WO2012041218A1 - 一种环脂肽化合物或其盐的纯化方法 - Google Patents

一种环脂肽化合物或其盐的纯化方法 Download PDF

Info

Publication number
WO2012041218A1
WO2012041218A1 PCT/CN2011/080220 CN2011080220W WO2012041218A1 WO 2012041218 A1 WO2012041218 A1 WO 2012041218A1 CN 2011080220 W CN2011080220 W CN 2011080220W WO 2012041218 A1 WO2012041218 A1 WO 2012041218A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
adsorption resin
compound
xad
organic solvent
Prior art date
Application number
PCT/CN2011/080220
Other languages
English (en)
French (fr)
Inventor
张兆利
刘石东
卓忠浩
季晓铭
Original Assignee
上海天伟生物制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海天伟生物制药有限公司 filed Critical 上海天伟生物制药有限公司
Priority to CA2813330A priority Critical patent/CA2813330A1/en
Priority to RU2013118532/04A priority patent/RU2535489C1/ru
Priority to US13/877,427 priority patent/US8927690B2/en
Priority to EP11828114.6A priority patent/EP2623511B1/en
Priority to KR1020137010894A priority patent/KR101514903B1/ko
Priority to ES11828114.6T priority patent/ES2581562T3/es
Priority to AU2011307731A priority patent/AU2011307731B2/en
Priority to JP2013530549A priority patent/JP6000254B2/ja
Publication of WO2012041218A1 publication Critical patent/WO2012041218A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • C07K7/56Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation not occurring through 2,4-diamino-butanoic acid

