、図5において二点鎖線で示すように、ダンパ機構8全体の共振が抑えられる分だけダイナミックダンパ10の共振すなわちダイナミックダンパ10によって振動が減衰されたのに伴って生じる振動(振動減衰後の波形の山)をも抑えることができる。これに対して、遠心振子式吸振装置20がダンパ機構8のドリブンプレート84に繋がれる流体伝動装置1Dでは、流体伝動装置1Cに比べてダンパ機構8全体の共振が抑えられない分だけダイナミックダンパ10の共振すなわちダイナミックダンパによって振動が減衰されたのに伴って生じる振動が若干大きくなるが、ダイナミックダンパ10の共振を遠心振子式吸振装置20により速やかに収束させることができるので、流体伝動装置1Cに比べてフロントカバー3からダンパハブ7までの間すなわちダンパ機構8、ダイナミックダンパ10および遠心振子式吸振装置20からなる系全体の振動の収束を早めることができる。
 以上説明したように、実施例の流体伝動装置1は、図5に示すシミュレーション結果を踏まえて、効率面からより低い値に定められるロックアップ回転数Nlup付近でエンジンからフロントカバー3に伝達された振動をより効果的に減衰することができるように、ダイナミックダンパ10を構成するコイルスプリング100がダンパ機構8のドリブンプレート84(およびダンパハブ7)と係合させられると共に遠心振子式吸振装置20の支持部材21がダンパ機構8の中間部材83に接続される。このように、ダンパ機構8のドリブンプレート84にダイナミックダンパ10を繋ぐことにより、ダンパ機構8のマスが全体に大きくなり当該ダンパ機構8の共振周波数が低下する。これにより、ダンパ機構8の共振点をより低回転数側にシフトしてダイナミックダンパ10の共振点から遠ざけることが可能となり、それによりダイナミックダンパ10によってエンジン(フロントカバー3)の回転数が低い領域でエンジンからフロントカバー3に伝達された振動をより効果的に減衰することができる。更に、ダンパ機構8の中間部材83に遠心振子式吸振装置20を繋ぐことにより、第1コイルスプリング81と第2コイルスプリング82との間に介設されることでダンパ機構8の要素の中で最も振動する中間部材83の振動を遠心振子式吸振装置20によって抑制してダンパ機構8全体の共振をより効果的に抑えることができるので、ダイナミックダンパ10の共振すなわち当該ダイナミックダンパ10によって振動が減衰されたのに伴って生じる振動をも抑えることができる。従って、実施例の流体伝動装置1では、フロントカバー3に伝達された振動をダイナミックダンパ10と遠心振子式吸振装置20とにより極めて効果的に減衰することが可能となる。
 ただし、図5からわかるように、図6から図8に示す流体伝動装置1B,1Cおよび1Dによっても、ダンパ機構8に対してダイナミックダンパ10と遠心振子式吸振装置20とが独立(並列)に連結されることになるので、ダイナミックダンパ10による振動減衰効果と遠心振子式吸振装置20による振動減衰効果とが互いに打ち消されてしまうのを抑制して、フロントカバー3に伝達された振動をダイナミックダンパ10と遠心振子式吸振装置20とにより効果的に減衰することが可能となる。すなわち、ダンパ機構8の中間部材83およびドリブンプレート84の一方にダイナミックダンパ10を繋ぐと共に中間部材83およびドリブンプレート84の当該一方に遠心振子式吸振装置20を繋ぐか、あるいはダンパ機構8の中間部材83およびドリブンプレート84の他方にダイナミックダンパ10と遠心振子式吸振装置20とを繋げば、省気筒エンジンと組み合わせるのに好適な流体伝動装置を得ることができる。
 また、上記実施例のように、質量体としてのタービンランナ5をコイルスプリング100と係合させることにより、流体伝動装置1全体のコンパクト化を図りつつ部品点数を増加を抑えつつダイナミックダンパ10を構成することが可能となる。ただし、本発明がタービンランナ5以外の部材を質量体として用いるダイナミックダンパを備えた流体伝動装置に適用され得ることはいうまでもない。
 更に、実施例の遠心振子式吸振装置20の支持部材21は、連結部材24を介してダンパ機構8の中間部材83に固定され、連結部材24は、ダンパ機構8の第1および第2コイルスプリング81,82のうちの内周側に配置される第2コイルスプリング82よりも外周側で中間部材83に固定される。これにより、遠心振子式吸振装置20の内周側にスペースを充分に確保することが可能となり、このスペースにダイナミックダンパ10のコイルスプリング100を配置することにより流体伝動装置1をよりコンパクト化することができる。
