WO2012146450A1 - Hydrodynamische kopplungsanordnung, insbesondere hydrodynamischer drehmomentwandler - Google Patents

Hydrodynamische kopplungsanordnung, insbesondere hydrodynamischer drehmomentwandler Download PDF

Info

Publication number
WO2012146450A1
WO2012146450A1 PCT/EP2012/055375 EP2012055375W WO2012146450A1 WO 2012146450 A1 WO2012146450 A1 WO 2012146450A1 EP 2012055375 W EP2012055375 W EP 2012055375W WO 2012146450 A1 WO2012146450 A1 WO 2012146450A1
Authority
WO
WIPO (PCT)
Prior art keywords
hub
output
coupling arrangement
arrangement according
hydrodynamic coupling
Prior art date
Application number
PCT/EP2012/055375
Other languages
English (en)
French (fr)
Inventor
Monika Rössner
Original Assignee
Zf Friedrichshafen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Friedrichshafen Ag filed Critical Zf Friedrichshafen Ag
Priority to JP2014506808A priority Critical patent/JP5926792B2/ja
Priority to US14/114,410 priority patent/US9458918B2/en
Publication of WO2012146450A1 publication Critical patent/WO2012146450A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/021Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type three chamber system, i.e. comprising a separated, closed chamber specially adapted for actuating a lock-up clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0284Multiple disk type lock-up clutch

Definitions

  • Hydrodynamic coupling arrangement in particular hydrodynamic
  • the present invention relates to a hydrodynamic coupling arrangement, in particular a hydrodynamic torque converter, comprising a fluid-filled or fillable housing arrangement, a pump wheel rotatable with the housing arrangement about a rotation axis, a turbine wheel arranged in the housing arrangement, a torsional vibration damper arrangement with an input region which can be coupled to the housing arrangement by means of a lock-up clutch and one having an output hub for common rotation about the axis of rotation
  • output hub comprises an inner peripheral toothing for rotationally fixed coupling with an outer peripheral toothing of a driven member, preferably transmission input shaft comprises.
  • Torque coupling of a turbine to an output hub is achievable.
  • hydrodynamic coupling arrangement in particular hydrodynamic torque converter, comprising a fluid-filled or fillable housing assembly, one with the
  • the torque coupling of the turbine wheel is effected by toothing, namely the inner peripheral toothing provided on the turbine wheel hub, which is provided with an outer circumferential toothing either on the output hub and / or an output member such as, for example. a transmission input shaft, in Drehkopplungseingriff can be brought.
  • This rotational coupling engagement can be accomplished by axially contiguous movement of the two components to be coupled without requiring any further attachment operations, such as e.g. Riveting or
  • the output hub In order to form the output hub in a simple manner both for torque absorption of the torsional vibration damper arrangement and for torque absorption of the turbine wheel, it is proposed that the output hub comprise a connection region for connection to the output region and axially adjacent to the connection region an outer circumferential gearing region.
  • the Axialabstützung can be realized in a structurally simple manner, that the Axialabstitz Scheme is provided in a transition region between the connecting portion and the whyspecialsveriereungs Scheme.
  • a deflection mass unit comprises a deflection mass carrier and a deflection mass carrier on a deflection mass carrier from a basic relative position with respect to this deflectable mass arrangement, wherein the deflection mass unit on the Output hub or the turbine hub is radially or / and axially supported.
  • Such Auslenkungsmassenizien can be formed, for example, as Festfrequenztilger or speed-adaptive absorber and thus are generally not in the torque flow, but are on
  • Torque-transmitting assemblies coupled take it
  • the Auslenkungsmassenan extract is radially or / and axially supported on the output hub or the turbine hub. This means that in itself to carry out
  • the Auskenkungsmassenabo can be worn on the Torsionsschwingungsdämpfer-, for example, fixed, or integrally formed with a component thereof, i. be provided by these as well.
  • the torsional vibration damper arrangement comprises a first torsional vibration damper with a first primary side providing the input area and a first secondary side rotating against the action of a first damper element unit about the rotation axis and a second torsional vibration damper having a second primary side and one against the first Effect of a second
  • Damper element unit with respect to the second primary side about the rotation axis rotatable and the output region providing second secondary side, wherein the first secondary side and the second primary side of a
  • the deflection mass unit contributes to increasing the mass and thus the mass moment of inertia of the intermediate mass arrangement. This is therefore particularly advantageous in the embodiment according to the invention, since the turbine wheel massively to the output range of
  • Output hub is proposed that the output hub in a connecting region radially outwardly projecting and with the output range of the
  • Torsionsschwingungsdämpferan Aunt connected connecting portion comprises.
  • the output region by at least one connecting member, preferably rivet bolts, with the
  • Connecting portion is connected.
  • the output region for example a central disk element of the torsional vibration damper arrangement, can be integrally formed with the output hub.
  • the turbine hub may be connected to the turbine wheel by at least one connecting member, preferably rivet pins. This allows the
  • Turbinenradnabe particular with respect to the inner peripheral teeth of the same to design with very high stability.
  • the turbine hub forms an integral part of the turbine wheel, preferably a turbine wheel shell.
  • FIG. 1 is a partial longitudinal sectional view of a designed as a hydrodynamic torque converter hydrodynamic coupling arrangement.
  • FIG. 2 is a perspective view of an output hub of the hydrodynamic coupling arrangement of FIG. 1;
  • Fig. 4 is a representation corresponding to Figure 1 of an alternative Ausforcesart.
  • Fig. 5 is another of FIG. 1 corresponding representation of an alternative Austiciansart.
  • the coupling assembly 10 includes a drive side, so facing a drive unit and thus for common rotation to be connected housing shell 14 and a driven side, so facing a gearbox to be positioned housing shell 16. These are in their radially outer region by a ring-like housing part 18 firmly connected.
  • a plurality of impeller blades 20 arranged one after the other about an axis of rotation A are provided, so that with these impeller blades 20, the housing shell 16 essentially provides an impeller 22.
  • a turbine wheel 26 is positioned with the impeller blades 20 facing Turbine wheel blades 28 provided.
  • the turbine wheel 26 comprises a turbine wheel shell 28, which in its radially inner region, for example, by riveting with one below
  • a stator 32 is positioned with its Leitradschaufeln 34.
  • the stator 32 is over a
  • Freewheel assembly 36 carried on a support hollow shaft 38 for rotation in one direction about the axis of rotation A.
  • a torsional vibration damper assembly 40 includes two radially juxtaposed torsional vibration steamers 42, 44 which are serially operative for transmitting torque between the housing assembly 12 and an output hub 46.
  • Torsional vibration damper 42 comprises a first primary side 48 formed with a central disk element, which essentially provides an input region 50 of the torsional vibration damper arrangement 40.
  • Entrance area 50 is firmly connected, for example by riveting a Reibelementenarme 52.
  • the Reibelementenarme 52 carries the output side friction elements, so for example slats, a generally designated 54
  • Lock-up clutch The drive-side friction elements or fins are connected to the housing assembly 18 for common rotation.
  • a clutch piston 56 presses the input-side and output-side friction members in mutual frictional engagement to engage the lock-up clutch 54, so that a direct torque-transmitting coupling between the housing assembly 12 and the torsional vibration damper assembly 40 is made.
  • Fig. 1 representation of the lock-up clutch 54 is only an example. It could be provided on both the drive side and on the output side thereof a different number of friction elements. Also, the clutch piston could rubbing on the
  • a first secondary side 58 of the torsional vibration damper 42 comprises the radially outer region of two cover disk elements firmly connected to one another by riveting or the like.
  • the damper elements of a first damper element unit 60 act between the cover disk elements or the first secondary side 58 and the central disk element, ie the first primary side 48.
  • These damper elements can be provided, for example, by helical compression springs or the like which follow one another in the circumferential direction or nested one inside the other support respective support portions of the first primary side 48 and the first secondary side 58.
  • the two cover disk elements form a second primary side 62 of the radially inner, second torsional vibration damper 44. Its against the action of a second damper element unit 61 with respect to the second primary side 62 rotatable second secondary side 64, which is essentially provided by a central disk element forms alike the
  • Output region 66 of the torsional vibration damper assembly 40 This is by riveting, so a plurality of circumferentially successive
  • Rivet bolt 68 connected in the manner described below with the output hub 46.
  • the first secondary side 58 and the second primary side 62 essentially the covering disk elements that provide them, form an intermediate mass arrangement 70 of the torsional vibration damper arrangement 40.
  • Turbine 26 is designed as a Festfrequenztilger deflection mass unit 72 is provided. This comprises an excursion mass carrier 74, which is integrally formed here with the intermediate mass arrangement 70
  • Displacement mass coupling arrangement 78 may comprise elastic elements, such as e.g. Helical compression springs comprise, which at respective codessabstütz Schemee the
  • Intermediate mass arrangement 70 are deflected in the circumferential direction and thus a counteracting an exciting vibration and thus deleting them
  • the Auslenkungsmassentrager 74 is provided by a plurality bent in the axial direction Auslenkungsmassentrageabitese, which are bent from the turbine wheel 26 facing the two cover disk elements. It is understood that the deflection mass carrier 74 as a separate
  • Assembly could be determined, for example, by riveting on the intermediate mass arrangement 70.
  • the deflection mass arrangement 76 is supported in its radially inner region on the outer circumference of the turbine hub 30 in the radial direction and axially supported by corresponding support regions also with respect to the turbine hub 30. In this way, the entire Auslenkungsmassenan extract 76 is held axially and radially defined, of course, the
  • Deflection mass arrangement 76 is basically rotatable with respect to the turbine hub 30.
  • the deflection mass carrier 74 thus essentially does not fulfill the functionality of the axial and / or radial centering of the
  • Housing assembly 12 and the output hub 46 is, so even no
  • FIGS. 2 and 3 show, in a perspective view, the output hub 46.
  • This comprises an approximately cylindrical hub body 80, which in the FIG Substantially in a connection region 82 and an outer circumference Vergoris Society 84 is divided.
  • a radially outwardly projecting annular or flange-shaped connecting section 86 is formed with a plurality of through openings 88 for the rivet bolts 68 in order to fix the second secondary side 64, ie the output region 66, on the output hub 46.
  • a spline outer circumferential toothing 90 which with a
  • complementary inner peripheral teeth 92 can be brought into rotational coupling engagement on the inner circumference of the turbine hub 30, so that the turbine 26 can be rotatably coupled to the output hub 46.
  • Transition region between the connecting portion 82 and the outer circumferential gear portion 84, the turbine hub 30 can be supported axially, while the support in the other axial direction, for example via a
  • Wälz Economicslager can be done on the freewheel assembly 36.
  • Hub body 80 for example, where on the outside of the outer peripheral toothing 90 is provided, an inner peripheral toothing 96 is provided. This can be brought into rotationally coupling engagement with an outer peripheral toothing 98 on the output shaft 94.
  • All of these inner and outer peripheral gears may be formed as splines, which can be brought into rotationally coupling engagement by axial intermeshing.
  • Assembling assemblies for example, by riveting or the like firmly together.
  • FIG. 4 shows a modified embodiment of a hydrodynamic coupling arrangement 10, which in its basic structure corresponds to the structure described above with reference to FIG. Reference is therefore made in this regard to the above statements.
  • the turbine hub 30 and the output hub 46 are located axially next to one another, are therefore structurally not connected to one another or centered radially relative to one another.
  • the inner peripheral toothing 92 of the turbine hub 30 is in rotationally coupling engagement with the outer peripheral toothing 98 on the output hub 94.
  • the inner peripheral toothing 96 of the output hub 46 is rotationally engaged with the outer peripheral toothing 98 of the output shaft 94.
  • the turbine hub 30 can be axially supported on the output hub 46, which axially 1, via a housing hub or the like on the housing shell 14, so the housing assembly 12 may be supported.
  • the Auslenkungsmassenan extract 76 of the Auslenkungsmassenech 72 is radially or axially supported on the outer circumference of the turbine hub 30, with respect to this basically rotatable.
  • the output hub 46 is built axially longer. In her the stator 32 axially close range, it has the outer peripheral teeth 90 of
  • the turbine hub 30 is here provided by the radially inner and, for example, axially bent region of a turbine wheel shell 100 of the turbine wheel 26.
  • This turbine wheel shell 100 is supported, for example via a roller bearing on the one hand axially with respect to the
  • the Auslenkungsmassenan extract 76 of the Auslenkungsmassenech 72 is radially supported on the outer circumference of the output hub 46 and held axially defined for example by two retaining rings.
  • the Auslenkungsmassenan extract 76 is basically rotatable with respect to the output hub 46.
  • Output range of the torsional vibration damper assembly so for example, a central disk-like secondary side formed integrally with the output hub.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

