WO2012037729A1 - 一种p型ZnO基材料的制备方法 - Google Patents

一种p型ZnO基材料的制备方法 Download PDF

Info

Publication number
WO2012037729A1
WO2012037729A1 PCT/CN2010/077253 CN2010077253W WO2012037729A1 WO 2012037729 A1 WO2012037729 A1 WO 2012037729A1 CN 2010077253 W CN2010077253 W CN 2010077253W WO 2012037729 A1 WO2012037729 A1 WO 2012037729A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
organic
sodium
substrate
based material
Prior art date
Application number
PCT/CN2010/077253
Other languages
English (en)
French (fr)
Inventor
叶志镇
卢洋藩
吴科伟
黄靖云
叶启阔
Original Assignee
Ye Zhizhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ye Zhizhen filed Critical Ye Zhizhen
Priority to PCT/CN2010/077253 priority Critical patent/WO2012037729A1/zh
Priority to US13/825,197 priority patent/US8722456B2/en
Priority to CN201080067947.4A priority patent/CN103180491B/zh
Publication of WO2012037729A1 publication Critical patent/WO2012037729A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • H01L29/227Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds further characterised by the doping material

Definitions

  • the invention belongs to the technical field of semiconductor materials, and relates to a method for preparing a p-type ZnO-based material, in particular to a method for p-type doping using an organic sodium source in a metal organic chemical vapor deposition apparatus.
  • Wide bandgap compound semiconductors ZnO and ZnO-based alloy materials are considered to be ideal short-wavelength optoelectronic devices due to their excellent set of properties.
  • Natural ZnO is n-type, in which there are many intrinsic donor defects, which will produce a high self-compensation effect, and the solubility of many acceptor elements in ZnO is low and the energy level is deep. Therefore, the p-type doping of ZnO is once It is a big international scientific problem. In recent years, through the joint efforts of scientists from all over the world, a series of important advances have been made in the study of p-type doping of ZnO. The realization of p-type doping of ZnO is no longer a problem.
  • the Na element is a good acceptor element, but due to its very active nature, it is generally difficult to introduce into ZnO, so there are few people studying it, and there are few related research reports.
  • Our experimental results show that Na does act as an acceptor well in ZnO, and its doped ZnO has a good p-type performance.
  • MOCVD equipment commonly used in the current semiconductor industry.
  • Na doping with this device requires an organic source containing Na as a raw material, but there is no relevant organic source on the market at present, and the object of the present invention is to solve this problem.
  • An object of the present invention is to provide a method of p-type ZnO-based material in order to overcome the problems of doping other acceptor elements.
  • a method for preparing a P-type 0-based material which is carried out in a metal organic chemical vapor deposition apparatus system, which comprises: cleaning a substrate surface and placing the metal into the metal chemical vapor deposition system growth chamber, the growth chamber is evacuated to 10_ 3 ⁇ 10 4 Pa, the substrate was heated to 200 ⁇ 700 ° C, organozinc input source, sodium source and an organic oxygen on the substrate A p-type ZnO-based material is deposited, wherein the organic sodium source is sodium cyclopentate, sodium methylcyclopentadienyl or sodium pentamethylcyclopentadienyl.
  • organic sources are input while inputting an organic zinc source, an organic sodium source, and oxygen.
  • the other organic source is a magnesium source, a cadmium source or a germanium source.
  • the substrate is a zinc oxide single crystal, silicon carbide, sapphire, quartz, silicon or glass.
  • the organic zinc source is diethyl zinc or dimethyl zinc;
  • the organic magnesium source is ferrocene or methyl ferrocene;
  • the organic cadmium source is dimethyl cadmium or diethyl cadmium; It is dimethyl hydrazine or diethyl hydrazine.
  • Na doping can greatly improve the hole concentration and p-type stability in ZnO-based materials.
  • Na-doping technology combined with MOCVD equipment can prepare p-type ZnO-based materials with good crystal quality and excellent electrical and optical properties.
  • the method for preparing a p-type ZnO-based material according to the present invention uses a Metal Organic Chemical Vapor Deposition (MOCVD) equipment system, comprising the following steps:
