WO2012043136A1 - 電極用バインダー組成物、電極用スラリー、電極、及び電気化学デバイス - Google Patents

電極用バインダー組成物、電極用スラリー、電極、及び電気化学デバイス Download PDF

Info

Publication number
WO2012043136A1
WO2012043136A1 PCT/JP2011/069995 JP2011069995W WO2012043136A1 WO 2012043136 A1 WO2012043136 A1 WO 2012043136A1 JP 2011069995 W JP2011069995 W JP 2011069995W WO 2012043136 A1 WO2012043136 A1 WO 2012043136A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
formula
polymer
binder composition
mass
Prior art date
Application number
PCT/JP2011/069995
Other languages
English (en)
French (fr)
Inventor
大介 助口
達朗 本多
武志 茂木
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2012509417A priority Critical patent/JP5057125B2/ja
Publication of WO2012043136A1 publication Critical patent/WO2012043136A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • binder not only improves the function of binding the electrode active materials together (hereinafter also referred to as “binding"), but also adheres the current collector to the electrode active material layer containing the electrode active material. It has the effect of improving the function (hereinafter also referred to as “adhesion”).
  • some aspects according to the present invention achieve the good binding property of the electrode active materials with each other by solving the above-mentioned problems, and the adhesion between the current collector and the electrode active material layer is high and the battery is
  • the present invention provides a binder composition for an electrode which can lower the internal resistance thereof.
  • some aspects of the present invention provide an electrochemical device having excellent rate characteristics and cycle characteristics.
  • the present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following aspects or application examples.
  • n C1 represents an integer of 0 to 2.
  • n C2 to n C5 each independently represent an integer of 0 to 2.
  • Formula (Cc- 1) and in the formula (Cc-2), “*” represents a bond to be bonded to R C1 in the formula (C-1), and in the formula (Cc-1) and the formula (Cc-2) The represented group may have a substituent.
  • the group represented by the general formula (Cc-1) can be a group represented by the following general formula (Cc-11).
  • the structural unit (a1) represented by General Formula (C-1) may be a structural unit represented by the following General Formula (Cc-11a) or the following General Formula (Cc-21a).
  • R represents a hydrogen atom, a methyl group or a fluoromethyl group.
  • the polymer (A) can further contain a structural unit (a4) derived from an acrylic acid ester compound or a methacrylic acid ester compound.
  • Application Example 9 One aspect of the electrode slurry according to the present invention is An electrode active material (C) and the binder composition for an electrode according to any one of Application Examples 1 to 8 are contained.
  • a current collector is characterized by including an electrode active material layer formed on at least one surface of the current collector using the electrode slurry of Application Example 9.
  • the adhesiveness of a collector and an electrode active material layer can be made high, and internal resistance of a battery can be made low.
  • an electrochemical device having excellent input / output characteristics and cycle characteristics can be configured.
  • the electrochemical device according to the present invention has an effect of being excellent in input / output characteristics and cycle characteristics.
  • FIG. 1 is a view schematically showing a pulse current applied in lithium ion secondary battery direct current internal resistance measurement in the example.
  • FIG. 2 is a figure which shows typically the graph created in order to obtain
  • Binder Composition for Electrode contains a polymer (A) containing the structural unit (a1) and a liquid medium (B).
  • the binder composition for electrodes which concerns on this Embodiment may contain other components, such as a thickener, an emulsifier, a polymerization initiator or its residue, surfactant, a neutralizing agent, etc. arbitrarily.
  • a thickener such as a polymer (A) containing the structural unit (a1) and a liquid medium (B).
  • the binder composition for electrodes which concerns on this Embodiment may contain other components, such as a thickener, an emulsifier, a polymerization initiator or its residue, surfactant, a neutralizing agent, etc. arbitrarily.
  • each component contained in the binder composition for electrodes which concerns on this Embodiment is demonstrated in detail.
  • the polymer (A) is a polymer containing the structural unit (a1).
  • the polymer (A) is derived from a structural unit (a2) derived from a conjugated diene compound (hereinafter, also simply referred to as “structural unit (a2)”) and an aromatic vinyl compound, in addition to the structural unit (a1) Structural unit (a3) (hereinafter, also simply described as “structural unit (a3)”), and structural unit (a4) derived from an acrylic acid ester compound or methacrylic acid ester compound (hereinafter simply referred to as “structural unit (a4) (Also described)), a structural unit (a5) derived from a vinyl cyanide compound (hereinafter, also simply described as a “structural unit (a5)”), a structural unit (a6) (derived from an unsaturated carboxylic acid) Hereinafter, it may be simply described as “structural unit (a6)”), and may contain one or more structural units selected from other structural units (a7).
  • the polymer (A) contains a structural unit (a1) represented by the following general formula (C-1) to have a cyclic carbonate structure that is advantageous for improving the electrolyte affinity in the polymer skeleton side chain become.
  • C-1 structural unit represented by the following general formula (C-1) to have a cyclic carbonate structure that is advantageous for improving the electrolyte affinity in the polymer skeleton side chain become.
  • the binder can easily absorb the electrolytic solution, and the lithium ion conduction performance can be improved, whereby the battery characteristics can be improved.
  • R represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • R C1 represents a single bond or a divalent linking group.
  • R Cc represents a monovalent organic group having a cyclic carbonate structure.
  • examples of RCc include groups represented by the following general formula (Cc-1) or the following general formula (Cc-2).
  • n C1 represents an integer of 0 to 2.
  • n C2 to n C5 each independently represent an integer of 0 to 2.
  • “*” represents a bond to be bonded to R C1 in the above general formula (C-1).
  • the groups represented by the above general formula (Cc-1) and the above general formula (Cc-2) may have a substituent.
  • Examples of the group represented by the above general formula (Cc-1) include groups represented by the following general formula (Cc-11). Further, as a group represented by the above general formula (Cc-2), a group represented by the following general formula (Cc-21) can be mentioned.
  • R represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • R represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • the polymer (A) may contain the structural unit (a1) singly or in combination of two or more.
  • the solvent of the electrolytic solution is a carbonate such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate as described later
  • the structure of the structural unit (a1) and these carbonates is Because of the similarity, the affinity between the two is further enhanced.
  • the polymer (A) can more easily absorb the electrolytic solution, and the lithium ion conduction performance is further improved, so that the battery characteristics can be effectively improved.
  • the content ratio of the structural unit (a1) is in the above range, the affinity to such carbonates is further improved, and the adhesion of the obtained electrode active material layer to the current collector is further improved, which is preferable. .
  • conjugated diene compound giving the structural unit (a2) 1,3-butadiene, isoprene, 2-chloro-1,3-butadiene and the like can be mentioned.
  • 1,3-butadiene is particularly preferred.
  • conjugated diene compounds can be used alone or in combination of two or more.
  • the content ratio of the structural unit (a2) in the polymer (A) is preferably 60% by mass or less in the total 100% by mass of all the structural units when used as a polymer constituting the binder for the negative electrode, The content is more preferably 55% by mass, and particularly preferably 25% by mass to 50% by mass. Moreover, when using as a polymer which comprises the binder for positive electrodes, it is preferable that it is 20 mass% or less in total 100 mass% of all the structural units, and it is more preferable that it is 10 mass% or less.
  • Preferred examples of the aromatic vinyl compound giving the structural unit (a3) include styrene, ⁇ -methylstyrene, p-methylstyrene, vinyltoluene, chlorstyrene, divinylbenzene and the like. Among these, styrene is preferred. These aromatic vinyl compounds can be used alone or in combination of two or more.
  • the content of the structural unit (a3) in the polymer (A) is preferably 60% by mass or less in the total 100% by mass of all the structural units, when used as a polymer constituting the binder for the negative electrode.
  • the content is more preferably 55% by mass, and particularly preferably 20 to 50% by mass.
  • When used as a polymer constituting the binder for the positive electrode it is preferably 20% by mass or less, and more preferably 5 to 15% by mass or less, based on 100% by mass of the total constituent units.
  • the content ratio of the structural unit (a3) is in the above range, the polymer (A) has an appropriate binding property to an electrode active material such as graphite used as an electrode active material, and the obtained electrode active The adhesion between the substance layer and the current collector is good.
  • the polymer (A) can contain a structural unit (a4) derived from a (meth) acrylic acid ester compound.
  • (meth) acrylic acid ⁇ means both “acrylic acid ⁇ ” and “methacrylic acid ⁇ ”.
  • the (meth) acrylic acid ester compound giving the structural unit (a4) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate and i- (meth) acrylate Propyl, n-butyl (meth) acrylate, i-butyl (meth) acrylate, n-amyl (meth) acrylate, i-amyl (meth) acrylate, n-hexyl (meth) acrylate, (meth) 2-hexyl acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, i-nonyl (meth) acrylate, n-decyl (meth) acrylate, hydroxymethyl (meth) acrylate, Examples thereof include 2-hydroxyethyl (meth) acrylate and ethylene di (meth)
  • methyl (meth) acrylate, n-butyl (meth) acrylate and i-butyl (meth) acrylate are preferable, and methyl (meth) acrylate is more preferable.
  • These (meth) acrylic acid ester compounds can be used singly or in combination of two or more.
  • the content of the structural unit (a4) in the polymer (A) is preferably 40% by mass or less, based on 100% by mass of all the structural units, when used as a polymer constituting the binder for the negative electrode.
  • the content is more preferably 30% by mass, and particularly preferably 10% by mass to 20% by mass.
  • it is preferable that it is 99.5 mass% or less in total 100 mass% of all the structural units, and it is more preferable that it is 50-99 mass%, 60 It is particularly preferable that the content is up to 98% by mass.
  • the content ratio of the structural unit (a4) is in the above range, the affinity between the polymer (A) and the electrolytic solution becomes appropriate, and the internal resistance increases due to the binder becoming an electrical resistance component in the battery. It can be suppressed.
  • the electrolyte solution is absorbed and swollen, the function of binding the electrode active materials to each other is reduced to lower the binding property such that the electrode active material falls off the electrode active material layer, or the electrode activity It is also possible to prevent the decrease in adhesion that the material layer peels off from the current collector.
  • the polymer (A) can contain a constituent unit (a5) derived from a vinyl cyanide compound.
  • vinyl cyanide compound giving the structural unit (a5) examples include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, vinylidene cyanide and the like. Among these, acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is more preferable. These vinyl cyanide compounds can be used singly or in combination of two or more.
  • the content of the structural unit (a5) in the polymer (A) is preferably 30% by mass or less in the total 100% by mass of all the structural units when used as a polymer constituting the binder for the negative electrode, The content is more preferably 20% by mass, and particularly preferably 2% by mass to 10% by mass. When used as a polymer constituting the binder for the positive electrode, it is preferably 20% by mass or less, and more preferably 2 to 15% by mass in 100% by mass in total of all the constituent units.
  • the content rate of a structural unit (a5) is the said range, a raise of the internal resistance by a binder becoming an electrical resistance component in a battery can be suppressed.
  • the function of binding the electrode active materials to each other is reduced to lower the binding property such that the electrode active material falls off the electrode active material layer, or the electrode activity It is also possible to prevent the decrease in adhesion that the material layer peels off from the current collector.
  • the polymer (A) can contain a structural unit (a6) derived from an unsaturated carboxylic acid.
  • the content of the structural unit (a6) in the polymer (A) is preferably 6% by mass or less in the total 100% by mass of all the structural units when used as a polymer constituting the binder for the negative electrode. More preferably, it is 3 to 5% by mass. When used as a polymer constituting the binder for the positive electrode, it is preferably 6% by mass or less, and more preferably 0.3 to 5% by mass, based on 100% by mass of all the constituent units.
  • the content rate of a structural unit (a6) is the said range, it is excellent in the dispersion stability of a slurry, it is hard to produce an aggregate, and can suppress the raise of the slurry viscosity over time.
  • the polymer (A) can contain other structural units (a7) in addition to the above structural units.
  • the polymer (A) can also acquire electrochemical stability by containing the structural unit containing a fluorine as another structural unit (a7).
  • the content ratio of the structural unit (a2) in the polymer (A-1) is preferably 20 to 60% by mass, and more preferably 25 to 60% by mass in 100% by mass of all the structural units. .
  • the content ratio of the structural unit (a3) in the polymer (A-1) is preferably 10 to 60% by mass, and more preferably 20 to 55% by mass in 100% by mass of all the structural units. .
  • the polymer (A) has an appropriate binding property to the graphite etc. used as an electrode active material, and the obtained electrode active material layer and The adhesion to the current collector is good.
  • the content of the structural unit (a4) in the polymer (A-1) is preferably 40% by mass or less, and more preferably 5 to 30% by mass, based on 100% by mass of all the structural units. Particularly preferred is 10 to 20% by mass.
  • the content ratio of the structural unit (a4) is in the above range, the affinity between the polymer (A) and the electrolytic solution becomes appropriate, and the internal resistance increases due to the binder becoming an electrical resistance component in the battery. It can be suppressed.
  • the content of the structural unit (a5) in the polymer (A-1) is preferably 35% by mass or less, and more preferably 1 to 25% by mass, based on 100% by mass of all structural units. Particularly preferred is 2 to 20% by mass.
  • the content rate of a structural unit (a5) is the said range, a raise of the internal resistance by a binder becoming an electrical resistance component in a battery can be suppressed.
  • the electrolyte solution is absorbed and swollen, the function of binding the electrode active materials to each other is reduced to lower the binding property such that the electrode active material falls off the electrode active material layer, or the electrode activity It is also possible to prevent the decrease in adhesion that the material layer peels off from the current collector.
  • the content of the structural unit (a6) in the polymer (A-1) is preferably 6% by mass or less, and more preferably 0.3 to 5% by mass, based on 100% by mass of all the structural units. preferable.
  • the content rate of a structural unit (a6) is the said range, it is excellent in the dispersion stability of a slurry, it is hard to produce an aggregate, and can suppress the raise of the slurry viscosity over time.
  • Acrylic-based specified copolymer (A-2) As a specific example of the polymer (A), an acrylic specific copolymer (A-2) (hereinafter referred to as "polymer (A-2)") containing a structural unit (a1) and a structural unit (a4) Also described).
  • the polymer (A-2) has high oxidation resistance compared to the above-mentioned polymer (A-1), and can be suitably used particularly as a polymer constituting a binder for a positive electrode. .
  • the content ratio of the structural unit (a4) in the polymer (A-2) is preferably 50 to 99.5% by mass, and more preferably 60 to 98% by mass in 100% by mass of all the structural units. More preferable.
  • the content of the structural unit (a4) is 50 to 99.5% by mass, good binding can be imparted to the binder, and the affinity between the polymer (A-2) and the electrolytic solution is increased. It becomes appropriate and can suppress an increase in internal resistance due to the binder becoming an electrical resistance component in the battery.