Eine hydrodynamische Kopplungsanordnung, insbesondere hydrodynamischer Drehmomentwandler, umfasst eine mit Fluid gefüllte oder füllbare Gehäuseanordnung (12), ein mit der Gehäuseanordnung (12) um eine Drehachse (A) drehbares Pumpenrad (22), ein in der Gehäuseanordnung (12) angeordnetes Turbinenrad (26), eine Torsionsschwingungsdämpferanordnung (40) mit einem vermittels einer Überbrückungskupplung (54) mit der Gehäuseanordnung (12) koppelbaren Eingangsbereich (50) und einem mit einer Abtriebsnabe (46) zur gemeinsamen Drehung um die Drehachse (A) verbundenen Ausgangsbereich (66), wobei die Abtriebsnabe (46) eine Innenumfangsverzahnung (96) zur drehfesten Kopplung mit einer Außenumfangsverzahnung (98) eines Abtriebsorgans (94), vorzugsweise Getriebeeingangswelle, umfasst, wobei das Turbinenrad (26) eine Turbinenradnabe (30) mit einer Innenumfangsverzahnung (92) aufweist zur drehfesten Kopplung mit einer Außenumfangsverzahnung (90) an der Abtriebsnabe (46) oder/und der Außenumfangsverzahnung (98) des Abtriebsorgans (94).