Definitions

  • the present invention relates to the field of organic chemistry, and more particularly to a method for purifying a cyclolipopeptide compound or a salt thereof as shown in Formula I. Background technique
  • Fungal infections have become a major cause of high morbidity and mortality in immunodeficient patients. The incidence of mold infections has increased significantly over the past 20 years. High-risk populations of fungal infections include critically ill patients, surgical patients, and those with HIV infection, blood cancer, and other oncological diseases. Those who have undergone organ transplants are also at high risk for fungal infections.
  • echinococcal is effective in treating infections caused by Candida or Aspergillus.
  • These drugs are represented by caspofungin and micafungin.
  • Echinoglobin inhibits fungi by inhibiting the formation of 1, 3-beta glycosidic bonds, thereby reducing harm to the human body, reducing side effects as much as possible while efficient, so they are in use Safer than traditional antifungal drugs.
  • FK463 (Micafungin) is a compound of the formula III, which is a compound of the formula II, FR901379 (Mo), which is obtained by cleavage of a side chain to obtain a compound of the formula I FR179642 (MJ, and then a method of adding a side chain by synthesis) So, to get high purity micafungin, high purity formula I
  • the bacterium of the genus Streptomyces is Streptomyces anulatus 481 1 strain, Streptomyces cerevisiae 8703 strain, Streptomyces ( Streptomyces sp.) strain No. 6907, and IF013244, IF06798, IF031963, IF09951, NRRL 12052 and the like. No.
  • 5,376,634 discloses a method for converting a compound of the formula II into a compound of the formula I by enzymatic reaction, first filtering the transformant, preliminarily purifying it through an activated carbon column, and further purifying it on a silica gel column, and concentrating under reduced pressure to obtain a white solid.
  • This method uses a large amount of organic solvent, and the activated carbon and silica gel used cannot be recycled, which easily causes environmental pollution, and seriously affects the health of the operator, and is not suitable for industrial mass production.
  • the present invention is directed to a method of purifying a compound of formula I.
  • the present invention provides a method of purifying a compound of formula I or a salt thereof, the method comprising the steps of:
  • the macroporous adsorption resin is selected from the group consisting of: a nonpolar aromatic adsorption resin obtained by polymerizing styrene and divinylbenzene, or a medium having a methacrylate unit structure.
  • a nonpolar aromatic adsorption resin obtained by polymerizing styrene and divinylbenzene
  • a medium having a methacrylate unit structure e.g., a nonpolar aromatic adsorption resin obtained by polymerizing styrene and divinylbenzene
  • a medium having a methacrylate unit structure e.g., a methacrylate unit structure
  • the adsorption resin is selected from the group consisting of: XAD-1, XAD-2, XAD-3, XAD-4,
  • the adsorption resin is an adsorption resin containing a halogen element and chemically bonding a styrene polymerization substrate.
  • the adsorption resin is a bromine-containing element to chemically bond a styrene polymer group.
  • Body adsorption resin is a bromine-containing element to chemically bond a styrene polymer group.
  • the adsorption resin is selected from the group consisting of SP-207, SP207SS or a mixture thereof.
  • the step (1) is a step of flowing a solution containing a crude compound of the formula I through a chromatography column loaded with a macroporous adsorption resin or a solution containing a crude compound of the formula I and a macroporous adsorption resin. 1 ⁇ The crude product of the formula I was loaded to a macroporous adsorption resin; the flow rate of 0. 1 - 10 bed volume per hour.
  • the solution containing the crude compound of the formula I contains an ionizable salt;
  • the macroporous adsorption resin is selected from the group consisting of non-polar aromatic adsorption resins obtained by polymerizing styrene and divinylbenzene. Or a medium polarity methacrylic acid adsorption resin having a methacrylate unit structure; ionizable salts including sulfates, nitrates, salts containing 3 ⁇ 4, phosphates, acetates, carbonates, citrates, Silicate, persulfate, chromate, lactate, oxalate, etc., or mixtures thereof.
  • the volume percentage of the organic solvent is from 0 to 3%, preferably from 0 to 2%, based on the total volume of the washing liquid.
  • the volume percentage of the organic solvent is from 0 to 20%, preferably from 0 to 5%, based on the total volume of the eluent.
  • the weight ratio of the crude compound of the formula I to the macroporous adsorption resin is from 0.1 to 15 (g/L); preferably from 5 to 10 (g/L). .
  • the organic solvent is selected from the group consisting of CH alcohol and CH ketone; preferably, the organic solvent is selected from the group consisting of methanol, ethanol, propanol, butanol, acetone, methyl ethyl ketone, or a mixture thereof; optimally selected from the group consisting of methanol, ethanol or acetone. Accordingly, the present invention provides a purification method which does not require a large amount of solvent and does not use silica gel, overcomes the drawbacks existing in the prior art, and at the same time improves the purity of the compound of formula I. DRAWINGS
  • Figure 1 shows the HPLC chromatogram of crude 1 of the compound of formula 1 of Example 1.
  • Figure 2 shows the HPLC chromatogram of the purified compound of formula I in Example 6.
  • aromatic macroporous adsorption resins are used, especially For the aromatic-derived resin, for example, bromine is bonded to an aromatic skeleton. It enhances the hydrophobic adsorption force and has a strong adsorption capacity for the highly hydrophilic substance of the compound of the formula I, and has a very remarkable effect in purifying the compound of the formula I and its related impurities.
  • a common non-polar aromatic adsorption resin composed of styrene and divinylbenzene is used, or a medium-polar methacrylic acid adsorption resin having a methacrylate unit structure, the hydrophobic adsorption force is weak.
  • the highly hydrophilic substance of the compound of the formula I has a low adsorption capacity, and the inventors creatively add an ionizable salt to the hydrophobicity of the target substance when the compound of the formula I is adsorbed to the macroporous adsorption resin.
  • the compound of formula I is more readily adsorbed onto the resin for the purpose of purifying the compound of formula I.
  • the method for purifying a compound of formula I provided by the present invention comprises the steps of:
  • the crude compound of the formula I is applied to the macroporous adsorption resin
  • water, an organic solvent, or a mixed solution of an organic solvent and water is used as a washing liquid to wash the macroporous adsorption resin;
  • a compound of the formula I is eluted from the macroporous adsorption resin by using water, an organic solvent, or a mixed solution of an organic solvent and water as an eluent.
  • the first step can be achieved by contacting a solution containing the crude compound of formula I with a macroporous adsorption resin.
  • the contact may be a.
  • the adsorption resin is directly introduced into a solution containing the crude compound of the formula I, and then stirred for 5 to 120 minutes; or b.
  • the adsorption resin is placed in a chromatography apparatus such as a chromatography column to make the content
  • the solution of the crude compound of the compound I flows through the column at a flow rate of 0.1 to 10 bed volumes per hour.
  • the purification method comprises the steps of:
  • the adsorption resin is directly put into a solution containing the crude compound of the formula I, and then stirred for 5 to 120 minutes;
  • step C using a mixed solution of water, an organic solvent, or an organic solvent and water as a washing liquid to wash the macroporous resin remaining in the step B;
  • the separation described in the step B includes filtration, centrifugation or the like to separate the resin from the filtrate.
  • the organic solvent is selected from the group consisting of ( 4 alcohols, d- 4 ketones or mixtures thereof, preferably from methanol, ethanol, propanol, butanol, acetone, methyl ethyl ketone or their mixture.
  • the adsorption resin is selected from the group consisting of: a non-polar aliphatic adsorption resin obtained by polymerizing styrene and divinylbenzene or a medium polarity having a methacrylate unit structure.
  • Methacrylic acid adsorption resin Preferably, it is: XAD series adsorption resin produced by RohmHaas, USA, and D i a on HP series adsorption resin produced by Mitsubishi Chemical Corporation of Japan and an adsorption resin containing bromine element to chemically bond styrene polymerization matrix.
  • the author of the present invention found in the present invention that the adsorption resin containing a halogen-containing element to bond a styrene polymerizable substrate with a chemical bond has higher adsorption power and separation efficiency.
  • An adsorption resin containing a bromine element to chemically bond a styrene polymer matrix is preferred, and the most preferred adsorption resin is SP207, SP207 S S or a mixture thereof.