  • the content ratio of the structural unit (a6) in the polymer (A-2) is preferably 0.3 to 6% by mass, and is 0.3 to 5% by mass, based on 100% by mass of all the structural units. Is more preferred.
  • the content ratio of the structural unit (a6) is in the above range, the electrode slurry is excellent in dispersion stability, aggregates are less likely to be formed, and increase in slurry viscosity with time can be suppressed.
  • the polymer (A) can be produced by polymerizing a mixture of monomers giving the above-described constitutional unit.
  • the polymerization method of the monomer mixture is not particularly limited, but is preferably prepared by emulsion polymerization in an aqueous medium in the presence of an emulsifier, a polymerization initiator, a molecular weight modifier and the like.
  • anionic surfactant examples include sulfates of higher alcohols, alkylbenzene sulfonates, aliphatic sulfonates, sulfates of polyethylene glycol alkyl ethers, and the like.
  • the alkyl ester of polyethyleneglycol the alkyl ether of polyethyleneglycol, the alkylphenyl ether of polyethyleneglycol etc. can be mentioned, for example.
  • amphoteric surfactant for example, mention may be made of those in which the anion moiety is a carboxylate, a sulfate, a sulfonate or a phosphate, and the cation is an amine, a quaternary ammonium salt, etc. be able to.
  • amphoteric surfactants include betaines such as lauryl betaine and stearyl betaine; interfaces of amino acid types such as lauryl- ⁇ -alanine, lauryl di (aminoethyl) glycine and octyl di (aminoethyl) glycine.
  • An activator etc. can be mentioned.
  • Such an emulsifier can be used individually by 1 type or in combination of 2 or more types of said various surfactant.
  • the proportion of such an emulsifier used is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass in total of the monomers to be used.
  • polymerization initiator examples include, for example, water-soluble polymerization initiators such as sodium persulfate, potassium persulfate and ammonium persulfate; benzoyl peroxide, lauryl peroxide, 2,2'-azobisisobutyronitrile etc. Oil-soluble polymerization initiators; redox type polymerization initiators in combination with a reducing agent such as sodium bisulfite etc. may be mentioned. These polymerization initiators can be used alone or in combination of two or more.
  • the proportion of the polymerization initiator used is preferably 0.3 to 3 parts by mass with respect to 100 parts by mass in total of the monomers to be used.
  • molecular weight modifiers include, for example, chloroform, halogenated hydrocarbons such as carbon tetrachloride, n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dimethyl mercaptan, thioglycolic acid and the like.
  • halogenated hydrocarbons such as carbon tetrachloride, n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dimethyl mercaptan, thioglycolic acid and the like.
  • mercaptans such as dimethyl xanthogen disulfide and diisopropyl xanthogen disulphide
  • those used for ordinary emulsion polymerization such as terpinolene and ⁇ -methylstyrene dimer.
  • the use ratio of the molecular weight modifier is usually 5 parts by mass or less based on 100 parts by mass of the total of the monomers used.
  • the emulsion polymerization is preferably carried out in a suitable aqueous medium, in particular in water.
  • the total content of monomers in this aqueous medium can be 10 to 50% by mass, and preferably 20 to 40% by mass.
  • the conditions for the emulsion polymerization are, for example, preferably a polymerization temperature of 45 to 85 ° C. and a polymerization time of 2 to 24 hours, and more preferably a polymerization temperature of 50 to 80 ° C. and a polymerization time of 3 to 20 hours.
  • a particularly preferred method of emulsion polymerization is as follows. That is, the emulsion polymerization is started by adding the emulsion of the monomer mixture (hereinafter referred to as "monomer emulsion") to the aqueous medium containing the polymerization initiator, and the addition of the monomer emulsion is completed as necessary. It is a method of continuing polymerization further later.
  • the addition of the monomer emulsion to the aqueous medium containing the polymerization initiator is preferably performed slowly so that the polymerization initiator is unevenly distributed in the reaction liquid and a nonuniform polymerization reaction does not occur.
  • the addition time is preferably 0.5 to 6 hours, and more preferably 1 to 4 hours.
  • the temperature for continuous polymerization in this case is preferably 40 to 85 ° C., and more preferably 60 to 80 ° C.
  • the time for continuous polymerization is preferably 0.5 to 6 hours, and more preferably 1 to 4 hours.
  • the total polymerization time from the start of addition of the monomer emulsion is preferably 1 to 12 hours, and more preferably 3 to 8 hours.
  • the method of emulsion polymerization can also be prepared by seed polymerization using the seed particle which consists of a fluorine-type polymer.
  • the polymer (A) can be provided with electrochemical stability.
  • polymer constituting the seed particles include polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropene, and copolymers of these. Among these, vinylidene fluoride-tetrafluoroethylene-hexafluoropropene copolymer is preferable.
  • the number average particle diameter of the seed particles is preferably 30 to 300 nm, and more preferably 50 to 200 nm. When the number average particle diameter is 30 to 300 nm, high adhesion can be imparted to the electrode active material layer without deteriorating the slurry properties.
  • the polymer (A) contained in the binder composition for an electrode according to the present embodiment preferably has a glass transition temperature (Tg) of ⁇ 45 to 25 ° C.
  • the glass transition temperature (Tg) of the polymer (A) can be measured as follows. About 4 g of the latex in which the polymer (A) is dispersed is poured into a 5 cm ⁇ 4 cm Teflon® petri dish and dried in a thermostat bath at 70 ° C. for 24 hours to obtain a film having a film thickness of about 100 ⁇ m. About 10 mg of a sample is cut out from the obtained film, which is taken in an aluminum container and sealed.
  • the polymer (A) may be dissolved in the liquid medium (B) or dispersed in the form of polymer particles in the binder composition for an electrode according to the present embodiment, but It is preferable to be in the state of being dispersed in the liquid medium (B) in the state.
  • the polymer (A) when the electrode active material layer is produced, the polymer (A) which is an insulator has a wide surface of the electrode active material It can suppress covering an area. As a result, the inhibition of the movement of lithium ions between the electrolytic solution and the electrode active material can be significantly reduced, and the electrode resistance can be reduced to improve the storage efficiency.
  • the number average particle diameter of the polymer particles is preferably 50 to 600 nm, and more preferably 80 to 500 nm. When the number average particle diameter is in the above range, high adhesion can be imparted without impairing the slurry properties.
  • the toluene gel content of the polymer particles is preferably 70 to 100% by mass, and more preferably 75 to 100% by mass.
  • the polymer is difficult to dissolve in the electrolytic solution, and an adverse effect on battery characteristics due to an increase in overvoltage can be suppressed.
  • the binder composition for an electrode according to the present embodiment is in the form of a slurry or a latex in which the above-mentioned polymer (A) is dispersed in an aqueous medium, or the polymer (A) is dissolved in a non-aqueous medium It is preferably in the form of a solution.
  • the polymer (A) is preferably in the form of particles in the liquid medium (B).
  • the number average particle diameter of the polymer (A) in the liquid medium (B) is preferably 50 to 190 nm, and more preferably 70 to 185 nm.
  • the number average particle diameter of the polymer (A) is in the above range, migration of polymer particles does not occur in the drying step when forming the electrode active material layer, and thus the composition of the obtained electrode active material layer is It will be uniform.
  • a sufficient number of effective adhesion points can be obtained between the electrode active material, the polymer particles, and the current collector, high bondability can be obtained, which is preferable.
  • the number average particle diameter of the polymer (A) is a hydrodynamic diameter measured by a dynamic light scattering method using water as a dispersion medium, using a laser particle size analysis system "LPA-3000s / 3100" manufactured by Otsuka Electronics Co., Ltd. It can be calculated as a number average value from
  • the liquid medium (B) is preferably used in an amount such that the content ratio of the polymer (A) in the binder composition for an electrode according to the present embodiment is 15 to 60% by mass, and is 20 to 50% by mass. More preferably, it is an amount.
  • Thickener A binder may be added to the binder composition for an electrode according to the present embodiment from the viewpoint of further improving the coating properties, the charge / discharge characteristics of the electrochemical device, and the like.
  • Such thickeners include, for example, cellulose derivatives such as carboxymethyl cellulose, methyl cellulose and hydroxypropyl cellulose; polyacrylic acid salts such as sodium polyacrylate, polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, (meth) acrylic acid And vinyl alcohol copolymer, maleic acid-vinyl alcohol copolymer, modified polyvinyl alcohol, polyethylene glycol, ethylene-vinyl alcohol copolymer, polyvinyl acetate partial saponified product and the like.
  • polyacrylic acid salts such as sodium polyacrylate, polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, (meth) acrylic acid And vinyl alcohol copolymer, maleic acid-vinyl alcohol copolymer, modified polyvinyl alcohol, polyethylene glycol, ethylene-vinyl alcohol copolymer, polyvinyl acetate partial saponified product and the like.
  • the content ratio of the thickener in the binder composition for an electrode according to the present embodiment is based on the total solid content of the binder composition for an electrode (the total mass of components other than the liquid medium (B) in the composition)
  • the content is preferably 20% by mass or less and more preferably 0.1 to 10% by mass.
  • the binder composition for an electrode according to the present embodiment is preferably in the form of a latex in which the polymer (A) is in the form of particles and dispersed in an aqueous medium.
  • the binder composition for an electrode according to the present embodiment the polymerization reaction mixture after synthesizing (polymerizing) the above-described polymer (A) in an aqueous medium is adjusted in liquid properties as necessary. It is particularly preferable to use this as it is.
  • the binder composition for an electrode according to the present embodiment contains, in addition to the polymer particles and the aqueous medium, other components such as an emulsifier, a polymerization initiator or its residue, a surfactant, and a neutralizing agent. It is also good. As a content rate of these other components, it is preferable that it is 3 mass% or less as a ratio with respect to solid content of a composition as the total mass of another component, and it is more preferable that it is 2 mass% or less.
  • the solid content concentration of the binder composition for electrodes (the ratio of the total mass of components other than the liquid medium (B) in the composition to the total mass of the composition) is preferably 15 to 60 mass%. And 25 to 50% by mass are more preferable.
  • the liquid property of the binder composition for an electrode is preferably near neutral, more preferably pH 6.0 to 8.5, and particularly preferably pH 7.0 to 8.0.
  • a known water-soluble acid or base can be used to adjust the liquid properties of the composition.
  • the acid include hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid; and examples of the base include sodium hydroxide, potassium hydroxide, lithium hydroxide, aqueous ammonia and the like.
  • the binder composition for electrodes concerning this Embodiment contains the polymer (A) containing a structural unit (a1). Therefore, as is apparent from the examples described later, it is possible to obtain an electrochemical device which can obtain high adhesion and is excellent in both the discharge rate characteristics in a low temperature environment and the electrochemical stability in a high temperature environment. it can.
  • Electrode Slurry contains an electrode active material (C) and the above-described binder composition for an electrode.
  • the slurry for an electrode according to the present embodiment achieves good binding between the electrode active materials by containing the above-described binder composition for an electrode, and adhesion between the electrode active material layer and the current collector.
  • an electrode active material layer with high conductivity can be formed.
  • Electrode active material (C) There is no restriction
  • an electrode active material for example, graphite, non-graphitizable carbon, hard carbon, coke, pitch, etc.
  • a carbon material obtained by firing; a polyacene organic semiconductor (PAS) or the like can be used.
  • examples of the electrode active material include lithium iron phosphate, Lithium cobaltate, lithium manganate, lithium nickelate, ternary nickel cobalt manganate lithium and the like can be suitably used.
  • the content of the electrode active material (C) in the electrode slurry according to the present embodiment is preferably such that the solid content concentration of the electrode slurry is 20 to 65% by mass, and is preferably 20 to 60% by mass. It is more preferred that
  • the electrode slurry according to the present embodiment can further contain a thickener, a dispersant, a surfactant, an antifoaming agent, and the like, as necessary.
  • dispersant examples include sodium hexametaphosphate, sodium tripolyphosphate, sodium polyacrylate and the like.
  • nonionic or anionic surfactant etc. as a stabilizer of latex are mentioned, for example.
  • the content ratio of these components is preferably 10% by mass or less with respect to the total solid content (total mass of components other than liquid medium in the composition) of the slurry for an electrode according to the present embodiment, 0 More preferably, it is 5 to 5% by mass.
  • the slurry for an electrode according to the present embodiment is prepared by mixing the binder composition for an electrode described above, the electrode active material (C) as described above, and a component used as needed. Ru.
  • well-known mixing apparatuses such as a stirrer, a degassing machine, a bead mill, a high pressure homogenizer, etc., can be utilized, for example.
  • the slurry for an electrode according to the present embodiment preferably contains 0.1 to 10 parts by mass in terms of solid content of the binder composition for an electrode described above with respect to 100 parts by mass of the electrode active material (C). And 0.3 to 4 parts by mass is more preferable.
  • the content ratio of the binder composition for an electrode is in the above range, the polymer (A) is difficult to dissolve in the electrolyte used in the electrochemical device, and adverse effects on electrochemical device characteristics due to an increase in overvoltage can be suppressed. .
  • Electrode The electrode according to the present embodiment includes a current collector, and an electrode active material layer formed through the step of applying the above-mentioned slurry for the electrode on at least one surface of the current collector and drying it. ing. It is preferable to further press-process after drying a coating film.
  • Current collector examples include metal foil, etched metal foil, expanded metal, and the like. Specific examples of the material constituting the current collector include metal materials such as aluminum, copper, nickel, tantalum, stainless steel, titanium and the like, which may be appropriately selected according to the type of the desired electrochemical device. It can be used.
  • the aluminum of the above is preferably 5 to 30 ⁇ m, and more preferably 8 to 25 ⁇ m.
  • the thickness of the current collector is preferably 5 to 30 ⁇ m, and more preferably 8 to 25 ⁇ m.
  • the thickness of the current collector is preferably 5 to 100 ⁇ m, more preferably 10 to 70 ⁇ m, and particularly preferably 15 to 30 ⁇ m.
  • Electrode Active Material Layer can be produced by applying the above-mentioned slurry for an electrode on any one surface of the current collector as described above and then drying it.
  • a doctor blade method for example, a reverse roll method, a comma bar method, a gravure method, an air knife method or the like can be appropriately used.
  • Drying processing of the slurry coating film for an electrode is preferably performed at a processing time of 20 to 250 ° C., more preferably 50 to 150 ° C., preferably 1 to 120 minutes, more preferably 5 to 60 minutes.
  • the coating film After drying the coating film, it may be pressed if necessary.
  • a means for pressing for example, a roll press, a high pressure super press, a soft calender, a 1-ton press, etc. are used.
  • the conditions for press processing are appropriately set according to the type of processing machine to be used and the desired thickness and density of the electrode active material layer.
  • the electrode active material layer thus formed is preferably 40 to 100 ⁇ m in thickness and 1.3 to 2.0 g / cm 3 in density.
