WO2012039497A1 - 蓄電デバイス及び蓄電デバイスの製造方法 - Google Patents

蓄電デバイス及び蓄電デバイスの製造方法 Download PDF

Info

Publication number
WO2012039497A1
WO2012039497A1 PCT/JP2011/071907 JP2011071907W WO2012039497A1 WO 2012039497 A1 WO2012039497 A1 WO 2012039497A1 JP 2011071907 W JP2011071907 W JP 2011071907W WO 2012039497 A1 WO2012039497 A1 WO 2012039497A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
container
plate group
current collecting
collecting member
Prior art date
Application number
PCT/JP2011/071907
Other languages
English (en)
French (fr)
Inventor
良樹 濱
幸雄 飯田
若松 喜美
晴紀 星
櫻井 淳
高橋 昭夫
秀秋 上原
美花 大山
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to KR1020137010451A priority Critical patent/KR20130115263A/ko
Priority to EP11826939.8A priority patent/EP2620964A4/en
Priority to JP2012535089A priority patent/JP5958340B2/ja
Priority to CN201180046103.6A priority patent/CN103119675B/zh
Priority to US13/825,428 priority patent/US20130224546A1/en
Publication of WO2012039497A1 publication Critical patent/WO2012039497A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/167Lids or covers characterised by the methods of assembling casings with lids by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/579Devices or arrangements for the interruption of current in response to shock
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/154Lid or cover comprising an axial bore for receiving a central current collector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electricity storage device, and more particularly to a non-aqueous electrolyte electricity storage device such as a lithium ion capacitor and a lithium ion battery having a large capacity.
  • Non-aqueous electrolyte storage devices such as lithium ion capacitors and lithium ion batteries have the advantages of high energy density, low self-discharge and good cycle performance. Therefore, in recent years, it is expected that the nonaqueous electrolyte storage device is used as a power source for automobiles such as hybrid cars and electric cars by increasing the size or capacity.
  • a wound electrode plate group in which a positive and negative electrode plate is wound around a shaft core through a separator in a bottomed cylindrical container.
  • the tip of the positive electrode plate and the negative electrode plate (collecting lead piece) constituting the wound electrode plate group is made of, for example, aluminum (positive electrode) or copper (negative electrode). It is joined to the current collector.
  • the electrode plate group accommodated in the container may be displaced with respect to the container.
  • strong vibrations and impacts applied to the vehicle body or generated by the vehicle body are applied to the storage device for a long time.
  • the nonaqueous electrolyte storage device of the type in which the above-described tab is bonded to the current collecting member the connection between the tab and the current collecting member is cut and the resistance of the connection portion is increased.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-141217
  • the bottom surface of the container is covered so as to cover the current collecting member located on the bottom side of the container.
  • epoxy resin is injected.
  • the tab when the electrode plate and the current collecting member are connected using the tab, the tab is fixed, whereas the wound electrode plate group including the electrode plate is not attached to the current collecting member. It is not fixed. Therefore, when strong vibration is continuously applied to the electricity storage device from the outside, the wound electrode plate group in the container vibrates and the tab is cut. When the tab is partially cut, the resistance between the electrode plate group and the current collecting member increases, so that the performance of the electricity storage device cannot be fully exhibited.
  • Patent Document 1 In the structure shown in Patent Document 1, an epoxy resin is filled on the bottom side of the container for the purpose of electrical insulation. At first glance, it seems that the electrode plate group is fixed to the bottom of the container, but the epoxy resin reacts with the non-aqueous electrolyte and decomposes, causing a problem of reducing the reactivity of the non-aqueous electrolyte. I understand that. Therefore, the epoxy resin disclosed in Patent Document 1 cannot prevent displacement of the electrode plate group in the container of the electrode plate group.
  • An object of the present invention is to provide an electricity storage device that securely fixes an electrode plate and a current collecting member and is resistant to external vibration.
  • An object of the present invention is to provide a non-aqueous electrolyte electricity storage device in which characteristics as an electricity storage device do not deteriorate even if vibration resistance or impact resistance is improved.
  • the present invention provides a laminate in which a positive electrode plate in which a positive electrode active material mixture is applied to a first metal foil and a negative electrode plate in which a negative electrode active material mixture is applied to a second metal foil are stacked via a separator.
  • a wound electrode plate group formed by winding the body, a positive electrode current collector connected to the positive electrode plate at one end of the wound electrode plate group, and a negative electrode plate at the other end of the wound electrode plate group
  • the electrode plate group unit comprising a connected negative electrode current collecting member is combined with a non-aqueous electrolyte that is infiltrated into the wound electrode plate group in a bottomed cylindrical container constituting one polarity terminal
  • the power storage device to be stored is targeted for improvement.
  • the wound electrode plate group is fixed to the container by a fixing means that does not react with the non-aqueous electrolyte.
  • a fixing means that does not react with a non-aqueous electrolyte to improve the vibration resistance or impact resistance by fixing the wound electrode group in a container, and that does not deteriorate the characteristics of the electricity storage device. Can do.
  • the electricity storage device of the present invention includes a wound electrode plate group, a positive electrode current collecting member and a negative electrode current collecting member that constitute an electrode plate group unit, and a bottomed cylindrical container.
  • the wound electrode plate group includes a coating layer formed by coating a cathode active material mixture on a first metal foil, and a cathode plate having an uncoated portion of the first metal foil remaining along the coating layer;
  • stacked through the separator so that a coating part and the uncoated part of a negative electrode plate may protrude in the reverse direction can respectively be comprised.
  • the positive electrode current collector is welded to the uncoated portion of the positive electrode plate protruding beyond the separator at one end of the wound electrode plate group, and beyond the separator at the other end of the wound electrode plate group.
  • a negative electrode current collecting member is welded to an uncoated portion of the protruding negative electrode plate to form an electrode plate group unit.
  • the container constitutes one polarity terminal, and the electrode plate group unit is accommodated in the container.
  • An annular convex portion that is convex toward the inside of the container is formed over the entire circumference of the container at a position that is a predetermined distance away from the opening of the container toward the bottom side.
  • the lid member constituting the terminal of the other polarity is electrically connected to the container between the annular retaining portion formed by caulking the annular wall portion adjacent to the opening of the container radially inward and the annular convex portion. In an electrically insulated state.
  • one of the positive current collecting member and the negative current collecting member that is electrically connected to the lid member has an outer peripheral portion closer to the peripheral wall portion side of the container than the top of the annular convex portion. It has a geometrical dimension and is located near the annular projection.
  • An electrical insulating member that electrically insulates one of the current collecting members and the container between the annular convex portion and the annular wall portion of the peripheral wall portion continuous to the annular convex portion and the outer peripheral portion of the one current collecting member. are arranged in a compressed state.
  • the current collecting member electrically connected to the lid member is a positive electrode current collecting member.
  • the positive electrode current collecting member has a shape dimension in which the outer peripheral portion is located closer to the peripheral wall portion side of the container than the top portion of the annular convex portion, and is disposed near the annular convex portion.
  • the electrical insulating member electrically insulates the container constituting the negative electrode and the positive electrode current collecting member, so that the annular convex portion, the annular wall portion of the peripheral wall portion continuous to the annular convex portion, and the outer peripheral portion of the positive electrode current collecting member Are arranged in a compressed state.
  • the area of one current collecting member electrically connected to the lid member can be increased. Therefore, the current collecting member and the uncoated part of the wound electrode plate group can be directly welded by semiconductor laser welding or the like without using a tab, and the electrode plate group unit can be handled as a substantially integrated one. become. And since an electrical insulation member is arrange
  • the configuration on the bottom side of the container is arbitrary. However, in order to increase the strength of the container, an annular bottom wall portion that is continuous with the peripheral wall portion of the container and a bulging portion that is continuous with the annular bottom wall portion and bulges away from the lid member are provided.
  • the peripheral wall portion side of the container with respect to the inner edge portion of the annular bottom wall portion It is preferable to determine that the outer peripheral portion has a shape and dimension.
  • an electrode plate group unit will be in the state clamped between the above-mentioned cyclic
  • the present invention is directed to an electricity storage device including an electrode plate group unit, a bottomed cylindrical container, a lid member, and a non-aqueous electrolyte.
  • the electrode plate group unit includes a wound electrode plate group formed by winding a laminate formed by laminating a plurality of tabbed positive electrode plates, a separator, and a plurality of tabbed negative electrode plates; It is comprised from the electrical member and the negative electrode current collection member.
  • the positive electrode current collector is disposed on one end side of the wound electrode plate group and is connected to a plurality of tabs of the positive electrode plate included in the wound electrode plate group.
  • the negative electrode current collecting member is disposed on the other end side of the wound electrode plate group, and is connected to a plurality of tabs of the negative electrode plate included in the wound electrode plate group.
  • the container has an opening at one end, and the electrode plate group unit is accommodated therein. The opening of the container is closed with a lid member.
  • the non-aqueous electrolyte is infiltrated into the wound electrode plate group housed in the container.
  • at least the outer peripheral surface of the wound electrode plate group and the inner wall surface of the container are joined by a resin material that does not react with the non-aqueous electrolyte.
  • the outer peripheral surface of the wound electrode plate group and the inner wall surface of the container may be joined partially or entirely by a resin material that does not react with the nonaqueous electrolyte.
  • the resin material between the outer peripheral surface of the wound electrode plate group and the inner wall surface of the container functions as an adhesive to prevent the wound electrode plate group from being displaced with respect to the container. Can do. Therefore, the connection between the current collecting member fixed to the container and the tab of the positive electrode plate or the tab of the negative electrode plate is not cut off.
  • the bonding strength of the bonding portion made of the resin material does not decrease.
  • a resin material that does not react with the non-aqueous electrolyte and that at least the outer peripheral surface of the wound electrode plate group and the inner wall surface of the container are joined together includes the current collecting member and the uncoated portion of the wound electrode plate group.
  • the present invention can also be applied to an electricity storage device that uses a wound electrode group that does not have a directly welded tab.
  • a part of the electrode plate group unit and the bottom of the container may be further joined with a resin material that does not react with the non-aqueous electrolyte.
  • a resin that does not react with the non-aqueous electrolyte between a part of the electrode plate group unit located on the bottom side of the container and a part of the inner wall surface of the container connected to the bottom of the container and the bottom of the container Accumulate material.
  • the resin material between the bottom of the container and a part of the inner wall surface of the container connected to the bottom of the container is cured.
  • the area where the wound electrode plate group and the container are joined by the resin material increases. Further, since the resin material is cured, the wound electrode plate group is fixed by the cured resin. Therefore, the displacement of the wound electrode plate group with respect to the container can be further reduced.
  • the resin material may join a part of the electrode plate group unit and the opening of the container.
  • a resin material is accumulated between a part of the electrode plate group unit located on the opening side of the container and the opening and a part of the inner wall surface of the container connected to the opening to cure the resin material. Just do it.
  • Fluorine-based resin material is preferably used as the resin material that does not react with the non-aqueous electrolyte.
  • the fluororesin is a synthetic resin (fluororesin) obtained by polymerizing an olefin containing fluorine and a resin having fluorine having the same properties as this.
  • the fluorine-based resin is a material that does not particularly react with the non-aqueous electrolyte, and that the durability does not decrease even if it is immersed in the non-aqueous electrolyte after curing. Since the fluororesin does not react with the nonaqueous electrolytic solution, it does not affect the characteristics of the electricity storage device.
  • the resin material that does not react with the nonaqueous electrolytic solution for example, a polypropylene resin material, a polyethylene resin material, or polyphenylene sulfide can be used.
  • a wound structure in which a laminate formed by laminating a plurality of tabbed positive plates, a separator, and a plurality of tabbed negative plates is wound.
  • a positive electrode current collector member connected to a plurality of tabs of a positive electrode plate disposed on one end side of the wound electrode plate group and included in the wound electrode plate group, and the other end side of the wound electrode plate group
  • An electrode plate group unit is prepared in advance, which includes a negative electrode current collecting member connected to a plurality of tabs of the negative electrode plate included in the wound electrode plate group.
  • a bottomed cylindrical container having an opening at one end and accommodating the electrode plate group unit therein and a lid member for closing the opening of the container are prepared in advance.
  • a resin material that does not react with the non-aqueous electrolyte is partially applied onto the inner wall surface of the container.
  • the electrode plate group unit is inserted from the opening of the container to cure the resin material.
  • one of the positive electrode current collecting member and the negative electrode current collecting member and the container are electrically connected, and the other of the positive electrode current collecting member and the negative electrode current collecting member and the lid member are electrically connected.
  • the opening is sealed with the lid member, and then the nonaqueous electrolyte is injected from the liquid injection port.
  • the resin material applied on the inner wall surface of the container comes into contact with the outer peripheral surface of the electrode plate group unit, and the inner wall surface of the container The resin material is stretched and spread between the electrode plate unit and the outer peripheral surface.
  • the resin material is scraped off to the periphery of a part of the electrode plate group unit located on the bottom side of the container. The resin material thus scraped off accumulates between the bottom of the container and a part of the inner wall surface of the container connected to the bottom of the container.
  • the portion extending over a part of the current collecting member and a part of the wound electrode plate group is set to the non-aqueous electrolyte solution.
  • a portion spanning part of the negative electrode current collecting member and part of the wound electrode plate group is tightened by a second shrinkable tube formed of a material that does not react with the nonaqueous electrolyte. Go with.
  • the portion spanning part of the current collecting member and part of the wound electrode plate group is tightened by the contraction tube, so that the tab at the end of the wound electrode plate group is It will be in the state which is not separated from an electric member. Accordingly, the connection between the current collecting member and the tab of the positive electrode plate or the negative electrode plate is difficult to be disconnected.
  • the wound electrode plate group in which the occluded metal was present was present. There will be a gap in the part.
  • the winding of the electrode plate group becomes loose, so that each turn of the laminate constituting the electrode plate group is likely to shift and each turn is likely to be displaced with respect to the container.
  • the wound electrode plate group is formed.
  • a portion straddling a part of the positive electrode current collecting member and a part of the wound electrode plate group is surrounded in a state of being clamped by a first contraction tube formed of a material that does not react with the nonaqueous electrolytic solution, Surrounding a portion straddling a part of the negative electrode current collecting member and a part of the wound electrode plate group in a state of being clamped by a second contraction tube formed of a material that does not react with the non-aqueous electrolyte.
  • thermoplastic resin may be used as a resin material that does not react with the non-aqueous electrolyte.
  • thermoplastic resin When thermoplastic resin is used, it can be softened and solidified quickly by heating and cooling compared to the case of using solvent-based or two-component resin materials, so that the electricity storage device can be easily manufactured, resulting in excellent productivity. .
  • the resin material that is thermoplastic and does not react with the non-aqueous electrolyte it is preferable to use polypropylene, polyethylene, or a resin having a high content thereof.
  • the inventor's research has revealed that additives such as oil and wax react with the non-aqueous electrolyte and are eluted or have a reduced durability.
  • Polypropylene, polyethylene, and resins having a high content thereof do not react with the nonaqueous electrolytic solution, and thus do not affect the characteristics of the electricity storage device. Therefore, if bonding is performed using polypropylene, polyethylene, and a resin having a high content thereof, the productivity is excellent, high vibration resistance and high shock resistance can be obtained, and the characteristics of the electricity storage device are maintained. It becomes possible.
  • the resin material that does not react with the non-aqueous electrolyte for example, polyphenylene sulfide can be used.
  • thermoplastic resin material that does not react with the non-aqueous electrolyte between the tabs of the positive electrode plates or the tab of the positive electrode plate and the positive electrode current collecting member. Further bonding may be performed.
  • the tabs of the negative electrode plates may be joined to each other, or the tabs of the negative electrode plate and the negative electrode current collecting member may be further joined with a thermoplastic resin material that does not react with the non-aqueous electrolyte.
  • the tabs or the tab and the current collecting member can be easily joined by solidifying the resin material. If it does in this way, since a tab is fixed with the shape wrapped in the resin material, it can prevent that a tab breaks.
  • a wound electrode formed by winding a laminate formed by laminating a plurality of tabbed positive plates, a separator, and a plurality of tabbed negative plates
  • a positive electrode current collector member disposed on one end side of the wound electrode plate group and connected to a plurality of tabs of the positive electrode plate included in the wound electrode plate group; and on the other end side of the wound electrode plate group
  • An electrode plate group unit comprising a negative electrode current collecting member that is arranged and connected to a plurality of tabs of the negative electrode plate included in the wound electrode plate group is prepared in advance.
  • a bottomed cylindrical container having an opening at one end and containing the electrode plate group unit therein, and a lid member for closing the opening of the container are prepared in advance.
  • the electrode plate group unit is inserted from the opening of the container.
  • one of the positive electrode current collector and the negative electrode current collector is electrically connected to the container, and the other of the positive electrode current collector and the negative electrode current collector is electrically connected to the lid member.
  • a thermoplastic resin material that does not react with the nonaqueous electrolytic solution is disposed in the container from the opening side of the container on the inner wall surface of the container, a part of the wound electrode plate group, and the tab portion. Thereafter, the thermoplastic resin material is softened by applying heat, and the thermoplastic resin material is returned to room temperature and solidified. Finally, the opening is sealed with a lid member, and then a non-aqueous electrolyte is injected from the injection port.
  • the inner wall surface of the container and the electrode plate group unit and between the tabs can be reliably bonded with a resin material that does not react with the non-aqueous electrolyte simply by heating and heat dissipation of the thermoplastic resin. .
  • thermoplastic resin material that does not react with the non-aqueous electrolyte may be disposed on the bottom side of the container.
  • the electrode plate group unit is inserted into the container through the opening of the container, and heat is applied to the bottom side of the container to soften the thermoplastic resin material.
  • one of the positive electrode current collecting member and the negative electrode current collecting member is electrically connected to the container, and the thermoplastic resin material that does not react with the non-aqueous electrolyte is returned to room temperature and solidified.
  • the other of the positive electrode current collecting member and the negative electrode current collecting member and the lid member are electrically connected, finally the opening is sealed with the lid member, and then the nonaqueous electrolyte is injected from the liquid injection port.
  • thermoplastic resin material that does not react with the non-aqueous electrolyte may be disposed on the bottom side of the container.
  • the electrode plate group unit is inserted from the opening of the container, and one of the positive electrode current collecting member and the negative electrode current collecting member is electrically connected to the container.
  • heat is applied to the bottom side of the container to soften the thermoplastic resin material that does not react with the nonaqueous electrolytic solution, and the thermoplastic resin material that does not react with the nonaqueous electrolytic solution is returned to room temperature and solidified.
  • the other of the positive electrode current collecting member and the negative electrode current collecting member body and the lid member are electrically connected, finally the opening is sealed with the lid member, and then the nonaqueous electrolyte is injected from the liquid injection port.
  • FIG. 1A is a plan view of a first embodiment in which the present invention is applied to a lithium ion capacitor
  • FIG. 1B is a cross-sectional view taken along the line IB-IB in FIG. It is a figure which shows the expanded view of the winding electrode group of this invention.
  • (A) And (b) is a figure which shows the example of the positive electrode plate and negative electrode plate which are used by 1st Embodiment.
  • (A) And (b) is a figure which shows the example of the metallic lithium support member used by 1st Embodiment. It is a figure which shows the example of the positive electrode current collection member used in 1st Embodiment. It is a figure which shows the example of the negative electrode current collection member of this invention.
  • FIG. 1 It is a figure which shows the combination of the winding electrode group of 1st Embodiment, and a positive electrode current collection member and a negative electrode current collection member.
  • A) And (b) is a figure which shows the mode of welding of a current collection member and an electrode plate in 1st Embodiment.
  • A) is an enlarged cross-sectional view showing a region denoted by reference symbol A in FIG. 1 (b), and (b) is an enlarged view showing a region denoted by reference symbol B in FIG. 1 (b).
  • FIG. It is sectional drawing which expanded and showed the area
  • FIG. 1A is a plan view of a lithium ion capacitor 1 (hereinafter abbreviated as capacitor 1) of the first embodiment with the positive electrode facing upward
  • FIG. 1B is a plan view of FIG. It is IB-IB sectional view taken on the line.
  • the capacitor 1 has a bottomed cylindrical container (can) 3 made of steel plated with nickel.
  • the electrode plate group unit 2 including a combination of the wound electrode plate group 5, the positive electrode current collecting member 39 and the negative electrode current collecting member 45 is accommodated.
  • FIGS. 1A is a plan view of a lithium ion capacitor 1 (hereinafter abbreviated as capacitor 1) of the first embodiment with the positive electrode facing upward
  • FIG. 1B is a plan view of FIG. It is IB-IB sectional view taken on the line.
  • the cross-sectional shape of the wound electrode plate group 5 is not shown, and the hatching indicating the cross-sectional portion is also omitted.
  • the capacitor 1 has a bottomed cylindrical container (can
  • the wound electrode group 5 includes a hollow cylindrical polypropylene shaft core 7, a strip-like positive electrode plate 9 and a negative electrode plate 11, a first separator 13, and a second separator plate 11. It is configured to be wound through a separator 15.