  • the growth chamber is evacuated to 10- 3 ⁇ 10- 4 Pa, the substrate was heated to 200 ⁇ 700 ° C, organozinc input source, organic sodium Source, oxygen, or other organic sources (such as magnesium source, cadmium source or tantalum source) can be simultaneously deposited to deposit a p-type ZnO-based material on the substrate.
  • organozinc input source organic sodium Source, oxygen, or other organic sources (such as magnesium source, cadmium source or tantalum source) can be simultaneously deposited to deposit a p-type ZnO-based material on the substrate.
  • the substrate may be a single crystal of zinc oxide, silicon carbide, sapphire, quartz, silicon or glass.
  • the organic sodium source is sodium cyclopentate sodium, methyl cyclopentadienyl sodium, pentamethylcyclopentadienyl sodium or other organic sodium salt having an analogous property, and the organic sodium salt can be vacuumed at room temperature. It is stable in an inert atmosphere and can be carried by bubbling or purging into the growth chamber of the MOCVD system by nitrogen or hydrogen, and can react violently with oxygen to form sodium-containing oxides and other gaseous substances.
  • the organic zinc source may be diethyl zinc or dimethyl zinc; the organic magnesium source may be ferrocene or methyl ferrocene; the organic cadmium source may be dimethyl cadmium or diethyl cadmium; Dimethyl hydrazine or diethyl hydrazine.
  • the p-type ZnO-based material prepared by the method of the present invention comprises a thin film of ZnO, ZnMgO, ZnCdO, ZnBeO or the like or a nano material.
  • the p-type ZnO material in this embodiment was prepared on a sapphire substrate by an MOCVD system.
  • the sapphire substrate was first ultrasonically washed with acetone or absolute ethanol for 10 to 30 minutes, then rinsed with deionized water and then dried with nitrogen.
  • the cleaned sapphire substrate is placed in the growth chamber of the metal organic chemical deposition system, the growth chamber is evacuated to 10 - 3 Pa, the substrate is heated to 400 ° C, and the organic zinc source is fed diethyl zinc, organic sodium.
  • the flow ratio of the source cyclopentadienyl sodium, oxygen, organic zinc source, organic sodium source to oxygen is 2: 1: 1, and a 300 nm thick p-ZnO thin film layer is deposited on the substrate.
  • the p-type ZnO thin film prepared in this example had a hole concentration of about 10 17 cm -3 .
  • the p-type ZnMgO material in this embodiment was prepared on a glass substrate by an MOCVD system.
  • the glass substrate was first ultrasonically washed with acetone or absolute ethanol for 10 to 30 minutes, then rinsed with deionized water and then dried with nitrogen.
  • the cleaned glass substrate is placed in the growth chamber of the metal organic chemical deposition system, the growth chamber is evacuated to 10 - 4 Pa, the substrate is heated to 650 ° C, and the organic zinc source is input to diethyl zinc, organomagnesium.
  • the p-type ZnMgO film prepared in this example had a hole concentration of about 10 16 cm -3 .
  • the p-type ZnO material in this embodiment was prepared by using an MOCVD system on a zinc oxide single crystal substrate. Firstly, the surface-cleaned zinc oxide single crystal substrate is placed in the growth chamber of the metal organic chemical deposition system, the growth chamber is evacuated to 10 - 3 Pa, the substrate is heated to 400 ° C, and the organic zinc source diethyl zinc is input.
  • the organic sodium source cyclopentadienyl sodium, oxygen, organic zinc source, organic sodium source and oxygen flow ratio is 2: 1: 1, a 300 nm thick p-ZnO thin film layer is deposited on the substrate.
  • the p-type ZnO thin film prepared in this example and the n-type ZnO single crystal substrate can form a homogenous pn junction with good performance, exhibit rectification characteristics and can realize room temperature electric injection luminescence.
  • the p-type ZnCdO material in this embodiment was prepared on a quartz substrate by an MOCVD system.
  • the quartz substrate was first ultrasonically washed with acetone or absolute ethanol for 10 to 30 minutes, then rinsed with deionized water and then blown dry with nitrogen.
  • the cleaned quartz substrate is placed in the growth chamber of the metal organic chemical deposition system, the growth chamber is evacuated to 10 - 4 Pa, the substrate is heated to 200 ° C, and the organic zinc source is input to diethyl zinc, organic cadmium.
  • the p-type ZnCdO film prepared in this example had a hole concentration of about 10 16 cm -3 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Description