  • the thickness is preferably 40 to 100 ⁇ m and the density is preferably 2.0 to 5.0 g / cm 3 .
  • the thickness is preferably 50 to 200 ⁇ m and the density is preferably 0.9 to 1.8 g / cm 3 .
  • Electrode produced as described above is provided with an electrode active material layer produced using the above-mentioned slurry for an electrode containing the binder composition for an electrode, and therefore the electrode active in the electrode active material layer Good bonding between substances is achieved, and adhesion between the electrode active material layer and the current collector is high.
  • an electrochemical device excellent in both the discharge rate characteristics in a low temperature environment and the electrochemical stability in a high temperature environment can be obtained.
  • the electrode according to the present embodiment can be suitably used, for example, as an electrode of an electrochemical device such as a lithium ion secondary battery, an electric double layer capacitor, and a lithium ion capacitor.
  • an electrochemical device such as a lithium ion secondary battery, an electric double layer capacitor, and a lithium ion capacitor.
  • the electrode produced using the above-mentioned slurry for electrode exhibits superior performance to the prior art as a positive electrode or a negative electrode, but from Examples to be described later
  • the polymer (A-1) is preferable in the binder composition for the negative electrode
  • the polymer (A-2) is preferable in that a higher effect can be obtained when used as the binder composition for the positive electrode.
  • Electrochemical Device includes the above-described electrode, and includes an electrolytic solution and a separator.
  • an electrochemical device a lithium ion secondary battery, an electric double layer capacitor, a lithium ion capacitor etc. can be mentioned.
  • the electrochemical device has a structure in which the aforementioned electrode faces the counter electrode through the electrolytic solution, and is preferably separated by the presence of the separator.
  • the aforementioned electrode faces the counter electrode through the electrolytic solution, and is preferably separated by the presence of the separator.
  • two electrodes two electrodes (two electrodes of positive electrode and negative electrode, or two electrodes of capacitor) are stacked via a separator, and are wound or folded according to the battery shape to obtain a battery container.
  • the electrolyte solution is injected into the battery container for sealing.
  • the shape of the battery may be any suitable shape, such as coin, button, sheet, cylindrical, square, and flat.
  • the said electrolyte solution is suitably selected and used according to the kind of target electrochemical device.
  • the electrolytic solution a solution in which an electrolyte appropriately selected according to the type of electrochemical device is dissolved in a solvent is used.
  • a lithium compound is used as an electrolyte.
  • the lithium compound for example, LiClO 4, LiBF 4, LiI , LiPF 6, LiCF 3 SO 3, LiAsF 6, LiSbF 6, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4, LiCH 3 SO 3, LiC 4 F 9 SO 3, Li (CF 3 SO 2) can be cited 2 N or the like.
  • the electrolyte concentration in this case is preferably 0.5 to 3.0 mol / L, more preferably 0.7 to 2.0 mol / L.
  • tetraethylammonium tetrafluoroborate In the case of producing an electric double layer capacitor, tetraethylammonium tetrafluoroborate, triethylmethylammonium tetrafluoroborate, tetraethylammonium hexafluorophosphate or the like is used as an electrolyte.
  • the electrolyte concentration in this case is preferably 0.5 to 3.0 mol / L, more preferably 0.7 to 2.0 mol / L.
  • the type and concentration of electrolyte in the case of producing a lithium ion capacitor are the same as in the case of a lithium ion secondary battery.
  • a solvent as shown below can be used also in any of the above-mentioned electrochemical devices.
  • carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate; lactones such as ⁇ -butyrolactone; trimethoxysilane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxy Ethers such as ethane, tetrahydrofuran, 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; oxolanes such as 1,3-dioxolane, 4-methyl-1,3-dioxolane; nitrogen-containing compounds such as acetonitrile, nitromethane; Esters such as methyl acetate, methyl acetate, butyl acetate, methyl propionate, ethyl propionat
  • Such an electrochemical device achieves good bonding between the electrode active materials in the electrode active material layer, high adhesion between the electrode active material layer and the current collector, and a discharge rate under a low temperature environment. It is excellent in both the characteristics and the electrochemical stability under high temperature environment. Therefore, such an electrochemical device is suitable as a secondary battery or a capacitor mounted on an automobile such as an electric car, a hybrid car, a truck, and the like, and a secondary used for an AV apparatus, an OA apparatus, a communication apparatus, etc. It is also suitable as a battery or a capacitor.
  • the above electrolytic solution is prepared by using lithium hexafluorophosphate in a solvent consisting of ethylene carbonate, diethyl carbonate and ethyl methyl carbonate having a volume ratio of 1: 1: 1, and a concentration of lithium hexafluorophosphate of 1 mol / It is a solution obtained by dissolving it to L.
  • This tape is pulled upward at a speed of 50 mm / min while maintaining the angle to the aluminum plate at 90 °, and the force (peel force) for pulling the above tape when peeled off at a peel angle of 90 ° (mN / 2 cm) was measured six times (for six different test pieces), and the average value was calculated as the peel strength (mN / 2 cm) of the electrode active material layer.
  • “mN / 2 cm” is a unit which shows the peeling strength per width 2 cm. As the peel strength value is larger, the adhesion strength between the current collector and the electrode active material layer is higher, and it can be evaluated that the electrode active material layer is less likely to peel from the current collector. When this value is 200 mN / 2 cm or more, it can be evaluated as good. In Tables 1 to 3, this evaluation is shown as "Peel strength [mN / 2 cm]".
  • the electrode slurry was prepared by stirring and mixing at 1,800 rpm for 5 minutes and further at 1,800 rpm under vacuum for 1.5 minutes.
  • the prepared slurry for an electrode was uniformly coated on the surface of a current collector made of a copper foil by a doctor blade method so that the film thickness after drying was 80 ⁇ m, and dried at 120 ° C. for 20 minutes.
  • the lithium ion secondary battery negative electrode was obtained by pressing using a roll press so that the density of an electrode active material layer might be 1.8 g / cm ⁇ 3 >.
  • PVDF-based positive electrode 4 parts of PVDF (polyvinylidene fluoride) (solid content conversion) in a twin-screw type planetary mixer (trade name "TK Hi-Bismix 2P-03", manufactured by Primix, Inc.), positive electrode active material 100 parts of lithium iron phosphate (in terms of solid content), 5 parts of acetylene black (in terms of solid content) as a conductive agent, and 25 parts of NMP (N-methylpyrrolidone) were added, and stirring was carried out at 60 rpm for 1 hour.
  • PVDF polyvinylidene fluoride
  • TK Hi-Bismix 2P-03 twin-screw type planetary mixer
  • NMP N-methylpyrrolidone
  • the electrode slurry was prepared by stirring and mixing at 1,800 rpm for 1.5 minutes.
  • the prepared slurry for an electrode was uniformly applied to the surface of a current collector made of aluminum foil by a doctor blade method so that the film thickness after drying was 90 ⁇ m, and dried at 120 ° C. for 20 minutes. Then, it pressed using the roll press machine so that the density of an electrode active material layer might be 3.8 g / cm ⁇ 3 >, and obtained the lithium ion secondary battery positive electrode.
  • Preparation of counter electrode PVDF-based positive electrode
  • a lithium ion secondary battery was produced by screwing and sealing the exterior body of the above.
  • Lithium-ion secondary battery rate characteristics (1.0C / 0.2C)
  • the lithium ion secondary battery manufactured in the above section “4.1.4.3. Preparation of lithium ion secondary battery” is charged by constant current (0.2 C) -constant voltage (4.2 V) method
  • the discharge capacity (C 0.2 ) was measured after repeating the cycle of discharging by the current (0.2 C) method three times.
  • charging was performed by a constant current (0.2 C) -constant voltage (4.2 V) method, and a capacity (C 1.0 ) when discharged by a constant current ( 1.0 C) method was measured.
  • the lithium ion secondary battery rate characteristics (1.0 C / 0.2 C) (%) were calculated by the following equation (2).
  • Rate characteristic (%) (C 1.0 / C 0.2 ) ⁇ 100 (2)
  • the characteristic change of the electrode is smaller as the value of the rate characteristic is larger. If this value is 80% or more, it can be judged as good.
  • "1 C” shows the thing of the electric current value which discharges the cell which has a fixed electrical capacity by constant current, and discharge ends in 1 hour. For example, “0.1 C” is a current value at which discharge ends over 10 hours, and “10 C” is a current value at discharge completion of over 0.1 hours.
  • DC-IR direct current internal resistance value
  • DOD indicates the ratio of the discharge capacity to the charge capacity. For example, “adjusting to 50% depth of discharge (DOD)” indicates that the entire capacity is set to 100%, and that only the capacity of 50% is charged.
  • the binder composition for electrodes prepared in each Example were added, and it stirred for further 1 hour, and obtained the paste.
  • a stirring and defoaming machine (trade name "Awatori Neritaro", manufactured by Shinky Co., Ltd.), 200 rpm for 2 minutes, then 1,800 rpm for 5 minutes
  • the slurry for electrodes was prepared by stirring and mixing for 1.5 minutes at 1,800 rpm under vacuum conditions.
  • the prepared slurry for an electrode was uniformly applied to the surface of a current collector made of aluminum foil by a doctor blade method so that the film thickness after drying was 90 ⁇ m, and dried at 120 ° C. for 20 minutes.
  • the lithium ion secondary battery positive electrode was obtained by pressing using a roll press so that the density of the electrode active material layer would be 2.0 g / cm 3 .
  • the electrode slurry was prepared by stirring and mixing at 1,800 rpm for 1.5 minutes.
  • the prepared slurry for an electrode was uniformly coated on the surface of a current collector made of a copper foil by a doctor blade method so that the film thickness after drying was 150 ⁇ m, and dried at 120 ° C. for 20 minutes.
  • the lithium ion secondary battery negative electrode was obtained by pressing using a roll press so that the density of an electrode active material layer might be 1.8 g / cm ⁇ 3 >.
  • Lithium Ion Secondary Battery A lithium ion secondary battery was produced in the same manner as the production of a lithium ion secondary battery in the evaluation of the binder for lithium ion secondary battery negative electrode described above.
  • an electric double layer capacitor electrode punched into a disk shape having a diameter of 15.95 mm was placed, and an exterior body of the two-pole coin cell was tightened with a screw to seal an electric double layer capacitor.
  • the used electrolyte solution used the solution which used propylene carbonate as a solvent and melt
  • DC-IR Electric double layer direct current internal resistance
  • DC-IR direct current internal resistance value
  • DOD indicates the ratio of the discharge capacity to the charge capacity. For example, “adjusting to depth of discharge (DOD) 50%” indicates that the entire capacity is 100%, and that only the capacity of 50% is charged.
  • Example 1 In a temperature-controllable autoclave equipped with a stirrer, 200 parts of water, 0.6 parts of sodium dodecylbenzene sulfonate, 1.0 parts of potassium persulfate, 0.5 parts of sodium bisulfite, and those shown in Table 1 below The respective monomers were charged collectively and allowed to polymerize at 80 ° C. for 6 hours. After completion of the polymerization reaction, the pH of the latex was adjusted to 7.2. After 1 part of sodium polyacrylate as a dispersant was added, the residual monomer was treated by steam distillation and concentrated to a solid content concentration of 48% under reduced pressure to obtain a binder composition for an electrode (number average) Particle size 120 nm).
  • the swelling degree of the obtained binder composition for electrodes was evaluated.
  • the lithium ion secondary battery negative electrode was produced using the obtained binder composition for electrodes, and it evaluated about the peeling strength.
  • a lithium ion secondary battery was produced using the lithium ion secondary battery negative electrode, and the rate characteristics (1.0 C / 0.2 C), cycle characteristics and direct current internal resistance measurement were evaluated. The evaluation results are shown in Table 1 below.
  • the monomers represented as M-1 and M-2 in Table 1 are those represented by the following formulas.
  • Example 8 150 parts of water was charged into a 7-L separable flask, and the inside was sufficiently purged with nitrogen. Separately, in another container, 60 parts of water, 2 parts of ether sulfate type emulsifier (trade name "ADEKAREASOAP SR 1025", manufactured by ADEKA Co., Ltd.) as an emulsifier (solid content conversion), and each monomer shown in Table 2 below The mixture was charged and sufficiently stirred to prepare a monomer emulsion. The temperature of the interior of the nitrogen-replaced separable flask was raised to 60 ° C., 0.5 part of sodium persulfate was added as a polymerization initiator, and the temperature was further raised to 75 ° C.
  • ether sulfate type emulsifier trade name "ADEKAREASOAP SR 1025”, manufactured by ADEKA Co., Ltd.
  • Example 9 Comparative Example 3 Binder compositions for electrodes were obtained in the same manner as in Example 8 except that the respective monomers and the mixing ratios shown in Table 2 were used. However, about Example 9, 10 parts (solid content conversion) of fluorine polymer (seed particle) latex shown below is previously charged in the separable flask before adding a monomer emulsion liquid with 150 parts of water, A binder composition for an electrode was obtained in the same manner as in Example 8 except that the respective monomers and the blending ratio shown in Table 2 were used. Various evaluations were performed on the binder compositions for electrodes obtained in Example 9 and Comparative Example 3 described above. The evaluation results are shown in Table 2 above.
  • the fluoropolymer (seed particle) latex was prepared as follows. After thoroughly replacing the inside of the autoclave with a magnetic stirrer with a volume of about 6 L with nitrogen, 2.5 L of deoxygenated pure water and 25 g of ammonium perfluorodecanoate as an emulsifier are charged, and 60 ° C. while stirring at 350 rpm The temperature rose to the end. Then, a mixed gas consisting of 44.2% of vinylidene fluoride (VDF) and 55.8% of propylene hexafluoride (HFP) was injected until the internal pressure reached 196 N / cm 2 .
  • VDF vinylidene fluoride
  • HFP propylene hexafluoride
  • polymerization initiator solution a fluorocarbon 113 solution containing 20% of diisopropyl peroxydicarbonate as a polymerization initiator is injected using nitrogen gas to initiate the polymerization reaction.
  • a mixed gas consisting of VDF 60.2% and HFP 39.8% was successively injected to maintain the internal pressure at 196 N / cm 2 .
  • the polymerization initiator solution was injected using nitrogen gas for 3 hours after initiation of the polymerization reaction, and the reaction was continued for 3 hours. The reaction solution was cooled and stirring was stopped, unreacted monomer was released to stop the reaction, and a fluoropolymer (seed particle) latex was obtained.
  • Example 10 Comparative Examples 4 to 5 Binder compositions for electrodes were obtained in the same manner as in Example 1 except that the respective monomers and blending ratios shown in Table 3 below were used.
  • the electric double layer capacitor electrode was produced using the obtained binder composition for each electrode, and various evaluation was performed. The evaluation results are shown in Table 3 below.
  • Example 11 comparative example 6 Binder compositions for electrodes were obtained in the same manner as in Example 9 except that the respective monomers and the mixing ratios shown in Table 3 were used. The electric double layer capacitor electrode was produced using the obtained binder composition for each electrode, and various evaluation was performed. The evaluation results are shown in Table 3 below.
  • the binder composition for an electrode according to the present invention can constitute an electrochemical device having small internal resistance and excellent rate characteristics and cycle characteristics.
  • the binder composition for an electrode, the slurry for an electrode, and the electrochemical device according to the present invention are suitable as a secondary battery or a capacitor mounted on an automobile such as an electric car, a hybrid car, a truck and the like. It is also suitable as a secondary battery or capacitor used for AV equipment, OA equipment, communication equipment and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 本発明に係る電極用バインダー組成物は、下記一般式(C-1)で表される構成単位(a1)を含有する重合体(A)と、液状媒体(B)と、を含有することを特徴とする。(式(C-1)中、Rは水素原子、メチル基又はトリフルオロメチル基を示す。RC1は単結合又は2価の連結基を示す。RCcは環状カーボネート構造を有する1価の有機基を示す。)