  • adsorbent resins containing a halogen-containing element to chemically bond a styrene polymer matrix mainly based on Mitsubishi Chemical's SP207, SP207 S S, but not limited to these two types of resins.
  • the above first step is to mix the crude compound of formula I with an ionizable salt prior to loading the crude compound of formula I to increase the conductivity of the sample and the hydrophobicity of the target compound of formula I. , enhancing the adsorption capacity of the resin to the target compound.
  • Ionizable salts include sulfates, nitrates, salts containing 3 ⁇ 4, phosphates, acetates, carbonates, citrates, silicates, persulphates, chromates, lactates, oxalates, etc. , or their compounds.
  • the concentration of the organic solvent in the washing liquid is
  • Ionizable salts include sulfates, nitrates, salts containing 3 ⁇ 4, phosphates, acetates, carbonates, citrates, silicates, persulphates, chromates, lactates, oxalates, etc. , or a mixture of them. Preference is given to mixing from one or more of the most common salts described below: salts, sulphates, phosphates, acetates, carbonates and citrates. Most preferred: NaCl, KC1 and Wo (NH 4 ) 2 S0 4 .
  • the concentration of the organic solvent in the eluate is from 0% to 20%, preferably from 0% to 5%.
  • the washing can be carried out 1, 2, or 3 times.
  • the washing speed is 0. 1-10 bed volumes per hour.
  • the elution rate is 0. 1-10 bed volumes per hour.
  • pharmaceutically acceptable salt refers to a salt formed from a base selected from the group consisting of inorganic bases such as sodium, potassium, magnesium, calcium, aluminum, and the like; and organic bases such as methylamine, ethylamine, monoethanolamine.
  • purity of a compound as shown in Formula I As used herein, “purity of a compound as shown in Formula I", “purity of a compound of formula I” or “HPLC purity of a compound of formula I” are used interchangeably and refer to the high performance liquid chromatography (HPLC) provided by the present invention.
  • HPLC high performance liquid chromatography
  • crude product of the compound of formula I can be obtained using methods available in the art, such as, but not limited to, by the method described in Example 1 of EP0431350B1, The strain was fermented by Coleophoma sp. F- 11899 (FERM BP2635), and then the cells were extracted with an organic solvent. Preferably, the fermentation broth is directly added to two volumes of organic solvent for extraction.
  • Preferred organic solvents are selected from the group consisting of: methanol, ethanol or acetone.
  • a solution containing a crude product of a compound of formula I or "a solution containing a crude product of a compound of formula I” is used interchangeably and refers to a compound of the formula I and one or more non-target compounds.
  • the solution may be obtained by dissolving the crude compound of the formula I in water or a buffer solution, or it may be a reaction solution of a compound of the formula I obtained in any procedure.
  • the reaction solution of the compound of the formula I obtained by the method for preparing the compound of the formula I which is available in the art can be used, see Example 1 of CN1040541C.
  • a solution obtained by adding a certain amount of water or an organic solvent to the post-conversion liquid containing the compound of formula I is from 0% to 2%.
  • loading refers to the process of contacting a crude solution of a compound of formula I with a macroporous adsorption resin to adsorb a crude product of a compound of formula I onto a macroporous adsorption resin.
  • the contacting includes directly introducing the macroporous adsorption resin into the solution and then agitating the adsorption; and loading the macroporous adsorption resin into the chromatography device to flow the solution through the chromatography column.
  • Wash buffer refers to a buffer used to wash (primarily organic phase) macroporous adsorption resin prior to elution of the target compound of formula I.
  • the wash buffer and the loading buffer can be of the same polarity, but this is not required.
  • the "eluting" of the molecule from the macroporous adsorption resin means removing the molecule from the macroporous adsorption resin by changing the polarity of the buffer around the macroporous adsorption resin. This polarity enables the buffer to compete with the molecule for macroporous adsorption. Adsorption site on the resin.
  • elution buffer is used to elute the target compound I from the solid phase.
  • the elution buffer allows the target compound I to elute from the macroporous adsorption resin.
  • “Purifying" a compound of formula I from a composition comprising a compound of the formula I and one or more non-target compounds means increasing the composition of the composition by removing (completely or partially) at least one non-target compound from the composition. The purity of the compound I.
  • the present invention provides a novel and inexpensive method for purifying cyclolipopeptide compounds, particularly echinocandin compounds.
  • the purification step of the method provided by the invention has the characteristics of short route, mild condition, high purification yield, very small amount of organic solvent used, simple treatment, small environmental pollution, etc., and the process is greatly reduced. Operation and equipment requirements reduce production costs.
  • the method provided by the invention can obtain a relatively stable target product, is beneficial to the quality control of the final product, and is advantageous for industrialized large production.
  • the invention is further illustrated below in conjunction with specific embodiments. It is to be understood that the examples are not intended to limit the scope of the invention.
  • the experimental methods in which the specific conditions are not indicated in the following examples are usually carried out according to conventional conditions or according to the conditions recommended by the manufacturer. All percentages, ratios, ratios, or parts are by weight unless otherwise indicated.
  • the unit of weight percent by volume in the present invention is well known to those skilled in the art and, for example, refers to the weight of the solute in a 100 ml solution.
  • HPLC purity is 73. 91%.
  • the solution of the compound of formula I is 7. 3g / L, HPLC purity is 73. 91%. See Figure 1 and Table 1 for the HPLC profile. Table 1
  • the crude solution was loaded onto a column containing 300 mL of SP207 SS resin at a loading rate of 5 bed volumes per hour. After the loading was completed, 2 column volumes were washed with 1% ethanol, the washing flow rate was 1 bed volume per hour, 2 column volumes were washed with 2% ethanol, and the washing flow rate was 1 bed volume per hour. After washing, 3.6 L of 3% ethanol was used as an eluent, and the elution flow rate was 1 bed volume per hour. The fraction containing the compound of formula I was collected and mixed. 0% ⁇ The purity of the mixture is 99.0% (yield 94.2%), the purity is 99.0%. HPLC map see Figure 2 and Table 2.
  • the crude solution was loaded onto a column containing 600 mL of SP207SS resin at a flow rate of 5 bed volumes per hour. After the end of the loading, 2 column volumes were washed with purified water at a flow rate of 1 bed volume per hour. After washing, 7.2 L of 2% ethanol was used as an eluent, and the elution flow rate was 2 bed volumes per hour. The fraction containing the compound of formula I was collected and mixed. The content of the compound of formula I is 4. 4 g (yield 95.6%), and the purity is 99.0%.
  • the crude solution was loaded onto a chromatography column containing 46 L of SP207 resin at a flow rate of 5 bed volumes per hour. After the end of the loading, 2 column volumes were washed with purified water at a flow rate of 1 bed volume per hour. After washing, 150 L of 20% ethanol was used as an eluent, and the elution flow rate was 2 bed volumes per hour. The fraction containing the compound of formula I was collected and mixed. 1% ⁇ The content of the compound of the formula I was 4. 0g (yield 87.4%), the purity was 98.1%.
  • the crude solution was loaded onto a column containing 460 mL of SP207 resin at a flow rate of 5 bed volumes per hour. After the loading was completed, 2 column volumes were washed with 1% ethanol, and the washing flow rate was 1 bed volume per hour. After washing, using 3. 0 L of 5% ethanol as an eluent, the elution flow rate was 1 bed volume per hour, and the fraction containing the compound of formula I was collected and mixed. The content of the compound of the formula I was 4. 4 g (yield 95.6%), and the purity was 97.9%. Comparative Example 1
  • the crude solution was applied to a column packed with 0.8 L of XAD-16 resin at a flow rate of 1 bed volume per hour. After the loading was completed, 5 column volumes were washed with pure water at a washing flow rate of 1 bed volume per hour. After washing, the elution flow rate was 1 bed volume per hour with 2.5 L 3% methanol as an eluent, and the fraction containing the compound of formula I was collected and mixed. The 5%.
  • the purity of the compound is 6. 6g (yield 50.4%), the purity is 79. 5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