说 明 书
一种 p型 ZnO基材料的制备方法
技术领域
本发明属于半导体材料技术领域, 涉及一种 p型 ZnO基材料的制备方法, 尤其涉及一种在金属有机化学气相沉积设备中采用有机钠源进行 p型掺杂的方 法。
背景技术
宽禁带化合物半导体 ZnO以及以 ZnO为基础的合金材料由于具有一系列优 良的特性被认为是一种理想的短波长光电器件材料。 天然 ZnO呈 n型, 其中存 在诸多本征施主缺陷, 会产生高度的自补偿效应, 并且多种受主元素在 ZnO中 的固溶度低、能级较深, 因而 ZnO的 p型掺杂一度是个很大的国际性科学难题。 近年来, 经全世界各国科学家的共同努力, ZnO的 p型掺杂研究已取得了一系 列重要进展, 实现 ZnO的 p型掺杂不再是个问题。 但是要制备高质量的具有实 际应用价值的 p型 ZnO基材料并非易事,要制备具有较高空穴浓度、高迁移率、 低电阻, 并且具有稳定的电学、 光学性能的 p型 ZnO基材料仍然是个难题, 而 它却是实现 ZnO基发光器件广泛应用的重要基础。此前研究报道较多的 ZnO中 受主掺杂元素主要包括 V族元素 N、 P、 As、 Sb以及 I族元素 Li, 但是对于哪 种元素最适合用于 ZnO的 p型掺杂还没有统一的意见, 每种掺杂元素都存在各 自的优缺点, 研究者们也没有找到一种具有普适性的 p型掺杂工艺方法。 从理 论计算的结果来看, Na元素是一种很好的受主元素,但由于其非常活泼的性质, 一般较难引入 ZnO中, 因而研究的人较少, 相关的研究报道也很少。 我们的实 验结果表明, Na在 ZnO中确实能很好的充当受主, 使用其掺杂的 ZnO具有良 好的 p型表现。 要使这种掺杂技术得到推广, 尤其是在工业生产上运用, 需要 采用目前半导体工业生产中普遍运用的 MOCVD 设备。 而要用该设备进行 Na 掺杂则需要含 Na的有机源作为原料, 但是目前市场上并没有相关的有机源, 本 发明的目的正是为了解决这个问题。
发明内容
本发明的目的是为克服其他受主元素掺杂所存在的问题,提供一种 p型 ZnO 基材料的方法。
本发明的目的是通过以下技术方案来实现的: 一种 P型 0基材料的制备 方法, 该方法在金属有机化学气相沉积设备系统中进行, 该方法为: 将衬底表 面清洗后放入金属有机化学气相沉积系统的生长室中, 生长室抽真空至 10_3〜 10 4Pa, 加热衬底至 200〜700°C, 输入有机锌源、 有机钠源和氧气, 在衬底上 沉积 p型 ZnO基材料, 其中, 所述有机钠源为环戊二稀基钠、 甲基环戊二烯基 钠或五甲基环戊二烯基钠。
进一步地, 在输入有机锌源、 有机钠源和氧气的同时输入其它有机源。 进一步地, 所述其它有机源为镁源、 镉源或铍源。
进一步地, 所述衬底为氧化锌单晶、 碳化硅、 蓝宝石、 石英、 硅或玻璃。 进一步地, 所述有机锌源为二乙基锌或二甲基锌; 有机镁源为二茂镁或甲 基二茂镁; 有机镉源为二甲基镉或二乙基镉; 有机铍源为二甲基铍或二乙基铍。
本发明的有益效果是:
1、 Na掺杂能够大大提高 ZnO基材料中的空穴浓度以及 p型稳定性, 采用 Na掺杂技术结合 MOCVD设备, 可制备具有良好晶体质量和优良电学、 光学性 能的 p型 ZnO基材料。
2、 采用环戊二烯基钠等类似有机物作为钠掺杂的金属有机源, 可实现工业 化生产 Na掺杂 p型 ZnO基材料应用。
具体实施方式
本发明制备 p型 ZnO基材料的方法,采用的是金属有机化学气相沉积 (Metal Organic Chemical Vapor Deposition, MOCVD ) 设备系统, 包括以下步骤:
将衬底表面清洗后放入金属有机化学气相沉积系统的生长室中, 生长室抽 真空至 10—3〜10—4Pa, 加热衬底至 200〜700°C, 输入有机锌源、 有机钠源、 氧 气, 也可以同时输入其他有机源 (如镁源、 镉源或铍源等), 在衬底上沉积 p型 ZnO基材料。