 また、実施例の遠心振子式吸振装置20の複数の質量体22は、それぞれ支軸23により支持され、遠心振子式吸振装置20の支持部材21には、それぞれ質量体22が支持部材21に対して揺動するように支軸23をガイドする複数のガイド穴21aが形成されている。そして、ガイド穴21aは、連結部材24が遠心振子式吸振装置20の支持部材21に固定されたときに、流体伝動装置1の軸方向からみて連結部材24の中間部材83に対する固定部(リベット孔)と重なるように支持部材21に形成される。これにより、連結部材24を介して遠心振子式吸振装置20をダンパ機構8の中間部材83に固定する際に、遠心振子式吸振装置20の支持部材21のガイド穴21aを固定作業用の開口として利用することができるので、当該支持部材21等に形成すべき作業用の開口の数を減らして支持部材21等の剛性を良好に確保することが可能となる。
 更に、実施例のダイナミックダンパ10のコイルスプリング100は、遠心振子式吸振装置20の内周側に配置され、ダイナミックダンパ10のコイルスプリング100と遠心振子式吸振装置20とは、流体伝動装置1の径方向からみてタービンランナ5とダンパ機構8との間に配置される。これにより、ダイナミックダンパ10のコイルスプリング100と遠心振子式吸振装置20とが流体伝動装置1の径方向からみて軸方向に重なることから、流体伝動装置1の軸長を短縮して装置全体をコンパクト化することが可能となる。更に、ダイナミックダンパ10のコイルスプリング100を遠心振子式吸振装置20の内周側に配置することで、遠心振子式吸振装置20の配置スペースを充分に確保して遠心振子式吸振装置20の質量体22のサイズ、特に径方向長さの選択の自由度を大きくすることができる。そして、ダイナミックダンパ10のコイルスプリング100と遠心振子式吸振装置20とを流体伝動装置1の径方向からみてタービンランナ5とダンパ機構8との間に配置することにより、流体伝動装置1の軸長増を抑えつつ、ダイナミックダンパ10のコイルスプリング100をダンパ機構8のドリブンプレート84の一方と係合させると共に遠心振子式吸振装置20の支持部材21をダンパ機構8の中間部材83に接続することが可能となる。
 なお、上述の流体伝動装置1,1B,1Cおよび1Dは、ポンプインペラ4、タービンランナ5およびステータ6を備えたトルクコンバータとして構成されるが、本発明の流体伝動装置は、ステータを有さない流体継手として構成されてもよい。また、上述の流体伝動装置1,1B,1Cおよび1Dは、単板摩擦式のロックアップクラッチ機構9の代わりに、多板摩擦式のロックアップクラッチ機構を備えるものであってもよい。更に、本発明における遠心振子式吸振装置の構成は、上述の遠心振子式吸振装置20のような構成に限られるものではない。
 ここで、上記実施例等の主要な要素と発明の概要の欄に記載した発明の主要な要素との対応関係について説明する。すなわち、上記実施例等では、原動機としてのエンジンに連結されるフロントカバー3が「入力部材」に相当し、フロントカバー3に接続されたポンプインペラ4が「ポンプインペラ」に相当し、ポンプインペラ4と共に回転可能なタービンランナ5が「タービンランナ」に相当し、入力要素としてのドライブ部材80、ドライブ部材80と第1コイルスプリング81を介して係合する中間部材83および中間部材83と第2コイルスプリング82を介して係合する出力要素としてのドリブンプレート84を有するダンパ機構8が「ダンパ機構」に相当し、ダンパ機構8を介してフロントカバー3と変速装置の入力軸に接続されるダンパハブ7とを連結するロックアップを実行すると共にロックアップを解除することができるロックアップクラッチ機構9が「ロックアップクラッチ機構」に相当し、第3弾性体としてのコイルスプリング100および当該コイルスプリング100と係合する質量体としてのタービンランナ5により構成されるダイナミックダンパ10が「ダイナミックダンパ」に相当し、支持部材21および支持部材21に対してそれぞれ揺動可能な複数の質量体22を含む遠心振子式吸振装置20が「遠心振子式吸振装置」に相当する。
 ただし、実施例の主要な要素と発明の概要の欄に記載された発明の主要な要素との対応関係は、実施例が発明の概要の欄に記載された発明を実施するための形態を具体的に説明するための一例であることから、発明の概要の欄に記載した発明の要素を限定するものではない。すなわち、実施例はあくまで発明の概要の欄に記載された発明の具体的な一例に過ぎず、発明の概要の欄に記載された発明の解釈は、その欄の記載に基づいて行なわれるべきものである。
 以上、実施例を用いて本発明の実施の形態について説明したが、本発明は上記実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、様々な変更をなし得ることはいうまでもない。
 本発明は、流体伝動装置の製造分野等において利用可能である。