Description

Hydrodynamische Kopplunqsanordnunq, insbesondere hydrodynamischer
Drehmomentwandler
Beschreibung
Die vorliegende Erfindung betrifft eine hydrodynamische Kopplungsanordnung, insbesondere hydrodynamischer Drehmomentwandler, umfassend eine mit Fluid gefüllte oder füllbare Gehäuseanordnung, ein mit der Gehäuseanordnung um eine Drehachse drehbares Pumpenrad, ein in der Gehäuseanordnung angeordnetes Turbinenrad, eine Torsionsschwingungsdämpferanordnung mit einem vermittels einer Überbrückungskupplung mit der Gehäuseanordnung koppelbaren Eingangsbereich und einem mit einer Abtriebsnabe zur gemeinsamen Drehung um die Drehachse
verbundenen Ausgangsbereich, wobei die Abtriebsnabe eine Innenumfangsverzahnung zur drehfesten Kopplung mit einer Außenumfangsverzahnung eines Abtriebsorgans, vorzugsweise Getriebeeingangswelle, umfasst.
Aus der DE 10 2008 057 648 A1 ist eine in Form eines hydrodynamischen Drehmomentwandlers ausgebildete hydrodynamische Kopplungsanordnung bekannt, bei welcher das Drehmoment von einer Gehäuseanordnung entweder über eine Überbrückungskupplung und eine Torsionsschwingungsdämpferanordnung zu einer Abtriebsnabe oder über die hydrodynamische Wechselwirkung zwischen einem mit der Gehäuseanordnung drehbaren Pumpenrad und einem Turbinenrad zur Abtriebsnabe übertragen wird. Das Turbinenrad ist zusammen mit einem Auslenkungsmassenträger einer Auslenkungsmasseneinheit durch Vernietung an einer
Zwischenmassenanordnung der Torsionsschwingungsdämpferanordnung festgelegt und somit drehmomentübertragungsmäßig an die Abtriebswelle angebunden.
Es ist die Zielsetzung der vorliegenden Erfindung, eine hydrodynamische
Kopplungsanordnung vorzusehen, bei welcher in baulich einfacher Weise die
Drehmomentenankopplung eines Turbinenrads an eine Abtriebsnabe erreichbar ist.
Erfindungsgemäß wird diese Aufgabe gelöst durch eine hydrodynamische Kopplungsanordnung, insbesondere hydrodynamischer Drehmomentwandler, umfassend eine mit Fluid gefüllte oder füllbare Gehäuseanordnung, ein mit der
Gehäuseanordnung um eine Drehachse drehbares Pumpenrad, ein in der
Gehäuseanordnung angeordnetes Turbinenrad, eine Torsionsschwin- gungsdämpferanordnung mit einem vermittels einer Überbrückungskupplung mit der Gehäuseanordnung koppelbaren Eingangsbereich und einem mit einer Abtriebsnabe zur gemeinsamen Drehung um die Drehachse verbundenen Ausgangsbereich, wobei die Abtriebsnabe eine Innenumfangsverzahnung zur drehfesten Kopplung mit einer Außenumfangsverzahnung eines Abtriebsorgans, vorzugsweise
Getriebeeingangswelle, umfasst, wobei das Turbinenrad eine Turbinenradnabe mit einer Innenumfangsverzahnung aufweist zur drehfesten Kopplung mit einer
Außenumfangsverzahnung an der Abtriebsnabe oder/und der
Außenumfangsverzahnung des Abtriebsorgans.
Bei dem erfindungsgemäßen Aufbau erfolgt die Drehmomentenankopplung des Turbinenrads durch Verzahnung, nämlich die an der Turbinenradnabe vorgesehene Innenumfangsverzahnung, die mit einer Außenumfangsverzahnung entweder an der Abtriebsnabe oder/und einem Abtriebsorgan, wie z.B. einer Getriebeeingangswelle, in Drehkopplungseingriff bringbar ist. Dieser Drehkopplungseingriff kann durch axiale Aufeinanderzubewegung der beiden zu koppelnden Bauteile erreicht werden, ohne dass irgendwelche weiteren Befestigungsvorgänge, wie z.B. Vernieten oder
dergleichen, erforderlich sind.
Um die Abtriebsnabe in einfacher Weise sowohl zur Drehmomentenaufnahme von der Torsionsschwingungsdämpferanordnung, als auch zur Drehmomentenaufnahme von dem Turbinenrad auszubilden, wird vorgeschlagen, dass die Abtriebsnabe einen Verbindungsbereich zur Verbindung mit dem Ausgangsbereich und axial neben dem Verbindungsbereich einen Außenumfangsverzahnungsbereich umfasst.
Für eine definierte Axialpositionierung des Turbinenrads kann in einfacher Weise dadurch gesorgt werden, dass die Abtriebsnabe einen Axialabstützbereich zur axialen Abstützung der Turbinenradnabe aufweist.
Insbesondere dann, wenn sowohl die Torsionsschwingungsdämpferanordnung, als auch das Turbinenrad zur Drehmomentübertragung an die Abtriebsnabe angekoppelt sind, kann die Axialabstützung in baulich einfacher Weise dadurch realisiert werden, dass der Axialabstützbereich in einem Übergangsbereich zwischen dem Verbindungsbereich und dem Außenumfangsverzahnungsbereich vorgesehen ist.
Um neben der durch die Torsionsschwingungsdämpferanordnung bereits eingeführten Schwingungsdämpfungscharakteristik einen weiteren Dämpfungsaspekt bereitstellen zu können, wird vorgeschlagen, dass eine Auslenkungsmasseneinheit einen Auslenkungsmassenträger und eine vermittels einer Auslenkungsmassen- Kopplungsanordnung am Auslenkungsmassenträger aus einer Grund-Relativlage bezüglich diesem auslenkbar getragene Auslenkungsmassenanordnung umfasst, wobei die Auslenkungsmasseneinheit auf der Abtriebsnabe oder der Turbinenradnabe radial oder/und axial gestützt ist. Derartige Auslenkungsmasseneinheiten können beispielsweise als Festfrequenztilger oder drehzahladaptiver Tilger ausgebildet sein und liegen damit im Allgemeinen nicht im Drehmomentenfluss, sondern sind an
Drehmoment übertragende Baugruppen angekoppelt, nehmen dadurch
Drehschwingungen auf und tilgen diese durch Erzeugung einer Gegenschwingung der Auslenkungsmassenanordnung. Dadurch, dass die Auslenkungsmasseneinheit auf der Abtriebsnabe oder/und der Turbinenradnabe weiterhin radial oder/und axial gestützt ist, wird gleichzeitig für eine definierte Zentrierung bzw. Positionierung derselben gesorgt.
Insbesondere kann dabei vorgesehen sein, dass die Auslenkungsmassenanordnung auf der Abtriebsnabe oder der Turbinenradnabe radial oder/und axial gestützt ist. Dies bedeutet, dass die an sich zur Durchführung von