  • a metallic lithium support member 17 containing metallic lithium is arranged in the wound electrode plate group 5 before doping as shown in FIG.
  • the positive electrode plate 9 is composed of two divided positive electrode plates 9A and 9B.
  • a porous substrate such as kraft paper can be used.
  • the outer peripheral portion 40 of the positive electrode current collecting member 39 has a shape dimension extending to a position exceeding the top portion 3c of the annular convex portion 3a.
  • An insulating ring member 63 is disposed in a compressed state between the positive electrode current collecting member 39, the annular convex portion 3a, and the annular wall portion 3d of the peripheral wall portion continuous with the annular convex portion.
  • the positive electrode current collecting member 39 and the insulating ring member 63 constitute a fixing means.
  • the bottom of the container 3 includes an annular bottom wall portion 71 and a bulging portion 73 in order to increase the strength of the container 3.
  • the negative electrode current collecting member 45 has a shape dimension in which the outer peripheral portion 46 is positioned closer to the peripheral wall portion side of the container 3 than the inner edge portion of the annular bottom wall portion 71. Therefore, the negative electrode current collecting member 45 is in contact with not only the recess 47 but also the outer peripheral portion 46, so that the electrode plate group unit 2 can be securely fixed in a well-balanced manner.
  • a shunt current is caused in the annular bottom wall portion 71 and the outer peripheral portion 46 of the negative electrode current collecting member 45.
  • the negative electrode current collecting member 45 is in contact with the annular bottom wall portion 71 through the insulating member 75. Further, the nickel plating of the container 3 can be prevented from being peeled off through the insulating member 75.
  • the divided positive plates 9A and 9B constituting the positive plate 9 have the same structure except for the length dimension.
  • the divided positive plates 9A and 9B are configured, for example, by coating a positive electrode active material mixture 21 on both surfaces of an aluminum foil (positive electrode current collector) 19. ing.
  • the aluminum foil includes an aluminum alloy foil.
  • the positive electrode active material mixture 21 for example, a mixture of activated carbon, a binder composed of an acrylic binder, and a dispersant composed of carboxymethyl cellulose (CMC) can be used.
  • the aluminum foil 19 has a coating part 23 in which a number of through holes are formed and a positive electrode active material mixture is applied, and an uncoated part that is formed along the longitudinal direction of the coating part 23 and has no through holes. It has a work part 25.
  • the positive electrode active material mixture 21 is applied to the coating portion 23 with a length that is less than the length of the coating portion in the width direction. That is, the uncoated portion 25 of the aluminum foil is left exposed along the coating layer of the positive electrode active material mixture 21.
  • the negative electrode plate 11 also has the same structure as the divided positive electrode plates 9A and 9B shown in FIGS. 3 (a) and 3 (b). That is, the negative electrode plate 11 has a structure in which the negative electrode active material mixture 29 is applied to both surfaces of a copper foil (negative electrode current collector) 27.
  • the copper foil includes not only a pure copper foil but also a copper alloy foil.
  • the negative electrode active material mixture 29 for example, a mixture of amorphous carbon capable of inserting and extracting lithium ions, a binder made of polyvinylidene fluoride (PVDF), and a conductive additive such as acetylene black is used. be able to.
  • the copper foil 27 has a coated part 31 in which a large number of through holes are formed, and an uncoated part 33 that is formed along the longitudinal direction of the coated part 31 and has no through holes.
  • a negative electrode active material mixture 29 is applied to the coating portion 31 with a length that is less than the length in the width direction of the coating portion 31. That is, the uncoated part 33 of the copper foil is left exposed along the coating layer of the negative electrode active material mixture 29.
  • the metallic lithium support member 17 is for occluding (doping) lithium ions in the negative electrode active material (in this example, amorphous carbon) of the negative electrode plate 11.
  • the metal lithium support member 17 includes a thin plate-like metal lithium 35 and two copper foils (supports) 37 and 37.
  • the copper foils 37, 37 can be used by cutting the same copper foil 27 constituting the negative electrode plate 11 into a predetermined dimension.
  • the copper foils 37 and 37 are formed with a large number of through holes (not shown), and the metal lithium 35 is in contact with the portion of the two copper foils 37 where the large number of through holes are formed. It is sandwiched between two copper foils 37 and 37.
  • the wound electrode plate group 5 includes the two separators 13 and 15 so that the positive electrode plate 9 (divided positive electrode plates 9A and 9B) and the negative electrode plate 11 are not in direct contact with each other.
  • the shaft core 7 is wound around in the shape of a spiral.
  • the metal lithium support member 17 is arranged on the negative electrode plate 11 so that the wound layer of the metal lithium support member 17 is located in the central region in the radial direction of the wound electrode plate group 5.
  • the positive electrode plate 9 and the negative electrode plate 11 are arranged such that the respective uncoated portions (uncoated portions 25 and 33) protrude outward from the separators 13 and 15 in the opposite direction.
  • terminus part of the winding electrode group 5 is fixed by sticking an adhesive tape across the winding termination
  • the positive electrode current collecting member 39 is made of aluminum (including an aluminum alloy) and has a ring shape in which a circular hole 41 is formed in the center portion as shown in FIG. As shown in FIG. 1B, the hole 41 has a diameter that fits the upper end of the shaft core 7 so that the positive electrode current collecting member 39 does not deviate from the center of the wound electrode plate group 5. .
  • the positive electrode current collecting member 39 is welded to the uncoated portion 25 of the positive electrode plate 9 included in the wound electrode plate group 5. Therefore, as shown in FIG. 7, the positive electrode current collecting member 39 is brought closer to the wound electrode plate group 5 from above the side where the uncoated portion 25 of the positive electrode plate 9 of the wound electrode plate group 5 is located.
  • the positive electrode current collecting member 39 is placed on the uncoated portion 25 of the aluminum foil 19. And the uncoated part 25 and the positive electrode current collection member 39 are welded by the laser welding mentioned later.
  • the positive electrode current collecting member 39 has a groove that is convex in a direction in contact with the wound electrode plate group 5 and that forms a recess for welding so as to open in a direction away from the wound electrode plate group 5.
  • Four 43 are provided. These grooves 43 are formed by pressing, and linearly extend radially around the virtual center point of the positive electrode current collector 39.
  • the positive terminal portion 44A welded to the positive current collecting member 39 is welded to the container lid 55 shown in FIG. 1 (b).
  • a rubber insulating ring member for electrically insulating the container 3 is attached to the outer peripheral edge of the positive electrode current collecting member 39 during assembly.
  • the negative electrode current collecting member 45 is formed of nickel or a metal material obtained by applying nickel plating to copper.
  • the negative electrode current collecting member 45 is formed of a metal material obtained by applying nickel plating to copper.
  • the negative electrode current collecting member 45 has a disk shape in which a circular recess 47 is formed in the central portion. The recess 47 is formed so as to accommodate the lower end of the shaft core 7.
  • the negative electrode current collecting member 45 is brought closer to the wound electrode plate group 5 from the side where the uncoated portion 33 of the copper foil of the negative electrode plate 11 of the wound electrode plate group 5 is located. It is placed on the uncoated part 33 of the foil 27.
  • the negative electrode current collection member 45 and the uncoated part 33 of the copper foil 27 are laser-welded.
  • the negative electrode current collector member 45 is a groove that is convex toward the wound electrode plate group 5 and opens in a direction away from the wound electrode plate group 5.
  • Four 49 are provided. These grooves 49 are formed by pressing, and linearly extend radially about the virtual center point of the negative electrode current collector 45.
  • Laser light is used for welding the uncoated portions 25 and 33 of the wound electrode plate group 5 and the current collecting members (the positive current collecting member 39 and the negative current collecting member 45).
  • a direct focusing semiconductor laser device (DLL, not shown) that continuously generates laser light is used as the laser welding device.
  • the case where the negative electrode current collecting member 45 is welded will be described as an example.
  • laser light is emitted from the outer peripheral side of the negative electrode current collecting member 45 along the groove portion 49 of the negative electrode current collecting member 45.
  • the negative electrode current collecting member 45 is melted locally by continuously irradiating toward the center, and the uncoated portion 33 of the copper foil of the negative electrode plate and the end of the support 37 and the negative electrode current collecting member 45 are melted by the molten metal. Weld.
  • the negative electrode current collector can be efficiently melted, and welding can be performed reliably. It is possible to reliably prevent the resistance of the welded portion from increasing. It should be noted that good welding results can also be obtained by using a fiber light guiding type semiconductor laser device instead of the direct focusing type semiconductor laser device.
  • FIGS. 8A and 8B are cross-sectional views before welding showing the uncoated portion 25 of the aluminum foil of the positive electrode current collecting member 39 and the positive electrode plate 9 in a direction perpendicular to the groove 43 and welding.
  • FIG. 8A In the state before the welding shown in FIG. 8A, the positive electrode current collector plate made of aluminum foil is deformed by the tip of the chevron-shaped protrusion formed because the groove 43 of the positive electrode current collector 39 is formed. ing. 8 (b), the bottom portion of the groove 43 of the positive electrode current collecting member 39 is melted, and the uncoated portion 25 of the aluminum foil of the positive electrode plate 9 and the positive electrode current collector are melted by the molten metal. The member 39 is welded.
  • the welding of the negative electrode current collecting member 45 and the uncoated portion 33 of the negative electrode plate 11 is performed in the same manner. That is, the negative electrode current collecting member 45 is melted, and the uncoated portion 33 of the negative electrode plate 11 and the negative electrode current collecting member 45 are welded by the molten metal. As will be described later, the negative electrode current collecting member 45 is also welded in the same manner to the end portions of the supports 37 and 37 constituting the metallic lithium support member 17.
  • FIG. 9A is an enlarged cross-sectional view of the region denoted by reference symbol A in FIG.
  • FIG. 9A shows a state in which the positive electrode current collecting member 39 and the positive electrode uncoated portion 25 are welded so that the molten metal extends in the vicinity of the shaft core 7.
  • FIG. 9B shows an enlarged view of the region denoted by reference numeral B in FIG. This figure shows a state where the positive electrode current collecting member 39 and the uncoated portion 25 of the aluminum foil are welded in the vicinity of the wall surface of the container 3.
  • some members are not shown, and the number of layers of the wound electrode plate group is shown to be different from the actual one.
  • welding is performed by moving the laser beam in the direction from the container 3 side toward the center.
  • the weld bead formed by curing the molten metal 51 is formed so as to extend toward the axial center side. Therefore, the molten metal 51 does not extend toward the container side beyond the outermost peripheral surface of the wound electrode plate group 5. As a result, the hardened molten metal 51 does not contact the wall surface of the container 3 and a short circuit does not occur.
  • FIG. 10 is an enlarged cross-sectional view showing a region denoted by reference numeral C in FIG. FIG. 10 shows a state where the negative electrode current collecting member 45 and the uncoated portion 33 of the copper foil are welded.
  • illustration of some members such as the shaft core 7 and the molten metal 53 is omitted, and the number of layers of the wound electrode plate group is also shown differently from the actual one.
  • FIG. 10 in this embodiment, not only the copper foil uncoated portion 33 but also the supports 37, 37 constituting the metal lithium support member 17 are welded to the negative electrode current collector 45. .
  • the ends of the supports 37 and 37 are configured so that the protruding lengths of the end portions of the supports 37 and 37 from the separator are longer than the lengths of the uncoated portion 33 protruding from the separators 13 and 15. .
  • welding of the negative electrode current collection member 45 and the support bodies 37 and 37 becomes more reliable, and occlusion of the metal lithium 35 can be performed reliably, without raising the resistance value of a welding part.
  • the supports 37 and 37 are also welded, it is possible to prevent the remaining supports 37 and 37 from falling after the metal lithium 35 is occluded.
  • the wound electrode plate group 5 to which the current collecting member is welded that is, the electrode plate group unit 2 is accommodated in the container 3.
  • the recess 47 of the negative electrode current collecting member 45 and the bottom portion (bulging portion 73) of the container are welded by spot welding and are electrically connected.
  • An insulating ring member 63 for electrically insulating the positive electrode current collecting member and the container 3 is attached to the outer peripheral edge of the positive electrode current collecting member 39.
  • the container 3 is subjected to drawing processing in the vicinity of the opening, and the electrode plate group unit 2 is fixed in the container 3 as shown in FIG.
  • a container lid 55 constituting a positive electrode terminal is arranged above the positive electrode current collecting member 39.
  • the container lid 55 includes a lid main body 57 disposed on the positive electrode current collecting member 39 and a lid cap 59 combined with the lid main body 57.
  • the lid main body 57 is made of aluminum, and the lid cap 59 is made of steel plated with nickel in the same manner as the container 3.
  • the lid cap 59 has an annular flat part 59a and a convex part 59b protruding from the center part of the flat part 59a.
  • the container lid 55 is configured such that the outer peripheral portion of the flat portion 59 a of the lid cap 59 is curled (curled) on the edge of the lid main body 57.
  • a gap 61 is formed between the convex portion 59 b of the lid cap 59 and the lid main body 57.
  • One end of one positive terminal portion 44A out of two positive terminal portions laminated with a ribbon-like aluminum foil is joined to the upper surface of the positive current collecting member 39.
  • Another positive terminal 44 ⁇ / b> B of the positive terminal is welded to the outer bottom surface of the lid main body 57 constituting the container lid 55.
  • the other ends of the two positive terminal portions 44A and 44B are also joined.
  • the lid body 57 is electrically connected to one electrode plate (positive electrode plate 9) of the wound electrode plate group 5.
  • the annular protrusion 3a is formed in the drawn container, and the container lid 55 is an insulating member for electrically insulating the container lid 55 and the container 3 thereon. 65 is arranged.
  • the annular wall portion 3 b is curled (caulked) so as to approach the container lid 55.
  • the container lid 55 is fixed in a state of being sandwiched between the curled annular wall portion 3b and the annular convex portion 3a via the insulating member 65. Thereby, the inside of the capacitor 1 is sealed.
  • Insulating ring member 63 and insulating member 65 can be integrated to reduce the number of parts.
  • Non-aqueous electrolyte solution (not shown) that can infiltrate the entire electrode plate group unit 2 is injected into the container 3.
  • the non-aqueous electrolyte include phosphorus hexafluoride as a lithium salt in a solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) are mixed at a volume ratio of 30:50:20.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • a solution in which lithium acid (LiPF 6 ) is dissolved can be used.
  • FIG. 12 is a cross-sectional view showing a state in which the second embodiment in which the present invention is applied to a cylindrical lithium ion capacitor is cut along its longitudinal direction.
  • the cylindrical lithium ion capacitor 101 includes a container 103, a container lid 155, and an electrode plate group unit 102.
  • the container 103 has a bottomed cylindrical shape with one end opened by a steel material plated with nickel.
  • the opening 104 of the container 103 is closed with a container lid 155.
  • the container lid 155 of this embodiment is caulked on the upper part of the container 103 via a resin gasket 191 having insulating properties and heat resistance.
  • the electrode plate group unit 102 includes a wound electrode plate group 105, a positive current collector (first current collector) 139, and a negative current collector (second current collector) 145. In FIG. 11, some dimensions of the lithium ion capacitor are exaggerated for easy understanding.
  • FIG. 13 is a diagram schematically showing a state before winding the wound electrode plate group 105.
  • the wound electrode plate group 105 is formed by winding a belt-like positive electrode plate 109 and a belt-like negative electrode plate 111 in a spiral shape around a hollow cylindrical shaft core 107 via two separators 113 and 115. It is configured.
  • the positive electrode plate 109 of the present embodiment is composed of two divided positive electrode plates 109A and 109B in which a positive electrode mixture containing activated carbon is applied almost uniformly on both surfaces of an aluminum foil as a positive electrode current collector plate.
  • the divided positive plates 109A and 109B are arranged at a predetermined interval in the winding direction, and have the same structure except for the length dimension in the winding direction.
  • the negative electrode plate 111 has a configuration in which a negative electrode mixture containing carbon powder capable of occluding or releasing lithium ions as a negative electrode active material is applied almost uniformly on both surfaces of a rolled copper foil as a negative electrode current collector plate. On one side in the longitudinal direction of the copper foil, an uncoated portion where no negative electrode mixture is applied is formed.
  • the uncoated portion is cut out in a comb-like shape, and a negative electrode lead piece, that is, a tab 130 is formed by the remaining portion cut out.
  • the tab 130 on the negative electrode side is formed on the side opposite to the side on which the tab 126 on the positive electrode side is formed.
  • a plurality of positive electrode tabs 126 are positioned on the container lid 155 side, and a plurality of negative electrode tabs 130 are positioned on the bottom side of the container 103.
  • FIG. 13 does not show the tab 130 on the negative electrode side.
  • a metal lithium plate (metal lithium) 135 is disposed at a position corresponding to between the divided positive electrode plates 109A and 109B.
  • the metallic lithium plate 135 is disposed at a position that does not face the divided positive plates 109A and 109B via the separator when the wound electrode plate group 105 is wound.
  • the position where the metal lithium plate 135 is arranged is such that when the wound electrode plate group 105 is wound, the wound layer of the metal lithium plate 135 is located in the central region in the radial direction of the wound electrode plate group 105. It is prescribed as follows. Since the metal lithium plate 135 has viscosity when pressure is applied, it can be fixed to the negative electrode plate 111 in advance by pressure contact.
  • a cellulosic porous substrate such as kraft paper is used for the separators 113 and 115.
  • the outer peripheral surface of the wound electrode plate group 105 is covered with the end portion of the separator 113 or 115, and the end portion is fixed with an adhesive tape (not shown) to prevent unwinding.
  • the shaft core 107 is made of polypropylene resin. Note that the detailed configurations of the positive electrode plate 109, the negative electrode plate 111, and the separator 113 or 115 are not related to the gist of the present invention, and thus the description thereof is omitted.
  • a plurality of positive electrode-side tabs 126 for collecting the electric potential from the positive electrode plate 109 are connected.
  • An electric member 139 is disposed adjacent to the end of the wound electrode plate group 105.
  • the positive electrode current collecting member 139 is fitted to the upper end portion of the shaft core 107.
  • the distal ends of the tabs 126 of the divided positive plates 109A and 109B are joined by ultrasonic welding to the outer peripheral surface of the annular portion integrally protruding from the periphery of the positive current collecting member 139.
  • a copper ring-shaped negative electrode current collector 145 to which a plurality of negative electrode tabs 130 are connected is a wound electrode plate group. It arrange
  • the lower end portion of the shaft core 107 is fitted on the inner peripheral surface of the negative electrode current collecting member 145.
  • the tip of the tab 130 of the negative electrode plate 111 is joined to the outer peripheral surface of the annular portion of the negative electrode current collecting member 145 by ultrasonic welding. Note that the detailed configuration of the positive electrode current collector 139 and the negative electrode current collector 145 is not related to the gist of the present invention, and thus the description thereof is omitted.
  • the outer peripheral surface of the wound electrode plate group 105 and the inner wall surface of the container 103 are joined by a fluorine resin F.
  • a fluorine resin F As the fluororesin used in the present embodiment, the one sold by Shin-Etsu Chemical Co., Ltd. under the product name SIFEL660 was used. This fluororesin does not react with the non-aqueous electrolyte. Moreover, since this fluororesin F does not react with the non-aqueous electrolyte, it does not affect the characteristics of the lithium ion capacitor. And it has sufficient adhesive capability to join the container 103 and the wound electrode plate group 105.
  • the fluororesin F that joins between the outer peripheral surface of the wound electrode plate group 105 and the inner wall surface of the container 103 prevents the wound electrode plate group 105 from being largely displaced with respect to the container 103.
  • the fluororesin F in the container 103 is cured in a relatively short time by heating, and the durability does not deteriorate even if it is immersed in a non-aqueous electrolyte after curing.
  • the wound electrode plate group 105 is not displaced with respect to the container 103, so that the positive current collector 139 and the positive side tab 126 are joined, and the negative current collector 145 and the negative side tab are joined.
  • the joint with 130 is not cut off.
  • the metal lithium plate 135 is disposed in the wound electrode plate group 105.
  • the metal lithium plate 135 is ionized and stored in the negative electrode active material of the negative electrode plate 111 in the pre-use treatment. Therefore, in the lithium ion capacitor of the present embodiment, a gap is generated in the portion where the metal lithium plate 135 is disposed in the wound wound electrode plate group 105.
  • the wound electrode plate group 105 is loosened. Therefore, each turn of the laminate constituting the wound electrode plate group 105 is easily shifted, and each turn is a container. 103 is easily displaced.
  • the inner turn close to the shaft core 107 is largely displaced with respect to the container 103 because the shaft core 107 is fixed to the container 103. There is no. Therefore, the inner turn close to the shaft core 107 is not greatly displaced with respect to the positive electrode current collecting member 139 and the negative electrode current collecting member 145 fixed to the container 103.
  • the connection between the tab 126 on the side and the positive electrode current collector 139 and the connection between the tab 130 on the negative electrode side and the negative electrode current collector 145 in the inner turn close to the shaft core 107 are difficult to cut.
  • the positive electrode side tab 126 and the positive electrode current collector 139 are joined to each other than the inner turn closer to the shaft core 107.
  • the connection between the tab 130 on the negative electrode side and the negative electrode current collector 145 is likely to break.
  • the outer peripheral surface of the wound electrode plate group 105 and the inner wall surface of the container 103 are entirely joined by the fluororesin F.
  • the wound electrode plate group in the container 103 is used. If the displacement of 105 can be sufficiently restricted, the outer peripheral surface of the wound electrode plate group 105 and the inner wall surface of the container 103 may be partially joined by the fluororesin F.
  • the displacement of the wound electrode plate group 105 in the container 103 can be sufficiently restricted only by joining the outer peripheral surface of the wound electrode plate group 105 and the inner wall surface of the container 103, the negative electrode collector is provided.
  • the fluororesin F may not be present between a part of the electric member 145 and the wound electrode plate group 105 and the bottom of the container 103 and a part of the inner wall surface of the container 103 connected to the bottom.
  • the electrode plate group unit 102, the container 103, and the container lid 155 are prepared in advance.
  • a manufacturing method of the electrode plate group unit 102, the container 103, and the container lid 155 a known manufacturing method described in JP 2010-141217 A or the like can be adopted, but is not related to the gist of the present invention. Description is omitted.
  • a fluorine-based resin F that does not react with the non-aqueous electrolyte is partially applied to the vicinity of the opening 104 on the inner wall surface of the container 103.
  • the electrode plate group unit 102 is inserted from the opening 104 of the container 103.
  • the fluororesin F applied on the inner wall surface near the opening 104 of the container 103 is the wound electrode plate group of the electrode plate group unit 102.