Claims (6)

  1.  原動機に連結される入力部材に接続されたポンプインペラと、該ポンプインペラと共に回転可能なタービンランナと、入力要素、該入力要素と第1弾性体を介して係合する中間要素および該中間要素と第2弾性体を介して係合する出力要素を有するダンパ機構と、該ダンパ機構を介して前記入力部材と変速装置の入力軸とを連結するロックアップを実行すると共に該ロックアップを解除することができるロックアップクラッチ機構と、質量体および該質量体と係合する第3弾性体を含むダイナミックダンパと、支持部材および該支持部材に対してそれぞれ揺動可能な複数の質量体を含む遠心振子式吸振装置とを備える流体伝動装置であって、
     前記ダイナミックダンパの前記第3弾性体は、前記ダンパ機構の前記中間要素および前記出力要素の一方と係合し、前記遠心振子式吸振装置の前記支持部材は、前記ダンパ機構の前記中間要素および前記出力要素の一方または他方に接続されることを特徴とする流体伝動装置。
  2.  請求項1に記載の流体伝動装置において、
     前記第3弾性体は、前記ダンパ機構の前記出力要素と係合し、前記遠心振子式吸振装置の前記支持部材は、前記ダンパ機構の前記中間要素に接続されることを特徴とする流体伝動装置。
  3.  請求項2に記載の流体伝動装置において、
     前記ダイナミックダンパの前記質量体は、前記第3弾性体と係合する前記タービンランナであることを特徴とする流体伝動装置。
  4.  請求項2または3に記載の流体伝動装置において、
     前記遠心振子式吸振装置の前記支持部材は、連結部材を介して前記ダンパ機構の前記中間要素に固定され、前記連結部材は、前記ダンパ機構の前記第1および第2弾性体のうちの内周側に配置される一方よりも外周側で前記中間要素に固定されることを特徴とする流体伝動装置。
  5.  請求項4に記載の流体伝動装置において、
     前記遠心振子式吸振装置の前記複数の質量体は、それぞれ支軸により支持され、前記遠心振子式吸振装置の前記支持部材には、それぞれ前記質量体が前記支持部材に対して揺動するように前記支軸をガイドする複数のガイド穴が形成され、
     前記ガイド穴は、前記連結部材が前記遠心振子式吸振装置の前記支持部材に固定されたときに、前記流体伝動装置の軸方向からみて前記連結部材の前記中間要素に対する固定部と重なるように前記支持部材に形成されることを特徴とする流体伝動装置。
  6.  請求項2から5の何れか一項に記載の流体伝動装置において、
     前記第3弾性体は、前記遠心振子式吸振装置の内周側に配置され、前記第3弾性体と前記遠心振子式吸振装置とは、前記流体伝動装置の径方向からみて前記タービンランナと前記ダンパ機構との間に配置されることを特徴とする流体伝動装置。
PCT/JP2011/071369 2010-09-30 2011-09-20 流体伝動装置 WO2012043302A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112011100632.2T DE112011100632B4 (de) 2010-09-30 2011-09-20 Strömungsgetriebevorrichtung
CN201180037449.XA CN103038545B (zh) 2010-09-30 2011-09-20 流体传动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-221332 2010-09-30
JP2010221332A JP5556546B2 (ja) 2010-09-30 2010-09-30 流体伝動装置