Schwingungsbewegungen lediglich an den Auslenkungsmassenträger angekoppelte Auslenkungsmassenanordnung durch ihre Abstützwechselwirkung für eine definierte Positionierung sorgt, gleichwohl aber an der sie stützenden Baugruppe grundsätzlich drehbar gehalten ist.
Der Auskenkungsmassenträger kann an der Torsionsschwingungsdämpfer- anordnung getragen sein, also beispielsweise festgelegt, oder mit einer Komponente derselben integral ausgebildet, d.h. durch diese auch bereitgestellt sein.
Bei einer hinsichtlich der Schwingungsdämpfungseigenschaften besonders vorteilhaften Ausgestaltung wird vorgeschlagen, dass die Torsionsschwin- gungsdämpferanordnung einen ersten Torsionsschwingungsdämpfer mit einer den Eingangsbereich bereitstellenden ersten Primärseite und einer gegen die Wirkung einer ersten Dämpferelementeneinheit bezüglich der ersten Primärseite um die Drehachse drehbaren ersten Sekundärseite und einen zweiten Torsionsschwingungsdämpfer mit einer zweiten Primärseite und einer gegen die Wirkung einer zweiten
Dämpferelementeneinheit bezüglich der zweiten Primärseite um die Drehachse drehbaren und den Ausgangsbereich bereitstellenden zweiten Sekundärseite umfasst, wobei die erste Sekundärseite und die zweite Primärseite eine
Zwischenmassenanordnung bereitstellen.
Wenn dabei weiterhin der Auslenkungsmassenträger an der Zwischenmassenanordnung getragen ist, trägt die Auslenkungsmasseneinheit zur Erhöhung der Masse und somit des Massenträgheitsmoments der Zwischenmassenanordnung bei. Dies ist bei der erfindungsgemäßen Ausgestaltung daher besonders vorteilhaft, da das Turbinenrad massemäßig an den Ausgangsbereich der
Torsionsschwingungsdämpferanordnung angekoppelt ist, selbst also nicht zur
Erhöhung der Masse der Zwischenmassenanordnung beiträgt.
Zur Herstellung der Verbindung zwischen dem Ausgangsbereich und der
Abtriebsnabe wird vorgeschlagen, dass die Abtriebsnabe in einem Verbindungsbereich einen nach radial außen vorspringenden und mit dem Ausgangsbereich der
Torsionsschwingungsdämpferanordnung verbundenen Verbindungsabschnitt umfasst. Insbesondere kann dabei weiter vorgesehen sein, dass der Ausgangsbereich durch wenigstens einen Verbindungsorgan, vorzugsweise Nietbolzen, mit dem
Verbindungsabschnitt verbunden ist.
Es sei jedoch darauf hingewiesen, dass bei einer baulichen Alternative der Ausgangsbereich, beispielsweise ein Zentralscheibenelement der Torsions- schwingungsdämpferanordnung, mit der Abtriebsnabe integral ausgebildet sein kann.
Die Turbinenradnabe kann mit dem Turbinenrad durch wenigstens ein Verbindungsorgan, vorzugsweise Nietbolzen, verbunden sein. Dies gestattet es, die
Turbinenradnabe insbesondere hinsichtlich der Innenumfangsverzahnung derselben mit sehr hoher Stabilität auszugestalten.
Bei einer baulich sehr einfachen und kostengünstig zu realisierenden Alternative wird vorgeschlagen, dass die Turbinenradnabe einen integralen Bestandteil des Turbinenrads, vorzugsweise einer Turbinenradschale, bildet.
Die vorliegende Erfindung wird nachfolgend mit Bezug auf die beiliegenden Figuren detailliert beschrieben. Es zeigt:
Fig. 1 eine Teil-Längsschnittansicht einer als hydrodynamischer Drehmomentwandler ausgebildeten hydrodynamischen Kopplungsanordnung;
Fig. 2 in perspektivischer Ansicht eine Abtriebsnabe der hydrodynamischen Kopplungsanordnung der Fig. 1 ;
Fig. 3 die Abtriebsnabe der Fig. 1 in Längsschnittdarstellung;
Fig. 4 eine der Fig. 1 entsprechende Darstellung einer alternativen Ausgestaltungsart;
Fig. 5 eine weitere der Fig. 1 entsprechende Darstellung einer alternativen Ausgestaltungsart.
In Fig. 1 ist eine als hydrodynamischer Drehmomentwandler ausgebildete hydrodynamische Kopplungsanordnung 10 dargestellt. Die Kopplungsanordnung 10 umfasst eine antriebsseitig, also einem Antriebsaggregat zugewandt und damit zur gemeinsamen Drehung zu verbindende Gehäuseschale 14 und eine abtriebsseitig, also einem Getriebe zugewandt zu positionierende Gehäuseschale 16. Diese sind in ihrem radial äußeren Bereich durch ein ringartiges Gehäuseteil 18 fest miteinander verbunden. An einer Innenseite der Gehäuseschale 16 ist eine Mehrzahl von um eine Drehachse A aufeinander folgend angeordneten Pumpenradschaufeln 20 vorgesehen, so dass mit diesen Pumpenradschaufeln 20 die Gehäuseschale 16 im Wesentlichen ein Pumpenrad 22 bereitstellt. In einem Innenraum 24 der Gehäuseanordnung 12 ist ein Turbinenrad 26 mit den Pumpenradschaufeln 20 zugewandt positionerten Turbinenradschaufeln 28 vorgesehen.
Das Turbinenrad 26 umfasst eine Turbinenradschale 28, welche in ihrem radial inneren Bereich beispielsweise durch Vernietung mit einer nachfolgend noch
detaillierter erläuterten Turbinenradnabe 30 fest verbunden ist.
Axial zwischen dem Pumpenrad 22 und dem Turbinenrad 26 ist ein Leitrad 32 mit seinen Leitradschaufeln 34 positioniert. Das Leitrad 32 ist über eine
Freilaufanordnung 36 auf einer Stützhohlwelle 38 zur Drehung in einer Richtung um die Drehachse A getragen.
Eine Torsionsschwingungsdämpferanordnung 40 umfasst zwei radial ineinander positionierte Torsionsschwingungsdampfer 42, 44, welche zur Drehmomentübertragung zwischen der Gehäuseanordnung 12 und einer Abtriebsnabe 46 seriell wirksam sind. Der radial äußere, im Drehmomentenfluss im Zugzustand erste
Torsionsschwingungsdämpfer 42 umfasst eine mit einem Zentralscheibenelement ausgebildete erste Primärseite 48, welche im Wesentlichen einen Eingangsbereich 50 der Torsionsschwingungsdämpferanordnung 40 bereitstellt. Mit diesem