一种环脂肽化合物或其盐的纯化方法,所述的方法包括步骤:(1)将式I化合物粗品上样至大孔吸附树脂;(2)将水、有机溶剂、或有机溶剂和水的混合溶液作为洗涤液洗涤大孔吸附树脂;和(3)将水、有机溶剂、或有机溶剂和水的混合溶液作为洗脱液,将式I化合物从大孔吸附树脂上洗脱下来。所述的纯化方法与公开技术相比具有有机溶媒用量少,不使用硅胶,对环境的危害性小的优点,并且收集到的式I化合物的纯度也比以前公开的方法有所提高。

Description

一种环脂肽化合物或其盐的纯化方法
技术领域
本发明涉及有机化学领域, 尤其涉及一种如式 I所示的环脂肽化合物或 其盐的纯化方法。 背景技术
真菌感染已经成为免疫缺陷病人发病率和死亡率居高不下的主要原因。 在过去的 20 年里, 霉菌感染的发病率显著增加。 真菌感染的高危人群包括 重症病人, 外科病人以及那些患有 HIV感染, 血癌和其它肿瘤疾病的病人。 那些经过器官移植的病人同样是真菌感染的高危人群。
棘球白素作为一类新的抗真菌药物, 在治疗由念珠菌或曲霉引起的感染 方面效果良好。 这类药物又以卡泊芬净和米卡芬净为代表。 棘球白素类药物 通过抑制 1, 3- β糖苷键的形成来抑制真菌, 从而更好地减小了对人体的伤 害, 在高效的同时尽可能的降低了副作用, 因此它们在使用过程中比传统抗 真菌药更安全。
FK463 (米卡芬净)是如式 III所示的化合物, 它是以式 II化合物 FR901379 ( Mo ) 为前体通过切侧链得到式 I化合物 FR179642 ( MJ , 然后经过合成添 加侧链的方法方法得到的。 所以, 要得到高纯度的米卡芬净, 纯度高的式 I
Figure imgf000003_0001
Figure imgf000004_0001
已经报道的式 II化合物转化为式 I化合物的酰基侧链脱酰的酶有链霉 菌属的细菌有环圈链霉菌(Streptomyces anulatus) 481 1 号菌株, 环圈链霉 菌 8703号菌株、 链霉菌(Streptomyces sp. ) 6907号菌株, 以及 IF013244 , IF06798 , IF031963 , IF09951 , NRRL 12052 等。 US5376634 公开了一种将式 II化合物通过酶反应转化为式 I化合物后, 先将转化液过滤, 通过活性炭柱 初步纯化, 然后上硅胶柱进一步纯化的纯化方法, 经过减压浓缩后, 得到白 色固体状的式 I化合物。 这种方法使用有机溶媒数量大, 且使用的活性炭和 硅胶不能循环利用, 易造成了环境污染, 并严重影响了操作人员的身体健康, 不适合工业化大规模生产。
因此, 本领域急需找到一种不需要大量溶媒, 不使用硅胶的纯化方法, 克服上述现有技术中存在的缺陷, 同时提高式 I化合物的纯度。 发明内容
本发明旨在提供一种纯化式 I化合物的方法。 本发明提供了一种如式 I化合物或其盐的纯化方法, 所述的方法包括步 骤:
( 1 ) 将式 I化合物粗品上样至大孔吸附树脂;
( 2 ) 将水、 有机溶剂、 或有机溶剂和水的混合溶液作为洗涤液洗涤大 孔吸附树脂; 和
( 3 ) 将水、 有机溶剂、 或有机溶剂和水的混合溶液作为洗脱液, 将式 I 化合物从大
Figure imgf000005_0001
在本发明提供的上述纯化方法中, 所述的大孔吸附树脂选自: 由苯乙烯与 二乙烯苯聚合而成的非极性的芳香族吸附树脂、 或具有甲基丙烯酸酯单元结构 的中等极性的甲基丙烯酸吸附树脂。
在另一优选例中, 所述的吸附树脂选自: XAD-1、 XAD-2、 XAD-3、 XAD-4、
XAD- 5、 XAD- 16、 XAD- 16HP、 HP- 10、 HP- 20、 HP- 20ss、 HP- 21、 HP- 30、 HP- 40、
HP- 50、 SP- 825、 SP- 850、 SP- 70、 SP- 700、 SP- 207、 SP207ss、 XAD- 6、 XAD- 7、
XAD-7HP, XAD-8、 HP-2MG、 或它们的混合物。
在另一优选例中, 所述的吸附树脂为含卤素元素以化学键键合苯乙烯聚合 基体的吸附树脂。
在另一优选例中, 所述的吸附树脂为含溴元素以化学键键合苯乙烯聚合基 体的吸附树脂。
在另一优选例中, 所述的吸附树脂选自: SP-207、 SP207SS 或它们的混合 物。
在另一优选例中, 所述步骤 (1 ) 是将含有式 I化合物粗品的溶液流过装载 有大孔吸附树脂的层析柱或将含有式 I化合物粗品的溶液和大孔吸附树脂混 合, 使式 I化合物粗品上样至大孔吸附树脂; 所述的流过速度为每小时 0. 1— 10 个柱床体积。
在另一优选例中, 所述含有式 I化合物粗品的溶液中含有可电离的盐; 所 述的大孔吸附树脂选自由苯乙烯与二乙烯苯聚合而成的非极性的芳香族吸附树 脂、 或具有甲基丙烯酸酯单元结构的中等极性的甲基丙烯酸吸附树脂; 可电离 的盐包括硫酸盐, 硝酸盐, 含 ¾盐, 磷酸盐, 醋酸盐, 碳酸盐, 柠檬酸盐, 硅 酸盐, 过硫酸盐, 铬酸盐, 乳酸盐, 草酸盐等, 或它们的混合物。
在本发明提供的上纯化方法中, 步骤 (2 ) 中, 以洗涤液的总体积计, 其中 有机溶剂的体积百分比为 0— 3 %, 优选 0-2%。
在本发明提供的上纯化方法中, 步骤 (3 ) 中, 以洗脱液的总体积计, 其中 有机溶剂的体积百分比为 0— 20 %,优选 0-5%。
在本发明提供的上纯化方法中, 步骤 (1 ) 中, 式 I化合物粗品和大孔吸附 树脂的重量体积比为 0. 1— 15 ( g/L ) ; 优选 5-10 ( g/L ) 。
在本发明提供的上纯化方法中, 所述的有机溶剂选自 CH醇、 CH酮; 较佳 地, 所述的有机溶剂选自甲醇、 乙醇、 丙醇、 丁醇、 丙酮、 丁酮、 或它们的混 合物; 最佳地, 选自甲醇、 乙醇或丙酮。 据此, 本发明提供了一种不需要大量溶媒, 不使用硅胶的纯化方法, 克 服了现有技术中存在的缺陷, 同时提高了式 I化合物的纯度。 附图说明
图 1 显示了实施例 1式 I化合物的粗品 1的 HPLC图谱。
图 2 显示了实施例 6中经纯化后的式 I化合物的 HPLC图谱。 具体实施方式
本发明人经过大量的试验研究发现, 选用芳香族系大孔吸附树脂, 特别是 芳香族系衍生型树脂, 例如把溴结合在芳香族系的骨架上。 强化了疏水吸附力, 对于式 I化合物这样亲水性很强的物质有较强的吸附能力, 在纯化式 I化合 物及其相关的杂质时, 有非常显著的效果。 另外在选用普通的由苯乙烯与二 乙烯苯聚合而成的非极性的芳香族吸附树脂、 或具有甲基丙烯酸酯单元结构的 中等极性的甲基丙烯酸吸附树脂时, 疏水吸附力较弱, 对式 I化合物这样亲水 性很强的物质, 吸附能力不强, 本发明人创造性地在式 I化合物与大孔吸附 树脂吸附时, 加入可电离的盐, 从而提高目标物质的疏水性, 使得式 I化合物 更容易的吸附在树脂上, 实现纯化式 I化合物的目的。 本发明提供的式 I化合物的纯化方法包括步骤:
第一步, 将式 I化合物粗品上样至大孔吸附树脂;
第二步, 将水、 有机溶剂、 或有机溶剂和水的混合溶液作为洗涤液洗涤 大孔吸附树脂;
第三步, 将水、 有机溶剂、 或有机溶剂和水的混合溶液作为洗脱液, 将 式 I化合物从大孔吸附树脂上洗脱下来。
第一步可以通过将含有式 I化合物粗品的溶液与大孔吸附树脂接触实现。 所述的接触可以是 a.将吸附树脂直接投入含有式 I化合物粗品的溶液中, 然 后搅拌 5- 120分钟; 或者是 b .将吸附树脂装在层析柱等层析装置中, 使含有 式 I化合物粗品的溶液流过层析柱, 流速在每小时 0. 1 - 10个柱床体积。 在本发明的一个实施例中, 所述的纯化方法包括步骤:
A, 将吸附树脂直接投入含有式 I化合物粗品的溶液中, 然后搅拌 5- 120 分钟;
B, 使含有式 I化合物粗品的溶液与所述树脂分离;