  • the fluororesin F is stretched and spread between the inner wall surface of the container 103 and the outer peripheral surface of the wound electrode plate group 105.
  • the amount of the fluororesin F applied on the inner wall surface near the opening 104 of the container 103 is increased, a part of the electrode plate group unit 102 located on the bottom side of the container 103, that is, the negative electrode current collecting member 145 and the fluororesin F are scraped off to the end of the wound electrode plate group 105 on the bottom side.
  • the fluororesin F is cured.
  • the negative electrode current collecting member 145 of the electrode plate group unit 102 and the container 103 are electrically connected, and the positive electrode current collecting member 139 and the container lid 155 are electrically connected.
  • the opening 104 is sealed with the container lid 155, and the nonaqueous electrolyte is injected from the liquid injection port.
  • a fluorine-based resin is used as a resin material that does not react with the non-aqueous electrolyte.
  • a resin material that does not react with the non-aqueous electrolyte a polypropylene-based resin, a polyethylene-based resin, polyphenylene sulfide, or the like can be used.
  • FIG. 14A is a partial cross-sectional view of a cross section of the cylindrical lithium ion capacitor 201 according to the third embodiment of the present invention cut along the longitudinal direction, and FIG. It is an external view which shows a part.
  • FIG. 14 the same reference numerals as those in the embodiment shown in FIG. 12 are given the same reference numerals as those in FIG.
  • both ends of the electrode plate group unit 202 are surrounded by being clamped by polyolefin contraction tubes T1 and T2. .
  • the area where the telescopic tube exists is indicated by hatching.
  • one end on the positive electrode side of the electrode plate group unit 202 is surrounded by being clamped by a polyolefin positive electrode side shrinkable tube T1.
  • the positive electrode side contraction tube T1 is configured to straddle part of the positive electrode current collecting member 239 and part of the positive electrode side of the wound electrode plate group 205.
  • one end on the negative electrode side of the electrode plate group unit 202 is surrounded by being clamped by a polyolefin negative electrode side shrinkable tube T2.
  • the negative electrode side contraction tube T2 is configured to straddle part of the negative electrode current collecting member 245 and part of the negative electrode side of the wound electrode plate group 205.
  • the metal lithium plate is In the pre-use treatment, it is ionized and occluded in the negative electrode active material of the negative electrode plate 211. Therefore, a gap is generated in the wound wound electrode plate group 205.
  • a portion straddling a part of the positive electrode current collecting member 239 and a part of the wound electrode plate group 205 is clamped by the polyolefin positive electrode side contraction tube T1, and a part of the negative electrode current collecting member 245 is wound.
  • each turn of the laminate constituting the wound electrode plate group 205 is performed at the positive electrode current collecting member 239. Further, the gap generated in the wound electrode plate group 205 is eliminated by being pressed in the vicinity of the negative electrode current collecting member 245. Therefore, it is possible to prevent each turn of the laminated body constituting the wound electrode plate group 205 from being displaced with respect to the container 203, so that the positive electrode current collecting member 239 and the positive electrode side tab 226 are joined and the negative electrode current collector is collected. Bonding between the electric member 245 and the tab 230 on the negative electrode side is difficult to cut.
  • the inventor conducted a vibration test on the lithium ion capacitor of the embodiment of FIGS. 12 and 14 and the lithium ion capacitor not subjected to vibration resistance measures. It was.
  • an externally wound lithium ion capacitor in which lithium is disposed outside the wound body is also used. An experiment was also conducted.
  • FIG. 15 is a diagram showing test conditions for this vibration test. 16 and 17 are tables showing test results of this vibration experiment. “3 directions” of “vibration direction” in FIG. 15 are directions indicated by (1), (2), and (3) in FIG.
  • 3 directions of “vibration direction” in FIG. 15 are directions indicated by (1), (2), and (3) in FIG.
  • each lithium ion capacitor was vibrated in the direction of (1) in FIG.
  • Each lithium ion capacitor is vibrated at an acceleration of 3 G (gravity acceleration) at a frequency of 10 to 55 Hz as shown in “Frequency / Acceleration” of FIG.
  • vibration is performed while increasing the acceleration from 3G to 18G.
  • the vibration in the direction (1) is repeated for a total of 30 hours as shown in “vibration time”.
  • the vibration in the direction (1) is completed, the vibration is performed in the direction (2), and then the vibration is performed in the direction (3).
  • the method of vibrating in the direction (2) and the direction (3) is the same as the method of vibrating in the direction (1).
  • the vibrations in the (2) direction and (3) direction are 30 hours in total as shown in “vibration time”. These vibrations were performed under the condition that the sweep speed was 10 minutes per reciprocation.
  • the sweep speed is a speed at which a frequency of 10 Hz to 200 Hz is swept with a sine wave to reciprocate.
  • fluorine-based resin is a lithium ion capacitor in which a container and a wound electrode plate group are fixed with a fluorine-based resin
  • shrinkable tube is a shrinkable tube at the end of the electrode plate group unit.
  • Lithium ion capacitors that are enclosed in a tightened state “normal products” are lithium ion capacitors that have not been subjected to anti-vibration measures or anti-shock measures, and “externally wound lithium” is lithium outside the wound electrode plate group. Each of the arranged lithium ion capacitors is shown.
  • a solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a mixed solvent of ethylene carbonate, dimethyl carbonate, and diethyl carbonate is used as the non-aqueous electrolyte.
  • LiPF 6 lithium hexafluorophosphate
  • other non-aqueous electrolytes can be used as long as a general lithium salt is dissolved in an organic solvent as an electrolyte.
  • the electrolyte LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, or a mixture thereof may be used as the electrolyte.
  • organic solvent examples include propylene carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, ⁇ -butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3- Dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, or a mixed solvent of two or more of these may be used.
  • the mixing ratio is not limited.
  • a cylindrical lithium ion capacitor has been described.
  • the present invention can be applied to other nonaqueous electrolyte storage devices such as a rectangular lithium ion capacitor and a lithium ion battery. Of course.
  • FIG. 19 is a cross-sectional view showing a state in which the fourth embodiment in which the present invention is applied to a cylindrical lithium ion capacitor is cut along its longitudinal direction.
  • the cylindrical lithium ion capacitor 301 includes a container 303, a container lid 355, and an electrode plate group unit 302.
  • the container 303 has a bottomed cylindrical shape with one end opened by a steel material plated with nickel.
  • the opening 304 of the container 303 is closed with a container lid 355.
  • the container lid 355 of this embodiment is caulked to the upper part of the container 303 via a resin gasket 391 having insulating properties and heat resistance.
  • the electrode plate group unit 302 includes a wound electrode plate group 305, a positive current collector (first current collector) 339, and a negative current collector (second current collector) 345. In FIG. 19, for easy understanding, some dimensions of the lithium ion capacitor are exaggerated.
  • FIG. 20 is a diagram schematically showing a state before the wound electrode plate group 305 is wound.
  • the wound electrode plate group 305 is formed by winding a belt-like positive electrode plate 309 and a belt-like negative electrode plate 311 in a spiral shape around a hollow cylindrical shaft core 307 via two separators 313 and 315. It is configured.
  • the positive electrode plate 309 of this embodiment is composed of two divided positive electrode plates 309A and 309B in which a positive electrode mixture containing activated carbon is applied almost uniformly on both surfaces of an aluminum foil as a positive electrode current collector plate.
  • the divided positive plates 309A and 309B are arranged at a predetermined interval in the winding direction, and have the same structure except for the length dimension in the winding direction.
  • the negative electrode plate 311 has a configuration in which a negative electrode mixture containing carbon powder capable of occluding or releasing lithium ions as a negative electrode active material is applied almost uniformly on both surfaces of a rolled copper foil as a negative electrode current collector plate. On one side in the longitudinal direction of the copper foil, an uncoated portion where no negative electrode mixture is applied is formed.
  • the uncoated portion is cut out in a comb-like shape, and a negative electrode lead piece, that is, a tab 330 is formed by the remaining portion cut out.
  • the tab 330 on the negative electrode side is formed on the side opposite to the side on which the tab 326 on the positive electrode side is formed.
  • a plurality of positive-side tabs 326 are located on the container lid 355 side, and a plurality of negative-side tabs 330 are located on the bottom side of the container 303.
  • the tab 330 on the negative electrode side is not shown.
  • a metal lithium plate (metal lithium) 335 is disposed at a position corresponding to between the divided positive electrode plates 309A and 309B.
  • the metallic lithium plate 335 is disposed at a position that does not oppose the divided positive plates 309A and 309B via the separator when the wound electrode plate group 305 is wound.
  • the position where the metal lithium plate 335 is disposed is that when the wound electrode plate group 305 is wound, the wound layer of the metal lithium plate 335 is located in the central region in the radial direction of the wound electrode plate group 305. It is prescribed as follows. Note that since the metal lithium plate 335 has viscosity when a pressure is applied, it can be fixed to the negative electrode plate 311 in advance by pressure contact.
  • a cellulosic porous substrate such as kraft paper is used for the separators 313 and 315.
  • the outer peripheral surface of the wound electrode plate group 305 is covered with the end portion of the separator 313 or 315, and the end portion is fixed by an adhesive tape (not shown) to prevent unwinding.
  • the shaft core 307 is made of polypropylene resin. Note that the detailed configuration of the positive electrode plate 309, the negative electrode plate 311, and the separator 313 or 315 is not related to the gist of the present invention, and thus the description thereof is omitted.
  • a plurality of positive electrode side tabs 326 for collecting the electric potential from the positive electrode plate 309 are connected.
  • An electric member 339 is disposed adjacent to the end of the wound electrode plate group 305.
  • the positive electrode current collecting member 339 is fitted to the upper end portion of the shaft core 307.
  • the distal end portions of the tabs 326 of the divided positive plates 309A and 309B are joined to the outer peripheral surface of the annular portion integrally protruding from the periphery of the positive current collector 339 by ultrasonic welding.
  • a copper ring-shaped negative electrode current collector 345 to which a plurality of negative electrode tabs 330 are connected is a wound electrode plate group. It is arranged adjacent to the end of 305.
  • the lower end portion of the shaft core 307 is fitted to the inner peripheral surface of the negative electrode current collecting member 345.
  • the tip of the tab 330 of the negative electrode plate 311 is joined to the outer peripheral surface of the annular portion of the negative electrode current collecting member 345 by ultrasonic welding. Note that the detailed configuration of the positive electrode current collector 339 and the negative electrode current collector 345 is not related to the gist of the present invention, and thus the description thereof is omitted.
  • thermoplastic resin R As shown in FIG. 19, in the lithium ion capacitor of the present embodiment, the outer peripheral surface of the wound electrode plate group 305 and the inner wall surface of the container 303 are joined by a thermoplastic resin R.
  • a resin obtained by mixing 80% by weight of polypropylene and 20% by weight of polyethylene was used. This thermoplastic resin R does not react with the nonaqueous electrolytic solution. Further, since this thermoplastic resin R does not react with the nonaqueous electrolytic solution, it does not affect the characteristics of the lithium ion capacitor. And it has sufficient adhesive capability to join the container 303 and the wound electrode plate group 305.
  • thermoplastic resin R that joins between the outer peripheral surface of the wound electrode plate group 305 and the inner wall surface of the container 303 prevents the wound electrode plate group 305 from being greatly displaced with respect to the container 303.
  • the thermoplastic resin R in the container 303 is cured in a relatively short time by heating, and durability is not lowered even if it is immersed in a non-aqueous electrolyte after curing.
  • the wound electrode plate group 305 is not displaced relative to the container 303, so that the positive current collector 339 and the positive side tab 326 are joined, and the negative current collector 345 and the negative side tab are joined.
  • the joint with 330 is not cut off.
  • the metal lithium plate 335 is disposed in the wound electrode plate group 305.
  • the metal lithium plate 335 is ionized and stored in the negative electrode active material of the negative electrode plate 311 in the pre-use treatment. Therefore, in the lithium ion capacitor of the present embodiment, a gap is generated in the portion where the metal lithium plate 335 is disposed in the wound wound electrode plate group 305.
  • the wound electrode plate group 305 is loosened. Therefore, each turn of the laminate constituting the wound electrode plate group 305 is easily shifted, and each turn is a container. It becomes easy to displace with respect to 303.
  • the inner turn close to the shaft core 307 is largely displaced with respect to the container 303 because the shaft core 307 is fixed to the container 303. There is no. Accordingly, the inner turn close to the shaft core 307 is not greatly displaced with respect to the positive electrode current collector 339 and the negative electrode current collector 345 fixed to the container 303, so the positive electrode of the inner turn close to the shaft core 307.
  • the connection between the tab 326 on the side and the positive electrode current collector 339 and the connection between the tab 330 on the negative electrode side and the negative electrode current collector 345 in the inner turn near the shaft core 307 are difficult to cut.
  • the positive side tab 326 and the positive current collecting member 339 are joined to each other than the inner turn closer to the shaft core 307.
  • the connection between the tab 330 on the negative electrode side and the negative electrode current collecting member 345 is easily cut.
  • a part of the electrode plate group unit 302 located on the container lid 355 side of the container 303, that is, a part of the positive electrode current collector 339 and the wound electrode plate group 305 The thermoplastic resin R accumulates and is cured between a part of the wall surfaces.
  • thermoplastic resin R is provided so that the tabs 326 of the plurality of positive plates are joined together or the tab 326 of the plurality of positive plates and the positive current collecting member 339 are joined.
  • the tabs 326 of the plurality of positive plates or between the tabs 326 of the plurality of positive plates and the positive current collecting member 339 are fixed in a shape wrapped with a thermoplastic resin material, the tab 326 on the positive side is cut. Can be prevented.
  • the electrode plate group unit 302, the container 303, and the container lid 355 are prepared in advance.
  • the electrode plate group unit 302 is inserted from the opening 304 of the container 303 to electrically connect the negative electrode current collecting member 345 of the electrode plate group unit 302 and the container 303, and the positive electrode current collecting member 339 and the container lid 355. And electrically connect.
  • thermoplastic resin R prepared in advance is arranged on the inner wall surface of the container 303, a part of the electrode plate group unit 302 and the tab 326 of the positive electrode plate from the opening 304 side of the container 303. Thereafter, the thermoplastic resin R is heated and softened. The softened thermoplastic resin R partially enters between the tabs 326 of the plurality of positive electrode plates and between the tabs 326 of the plurality of positive electrode plates and the positive electrode current collector 339. Thereafter, the heating of the thermoplastic resin R is stopped, and the thermoplastic resin R is returned to room temperature and solidified. Finally, the opening 304 is sealed with the container lid 355, and the nonaqueous electrolyte is injected from the liquid injection port.
  • a resin of 80% by weight of polypropylene and 20% by weight of polyethylene was used.
  • resins having different contents of polypropylene and polyethylene, each single substance, and polyphenylene sulfide are used. Etc. can also be used.
  • FIG. 21 is a cross-sectional view showing a state in which the fifth embodiment in which the present invention is applied to a cylindrical lithium ion capacitor is cut along its longitudinal direction.
  • the thermoplastic resin R accumulates and cures between the negative electrode current collecting member 445, the negative electrode tab 430, a part of the wound electrode plate group 405, and a part of the inner wall surface of the container 403. is doing. Accordingly, since the outer turn laminate that is easily displaced with respect to the container 403 is further fixed to the container 403 by the thermoplastic resin R, the positive current collecting member 439 fixed to the container 403 and the outer turn positive electrode The connection between the tab 426 on the side and the negative electrode current collecting member 445 fixed to the container 403 and the connection between the tab 430 on the negative electrode side of the outer turn are not broken.
  • the thermoplastic resin R is provided such that the tabs 430 of the plurality of negative electrode plates are joined together or the tabs 430 of the plurality of negative electrode plates and the negative electrode current collecting member 445 are joined. Therefore, since the tabs 430 of the plurality of negative electrode plates or between the tabs 430 of the plurality of negative electrode plates and the negative electrode current collecting member 445 are fixed in a shape wrapped with the thermoplastic resin material, the tab 430 on the negative electrode side is cut. More can be prevented.
  • the electrode plate group unit 402, the container 403, and the container lid 455 are prepared in advance.
  • an appropriate amount of prepared thermoplastic resin R is placed on the bottom side of the container 403, and then the electrode plate group unit 402 is inserted into the container 403. Thereafter, the thermoplastic resin R is heated and softened.
  • a part of the softened thermoplastic resin R enters between the tabs 430 of the plurality of negative electrode plates and between the tabs 430 of the plurality of negative electrode plates and the negative electrode current collecting member 445. Thereafter, the heating of the thermoplastic resin R is stopped, and the thermoplastic resin R is returned to room temperature and solidified. Then, the negative electrode current collector 445 on the bottom side of the container 403 and the container 403 are electrically connected.
  • the step of electrically connecting the negative electrode current collecting member 445 on the bottom side of the container 403 and the container 403 may be before the step of softening and solidifying the thermoplastic resin R.
  • the positive electrode current collector 439 and the container lid 455 are electrically connected. Finally, the opening 404 is sealed with a container lid 455, and a non-aqueous electrolyte is injected from the injection port.
  • the electrical storage device provided with the winding electrode group which has a positive electrode plate with a tab and a negative electrode plate was demonstrated, the invention of 2nd thru
  • the present invention can also be applied to an electricity storage device including a wound electrode plate group having a plate and a negative electrode plate.
  • the inventor conducted a vibration test on the lithium ion capacitor of the embodiment of FIG. 19 and FIG. 21 and the lithium ion capacitor not subjected to vibration resistance measures. It was. Also, without forming tabs on the current collector plate, the current collector member and the uncoated portion of the wound electrode plate group are directly welded by semiconductor laser welding or the like, so that the current collector plate of the positive electrode plate and the negative electrode plate 19 and FIG. 19 for a lithium ion capacitor having a configuration in which the current collector plate is connected to the current collecting member on the positive electrode side and the current collecting member on the negative electrode side, and a lithium ion capacitor having a configuration similar to the above. Similarly to FIG. 21, a vibration test was also performed on a lithium ion capacitor that was subjected to anti-vibration measures using a thermoplastic resin.
  • FIG. 22 is a diagram showing test conditions for this vibration test.
  • FIG. 23 and FIG. 24 are tables showing test results of this vibration experiment.
  • “3 directions” of “vibration direction” in FIG. 22 are directions indicated by (1), (2), and (3) in FIG.
  • each lithium ion capacitor was vibrated in the direction of (1) in FIG.
  • Each lithium ion capacitor is first vibrated at an acceleration of 3 G (gravity acceleration) at a frequency of 10 to 55 Hz, as shown in “frequency / acceleration” in FIG.
  • vibration is performed while increasing the acceleration from 3G to 18G.
  • the vibration in the direction (1) is repeated for a total of 30 hours as shown in “vibration time”.
  • the vibration in the direction (1) is completed, the vibration is performed in the direction (2), and then the vibration is performed in the direction (3).
  • the method of vibrating in the direction (2) and the direction (3) is the same as the method of vibrating in the direction (1).
  • the vibrations in the (2) direction and (3) direction are 30 hours in total as shown in “vibration time”. These vibrations were performed under the condition that the sweep speed was 10 minutes per reciprocation.
  • the sweep speed is a speed at which a frequency of 10 Hz to 200 Hz is swept by a sine wave to reciprocate.
  • “regular product” is a lithium ion capacitor that has not been subjected to anti-vibration measures or anti-shock measures
  • “positive side fixing” is a positive electrode that connects the container and wound electrode plate group with a thermoplastic resin.
  • the lithium ion capacitor fixed on the side, that is, the lid member side, and the “negative electrode side fixed” indicate the lithium ion capacitor in which the container and the wound electrode plate group are fixed on the negative electrode side, that is, the bottom side of the container, with a thermoplastic resin.
  • the “tab-free product” uses a lithium ion capacitor that does not use tabs and does not have anti-vibration or shock resistance measures.
  • a lithium ion capacitor in which the container and the wound electrode plate group are fixed on the positive electrode side, that is, the lid member side, “tab-free / negative electrode-side fixed” is a structure that does not use a tab and is made of thermoplastic resin.
  • Each of the lithium ion capacitors fixed on the bottom side of the container is shown.
  • a nonaqueous electrolytic solution a solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a mixed solvent of ethylene carbonate, dimethyl carbonate, and diethyl carbonate is used.
  • LiPF 6 lithium hexafluorophosphate
  • other non-aqueous electrolytes can be used as long as a general lithium salt is dissolved in an organic solvent as an electrolyte.
  • the electrolyte LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, or a mixture thereof may be used.
  • organic solvent examples include propylene carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, ⁇ -butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3- Dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, or a mixed solvent of two or more of these may be used.
  • the mixing ratio is not limited.
  • FIG. 26 is a cross-sectional view showing a state where the sixth embodiment in which the present invention is applied to a cylindrical lithium ion capacitor is cut along its longitudinal direction.
  • the lithium ion capacitor of the present embodiment is similar to the lithium ion capacitor of the first embodiment shown in FIG. 1 in that the uncoated portions 525 and 533 of the wound electrode plate group 505 and the current collecting member (positive electrode current collector).
  • the member 539 and the negative electrode current collecting member 545) are a lithium ion capacitor without a tab welded by a laser. As shown in FIG.
  • the outer peripheral surface of the wound electrode plate group 505 and the inner wall surface of the container 503 are thermoplastics in which 80% by weight of polypropylene and 20% by weight of polyethylene are mixed. Bonded by resin R. Further, a part of the electrode plate group unit 502 located on the container lid 555 side of the container 503, that is, a part of the positive electrode current collecting member 539 and the wound electrode plate group 505, and a part of the inner wall surface of the container 503. The thermoplastic resin R is accumulated and hardened. The thermoplastic resin R is accumulated and hardened between a part of the negative electrode current collecting member 545 and the wound electrode plate group 505 and a part of the inner wall surface of the container 503.
  • both ends of the electrode plate group unit 502 are surrounded by being clamped by polyolefin shrink tubes T501 and T502.
  • the wound electrode plate group can be fixed to the container by a plurality of fixing means, so that the electrode plate and the current collecting member can be more reliably fixed, and the vibration resistance of the power storage device can be improved. Can be increased.
  • the positive electrode current collector member is connected to the lid member and the negative electrode current collector member is connected to the bottom of the container.
  • the negative electrode current collector member is connected to the lid member and the bottom of the container is connected.
  • the positive electrode current collecting member may be connected.
  • a cylindrical lithium ion capacitor has been described.
  • the present invention can be applied to other nonaqueous electrolyte storage devices such as a rectangular lithium ion capacitor and a lithium ion battery. Of course.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