Eingangsbereich 50 ist beispielsweise durch Vernietung ein Reibelemententräger 52 fest verbunden. Der Reibelemententräger 52 trägt die abtriebsseitigen Reibelemente, also beispielsweise Lamellen, einer allgemein mit 54 bezeichneten
Überbrückungskupplung. Die antriebsseitigen Reibelemente bzw. Lamellen sind mit der Gehäuseanordnung 18 zur gemeinsamen Drehung verbunden. Ein Kupplungskolben 56 presst zum Einrücken der Überbrückungskupplung 54 die antriebsseitigen und die abtriebsseitigen Reibelemente in gegenseitigen Reibeingriff, so dass eine direkte Drehmomentübertragungskopplung zwischen der Gehäuseanordnung 12 und der Torsionsschwingungsdämpferanordnung 40 hergestellt ist.
Es sei hier darauf hingewiesen, dass die in Fig. 1 erkennbare Darstellung der Überbrückungskupplung 54 nur beispielhaft ist. Es könnte sowohl an der Antriebsseite als auch an der Abtriebsseite derselben eine andere Anzahl an Reibelementen vorgesehen sein. Auch könnte der Kupplungskolben reibend an der
Gehäuseanordnung 12 angreifen und mit dem Eingangsbereich 50 gekoppelt sein. Eine erste Sekundärseite 58 des Torsionsschwingungsdämpfers 42 umfasst den radial äußeren Bereich zweier miteinander durch Vernietung oder dergleichen fest verbundener Deckscheibenelemente. Zwischen den Deckscheibenelementen bzw. der ersten Sekundärseite 58 und dem Zentralscheibenelement, also der ersten Primärseite 48, wirken die Dämpferelemente einer ersten Dämperelementeneinheit 60. Diese Dämpferelemente können beispielsweise durch Schraubendruckfedern oder dergleichen bereitgestellt sein, die in Umfangsrichtung aufeinander folgend bzw. auch ineinander geschachtelt sich an jeweiligen Abstützbereichen der ersten Primärseite 48 und der ersten Sekundärseite 58 abstützen.
In ihrem radial inneren Bereich bilden die beiden Deckscheibenelemente eine zweite Primärseite 62 des radial inneren, zweiten Torsionsschwingungsdämpfers 44. Dessen gegen die Wirkung einer zweiten Dämpferelementeneinheit 61 bezüglich der zweiten Primärseite 62 drehbare zweite Sekundärseite 64, welche im Wesentlichen durch ein Zentralscheibenelement bereitgestellt ist, bildet gleichermaßen den
Ausgangsbereich 66 der Torsionsschwingungsdämpferanordnung 40. Dieser ist durch Vernietung, also eine Mehrzahl von in Umfangsrichtung aufeinander folgenden
Nietbolzen 68 in nachfolgend noch beschriebener Art und Weise mit der Abtriebsnabe 46 verbunden.
Die erste Sekundärseite 58 und die zweite Primärseite 62, im Wesentlichen also die diese bereitstellenden Deckscheibenelemente, bilden eine Zwischenmassenanordnung 70 der Torsionsschwingungsdämpferanordnung 40.
Axial zwischen der Torsionsschwingungsdämpferanordnung 40 und dem
Turbinenrad 26 ist eine als Festfrequenztilger ausgebildete Auslenkungsmasseneinheit 72 vorgesehen. Diese umfasst einen hier mit der Zwischenmassenanordnung 70 integral ausgebildeten Auslenkungsmassenträger 74, eine
Auslenkungsmassenanordnung 76 und eine Auslenkungsmassen- Kopplungsanordnung 78, vermittels welcher die Auslenkungsmassenanordnung 76 kraftübertragungsmäßig am Auslenkungsmassenträger 74 abgestützt ist. Die
Auslenkungsmassen-Kopplungsanordnung 78 kann elastische Elemente, wie z.B. Schraubendruckfedern, umfassen, die an jeweiligen Umfangsabstützbereichen des
Auslenkungsmassenträgers 74 einerseits und zwei deckscheibenartig ausgebildeten Scheibenelementen der Auslenkungsmassenanordnung 76 andererseits abgestützt sind und die Auslenkungsmassenanordnung 76 in eine Grund-Relativlage bezüglich des Auslenkungsmassenträgers 74 vorspannen. Bei Auftreten von Drehschwingungen kann die Auslenkungsmassenanordnung 74 gegen die Rückstellkraftwirkung der Auslenkungsmassen-Kopplungsanordnung 78 bezüglich des
Auslenkungsmassenträgers 74, hier also auch bezüglich der
Zwischenmassenanordnung 70 in Umfangsrichtung ausgelenkt werden und damit eine einer anregenden Schwingung entgegen wirkende und diese somit tilgende
Schwingung aufbauen.
Der Auslenkungsmassentrager 74 ist durch mehrere in Achsrichtung abgebogene Auslenkungsmassentrageabschnitte bereitgestellt, welche von dem dem Turbinenrad 26 zugewandten der beiden Deckscheibenelemente abgebogen sind. Es ist selbstverständlich, dass der Auslenkungsmassenträger 74 auch als separate
Baugruppe beispielsweise durch Vernietung an der Zwischenmassenanordnung 70 festgelegt sein könnte.
Die Auslenkungsmassenanordnung 76 ist in ihrem radial inneren Bereich am Außenumfang der Turbinenradnabe 30 in radialer Richtung abgestützt und durch entsprechende Abstützbereiche auch bezüglich der Turbinenradnabe 30 axial abgestützt. Auf diese Art und Weise ist die gesamte Auslenkungsmassenanordnung 76 axial und auch radial definiert gehalten, wobei selbstverständlich die
Auslenkungsmassenanordnung 76 grundsätzlich bezüglich der Turbinenradnabe 30 drehbar ist. Der Auslenkungsmassenträger 74 erfüllt hier also im Wesentlichen nicht die Funktionalität der axialen oder/und radialen Zentrierung der
Auslenkungsmassenanordnung 76, sondern im Wesentlichen die
kraftübertragungsmäßige Ankopplung an die Drehmoment übertragenden Baugruppen, hier die Torsionsschwingungsdämpferanordnung 40, wobei die
Auslenkungsmasseneinheit 72 nicht im Drehmomentenfluss zwischen der
Gehäuseanordnung 12 und der Abtriebsnabe 46 liegt, selbst also kein
Antriebsdrehmoment oder Bremsdrehmoment überträgt.
Die Fig. 2 und 3 zeigen in perspektivischer Darstellung die Abtriebsnabe 46. Diese umfasst einen näherungsweise zylindrischen Nabenkörper 80, der im Wesentlichen in einen Verbindungsbereich 82 und einen Außenumfangsver- zahnungsbereich 84 aufgeteilt ist. Am Verbindungsbereich 82 ist ein nach radial außen vorspringender, ring- bzw. flanschartig ausgebildeter Verbindungsabschnitt 86 mit einer Mehrzahl von Durchgriffsöffnungen 88 für die Nietbolzen 68 ausgebildet, um die zweite Sekundärseite 64, also den Ausgangsbereich 66 an der Abtriebsnabe 46 festzulegen.