C, 将水、 有机溶剂、 或有机溶剂和水的混合溶液作为洗涤液洗涤步骤 B 中留下的大孔吸附树脂;
D, 将水、 有机溶剂、 或有机溶剂和水的混合溶液作为洗脱液对步骤 C 中得到的洗涤过的吸附树脂进行洗脱, 然后收集含有式 I化合物的洗脱液, 得到纯化的式 I化合物。
步骤 B中所述的分离包括过滤、 离心等方法使树脂与滤液相分离。 在本发明提供的所有纯化方法中, 所述的有机溶剂选自 ( 4醇、 d-4酮或 其它们的混合物, 优选自甲醇、 乙醇、 丙醇、 丁醇、 丙酮、 丁酮或它们的混 合物。
在本发明提供的所有纯化方法中, 所述的吸附树脂选自: 由苯乙烯与二 乙烯苯聚合而成的非极性的脂肪族吸附树脂或者具有甲基丙烯酸酯单元结 构的中等极性的甲基丙烯酸吸附树脂。 优选自: 美国罗门哈斯公司 ( RohmHaas ) 生产的 XAD系列吸附树脂, 及日本三菱化学公司生产的 D i a i on HP系列吸附树脂和含溴元素以化学键键合苯乙烯聚合基体的吸附树脂。更优 地, 选自 XAD- K XAD-2 , XAD-3 , XAD - 4、 XAD - 5、 XAD - 6、 XAD - 7、 XAD-7HP , XAD - 8、 XAD - 16、 XAD - 16HP、 HP - 10、 HP - 20、 HP - 20s s、 HP - 21、 HP - 30、 HP - 40、 HP - 50、 HP - 2MG、 SP - 825、 SP - 850、 SP - 70、 SP - 700、 SP207 , SP207 s s或它们 的混合物。 最优地, 选自 HP20、 XAD— 16、 XAD— 16HP、 SP207或者是它们的 小颗粒化产品, 例如 HP-20s s、 SP207 s s , 其粒径为 0. 063mm-0. 150mm, 可更 大程度上提高分离性能。
另外, 本发明的作者在完成本发明时, 发现含卤元素以化学键键合苯乙烯 聚合基体的吸附树脂具有更高的吸附力和分离效率。 优选含溴元素以化学键键 合苯乙烯聚合基体的吸附树脂, 最优的吸附树脂为 SP207, SP207 S S或它们的混 合物。 目前市场上有售的含卤元素以化学键键合苯乙烯聚合基体的吸附树脂, 主要以三菱化学的 SP207, SP207 S S为主, 但不限于这两种型号的树脂。
对于不含卤素的吸附树脂, 上述第一步在式 I化合物粗品上样前, 将式 I 化合物粗品和可电离的盐混合, 以增加上样液的电导率和目标物质式 I化合物 的疏水性, 增强树脂对目标化合物的吸附能力。 可电离的盐包括硫酸盐, 硝酸 盐, 含 ¾盐, 磷酸盐, 醋酸盐, 碳酸盐, 柠檬酸盐, 硅酸盐, 过硫酸盐, 铬酸 盐, 乳酸盐, 草酸盐等, 或它们的化合物。 优选自下述的一种或一种以上最常 用盐的混合: ¾化盐, 硫酸盐, 磷酸盐, 醋酸盐, 碳酸盐和柠檬酸盐等。 最优 选自: NaCl , KC1和 ( NH4 ) 2S04
在本发明提供的纯化方法的第二步中, 所述洗涤液中有机溶剂的浓度为
0-3%, 优选 0-2%。 洗涤液中也包括加入可电离的盐。 可电离的盐包括硫酸盐, 硝酸盐, 含 ¾盐, 磷酸盐, 醋酸盐, 碳酸盐, 柠檬酸盐, 硅酸盐, 过硫酸盐, 铬酸盐, 乳酸盐, 草酸盐等, 或它们的混合物。 优选自下述的一种或一种以上 最常用盐的混合: ¾化盐, 硫酸盐, 磷酸盐, 醋酸盐, 碳酸盐和柠檬酸盐等。 最优选自: NaCl, KC1禾口 (NH4) 2S04
在本发明提供的纯化方法的第三步中, 所述洗脱液中有机溶剂的浓度为 0%- 20%, 优选 0-5%。 在本发明提供的纯化方法中, 洗涤可以进行 1、 2、 或 3次。 洗涤速度在 每小时 0. 1-10个柱床体积。 洗脱速度在每小时 0. 1-10个柱床体积。 如本文所用, "如式 I所示化合物" 或 "式 I化合物" 可以互换使用, 都是 受的盐:
Figure imgf000009_0001
如本文所用, "药学上可接受的盐 "是指同选自下述碱形成的盐类: 无机 碱如钠、 钾、 镁、 钙、 铝等; 有机碱如甲胺、 乙胺、 单乙醇胺、 二乙醇胺、 三 乙醇胺、 环己醇胺、 赖氨酸、 鸟氨酸等, 或其它药学上可接受的盐有关的碱。
如本文所用, "如式 I所示化合物的纯度"、 "式 I化合物的纯度 "或"式 I化合物的 HPLC 纯度" 可以互换使用, 都是指在本发明提供的高效液相色谱 ( HPLC ) 检测条件下, 测得的式 I化合物的峰面积和所有峰的峰面积之和的百 分比。
如本文所用, "如式 I所示化合物的粗品" 或 "式 I化合物的粗品" 可 以互换使用, 都是指在本发明提供的高效液相色谱 (HPLC ) 检测条件下, 式 I 化合物的含量 < 80 %的混合物。 可以使用本领域现有的方法得到式 I化合物的 粗品, 例如但不限于, 参照 EP0431350B1 实施例 1 中描述的方法, 通过 Coleophoma sp. F- 11899 (FERM BP2635)菌发酵, 然后将菌体用有机溶剂抽 提所得。 优选的是, 将发酵液直接加入两倍体积的有机溶剂抽提。 优选的有 机溶剂选自: 甲醇、 乙醇或丙酮。
如本文所用, "含有如式 I所示化合物的粗品的溶液" 或 "含有式 I化 合物的粗品的溶液" 可以互换使用, 是指含有目标式 I化合物和一种或多种 非目标化合物的溶液,可以是式 I化合物的粗品溶解于水或者缓冲溶液获得, 也可以是任何过程得到的式 I化合物的反应液。 可以使用本领域现有的制备 式 I化合物的方法所获得的式 I化合物的反应液, 参见 CN1040541C实施例 1。 例如但不限于, 通过在含有式 I化合物的转化后液中加入一定量的水或有机 溶剂获得的溶液。 式 I化合物的粗品溶液中的有机溶剂的浓度为 0%-2%。
如本文所用, "上样" 是指将含有式 I化合物的粗品的溶液和大孔吸附 树脂接触, 使式 I化合物的粗品吸附到大孔吸附树脂上的过程。 所述的接触 包括将大孔吸附树脂直接投入溶液中, 然后搅拌吸附; 还有将大孔吸附树脂 装入层析装置中, 使溶液流过层析柱。
"洗涤 "大孔吸附树脂,指使合适的缓冲液在大孔吸附树脂中或上通过。 如本文所用, "洗涤缓冲液 " 指在洗脱目标式 I化合物之前, 用来洗涤 (主要是有机相) 大孔吸附树脂的缓冲液。 方便的, 洗涤缓冲液和加样缓冲 液可以是同一极性, 但这不是必须的。
将分子从大孔吸附树脂上 "洗脱" 下来, 指通过改变大孔吸附树脂周围 的缓冲液极性从大孔吸附树脂上除下该分子, 该极性能使缓冲液与分子竞争 大孔吸附树脂上的吸附位点。
如本文所用, "洗脱缓冲液"用来将目标式 I化合物从固相上洗脱下来。 洗脱缓冲液能使目标式 I化合物从大孔吸附树脂上洗脱下来。
从含有目标式 I化合物和一种或多种非目标化合物的组合物中 "纯化" 式 I化合物, 指通过从组合物中 (完全或部分的) 除去至少一种非目标化合 物来提高组合物中式 I化合物的纯度。 本发明提到的上述特征, 或实施例提到的特征可以任意组合。 本案说明书 所揭示的所有特征可与任何组合物形式并用, 说明书中所揭示的各个特征, 可 以任何可提供相同、 均等或相似目的的替代性特征取代。 因此除有特别说明, 所揭示的特征仅为均等或相似特征的一般性例子。 本发明的主要优点在于:
1、 本发明提供了一种成本低廉的纯化环脂肽化合物, 特别是棘白菌素 类化合物的新方法。
2、 本发明提供的方法所经过的纯化步骤具有路线短、 条件温和、 纯化 收率高、 使用有机溶剂的量非常小、 处理简单、 对环境污染小等特点, 在很 大程度上减轻了工艺操作和对设备要求, 降低了生产成本。
3、 本发明提供的方法能得到较稳定的目标产物, 有利于终产品的质量 控制, 有利于工业化大生产。 下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于 说明本发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实 验方法, 通常按照常规条件或按照制造厂商所建议的条件。 除非另外说明, 否则所有的百分数、 比率、 比例、 或份数按重量计。