Publications (1)

Publication Number Publication Date
WO2012043302A1 true WO2012043302A1 (ja) 2012-04-05

Family

ID=45888848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071369 WO2012043302A1 (ja) 2010-09-30 2011-09-20 流体伝動装置

Country Status (5)

Country Link
US (1) US8807310B2 (ja)
JP (1) JP5556546B2 (ja)
CN (1) CN103038545B (ja)
DE (1) DE112011100632B4 (ja)
WO (1) WO2012043302A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012146450A1 (de) * 2011-04-28 2012-11-01 Zf Friedrichshafen Ag Hydrodynamische kopplungsanordnung, insbesondere hydrodynamischer drehmomentwandler
CN105793617A (zh) * 2013-12-02 2016-07-20 舍弗勒技术股份两合公司 用于传递扭矩的装置

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5477249B2 (ja) * 2010-09-30 2014-04-23 アイシン・エィ・ダブリュ株式会社 発進装置
JP5556551B2 (ja) 2010-09-30 2014-07-23 アイシン・エィ・ダブリュ株式会社 流体伝動装置
US8720658B2 (en) 2010-09-30 2014-05-13 Aisin Aw Co., Ltd. Starting device and damper device for use therein
JP5556546B2 (ja) 2010-09-30 2014-07-23 アイシン・エィ・ダブリュ株式会社 流体伝動装置
CN103119325A (zh) * 2010-12-29 2013-05-22 爱信艾达株式会社 离心摆式减震装置
JP5315377B2 (ja) * 2011-04-14 2013-10-16 株式会社エクセディ トルクコンバータ用のロックアップ装置
DE102011017653B4 (de) 2011-04-28 2018-12-20 Zf Friedrichshafen Ag Hydrodynamische Kopplungsanordnung, insbesondere hydrodynamischer Drehmomentwandler
CN104285080A (zh) * 2012-05-17 2015-01-14 丰田自动车株式会社 传动装置
DE102012213015A1 (de) * 2012-07-25 2014-02-13 Zf Friedrichshafen Ag Anfahrelement mit Torsionsschwingungsdämpfer und Schwingungstilger
JP5960559B2 (ja) * 2012-09-07 2016-08-02 アイシン精機株式会社 トルク変動低減装置
EP2935940A1 (de) * 2012-12-21 2015-10-28 Schaeffler Technologies AG & Co. KG Schwingungsdämpfer
DE112014000287B4 (de) 2013-01-30 2019-03-07 Aisin Aw Co., Ltd. Dämpfereinrichtung und Starteinrichtung
JP2014206244A (ja) * 2013-04-15 2014-10-30 株式会社エクセディ トルクコンバータのロックアップ装置
WO2015046076A1 (ja) * 2013-09-30 2015-04-02 アイシン・エィ・ダブリュ株式会社 ダンパ装置および発進装置
US9791019B2 (en) 2013-10-16 2017-10-17 Aisin Aw Co., Ltd. Damper device and starting device
JP6252458B2 (ja) 2014-04-30 2017-12-27 アイシン・エィ・ダブリュ株式会社 ダンパ装置
JP5999144B2 (ja) * 2014-06-25 2016-09-28 トヨタ自動車株式会社 捩り振動低減装置
US9506518B2 (en) * 2014-08-05 2016-11-29 Gm Global Technology Operations, Llc Centrifugal pendulum vibration absorber
US9915600B2 (en) 2016-02-19 2018-03-13 Research Triangle Institute Devices, systems and methods for detecting particles
EP3183555B1 (en) 2014-08-20 2021-08-04 Research Triangle Institute Devices, systems and methods for detecting particles
CN107076261B (zh) * 2014-09-25 2019-03-15 爱信艾达株式会社 减震装置
DE102014220897A1 (de) * 2014-10-15 2016-04-21 Zf Friedrichshafen Ag Kopplungsanordnung mit einer Schwingungsreduzierungseinrichtung und mit einer Kupplungseinrichtung
JP5828030B1 (ja) * 2014-10-29 2015-12-02 株式会社エクセディ トルクコンバータのロックアップ装置
KR101707804B1 (ko) * 2015-07-16 2017-02-17 한국파워트레인 주식회사 진자를 이용한 진동저감장치를 포함하는 차량용 토크 컨버터
US9995366B2 (en) 2015-08-14 2018-06-12 GM Global Technology Operations LLC Torsional vibration absorption system
US20170045112A1 (en) * 2015-08-14 2017-02-16 GM Global Technology Operations LLC Torque transmitting system with torsional vibration absorption for a powertrain
JPWO2018047938A1 (ja) * 2016-09-09 2019-04-04 アイシン・エィ・ダブリュ株式会社 振動減衰装置
DE102017201526A1 (de) 2017-01-31 2018-08-02 Zf Friedrichshafen Ag Kopplungsanordnung für einen Antriebsstrang mit einer Schwingungsdämpfungseinrichtung
DE102017201522A1 (de) 2017-01-31 2018-08-02 Zf Friedrichshafen Ag Kopplungsanordnung für einen Antriebsstrang mit einer Schwingungsdämpfungseinrichtung
US11047787B2 (en) 2019-04-29 2021-06-29 Research Triangle Institute And method for optical bench for detecting particles
US11009098B2 (en) * 2019-07-17 2021-05-18 Valeo Kapec Co., Ltd. Blade and spring damper apparatus for use with vehicle torque converters
CN116557501B (zh) * 2023-07-07 2024-02-13 四川蜀道新制式轨道集团有限责任公司 一种减振齿轮传动轴