 振動に強い電気化学キャパシタを提供する。正極集電部材39は、捲回極板群5に含まれる正極板9の未塗工部25に溶接される。正極集電部材39の外周部分40は、環状凸部3aの頂部3cを越える位置まで延びる形状寸法を有しており、正極集電部材39と環状凸部3a及び該環状凸部に連続する周壁部の環状壁部分3dの間には、絶縁リング部材63が圧縮状態で配置されている。この構成により、容器3内において、短絡を防止しながら、確実に極板群ユニットを固定している。

Description

蓄電デバイス及び蓄電デバイスの製造方法
 本発明は、蓄電デバイスに関し、特に大容量を有するリチウムイオンキャパシタ及びリチウムイオン電池等の非水電解液蓄電デバイスに関するものである。
 リチウムイオンキャパシタ及びリチウムイオン電池等の非水電解液蓄電デバイスは、エネルギー密度が高く、かつ自己放電が少なくてサイクル性能が良いという利点がある。そのため近年では、非水電解液蓄電デバイスを大型または大容量化することにより、ハイブリッド自動車や電気自動車等の自動車の電源として使用することが期待されている。自動車の電源として使用される非水電解液蓄電デバイスの中には、有底筒状の容器内に、軸芯を中心に正負極板がセパレータを介して捲回された捲回極板群を電解液とともに収容した捲回タイプの蓄電デバイスがある。従来のこの種の蓄電デバイスでは、捲回極板群を構成する正極板及び負極板から延び出たタブ(集電リード片)の先端部を例えばアルミニウム(正極)製や銅(負極)製の集電部材に接合している。
 このような構造の非水電解液蓄電デバイスに強い振動または衝撃が加わると、容器内に収容された極板群が容器に対して変位することがある。特に、自動車の電源として自動車に搭載された非水電解液蓄電デバイスでは、自動車本体に加わるまたは自動車本体が発する強い振動及び衝撃が蓄電デバイスに長時間にわたって加わることになる。そのため、上述したタブを集電部材に接合するタイプの非水電解液蓄電デバイスでは、タブと集電部材との接合が切れて、接続部の抵抗が大きくなり、その結果、非水電解液蓄電デバイスの蓄電性能が落ちる問題が生じる。なお従来の非水電解液蓄電デバイスの中には、特開2010-141217号公報(特許文献1)に示されるように、容器の底面側に位置する集電部材を覆うように、容器の底面にエポキシ樹脂を注入したものがある。
特開2010-141217号公報
 しかしながら、従来の構造では、タブを利用して極板と集電部材とを接続すると、タブは固定されているのに対して、極板を含む捲回極板群が集電部材に対して固定されない状態となっている。そのため、蓄電デバイスに外部から強い振動が継続的に加えられた場合に、容器内の捲回極板群が振動し、タブが切断される問題があった。タブが部分的に切断されてしまうと、極板群と集電部材との間の抵抗が増加するため、蓄電デバイスの性能を十分に発揮することができなくなる。
 また特許文献1に示された構造では、電気的な絶縁を目的としてエポキシ樹脂を容器の底部側に充填している。一見すると容器の底面に対して極板群が固定しているように見えるが、エポキシ樹脂は、非水電解液と反応して分解され、非水電解液の反応性を低下させる問題を生じさせることが判ってきた。そのため特許文献1に示されたエポキシ樹脂では、極板群の容器内における極板群の変位を阻止することはできない。
 本発明の目的は、極板と集電部材とを確実に固定し、外部からの振動に強い蓄電デバイスを提供することにある。
 本発明の目的は、耐震動性または耐衝撃性を高めても、蓄電デバイスとしての特性が低下しない非水電解液蓄電デバイスを提供することにある。
 本発明は、第1の金属箔に正極活物質合剤が塗布された正極板と、第2の金属箔に負極活物質合剤が塗布された負極板とを、セパレータを介して積層した積層体を捲回してなる捲回極板群と、捲回極板群の一方の端部において正極板と接続された正極集電部材と、捲回極板群の他方の端部において負極板と接続された負極集電部材とを具備してなる極板群ユニットが、一方の極性の端子を構成する有底筒状の容器内に捲回極板群内に浸潤される非水電解液とともに収納される蓄電デバイスを改良の対象とする。本発明では、捲回極板群を非水電解液とは反応しない固定手段により容器に固定する。非水電解液と反応しない固定手段を用いると、巻回極板群を容器内で固定して耐震動性または耐衝撃性を高め、しかも蓄電デバイスとしての特性が低下しない蓄電デバイスを提供することができる。
 本発明の蓄電デバイスは、極板群ユニットを構成する捲回極板群、正極集電部材及び負極集電部材と、有底筒状の容器とを備えている。捲回極板群は、第1の金属箔に正極活物質合剤が塗布されて形成された塗布層及び該塗布層に沿って残る第1の金属箔の未塗工部を有する正極板と、第2の金属箔に負極活物質合剤が塗布されて形成された塗布層及び該塗布層に沿って残る第2の金属箔の未塗工部を有する負極板とが、正極板の未塗工部と負極板の未塗工部がそれぞれ逆方向に突出するようにセパレータを介して積層した積層体を捲回して構成したものとすることができる。そして、捲回極板群の一方の端部においてセパレータを越えて突出する正極板の未塗工部に正極集電部材が溶接され、捲回極板群の他方の端部においてセパレータを越えて突出する負極板の未塗工部に負極集電部材が溶接されて、極板群ユニットが形成されている。
 容器は、一方の極性の端子を構成するものであり、容器内に極板群ユニットが収納されている。容器の開口部から底部側に所定の距離離れた位置には、容器の全周にわたって容器の内部に向かって凸になる環状凸部が形成されている。そして容器の開口部に隣接する環状壁部分が径方向内側にかしめられて形成された環状の抜け止め部と環状凸部との間に、他方の極性の端子を構成する蓋部材が容器と電気的に絶縁された状態で配置されている。
 本発明の蓄電デバイスでは、正極集電部材及び負極集電部材のうち蓋部材と電気的に接続される一方の集電部材が、環状凸部の頂部よりも容器の周壁部側に外周部分が位置する形状寸法を有し且つ環状凸部の近くに配置されている。そして環状凸部及び該環状凸部に連続する周壁部の環状壁部分と一方の集電部材の外周部分との間には、一方の集電部材と容器とを電気的に絶縁する電気絶縁部材が、圧縮状態で配置されている。
 例えば、蓋部材を正極にする場合、蓋部材と電気的に接続される集電部材は正極集電部材となる。この場合には、正極集電部材が環状凸部の頂部よりも容器の周壁部側に外周部分が位置する形状寸法を有して、環状凸部の近くに配置されることになる。電気絶縁部材は、負極を構成する容器と正極集電部材とを電気的に絶縁するため、環状凸部及び該環状凸部に連続する周壁部の環状壁部分と正極集電部材の外周部分との間に圧縮状態で配置される。
 このように構成することで、まず、蓋部材と電気的に接続される一方の集電部材の面積を広くすることができる。そのためタブを用いることなく集電部材と捲回極板群の未塗工部とを半導体レーザ溶接等により直接溶接することができ、極板群ユニットを実質的に一体のものとして扱うことが可能になる。そして、電気絶縁部材が圧縮状態で配置されることで、集電部材が容器に対して固定され、その結果、容器内で極板群ユニットが確実に固定されることになる。したがって、本発明によれば、外部からの振動が加わったとしても、容器内の極板群ユニットが大きく振動することがなくなり、振動に強い蓄電デバイスを得ることができる。
 容器の底部側の構成は任意である。ただし、容器の強度を上げるために容器の底部に、容器の周壁部に連続する環状底壁部分と、該環状底壁部分と連続し且つ蓋部材から離れる方向に膨出する膨出部とを備えるようにした場合には、正極集電部材及び負極集電部材のうち底壁部と電気的に接続される他方の集電部材を、環状底壁部分の内縁部よりも容器の周壁部側に外周部分が位置する形状寸法を有するように定めるのが好ましい。このように構成すれば、極板群ユニットは、前述の環状凸部と容器の環状底壁部分との間で挟持された状態となる。そのため外部振動に対する耐性を向上させることができる。
 本発明は、極板群ユニットと、有底筒状の容器と、蓋部材と、非水電解液とを備えた蓄電デバイスを改良の対象とする。極板群ユニットは、複数のタブ付きの正極板と、セパレータと、複数のタブ付きの負極板とを積層してなる積層体が捲回されて構成された捲回極板群と、正極集電部材と、負極集電部材とから構成されている。正極集電部材は、捲回極板群の一端側に配置されており、捲回極板群に含まれる正極板の複数のタブと接続されている。負極集電部材は、捲回極板群の他端側に配置されており、捲回極板群に含まれる負極板の複数のタブと接続されている。容器は、一方の端部に開口部を有しており、内部に極板群ユニットが収納される。容器の開口部は、蓋部材により塞がれる。容器内に収納された捲回極板群には、非水電解液が浸潤している。本発明では、非水電解液とは反応しない樹脂材料で、少なくとも捲回極板群の外周面と容器の内壁面とを接合する。捲回極板群の外周面と容器の内壁面とは、非水電解液とは反応しない樹脂材料によって、部分的に接合してもよいし、全面的に接合してもよい。このように構成すると、捲回極板群の外周面と容器の内壁面との間の樹脂材料が接着剤として機能して、容器に対して捲回極板群が変位することを防止することができる。そのため、容器に対して固定されている集電部材と、正極板のタブまたは負極板のタブとの接続が切れることがなくなる。また使用する樹脂材料は非水電解液とは反応しないため、樹脂材料からなる接合部の接合強度が低下することはない。また非水電解液の反応性が低下することも無く、蓄電デバイスの特性が低下するおそれもない。従って、本発明によれば、耐振動性または耐衝撃性を高めても、特性が低下しない蓄電デバイスを提供することができる。なお非水電解液とは反応しない樹脂材料で、少なくとも捲回極板群の外周面と容器の内壁面とを接合することは、集電部材と捲回極板群の未塗工部とを直接溶接したタブを有していない巻回極群を用いる蓄電デバイスにも適用できる。
 極板群ユニットの一部分と容器の底部等とを非水電解液とは反応しない樹脂材料でさらに接合するようにしてもよい。この場合には、容器の底部側に位置する極板群ユニットの一部分と、容器の底部及び容器の底部に繋がる容器の内壁面の一部との間に、非水電解液とは反応しない樹脂材料を溜める。そして、容器の底部及び容器の底部に繋がる容器の内壁面の一部との間の樹脂材料を硬化する。このようにすると、捲回極板群と容器とが樹脂材料により接合される面積が多くなる。また樹脂材料が硬化しているので、捲回極板群は硬化した樹脂により固定される。従って、容器に対する捲回極板群の変位をより小さくすることができる。
 樹脂材料は、極板群ユニットの一部分と容器の開口部等とを接合してもよい。この場合には、容器の開口部側に位置する極板群ユニットの一部分と開口部及び該開口部に繋がる容器の内壁面の一部との間に樹脂材料を溜めて、樹脂材料を硬化させればよい。
 非水電解液とは反応しない樹脂材料としては、フッ素系樹脂材料を用いることが好ましい。ここでフッ素系樹脂とは、フッ素を含むオレフィンを重合して得られる合成樹脂(フッ素樹脂)及びこれと同様の性質を有するフッ素を有する樹脂のことである。発明者の研究により、フッ素系樹脂は、特に非水電解液とは反応しない材料であり、しかも硬化後に非水電解液に浸漬されていても耐久性が低下しないことが判った。フッ素系樹脂は、非水電解液とは反応しないため、蓄電デバイスの特性に影響を与えることがない。そのため、フッ素系樹脂を用いて接合を実施すれば、高い耐震動性と耐衝撃性を得ることができて、しかも蓄電デバイスの特性を維持することが可能となる。また、非水電解液とは反応しない樹脂材料としては、他に例えば、ポリプロピレン系樹脂材料、ポリエチレン系樹脂材料やポリフェニレンスルファイドを用いることができる。
 本発明の蓄電デバイスを製造する場合には例えば、複数のタブ付きの正極板と、セパレータと、複数のタブ付きの負極板とを積層してなる積層体が捲回されて構成された捲回極板群と、捲回極板群の一端側に配置されて捲回極板群に含まれる正極板の複数のタブと接続された正極集電部材と、捲回極板群の他端側に配置されて捲回極板群に含まれる負極板の複数のタブと接続された負極集電部材とからなる極板群ユニットを予め用意する。また、一方の端部に開口部を有して内部に極板群ユニットが収納される有底筒状の容器及び容器の開口部を塞ぐ蓋部材を予め用意する。そしてまず容器の内壁面上に非水電解液とは反応しない樹脂材料を部分的に塗布する。その後極板群ユニットを容器の開口部から挿入して、樹脂材料を硬化させる。そして、正極集電部材及び負極集電部材の一方と容器とを電気的に接続し、正極集電部材及び負極集電部材の他方と蓋部材とを電気的に接続する。電気的な接続が完了したら、蓋部材で開口部を封止し、その後注液口から非水電解液を注入する。このように製造すると、極板群ユニットを容器の開口部から挿入するときに、容器の内壁面上に塗布された樹脂材料が極板群ユニットの外周面と接触して、容器の内壁面と極板群ユニットの外周面との間に樹脂材料が引き延ばされて広がった状態になる。容器の内壁面上に塗布する樹脂材料の量を多くした場合には、容器の底部側に位置する極板群ユニットの一部分の周囲まで樹脂材料が掻き落とされる。そして掻き落とされた樹脂材料は、容器の底部及び容器の底部に繋がる容器の内壁面の一部との間に溜まることとなる。その結果、容器の内壁面と極板群ユニットの外周面との間及び容器の底部及び容器の底部に繋がる容器の内壁面の一部との間を、非水電解液とは反応しない樹脂材料で確実に接合することができる。
 極板群と容器とを非水電解液とは反応しない樹脂材料で接合する代わりに、集電部材の一部と捲回極板群の一部とに跨がる部分を、非水電解液と反応しない材料で形成した収縮チューブにより締め付けられた状態で囲繞するように構成してもよい。具体的には、正極集電部材の一部と捲回極板群の一部とに跨がる部分を、非水電解液と反応しない材料で形成した第1の収縮チューブにより締め付けられた状態で囲繞し、負極集電部材の一部と捲回極板群の一部とに跨がる部分を、非水電解液と反応しない材料で形成された第2の収縮チューブにより締め付けられた状態で囲繞する。このように構成すると、集電部材の一部と捲回極板群の一部とに跨がる部分が、収縮チューブにより締め付けられるので、捲回極板群の端部にあるタブが、集電部材から離れない状態となる。従って、集電部材と、正極板または負極板のタブとの接続が切れにくくなる。特に、捲回極板群の中に、使用前処理により正極板または負極板に吸蔵される金属の層を配置する場合には、吸蔵された金属が存在していた捲回極板群中の部分には隙間が生じることになる。捲回極板群の中に隙間が生じると極板群の捲回が緩くなるため、極板群を構成する積層体の各ターンがずれやすくなり、各ターンが容器に対して変位しやすくなる。しかしながら、集電部材の一部と捲回極板群の一部とに跨がる部分を、非水電解液と反応しない材料で形成した収縮チューブにより締め付けると、捲回極板群を構成する積層体の各ターンが収縮チューブにより圧迫されるので、捲回極板群の中に生じた隙間がなくなる。従って、捲回極板群を構成する積層体の各ターンが容器に対して変位することを防止することができ、集電部材と、正極板のタブまたは負極板のタブとの接続が切れにくくなる。
 なお正極集電部材の一部と捲回極板群の一部とに跨がる部分を、非水電解液と反応しない材料で形成した第1の収縮チューブにより締め付けられた状態で囲繞し、負極集電部材の一部と捲回極板群の一部とに跨がる部分を、非水電解液と反応しない材料で形成された第2の収縮チューブにより締め付けられた状態で囲繞することは、集電部材と捲回極板群の未塗工部とを直接溶接したタブを有していない蓄電デバイスにも適用できる。
 非水電解液とは反応しない樹脂材料として、熱可塑性樹脂を用いてもよい。熱可塑性樹脂を用いると、溶剤系や2液性の樹脂材料を用いる場合に比べて、加熱と冷却によりすばやく軟化および固化できるため、蓄電デバイスを容易に製造することができるため、生産性に優れる。
 熱可塑性で非水電解液とは反応しない樹脂材料としては、ポリプロピレン、ポリエチレンおよびそれらの含有率が高い樹脂を用いることが好ましい。発明者の研究により、オイルやワックスなどの添加剤は非水電解液と反応し、溶出したり、耐久性が低下することが判った。ポリプロピレン、ポリエチレンおよびそれらの含有率が高い樹脂は、非水電解液とは反応しないため、蓄電デバイスの特性に影響を与えることがない。そのため、ポリプロピレン、ポリエチレンおよびそれらの含有率が高い樹脂を用いて接合を実施すれば、生産性に優れ、高い耐震動性と耐衝撃性を得ることができて、しかも蓄電デバイスの特性を維持することが可能となる。なお、非水電解液とは反応しない樹脂材料としては、他に例えば、ポリフェニレンスルファイドを用いることができる。
 正極板及び負極板がそれぞれ複数のタブを有している場合には、正極板のタブ同士を接合または正極板のタブと正極集電部材とを非水電解液とは反応しない熱可塑性樹脂材料でさらに接合するようにしてもよい。あるいは負極板のタブ同士を接合または負極板のタブと負極集電部材とを非水電解液とは反応しない熱可塑性樹脂材料でさらに接合するようにしてもよい。この場合には、捲回群のタブで樹脂材料を軟化させた後、樹脂材料を固化することで、タブ同士またはタブと集電部材とを簡単に接合することができる。このようにすると、タブが樹脂材料に包まれた形状で固定されるため、タブが切れるのを防ぐことができる。
 このような蓄電デバイスを製造する場合には、複数のタブ付きの正極板と、セパレータと、複数のタブ付きの負極板とを積層してなる積層体が捲回されて構成された捲回極板群と、捲回極板群の一端側に配置されて捲回極板群に含まれる正極板の複数のタブと接続された正極集電部材と、捲回極板群の他端側に配置されて捲回極板群に含まれる負極板の複数のタブと接続された負極集電部材とからなる極板群ユニットを予め用意する。また、一方の端部に開口部を有して内部に極板群ユニットが収納される有底筒状の容器と、容器の開口部を塞ぐ蓋部材を予め用意する。
 そしてまず、極板群ユニットを容器の開口部から挿入する。次に正極集電部材及び負極集電部材の一方と容器とを電気的に接続し、正極集電部材及び負極集電部材の他方と蓋部材とを電気的に接続する。そして容器の内壁面上と捲回極板群の一部およびタブ部分とに非水電解液とは反応しない熱可塑性樹脂材料を容器の開口部側から容器内に配置する。その後熱可塑性樹脂材料に熱をかけ軟化させ、熱可塑性樹脂材料を常温に戻して固化させる。最後に蓋部材で開口部を封止し、その後注液口から非水電解液を注入する。このように製造すると、熱可塑性樹脂の加熱及び放熱だけで、容器の内壁面と極板群ユニットの間およびタブ間を、非水電解液とは反応しない樹脂材料で確実に接合することができる。
 また本発明の蓄電デバイスを製造する場合には、まず非水電解液とは反応しない熱可塑性樹脂材料を容器の底部側に配置してもよい。この場合には、極板群ユニットを容器の開口部から容器内に挿入し、容器の底部側に熱を加えて熱可塑性樹脂材料を軟化させる。そして、正極集電部材及び負極集電部材の一方と容器とを電気的に接続し、非水電解液とは反応しない熱可塑性樹脂材料を常温に戻して固化させる。その後正極集電部材及び負極集電部材の他方と蓋部材とを電気的に接続し、最後に蓋部材で開口部を封止し、その後注液口から非水電解液を注入する。
 非水電解液とは反応しない熱可塑性樹脂材料を容器の底部側に配置してもよい。この場合には、極板群ユニットを容器の開口部から挿入し、正極集電部材及び負極集電部材の一方と容器とを電気的に接続する。そして、容器の底部側に熱をかけて非水電解液とは反応しない熱可塑性樹脂材料を軟化させ、非水電解液とは反応しない熱可塑性樹脂材料を常温に戻して固化させる。次に正極集電部材及び負極集電部材体の他方と蓋部材とを電気的に接続し、最後に蓋部材で開口部を封止し、その後注液口から非水電解液を注入する。
(a)は本発明をリチウムイオンキャパシタに適用した第1の実施の形態の平面図であり、(b)は図1(a)のIB-IB線断面図である。 本発明の捲回極板群の展開図を示す図である。 (a)及び(b)は、第1の実施の形態で使用する正極板及び負極板の例を示す図である。 (a)及び(b)は、第1の実施の形態で使用する金属リチウム支持部材の例を示す図である。 第1の実施の形態で使用する正極集電部材の例を示す図である。 本発明の負極集電部材の例を示す図である。 第1の実施の形態の捲回極板群と、正極集電部材及び負極集電部材の組み合わせを示す図である。 (a)及び(b)は、第1の実施の形態において集電部材と極板の溶接の様子を示す図である。 (a)は、図1(b)の符号Aを付した領域を拡大して示した断面図であり、(b)は、図1(b)の符号Bを付した領域を拡大して示した断面図である。 図1(b)の符号Cを付した領域を拡大して示した断面図である。 極板群ユニットを容器に収納し、容器蓋で密封する様子を示した図である。 本発明をリチウムイオンキャパシタに適用した場合の第2の実施の形態の部分断面図である。 捲回極板群を捲回する前の状態を模式的に示す図である。 (A)及び(B)は本発明をリチウムイオンキャパシタに適用した場合の第3の実施の形態の部分断面図である。 振動試験の条件を示す図である。 振動試験の結果を示す図である。 振動試験の結果を示す図である。 振動試験の振動方向を示す図である。 本発明をリチウムイオンキャパシタに適用した場合の第4の実施の形態の部分断面図である。 捲回極板群を捲回する前の状態を模式的に示す図である。 本発明をリチウムイオンキャパシタに適用した場合の第5の実施の形態の部分断面図である。 振動試験の条件を示す図である。 振動試験の結果を示す図である。 振動試験の結果を示す図である。 振動試験の振動方向を示す図である。 本発明をリチウムイオンキャパシタに適用した場合の第6の実施の形態の部分断面図である。
 以下、図面を参照して、本発明を円筒状リチウムイオンキャパシタに適用した第1の実施の形態について説明する。
(第1の実施の形態構成)
<全体構成>
 図1(a)は正極を上にした状態の第1の実施の形態のリチウムイオンキャパシタ1(以下、キャパシタ1と略称する。)の平面図であり、(b)は図1(a)のIB-IB線断面図である。なお図1(b)には、捲回極板群5の断面形状は図示を省略してあり、また断面部分を示すハッチングも省略してある。キャパシタ1は、ニッケルメッキが施されたスチール製の有底円筒状の容器(缶)3を有している。容器3内には、捲回極板群5と正極集電部材39及び負極集電部材45の組み合わせからなる極板群ユニット2が収納されている。図1(b)及び図2に示すように、捲回極板群5は、中空円筒状のポリプロピレン製軸芯7に帯状の正極板9および負極板11が第1のセパレータ13及び第2のセパレータ15を介して捲回されて構成されている。ドーピング前の捲回極板群5内には、図2に示すように金属リチウムを含む金属リチウム支持部材17が配置されている。正極板9は、2枚の分割正極板9A,9Bから構成されている。第1及び第2のセパレータ13,15としては、クラフト紙等の多孔質基材を用いることができる。
 また、図1(b)に示すように、正極集電部材39の外周部分40は、環状凸部3aの頂部3cを越える位置まで延びる形状寸法を有している。正極集電部材39と環状凸部3a及び該環状凸部に連続する周壁部の環状壁部分3dの間には、絶縁リング部材63が圧縮状態で配置されている。本実施の形態では、正極集電部材39及び絶縁リング部材63により固定手段が構成されている。
 また、図1(b)に示すように、容器3の底部は、容器3の強度を高めるために、環状底壁部分71と膨出部73とを備えている。そして負極集電部材45は、環状底壁部分71の内縁部よりも容器3の周壁部側に外周部分46が位置する形状寸法を有している。したがって、負極集電部材45は、窪み47だけでなく、外周部分46も容器3と接することになり、極板群ユニット2をバランス良く、確実に固定することができる。なお、窪み47を容器の底部(膨出部73)と電気的に接続させるためのスポット溶接工程で通電させる際に、環状底壁部分71と負極集電部材45の外周部分46で分流を起こさないようにするために、本実施の形態では、負極集電部材45は、絶縁部材75を介して環状底壁部分71と接している。また、絶縁部材75を介することで、容器3のニッケルメッキが剥がれることを防止することもできる。
<正極板>
 正極板9を構成する分割正極板9A,9Bは、長さ寸法を除いて同じ構造を有している。図3(a)及び(b)に示すように、分割正極板9A,9Bは、例えば、アルミニウム箔(正極集電体)19の両面に、正極活物質合剤21が塗着されて構成されている。なお本願明細書において、アルミニウム箔はアルミニウム合金箔を含むものである。正極活物質合剤21としては、例えば、活性炭と、アクリル系バインダからなる結着剤と、カルボキシメチルセルロース(CMC)からなる分散剤との混合物を用いることができる。アルミニウム箔19は、多数の貫通孔が形成されて正極活物質合剤が塗布される塗工部23と、塗工部23の長手方向に沿って形成されて貫通孔が形成されていない未塗工部25を有している。塗工部23に該塗工部の幅方向の長さに満たない長さで正極活物質合剤21が塗着されている。すなわち、正極活物質合剤21の塗布層に沿ってアルミニウム箔の未塗工部25が露出した状態で残されている。
<負極板>
 負極板11も図3(a)及び(b)に示す分割正極板9A及び9Bと同様の構造を有している。すなわち、負極板11は、銅箔(負極集電体)27の両面に負極活物質合剤29が塗着された構造を有している。なお本願明細書において、銅箔は、純銅箔だけでなく銅合金箔も含むものである。負極活物質合剤29としては、例えば、リチウムイオンを吸蔵・放出可能な非晶質炭素と、ポリフッ化ビニリデン(PVDF)からなる結着剤と、アセチレンブラック等の導電助材との混合物を用いることができる。銅箔27は、多数の貫通孔が形成された塗工部31と、塗工部31の長手方向に沿って形成されて貫通孔が形成されていない未塗工部33を有している。塗工部31には、該塗工部31の幅方向の長さに満たない長さで負極活物質合剤29が塗着されている。すなわち、負極活物質合剤29の塗布層に沿って銅箔の未塗工部33が露出した状態で残されている。
<金属リチウム支持部材>
 金属リチウム支持部材17は、負極板11の負極活物質(本例では非晶質炭素)にリチウムイオンを吸蔵(ドープ)させるためのものである。図4(a)、(b)に示すように、金属リチウム支持部材17は、薄板状の金属リチウム35と、2枚の銅箔(支持体)37,37とで構成されている。銅箔37,37は、負極板11を構成する銅箔27と同じものを所定寸法に切断して用いることができる。銅箔37,37には、多数の貫通孔が形成されており(図示せず)、金属リチウム35は、2枚の銅箔37の多数の貫通孔が形成された部分に接触するようにして2枚の銅箔37,37間に挟持されている。