Description

電極用バインダー組成物、電極用スラリー、電極、及び電気化学デバイス
 本発明は、電極用バインダー組成物、前記電極用バインダー組成物と電極活物質とを含む電極用スラリー、前記電極用スラリーを用いて形成される電極、及び前記電極を備える電気化学デバイスに関する。
 近年、電子機器の小型・軽量化には目覚ましいものがあり、これに伴って電源となる電池に対しても小型・軽量化の要求が非常に強くなっている。このような要求を満足させるために種々の二次電池が開発されており、例えばニッケル水素二次電池、リチウムイオン二次電池等が実用化されている。
 これらの二次電池の構成部材となる電極を製造する方法として、例えば特開平11-7948号公報や特開2001-210318号公報には、電極活物質、増粘剤、バインダーとしてのスチレンブタジエン共重合体ラテックス、及び分散媒を混練して得たペーストを集電体表面上に塗布した後、それを乾燥させる方法等が開示されている。
 前述したバインダーには、電極活物質同士を結着させる働き(以下、「結着性」ともいう)を改善するだけではなく、該電極活物質を含む電極活物質層と集電体とを密着させる働き(以下、「密着性」ともいう)を改善する効果がある。
 しかしながら、電極活物質同士の十分な結着性や、集電体と電極活物質層との十分な密着性を得るために従来のバインダーを使用した場合、従来のバインダーは電池において抵抗成分となるため、バインダーにより内部抵抗が高くなって電池特性が低下するという問題があった。
 そこで、本発明に係る幾つかの態様は、前記課題を解決することで、電極活物質同士の良好な結着性を達成し、集電体と電極活物質層との密着性を高くかつ電池の内部抵抗を低くすることができる電極用バインダー組成物を提供するものである。また、本発明に係る幾つかの態様は、レート特性及びサイクル特性に優れた電気化学デバイスを提供するものである。
 本発明は前述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。
 [適用例1]
 本発明に係る電極用バインダー組成物の一態様は、
 下記一般式(C-1)で表される構成単位(a1)を含有する重合体(A)と、
 液状媒体(B)と、
を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000006
(式(C-1)中、Rは水素原子、メチル基又はトリフルオロメチル基を示す。RC1は単結合又は2価の連結基を示す。RCcは環状カーボネート構造を有する1価の有機基を示す。)
 [適用例2]
 適用例1の電極用バインダー組成物において、
 前記一般式(C-1)中のRCcが下記一般式(Cc-1)又は下記一般式(Cc-2)で表される基であることができる。
Figure JPOXMLDOC01-appb-C000007
(式(Cc-1)中、nC1は0~2の整数を示す。式(Cc-2)中、nC2~nC5は、それぞれ独立に0~2の整数を示す。式(Cc-1)及び式(Cc-2)中、「*」は前記式(C-1)中のRC1に結合する結合手を示す。また、式(Cc-1)及び式(Cc-2)で表される基は置換基を有していてもよい。)
 [適用例3]
 適用例2の電極用バインダー組成物において、
 前記一般式(Cc-1)で表される基が下記一般式(Cc-11)で表される基であることができる。
Figure JPOXMLDOC01-appb-C000008
(式(Cc-11)中、「*」は前記式(C-1)中のRC1に結合する結合手を示す。)
 [適用例4]
 適用例2の電極用バインダー組成物において、
 前記一般式(Cc-2)で表される基が下記一般式(Cc-21)で表される基であることができる。
Figure JPOXMLDOC01-appb-C000009
(式(Cc-21)中、「*」は前記式(C-1)中のRC1に結合する結合手を示す。)
 [適用例5]
 適用例1の電極用バインダー組成物において、
 前記一般式(C-1)で表される構成単位(a1)が下記一般式(Cc-11a)又は下記一般式(Cc-21a)で表される構成単位であることができる。
Figure JPOXMLDOC01-appb-C000010
(式(Cc-11a)及び式(Cc-21a)中、Rは水素原子、メチル基又はフルオロメチル基を示す。)
 [適用例6]
 適用例1ないし適用例5のいずれか一例の電極用バインダー組成物において、
 前記重合体(A)に含まれる前記構成単位(a1)の割合が、全構成単位の合計100質量%中0.5~10質量%であることができる。
 [適用例7]
 適用例1ないし適用例6のいずれか一例の電極用バインダー組成物において、
 前記重合体(A)が、共役ジエン系化合物に由来する構成単位(a2)及び芳香族ビニル化合物に由来する構成単位(a3)をさらに含有することができる。
 [適用例8]
 適用例1ないし適用例6のいずれか一例の電極用バインダー組成物において、
 前記重合体(A)が、アクリル酸エステル化合物又はメタクリル酸エステル化合物に由来する構成単位(a4)をさらに含有することができる。
 [適用例9]
 本発明に係る電極用スラリーの一態様は、
 電極活物質(C)と、適用例1ないし適用例8のいずれか一例の電極用バインダー組成物と、を含有することを特徴とする。
 [適用例10]
 本発明に係る電極の一態様は、
 集電体と、前記集電体の少なくとも一方の面に適用例9の電極用スラリーを用いて形成された電極活物質層と、を備えることを特徴とする。
 [適用例11]
 本発明に係る電気化学デバイスの一態様は、
 適用例10に記載の電極を備えることを特徴とする。
 本発明に係る電極用バインダー組成物によれば、集電体と電極活物質層との密着性を高くかつ電池の内部抵抗を低くすることができる。
 本発明に係る電極によれば、入出力特性及びサイクル特性に優れた電気化学デバイスを構成することができる。
 本発明に係る電気化学デバイスによれば、入出力特性及びサイクル特性に優れるという効果を奏する。
図1は、実施例におけるリチウムイオン二次電池直流内部抵抗測定にて印加されるパルス電流を模式的に示す図である。 図2は、実施例におけるリチウムイオン二次電池直流内部抵抗測定にて内部抵抗を求めるために作成されるグラフを模式的に示す図である。
 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。
 1.電極用バインダー組成物
 本実施の形態に係る電極用バインダー組成物は、構成単位(a1)を含有する重合体(A)と、液状媒体(B)と、を含有する。なお、本実施の形態に係る電極用バインダー組成物は、任意的に増粘剤、乳化剤、重合開始剤またはその残滓、界面活性剤、中和剤などの他の成分を含有してもよい。以下、本実施の形態に係る電極用バインダー組成物に含まれる各成分について詳細に説明する。
 1.1.重合体(A)
 重合体(A)は、構成単位(a1)を含有する重合体である。重合体(A)は、構成単位(a1)以外に、共役ジエン系化合物に由来する構成単位(a2)(以下、単に「構成単位(a2)」とも記載する。)、芳香族ビニル化合物に由来する構成単位(a3)(以下、単に「構成単位(a3)」とも記載する。)、及びアクリル酸エステル化合物又はメタクリル酸エステル化合物に由来する構成単位(a4)(以下、単に「構成単位(a4)」とも記載する。)、シアン化ビニル化合物に由来する構成単位(a5)(以下、単に「構成単位(a5)」とも記載する。)、不飽和カルボン酸に由来する構成単位(a6)(以下、単に「構成単位(a6)」とも記載する。)、その他の構成単位(a7)から選ばれる1種以上の構成単位を含有してもよい。
 1.1.1.構成単位
 1.1.1.1.構成単位(a1)
 重合体(A)は、下記一般式(C-1)で表される構成単位(a1)を含有することにより、ポリマー骨格側鎖に電解液親和性の向上に有利な環状カーボネート構造を有することになる。これによりバインダーが電解液を吸液しやすくなり、リチウムイオンの導通性能が向上することにより電池特性を向上させることができる。
Figure JPOXMLDOC01-appb-C000011
 上記一般式(C-1)において、Rは水素原子、メチル基又はトリフルオロメチル基を示す。RC1は単結合又は2価の連結基を示す。RCcは環状カーボネート構造を有する1価の有機基を示す。
 上記一般式(C-1)中、RCcとしては下記一般式(Cc-1)又は下記一般式(Cc-2)で表される基を挙げることができる。
Figure JPOXMLDOC01-appb-C000012
 上記一般式(Cc-1)中、nC1は0~2の整数を示す。上記一般式(Cc-2)中、nC2~nC5は、それぞれ独立に0~2の整数を示す。上記一般式(Cc-1)及び上記一般式(Cc-2)中、「*」は上記一般式(C-1)中のRC1に結合する結合手を示す。また、上記一般式(Cc-1)及び上記一般式(Cc-2)で表される基は置換基を有していてもよい。
 上記一般式(Cc-1)で表される基としては、下記一般式(Cc-11)で表される基を挙げることができる。また、上記一般式(Cc-2)で表される基としては、下記一般式(Cc-21)で表される基を挙げることができる。
Figure JPOXMLDOC01-appb-C000013
 上記一般式(C-1)で表される構成単位(a1)のうち、上記一般式(Cc-11)又は上記一般式(Cc-21)で表される基を有するものの具体例としては、下記式で表されるものを挙げることができる。
Figure JPOXMLDOC01-appb-C000014
 上記各式中、Rは水素原子、メチル基またはトリフルオロメチル基を示す。
 これらの中でも、下記一般式(Cc-11a)または(Cc-21a)で表される構成単位が好ましい。
Figure JPOXMLDOC01-appb-C000015
 上記一般式(Cc-11a)及び上記一般式(Cc-21a)中、Rは水素原子、メチル基又はトリフルオロメチル基を示す。
 その他の構成単位(a1)の具体例としては下記式で表されるものを挙げることができる。
Figure JPOXMLDOC01-appb-C000016
 上記各式中、Rは水素原子、メチル基またはトリフルオロメチル基を示す。
 なお、構成単位(a1)を形成するためのモノマーは、従来公知の方法により合成することができ、具体的には、Tetrahedron Letters,Vol.27,No.32 p.3741(1986)、Organic Letters,Vol.4,No.15 p.2561(2002)等に記載された方法で合成することができる。
 なお、重合体(A)には、上記構成単位(a1)が1種単独で又は2種以上が組み合わされて含まれてもよい。
 重合体(A)における構成単位(a1)の含有割合は、全構成単位の合計100質量%中、0.5~10質量%であることが好ましく、0.7~8質量%であることがより好ましい。前述のように、重合体(A)が構成単位(a1)を含有することにより、電解液親和性の向上に有利な環状カーボネート構造をポリマー骨格側鎖に有することになるため、電解液を吸液しやすくなる。これにより、リチウムイオンの導通性能が向上するため、電池特性を向上させることができる。特に電解液の溶媒が後述するようなプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類である場合、構成単位(a1)とこれらのカーボネート類との構造が類似しているため、両者の親和性がさらに高まる。これにより、重合体(A)はさらに電解液を吸液しやすくなり、リチウムイオンの導通性能がより向上するため、電池特性を効果的に向上させることができる。構成単位(a1)の含有割合が前記範囲であることにより、このようなカーボネート類への親和性がさらに向上するとともに、得られる電極活物質層の集電体に対する密着性がさらに向上するため好ましい。
 1.1.1.2.構成単位(a2)
 重合体(A)は、共役ジエン系化合物に由来する構成単位(a2)を含有することができる。重合体(A)が構成単位(a2)を含有することで、電極活物質層の集電体に対する密着性とプレス耐性とを両立させることができる。
 構成単位(a2)を与える共役ジエン系化合物の好適例としては、1,3-ブタジエン、イソプレン、2-クロロ-1,3-ブタジエン等を挙げることができる。これらの中でも、1,3-ブタジエンが特に好ましい。これらの共役ジエン系化合物は、一種単独で又は二種以上を組み合わせて用いることができる。
 重合体(A)における構成単位(a2)の含有割合は、負極用バインダーを構成する重合体として使用する場合、全構成単位の合計100質量%中、60質量%以下であることが好ましく、20~55質量%であることがより好ましく、25~50質量%であることが特に好ましい。また、正極用バインダーを構成する重合体として使用する場合、全構成単位の合計100質量%中、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。構成単位(a2)の含有割合が前記範囲であることにより、得られる電極活物質層の集電体に対する密着性とプレス耐性とをより良好な状態で両立させることが可能となる。
 1.1.1.3.構成単位(a3)
 重合体(A)は、芳香族ビニル化合物に由来する構成単位(a3)を含有することができる。構成単位(a3)を含有することで、電極活物質層の柔軟性や集電体に対する密着性を向上させることができる。
 構成単位(a3)を与える芳香族ビニル化合物の好適例としては、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエン、クロルスチレン、ジビニルベンゼン等を挙げることができる。これらの中でも、スチレンが好ましい。これらの芳香族ビニル化合物は、一種単独で又は二種以上を組み合わせて用いることができる。
 重合体(A)における構成単位(a3)の含有割合は、負極用バインダーを構成する重合体として使用する場合、全構成単位の合計100質量%中、60質量%以下であることが好ましく、10~55質量%であることがより好ましく、20~50質量%であることが特に好ましい。また、正極用バインダーを構成する重合体として使用する場合、全構成単位の合計100質量%中、20質量%以下であることが好ましく、5~15質量%以下であることがより好ましい。構成単位(a3)の含有割合が前記範囲であることにより、重合体(A)が電極活物質として用いられるグラファイト等の電極活物質に対して適度な結着性を有し、得られる電極活物質層と集電体との密着性が良好なものとなる。
 1.1.1.4.構成単位(a4)
 重合体(A)は、(メタ)アクリル酸エステル化合物に由来する構成単位(a4)を含有することができる。なお、本明細書において、「(メタ)アクリル酸~」とは、「アクリル酸~」と「メタクリル酸~」のいずれをも意味する。
 構成単位(a4)を与える(メタ)アクリル酸エステル化合物の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸i-アミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸i-ノニル、(メタ)アクリル酸n-デシル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、ジ(メタ)アクリル酸エチレン等を挙げることができる。これらの中でも、(メタ)アクリル酸メチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチルが好ましく、(メタ)アクリル酸メチルがより好ましい。これらの(メタ)アクリル酸エステル化合物は、一種単独で又は二種以上を組み合わせて用いることができる。
 重合体(A)における構成単位(a4)の含有割合は、負極用バインダーを構成する重合体として使用する場合、全構成単位の合計100質量%中、40質量%以下であることが好ましく、5~30質量%であることがより好ましく、10~20質量%であることが特に好ましい。また、正極用バインダーを構成する重合体として使用する場合、全構成単位の合計100質量%中、99.5質量%以下であることが好ましく、50~99質量%であることがより好ましく、60~98質量%であることが特に好ましい。構成単位(a4)の含有割合が前記範囲であると、重合体(A)と電解液との親和性が適度なものとなり、電池中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制することができる。また、電解液を吸収して膨潤することにより、電極活物質同士の結着させる働きが低下して電極活物質が電極活物質層から脱落してしまうような結着性の低下や、電極活物質層が集電体から剥離してしまうような密着性の低下も防ぐことができる。
 1.1.1.5.構成単位(a5)
 重合体(A)は、シアン化ビニル化合物に由来する構成単位(a5)を含有することができる。
 構成単位(a5)を与えるシアン化ビニル化合物の具体例としては、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、シアン化ビニリデン等を挙げることができる。これらの中でも、アクリロニトリル、メタクリロニトリルが好ましく、アクリロニトリルがより好ましい。これらのシアン化ビニル化合物は、一種単独で又は二種以上を組み合わせて用いることができる。
 重合体(A)における構成単位(a5)の含有割合は、負極用バインダーを構成する重合体として使用する場合、全構成単位の合計100質量%中、30質量%以下であることが好ましく、1~20質量%であることがより好ましく、2~10質量%であることが特に好ましい。また、正極用バインダーを構成する重合体として使用する場合、全構成単位の合計100質量%中、20質量%以下であることが好ましく、2~15質量%であることがより好ましい。構成単位(a5)の含有割合が前記範囲であることにより、電池中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制することができる。また、電解液を吸収して膨潤することにより、電極活物質同士の結着させる働きが低下して電極活物質が電極活物質層から脱落してしまうような結着性の低下や、電極活物質層が集電体から剥離してしまうような密着性の低下も防ぐことができる。
 1.1.1.6.構成単位(a6)
 重合体(A)は、不飽和カルボン酸に由来する構成単位(a6)を含有することができる。
 構成単位(a6)を与える不飽和カルボン酸の具体例としては、(メタ)アクリル酸、イタコン酸等を挙げることができる。これらの不飽和カルボン酸は、一種単独で又は二種以上を組み合わせて用いることができる。