Am Außenverzahnungsbereich 84 ist eine beispielsweise als Keilverzahnung ausgebildete Außenumfangsverzahnung 90 vorgesehen, welche mit einer
komplementären Innenumfangsverzahnung 92 am Innenumfang der Turbinenradnabe 30 in Drehkopplungseingriff gebracht werden kann, so dass das Turbinenrad 26 drehfest an die Abtriebsnabe 46 angekoppelt werden kann.
In einem im Wesentlichen durch eine Radialschulter 92 bereitgestellten
Übergangsbereich zwischen dem Verbindungsbereich 82 und dem Außen- umfangsverzahnungsbereich 84 kann die Turbinenradnabe 30 axial abgestützt werden, während die Abstützung in der anderen Axialrichtung beispielsweise über ein
Wälzkörperlager an der Freilaufanordnung 36 erfolgen kann.
Zur drehfesten Ankopplung der Abtriebsnabe 46 an eine beispielsweise als Getriebeeingangswelle ausgebildete Abtriebswelle 94 ist an der Innenseite des
Nabenkörpers 80 beispielsweise dort, wo an der Außenseite die Außenumfangsverzahnung 90 vorgesehen ist, eine Innenumfangsverzahnung 96 vorgesehen. Diese kann in Drehkopplungseingriff mit einer Außenumfangsverzahnung 98 an der Abtriebswelle 94 gebracht werden.
All diese Innen- bzw. Außenumfangsverzahnungen können als Keilverzahnungen ausgebildet sein, die durch axiales Ineinandereinführen in Drehkopplungseingriff gebracht werden können.
Man erkennt aus der vorangehenden Beschreibung, dass bei dem in Fig. 1 dargestellten Aufbau einer hydrodynamischen Kopplungsanordnung 10 das
Turbinenrad 26 parallel zum Ausgangsbereich 66 der Torsionsschwingungs- dämpferanordnung drehmomentübertragungsmäßig an die Abtriebsnabe 46
angekoppelt ist. D.h., dass das Turbinenrad 26 hier zur Erhöhung der ausgangsseitigen Masse beiträgt, während die Auslenkungsmasseneinheit 72 zur Erhöhung der Masse der Zwischenmassenanordnung 70 beiträgt.
Durch die Verzahnungskopplung der Turbinenradnabe 30 mit der Abtriebsnabe 46 einerseits und die Verzahnungskopplung der Abtriebsnabe 46 mit der Abtriebswelle 94 andererseits wird ein baulich einfach herzustellender, gleichwohl jedoch stabil wirkender Drehkopplungszustand erreicht, welcher es nicht erforderlich macht, irgendwelche dieser zur Drehmomentübertragung miteinander zu koppelnden
Baugruppen beispielsweise durch Vernietung oder dergleichen fest miteinander zu verbinden.
Die Fig. 4 zeigt eine abgewandelte Ausgestaltungsform einer hydrodynamischen Kopplungsanordnung 10, welche in ihrem grundsätzlichen Aufbau dem vorangehend mit Bezug auf die Fig. 1 beschriebenen Aufbau entspricht. Es wird diesbezüglich also auf die voranstehenden Ausführungen verwiesen. Bei dem in Fig. 4 erkennbaren Aufbau liegen die Turbinenradnabe 30 und die Abtriebsnabe 46 axial nebeneinander, sind baulich also nicht miteinander verbunden bzw. radial bezüglich einander zentriert. Die Innenumfangsverzahnung 92 der Turbinenradnabe 30 ist in Drehkopplungseingriff mit der Außenumfangsverzahnnung 98 an der Abtriebsnabe 94. Gleichermaßen ist die Innenumfangsverzahnung 96 der Abtriebsnabe 46 in Drehkopplungseingriff mit der Außenumfangsverzahnung 98 der Abtriebswelle 94. Die Turbinenradnabe 30 kann sich axial an der Abtriebsnabe 46 abstützen, welche axial wiederum, ebenso wie bei der Ausgestaltungsform der Fig. 1 , über eine Gehäusenabe oder dergleichen an der Gehäuseschale 14, also der Gehäuseanordnung 12, abgestützt sein kann.
Die Auslenkungsmassenanordnung 76 der Auslenkungsmasseneinheit 72 ist am Außenumfang der Turbinenradnabe 30 radial bzw. axial gestützt, bezüglich dieser grundsätzlich jedoch drehbar.
Bei der in Fig. 5 gezeigten Ausgestaltungsvariante, bei welcher der grundsätzliche Aufbau der hydrodynamischen Kopplungsanordnung wiederum dem in Fig. 1 gezeigten entspricht, ist die Abtriebsnabe 46 axial länger gebaut. In ihrem dem Leitrad 32 axial nahe liegenden Bereich weist sie die Außenumfangsverzahnung 90 des
Außenumfangsverzahnungsbereichs 84 auf. Die Turbinenradnabe 30 ist hier bereitgestellt durch den radial inneren und beispielsweise axial abgekröpften Bereich einer Turbinenradschale 100 des Turbinenrads 26. Diese Turbinenradschale 100 stützt sich beispielsweise über ein Wälzkörperlager einerseits axial bezüglich der
Freilaufanordnung 36 ab. Andererseits stützt sich in einem axialen Endbereich die Turbinenradnabe 30 an einem stufenartigen Übergangsbereich 92 der Abtriebsnabe 46 ab.
Axial zwischen der Außenumfangsverzahnung 90 und dem nach radial außen greifenden Verbindungsabschnitt 86 ist am Außenumfang der Abtriebsnabe 46 die Auslenkungsmassenanordnung 76 der Auslenkungsmasseneinheit 72 radial gestützt und beispielsweise durch zwei Sicherungsringe auch axial definiert gehalten. Auch hier ist die Auslenkungsmassenanordnung 76 grundsätzlich bezüglich der Abtriebsnabe 46 drehbar.
Es sei darauf hingewiesen, dass bei den vorangehend beschriebenen Ausgestaltungsformen einer hydrodynamischen Kopplungsanordnung 10 verschiedenste Variationen hinsichtlich deren Aufbau vorgenommen werden können. So könnte beispielsweise die Überbrückungskupplung anders aufgebaut sein, als dargestellt. Auch könnte die Torsionsschwingungsdämpferanordnung beispielsweise mit nur einem Torsionsschwingungsdämpfer ausgebildet sein, dessen Ausgangsbereich dann über die Abtriebsnabe an die Abtriebswelle anzukoppeln ist. Auch könnte der
Ausgangsbereich der Torsionsschwingungsdämpferanordnung, also beispielsweise eine zentralscheibenartig ausgebildete Sekundärseite mit der Abtriebsnabe integral ausgebildet sein.