<捲回極板群>
 図2に示すように、捲回極板群5は、正極板9(分割正極板9A,9B)と負極板11とが、直接接触しないように、2枚のセパレータ13,15を介して、軸芯7を中心として断面渦巻き状に捲回されて構成されている。そして、捲回極板群5の径方向の中央領域には、金属リチウム支持部材17の捲回層が位置するように金属リチウム支持部材17が負極板11上に配置されている。正極板9と負極板11は、それぞれの未塗工部(未塗工部25と33)が逆方向にセパレータ13,15よりも外側に突出するように配置されている。なお、捲回極板群5の捲回終端部は、捲き解けを防止するために、粘着テープを捲回終端部と捲回極板群の外周面とに跨がって貼り付けることで固定されている。
<正極集電部材>
 正極集電部材39は、アルミニウム(アルミニウム合金を含む)からなり、図5に示す通り、中心部分に円形の孔41が形成されたリング形状を有している。図1(b)に示すように、孔41は、正極集電部材39が捲回極板群5の中心からずれないようにするために、軸芯7の上端に嵌る直径を有している。正極集電部材39は、捲回極板群5に含まれる正極板9の未塗工部25に溶接される。そこで図7に示すように、捲回極板群5の正極板9の未塗工部25が位置する側の上方から正極集電部材39を捲回極板群5に向かって近付け、正極板9のアルミニウム箔19の未塗工部25の上に、正極集電部材39を載せる。そして後述するレーザ溶接により、未塗工部25と正極集電部材39とを溶接する。レーザ溶接のために、正極集電部材39には、捲回極板群5と接する方向に向かって凸となり、捲回極板群5から離れる方向に向かって開くよう溶接用凹部を構成する溝43が4本設けられている。これらの溝43は、プレス加工によって形成されており、正極集電部材39の仮想中心点を中心として、放射状に直線的に延びている。なお、図7において正極集電部材39に溶接された正極端子部44Aは、図1(b)に示した容器蓋55に溶接されるものである。なお図1(b)に示すように、組立の際には、正極集電部材39の外周縁部には、容器3と電気的に絶縁するためのゴム製の絶縁リング部材が装着される。
<負極集電部材>
 負極集電部材45は、ニッケルまたは銅にニッケルメッキを施した金属材料のいずれかで形成されている。本実施の形態では、銅にニッケルメッキを施した金属材料で負極集電部材45を形成した。図6に示す通り、負極集電部材45は、中心部分に円形の窪み47が形成された円盤形状を有している。窪み47は、軸芯7の下端を収納するように形成されている。図7に示す通り、負極集電部材45は、捲回極板群5の負極板11の銅箔の未塗工部33が位置する側から、捲回極板群5に近付けられて、銅箔27の未塗工部33上に載せられる。そして負極集電部材45と銅箔27の未塗工部33とはレーザ溶接される。負極集電部材45にも、正極集電部材39と同様に、捲回極板群5に向かって凸となり捲回極板群5から離れる方向に向かって開くように溶接用凹部を構成する溝49が4本設けられている。これらの溝49は、プレス加工によって形成されており、負極集電部材45の仮想中心点を中心として放射状に直線的に延びている。
<捲回極板群と集電部材の溶接>
 捲回極板群5の未塗工部25及び33と集電部材(正極集電部材39及び負極集電部材45)の溶接には、レーザ光を用いる。本実施の形態では、レーザ溶接装置として、レーザ光を連続的に発生する直接集光型半導体レーザ装置(DLL・図示せず)を用いた。負極集電部材45を溶接する場合を例にして説明すると、直接集光型半導体レーザ装置を用いて、レーザ光を負極集電部材45の溝部49に沿って負極集電部材45の外周側から中心部に向かって連続照射して負極集電部材45を局部的に溶融し、溶融金属により負極板の銅箔の未塗工部33及び支持体37の端部と負極集電部材45とを溶接する。本実施の形態のように、直接集光型半導体レーザ装置を用いてレーザ溶接を行うと、負極集電部材を効率的に溶融させることができて、確実に溶接を行うことが可能になり、溶接部の抵抗が大きくなることを確実に防止できる。なお、直接集光型半導体レーザ装置の代わりに、ファイバ導光型半導体レーザ装置を用いても同様に良好な溶接結果を得ることができる。
 図8(a)及び(b)は、溝43と直行する方向に、正極集電部材39及び正極板9のアルミニウム箔の未塗工部25を断面にして示した溶接前の断面図と溶接後の断面図である。図8(a)に示す溶接を行う前の状態では、正極集電部材39の溝43を形成したために形成された山形の凸条の先端部によって、アルミニウム箔からなる正極集電板が変形している。そして図8(b)に示す溶接が完了した状態では、正極集電部材39の溝43の底部の部分が溶融し、溶融金属により正極板9のアルミニウム箔の未塗工部25と正極集電部材39とが溶接されている。
 負極集電部材45と負極板11の未塗工部33の溶接も同様に行われる。すなわち、負極集電部材45が溶融し、溶融金属により負極板11の未塗工部33と負極集電部材45とが溶接される。なお、後述するように、負極集電部材45には、金属リチウム支持部材17を構成する支持体37,37の端部も同様にして溶接されている。
 図9(a)は、図1に符号Aを付した領域を拡大して示した断面図である。図9(a)は、軸芯7付近に溶融金属が延びるように、正極集電部材39と正極未塗工部25とが溶接されている様子を示している。図9(b)は、図1に符号Bを付した領域を拡大して示している。この図は、容器3の壁面付近において、正極集電部材39とアルミニウム箔の未塗工部25が溶接されている状態を示している。両図において、一部の部材は図示を省略してあり、また、捲回極板群の層の数は実際のものとは異なるように示してある。本実施の形態では、容器3側から中心に向かう方向にレーザ光を移動させて溶接を行っている。その結果、図9(b)に示した通り、溶融金属51が硬化して形成される溶接ビードは、軸芯側に延びるように形成される。そのため捲回極板群5の最外周面を越えて容器側に向かって溶融金属51が延びることがない。その結果、容器3の壁面に硬化した溶融金属51が接触して、短絡が発生することはない。
 図10は、図1に符号Cを付した領域を拡大して示した断面図である。図10は、負極集電部材45と銅箔の未塗工部33が溶接されている様子を示している。図10には、軸芯7や溶融金属53などの一部の部材については、図示を省略してあり、また、捲回極板群の層の数も実際とは異なって示してある。図10から明らかなように、本実施の形態では、銅箔の未塗工部33だけでなく、金属リチウム支持部材17を構成する支持体37,37も負極集電部材45に溶接されている。支持体37,37の端部のセパレータからの突出長さは、未塗工部33がセパレータ13,15から突出する長さよりも長くなるように支持体37,37の端部が構成されている。このように構成することにより、負極集電部材45と支持体37,37の溶接がより確実になり、溶接部の抵抗値を上げることなく金属リチウム35の吸蔵を確実に行うことができる。また、支持体37,37も溶接されているため、金属リチウム35が吸蔵された後に、残存する支持体37,37が落下することを防ぐこともできる。
<捲回極板群の容器への収納>
 図11に示すように、集電部材を溶接した捲回極板群5、すなわち、極板群ユニット2は、容器3へ収納される。極板群ユニット2を収納した状態で、負極集電部材45の窪み47と、容器の底部(膨出部73)はスポット溶接により溶接され、電気的に接続されている。
 正極集電部材39の外周縁部には、正極集電部材と容器3とを電気的に絶縁するための絶縁リング部材63が取り付けられている。容器3には、開口部近傍において、絞り加工が施され、図1(b)に示すように、極板群ユニット2は容器3内で固定される。
 正極集電部材39の上方には、正極端子を構成する容器蓋55が配置される。容器蓋55は、正極集電部材39の上に配置された蓋本体57と、この蓋本体57と組み合わされる蓋キャップ59とから構成されている。蓋本体57は、アルミニウムにより形成されており、蓋キャップ59は、容器3と同様にニッケルメッキが施されたスチールにより形成されている。蓋キャップ59は、環状の平坦部59aと、平坦部59aの中央部から突出する凸部59bとを有している。容器蓋55は、蓋キャップ59の平坦部59aの外周部が蓋本体57の縁部にカーリング加工が施されて(かしめられて)構成されている。蓋キャップ59の凸部59bと蓋本体57との間には、空隙部61が形成されている。
 正極集電部材39の上面には、リボン状のアルミニウム箔を積層した2本の正極端子部のうち1本の正極端子部44Aの一端が接合されている。正極端子部のもう1本の正極端子部44Bは、容器蓋55を構成する蓋本体57の外底面に溶接されている。また、2本の正極端子部44A,44Bの他端同士も接合される。これにより、蓋本体57は、捲回極板群5の一方の極板(正極板9)と電気的に接続される。
 上述のように、絞り加工が施された容器には、環状凸部3aが形成されており、容器蓋55は、その上に、容器蓋55と容器3を電気的に絶縁するための絶縁部材65を介して配置される。そして、環状壁部分3bは、容器蓋55に近づくようにカーリング加工(かしめ加工)されている。その結果、カーリング加工された環状壁部分3bと環状凸部3aとの間に、容器蓋55が絶縁部材65を介して挟まれた状態で固定される。これにより、キャパシタ1の内部は密封される。なお、絶縁リング部材63と絶縁部材65は一体化されているものを使用して部品点数を減らすこともできる。
 容器3内には、極板群ユニット2全体を浸潤可能な量の非水電解液(不図示)が注液されている。非水電解液には、例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)とを体積比30:50:20の割合で混合した溶媒中にリチウム塩として6フッ化リン酸リチウム(LiPF)を溶解した溶液を用いることができる。
 図12は、本発明を円筒型リチウムイオンキャパシタに適用した第2の実施の形態をその長手方向に沿って切断した状態を示す断面図である。なお図12においては、リチウムイオンキャパシタの構成部材の一部の図示を省略してある。本実施の形態の円筒型リチウムイオンキャパシタ101は、容器103と、容器蓋155と、極板群ユニット102とを備えている。容器103は、ニッケルメッキが施されたスチール材料により一方の端部が開口した有底円筒形状を有している。容器103の開口部104は、容器蓋155により塞がれている。本実施の形態の容器蓋155は、絶縁性および耐熱性を有する樹脂製ガスケット191を介して容器103の上部にかしめられている。このため、円筒型リチウムイオンキャパシタ101の内部は密封されている。また、容器103内には、極板群ユニット102の捲回極板群105全体を浸潤可能な量の非水電解液(図示せず)が注液されている。本実施の形態では、非水電解液としてエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの混合溶媒中に6フッ化リン酸リチウム(LiPF6)を電解質として溶解した溶液を用いている。極板群ユニット102は、捲回極板群105と、正極集電部材(第1の集電部材)139と、負極集電部材(第2の集電部材)145とを備えている。なお、図11においては理解を容易にするため、リチウムイオンキャパシタの一部の寸法を誇張して示している。
 図13は、捲回極板群105を捲回する前の状態を模式的に示す図である。捲回極板群105は、帯状の正極板109と帯状の負極板111とを、2枚のセパレータ113及び115を介して中空円筒状の軸芯107を中心として渦巻き状に捲回することにより構成されている。本実施の形態の正極板109は、正極集電板としてのアルミニウム箔の両面に、活性炭を含む正極合剤を略均質に塗布した2つの分割正極板109A及び109Bとから構成されている。分割正極板109A及び109Bは、捲回方向に所定の間隔をあけて並んでおり、捲回方向の長さ寸法を除いて同じ構造を有している。アルミニウム箔の長手方向の一方の辺側には、正極合剤が塗装されていない未塗工部125が形成されている。未塗工部125は、櫛歯状に切り欠かれており、切り欠かれた残部により、正極リード片すなわちタブ126が形成されている。負極板111は、負極集電板としての圧延銅箔の両面に、負極活物質としてリチウムイオンを吸蔵または放出可能な炭素粉末を含む負極合剤を略均質に塗布した構成となっている。銅箔の長手方向の一方の辺側には、負極合剤が塗装されていない未塗工部が形成されている。未塗工部は、櫛歯状に切り欠かれており、切り欠かれた残部により、負極リード片すなわちタブ130が形成されている。負極側のタブ130は、正極側のタブ126が形成された辺側とは反対側の辺に形成されている。図12においては、容器蓋155側に複数の正極側のタブ126が位置し、容器103の底部側に複数の負極側のタブ130が位置している。なお図13には、負極側のタブ130は示されていない。本実施の形態の負極板111には、分割正極板109A及び109Bの間に対応する位置に、金属リチウム板(金属リチウム)135が配置されている。金属リチウム板135は、捲回極板群105を捲回したときに、分割正極板109A及び109Bとセパレータを介して対向しない位置に配置されている。なお金属リチウム板135が配置される位置は、捲回極板群105を捲回したときに、捲回極板群105の径方向の中央領域に、金属リチウム板135の捲回層が位置するように定められている。なお、金属リチウム板135は圧力を加えると粘性を持つため、負極板111に予め圧接により固定することもできる。
 セパレータ113及び115には、クラフト紙等のセルロース系の多孔質基材が用いられている。本実施の形態においては、捲回極板群105の外周面は、セパレータ113または115の端部により覆われており、その端部は、巻解けを防止するために図示しない粘着テープにより固定されている。軸芯107はポリプロピレン樹脂により形成されている。なお、正極板109、負極板111及びセパレータ113または115の詳細な構成については、本発明の要旨とは関係しないので、説明を省略する。
 容器蓋155と捲回極板群105の端部との間には、正極板109からの電位を集電するための複数の正極側のタブ126が接続されたアルミニウム製のリング状の正極集電部材139が捲回極板群105の端部に隣接して配置されている。正極集電部材139は軸芯107の上端部に嵌着されている。正極集電部材139の周囲から一体に張り出している環状部の外周面には、分割正極板109A及び109Bのタブ126の先端部が超音波溶接で接合されている。また、容器103の底部と捲回極板群105の端部との間には、複数の負極側のタブ130が接続された銅製のリング状の負極集電部材145が、捲回極板群105の端部に隣接するように配置されている。負極集電部材145の内周面には軸芯107の下端部が嵌着されている。負極集電部材145の環状部の外周面には、負極板111のタブ130の先端部が超音波溶接で接合されている。なお、正極集電部材139及び負極集電部材145の詳細な構成については、本発明の要旨とは関係しないので、説明を省略する。
 図12に示すように、本実施の形態のリチウムイオンキャパシタでは、捲回極板群105の外周面と容器103の内壁面とがフッ素系樹脂Fにより接合されている。本実施の形態で使用したフッ素系樹脂は、信越化学工業株式会社がSIFEL660の製品名で販売するものを用いた。このフッ素系樹脂は、非水電解液とは反応しない。またこのフッ素系樹脂Fは、非水電解液とは反応しないため、リチウムイオンキャパシタの特性に影響を与えない。そして容器103と捲回極板群105とを接合するのに十分な接着能力を有している。従って、捲回極板群105の外周面と容器103の内壁面との間を接合するフッ素系樹脂Fが、容器103に対して捲回極板群105が大きく変位することを防止する。なお、容器103内のフッ素系樹脂Fは、加熱することにより比較的短い時間で硬化し、しかも硬化後に非水電解液に浸漬されていても耐久性が低下しない。このように接合すると、容器103に対して捲回極板群105が変位しない状態になるので、正極集電部材139と正極側のタブ126との接合及び負極集電部材145と負極側のタブ130との接合が切れることがなくなる。
 特に本実施の形態においては、金属リチウム板135を捲回極板群105中に配置している。この金属リチウム板135は、使用前処理においてイオン化して負極板111の負極活物質に吸蔵される。そのため本実施の形態のリチウムイオンキャパシタでは、捲回された捲回極板群105中の金属リチウム板135が配置されていた部分に隙間が生じる。捲回極板群105の中に隙間が生じると捲回極板群105の捲回が緩くなるため、捲回極板群105を構成する積層体の各ターンがずれやすくなり、各ターンが容器103に対して変位しやすくなる。捲回極板群105を構成する積層体の各ターンのうち、軸芯107に近い内側のターンについては、軸芯107が容器103に固定されているため、容器103に対して大きく変位することはない。従って軸芯107に近い内側のターンは、容器103に固定されている正極集電部材139及び負極集電部材145に対して大きく変位することがないので、軸芯107に近い内側のターンの正極側のタブ126と正極集電部材139との接合及び軸芯107に近い内側のターンの負極側のタブ130と負極集電部材145との接合は、切れ難い状態になっている。しかしながら、軸芯107から遠い外側のターンは、容器103に対して大きく変位することとなるため、軸芯107から近い内側のターンよりも、正極側のタブ126と正極集電部材139との接合及び負極側のタブ130と負極集電部材145との接合が切れやすい。本実施の形態のリチウムイオンキャパシタでは、容器103の底部側に位置する極板群ユニット102の一部分、即ち負極集電部材145及び捲回極板群105の一部と、容器103の底部及びこの底部に繋がる容器103の内壁面の一部との間に、フッ素系樹脂Fが溜まって硬化している。従って、容器103に対して変位しやすい外側のターンの積層体がフッ素系樹脂Fにより容器103にさらに固定されているので、容器103に固定されている正極集電部材139と外側のターンの正極側のタブ126との接合及び容器103に固定されている負極集電部材145と外側のターンの負極側のタブ130との接合が切れることがない。
 なお、本実施の形態においては、捲回極板群105の外周面と容器103の内壁面とをフッ素系樹脂Fにより全面的に接合しているが、容器103内での捲回極板群105の変位を十分に規制することができるのであれば、捲回極板群105の外周面と容器103の内壁面とを、フッ素系樹脂Fにより部分的に接合するようにしてもよい。また、捲回極板群105の外周面と容器103の内壁面との接合のみで、容器103内での捲回極板群105の変位を十分に規制することができるのであれば、負極集電部材145及び捲回極板群105の一部と、容器103の底部及びこの底部に繋がる容器103の内壁面の一部との間に、フッ素系樹脂Fを存在させなくてもよい。
 本実施の形態のリチウムイオンキャパシタを製造するには、極板群ユニット102と、容器103と、容器蓋155とを予め用意しておく。極板群ユニット102、容器103及び容器蓋155の製造方法としては、特開2010-141217号公報等に記載の公知の製造方法を採用することができるが、本発明の要旨とは関係ないので説明を省略する。まず、容器103の内壁面上に非水電解液とは反応しないフッ素系樹脂Fを開口部104付近に部分的に塗布する。その後、極板群ユニット102を容器103の開口部104から挿入する。極板群ユニット102を容器103の開口部104から挿入するときに、容器103の開口部104付近の内壁面上に塗布されたフッ素系樹脂Fは、極板群ユニット102の捲回極板群105の外周面と接触して、容器103の内壁面と捲回極板群105の外周面との間にフッ素系樹脂Fが引き延ばされて広がっていく。また、容器103の開口部104付近の内壁面上に塗布するフッ素系樹脂Fの量を多くした場合には、容器103の底部側に位置する極板群ユニット102の一部分、即ち負極集電部材145及び捲回極板群105の底部側の端部にまでフッ素系樹脂Fが掻き落とされる。次にフッ素系樹脂Fを硬化させる。そして、極板群ユニット102の負極集電部材145と容器103とを電気的に接続し、正極集電部材139と容器蓋155とを電気的に接続する。最後に、容器蓋155で開口部104を封止し、注液口から非水電解液を注入する。
 上記実施の形態では、フッ素系樹脂を用いたが、非水電解液と反応しない樹脂材料としては、ポリプロピレン系樹脂、ポリエチレン系樹脂、ポリフェニレンスルファイド等を用いることもできる。
 図14(A)は、本発明の第3の実施の形態の円筒型リチウムイオンキャパシタ201を長手方向に沿って切断した断面の部分断面図であり、(B)は極板群ユニット202の主要部を示す外観図である。なお図14には、図12に示した実施の形態と同様の部分に、図12に付した符号に100の数を加えた数の符号を付して詳細な説明を省略する。
 図14(A)に示すように、本実施の形態の円筒型リチウムイオンキャパシタ201においては、捲回極板群205の外周面と容器203の内壁面との間及び捲回極板群205の端部と容器203の底部との間は、フッ素系樹脂Fにより接合されていない。本実施の形態の円筒型リチウムイオンキャパシタ201では、図14(B)に示すように、極板群ユニット202の両端が、ポリオレフィン製の収縮チューブT1及びT2により締め付けられた状態で囲繞されている。なお、図14(A)においては、伸縮チューブが存在する領域を斜線で示している。具体的には、極板群ユニット202の正極側の一端は、ポリオレフィン製の正極側収縮チューブT1により締め付けられた状態で囲繞されている。正極側収縮チューブT1は、正極集電部材239の一部と捲回極板群205の正極側の一部とに跨がるように構成されている。また、極板群ユニット202の負極側の一端は、ポリオレフィン製の負極側収縮チューブT2により締め付けられた状態で囲繞されている。負極側収縮チューブT2は、負極集電部材245の一部と捲回極板群205の負極側の一部とに跨がるように構成されている。従って、捲回極板群205を構成する積層体の各ターンは、正極側の端部及び負極側の端部がそれぞれ収縮チューブT1及びT2により圧迫されることとなる。従って、正極側のタブ226及び負極側のタブ230は、それぞれ正極集電部材239及び負極集電部材245から離れない状態となる。従って、正極側のタブ226と正極集電部材239との接合及び負極側のタブ230と負極集電部材245との接合が切れにくくなる。特に本実施の形態のように、捲回された捲回極板群205の中に、使用前処理により負極板に吸蔵される金属リチウム板の層を有するリチウムイオンキャパシタにおいては、金属リチウム板は、使用前処理においてイオン化して負極板211の負極活物質に吸蔵される。そのため、捲回された捲回極板群205の中に隙間が生じる。しかしながら、正極集電部材239の一部と捲回極板群205の一部とに跨がる部分を、ポリオレフィン製の正極側収縮チューブT1により締め付け、負極集電部材245の一部と捲回極板群205の一部とに跨がる部分を、ポリオレフィン製の負極側収縮チューブT2により締め付けているので、捲回極板群205を構成する積層体の各ターンは、正極集電部材239及び負極集電部材245の付近で圧迫されて、捲回極板群205の中に生じた隙間がなくなる。従って、捲回極板群205を構成する積層体の各ターンが容器203に対して変位することを防止することができるので、正極集電部材239と正極側のタブ226との接合及び負極集電部材245と負極側のタブ230との接合が切れにくくなる。
 発明者は、本発明の耐振動効果及び耐衝撃効果について検証すべく、図12及び図14の実施の形態のリチウムイオンキャパシタと、耐振動対策を施していないリチウムイオンキャパシタについて、振動試験を行った。また、上記実施の形態のリチウムイオンキャパシタのように、リチウムが捲回体の中間に位置することの影響を検証するために、リチウムを捲回体の外側に配置した外巻きリチウムイオンキャパシタについても併せて実験を行った。
 図15は、この振動試験の試験条件を示す図である。また、図16及び図17は、この振動実験の試験結果を示す表である。図15中の「振動方向」の「3方向」とは、図18の(1)、(2)、(3)で示す方向である。この実験ではまず図18の(1)の方向に各リチウムイオンキャパシタを振動させた。各リチウムイオンキャパシタは、図15の「周波数・加速度」に示すように、まず10~55Hzの周波数では3G(重力加速度)の加速度で振動させる。次いで55~60Hzの周波数では3Gから18Gに加速度を増大させながら振動させる。最後に60~200Hzの周波数では18Gの加速度で振動させる。200Hzから10Hzまで周波数を下げるときも同様の加速度で振動させる。以上で、(1)方向の1往復の振動が終了する。従って、(1)方向への振動は、これを繰り返して「振動時間」に示すように合計で30時間となる。(1)方向の振動が終了したら、(2)の方向に振動させ、次いで(3)方向に振動させる。(2)方向及び(3)方向への振動のさせ方は、(1)方向の振動のさせ方と同じである。(2)方向及び(3)方向への振動も、「振動時間」に示すように合計でそれぞれ30時間となる。なお、これらの振動は、掃引速度を1往復当たり10分となる条件で行った。ここで、掃引速度とは、サイン波で10Hzから200Hzの周波数を掃引して往復する速度のことである。
 この実験では図16及び図17に結果が示されているように、等価直列抵抗(ESR:単位[mΩ])、開回路電圧(OCV:無負荷電圧:単位[V])、キャパシタの容量(単位[F])、直流抵抗(DCR:単位[mΩ])、漏れ電流(単位[mA])の各項目について、実験前の数値と実験後の数値を測定した。また、OCVについては、各方向への振動後についても測定を行った。図16中の「(1)後」、「(2)後」、「(3)後」とは、図18に示す各方向に振動させた後に測定したことを示す。また、図16中及び図17中の「フッ素系樹脂」はフッ素系樹脂により容器と捲回極板群を固定したリチウムイオンキャパシタを、「収縮チューブ」は極板群ユニットの端部を収縮チューブで締め付けられた状態で囲繞したリチウムイオンキャパシタを、「通常品」は耐震動対策または耐衝撃対策を施していないリチウムイオンキャパシタを、「外巻きリチウム」はリチウムを捲回極板群の外側に配置したリチウムイオンキャパシタをそれぞれ示している。