 重合体(A)における構成単位(a6)の含有割合は、負極用バインダーを構成する重合体として使用する場合、全構成単位の合計100質量%中、6質量%以下であることが好ましく、0.3~5質量%であることがより好ましい。また、正極用バインダーを構成する重合体として使用する場合、全構成単位の合計100質量%中、6質量%以下であることが好ましく、0.3~5質量%であることがより好ましい。構成単位(a6)の含有割合が前記範囲であることにより、スラリーの分散安定性に優れ、凝集物が生じにくく、経時的なスラリー粘度の上昇を抑えることができる。
 1.1.1.7.構成単位(a7)
 重合体(A)は、上記構成単位以外に、その他の構成単位(a7)を含有することができる。
 その他の構成単位(a7)を与えるモノマーの具体例としては、(メタ)アクリルアミド、N-メチロールアクリルアミド等のエチレン性不飽和カルボン酸のアルキルアミド;酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニルエステル;エチレン性不飽和ジカルボン酸等の酸無水物;モノアルキルエステル;モノアミド類;アミノエチルアクリルアミド、ジメチルアミノメチルメタクリルアミド、メチルアミノプロピルメタクリルアミド等のエチレン性不飽和カルボン酸のアミノアルキルアミド等を挙げることができる。これらのモノマーは、一種単独で又は二種以上を組み合わせて用いることができる。
 また、重合体(A)は、その他の構成単位(a7)として、フッ素を含む構成単位を含有させることで、電気化学的安定性を獲得することもできる。
 1.1.2.重合体(A)の具体例
 1.1.2.1.共役ジエン/芳香族ビニル系特定共重合体(A-1)
 重合体(A)の具体例の一つとして、構成単位(a1)、構成単位(a2)及び構成単位(a3)を含有する共役ジエン/芳香族ビニル系特定共重合体(A-1)(以下、「重合体(A-1)」とも記載する。)が挙げられる。重合体(A-1)は、耐還元性に優れるという特性を有するため、特に負極用バインダーを構成する重合体として好適に用いることができる。以下、重合体(A-1)の組成について詳細に説明する。
 重合体(A-1)における構成単位(a2)の含有割合は、全構成単位の合計100質量%中、20~60質量%であることが好ましく、25~60質量%であることがより好ましい。構成単位(a2)の含有割合が前記範囲であることにより、得られる電極活物質層の集電体に対する密着性とプレス耐性とをより良好な状態で両立させることが可能となる。
 重合体(A-1)における構成単位(a3)の含有割合は、全構成単位の合計100質量%中、10~60質量%であることが好ましく、20~55質量%であることがより好ましい。構成単位(a3)の含有割合が前記範囲であることにより、重合体(A)は電極活物質として用いられるグラファイト等に対して適度な結着性を有し、得られる電極活物質層と集電体との密着性が良好なものとなる。
 なお、重合体(A-1)は、前述の含有割合で構成単位(a1)、(a2)及び(a3)を含有するが、必要に応じて構成単位(a4)~(a6)、その他の構成単位(a7)を更に含有しても良い。
 重合体(A-1)における構成単位(a4)の含有割合は、全構成単位の合計100質量%中、40質量%以下であることが好ましく、5~30質量%であることがより好ましく、10~20質量%であることが特に好ましい。構成単位(a4)の含有割合が前記範囲であると、重合体(A)と電解液との親和性が適度なものとなり、電池中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制することができる。また、電解液を吸収して膨潤することにより、電極活物質同士の結着させる働きが低下して電極活物質が電極活物質層から脱落してしまうような結着性の低下や、電極活物質層が集電体から剥離してしまうような密着性の低下も防ぐことができる。
 重合体(A-1)における構成単位(a5)の含有割合は、全構成単位の合計100質量%中、35質量%以下であることが好ましく、1~25質量%であることがより好ましく、2~20質量%であることが特に好ましい。構成単位(a5)の含有割合が前記範囲であることにより、電池中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制することができる。また、電解液を吸収して膨潤することにより、電極活物質同士の結着させる働きが低下して電極活物質が電極活物質層から脱落してしまうような結着性の低下や、電極活物質層が集電体から剥離してしまうような密着性の低下も防ぐことができる。
 重合体(A-1)における構成単位(a6)の含有割合は、全構成単位の合計100質量%中、6質量%以下であることが好ましく、0.3~5質量%であることがより好ましい。構成単位(a6)の含有割合が前記範囲であることにより、スラリーの分散安定性に優れ、凝集物が生じにくく、経時的なスラリー粘度の上昇を抑えることができる。
 1.1.2.2.アクリル系特定共重合体(A-2)
 重合体(A)の具体例の一つとして、構成単位(a1)及び構成単位(a4)を含有するアクリル系特定共重合体(A-2)(以下、「重合体(A-2)」とも記載する。)が挙げられる。重合体(A-2)は、前述の重合体(A-1)に比して、耐酸化性が高いという特性を有するため、特に正極用バインダーを構成する重合体として好適に用いることができる。
 重合体(A-2)における構成単位(a4)の含有割合は、全構成単位の合計100質量%中、50~99.5質量%であることが好ましく、60~98質量%であることがより好ましい。構成単位(a4)の含有割合が50~99.5質量%であると、バインダーに良好な結着性を付与することができ、また重合体(A-2)と電解液との親和性が適度なものとなり、電池中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制することができる。また、電解液を吸収して膨潤することにより、電極活物質同士の結着させる働きが低下して電極活物質が電極活物質層から脱落してしまうような結着性の低下や、電極活物質層が集電体から剥離してしまうような密着性の低下も防ぐことができる。
 なお、重合体(A-2)は、前述の含有割合で構成単位(a1)及び(a4)を含有するが、構成単位(a3)、(a5)~(a7)を更に含有しても良い。構成単位(a2)は、重合体(A-2)には含有されない。
 重合体(A-2)における構成単位(a3)の含有割合は、全構成単位の合計100質量%中、20質量%以下であることが好ましく、5~15質量%以下であることがより好ましい。構成単位(a3)の含有割合が前記範囲であることにより、重合体(A-2)は電極活物質として用いられるリン酸鉄リチウム等に対して適度な結着性を有し、得られる電極活物質層は、柔軟性や集電体に対する密着性が良好なものとなる。
 重合体(A-2)における構成単位(a5)の含有割合は、全構成単位の合計100質量%中、2~20質量%であることが好ましく、2~15質量%であることがより好ましい。構成単位(a5)の含有割合が前記範囲であることにより、重合体(A-2)と電解液との親和性が適度なものとなり、電池中でバインダーが電気抵抗成分となることによる内部抵抗の上昇を抑制することができる。また、電解液を吸収して膨潤することにより、電極活物質同士の結着させる働きが低下して電極活物質が電極活物質層から脱落してしまうような結着性の低下も防ぐことができる。
 重合体(A-2)における構成単位(a6)の含有割合は、全構成単位の合計100質量%中、0.3~6質量%であることが好ましく、0.3~5質量%であることがより好ましい。構成単位(a6)の含有割合が前記範囲であることにより、電極用スラリーは分散安定性に優れ、凝集物が生じにくいものとなり、また、経時的なスラリー粘度の上昇を抑制することができる。
 1.1.3.重合体(A)の調製
 重合体(A)は、上記説明した上記構成単位を与える各モノマーの混合物を重合することによって製造することができる。モノマー混合物の重合方法は特に制限されないが、水系媒体中、乳化剤、重合開始剤、分子量調節剤等の存在下、乳化重合することにより調製することが好ましい。
 上記乳化剤としては、例えばアニオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤等を挙げることができる。
 アニオン性界面活性剤としては、例えば高級アルコールの硫酸エステル、アルキルベンゼンスルホン酸塩、脂肪族スルホン酸塩、ポリエチレングリコールアルキルエーテルの硫酸エステル等を挙げることができる。
 ノニオン性界面活性剤としては、例えばポリエチレングリコールのアルキルエステル、ポリエチレングリコールのアルキルエーテル、ポリエチレングリコールのアルキルフェニルエーテルなどを、それぞれ挙げることができる。
 両性界面活性剤としては、例えば、アニオン部分が、カルボン酸塩、硫酸エステル塩、スルホン酸塩又はリン酸エステル塩等で、カチオン部分が、アミン塩、第4級アンモニウム塩等であるものを挙げることができる。このような両性界面活性剤の具体例としては、例えば、ラウリルベタイン、ステアリルベタイン等のベタイン類;ラウリル-β-アラニン、ラウリルジ(アミノエチル)グリシン、オクチルジ(アミノエチル)グリシン等のアミノ酸タイプの界面活性剤等を挙げることができる。
 このような乳化剤は、上記の各種界面活性剤を一種単独で又は二種以上を組み合わせて用いることができる。
 このような乳化剤の使用割合は、用いられるモノマーの合計100質量部に対して、0.5~5質量部であることが好ましい。
 上記重合開始剤の具体例としては、例えば過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の水溶性重合開始剤;過酸化ベンゾイル、ラウリルパーオキサイド、2,2’-アゾビスイソブチロニトリル等の油溶性重合開始剤;重亜硫酸ナトリウム等の還元剤との組合せによるレドックス系重合開始剤等を挙げることができる。これらの重合開始剤は、一種単独で又は二種以上を組み合わせて用いることができる。
 重合開始剤の使用割合は、用いられるモノマーの合計100質量部に対して、0.3~3質量部であることが好ましい。
 上記分子量調節剤の具体例としては、例えばクロロホルム、四塩化炭素等のハロゲン化炭化水素類、n-ヘキシルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドテジルメルカプタン、チオグリコール酸等のメルカプタン類;ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン類;ターピノーレン、α-メチルスチレンダイマー等の通常の乳化重合に使用されるものを挙げることができる。これらの分子量調節剤は、一種単独で又は二種以上を組み合わせて用いることができる。
 分子量調節剤の使用割合は、用いられるモノマーの合計100質量部に対して、通常5質量部以下である。
 乳化重合は適当な水系媒体中で行うことが好ましく、特に水中で行うことが好ましい。この水系媒体中におけるモノマーの合計の含有割合は、10~50質量%とすることができ、20~40質量%とすることが好ましい。乳化重合の条件は、例えば重合温度45~85℃で重合時間2~24時間であることが好ましく、重合温度50~80℃で重合時間3~20時間であることがより好ましい。
 特に好ましい乳化重合の方法は以下のとおりである。すなわち、重合開始剤を含有する水系媒体中に、モノマー混合物の乳化液(以下、「モノマー乳化液」という。)を添加することによって乳化重合を開始し、必要に応じてモノマー乳化液の添加終了後にさらに重合を継続する方法である。
 上記重合開始剤を含有する水系媒体の温度は40~85℃とすることが好ましく、60~80℃とすることがより好ましい。このとき、昇温過程における重合開始剤の分解を避けるため、水系媒体をある程度昇温した後に(例えば40~70℃になった後に)、ここに重合開始剤を添加し、重合開始剤添加後に過大な時間が経過しないうちに、モノマー乳化液の添加を始めることが好ましい。
 重合開始剤を含有する水系媒体は、上述した分子量調節剤等の任意成分をさらに含有していてもよい。モノマー乳化液は、水系媒体中にモノマー及び乳化剤並びに上記の任意成分を投入し、これを十分に撹拌することにより調製することができる。この乳化液中におけるモノマーの含有割合は、40~80質量%とすることが好ましく、50~70質量%とすることがより好ましい。
 重合開始剤を含有する水系媒体中へのモノマー乳化液の添加は、反応液中で重合開始剤が偏在化し、不均一な重合反応が発生しないように、ゆっくりと行うことが好ましい。添加時間は0.5~6時間とすることが好ましく、1~4時間とすることがより好ましい。
 モノマー乳化液の添加終了後、さらに重合を継続することが好ましい。この場合の継続重合の温度は40~85℃とすることが好ましく、60~80℃とすることがより好ましい。継続重合の時間は0.5~6時間とすることが好ましく、1~4時間とすることがより好ましい。モノマー乳化液の添加開始からの合計の重合時間としては、1~12時間とすることが好ましく、3~8時間とすることがより好ましい。
 また、乳化重合の方法は、フッ素系重合体からなるシード粒子を用いて、シード重合により調製することもできる。フッ素含有成分を導入することで、重合体(A)に電気化学的安定性を付与することができる。
 シード粒子を構成する重合体の具体例としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロペン、及びこれらの共重合体等を挙げることができる。これらの中でも、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロペン共重合体が好ましい。
 シード粒子の数平均粒子径は、30~300nmであることが好ましく、50~200nmであることがより好ましい。数平均粒子径が30~300nmであることにより、スラリー性状を損なうことなく高い密着性を電極活物質層に付与することができる。
 1.1.4.重合体(A)の物性
 本実施の形態に係る電極用バインダー組成物に含有される重合体(A)は、そのガラス転移温度(Tg)が-45~25℃であることが好ましい。重合体(A)のガラス転移温度(Tg)は、以下のようにして測定することができる。重合体(A)が分散されてなるラテックスの約4gを5cm×4cmのテフロン(登録商標)シャーレに流し込み、70℃の恒温槽中において24時間乾燥させて膜厚約100μmのフィルムとする。得られたフィルムから約10mgの試料を切り出し、これをアルミニウム容器中に採取して密封する。そして、示差走査熱量測定装置(NETZSCH-Ger艪狽・b≠普@GmbH製、型式「DSC204F1」)を用い、空気雰囲気下で昇温速度20℃/minにて-80℃~100℃の温度領域について示差走査熱量測定を行い、得られたDSCチャートに基づいてガラス転移温度Tgを求める。DSCチャートからガラス転移温度(Tg)を求める際には、JIS K7121に記載の中間点ガラス転移温度の求め方に準拠して行う。
 重合体(A)は、本実施の形態に係る電極用バインダー組成物中において、液状媒体(B)へ溶解していても重合体粒子の状態で分散していてもよいが、重合体粒子の状態で液状媒体(B)中に分散している状態であることが好ましい。重合体(A)が粒子の状態で液状媒体(B)中に分散していると、電極活物質層を作製した際に、絶縁体である重合体(A)が電極活物質の表面の広い面積を被覆してしまうことを抑制できる。その結果、電解液と電極活物質間のリチウムイオンの移動の阻害を大幅に低減でき、電極抵抗を低下させて蓄電効率を向上させることができる。
 重合体粒子の数平均粒子径は、50~600nmであることが好ましく、80~500nmであることがより好ましい。数平均粒子径が上記範囲であることにより、スラリー性状を損なうことなく高い密着性を付与することができる。
 重合体粒子のトルエンゲル含有率は、70~100質量%であることが好ましく、75~100質量%であることがより好ましい。トルエンゲル含有率が上記範囲であると、重合体は電解液に溶解しにくくなり、過電圧の上昇による電池特性への悪影響を抑制できる。
 1.2.液状媒体(B)
 本実施の形態に係る電極用バインダー組成物は、上記のような重合体(A)と共に液状媒体(B)を含有する。この液状媒体としては、水系媒体又は非水系媒体が挙げられる。
 本実施の形態に係る電極用バインダー組成物は、上記のような重合体(A)が水系媒体に分散させたスラリー状もしくはラテックス状であるか、又は重合体(A)が非水系媒体に溶解された溶液状であることが好ましい。
 液状媒体(B)としては、重合体(A)を分散又は溶解することができるものであれば特に制限なく用いることができる。液状媒体(B)の好適例としては、例えば水系媒体である水;非水系媒体である、アミド化合物、炭化水素、アルコール、ケトン、エステル、アミン化合物、ラクトン、スルホキシド、スルホン化合物等を挙げることができる。
 非水系の液状媒体(B)の具体例としては、例えばn-オクタン、イソオクタン、ノナン、デカン、デカリン、ピネン、クロロドデカン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、シクロヘプタン、メチルシクロペンタン等の環状脂肪族炭化水素;クロロベンゼン、クロロトルエン、エチルベンゼン、ジイソプロピルベンゼン、クメン等の芳香族炭化水素;メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ベンジルアルコール、グリセリン等のアルコール;アセトン、メチルエチルケトン、シクロペンタノン、イソホロン等のケトン;メチルエチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル;γ-ブチロラクトン、δ-ブチロラクトン等のラクトン;β-ラクタム等のラクタム;ジメチルホルムアミド、N-メチルピロリドン、ジメチルアセトアミド等の鎖状又は環状のアミド化合物;メチレンシアノヒドリン、エチレンシアノヒドリン、3,3’-チオジプロピオニトリル、アセトニトリル等のニトリル基を有する化合物;ピリジン、ピロール等の含窒素複素環化合物;エチレングリコール、プロピレングリコール等のグリコール化合物;ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールエチルブチルエーテル等のジエチレングリコール又はその誘導体;ギ酸エチル、乳酸エチル、乳酸プロピル、安息香酸メチル、酢酸メチル、アクリル酸メチル等のエステルを挙げることができる。これらの液状媒体(B)は、一種単独で又は二種以上を混合して用いることができる。