本发明中的重量体积百分比中的单位是本领域技术人员所熟知的, 例如 是指在 100毫升的溶液中溶质的重量。
除非另行定义, 文中所使用的所有专业与科学用语与本领域熟练人员所 熟悉的意义相同。 此外, 任何与所记载内容相似或均等的方法及材料皆可应 用于本发明方法中。 文中所述的较佳实施方法与材料仅作示范之用。 下述实施例中式 I化合物 HPLC检测所用的方法:
在 Waters 分析性 HPLC 体系上进行分析。 反相 HPLC 分析用于测定 FR179642 , 棘白菌素 B 核物质及其它类似物。 反相分析采用 PLATISIL ODS 色谱柱(粒径 5 μ ηι, 4. 6mmi . d X 250mm ) , 并且保持在 30°C。 以 3%乙腈 /0. 5% 磷酸二氢钠作流动相, 流速为 lml/分钟, 并在 210nm下 UV检测。 实施例 1
制备式 I化合物的粗品 1
参照 US5376634实施例 1 中描述的方法, 制备含有式 I化合物的溶液, 其中式 I化合物的含量为 7. 3g/L, HPLC纯度为 73. 91%。 HPLC图谱参见附图 1和表 1。 表 1
Figure imgf000012_0001
实施例 2
式 I化合物的纯化
取 500mL实施例 1获得的含有式 I化合物的粗品溶液, 其中含式 I化合 物共 3. 65克。
在粗品溶液中加入 25g NaCl , 溶解后将粗品溶液上样到一个装有 370ml HP20ss 树脂的层析柱, 上样流速为每小时 1 个柱床体积。 上样结束后, 以 3%的氯化钠水溶液洗涤 2个柱体积, 洗涤流速为每小时 1个柱床体积。 洗涤 完毕后, 以 1000ml 纯水为洗脱液, 洗脱流速为每小时 1个柱床体积, 收集 含有式 I化合物的部分并混匀。 收集液经 HPLC检测, 其中的式 I化合物含 量为 3. 4克 (收率 93. 2% ) , 纯度为 97. 2%。 实施例 3
式 I化合物的纯化
取 1L实施例 1 获得的含有式 I化合物的粗品溶液, 其中式 I化合物的 含量为 7. 3克。
将粗品溶液加入 40gKCl溶解后, 上样到一个装有 0. 8L XAD-16树脂的 层析柱, 上样流速为每小时 1个柱床体积。 上样结束后, 以纯水洗涤 5个柱 体积, 洗涤流速为每小时 1个柱床体积。 洗涤完毕后, 以 2. 5L3%甲醇为洗脱 液, 洗脱流速为每小时 1个柱床体积, 收集含有式 I化合物的部分并混匀。 收集液经 HPLC检测, 其中的式 I化合物含量为 6. 6克 (收率 90. 4% ) , 纯度 为 96. 5%。 实施例 4
式 I化合物的纯化
取 1L实施例 1 获得的含有式 I化合物的粗品溶液, 其中式 I化合物的 含量为 7. 3克。
将粗品溶液装到一个 5L 塑料白壶中, 加入 1. 4L XAD - 16HP 树脂和 50g (NH4) 2S04,于室温下搅拌 120分钟然后将含有树脂的滤液倾倒于铺有滤纸 的布氏漏斗中过滤, 滤液弃去, 树脂装入层析柱中, 以 3L 纯水洗涤, 洗涤 完毕以 5L 4%丙酮洗脱, 收集含有式 I化合物的部分, 收集液经 HPLC检测, 其中的式 I化合物为 6. 7克 (收率 92. 5% ) , 纯度 97. 3%。 实施例 5
式 I化合物的纯化
取 0. 5L实施例 1 获得的含有式 I化合物的粗品溶液, 其中式 I化合物 的含量为 4. 6克。
将粗品溶液上样到一个装有 300mL SP207 S S 树脂的层析柱, 上样流速 为每小时 5个柱床体积。 上样结束后, 以 1%乙醇洗涤 2个柱体积, 洗涤流速 为每小时 1个柱床体积, 以 2%乙醇洗涤 2个柱体积, 洗涤流速为每小时 1个 柱床体积。 洗涤完毕后, 以 3. 6L 3%乙醇为洗脱液, 洗脱流速为每小时 1个 柱床体积, 收集含有式 I 化合物的部分并混匀。 收集液经 HPLC检测, 其中 的式 I化合物含量为 4. 33克 (收率 94. 2% ) , 纯度为 99. 0%。 HPLC图谱参见 附图 2和表 2。
表 2
Figure imgf000014_0001
实施例 6
式 I化合物的纯化
取 0. 5L实施例 1 获得的含有式 I化合物的粗品溶液, 其中式 I化合物 的含量为 4. 6克。
将粗品溶液上样到一个装有 600mL SP207SS 树脂的层析柱, 上样流速 为每小时 5个柱床体积。 上样结束后, 以纯化水洗涤 2个柱体积, 洗涤流速 为每小时 1个柱床体积。 洗涤完毕后, 以 7. 2L 2%乙醇为洗脱液, 洗脱流速 为每小时 2个柱床体积, 收集含有式 I化合物的部分并混匀。 收集液经 HPLC 检测, 其中的式 I化合物含量为 4. 4克 (收率 95. 6% ) , 纯度为 99. 0%。 实施例 7
式 I化合物的纯化
取 0. 5L实施例 1 获得的含有式 I化合物的粗品溶液, 其中式 I化合物 的含量为 4. 6克。
将粗品溶液上样到一个装有 46L SP207 树脂的层析柱, 上样流速为每 小时 5个柱床体积。 上样结束后, 以纯化水洗涤 2个柱体积, 洗涤流速为每 小时 1个柱床体积。 洗涤完毕后, 以 150L 20%乙醇为洗脱液, 洗脱流速为 每小时 2 个柱床体积, 收集含有式 I 化合物的部分并混匀。 收集液经 HPLC 检测, 其中的式 I化合物含量为 4. 02克 (收率 87. 4% ) , 纯度为 98. 1%。 实施例 8
式 I化合物的纯化
取 0. 5L实施例 1 获得的含有式 I化合物的粗品溶液, 其中式 I化合物 的含量为 4. 6克。
将粗品溶液上样到一个装有 460mL SP207 树脂的层析柱, 上样流速为 每小时 5个柱床体积。 上样结束后, 以 1%的乙醇洗涤 2个柱体积, 洗涤流速 为每小时 1个柱床体积。 洗涤完毕后, 以 3. 0L 5%乙醇为洗脱液, 洗脱流速 为每小时 1个柱床体积, 收集含有式 I化合物的部分并混匀。 收集液经 HPLC 检测, 其中的式 I化合物含量为 4. 4克 (收率 95. 6% ) , 纯度为 97. 9%。 对比实施例 1
式 I化合物的纯化
取 500mL实施例 1获得的含有式 I化合物的粗品溶液, 其中含式 I化合 物共 3. 65克。
将粗品溶液上样到一个装有 370ml HP20ss树脂的层析柱, 上样流速为 每小时 1个柱床体积。 上样结束后, 以 1000ml 纯水为洗脱液, 洗脱流速为 每小时 1 个柱床体积, 收集含有式 I 化合物的部分并混匀。 收集液经 HPLC 检测, 其中的式 I化合物含量为 3. 4克 (收率 93. 2% ) , 纯度为 75. 2%。 对比实施例 2
取 1L实施例 1 获得的含有式 I化合物的粗品溶液, 其中式 I化合物的 含量为 7. 3克。
将粗品溶液上样到一个装有 0. 8L XAD-16 树脂的层析柱, 上样流速为 每小时 1个柱床体积。 上样结束后, 以纯水洗涤 5个柱体积, 洗涤流速为每 小时 1个柱床体积。 洗涤完毕后, 以 2. 5L3%甲醇为洗脱液, 洗脱流速为每小 时 1个柱床体积, 收集含有式 I化合物的部分并混匀。 收集液经 HPLC检测, 其中的式 I化合物含量为 6. 6克 (收率 50. 4% ) , 纯度为 79. 5%。 以上所述仅为本发明的较佳实施例而已, 并非用以限定本发明的实质技 术内容范围, 本发明的实质技术内容是广义地定义于申请的权利要求范围 中, 任何他人完成的技术实体或方法, 若是与申请的权利要求范围所定义的 完全相同, 也或是一种等效的变更, 均将被视为涵盖于该权利要求范围之中。