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169756A (ja) * 1996-12-06 1998-06-26 Toyota Motor Corp 直結クラッチ付トルクコンバータ
US6026940A (en) * 1998-02-04 2000-02-22 Mannesmann Sachs Ag Lockup clutch with a compensation flywheel mass at the torsional vibration damper
WO2009067987A1 (de) * 2007-11-29 2009-06-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kraftübertragungsvorrichtung, insbesondere zur leistungsübertragung zwischen einer antriebsmaschine und einem abtrieb
WO2010066665A2 (de) * 2008-12-10 2010-06-17 Zf Friedrichshafen Ag Hydrodynamische kopplungsanordnung, insbesondere drehmomentwandler

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169758A (ja) 1996-12-11 1998-06-26 Araco Corp 差動装置
FR2797014B1 (fr) * 1999-07-27 2001-11-02 Valeo Appareil d'accouplement hydrocinetique
JP2004308904A (ja) 2003-04-05 2004-11-04 Zf Sachs Ag 捩り振動ダンパ
EP1744074A3 (de) * 2005-07-11 2008-10-01 LuK Lamellen und Kupplungsbau Beteiligungs KG Drehmomentübertragungseinrichtung
JP5051447B2 (ja) 2007-11-01 2012-10-17 本田技研工業株式会社 流体伝動装置
US8135525B2 (en) 2007-11-14 2012-03-13 Schaeffler Technologies AG & Co. KG Torque converter with turbine mass absorber
WO2009067988A1 (de) * 2007-11-29 2009-06-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kraftübertragungsvorrichtung mit einem drehzahladaptiven tilger und verfahren zu verbesserung des dämpfungsverhaltens
JP2009243536A (ja) 2008-03-29 2009-10-22 Aisin Aw Industries Co Ltd ダンパ装置
JP4648428B2 (ja) 2008-06-03 2011-03-09 株式会社エクセディ 流体式動力伝達装置
DE102009024743A1 (de) 2008-07-04 2010-01-07 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hydrodynamischer Drehmomentwandler
JP5538408B2 (ja) * 2008-10-16 2014-07-02 シェフラー テクノロジーズ アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト 流体力学的なトルクコンバータ
DE202010018604U1 (de) * 2009-04-27 2018-04-27 Schaeffler Technologies AG & Co. KG Hydrodynamischer Drehmomentwandler
DE102011101156A1 (de) * 2010-05-18 2011-11-24 Schaeffler Technologies Gmbh & Co. Kg Einreihiger Seriendämpfer mit Antriebsflansch
US8720658B2 (en) 2010-09-30 2014-05-13 Aisin Aw Co., Ltd. Starting device and damper device for use therein
JP5556546B2 (ja) 2010-09-30 2014-07-23 アイシン・エィ・ダブリュ株式会社 流体伝動装置
JP5477249B2 (ja) 2010-09-30 2014-04-23 アイシン・エィ・ダブリュ株式会社 発進装置