其中, 衬底可采用氧化锌单晶、 碳化硅、 蓝宝石、 石英、 硅或者玻璃等。 有机钠源采用环戊二稀基钠、 甲基环戊二烯基钠、 五甲基环戊二烯基钠或 者其他具有类似物化性质的有机钠盐, 该种有机钠盐能在室温下真空或惰性气 氛中稳定存在, 能被氮气或者氢气通过鼓泡或者吹扫方式带入到 MOCVD系统 的生长室中, 并且能与氧气剧烈反应生成含钠的氧化物和其他气态物质。
有机锌源可采用二乙基锌或者二甲基锌; 有机镁源可采用二茂镁或者甲基 二茂镁; 有机镉源可采用二甲基镉或二乙基镉; 有机铍源可采用二甲基铍或者 二乙基铍。
根据本发明的方法制备的 p型 ZnO基材料, 包括 ZnO、 ZnMgO、 ZnCdO、 ZnBeO等薄膜或者纳米材料。
以下结合实施例进一步说明本发明。
实施例 1:
本实施例中的 p型 ZnO材料为采用 MOCVD系统在蓝宝石衬底上制备而成。 首先将蓝宝石衬底用丙酮或者无水乙醇超声清洗 10〜30分钟, 然后用去离子水 冲洗, 再用氮气吹干。 接下来将清洗好的蓝宝石衬底放入金属有机化学沉积系 统的生长室中, 生长室抽真空至 10— 3Pa, 加热衬底至 400°C, 输入有机锌源二乙 基锌、有机钠源环戊二烯基钠、氧气,有机锌源、有机钠源与氧气的流量比为 2: 1: 1, 在衬底上沉积一层 300nm厚的 p-ZnO薄膜层。 本例制备的 p型 ZnO薄膜 的空穴浓度约 1017cm- 3
实施例 2:
本实施例中的 p型 ZnMgO材料为采用 MOCVD系统在玻璃衬底上制备而 成。 首先将玻璃衬底用丙酮或者无水乙醇超声清洗 10〜30分钟, 然后用去离子 水冲洗, 再用氮气吹干。 接下来将清洗好的玻璃衬底放入金属有机化学沉积系 统的生长室中, 生长室抽真空至 10—4Pa, 加热衬底至 650°C, 输入有机锌源二乙 基锌、 有机镁源甲基二茂镁、 有机钠源环戊二烯基钠、 氧气, 有机锌源、 有机 镁源、 有机钠源与氧气的流量比为 2: 5: 1: 1, 在衬底上沉积一层 300nm厚的 p-ZnMgO薄膜层。 本例制备的 p型 ZnMgO薄膜的空穴浓度约 1016cm- 3
实施例 3 :
本实施例中的 p型 ZnO材料为采用 MOCVD系统在氧化锌单晶衬底上制备 而成。 首先将表面清洁的氧化锌单晶衬底放入金属有机化学沉积系统的生长室 中, 生长室抽真空至 10— 3Pa, 加热衬底至 400°C, 输入有机锌源二乙基锌、 有机 钠源环戊二烯基钠、 氧气, 有机锌源、 有机钠源与氧气的流量比为 2: 1: 1, 在 衬底上沉积一层 300nm厚的 p-ZnO薄膜层。 本例制备的 p型 ZnO薄膜与 n型 ZnO单晶衬底能形成性能良好的同质 p-n结,显示整流特性并可实现室温电注入 发光。
实施例 4:
本实施例中的 p型 ZnCdO材料为采用 MOCVD系统在石英衬底上制备而 成。 首先将石英衬底用丙酮或者无水乙醇超声清洗 10〜30分钟, 然后用去离子 水冲洗, 再用氮气吹干。 接下来将清洗好的石英衬底放入金属有机化学沉积系 统的生长室中, 生长室抽真空至 10— 4Pa, 加热衬底至 200°C, 输入有机锌源二乙 基锌、 有机镉源二甲基镉、 有机钠源环戊二烯基钠、 氧气, 有机锌源、 有机镉 源、 有机钠源与氧气的流量比为 2: 1 : 1 : 1, 在衬底上沉积一层 300nm 厚的 p-ZnCdO薄膜层。 本例制备的 p型 ZnCdO薄膜的空穴浓度约 1016cm- 3
上述实施例用来解释说明本发明, 而不是对本发明进行限制, 在本发明的 精神和权利要求的保护范围内, 对本发明作出的任何修改和改变, 都落入本发 明的保护范围。