 なお、前述のように重合体(A)は液状媒体(B)中において粒子状であることが好ましい。液状媒体(B)中における重合体(A)の数平均粒子径は、50~190nmであることが好ましく、70~185nmであることがより好ましい。重合体(A)の数平均粒子径が上記範囲にあることにより、電極活物質層を形成する際の乾燥工程において、重合体粒子のマイグレーションが生じず、従って得られる電極活物質層の組成が均一なものとなる。その結果、電極活物質と重合体粒子と集電体との間に十分な数の有効接着点が得られるため、高い結着性が得られることとなり好ましい。
 重合体(A)の数平均粒子径は、大塚電子株式会社製のレーザー粒径解析システム「LPA-3000s/3100」を用いて水を分散媒として動的光散乱法により測定した流体力学的径から数平均値として算出することができる。
 液状媒体(B)は、本実施の形態に係る電極用バインダー組成物における重合体(A)の含有割合が15~60質量%となる量だけ使用することが好ましく、20~50質量%となる量であることがより好ましい。
 1.3.増粘剤
 本実施の形態に係る電極用バインダー組成物には、その塗布性や電気化学デバイスの充放電特性等をさらに向上させる観点から増粘剤を添加してもよい。
 このような増粘剤としては、例えばカルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース誘導体;ポリアクリル酸ナトリウム等のポリアクリル酸塩のほか、ポリビニルアルコール、ポリエチレンオキシド、ポリビニルピロリドン、(メタ)アクリル酸-ビニルアルコール共重合体、マレイン酸-ビニルアルコール共重合体、変性ポリビニルアルコール、ポリエチレングリコール、エチレン-ビニルアルコール共重合体、ポリ酢酸ビニル部分ケン化物等を挙げることができる。
 本実施の形態に係る電極用バインダー組成物における増粘剤の含有割合は、電極用バインダー組成物の全固形分量(組成物中の液状媒体(B)以外の成分の合計質量)に対して、20質量%以下とすることが好ましく、0.1~10質量%であるとより好ましい。
 1.4.電極用バインダー組成物の好ましい態様
 本実施の形態に係る電極用バインダー組成物は、重合体(A)が粒子状で水系媒体に分散されたラテックス状であることが好ましい。本実施の形態に係る電極用バインダー組成物としては、水系媒体中で上記のような重合体(A)を合成(重合)した後の重合反応混合物を、必要に応じて液性を調整した後、これをそのまま用いることが特に好ましい。従って、本実施の形態に係る電極用バインダー組成物は、重合体粒子及び水系媒体のほか、乳化剤、重合開始剤又はその残滓、界面活性剤、中和剤等の他の成分を含有していてもよい。これら他の成分の含有割合としては、他の成分の合計質量が組成物の固形分量に対する割合として、3質量%以下であることが好ましく、2質量%以下であることがより好ましい。
 電極用バインダー組成物の固形分濃度(組成物中の液状媒体(B)以外の成分の合計質量が組成物の全質量に対して占める割合)としては、15~60質量%であることが好ましく、25~50質量%であることがより好ましい。
 電極用バインダー組成物の液性としては、中性付近であることが好ましく、pH6.0~8.5であることがより好ましく、pH7.0~8.0であることが特に好ましい。組成物の液性の調整には、公知の水溶性の酸または塩基を用いることができる。酸としては、例えば塩酸、硝酸、硫酸、リン酸などを;塩基としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア水などを、それぞれ挙げることができる。
 本実施の形態に係る電極用バインダー組成物は、構成単位(a1)を含有する重合体(A)を含有する。そのため、後述する実施例から明らかなように、高い密着性が得られ、しかも低温環境下における放電レート特性と高温環境下における電気化学的安定性との双方に優れた電気化学デバイスを与えることができる。
 2.電極用スラリー
 本実施の形態に係る電極用スラリーは、電極活物質(C)及び前述の電極用バインダー組成物を含有する。本実施の形態に係る電極用スラリーは、前述の電極用バインダー組成物を含有することにより、電極活物質相互間の良好な結着性を達成し、電極活物質層と集電体間の密着性が高い電極活物質層を形成することができる。また、低温環境下における放電レート特性と高温環境下における電気化学的安定性との双方に優れた電気化学デバイスを与えることができる。
 2.1.電極活物質(C)
 電極活物質(C)としては、特に制限はなく、目的とする電気化学デバイスの種類等に応じて適宜選択される。
 前述の電極用バインダー組成物をリチウムイオン二次電池の負極を作製するための電極用スラリー(負極用スラリー)に適用する場合、電極活物質(負極活物質)としては、例えば炭素材料、カーボン等を好適に用いることができる。上記炭素材料としては、有機高分子化合物、コークス、ピッチ等を焼成して得られる炭素材料を例示することができ、該炭素材料の前駆体である有機高分子化合物としては、例えばフェノール樹脂、ポリアクリロニトリル、セルロース等の有機高分子化合物を焼成することにより得られる炭素材料や、コークスやピッチを焼成することにより得られる炭素材料等を挙げることができる。上記カーボンとしては、例えば人造グラファイト、天然グラファイト等を挙げることができる。
 前述の電極用バインダー組成物を電気二重層キャパシタ用の電極を作製するための電極用スラリーに適用する場合、電極活物質としては、例えば黒鉛、難黒鉛化炭素、ハードカーボン、コークス、ピッチ等を焼成して得られる炭素材料;ポリアセン系有機半導体(PAS)などを用いることができる。
 前述の電極用バインダー組成物をリチウムイオン二次電池の正極を作製するための電極用スラリー(正極用スラリー)に適用する場合、電極活物質(正極活物質)としては、例えばリン酸鉄リチウム、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、三元系ニッケルコバルトマンガン酸リチウム等を好適に用いることができる。
 本実施の形態に係る電極用スラリー中、電極活物質(C)の含有量は、電極用スラリーの固形分濃度が20~65質量%となる量であることが好ましく、20~60質量%となる量であることがより好ましい。
 2.2.その他の成分
 本実施の形態に係る電極用スラリーは、必要に応じて、増粘剤、分散剤、界面活性剤、消泡剤等をさらに含有することができる。
 上記増粘剤としては、前述の電極用バインダー組成物が任意的に含有できる増粘剤として上記に例示したものと同じものが挙げられる。
 上記分散剤としては、例えばヘキサメタリン酸ナトリウム、トリポリリン酸ナトリウム、ポリアクリル酸ナトリウム等が挙げられる。
 上記界面活性剤としては、例えばラテックスの安定化剤としてのノニオン性又はアニオン性界面活性剤等が挙げられる。
 これらの成分の含有割合は、本実施の形態に係る電極用スラリーの全固形分量(組成物中の液状媒体以外の成分の合計質量)に対して、10質量%以下とすることが好ましく、0.5~5質量%であるとより好ましい。
 2.3.調製方法
 本実施の形態に係る電極用スラリーは、前述の電極用バインダー組成物と、上記のような電極活物質(C)と、必要に応じて用いられる成分と、を混合することにより調製される。これらを混合するための手段としては、例えば撹拌機、脱泡機、ビーズミル、高圧ホモジナイザー等などの公知の混合装置を利用することができる。また、電極用スラリーの調製は、減圧下で行うことが好ましい。これにより、得られる電極活物質層内に気泡が生じることを防止することができる。
 本実施の形態に係る電極用スラリーは、電極活物質(C)100質量部に対して、前述の電極用バインダー組成物が固形分換算で0.1~10質量部含有されていることが好ましく、0.3~4質量部含有されていることがより好ましい。電極用バインダー組成物の含有割合が前記範囲であると、重合体(A)が電気化学デバイスにおいて使用される電解液に溶解し難くなり、過電圧の上昇による電気化学デバイス特性への悪影響を抑制できる。
 3.電極
 本実施の形態に係る電極は、集電体と、前記集電体の少なくとも一方の面に前述の電極用スラリーを塗布して乾燥する工程を経て形成された電極活物質層と、を備えている。塗膜を乾燥させた後、さらにプレス加工することが好ましい。
 3.1.集電体
 上記集電体としては、例えば金属箔、エッチング金属箔、エキスパンドメタル等を挙げることができる。集電体を構成する材料の具体例としては、例えばアルミニウム、銅、ニッケル、タンタル、ステンレス、チタン等の金属材料を挙げることができ、目的とする電気化学デバイスの種類に応じて適宜選択して用いることができる。
 リチウムイオン二次電池の正極を形成する場合、集電体としては上記のうちのアルミニウムを用いることが好ましい。この場合、集電体の厚みは、5~30μmであることが好ましく、8~25μmであることがより好ましい。
 一方、リチウムイオン二次電池の負極を形成する場合、集電体としては上記のうちの銅を用いることが好ましい。この場合、集電体の厚みは、5~30μmであることが好ましく、8~25μmであることがより好ましい。
 また、電気二重層キャパシタ用の電極を形成する場合、集電体としては上記のうちのアルミニウム、銅を用いることが好ましい。この場合、集電体の厚みは5~100μmであることが好ましく、10~70μmであることがより好ましく、15~30μmであることが特に好ましい。
 3.2.電極活物質層
 電極活物質層は、上記のような集電体のいずれか一方の表面上に前述の電極用スラリーを塗布し、その後乾燥させる工程を経ることにより作製することができる。
 集電体の表面へ電極用スラリーを塗布する手段としては、例えば、ドクターブレード法、リバースロール法、コンマバー法、グラビヤ法、エアーナイフ法等を適宜使用することができる。
 電極用スラリー塗布膜の乾燥処理は、好ましくは20~250℃、より好ましくは50~150℃において、好ましくは1~120分間、より好ましくは5~60分間の処理時間で行われる。
 塗布膜を乾燥させた後、必要に応じてプレス加工することもできる。プレス加工を行うための手段としては、例えばロールプレス機、高圧スーパープレス機、ソフトカレンダー、1トンプレス機等が用いられる。プレス加工の条件は、用いる加工機の種類並びに電極活物質層の所望の厚み及び密度応じて適宜設定される。
 このようにして形成される電極活物質層は、通常、リチウムイオン二次電池負極の場合、厚みが40~100μm、密度が1.3~2.0g/cmであることが好ましい。リチウムイオン二次電池正極の場合、厚みが40~100μm、密度が2.0~5.0g/cmであることが好ましい。電気二重層キャパシタ用電極の場合、厚みが50~200μm、密度が0.9~1.8g/cmであることが好ましい。
 3.3.電極の特徴
 上記のようにして作製された電極は、前述の電極用バインダー組成物を含有する電極用スラリーを用いて作製された電極活物質層を備えているため、電極活物質層における電極活物質相互間の良好な結着性を達成し、電極活物質層と集電体間の密着性が高いものである。また、この電極を用いると、低温環境下における放電レート特性と高温環境下における電気化学的安定性との双方に優れた電気化学デバイスが得られる。
 本実施の形態に係る電極は、例えばリチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタ等の電気化学デバイスの電極として好適に用いることができる。
 リチウムイオン二次電池等の二次電池を構成する場合、前述の電極用スラリーを用いて作製された電極は、正極としても負極としても従来技術を凌駕する性能を示すが、後述する実施例から明らかなように、重合体(A-1)は負極用バインダー組成物に、重合体(A-2)は正極用バインダー組成物として用いられるときに一層高い効果が得られる点で好ましい。
 4.電気化学デバイス
 本実施の形態に係る電気化学デバイスは、前述の電極を具備し、電解液及びセパレータを備えるものである。電気化学デバイスの具体例としては、リチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタ等を挙げることができる。
 本実施の形態に係る電気化学デバイスは、前述の電極が、電解液を介して対向電極と相対し、好ましくはセパレータの存在によって隔離された構造を有する。その製造方法としては、例えば、2つの電極(正極及び負極の2つ、又はキャパシタ用電極の2つ)をセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型等、適宜の形状であることができる。
 上記電解液は、目的とする電気化学デバイスの種類に応じて適宜選択して用いられる。電解液としては、電気化学デバイスの種類に応じて適宜選択された電解質が溶媒中に溶解された溶液が用いられる。
 リチウムイオン二次電池を製造する場合には、電解質としてリチウム化合物が用いられる。リチウム化合物の具体例としては、例えば、LiClO、LiBF、LiI、LiPF、LiCFSO、LiAsF、LiSbF、LiAlCl、LiCl、LiBr、LiB(C、LiCHSO、LiCSO、Li(CFSON等を挙げることができる。この場合の電解質濃度は、好ましくは0.5~3.0モル/Lであり、より好ましくは0.7~2.0モル/Lである。
 電気二重層キャパシタを製造する場合には、電解質としてテトラエチルアンモニウムテトラフルオロボレート、トリエチルメチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムヘキサフルオロホスフェート等が用いられる。この場合の電解質濃度は、好ましくは0.5~3.0モル/Lであり、より好ましくは0.7~2.0モル/Lである。
 リチウムイオンキャパシタを製造する場合における電解質の種類及び濃度は、リチウムイオン二次電池の場合と同じである。
 電解液に用いられる溶媒としては、上記いずれの電気化学デバイスにおいても以下に示すような溶媒を用いることができる。例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類;γ-ブチロラクトン等のラクトン類;トリメトキシシラン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン等の窒素含有化合物;ギ酸メチル、酢酸メチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル等のエステル類;ジグライム、トリグライム、テトラグライム等のグライム類;アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;スルホラン等のスルホン類;2-メチル-2-オキサゾリジノン等のオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、1,8-ナフタスルトン等のスルトン類等を挙げることができる。
 このような電気化学デバイスは、電極活物質層における電極活物質相互間の良好な結着性を達成し、電極活物質層と集電体間の密着性が高く、しかも低温環境下における放電レート特性と高温環境下における電気化学的安定性との双方に優れる。したがって、このような電気化学デバイスは、電気自動車、バイブリッドカー、トラック等の自動車に搭載される二次電池又はキャパシタとして好適であるほか、AV機器、OA機器、通信機器などに用いられる二次電池、キャパシタとしても好適である。
 4.実施例
 以下、本発明を実施例に基いて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。また、各種物性値の測定方法及び諸特性の評価方法を以下に示す。
 4.1.各種物性値の測定方法及び諸特性の評価方法
 4.1.1.重合体粒子の数平均粒子径
 重合体粒子の数平均粒子径は、22mWのHe-Neレーザー(波長λ=632.8nm)を光源とする光散乱測定装置(商品名「ALV5000」、ALV社製)を使用して測定した。
 4.1.2.膨潤度
 バインダー組成物を水で固形分30%に希釈した後、8cm×14cmのテフロンシャーレに調製後のバインダー組成物25gを流しこみ、常温にて5日間乾燥させて乾燥フィルムを得た。その後、乾燥フィルムをテフロンシャーレから取り出し、更に80℃×3時間乾燥を行い、試験用フィルムを得た。次に、得られた試験用フィルムを2cm×2cmの大きさに複数枚切り出し、初期質量(W)を測定した。その後、下記組成を有する電解液が入ったスクリュー瓶に投入して、80℃にて24時間浸漬した。その後、試験用フィルムを電解液から取り出し、電解液を拭き取り、試験後の浸漬後質量(W)を測定した。その後、下記式(1)によって電解液に対する膨潤率(%)を算出した。表1~表3中、本評価を「膨潤度」と示す。
 膨潤率(%)=(浸漬後質量(W)/初期質量(W))×100 ・・・・(1)
 なお、上記電解液は、体積分率が1:1:1のエチレンカーボネートとジエチルカーボネートとエチルメチルカーボネートとからなる溶媒に六フッ化リン酸リチウムを、六フッ化リン酸リチウムの濃度が1mol/Lとなるように溶解して得た溶液である。
 4.1.3.ピール強度
 評価対象の電極(積層体)から、幅2cm×長さ12cmの試験片を切り出し、この試験片の電極活物質層側の表面を、両面テープによりアルミ板に貼り付けた。次に、アルミニウム板上の上記試験片の集電体側表面に、幅18mmテープ(JIS Z1522準拠品、商品名「セロテープ(登録商標)」、ニチバン株式会社製)を貼り付けた。アルミニウム板との角度を90°に維持しつつ、このテープを上方向に50mm/分の速度で引き上げて剥離角度90°で剥離されたときに上記テープを引っ張っている力(剥離力)(mN/2cm)を6回(6個の異なる試験片で)測定し、その平均値を電極活物質層のピール強度(mN/2cm)として算出した。なお、「mN/2cm」は、幅2cmあたりの剥離強度を示す単位である。ピール強度の値が大きいほど、集電体と電極活物質層との密着強度が高く、集電体から電極活物質層が剥離し難いと評価することができる。この値が200mN/2cm以上である場合、良好と評価することができる。表1~表3中、本評価を「ピール強度[mN/2cm]」と示す。
 4.1.4.リチウムイオン二次電池負極用バインダーの評価
 4.1.4.1.リチウムイオン二次電池負極の作製