 図16に示す結果からわかるように、フッ素系樹脂により容器と捲回極板群を固定した場合には、ESR及びOCVの試験前の測定値と試験後の測定値との変化はほとんどない。また、収縮チューブにより、極板群ユニットの端部を締め付けられた状態で囲繞した場合には、「通常品」及び「外巻きリチウム」の場合に比べて、ESR及びOCVの試験前と試験後の変化は小さくなる。「通常品」及び「外巻きリチウム」の場合には、試験前の測定値と試験後の測定値は大きく変化している。
 また、図17に示す結果からわかるように、フッ素系樹脂により容器と捲回極板群を固定した場合には、容量、DCR及び漏れ電流の試験前の測定値と試験後の測定値の変化はほとんどない。また、収縮チューブにより、極板群ユニットの端部を締め付けられた状態で囲繞した場合には、若干の変化はあるものの、測定することが可能である。なお、「通常品」及び「外巻きリチウム」の場合には、容量、DCR及び漏れ電流の数値を測定することはできなかった。このことは、タブと集電部材との接合がほとんど切れたことによると考えられる。
 図16及び図17に示す結果によれば、フッ素系樹脂により容器と捲回極板群を固定した場合には、リチウムイオンキャパシタの特性はほとんど損なわれておらず、耐振動性及び耐衝撃性を高めることができたと考えられる。また、収縮チューブにより、極板群ユニットの端部を締め付けられた状態で囲繞した場合には、測定値に若干の変化はあるものの、リチウムイオンキャパシタとして機能するだけの耐振動性及び耐衝撃性を高めることができたと考えられる。
 なお、振動試験後に試験に使用したリチウムイオンキャパシタの密閉を解いて、正極集電部材と正極側のタブとの接合状況及び負極集電部材と負極側のタブとの接合状況について確認したところ、フッ素系樹脂を使用したリチウムイオンキャパシタでは、接合がほとんど切れていなかった。また、収縮チューブを使用したリチウムイオンキャパシタでは、4割弱の接続が切れずに残っていた。なお、耐振動対策を施していないリチウムイオンキャパシタ及び外巻きリチウムイオンキャパシタについては、接続がほとんど切れてしまっていた。
 本実施の形態のリチウムイオンキャパシタにおいては、非水電解液として、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの混合溶媒中に6フッ化リン酸リチウム(LiPF6)を電解質として溶解した溶液を用いているが、一般的なリチウム塩を電解質として有機溶剤に溶解したものであれば他の非水電解液を用いることができるのは勿論である。例えば、電解質としては、LiClO4、LiAsF6、LiBF4、LiB(C654、CH3SO3Li、CF3SO3Li等やこれらの混合物を用いてもよい。また、有機溶媒としては、例えば、プロピレンカーボネート、ジエチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、テトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル等、又はこれら2種以上の混合溶媒を用いてもよい。混合配合比についても制限されるものではない。
 また上記実施の形態においては、円筒形のリチウムイオンキャパシタについて説明をしたが、本発明は、角形のリチウムイオンキャパシタや、リチウムイオン電池等の他の非水電解液蓄電デバイスに適用することができるのは勿論である。
 図19は、本発明を円筒型リチウムイオンキャパシタに適用した第4の実施の形態をその長手方向に沿って切断した状態を示す断面図である。なお図19においては、リチウムイオンキャパシタの構成部材の一部の図示を省略してある。本実施の形態の円筒型リチウムイオンキャパシタ301は、容器303と、容器蓋355と、極板群ユニット302とを備えている。容器303は、ニッケルメッキが施されたスチール材料により一方の端部が開口した有底円筒形状を有している。容器303の開口部304は、容器蓋355により塞がれている。本実施の形態の容器蓋355は、絶縁性および耐熱性を有する樹脂製ガスケット391を介して容器303の上部にかしめられている。このため、円筒型リチウムイオンキャパシタ301の内部は密封されている。また、容器303内には、極板群ユニット302の捲回極板群305全体を浸潤可能な量の非水電解液(図示せず)が注液されている。本実施の形態では、非水電解液としてエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの混合溶媒中に6フッ化リン酸リチウム(LiPF6)を電解質として溶解した溶液を用いている。極板群ユニット302は、捲回極板群305と、正極集電部材(第1の集電部材)339と、負極集電部材(第2の集電部材)345とを備えている。なお、図19においては理解を容易にするため、リチウムイオンキャパシタの一部の寸法を誇張して示している。
 図20は、捲回極板群305を捲回する前の状態を模式的に示す図である。捲回極板群305は、帯状の正極板309と帯状の負極板311とを、2枚のセパレータ313及び315を介して中空円筒状の軸芯307を中心として渦巻き状に捲回することにより構成されている。本実施の形態の正極板309は、正極集電板としてのアルミニウム箔の両面に、活性炭を含む正極合剤を略均質に塗布した2つの分割正極板309A及び309Bとから構成されている。分割正極板309A及び309Bは、捲回方向に所定の間隔をあけて並んでおり、捲回方向の長さ寸法を除いて同じ構造を有している。アルミニウム箔の長手方向の一方の辺側には、正極合剤が塗装されていない未塗工部325が形成されている。未塗工部325は、櫛歯状に切り欠かれており、切り欠かれた残部により、正極リード片すなわちタブ326が形成されている。負極板311は、負極集電板としての圧延銅箔の両面に、負極活物質としてリチウムイオンを吸蔵または放出可能な炭素粉末を含む負極合剤を略均質に塗布した構成となっている。銅箔の長手方向の一方の辺側には、負極合剤が塗装されていない未塗工部が形成されている。未塗工部は、櫛歯状に切り欠かれており、切り欠かれた残部により、負極リード片すなわちタブ330が形成されている。負極側のタブ330は、正極側のタブ326が形成された辺側とは反対側の辺に形成されている。図19においては、容器蓋355側に複数の正極側のタブ326が位置し、容器303の底部側に複数の負極側のタブ330が位置している。なお図20には、負極側のタブ330は示されていない。本実施の形態の負極板311には、分割正極板309A及び309Bの間に対応する位置に、金属リチウム板(金属リチウム)335が配置されている。金属リチウム板335は、捲回極板群305を捲回したときに、分割正極板309A及び309Bとセパレータを介して対向しない位置に配置されている。なお金属リチウム板335が配置される位置は、捲回極板群305を捲回したときに、捲回極板群305の径方向の中央領域に、金属リチウム板335の捲回層が位置するように定められている。なお、金属リチウム板335は圧力を加えると粘性を持つため、負極板311に予め圧接により固定することもできる。
 セパレータ313及び315には、クラフト紙等のセルロース系の多孔質基材が用いられている。本実施の形態においては、捲回極板群305の外周面は、セパレータ313または315の端部により覆われており、その端部は、巻解けを防止するために図示しない粘着テープにより固定されている。軸芯307はポリプロピレン樹脂により形成されている。なお、正極板309、負極板311及びセパレータ313または315の詳細な構成については、本発明の要旨とは関係しないので、説明を省略する。
 容器蓋355と捲回極板群305の端部との間には、正極板309からの電位を集電するための複数の正極側のタブ326が接続されたアルミニウム製のリング状の正極集電部材339が捲回極板群305の端部に隣接して配置されている。正極集電部材339は軸芯307の上端部に嵌着されている。正極集電部材339の周囲から一体に張り出している環状部の外周面には、分割正極板309A及び309Bのタブ326の先端部が超音波溶接で接合されている。また、容器303の底部と捲回極板群305の端部との間には、複数の負極側のタブ330が接続された銅製のリング状の負極集電部材345が、捲回極板群305の端部に隣接するように配置されている。負極集電部材345の内周面には軸芯307の下端部が嵌着されている。負極集電部材345の環状部の外周面には、負極板311のタブ330の先端部が超音波溶接で接合されている。なお、正極集電部材339及び負極集電部材345の詳細な構成については、本発明の要旨とは関係しないので、説明を省略する。
 図19に示すように、本実施の形態のリチウムイオンキャパシタでは、捲回極板群305の外周面と容器303の内壁面とが熱可塑性樹脂Rにより接合されている。本実施の形態で使用した熱可塑性樹脂は、ポリプロピレン80重量%とポリエチレン20重量%とを混合した樹脂を用いた。この熱可塑性樹脂Rは、非水電解液とは反応しない。またこの熱可塑性樹脂Rは、非水電解液とは反応しないため、リチウムイオンキャパシタの特性に影響を与えない。そして容器303と捲回極板群305とを接合するのに十分な接着能力を有している。従って、捲回極板群305の外周面と容器303の内壁面との間を接合する熱可塑性樹脂Rが、容器303に対して捲回極板群305が大きく変位することを防止する。なお、容器303内の熱可塑性樹脂Rは、加熱することにより比較的短い時間で硬化し、しかも硬化後に非水電解液に浸漬されていても耐久性が低下しない。このように接合すると、容器303に対して捲回極板群305が変位しない状態になるので、正極集電部材339と正極側のタブ326との接合及び負極集電部材345と負極側のタブ330との接合が切れることがなくなる。
 特に本実施の形態においては、金属リチウム板335を捲回極板群305中に配置している。この金属リチウム板335は、使用前処理においてイオン化して負極板311の負極活物質に吸蔵される。そのため本実施の形態のリチウムイオンキャパシタでは、捲回された捲回極板群305中の金属リチウム板335が配置されていた部分に隙間が生じる。捲回極板群305の中に隙間が生じると捲回極板群305の捲回が緩くなるため、捲回極板群305を構成する積層体の各ターンがずれやすくなり、各ターンが容器303に対して変位しやすくなる。捲回極板群305を構成する積層体の各ターンのうち、軸芯307に近い内側のターンについては、軸芯307が容器303に固定されているため、容器303に対して大きく変位することはない。従って軸芯307に近い内側のターンは、容器303に固定されている正極集電部材339及び負極集電部材345に対して大きく変位することがないので、軸芯307に近い内側のターンの正極側のタブ326と正極集電部材339との接合及び軸芯307に近い内側のターンの負極側のタブ330と負極集電部材345との接合は、切れ難い状態になっている。しかしながら、軸芯307から遠い外側のターンは、容器303に対して大きく変位することとなるため、軸芯307から近い内側のターンよりも、正極側のタブ326と正極集電部材339との接合及び負極側のタブ330と負極集電部材345との接合が切れやすい。本実施の形態のリチウムイオンキャパシタでは、容器303の容器蓋355側に位置する極板群ユニット302の一部分、即ち正極集電部材339及び捲回極板群305の一部と、容器303の内壁面の一部との間に、熱可塑性樹脂Rが溜まって硬化している。従って、容器303に対して変位しやすい外側のターンの積層体が熱可塑性樹脂Rにより容器303にさらに固定されているので、容器303に固定されている正極集電部材339と外側のターンの正極側のタブ326との接合及び容器303に固定されている負極集電部材345と外側のターンの負極側のタブ330との接合が切れることがない。この熱可塑性樹脂Rは、複数の正極板のタブ326同士を接合または複数の正極板のタブ326と正極集電部材339とを接合するように設けられている。そのため、複数の正極板のタブ326同士または複数の正極板のタブ326と正極集電部材339とが熱可塑性樹脂材料により包まれた形状で固定されるので、正極側のタブ326が切れることを防止することができる。
 本実施の形態のリチウムイオンキャパシタを製造するには、例えば極板群ユニット302と、容器303と、容器蓋355とを予め用意しておく。極板群ユニット302、容器303及び容器蓋355の製造方法としては、特開2010-141217号公報等に記載の公知の製造方法を採用することができるが、本発明の要旨とは関係がないので説明を省略する。まず、極板群ユニット302を容器303の開口部304から挿入して、極板群ユニット302の負極集電部材345と容器303とを電気的に接続し、正極集電部材339と容器蓋355とを電気的に接続する。そして、容器303の内壁面上と、極板群ユニット302の一部及び正極板のタブ326に、予め適量に用意した熱可塑性樹脂Rを容器303の開口部304側から配置する。その後、熱可塑性樹脂Rを加熱して軟化させる。軟化した熱可塑性樹脂Rは、複数の正極板のタブ326同士の間及び複数の正極板のタブ326と正極集電部材339との間に一部が入り込む。その後熱可塑性樹脂Rの加熱を止めて、熱可塑性樹脂Rを常温に戻して固化させる。最後に、容器蓋355で開口部304を封止し、注液口から非水電解液を注入する。
 上記実施の形態では、ポリプロピレン80重量%、ポリエチレン20重量%の樹脂を用いたが、非水電解液と反応しない樹脂材料としては、ポリプロピレンとポリエチレンの含有率が異なる樹脂および各単体やポリフェニレンスルファイド等を用いることもできる。
 上記実施の形態においては、正極集電部材339と正極側のタブ326及び捲回極板群305の一部と、容器303の内壁面の一部との間を、熱可塑性樹脂Fによって接合しているが、図21に示す本発明の第5の実施の形態のように、容器403の底部側の内壁面の一部と負極側のタブ430および負極集電部材445とを、熱可塑性樹脂Rによって接合してもよい。図21は、本発明を円筒型リチウムイオンキャパシタに適用した第5の実施の形態をその長手方向に沿って切断した状態を示す断面図である。本実施の形態では、負極集電部材445と負極側のタブ430及び捲回極板群405の一部と、容器403の内壁面の一部との間に、熱可塑性樹脂Rが溜まって硬化している。従って、容器403に対して変位しやすい外側のターンの積層体が熱可塑性樹脂Rにより容器403にさらに固定されているので、容器403に固定されている正極集電部材439と外側のターンの正極側のタブ426との接合及び容器403に固定されている負極集電部材445と外側のターンの負極側のタブ430との接合が切れることがない。本実施の形態では、熱可塑性樹脂Rは、複数の負極板のタブ430同士を接合または複数の負極板のタブ430と負極集電部材445とを接合するように設けられている。そのため、複数の負極板のタブ430同士または複数の負極板のタブ430と負極集電部材445とが熱可塑性樹脂材料により包まれた形状で固定されるので、負極側のタブ430が切れることをより防止することができる。
 本実施の形態のリチウムイオンキャパシタを製造するには、例えば極板群ユニット402と、容器403と、容器蓋455とを予め用意しておく。極板群ユニット402、容器403及び容器蓋455の製造方法としては、特開2010-141217号公報等に記載の公知の製造方法を採用することができるが、本発明の要旨とは関係ないので説明を省略する。まず、適量に用意した熱可塑性樹脂Rを容器403の底部側に配置し、その後極板群ユニット402を容器403に挿入する。その後、熱可塑性樹脂Rを加熱して軟化させる。軟化した熱可塑性樹脂Rは、複数の負極板のタブ430同士の間及び複数の負極板のタブ430と負極集電部材445との間に一部が入り込む。その後熱可塑性樹脂Rの加熱を止めて、熱可塑性樹脂Rを常温に戻して固化させる。そして容器403の底部側の負極集電部材445と容器403とを電気的に接続する。なお、容器403の底部側の負極集電部材445と容器403とを電気的に接続する工程は、熱可塑性樹脂Rを軟化および固化する工程の前でもよい。その後正極集電部材439と容器蓋455とを電気的に接続する。最後に容器蓋455で開口部404を封止し、注液口から非水電解液を注入する。
 第2乃至第5の実施形態では、タブ付きの正極板及び負極板を有する捲回極板群を備える蓄電デバイスについて説明したが、第2乃至第5の実施形態の発明は、タブなしの正極板及び負極板を有する捲回極板群を備える蓄電デバイスにも当然に適用することができる。
 発明者は、本発明の耐振動効果及び耐衝撃効果について検証すべく、図19及び図21の実施の形態のリチウムイオンキャパシタと、耐振動対策を施していないリチウムイオンキャパシタについて、振動試験を行った。また、集電板にタブを形成せずに、集電部材と捲回極板群の未塗工部とを半導体レーザ溶接等により直接溶接することで、正極板の集電板及び負極板の集電板と正極側の集電部材及び負極側の集電部材とを接続している構成のリチウムイオンキャパシタと、これと同様のタブを形成しない構成のリチウムイオンキャパシタに対して、図19及び図21と同様に熱可塑性樹脂を用いて対振動対策を施したリチウムイオンキャパシタについても、振動試験を行った。
 図22は、この振動試験の試験条件を示す図である。また、図23及び図24は、この振動実験の試験結果を示す表である。図22中の「振動方向」の「3方向」とは、図25の(1)、(2)、(3)で示す方向である。この実験ではまず図25の(1)の方向に各リチウムイオンキャパシタを振動させた。各リチウムイオンキャパシタは、図22の「周波数・加速度」に示すように、まず10~55Hzの周波数では3G(重力加速度)の加速度で振動させる。次いで55~60Hzの周波数では3Gから18Gに加速度を増大させながら振動させる。最後に60~200Hzの周波数では18Gの加速度で振動させる。200Hzから10Hzまで周波数を下げるときも同様の加速度で振動させる。以上で、(1)方向の1往復の振動が終了する。従って、(1)方向への振動は、これを繰り返して「振動時間」に示すように合計で30時間となる。(1)方向の振動が終了したら、(2)の方向に振動させ、次いで(3)方向に振動させる。(2)方向及び(3)方向への振動のさせ方は、(1)方向の振動のさせ方と同じである。(2)方向及び(3)方向への振動も、「振動時間」に示すように合計でそれぞれ30時間となる。なお、これらの振動は、掃引速度を1往復当たり10分となる条件で行った。ここで、掃引速度とは、サイン波で10Hzから200Hzの周波数を掃引して往復する速度のことである。
 この実験では図23及び図24に結果が示されているように、等価直列抵抗(ESR:単位[mΩ])、開回路電圧(OCV:無負荷電圧:単位[V])、キャパシタの容量(単位[F])、直流抵抗(DCR:単位[mΩ])、漏れ電流(単位[mA])の各項目について、実験前の数値と実験後の数値を測定した。また、OCVについては、各方向への振動後についても測定を行った。図23中の「(1)後」、「(2)後」、「(3)後」とは、図25に示す各方向に振動させた後に測定したことを示す。また、図23中及び図24中の「通常品」は耐震動対策または耐衝撃対策を施していないリチウムイオンキャパシタを、「正極側固定」は熱可塑性樹脂により容器と捲回極板群を正極側即ち蓋部材側で固定したリチウムイオンキャパシタを、「負極側固定」は熱可塑性樹脂により容器と捲回極板群を負極側即ち容器の底部側で固定したリチウムイオンキャパシタをそれぞれ示している。さらに、「タブ無通常品」はタブを用いない構成かつ耐震動対策または耐衝撃対策を施していないリチウムイオンキャパシタを、「タブ無・正極側固定」はタブを用いない構成かつ熱可塑性樹脂により容器と捲回極板群を正極側即ち蓋部材側で固定したリチウムイオンキャパシタを、「タブ無・負極側固定」はタブを用いない構成かつ熱可塑性樹脂により容器と極板群を負極側即ち容器の底部側で固定したリチウムイオンキャパシタをそれぞれ示している。
 図23に示す結果からわかるように、熱可塑性樹脂により容器と捲回極板群を固定した場合には、ESR及びOCVの試験前の測定値と試験後の測定値との変化はほとんどない。「通常品」の場合には、試験前の測定値と試験後の測定値は大きく変化している。「タブ無通常品」の場合には、「通常品」よりは変化の幅は小さいが、試験前後で測定値が変化している。
 また、図24に示す結果からわかるように、熱可塑性樹脂により容器と捲回極板群を固定した場合には、容量、DCR及び漏れ電流の試験前の測定値と試験後の測定値の変化はほとんどない。「通常品」の場合には、容量、DCR及び漏れ電流の数値を測定することはできなかった。このことは、タブと集電部材との接合がほとんど切れたことによると考えられる。「タブ無通常品」の場合には、試験前の測定値と比較し、試験後の測定値は容量は小さく、DCR及び漏れ電流は大きくなっていた。タブを用いない構成のため、接合がきれることはなかったが、極板群が固定されていないことで、集電板に塗布された合剤が一部剥がれたことによると考えられる。
 図23及び図24に示す結果によれば、熱可塑性樹脂により容器と捲回極板群を固定した場合には、リチウムイオンキャパシタの特性はほとんど損なわれておらず、耐振動性及び耐衝撃性を高めることができたと考えられる。また、タブを用いた構成のリチウムイオンキャパシタ及びタブを用いない構成のリチウムイオンキャパシタのどちらの構成においても耐振動性及び耐衝撃性を高める効果が得られた。
 なお、振動試験後に試験に使用したリチウムイオンキャパシタの密閉を解いて、正極集電部材と正極側のタブとの接合状況及び負極集電部材と負極側のタブとの接合状況について確認したところ、熱可塑性樹脂を使用したリチウムイオンキャパシタでは、接合がほとんど切れていなかった。耐振動対策を施していないリチウムイオンキャパシタについては、接続がほとんど切れてしまっていた。また、タブを用いない構成のリチウムイオンキャパシタにおいては、接合には影響はなかったが、耐振動対策を施していないリチウムイオンキャパシタは、集電板に塗布された合剤が一部剥がれ落ちていた。
 上記実施の形態のリチウムイオンキャパシタにおいては、非水電解液として、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの混合溶媒中に6フッ化リン酸リチウム(LiPF6)を電解質として溶解した溶液を用いているが、一般的なリチウム塩を電解質として有機溶剤に溶解したものであれば他の非水電解液を用いることができるのは勿論である。例えば、電解質としては、LiClO4、LiAsF6、LiBF4、LiB(C654、CH3SO3Li、CF3SO3Li等やこれらの混合物を用いてもよい。また、有機溶媒としては、例えば、プロピレンカーボネート、ジエチルカーボネート、1、2-ジメトキシエタン、1、2-ジエトキシエタン、γ-ブチロラクトン、テトラヒドロフラン、1、3-ジオキソラン、4-メチル-1、3-ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル等、又はこれら2種以上の混合溶媒を用いてもよい。混合配合比についても制限されるものではない。
 図26は、本発明を円筒型リチウムイオンキャパシタに適用した第6の実施の形態をその長手方向に沿って切断した状態を示す断面図である。なお図26においては、リチウムイオンキャパシタの構成部材の一部の図示を省略してある。本実施の形態のリチウムイオンキャパシタは、図1に示す第1の実施の形態のリチウムイオンキャパシタと同様に、捲回極板群505の未塗工部525及び533と集電部材(正極集電部材539及び負極集電部材545)とがレーザにより溶接されたタブのないリチウムイオンキャパシタである。図26に示すように、本実施の形態のリチウムイオンキャパシタでは、捲回極板群505の外周面と容器503の内壁面とが、ポリプロピレン80重量%とポリエチレン20重量%とを混合した熱可塑性樹脂Rにより接合されている。また、容器503の容器蓋555側に位置する極板群ユニット502の一部分、即ち正極集電部材539及び捲回極板群505の一部と、容器503の内壁面の一部との間に、熱可塑性樹脂Rが溜まって硬化している。負極集電部材545及び捲回極板群505の一部と、容器503の内壁面の一部との間に、熱可塑性樹脂Rが溜まって硬化している。さらに、極板群ユニット502の両端が、ポリオレフィン製の収縮チューブT501及びT502により締め付けられた状態で囲繞されている。このように構成すると、複数の固定手段により捲回極板群を容器に固定することができるので、極板と集電部材とをより確実に固定することができ、蓄電デバイスの耐震動性をより高めることができる。
 上記実施の形態においては、蓋部材に正極集電部材を接続し、容器の底部に負極集電部材を接続した例について説明したが、蓋部材に負極集電部材を接続し、容器の底部に正極集電部材を接続してもよいのは勿論である。
 また上記実施の形態においては、円筒形のリチウムイオンキャパシタについて説明をしたが、本発明は、角形のリチウムイオンキャパシタや、リチウムイオン電池等の他の非水電解液蓄電デバイスに適用することができるのは勿論である。
 本発明によれば、耐振動性及び耐衝撃性を高めても、電池としての特性が低下しない蓄電デバイスを提供することができる。
 1 キャパシタ
 2 極板群ユニット
 3 容器
 3a 環状凸部
 3b 環状壁部分
 3c 頂部
 3d 環状壁部分
 5 捲回極板群
 7 軸芯
 9 正極板
 9A 分割正極板
 9B 分割正極板
 11 負極板
 13 セパレータ
 15 セパレータ
 17 金属リチウム支持部材
 19 アルミニウム箔
 21 正極活物質合剤
 23 塗工部
 25 未塗工部
 27 銅箔
 29 負極活物質合剤
 31 塗工部
 33 未塗工部
 35 金属リチウム
 37 銅箔
 37 支持体
 39 正極集電部材
 40 外周部分
 41 孔
 43 溝
 44A 正極端子部
 44B 正極端子部
 45 負極集電部材
 46 外周部分
 49 溝
 51 溶融金属
 53 溶融金属
 55 容器蓋
 57 蓋本体
 59 蓋キャップ
 59a 平坦部
 59b 凸部
 61 空隙部
 63 絶縁リング部材
 65 絶縁部材
 71 環状底壁部分
 73 膨出部
 75 絶縁部材