Claims

权 利 要 求 书
1. 一种 P型 0基材料的制备方法, 该方法在金属有机化学气相沉积设备 系统中进行, 其特征在于, 该方法为: 将衬底表面清洗后放入金属有机化学气 相沉积系统的生长室中, 生长室抽真空至 10— 3〜10— 4Pa, 加热衬底至 200〜700 °C, 输入有机锌源、 有机钠源和氧气, 在衬底上沉积 p型 ZnO基材料, 其中, 所述有机钠源为环戊二稀基钠、 甲基环戊二烯基钠或五甲基环戊二烯基钠。
2. 根据权利要求 1所述制备方法, 其特征在于, 在输入有机锌源、 有机钠 源和氧气的同时, 输入其它有机源。
3. 根据权利要求 2所述制备方法, 其特征在于, 所述其它有机源为镁源、 镉源或铍源。
4. 根据权利要求 1所述制备方法, 其特征在于, 所述衬底为氧化锌单晶、 碳化硅、 蓝宝石、 石英、 硅或玻璃。
5. 根据权利要求 1所述制备方法, 其特征在于, 所述有机锌源为二乙基锌或二 甲基锌; 有机镁源为二茂镁或甲基二茂镁; 有机镉源为二甲基镉或二乙基镉; 有机铍源为二甲基铍或二乙基铍。
PCT/CN2010/077253 2010-09-25 2010-09-25 一种p型ZnO基材料的制备方法 WO2012037729A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2010/077253 WO2012037729A1 (zh) 2010-09-25 2010-09-25 一种p型ZnO基材料的制备方法
US13/825,197 US8722456B2 (en) 2010-09-25 2010-09-25 Method for preparing p-type ZnO-based material
CN201080067947.4A CN103180491B (zh) 2010-09-25 2010-09-25 一种p型ZnO基材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/077253 WO2012037729A1 (zh) 2010-09-25 2010-09-25 一种p型ZnO基材料的制备方法

Publications (1)

Publication Number Publication Date
WO2012037729A1 true WO2012037729A1 (zh) 2012-03-29

Family

ID=45873389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077253 WO2012037729A1 (zh) 2010-09-25 2010-09-25 一种p型ZnO基材料的制备方法

Country Status (3)