 二軸型プラネタリーミキサー(商品名「TKハイビスミックス 2P-03」、プライミクス株式会社製)に、増粘剤(商品名「CMC2200」、ダイセル化学工業株式会社製)1部(固形分換算)、負極活物質としてグラファイト100部(固形分換算)、及び水68部を投入し、60rpmで1時間撹拌を行った。その後、各実施例で調製した電極用バインダー組成物1部(固形分換算)を加え、更に1時間撹拌し、ペーストを得た。得られたペーストに水を投入し、固形分濃度を50%に調整した後、撹拌脱泡機(商品名「あわとり練太郎」、株式会社シンキー製)を使用して、200rpmで2分間、次いで1,800rpmで5分間、更に真空条件下1,800rpmで1.5分間撹拌・混合することにより、電極用スラリーを調製した。銅箔からなる集電体の表面に、調製した電極用スラリーを、乾燥後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥させた。その後、電極活物質層の密度が1.8g/cmとなるようにロールプレス機を使用してプレス加工することにより、リチウムイオン二次電池負極を得た。
 4.1.4.2.対極(PVDF系正極)の作製
 二軸型プラネタリーミキサー(商品名「TKハイビスミックス 2P-03」、プライミクス株式会社製)に、PVDF(ポリフッ化ビニリデン)4部(固形分換算)、正極活物質としてリン酸鉄リチウム100部(固形分換算)、導電剤としてアセチレンブラック5部(固形分換算)、NMP(N-メチルピロリドン)25部を投入し、60rpmで1時間撹拌を行った。その後、更にNMP10部を投入した後、撹拌脱泡機(商品名「あわとり練太郎」、株式会社シンキー製)を使用して、200rpmで2分間、次いで1,800rpmで5分間、更に真空条件下1,800rpmで1.5分間撹拌・混合することにより、電極用スラリーを調製した。アルミ箔からなる集電体の表面に、調製した電極用スラリーを、乾燥後の膜厚が90μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥させた。その後、電極活物質層の密度が3.8g/cmとなるようにロールプレス機を使用してプレス加工することにより、リチウムイオン二次電池正極を得た。
 4.1.4.3.リチウムイオン二次電池の作製
 露点が-80℃以下となるようAr置換されたグローブボックス内で、2極式コインセル(商品名「HSフラットセル」、宝泉株式会社製)に、前記「4.1.4.1.リチウムイオン二次電池負極の作製」の項にて作製した負極を直径16.16mmの円盤状に打ち抜いた負極を載置した。次いで、直径18mmの円盤状に打ち抜いたポリプロピレン製多孔膜からなるセパレータ(商品名「セルガード#2400」、セルガード株式会社製)を載置するとともに、空気が入らないように電解液を注入した。その後、前記「4.1.4.2.対極(PVDF系正極)の作製」の項にて作製した正極を直径15.95mmの円盤状に打ち抜いた正極を載置し、前記2極式コインセルの外装ボディーをネジで締めて封止することにより、リチウムイオン二次電池を作製した。なお、使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1の溶媒に、LiPFを濃度1mol/Lとなるように溶解した溶液を使用した。
 4.1.4.4.リチウムイオン二次電池レート特性(1.0C/0.2C)
 前記「4.1.4.3.リチウムイオン二次電池の作製」の項で作製したリチウムイオン二次電池を定電流(0.2C)-定電圧(4.2V)方式により充電し、定電流(0.2C)方式により放電するサイクルを3回繰り返した後の放電容量(C0.2)を測定した。次いで、定電流(0.2C)-定電圧(4.2V)方式で充電し、定電流(1.0C)方式で放電したときの容量(C1.0)を測定した。これらの測定値を用いて、下記式(2)によってリチウムイオン二次電池レート特性(1.0C/0.2C)(%)を算出した。
 レート特性(%)=(C1.0/C0.2)×100 ・・・・・(2)
 このレート特性の値が大きいほど、電極の特性変化が小さいと判断することができる。この値が80%以上である場合、良好と判断することができる。なお、測定条件において「1C」とは、ある一定の電気容量を有するセルを定電流放電して1時間で放電終了となる電流値のことを示す。例えば「0.1C」とは、10時間かけて放電終了となる電流値のことであり、10Cとは0.1時間かけて放電完了となる電流値のことをいう。
 4.1.4.5.リチウムイオン二次電池サイクル特性
 前記「4.1.4.3.リチウムイオン二次電池の作製」の項で作製したリチウムイオン二次電池を定電流(0.2C)-定電圧(4.2V)方式により充電し、定電流(0.2C)方式により放電するサイクルを50回繰り返した。このとき、3サイクル目の放電容量(C3Cycles)及び50サイクル目の放電容量(C50Cycles)を測定し、下記式(3)によってリチウムイオン二次電池サイクル特性(%)を算出した。
 サイクル特性(%)=(C50Cycles/C3Cycles)×100 ・・・・・(3)
 このサイクル特性の値が100%に近いほど、充放電によるバインダーの酸化分解などに起因する電池特性の劣化が抑制されていると判断することができる。この値が70%以上である場合、良好と判断することができる。
 4.1.4.6.リチウムイオン二次電池直流内部抵抗(DC-IR)特性
 前記「4.1.4.3.リチウムイオン二次電池の作製」の項で作製したリチウムイオン二次電池を放電深度(DOD)50%に調整し、図1のように10秒パルス電流を1分間のインターバルにて1C、3C、5C、10Cの電流値で放電側、充電側交互に流し、電圧を測定した。図2に示すように、放電側のそれぞれ10秒目の電圧を電流値に対してプロットし、最小二乗法により各プロットを近似したその傾きをDC-IR(Ω)とした。
 直流内部抵抗(DC-IR)=|ΔV/ΔI| ・・・・・(4)
 直流内部抵抗値(DC-IR)が低いものほど、抵抗劣化が小さいと判断することができる。なお、直流内部抵抗値(DC-IR)が15未満である場合、良好と判断することができる。
 なお、測定条件において、「DOD」とは、充電容量に対する放電容量の割合を示す。例えば「放電深度(DOD)50%に調整」とは、全容量を100%とした場合、50%の容量だけ充電することを示す。
 4.1.5.リチウムイオン二次電池正極用バインダーの評価
 4.1.5.1.リチウムイオン二次電池正極の作製
 二軸型プラネタリーミキサー(商品名「TKハイビスミックス 2P-03」、プライミクス株式会社製)に、増粘剤(商品名「CMC2200」、ダイセル化学工業株式会社製)1部(固形分換算)、正極活物質としてリン酸鉄リチウム100部(固形分換算)、導電剤としてアセチレンブラック5部(固形分換算)、及び水25部を投入し、60rpmで1時間撹拌を行った。その後、各実施例で調製した電極用バインダー組成物2部(固形分換算)を加え、更に1時間撹拌し、ペーストを得た。得られたペーストに水10部を投入した後、撹拌脱泡機(商品名「あわとり練太郎」、株式会社シンキー製)を使用して、200rpmで2分間、次いで1,800rpmで5分間、更に真空条件下1,800rpmで1.5分間撹拌・混合することにより、電極用スラリーを調製した。アルミ箔からなる集電体の表面に、調製した電極用スラリーを、乾燥後の膜厚が90μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥させた。その後、電極活物質層の密度が2.0g/cmとなるようにロールプレス機を使用してプレス加工することにより、リチウムイオン二次電池正極を得た。
 4.1.5.2.対極(PVDF系負極)の作製
 二軸型プラネタリーミキサー(商品名「TKハイビスミックス 2P-03」、プライミクス株式会社製)に、PVDF(ポリフッ化ビニリデン)4部(固形分換算)、負極活物質としてグラファイト100部(固形分換算)、NMP(N-メチルピロリドン)80部を投入し、60rpmで1時間撹拌を行った。その後、更にNMP20部を投入した後、撹拌脱泡機(商品名「あわとり練太郎」、株式会社シンキー製)を使用して、200rpmで2分間、次いで1,800rpmで5分間、更に真空条件下1,800rpmで1.5分間撹拌・混合することにより、電極用スラリーを調製した。銅箔からなる集電体の表面に、調製した電極用スラリーを、乾燥後の膜厚が150μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥させた。その後、電極活物質層の密度が1.8g/cmとなるようにロールプレス機を使用してプレス加工することにより、リチウムイオン二次電池負極を得た。
 4.1.5.3.リチウムイオン二次電池の作製
 前述のリチウムイオン二次電池負極用バインダーの評価におけるリチウムイオン二次電池の作製と同様にして、リチウムイオン二次電池を作製した。
 4.1.5.4.評価方法
 前述のリチウムイオン二次電池負極用バインダーの評価と同様にして、リチウムイオン二次電池レート特性(1.0C/0.2C)、リチウムイオン二次電池サイクル特性、及びリチウムイオン二次電池直流内部抵抗(DC-IR)特性について評価した。
 4.1.6.電気二重層キャパシタ電極用バインダーの評価
 4.1.6.1.電気二重層キャパシタ電極の作製
 二軸型プラネタリーミキサー(商品名「TKハイビスミックス 2P-03」、プライミクス株式会社製)に、活性炭(商品名「クラレコールYP」、クラレケミカル株式会社製)100部、導電性カーボン(商品名「デンカブラック」、電気化学工業株式会社製)6部、増粘剤(商品名「CMC2200」、ダイセル化学工業株式会社製)2部、及び水278部を投入し、60rpmで1時間撹拌を行った。その後、各実施例で調製した電極用バインダー組成物4部を加え、更に1時間撹拌を行い、ペーストを得た。得られたペーストに水を投入し、固形分を25%に調整した後、撹拌脱泡機(商品名「あわとり練太郎」、株式会社シンキー製)を使用して、200rpmで2分間、次いで1,800rpmで5分間、更に真空条件下1,800rpmで1.5分間撹拌・混合することにより、電極用スラリーを調製した。アルミ箔よりなる集電体の表面に、調製した電極用スラリーを、乾燥後の膜厚が150μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理することにより電気二重層キャパシタ電極を得た。
 4.1.6.2.電気二重層キャパシタの作製
 露点が-80℃以下となるようAr置換されたグローブボックス内で2極式コインセル(商品名「HSフラットセル」、宝泉社製)に、前記「4.1.6.1.電気二重層キャパシタ電極の作製」の項にて作製した電極を直径16.16mmの円盤状に打ち抜いた電極を載置した。次いで、直径18mmの円盤状に打ち抜いたセパレータ(商品名「TF4535」、ニッポン高度紙工業株式会社製)を載置し、空気が入らないように電解液を注入した。その後、直径15.95mmの円盤状に打ち抜いた電気二重層キャパシタ電極を載置し、前記2極式コインセルの外装ボディーをネジで締めて封止することにより電気二重層キャパシタを作製した。なお、使用した電解液は、プロピレンカーボネートを溶媒とし、トリエチルメチルアンモニウムテトラフルオロボレートを濃度1mol/Lとなるように溶解した溶液を使用した。
 4.1.6.3.電気二重層キャパシタサイクル特性
 電気二重層キャパシタを定電流(1C)-定電圧(3.5V)方式により充電し、定電流(1C)方式により放電するサイクルを100回繰り返した。このとき、3サイクル目の放電容量(C3Cycles)及び100サイクル目の放電容量(C100Cycles)を測定し、下記式(5)によって電気二重層キャパシタサイクル特性(%)を算出した。
 サイクル特性(%)=(C100Cycles/C3Cycles)×100 ・・・・・(5)
 このサイクル特性の値が100%に近いほど、充放電によるバインダーの酸化分解などに起因する電池特性の劣化が抑制されていると判断することができる。この値が80%以上である場合、良好と判断することができる。
 4.1.6.4.電気二重層直流内部抵抗(DC-IR)特性
 前記「4.1.6.2.電気二重層キャパシタの作製」の項で作製した電気二重層キャパシタを放電深度(DOD)50%に調整し、図1のように10秒パルス電流を1分間のインターバルにて1C、3C、5C、10Cの電流値で放電側、充電側交互に流し、電圧を測定した。図2に示すように、放電側のそれぞれ10秒目の電圧を電流値に対してプロットし、最小二乗法により各プロットを近似したその傾きをDC-IR(Ω)とした。
 直流内部抵抗(DC-IR)=|ΔV/ΔI| ・・・・・(4)
 直流内部抵抗値(DC-IR)が低いものほど、抵抗劣化が小さいと判断することができる。なお、直流内部抵抗値(DC-IR)が15未満である場合、良好と判断することができる。
 なお、測定条件において、「DOD」とは、充電容量に対する放電容量の割合を示す。たとえば、「放電深度(DOD)50%に調整」とは、全容量を100%とした場合、50%の容量だけ充電することを示す。
 4.2.実施例1
 撹拌機を備えた温度調節の可能なオートクレーブ中に、水200部、ドデシルベンゼンスルホン酸ナトリウム0.6部、過硫酸カリウム1.0部、重亜硫酸ナトリウム0.5部、及び下記表1に示した各モノマーを一括して仕込み、80℃で6時間重合反応させた。重合反応終了後、ラテックスのpHを7.2に調節した。分散剤としてポリアクリル酸ソーダ1部を添加した後、残留モノマーを水蒸気蒸留で処理し、減圧下で固形分濃度が48%となるまで濃縮して、電極用バインダー組成物を得た(数平均粒子径120nm)。得られた電極用バインダー組成物の膨潤度を評価した。また、得られた電極用バインダー組成物を用いてリチウムイオン二次電池負極を作製し、そのピール強度について評価した。また、前記リチウムイオン二次電池負極を用いてリチウムイオン二次電池を作製し、そのレート特性(1.0C/0.2C)、サイクル特性及び直流内部抵抗測定について評価した。これらの評価結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000017
 なお、表1において、M-1およびM-2として表されるモノマーはそれぞれ下記式で表されるものを示す。
Figure JPOXMLDOC01-appb-C000018
 4.3.実施例2~7、比較例1~2
 上記表1に示す各モノマーを表1に示す割合で用いたこと以外は、実施例1と同様にして各電極用バインダー組成物を得た。
 4.4.実施例8
 容量7Lのセパラブルフラスコに水150部を仕込み、内部を十分に窒素置換した。一方、別の容器に、水60部、乳化剤としてエーテルサルフェート型乳化剤(商品名「アデカリアソープSR1025」、株式会社ADEKA製)2部(固形分換算)、下記表2に示した各モノマーを一括して仕込み、十分に撹拌することでモノマー乳化液を作製した。窒素置換した前記セパラブルフラスコの内部を60℃まで昇温し、重合開始剤として過硫酸ナトリウム0.5部を加え、更に75℃まで昇温した。内部温度が75℃に到達した時点でモノマー乳化液の添加を開始した。反応温度を75℃に維持したまま2時間かけてモノマー乳化液を全て添加し、更に85℃で1時間反応させた。その後、冷却して反応を停止させた後、水酸化ナトリウム水溶液でpHを7.5に調整することで電極用バインダー用組成物を得た(数平均粒子径180nm)。得られた電極用バインダー用組成物の膨潤度を評価した。また、得られた電極用バインダー用組成物を用いてリチウムイオン二次電池正極を作製し、そのピール強度について評価した。また、前記リチウムイオン二次電池正極を用いてリチウムイオン二次電池を作製し、そのレート特性(1.0C/0.2C)、サイクル特性及び直流内部抵抗測定について評価した。これらの評価結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000019
 4.5.実施例9、比較例3
 上記表2に示す各モノマー及び配合割合としたこと以外は、実施例8と同様にして各電極用バインダー組成物を得た。但し、実施例9については、モノマー乳化液を添加する前のセパラブルフラスコに、以下に示すフッ素重合体(シード粒子)ラテックス10部(固形分換算)を水150部とともに予め仕込んでおくこと、及び上記表2に示す各モノマー及び配合割合としたこと以外は、実施例8と同様にして電極用バインダー組成物を得た。上述の実施例9及び比較例3で得られた各電極用バインダー組成物について各種評価を行った。これらの評価結果を上記表2に示す。
 上記フッ素重合体(シード粒子)ラテックスは、以下のようにして調製した。電磁式撹拌機を備えた容積約6Lのオートクレーブの内部を十分に窒素置換した後、脱酸素した純水2.5L、及び乳化剤としてパーフルオロデカン酸アンモニウム25gを仕込み、350rpmで撹拌しながら60℃まで昇温した。次いで、フッ化ビニリデン(VDF)44.2%、及び六フッ化プロピレン(HFP)55.8%からなる混合ガスを、内圧が196N/cmに達するまで圧入した。その後、重合開始剤としてジイソプロピルパーオキシジカーボネート20%を含有するフロン113溶液(以下、「重合開始剤溶液」と記載する。)25gを、窒素ガスを使用して圧入し、重合反応を開始させた。重合反応中は、VDF60.2%、及びHFP39.8%からなる混合ガスを逐次圧入して、内圧を196N/cmに維持した。また、重合の進行とともに重合速度が低下するため、重合反応開始後3時間経過時に、前記重合開始剤溶液を、窒素ガスを使用して圧入して、更に3時間反応を継続させた。反応液を冷却するとともに撹拌を停止し、未反応モノマーを放出して反応を停止させ、フッ素重合体(シード粒子)ラテックスを得た。
 4.6.実施例10、比較例4~5
 下記表3に示す各モノマー及び配合割合としたこと以外は、実施例1と同様にして各電極用バインダー組成物を得た。得られた各電極用バインダー組成物を用いて電気二重層キャパシタ電極を作製し、各種評価を行った。評価結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000020
 4.7.実施例11、比較例6
 上記表3に示す各モノマー及び配合割合としたこと以外は、実施例9と同様にして各電極用バインダー組成物を得た。得られた各電極用バインダー組成物を用いて電気二重層キャパシタ電極を作製し、各種評価を行った。評価結果を下記表3に示す。
 前記表1~表3から明らかなように、本発明に係る電極用バインダー組成物は、内部抵抗が小さく、レート特性及びサイクル特性に優れた電気化学デバイスを構成することができる。
 本発明に係る電極用バインダー組成物、電極用スラリー、及び電極で構成される電気化学デバイスは、電気自動車、バイブリッドカー、トラック等の自動車に搭載される二次電池又はキャパシタとして好適であるほか、AV機器、OA機器、通信機器などに用いられる二次電池、キャパシタとしても好適である。