Claims (22)

  1.  第1の金属箔に正極活物質合剤が塗布されて形成された塗布層及び該塗布層に沿って残る前記第1の金属箔の未塗工部を有する正極板と、第2の金属箔に負極活物質合剤が塗布されて形成された塗布層及び該塗布層に沿って残る前記第2の金属箔の未塗工部を有する負極板とが、前記正極板の前記未塗工部と前記負極板の前記未塗工部がそれぞれ逆方向に突出するようにセパレータを介して積層した積層体を捲回してなる捲回極板群と、前記捲回極板群の一方の端部において前記セパレータを越えて突出する前記正極板の前記未塗工部に溶接された正極集電部材と、前記捲回極板群の他方の端部において前記セパレータを越えて突出する前記負極板の前記未塗工部に溶接された負極集電部材とを具備してなる極板群ユニットが、一方の極性の端子を構成する有底筒状の容器内に非水電解液と共に収納され、
     前記容器の開口部から底部側に所定の距離離れた位置に、前記容器の全周にわたって前記容器の内部に向かって凸になる環状凸部が形成され、
     前記開口部に隣接する環状壁部分が径方向内側にかしめられて形成された環状の抜け止め部と前記環状凸部との間に他方の極性の端子を構成する蓋部材が前記容器と電気的に絶縁された状態で配置され、
     前記正極集電部材及び前記負極集電部材のうち前記蓋部材と電気的に接続される一方の集電部材が、前記環状凸部の頂部よりも前記容器の周壁部側に外周部分が位置する形状寸法を有し且つ前記環状凸部の近くに配置されており、
     前記環状凸部及び該環状凸部に連続する前記周壁部の環状壁部分と前記一方の集電部材の前記外周部分との間には、前記一方の集電部材と前記容器とを電気的に絶縁する電気絶縁部材が、圧縮状態で配置されており、
     前記容器の底部は、前記容器の前記周壁部に連続する環状底壁部分と、前記環状底壁部分と連続し且つ前記蓋部材から離れる方向に膨出する膨出部とを備えており、
     前記正極集電部材及び前記負極集電部材のうち前記底部と電気的に接続される他方の集電部材は、前記環状底壁部分の内縁部よりも前記容器の前記周壁部側に外周部分が位置する形状寸法を有しており、
     少なくとも前記捲回極板群の外周面と前記容器の内壁面とが前記非水電解液とは反応しない樹脂材料によって部分的にまたは全体的に接合されており、
     前記容器の開口部側に位置する前記極板群ユニットの一部分と前記開口部及び該開口部に繋がる前記容器の前記内壁面の一部との間に前記樹脂材料が溜まって硬化しており、
     前記正極集電部材の一部と前記捲回極板群の一部とに跨がるように前記極板群ユニットの一端が、前記非水電解液と反応しない材料で形成された第1の収縮チューブにより締め付けられた状態で囲繞され、
     前記負極集電部材の一部と前記捲回極板群の一部とに跨がるように前記極板群ユニットの他端が、前記非水電解液と反応しない材料で形成された第2の収縮チューブにより締め付けられた状態で囲繞されていることを特徴とする蓄電デバイス。
  2.  前記非水電解液と反応しない樹脂材料は、ポリプロピレン系樹脂材料、ポリエチレン系樹脂材料またはフッ素系樹脂材料である請求項1に記載の蓄電デバイス。
  3.  第1の金属箔に正極活物質合剤が塗布された正極板と、第2の金属箔に負極活物質合剤が塗布された負極板とが、セパレータを介して積層した積層体を捲回してなる捲回極板群と、前記捲回極板群の一方の端部において前記正極板と接続された正極集電部材と、前記捲回極板群の他方の端部において前記負極板と接続された負極集電部材とを具備してなる極板群ユニットが、一方の極性の端子を構成する有底筒状の容器内に前記捲回極板群内に浸潤される非水電解液とともに収納され、
     前記捲回極板群は前記非水電解液とは反応しない固定手段により容器に固定されていることを特徴とする蓄電デバイス。
  4.  前記正極板は前記正極活物質合剤が塗布されて形成された塗布層及び該塗布層に沿って残る前記第1の金属箔の未塗工部を有し、
     前記負極板は前記負極活物質合剤が塗布されて形成された塗布層及び該塗布層に沿って残る前記第2の金属箔の未塗工部を有し、
     前記正極板の前記未塗工部と前記負極板の前記未塗工部がそれぞれ逆方向に突出するように積層されており、
     前記正極集電部材は前記セパレータを越えて突出する前記正極板の前記未塗工部に溶接されており、
     前記負極集電部材は前記セパレータを越えて突出する前記負極板の前記未塗工部に溶接されており、
     前記容器の開口部から底部側に所定の距離離れた位置に、前記容器の全周にわたって前記容器の内部に向かって凸になる環状凸部が形成され、
     前記開口部に隣接する環状壁部分が径方向内側にかしめられて形成された環状の抜け止め部と前記環状凸部との間に他方の極性の端子を構成する蓋部材が前記容器と電気的に絶縁された状態で配置されており、
     前記固定手段は、
     前記環状凸部の頂部よりも前記容器の周壁部側に外周部分が位置する形状寸法を有し且つ前記環状凸部の近くに配置される前記正極集電部材及び前記負極集電部材のうち前記蓋部材と電気的に接続される一方の集電部材と、
     前記環状凸部及び該環状凸部に連続する前記周壁部の環状壁部分と前記一方の集電部材の前記外周部分との間に圧縮状態で配置された前記一方の集電部材と前記容器とを電気的に絶縁する電気絶縁部材とにより構成されている請求項3に記載の蓄電デバイス。
  5.  前記容器の底部は、前記容器の前記周壁部に連続する環状底壁部分と、前記環状底壁部分と連続し且つ前記蓋部材から離れる方向に膨出する膨出部とを備えており、
     前記正極集電部材及び前記負極集電部材のうち前記底部と電気的に接続される他方の集電部材は、前記環状底壁部分の内縁部よりも前記容器の前記周壁部側に外周部分が位置する形状寸法を有している請求項4に記載の蓄電デバイス。
  6.  前記固定手段は、少なくとも前記捲回極板群の外周面と前記容器の内壁面とを部分的にまたは全体的に接合する前記非水電解液とは反応しない樹脂材料である請求項3の記載の蓄電デバイス。
  7.  前記正極板は前記正極活物質合剤が塗布されて形成された塗布層及び該塗布層に沿って残る前記第1の金属箔の未塗工部を有し、
     前記負極板は前記負極活物質合剤が塗布されて形成された塗布層及び該塗布層に沿って残る前記第2の金属箔の未塗工部を有し、
     前記正極板の前記未塗工部と前記負極板の前記未塗工部がそれぞれ逆方向に突出するように積層されており、
     前記正極集電部材は前記セパレータを越えて突出する前記正極板の前記未塗工部に溶接されており、
     前記負極集電部材は前記セパレータを越えて突出する前記負極板の前記未塗工部に溶接されている請求項6に記載の蓄電デバイス。
  8.  前記正極板は複数のタブ付きの正極板であり、
     前記負極板は複数のタブ付きの負極板であり、
     前記正極集電部材は前記正極板の前記複数のタブと接続されており、
     前記負極集電部材は前記負極板の前記複数のタブと接続されている請求項6に記載の蓄電デバイス。
  9.  前記容器の底部側に位置する前記極板群ユニットの一部分と前記底部及び該底部に繋がる前記容器の前記内壁面の一部との間に前記樹脂材料が溜まって硬化している請求項6,7または8に記載の蓄電デバイス。
  10.  前記樹脂材料は熱可塑性樹脂材料であり、
     前記容器の底部側に位置する前記極板群ユニットの一部分と前記底部及び該底部に繋がる前記容器の前記内壁面の一部との間に前記熱可塑性樹脂材料が溜まって硬化しており、
     前記熱可塑性樹脂材料により、前記正極板の前記複数のタブ同士が接合されているかまたは前記正極板の前記複数のタブと前記正極集電部材とがさらに接合されている請求項8に記載の蓄電デバイス。
  11.  前記容器の開口部側に位置する前記極板群ユニットの一部分と前記開口部及び該開口部に繋がる前記容器の前記内壁面の一部との間に前記樹脂材料が溜まって硬化している請求項6,7または8に記載の蓄電デバイス。
  12.  前記樹脂材料は熱可塑性樹脂材料であり、
     前記容器の開口部側に位置する前記極板群ユニットの一部分と前記開口部及び該開口部に繋がる前記容器の前記内壁面の一部との間に前記樹脂材料が溜まって硬化しており、
     前記熱可塑性樹脂材料により、前記負極板の前記複数のタブ同士が接合または前記負極板の前記複数のタブと前記負極集電部材とがさらに接合されている請求項8に記載の蓄電デバイス。
  13.  前記樹脂材料はフッ素系樹脂である請求項6,7または8に記載の蓄電デバイス。
  14.  前記樹脂材料は熱可塑性樹脂材料である請求項6,7または8に記載の蓄電デバイス。
  15.  前記樹脂材料はポリプロピレン系樹脂材料またはポリエチレン系樹脂材料である請求項6,7または8に記載の蓄電デバイス。
  16.  前記固定手段は、
     前記正極集電部材の一部と前記捲回極板群の一部とに跨がるように前記極板群ユニットの一端を締め付けられた状態で囲繞する第1の収縮チューブと、前記負極集電部材の一部と前記極板群の一部とに跨がるように前記極板群ユニットの他端を締め付けられた状態で囲繞する第2の収縮チューブである請求項3に記載の蓄電デバイス。
  17.  前記蓄電デバイスは、リチウムイオンキャパシタであることを特徴とする請求項3乃至8のいずれか1項に記載の蓄電デバイス。
  18.  前記蓄電デバイスは、リチウムイオン電池であることを特徴とする請求項3乃至8のいずれか1項に記載の蓄電デバイス。
  19.  複数のタブ付きの正極板と、セパレータと、複数のタブ付きの負極板とを積層してなる積層体が捲回されて構成された捲回極板群と、前記捲回極板群の一端側に配置されて前記捲回極板群に含まれる前記正極板の前記複数のタブと接続された正極集電部材と、前記捲回極板群の他端側に配置されて前記捲回極板群に含まれる前記負極板の前記複数のタブと接続された負極集電部材とからなる極板群ユニットと、
     一方の端部に開口部を有して内部に前記極板群ユニットが収納される有底筒状の容器と、
     前記容器の前記開口部を塞ぐ蓋部材とを用意し、
     前記容器の内壁面上に非水電解液とは反応しない樹脂材料を部分的に塗布し、
     その後前記極板群ユニットを前記容器の前記開口部から挿入し、
     前記樹脂材料を硬化させ、
     前記正極集電部材及び前記負極集電部材の一方と前記容器とを電気的に接続し、
     前記正極集電部材及び前記負極集電部材の他方と前記蓋部材とを電気的に接続した後前記蓋部材で前記開口部を封止し、
     その後注液口から前記非水電解液を注入する蓄電デバイスの製造方法。
  20.  複数のタブ付きの正極板と、セパレータと、複数のタブ付きの負極板とを積層してなる積層体が捲回されて構成された捲回極板群と、前記捲回極板群の一端側に配置されて前記捲回極板群に含まれる前記正極板の前記複数のタブと接続された正極集電部材と、前記捲回極板群の他端側に配置されて前記捲回極板群に含まれる前記負極板の前記複数のタブと接続された負極集電部材とからなる極板群ユニットと、
     一方の端部に開口部を有して内部に前記極板群ユニットが収納される有底筒状の容器と、
     前記容器の開口部を塞ぐ蓋部材とを用意し、
     前記極板群ユニットを容器の開口部から挿入し、
     前記正極集電部材及び前記負極集電部材の一方と前記容器とを電気的に接続し、
     前記正極集電部材及び前記負極集電部材の他方と前記蓋部材とを電気的に接続し、
     前記容器の内壁面上と前記捲回極板群の一部および前記タブ部分とに非水電解液とは反応しない熱可塑性樹脂材料を前記容器の前記開口部側から配置し、
     前記熱可塑性樹脂材料に熱を加えて軟化させ、
     その後前記熱可塑性樹脂材料を常温に戻して固化させ、
     前記蓋部材で前記開口部を封止し、その後注液口から前記非水電解液を注入する蓄電デバイスの製造方法。
  21.  複数のタブ付きの正極板と、セパレータと、複数のタブ付きの負極板とを積層してなる積層体が捲回されて構成された捲回極板群と、前記捲回極板群の一端側に配置されて前記捲回極板群に含まれる前記正極板の前記複数のタブと接続された正極集電部材と、前記捲回極板群の他端側に配置されて前記捲回極板群に含まれる前記負極板の前記複数のタブと接続された負極集電部材とからなる極板群ユニットと、
     一方の端部に開口部を有して内部に前記極板群ユニットが収納される有底筒状の容器と、
     前記容器の開口部を塞ぐ蓋部材とを用意し、
     非水電解液とは反応しない熱可塑性樹脂材料を容器の底部側に配置し、
     前記極板群ユニットを前記容器の前記開口部から挿入し、
     前記容器の底部側に熱を加えて前記熱可塑性樹脂材料を軟化させ、
     前記正極集電部材及び前記負極集電部材の一方と前記容器とを電気的に接続し、
     前記熱可塑性樹脂材料を常温に戻して固化させ、
     前記正極集電部材及び前記負極集電部材の他方と前記蓋部材とを電気的に接続し、
     前記蓋部材で前記開口部を封止し、その後注液口から前記非水電解液を注入する蓄電デバイスの製造方法。
  22.  複数のタブ付きの正極板と、セパレータと、複数のタブ付きの負極板とを積層してなる積層体が捲回されて構成された捲回極板群と、前記捲回極板群の一端側に配置されて前記捲回極板群に含まれる前記正極板の前記複数のタブと接続された正極集電部材と、前記捲回極板群の他端側に配置されて前記捲回極板群に含まれる前記負極板の前記複数のタブと接続された負極集電部材とからなる極板群ユニットと、
     一方の端部に開口部を有して内部に前記極板群ユニットが収納される有底筒状の容器と、
     前記容器の開口部を塞ぐ蓋部材とを用意し、
     非水電解液とは反応しない熱可塑性樹脂材料を容器の底部側に配置し、
     前記極板群ユニットを前記容器の前記開口部から挿入し、
     前記正極集電部材及び前記負極集電部材の一方と前記容器とを電気的に接続し、
     前記容器の底部側に熱を加えて前記熱可塑性樹脂材料を軟化させ、
     その後前記熱可塑性樹脂材料を常温に戻して固化させ、
     前記正極集電部材及び前記負極集電部材体の他方と前記蓋部材とを電気的に接続し、
     前記蓋部材で前記開口部を封止し、その後注液口から前記非水電解液を注入する蓄電デバイスの製造方法。
PCT/JP2011/071907 2010-09-24 2011-09-26 蓄電デバイス及び蓄電デバイスの製造方法 WO2012039497A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137010451A KR20130115263A (ko) 2010-09-24 2011-09-26 축전 디바이스 및 축전 디바이스의 제조 방법
EP11826939.8A EP2620964A4 (en) 2010-09-24 2011-09-26 ENERGY STORAGE DEVICE AND METHOD FOR PRODUCING THE ENERGY STORAGE DEVICE
JP2012535089A JP5958340B2 (ja) 2010-09-24 2011-09-26 蓄電デバイス及び蓄電デバイスの製造方法
CN201180046103.6A CN103119675B (zh) 2010-09-24 2011-09-26 蓄电设备和蓄电设备的制造方法
US13/825,428 US20130224546A1 (en) 2010-09-24 2011-09-26 Electrical Storage Device and Method of Manfacturig Electrical Storage Device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-214049 2010-09-24
JP2010214049 2010-09-24
JP2010252196 2010-11-10
JP2010-252196 2010-11-10