Claims

Patentansprüche
1 . Hydrodynamische Kopplungsanordnung, insbesondere hydrodynamischer Drehmomentwandler, umfassend eine mit Fluid gefüllte oder füllbare
Gehäuseanordnung (12), ein mit der Gehäuseanordnung (12) um eine Drehachse (A) drehbares Pumpenrad (22), ein in der Gehäuseanordnung (12) angeordnetes
Turbinenrad (26), eine Torsionsschwingungsdämpferanordnung (40) mit einem vermittels einer Überbrückungskupplung (54) mit der Gehäuseanordnung (12) koppelbaren Eingangsbereich (50) und einem mit einer Abtriebsnabe (46) zur gemeinsamen Drehung um die Drehachse (A) verbundenen Ausgangsbereich (66), wobei die Abtriebsnabe (46) eine Innenumfangsverzahnung (96) zur drehfesten Kopplung mit einer Außenumfangsverzahnung (98) eines Abtriebsorgans (94), vorzugsweise
Getriebeeingangswelle, umfasst, wobei das Turbinenrad (26) eine Turbinenradnabe (30) mit einer Innenumfangsverzahnung (92) aufweist zur drehfesten Kopplung mit einer Außenumfangsverzahnung (90) an der Abtriebsnabe (46) oder/und der
Außenumfangsverzahnung (98) des Abtriebsorgans (94).
2. Hydrodynamische Kopplungsanordnung nach Anspruch 1 , dadurch gekennzeichnet, dass die Abtriebsnabe (46) einen Verbindungsbereich (82) zur
Verbindung mit dem Ausgangsbereich (66) und axial neben dem Verbindungsbereich (82) einen Außenumfangsverzahnungsbereich (84) umfasst.
3. Hydrodynamische Kopplungsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Abtriebsnabe (46) einen Axialabstützbereich (92) zur axialen Abstützung der Turbinenradnabe (30) aufweist.
4. Hydrodynamische Kopplungsanordnung nach Anspruch 2 und Anspruch 3, dadurch gekennzeichnet, dass der Axialabstützbereich (92) in einem Übergangsbereich zwischen dem Verbindungsbereich (82) und dem Außenumfangsverzahnungsbereich (84) vorgesehen ist.
5. Hydrodynamische Kopplungsanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine Auslenkungsmasseneinheit (72) einen Auslenkungsmassenträger (74) und eine vermittels einer Auslenkungsmassen- Kopplungsanordnung (78) am Auslenkungsmassenträger (74) aus einer Grund- Relativlage bezüglich diesem auslenkbar getragene Auslenkungsmassenanordnung (76) umfasst, wobei die Auslenkungsmasseneinheit (72) auf der Abtriebsnabe (46) oder der Turbinenradnabe (30) radial oder/und axial gestützt ist.
6. Hydrodynamische Kopplungsanordnung nach Anspruch 5, dadurch gekennzeichnet, dass die Auslenkungsmassenanordnung (76) auf der Abtriebsnabe (46) oder der Turbinenradnabe (30) radial oder/und axial gestützt ist.
7. Hydrodynamische Kopplungsanordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Auslenkungsmassenträger (74) an der
Torsionsschwingungsdämpferanordnung (40) getragen ist.
8. Hydrodynamische Kopplungsanordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Torsionsschwingungsdämpferanordnung einen ersten Torsionsschwingungsdämpfer (42) mit einer den Eingangsbereich (50) bereitstellenden ersten Primärseite (48) und einer gegen die Wirkung einer ersten Dämpferelementeneinheit (60) bezüglich der ersten Primärseite (48) um die Drehachse (A) drehbaren ersten Sekundärseite (58) und einen zweiten Torsionsschwingungsdämpfer (44) mit einer zweiten Primärseite (62) und einer gegen die Wirkung einer zweiten Dämpferelementeneinheit bezüglich der zweiten Primärseite (62) um die Drehachse (A) drehbaren und den Ausgangsbereich (66) bereitstellenden zweiten Sekundärseite (64) umfasst, wobei die erste Sekundärseite (58) und die zweite
Primärseite (62) eine Zwischenmassenanordnung (70) bereitstellen.
9. Hydrodynamische Kopplungsanordnung nach Anspruch 7 und Anspruch 8, dadurch gekennzeichnet, dass der Auslenkungsmassenträger (74) an der
Zwischenmassenanordnung (70) getragen ist.
10. Hydrodynamische Kopplungsanordnung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Abtriebsnabe (46) in einem Verbindungsbereich (82) einen nach radial außen vorspringenden und mit dem Ausgangsbereich (66) der Torsionsschwingungsdämpferanordnung (40) verbundenen Verbindungsabschnitt (86) umfasst.
1 1 . Hydrodynamische Kopplungsanordnung nach Anspruch 10, dadurch gekennzeichnet, dass der Ausgangsbereich (66) durch wenigstens einen
Verbindungsorgan (68), vorzugsweise Nietbolzen, mit dem Verbindungsabschnitt verbunden ist.
12. Hydrodynamische Kopplungsanordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Turbinenradnabe (30) mit dem Turbinenrad (26) durch wenigstens ein Verbindungsorgan, vorzugsweise Nietbolzen, verbunden ist.
13. Hydrodynamische Kopplungsanordnung nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass die Turbinenradnabe (30) einen integralen
Bestandteil des Turbinenrads (26), vorzugsweise einer Turbinenradschale (100), bildet.
PCT/EP2012/055375 2011-04-28 2012-03-27 Hydrodynamische kopplungsanordnung, insbesondere hydrodynamischer drehmomentwandler WO2012146450A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014506808A JP5926792B2 (ja) 2011-04-28 2012-03-27 ハイドロダイナミックカップリング装置、特にハイドロダイナミックトルクコンバータ
US14/114,410 US9458918B2 (en) 2011-04-28 2012-03-27 Hydrodynamic coupling arrangement, in particular hydrodynamic torque converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011017658.6A DE102011017658B4 (de) 2011-04-28 2011-04-28 Hydrodynamische Kopplungsanordnung, insbesondere hydrodynamischer Drehmomentwandler
DE102011017658.6 2011-04-28

Publications (1)

Publication Number Publication Date
WO2012146450A1 true WO2012146450A1 (de) 2012-11-01

Family

ID=45937271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/055375 WO2012146450A1 (de) 2011-04-28 2012-03-27 Hydrodynamische kopplungsanordnung, insbesondere hydrodynamischer drehmomentwandler

Country Status (4)

Country Link
US (1) US9458918B2 (de)
JP (1) JP5926792B2 (de)
DE (1) DE102011017658B4 (de)
WO (1) WO2012146450A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2853773B1 (de) 2013-09-27 2018-02-28 ZF Friedrichshafen AG Torsionsschwingungsdämpfer
EP2853771B1 (de) 2013-09-27 2018-02-28 ZF Friedrichshafen AG Torsionsschwingungsdämpfer
EP2853772B1 (de) 2013-09-27 2018-09-26 ZF Friedrichshafen AG Torsionsschwingungsdämpfer
US10393247B2 (en) 2016-05-23 2019-08-27 Valeo Embrayages Hydrokinetic torque coupling device with torsional vibration damper in combination with two vibration absorbers