Claims (11)

  1.  下記一般式(C-1)で表される構成単位(a1)を含有する重合体(A)と、
     液状媒体(B)と、
    を含む、電極用バインダー組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(C-1)中、Rは水素原子、メチル基又はトリフルオロメチル基を示す。RC1は単結合又は2価の連結基を示す。RCcは環状カーボネート構造を有する1価の有機基を示す。)
  2.  前記一般式(C-1)中のRCcが下記一般式(Cc-1)又は下記一般式(Cc-2)で表される基である、請求項1に記載の電極用バインダー組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(Cc-1)中、nC1は0~2の整数を示す。式(Cc-2)中、nC2~nC5は、それぞれ独立に0~2の整数を示す。式(Cc-1)及び式(Cc-2)中、「*」は前記式(C-1)中のRC1に結合する結合手を示す。また、式(Cc-1)及び式(Cc-2)で表される基は置換基を有していてもよい。)
  3.  前記一般式(Cc-1)で表される基が下記一般式(Cc-11)で表される基である、請求項2に記載の電極用バインダー組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(Cc-11)中、「*」は前記式(C-1)中のRC1に結合する結合手を示す。)
  4.  前記一般式(Cc-2)で表される基が下記一般式(Cc-21)で表される基である、請求項2に記載の電極用バインダー組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(Cc-21)中、「*」は前記式(C-1)中のRC1に結合する結合手を示す。)
  5.  前記一般式(C-1)で表される構成単位(a1)が下記一般式(Cc-11a)又は下記一般式(Cc-21a)で表される構成単位である、請求項1に記載の電極用バインダー組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式(Cc-11a)及び式(Cc-21a)中、Rは水素原子、メチル基又はフルオロメチル基を示す。)
  6.  前記重合体(A)に含まれる前記構成単位(a1)の割合が、全構成単位の合計100質量%中0.5~10質量%である、請求項1ないし請求項5のいずれか一項に記載の電極用バインダー組成物。
  7.  前記重合体(A)が、共役ジエン系化合物に由来する構成単位(a2)及び芳香族ビニル化合物に由来する構成単位(a3)をさらに含有する、請求項1ないし請求項6のいずれか一項に記載の電極用バインダー組成物。
  8.  前記重合体(A)が、アクリル酸エステル化合物又はメタクリル酸エステル化合物に由来する構成単位(a4)をさらに含有する、請求項1ないし請求項6のいずれか一項に記載の電極用バインダー組成物。
  9.  電極活物質(C)と、請求項1ないし請求項8のいずれか一項に記載の電極用バインダー組成物と、を含有する電極用スラリー。
  10.  集電体と、前記集電体の少なくとも一方の面に請求項9に記載の電極用スラリーを用いて形成された電極活物質層と、を備える電極。
  11.  請求項10に記載の電極を備える電気化学デバイス。
PCT/JP2011/069995 2010-09-30 2011-09-02 電極用バインダー組成物、電極用スラリー、電極、及び電気化学デバイス WO2012043136A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509417A JP5057125B2 (ja) 2010-09-30 2011-09-02 電極用バインダー組成物、電極用スラリー、電極、及び電気化学デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010221174 2010-09-30
JP2010-221174 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043136A1 true WO2012043136A1 (ja) 2012-04-05

Family

ID=45892609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069995 WO2012043136A1 (ja) 2010-09-30 2011-09-02 電極用バインダー組成物、電極用スラリー、電極、及び電気化学デバイス

Country Status (3)

Country Link
JP (1) JP5057125B2 (ja)
TW (1) TW201225402A (ja)
WO (1) WO2012043136A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3053971A1 (fr) * 2016-07-18 2018-01-19 Compagnie Generale Des Etablissements Michelin Polymere dienique comprenant des fonctions carbonates pendantes
FR3053974A1 (fr) * 2016-07-18 2018-01-19 Michelin & Cie Composition de caoutchouc comprenant un elastomere dienique comprenant des fonctions carbonates.
CN109997262A (zh) * 2016-11-25 2019-07-09 出光兴产株式会社 电化学元件用粘结剂
WO2021187407A1 (ja) * 2020-03-19 2021-09-23 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223842A (ja) * 1992-10-24 1994-08-12 Sony Corp 高分子固体電解質
JP2004311307A (ja) * 2003-04-09 2004-11-04 Sony Corp 電池
JP2007165150A (ja) * 2005-12-14 2007-06-28 Daikin Ind Ltd イオン伝導体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223842A (ja) * 1992-10-24 1994-08-12 Sony Corp 高分子固体電解質
JP2004311307A (ja) * 2003-04-09 2004-11-04 Sony Corp 電池
JP2007165150A (ja) * 2005-12-14 2007-06-28 Daikin Ind Ltd イオン伝導体

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3053971A1 (fr) * 2016-07-18 2018-01-19 Compagnie Generale Des Etablissements Michelin Polymere dienique comprenant des fonctions carbonates pendantes
FR3053974A1 (fr) * 2016-07-18 2018-01-19 Michelin & Cie Composition de caoutchouc comprenant un elastomere dienique comprenant des fonctions carbonates.
WO2018015646A1 (fr) * 2016-07-18 2018-01-25 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère dienique comprenant des fonctions carbonates
WO2018015645A1 (fr) * 2016-07-18 2018-01-25 Compagnie Generale Des Etablissements Michelin Élastomère dienique comprenant des fonctions carbonates pendantes
CN109476178A (zh) * 2016-07-18 2019-03-15 米其林集团总公司 包含含碳酸酯官能团的二烯弹性体的橡胶组合物
US10920046B2 (en) 2016-07-18 2021-02-16 Compagnie Generale Des Etablissements Michelin Rubber composition including a diene elastomer comprising carbonate functional groups
CN109997262A (zh) * 2016-11-25 2019-07-09 出光兴产株式会社 电化学元件用粘结剂
WO2021187407A1 (ja) * 2020-03-19 2021-09-23 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス

Also Published As

Publication number Publication date
JP5057125B2 (ja) 2012-10-24
TW201225402A (en) 2012-06-16
JPWO2012043136A1 (ja) 2014-02-06

Similar Documents

Publication Publication Date Title
JP6888656B2 (ja) リチウムイオン電池用バインダー水溶液、リチウムイオン電池電極用スラリー及びその製造方法、リチウムイオン電池電極、並びにリチウムイオン電池
TWI489685B (zh) Electrochemical devices and binder compositions
JP5942992B2 (ja) 電気化学素子電極用導電性接着剤組成物、接着剤層付集電体および電気化学素子電極
TWI469433B (zh) Electrode binder composition
TW201419633A (zh) 用以製作保護膜之組成物及保護膜、以及蓄電裝置
KR20150023228A (ko) 축전 디바이스 전극용 결합제 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극, 및 축전 디바이스
JP2016126856A (ja) 二次電池用バインダ、二次電池用セパレータ、及び二次電池
JP5446762B2 (ja) 電気化学デバイス電極用バインダー組成物、電気化学デバイス電極用スラリー、電気化学デバイス電極、及び電気化学デバイス
JP6645101B2 (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2014115802A1 (ja) リチウム二次電池電極用バインダーの製造方法及びリチウム二次電池電極用バインダー
JP6269966B2 (ja) 電極用バインダー組成物
JP6696534B2 (ja) 二次電池正極用スラリーの製造方法、二次電池用正極の製造方法、及び二次電池の製造方法
JP2018032623A (ja) 蓄電デバイス電極用樹脂組成物
WO2012023626A1 (ja) 電極用バインダー組成物
WO2012043136A1 (ja) 電極用バインダー組成物、電極用スラリー、電極、及び電気化学デバイス
JP6759589B2 (ja) 電気化学素子用導電性組成物、電気化学素子電極用組成物、接着剤層付集電体及び電気化学素子用電極
WO2013114788A1 (ja) 蓄電デバイス用電極の製造方法
JP2018006333A (ja) リチウムイオン電池正極用バインダー水溶液、リチウムイオン電池正極用粉体状バインダー、リチウムイオン電池正極用スラリー、リチウムイオン電池用正極、リチウムイオン電池
JP2013182822A (ja) 二次電池用電極合剤、その製造方法、二次電池用電極、および二次電池。
JP5835581B2 (ja) 蓄電デバイスの電極用バインダー組成物
JP6582879B2 (ja) 電気化学素子用導電性組成物、電気化学素子電極用組成物、接着剤層付集電体及び電気化学素子用電極
JP6066142B2 (ja) 電極用スラリー、電極、および電気化学デバイス
JP2016143553A (ja) 蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP2016143552A (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP2011009116A (ja) 電気化学デバイス電極用バインダー組成物、電気化学デバイス電極用スラリー、及び電気化学デバイス電極

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012509417

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828697

Country of ref document: EP

Kind code of ref document: A1