Claims

权 利 要 求
1.一种如式 I化合物或其盐的纯化方法, 其特征在于, 所述的方法包括步 骤:
( 1 ) 将式 I化合物粗品上样至大孔吸附树脂;
( 2 ) 将水、 有机溶剂、 或有机溶剂和水的混合溶液作为洗涤液洗涤大 孔吸附树脂; 和
( 3 ) 将水、 有机溶剂、 或有机溶剂和水的混合溶液作为洗脱液, 将式 I 化合物从大孔吸
Figure imgf000017_0001
2.如权利要求 1所述的纯化方法, 其特征在于, 所述步骤 (1 ) 是将含有式 I化合物粗品的溶液流过装载有大孔吸附树脂的层析柱或将含有式 I化合物粗 品的溶液和大孔吸附树脂混合, 使式 I化合物粗品上样至大孔吸附树脂。
3.如权利要求 2 所述的纯化方法, 其特征在于, 所述的流过速度为每小时 0. 1一 10个柱床体积。
4.如权利要求 1一 3任一所述的纯化方法, 其特征在于, 所述的大孔吸附树 脂选自: 由苯乙烯与二乙烯苯聚合而成的非极性的芳香族吸附树脂、 或具有甲 基丙烯酸酯单元结构的中等极性的甲基丙烯酸吸附树脂。
5. 如权利要求 4 所述的纯化方法, 其特征在于, 所述的吸附树脂选自: XAD- 1、 XAD- 2、 XAD- 3、 XAD- 4、 XAD- 5、 XAD- 16、 XAD- 16HP、 HP- 10、 HP- 20、 HP- 20ss、 HP- 21、 HP- 30、 HP- 40、 HP- 50、 SP- 825、 SP- 850、 SP- 70、 SP- 700、 SP-207 , SP207ss、 XAD - 6、 XAD - 7、 XAD - 7HP、 XAD - 8、 HP - 2MG、 或它们的混合物。
6. 如权利要求 4所述的纯化方法, 其特征在于, 所述的吸附树脂为含卤素 元素以化学键键合苯乙烯聚合基体的吸附树脂。
7. 如权利要求 6所述的纯化方法, 其特征在于, 所述的吸附树脂为含溴元 素以化学键键合苯乙烯聚合基体的吸附树脂。
8. 如权利要求 7 所述的纯化方法, 其特征在于, 所述的吸附树脂选自: SP-207 , SP207ss 或它们的混合物。
9.如权利要求 2 所述的纯化方法, 其特征在于, 所述含有式 I化合物粗品 的溶液中含有可电离的盐; 所述的大孔吸附树脂选自由苯乙烯与二乙烯苯聚合 而成的非极性的芳香族吸附树脂、 或具有甲基丙烯酸酯单元结构的中等极性的 甲基丙烯酸吸附树脂。
10.如权利要求 9所述的纯化方法, 其特征在于, 可电离的盐包括硫酸盐, 硝酸盐, 含 ¾盐, 磷酸盐, 醋酸盐, 碳酸盐, 柠檬酸盐, 硅酸盐, 过硫酸盐, 铬酸盐, 乳酸盐, 草酸盐等, 或它们的混合物。
1 1.如权利要求 1一 3 任一所述的纯化方法, 其特征在于, 所述的有机溶剂 选自( 4醇、 d— 4酮。
12.如权利要求 1 1 所述的纯化方法, 其特征在于, 所述的有机溶剂选自甲 醇、 乙醇、 丙醇、 丁醇、 丙酮、 丁酮、 或它们的混合物。
13.如权利要求 1一 3任一所述的纯化方法, 其特征在于, 步骤 (2) 中, 以 洗涤液的总体积计, 其中有机溶剂的体积百分比为 0-3%, 优选 0-2%。
14. 如权利要求 1一 3 任一所述的纯化方法, 其特征在于, 步骤 (3) 中, 以洗脱液的总体积计, 其中有机溶剂的体积百分比为 0— 20%,优选 0-5%。
15.如权利要求 1一 3任一所述的纯化方法, 其特征在于, 步骤 (1) 中, 式 I化合物粗品和大孔吸附树脂的重量体积比为 0.1— 15 (g/L) 。
PCT/CN2011/080220 2010-09-29 2011-09-27 一种环脂肽化合物或其盐的纯化方法 WO2012041218A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2813330A CA2813330A1 (en) 2010-09-29 2011-09-27 Process for purifying cyclolipopeptide compounds or the salts thereof
RU2013118532/04A RU2535489C1 (ru) 2010-09-29 2011-09-27 Способ очистки циклолипопептидных соединений или их солей
US13/877,427 US8927690B2 (en) 2010-09-29 2011-09-27 Process for purifying cyclolipopeptide compounds or the salts thereof
EP11828114.6A EP2623511B1 (en) 2010-09-29 2011-09-27 Process for purifying cyclic lipopeptide compounds or salts thereof
KR1020137010894A KR101514903B1 (ko) 2010-09-29 2011-09-27 사이클릭 리포펩타이드 화합물 또는 그의 염의 정제방법
ES11828114.6T ES2581562T3 (es) 2010-09-29 2011-09-27 Procedimiento para purificar compuestos lipopeptídicos cíclicos o sales de los mismos
AU2011307731A AU2011307731B2 (en) 2010-09-29 2011-09-27 Process for purifying cyclic lipopeptide compounds or salts thereof
JP2013530549A JP6000254B2 (ja) 2010-09-29 2011-09-27 環状リポペプチド化合物又はその塩の精製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010297406 2010-09-29
CN201010297406.2 2010-09-29

Publications (1)

Publication Number Publication Date
WO2012041218A1 true WO2012041218A1 (zh) 2012-04-05

Family

ID=45891956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080220 WO2012041218A1 (zh) 2010-09-29 2011-09-27 一种环脂肽化合物或其盐的纯化方法

Country Status (10)

Country Link
US (1) US8927690B2 (zh)
EP (1) EP2623511B1 (zh)
JP (1) JP6000254B2 (zh)
KR (1) KR101514903B1 (zh)
CN (1) CN102432674B (zh)
AU (1) AU2011307731B2 (zh)
CA (1) CA2813330A1 (zh)
ES (1) ES2581562T3 (zh)
RU (1) RU2535489C1 (zh)
WO (1) WO2012041218A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012143293A1 (en) * 2011-04-20 2012-10-26 Xellia Pharmaceuticals Aps Method for purification of micafungin
US8927690B2 (en) 2010-09-29 2015-01-06 Shanghai Techwell Biopharmaceutical Co., Ltd. Process for purifying cyclolipopeptide compounds or the salts thereof
US20150065417A1 (en) * 2012-03-30 2015-03-05 Shanghai Techwell Biophamaceutical Co., Ltd. High purity cyclopeptide compound as well as preparation method and use thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8877777B2 (en) * 2010-09-30 2014-11-04 Shanghai Techwell Biopharmaceutical Co., Ltd. Process for purifying cyclolipopeptide compounds or the salts thereof
CN102627689B (zh) * 2012-03-30 2014-08-06 上海天伟生物制药有限公司 一种环肽类化合物的水合物及其制备方法和用途
CN102911257B (zh) * 2012-09-21 2014-02-12 无锡市第四人民医院 环脂肽类抗生素及其制备和应用
CN104418940A (zh) * 2013-08-28 2015-03-18 重庆乾泰生物医药有限公司 一种高纯度环己肽类化合物的制备方法
CN103965298B (zh) * 2014-05-23 2016-08-10 浙江海正药业股份有限公司 一种阿尼芬净的纯化方法
CN104926701B (zh) * 2015-06-30 2017-05-03 西安蓝晓科技新材料股份有限公司 一种蛋氨酸纯化的工艺
US10980853B2 (en) 2015-12-31 2021-04-20 Development Center For Biotechnology Process for preparing a crassocephalum crepidioides extract, extract prepared thereby and use of the extract
CN106755221A (zh) * 2016-11-28 2017-05-31 无锡福祈制药有限公司 一种米卡芬净母核fr179642的制备方法
CN111434675A (zh) * 2019-01-11 2020-07-21 苏州纳微科技股份有限公司 一种米卡芬净母环的分离纯化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874843A (en) * 1987-12-03 1989-10-17 Eli Lilly And Company Chromatographic purification process
EP0486011A2 (en) * 1990-11-16 1992-05-20 Fujisawa Pharmaceutical Co., Ltd. Pharmaceutical composition against Pneumocystis carinii
US5376634A (en) 1990-06-18 1994-12-27 Fujisawa Pharmaceutical Co., Ltd. Polypeptide compound and a process for preparation thereof
EP0431350B1 (en) 1989-11-13 1995-07-26 Fujisawa Pharmaceutical Co., Ltd. New polypeptide compound and a process for preparation thereof
EP1197557A1 (en) * 1999-07-02 2002-04-17 Fujisawa Pharmaceutical Co., Ltd. Gene encoding cyclic lipopeptide acylase and expression of the same
EP1137663B1 (en) * 1998-12-09 2006-08-30 Eli Lilly And Company Purification of echinocandin cyclopeptide compounds
US20100249371A1 (en) * 2009-03-24 2010-09-30 Cadila Healthcare Limited Purification process for lipopeptides