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5900541B2 (ja) * 2014-06-27 2016-04-06 トヨタ自動車株式会社 捩り振動低減装置を備えたトルクコンバータ
WO2016142732A1 (en) * 2015-03-11 2016-09-15 Valeo Embrayages Hydrodynamic torque converter
US10054208B2 (en) * 2015-12-07 2018-08-21 Valeo Embrayages Frequency dynamic absorber for torsional vibration damper of hydrokinetic torque coupling device
DE102019201645A1 (de) * 2019-02-08 2020-08-13 Zf Friedrichshafen Ag Drehmoment-Übertragungsanordnung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187158A (ja) * 1983-04-06 1984-10-24 Mazda Motor Corp 自動変速機のロツクアツプクラツチ
WO1989002551A1 (en) * 1987-09-11 1989-03-23 Kabushiki Kaisha Daikin Seisakusho Lockup damper for torque converters
DE19804227A1 (de) * 1998-02-04 1999-08-05 Mannesmann Sachs Ag Überbrückungskupplung mit einer Ausgleichsschwungmasse am Torsionsschwingungsdämpfer
US20010015308A1 (en) * 1997-08-26 2001-08-23 Luk Getriebe-Systeme Gmbh Hydrodynamic torque converter
DE102008030470A1 (de) * 2007-07-12 2009-01-15 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drehmomentwandler mit direkt am Kolben befestigter Deckelplatte
JP2009041662A (ja) * 2007-08-08 2009-02-26 Honda Motor Co Ltd ロックアップクラッチ付きトルクコンバータ
DE102008057648A1 (de) 2007-11-29 2009-06-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kraftübertragungsvorrichtung, insbesondere zur Leistungsübertragung zwischen einer Antriebsmaschine und einem Abtrieb
WO2012043302A1 (ja) * 2010-09-30 2012-04-05 アイシン・エィ・ダブリュ株式会社 流体伝動装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR925020A (fr) * 1946-03-08 1947-08-22 Borg Warner Perfectionnements aux transmissions
US3213983A (en) * 1963-08-26 1965-10-26 Borg Warner Fluid actuated transmission device
JPS57167559A (en) * 1981-04-03 1982-10-15 Aisin Warner Ltd Fluid coupling with direct coupled clutch
JPS6474354A (en) * 1987-09-11 1989-03-20 Daikin Mfg Co Ltd Lock-up damper device for torque converter
US5737836A (en) * 1996-05-03 1998-04-14 Borg-Warner Automotive, Inc. Method of making a splined turbine hub
US5996750A (en) * 1998-07-06 1999-12-07 Ford Global Technologies, Inc. Hydrokinetic torque converter for an automatic transmission
DE19842310A1 (de) * 1998-09-16 2000-03-23 Mannesmann Sachs Ag Hydrodynamische Kupplungseinrichtung mit einer Trennwand zwischen einem hydrodynamischen Kreis und einem Restkreis
DE10236752A1 (de) * 2002-08-10 2004-02-19 Daimlerchrysler Ag Antriebsstrang eines Kraftfahrzeuges
DE10358901C5 (de) * 2003-04-05 2018-01-04 Zf Friedrichshafen Ag Torsionsschwingungsdämpfer
JP2004308904A (ja) * 2003-04-05 2004-11-04 Zf Sachs Ag 捩り振動ダンパ
JP2005147366A (ja) * 2003-11-19 2005-06-09 Exedy Corp 流体継手及び流体継手の製造方法
JP2009250288A (ja) * 2008-04-02 2009-10-29 Exedy Corp ロックアップ装置
DE102011006533A1 (de) * 2010-05-07 2011-11-10 Zf Friedrichshafen Ag Drehmomentübertragungsbaugruppe, insbesondere hydrodynamischer Drehmomentwandler, Fluidkupplung oder nasslaufende Kupplung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187158A (ja) * 1983-04-06 1984-10-24 Mazda Motor Corp 自動変速機のロツクアツプクラツチ
WO1989002551A1 (en) * 1987-09-11 1989-03-23 Kabushiki Kaisha Daikin Seisakusho Lockup damper for torque converters
US20010015308A1 (en) * 1997-08-26 2001-08-23 Luk Getriebe-Systeme Gmbh Hydrodynamic torque converter
DE19804227A1 (de) * 1998-02-04 1999-08-05 Mannesmann Sachs Ag Überbrückungskupplung mit einer Ausgleichsschwungmasse am Torsionsschwingungsdämpfer
DE102008030470A1 (de) * 2007-07-12 2009-01-15 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drehmomentwandler mit direkt am Kolben befestigter Deckelplatte
JP2009041662A (ja) * 2007-08-08 2009-02-26 Honda Motor Co Ltd ロックアップクラッチ付きトルクコンバータ
DE102008057648A1 (de) 2007-11-29 2009-06-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kraftübertragungsvorrichtung, insbesondere zur Leistungsübertragung zwischen einer Antriebsmaschine und einem Abtrieb
WO2012043302A1 (ja) * 2010-09-30 2012-04-05 アイシン・エィ・ダブリュ株式会社 流体伝動装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2853773B1 (de) 2013-09-27 2018-02-28 ZF Friedrichshafen AG Torsionsschwingungsdämpfer
EP2853771B1 (de) 2013-09-27 2018-02-28 ZF Friedrichshafen AG Torsionsschwingungsdämpfer
EP2853772B1 (de) 2013-09-27 2018-09-26 ZF Friedrichshafen AG Torsionsschwingungsdämpfer
US10393247B2 (en) 2016-05-23 2019-08-27 Valeo Embrayages Hydrokinetic torque coupling device with torsional vibration damper in combination with two vibration absorbers
US11105405B2 (en) 2016-05-23 2021-08-31 Valeo Kapec Co., Ltd. Hydrokinetic torque coupling device with torsional vibration damper in combination with two vibration absorbers

Also Published As

Publication number Publication date
DE102011017658A1 (de) 2012-11-15
US9458918B2 (en) 2016-10-04
US20140048371A1 (en) 2014-02-20
JP2014512498A (ja) 2014-05-22
DE102011017658B4 (de) 2021-03-18
JP5926792B2 (ja) 2016-05-25

Similar Documents

Publication Publication Date Title
WO2012146450A1 (de) Hydrodynamische kopplungsanordnung, insbesondere hydrodynamischer drehmomentwandler
EP2300736B2 (de) Hydrodynamischer drehmomentwandler
EP2577105B1 (de) Hydrodynamische kopplungseinrichtung, insbesondere drehmomentwandler
WO2011138217A1 (de) Drehmomentübertragungsbaugruppe, insbesondere für den antriebsstrang eines fahrzeugs
DE112011101904B4 (de) Überbrückungsvorrichtung für einen Drehmomentwandler
EP3571425B1 (de) Drehmomentübertragungsbaugruppe
DE112012001892T5 (de) Überbrückungsvorrichtung für einen Drehmomentwandler
DE112014002668T5 (de) Überbrückungsvorrichtung für einen Drehmomentwandler
DE112015005106T5 (de) Kraftübertragungsvorrichtung und Überbrückungsvorrichtung für einen Drehmomentwandler
DE102011017653B4 (de) Hydrodynamische Kopplungsanordnung, insbesondere hydrodynamischer Drehmomentwandler
DE102012217171B4 (de) Hydrodynamische Kopplungsanordnung, insbesondere Drehmomentwandler
DE102011003846B4 (de) Drehmomentübertragungsanordnung, insbesondere hydrodynamischer Drehmomentwandler
DE19926983A1 (de) Hydrodynamischer Drehmomentwandler
DE112014001552T5 (de) Überbrückungsvorrichtung für einen Drehmomentwandler
DE10004952C2 (de) Überbrückungsvorrichtung für einen Drehmomentwandler
DE19803221A1 (de) Drehmomentwandler
DE112016000893T5 (de) Dynamische Vibrationsdämpfungsvorrichtung
DE102007057432B4 (de) Hydrodynamische Kopplungseinrichtung
DE102011017652B4 (de) Hydrodynamische Kopplungsanordnung, insbesondere hydrodynamischer Drehmomentwandler
EP2693077A2 (de) Drehschwingungstilger
EP2148113B1 (de) Torsionsschwingungsdämpferanordnung, insbesondere für eine hydrodynamische Kopplungsanordnung oder eine nasslaufende Kopplungsanordnung
DE102011017654B4 (de) Hydrodynamische Kopplungsanordnung, insbesondere hydrodynamischer Drehmomentwandler
DE102008042520B4 (de) Nasslaufende Kopplungsanordnung sowie Torsionsschwingungsdämpferbaugruppe
WO2015051976A1 (de) Dämpfervorrichtung für einen antriebsstrang eines kraftfahrzeugs
DE102008042740B4 (de) Drehmomentübertragungsbaugruppe für eine hydrodynamische Kopplungseinrichtung, insbesondere hydrodynamischer Drehmomentwandler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12713023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506808

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14114410

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12713023

Country of ref document: EP

Kind code of ref document: A1