JP5556551B2 (ja) 2010-09-30 2014-07-23 アイシン・エィ・ダブリュ株式会社 流体伝動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169756A (ja) * 1996-12-06 1998-06-26 Toyota Motor Corp 直結クラッチ付トルクコンバータ
US6026940A (en) * 1998-02-04 2000-02-22 Mannesmann Sachs Ag Lockup clutch with a compensation flywheel mass at the torsional vibration damper
WO2009067987A1 (de) * 2007-11-29 2009-06-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kraftübertragungsvorrichtung, insbesondere zur leistungsübertragung zwischen einer antriebsmaschine und einem abtrieb
WO2010066665A2 (de) * 2008-12-10 2010-06-17 Zf Friedrichshafen Ag Hydrodynamische kopplungsanordnung, insbesondere drehmomentwandler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012146450A1 (de) * 2011-04-28 2012-11-01 Zf Friedrichshafen Ag Hydrodynamische kopplungsanordnung, insbesondere hydrodynamischer drehmomentwandler
CN105793617A (zh) * 2013-12-02 2016-07-20 舍弗勒技术股份两合公司 用于传递扭矩的装置
US10281019B2 (en) 2013-12-02 2019-05-07 Schaeffler Technologies AG & Co. KG Device for transmitting torque

Also Published As

Publication number Publication date
CN103038545B (zh) 2015-09-30
US20120080280A1 (en) 2012-04-05
CN103038545A (zh) 2013-04-10
JP2012077784A (ja) 2012-04-19
US8807310B2 (en) 2014-08-19
JP5556546B2 (ja) 2014-07-23
DE112011100632B4 (de) 2017-02-16
DE112011100632T5 (de) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5556546B2 (ja) 流体伝動装置
JP5477249B2 (ja) 発進装置
JP5408096B2 (ja) 流体伝動装置
JP5556551B2 (ja) 流体伝動装置
JP6050388B2 (ja) ダンパ装置および発進装置
JP5585360B2 (ja) 流体伝動装置
JP5880696B2 (ja) 発進装置
WO2011122130A1 (ja) 流体伝動装置
JP5531728B2 (ja) 流体伝動装置
JP5609820B2 (ja) ダンパ装置
JP6090466B2 (ja) ダンパ装置および発進装置
JP6252458B2 (ja) ダンパ装置
JP2012184840A (ja) ダンパ装置
JP2012167755A (ja) ダンパ装置
JP2012202544A (ja) ダンパ装置
JP5787003B2 (ja) 流体伝動装置
WO2012020619A1 (ja) 流体伝動装置
JP2008215593A (ja) 流体式トルク伝達装置
KR102206221B1 (ko) 차량용 토크 컨버터
JP2014228007A (ja) 動力伝達装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037449.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828859

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112011100632

Country of ref document: DE

Ref document number: 1120111006322

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828859

Country of ref document: EP

Kind code of ref document: A1