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378804A (en) * 1993-03-16 1995-01-03 Merck & Co., Inc. Aza cyclohexapeptide compounds
US5552521A (en) * 1995-02-10 1996-09-03 Merck & Co., Inc. Process for preparing certain aza cyclohexapeptides
US6146872A (en) * 1996-06-13 2000-11-14 Fukisawa Pharmaceutical Co., Ltd. Cyclic lipopeptide acylase
US6960360B2 (en) 2000-08-31 2005-11-01 Phenolics, Llc Efficient method for producing compositions enriched in total phenols
EP1366065A1 (en) 2001-02-26 2003-12-03 Fujisawa Pharmaceutical Co., Ltd. Echinocandin derivatives, pharmaceutical compositions containing same and use thereof as drugs
DE102004060750A1 (de) * 2004-12-15 2006-07-13 Sanofi-Aventis Deutschland Gmbh Verfahren zur Deacylierung von Lipopeptiden
KR101514903B1 (ko) 2010-09-29 2015-04-23 샹하이 테크웰 바이오파마슈티컬 컴퍼니, 리미티드 사이클릭 리포펩타이드 화합물 또는 그의 염의 정제방법
US8877777B2 (en) * 2010-09-30 2014-11-04 Shanghai Techwell Biopharmaceutical Co., Ltd. Process for purifying cyclolipopeptide compounds or the salts thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874843A (en) * 1987-12-03 1989-10-17 Eli Lilly And Company Chromatographic purification process
EP0431350B1 (en) 1989-11-13 1995-07-26 Fujisawa Pharmaceutical Co., Ltd. New polypeptide compound and a process for preparation thereof
US5376634A (en) 1990-06-18 1994-12-27 Fujisawa Pharmaceutical Co., Ltd. Polypeptide compound and a process for preparation thereof
CN1040541C (zh) 1990-06-18 1998-11-04 藤泽药品工业株式会社 新型多肽化合物的制备方法
EP0486011A2 (en) * 1990-11-16 1992-05-20 Fujisawa Pharmaceutical Co., Ltd. Pharmaceutical composition against Pneumocystis carinii
EP1137663B1 (en) * 1998-12-09 2006-08-30 Eli Lilly And Company Purification of echinocandin cyclopeptide compounds
EP1197557A1 (en) * 1999-07-02 2002-04-17 Fujisawa Pharmaceutical Co., Ltd. Gene encoding cyclic lipopeptide acylase and expression of the same
US20100249371A1 (en) * 2009-03-24 2010-09-30 Cadila Healthcare Limited Purification process for lipopeptides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623511A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8927690B2 (en) 2010-09-29 2015-01-06 Shanghai Techwell Biopharmaceutical Co., Ltd. Process for purifying cyclolipopeptide compounds or the salts thereof
WO2012143293A1 (en) * 2011-04-20 2012-10-26 Xellia Pharmaceuticals Aps Method for purification of micafungin
US9132163B2 (en) 2011-04-20 2015-09-15 Xellia Pharmaceuticals Aps Method for purification of Micafungin
EP2918324A1 (en) * 2011-04-20 2015-09-16 Xellia Pharmaceuticals ApS Method for purification of micafungin
AU2012244435B2 (en) * 2011-04-20 2017-06-15 Xellia Pharmaceuticals Aps Method for purification of Micafungin
US20150065417A1 (en) * 2012-03-30 2015-03-05 Shanghai Techwell Biophamaceutical Co., Ltd. High purity cyclopeptide compound as well as preparation method and use thereof

Also Published As

Publication number Publication date
KR101514903B1 (ko) 2015-04-23
CN102432674A (zh) 2012-05-02
ES2581562T3 (es) 2016-09-06
RU2013118532A (ru) 2014-11-10
CN102432674B (zh) 2014-01-22
US8927690B2 (en) 2015-01-06
EP2623511A1 (en) 2013-08-07
EP2623511A4 (en) 2014-04-16
AU2011307731B2 (en) 2016-02-18
US20130281665A1 (en) 2013-10-24
AU2011307731A1 (en) 2013-05-23
JP6000254B2 (ja) 2016-09-28
CA2813330A1 (en) 2012-04-05
EP2623511B1 (en) 2016-04-06
KR20130059454A (ko) 2013-06-05
RU2535489C1 (ru) 2014-12-10
JP2013538832A (ja) 2013-10-17

Similar Documents

Publication Publication Date Title
WO2012041218A1 (zh) 一种环脂肽化合物或其盐的纯化方法
JP6000255B2 (ja) 環状リポペプチド化合物又はその塩の精製方法
KR101479389B1 (ko) 아자시클로헥사펩타이드 또는 그 염의 정제방법
CN111057141B (zh) 一种三肽的精制工艺
TW201231475A (en) Method for separating and purifying cyclohexapeptide compound and salt thereof
TW200815458A (en) Process for purifying Tacrolimus
CN103374055B (zh) 从含有还原型谷胱甘肽的发酵抽提液中分离纯化还原型谷胱甘肽的方法
CN1869055A (zh) 一种从人参叶中提取分离人参皂苷单体的方法
BR112012024826B1 (pt) processo para purificação de pneumocandina
JP2980689B2 (ja) シクロスポリンaの製造方法
CN1290853C (zh) 默诺霉素的纯化方法
CN108250272A (zh) 卡泊芬净高效分离纯化方法
CN106518980B (zh) 一种高纯度环己肽类化合物的制备方法
RU2332248C1 (ru) Способ хроматографической очистки бусерелина
CN105295057A (zh) 一种高吸附莫西菌素的环糊精修饰磁性明胶及其制备方法
JP2012502095A (ja) 銀イオン溶液抽出を利用した不飽和アルキル基を有するラクトン化合物の精製方法
JPS59198990A (ja) ペプチド性抗生物質k582m−a及びk582m−bの分離方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013530549

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2813330

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137010894

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013118532

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011828114

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011307731

Country of ref document: AU

Date of ref document: 20110927

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13877427

Country of ref document: US