Country Link
US (1) US8722456B2 (zh)
CN (1) CN103180491B (zh)
WO (1) WO2012037729A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107188218B (zh) * 2017-06-26 2019-05-14 华南理工大学 一种钠掺杂p型氧化锌纳米棒材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1696356A (zh) * 2004-05-12 2005-11-16 中国科学院长春光学精密机械与物理研究所 籽晶诱导、低温液相外延自组装生长氧化锌薄膜的方法
CN101183595A (zh) * 2007-12-14 2008-05-21 浙江大学 p型掺杂ZnO基稀磁半导体材料及制备方法
CN101235536A (zh) * 2007-11-09 2008-08-06 浙江大学 Na掺杂生长p型ZnO晶体薄膜的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291085B1 (en) * 1998-08-03 2001-09-18 The Curators Of The University Of Missouri Zinc oxide films containing P-type dopant and process for preparing same
JP4126332B2 (ja) * 1999-08-13 2008-07-30 学校法人高知工科大学 低抵抗p型単結晶酸化亜鉛およびその製造方法
US7172813B2 (en) * 2003-05-20 2007-02-06 Burgener Ii Robert H Zinc oxide crystal growth substrate
CN1258804C (zh) * 2003-11-04 2006-06-07 浙江大学 一种实时掺氮生长p型氧化锌晶体薄膜的方法
CN100375253C (zh) * 2005-07-19 2008-03-12 大连理工大学 一种p型ZnO薄膜的金属有机物化学气相沉积制备方法
CN101696492B (zh) * 2009-10-23 2011-10-26 北京航空航天大学 一种制备掺铝氧化锌透明导电薄膜的装置及方法
CN101760726B (zh) * 2009-12-31 2011-11-16 华南师范大学 一种B和N共掺杂ZnO薄膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1696356A (zh) * 2004-05-12 2005-11-16 中国科学院长春光学精密机械与物理研究所 籽晶诱导、低温液相外延自组装生长氧化锌薄膜的方法
CN101235536A (zh) * 2007-11-09 2008-08-06 浙江大学 Na掺杂生长p型ZnO晶体薄膜的方法
CN101183595A (zh) * 2007-12-14 2008-05-21 浙江大学 p型掺杂ZnO基稀磁半导体材料及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI X. ET AL.: "P-Type ZnO Thin Films Grown by MOCVD", PREPARED FOR THE 31ST IEEE PHOTOVOLTAICS SPECIALISTS CONFERENCE AND EXHIBITION, LAKE BUENA VISTA, 3 January 2005 (2005-01-03) - 7 January 2005 (2005-01-07), FLORIDA, pages 1 - 3 *
YANG L.L. ET AL.: "Fabrication of P-Type ZnO Thin Films via DC Reactive Magnetron Sputtering by Using Na as the Dopant Source", JOURNAL OF ELECTRONIC MATERIALS, vol. 36, no. 4, 5 February 2007 (2007-02-05), pages 498 - 500 *

Also Published As

Publication number Publication date
CN103180491B (zh) 2016-02-17
US20130183797A1 (en) 2013-07-18
CN103180491A (zh) 2013-06-26
US8722456B2 (en) 2014-05-13

Similar Documents

Publication Publication Date Title
JP2012089876A (ja) 太陽電池の製造方法
CN107419333B (zh) 一种高迁移率铌掺杂氧化锡单晶薄膜的制备方法
JP2009224774A (ja) 太陽電池及びその製造方法
Wang et al. A review of earth abundant ZnO-based materials for thermoelectric and photovoltaic applications
WO2022127093A1 (zh) 基于h-BN的V型隧穿结LED外延结构及其制备方法
JP4949540B2 (ja) 太陽電池及びその製造法
CN110963484A (zh) 基于掺杂层辅助的大面积高质量石墨烯无损转移方法
CN111180564A (zh) 高光效绿光led外延片及制造方法
CN113451515A (zh) 一种GaN半导体材料作为双功能层的钙钛矿太阳能电池的制备方法
CN100479221C (zh) 一种氧化锡单晶薄膜的制备方法
Hu et al. Fabrication and properties of a solar-blind ultraviolet photodetector based on Si-doped β-Ga2O3 film grown on p-Si (111) substrate by MOCVD
CN103996606A (zh) 生长在蓝宝石衬底上的高均匀性AlN薄膜及其制备方法和应用
CN103695866B (zh) 采用简单化学气相沉积法制备Sb掺杂p型ZnO薄膜的方法
WO2012037729A1 (zh) 一种p型ZnO基材料的制备方法
CN101736399B (zh) 一种正交结构氧化锡单晶薄膜的制备方法
CN111139449A (zh) 氧化锌基透明电极光电探测器及其制备方法
CN107394023B (zh) 一种晶化纳米结构氧化锌透明导电薄膜的制备方法
CN202996885U (zh) 一种生长在Si衬底上的LED外延片
CN208157359U (zh) 生长在铝箔衬底上的氮化铟纳米柱外延片
CN104451867A (zh) 一种制备高质量ZnMgBeO薄膜的方法
Kim et al. Self textured transparent conductive oxide film for efficiency improvement in solar cell
CN110634749B (zh) 一种BaSi2薄膜的外延生长方法
CN104183667B (zh) 降低键合多结太阳能电池GaAs/InP界面电学损耗的方法
WO2014089864A1 (zh) 原子层沉积制备共掺的氧化锌薄膜的方法
JP2004297008A (ja) p型半導体材料、その作製方法、その作製装置、光電変換素子、発光素子、および薄膜トランジスタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067947.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857443

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13825197

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857443

Country of ref document: EP

Kind code of ref document: A1