Publications (1)

Publication Number Publication Date
WO2012039497A1 true WO2012039497A1 (ja) 2012-03-29

Family

ID=45873976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071907 WO2012039497A1 (ja) 2010-09-24 2011-09-26 蓄電デバイス及び蓄電デバイスの製造方法

Country Status (6)

Country Link
US (1) US20130224546A1 (ja)
EP (1) EP2620964A4 (ja)
JP (1) JP5958340B2 (ja)
KR (1) KR20130115263A (ja)
CN (1) CN103119675B (ja)
WO (1) WO2012039497A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098866A1 (ja) * 2013-12-26 2015-07-02 新神戸電機株式会社 蓄電デバイス
WO2017009991A1 (ja) * 2015-07-15 2017-01-19 日産自動車株式会社 ロール状電極、およびロール状電極の製造方法
US9911543B2 (en) 2013-12-26 2018-03-06 Hitachi Chemical Company, Ltd. Capacitor
JP2018073667A (ja) * 2016-10-31 2018-05-10 株式会社半導体エネルギー研究所 蓄電装置
JP2018142448A (ja) * 2017-02-27 2018-09-13 パナソニックIpマネジメント株式会社 捲回型電池
JP2018533346A (ja) * 2015-10-19 2018-11-08 北京納米能源與系統研究所 摩擦式ナノ発電機のエネルギー管理の方法、回路および装置
WO2020045375A1 (ja) * 2018-08-31 2020-03-05 パナソニックIpマネジメント株式会社 電気化学デバイス

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207026A (ja) * 2012-03-28 2013-10-07 Panasonic Corp キャパシタ及びこれを用いたキャパシタモジュール
CN104143445A (zh) * 2013-07-18 2014-11-12 成都精容电子有限公司 铝电解的电容器
JP6201795B2 (ja) * 2014-02-10 2017-09-27 トヨタ自動車株式会社 蓄電装置の製造方法
US9490079B2 (en) * 2014-03-28 2016-11-08 Cooper Technologies Company Electrochemical energy storage device with flexible metal contact current collector and methods of manufacture
KR101527126B1 (ko) * 2014-04-28 2015-06-09 삼화전기주식회사 전기 이중층 커패시터
JP6260835B2 (ja) * 2015-08-03 2018-01-17 トヨタ自動車株式会社 再利用可能な非水電解液二次電池の選別方法
CN106653395A (zh) * 2016-11-10 2017-05-10 湖南耐普恩科技有限公司 一种超级电容器
KR102431457B1 (ko) * 2016-12-07 2022-08-10 엘에스머트리얼즈 주식회사 전기 이중층 커패시터용 전해액 제조 방법 및 이를 이용하여 제조된 전해액을 포함하는 전기 이중층 커패시터
CA2997725C (en) * 2017-03-10 2021-08-03 Evolution Engineering Inc. Battery coil engaging members for downhole tools
JP7315005B2 (ja) * 2019-07-30 2023-07-26 株式会社村田製作所 二次電池、電池パック、電動工具、電動式航空機及び電動車両
WO2021039761A1 (ja) * 2019-08-30 2021-03-04 株式会社村田製作所 フィルムコンデンサ
BR112022014379A2 (pt) * 2020-09-30 2023-04-11 Contemporary Amperex Technology Co Ltd Célula de bateria, bateria, aparelho elétrico, método de fabricação de célula de bateria e sistema de fabricação de célula de bateria
EP4318793A1 (en) * 2022-02-04 2024-02-07 Lg Energy Solution, Ltd. Battery, and battery pack and vehicle including same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167185A (ja) * 1997-08-25 1999-03-09 Toyota Autom Loom Works Ltd 電 池
JPH11150043A (ja) * 1997-11-17 1999-06-02 Asahi Glass Co Ltd 電気二重層キャパシタ
JP2009054296A (ja) * 2007-08-23 2009-03-12 Toshiba Corp 非水電解質電池
JP2010141217A (ja) 2008-12-15 2010-06-24 Shin Kobe Electric Mach Co Ltd 積層体、リチウムイオンキャパシタおよびリチウムイオンキャパシタの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4763110B2 (ja) * 1998-10-20 2011-08-31 日本ケミコン株式会社 コンデンサ
EP1223592B1 (en) * 1999-09-30 2007-02-28 Asahi Glass Company Ltd. Capacitor element
JP2005327760A (ja) * 2004-05-12 2005-11-24 Nec Tokin Corp 電気二重層キャパシタ及びその製造方法
US8310809B2 (en) * 2006-03-23 2012-11-13 Panasonic Corporation Electric double layer capacitor and method for manufacturing same
DE102006048686A1 (de) * 2006-10-14 2008-04-24 Huber, Robert Vergossener niederinduktiver Hochstromkondensator mit verbesserten Fertigungseigenschaften
JP4364250B2 (ja) * 2007-03-28 2009-11-11 株式会社東芝 非水電解質電池、電池パック及び自動車
JP4444989B2 (ja) * 2007-06-11 2010-03-31 日立ビークルエナジー株式会社 リチウムイオン二次電池
JP5132269B2 (ja) * 2007-11-13 2013-01-30 日立ビークルエナジー株式会社 リチウムイオン二次電池
JP5171401B2 (ja) * 2008-06-04 2013-03-27 日立ビークルエナジー株式会社 リチウム二次電池
JP2011029425A (ja) * 2009-07-27 2011-02-10 Nichicon Corp 電気二重層コンデンサおよびその製造方法
KR101040826B1 (ko) * 2009-09-28 2011-06-14 삼성에스디아이 주식회사 이차전지
WO2011080988A1 (ja) * 2009-12-28 2011-07-07 Jmエナジー株式会社 蓄電デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167185A (ja) * 1997-08-25 1999-03-09 Toyota Autom Loom Works Ltd 電 池
JPH11150043A (ja) * 1997-11-17 1999-06-02 Asahi Glass Co Ltd 電気二重層キャパシタ
JP2009054296A (ja) * 2007-08-23 2009-03-12 Toshiba Corp 非水電解質電池
JP2010141217A (ja) 2008-12-15 2010-06-24 Shin Kobe Electric Mach Co Ltd 積層体、リチウムイオンキャパシタおよびリチウムイオンキャパシタの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2620964A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10186692B2 (en) 2013-12-26 2019-01-22 Hitachi Chemical Company, Ltd. Electrical storage device
WO2015098866A1 (ja) * 2013-12-26 2015-07-02 新神戸電機株式会社 蓄電デバイス
JPWO2015098866A1 (ja) * 2013-12-26 2017-03-23 日立化成株式会社 蓄電デバイス
US9911543B2 (en) 2013-12-26 2018-03-06 Hitachi Chemical Company, Ltd. Capacitor
US10529981B2 (en) 2015-07-15 2020-01-07 Envision Aesc Japan Ltd. Roll electrode and method for manufacturing roll electrode
JPWO2017009991A1 (ja) * 2015-07-15 2018-03-29 日産自動車株式会社 ロール状電極、およびロール状電極の製造方法
WO2017009991A1 (ja) * 2015-07-15 2017-01-19 日産自動車株式会社 ロール状電極、およびロール状電極の製造方法
US10998543B2 (en) 2015-07-15 2021-05-04 Envision Aesc Japan Ltd. Roll electrode and method for manufacturing roll electrode
JP2018533346A (ja) * 2015-10-19 2018-11-08 北京納米能源與系統研究所 摩擦式ナノ発電機のエネルギー管理の方法、回路および装置
JP2018073667A (ja) * 2016-10-31 2018-05-10 株式会社半導体エネルギー研究所 蓄電装置
JP2018142448A (ja) * 2017-02-27 2018-09-13 パナソニックIpマネジメント株式会社 捲回型電池
JP7022909B2 (ja) 2017-02-27 2022-02-21 パナソニックIpマネジメント株式会社 捲回型電池
WO2020045375A1 (ja) * 2018-08-31 2020-03-05 パナソニックIpマネジメント株式会社 電気化学デバイス
JPWO2020045375A1 (ja) * 2018-08-31 2021-09-09 パナソニックIpマネジメント株式会社 電気化学デバイス
JP7450139B2 (ja) 2018-08-31 2024-03-15 パナソニックIpマネジメント株式会社 電気化学デバイス

Also Published As

Publication number Publication date
JPWO2012039497A1 (ja) 2014-02-03
EP2620964A1 (en) 2013-07-31
US20130224546A1 (en) 2013-08-29
EP2620964A4 (en) 2016-01-27
KR20130115263A (ko) 2013-10-21
CN103119675A (zh) 2013-05-22
CN103119675B (zh) 2016-06-01
JP5958340B2 (ja) 2016-07-27

Similar Documents

Publication Publication Date Title
JP5958340B2 (ja) 蓄電デバイス及び蓄電デバイスの製造方法
CN107710459B (zh) 电池及电池包
US10115937B2 (en) Battery including branched current collector sections
JP5558569B2 (ja) 電池及び組電池
CN102210053B (zh) 堆叠的蓄电池
JP4979465B2 (ja) 非水系蓄電デバイス及びその製造方法、組電池
US10263237B2 (en) Cylindrical battery, and collector member used therefor, and manufacturing method thereof
JP5106024B2 (ja) 電池
US20160336545A1 (en) Prismatic secondary battery, assembled battery using the same and method of producing the same
US20130209849A1 (en) Prismatic secondary battery
EP2953186B1 (en) Electricity storage device
US10256457B2 (en) Secondary battery
JP5137516B2 (ja) 密閉電池
KR102061528B1 (ko) 리튬 이온 배터리
US10181596B2 (en) Secondary Battery
JP4020544B2 (ja) 非水電解液二次電池
US20120081839A1 (en) Lithium Ion Storage Device
JP2003187773A (ja) 密閉型電池および溶接方法
JP3627645B2 (ja) リチウム二次電池
JP2010080326A (ja) 蓄電素子およびその製造方法
JP5439317B2 (ja) 二次電池
JP2008305928A (ja) 非水系蓄電デバイス
JP2012209260A (ja) 電池
JP2018147574A (ja) 角形リチウムイオン二次電池
JP5590410B2 (ja) 円筒形二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046103.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826939

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012535089

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011826939

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137010451

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13825428

Country of ref document: US